1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 //===----------------------------------------------------------------------===//
49 //                            AllocaInst Class
50 //===----------------------------------------------------------------------===//
51 
52 Optional<uint64_t>
53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54   uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55   if (isArrayAllocation()) {
56     auto C = dyn_cast<ConstantInt>(getArraySize());
57     if (!C)
58       return None;
59     Size *= C->getZExtValue();
60   }
61   return Size;
62 }
63 
64 //===----------------------------------------------------------------------===//
65 //                            CallSite Class
66 //===----------------------------------------------------------------------===//
67 
68 User::op_iterator CallSite::getCallee() const {
69   return cast<CallBase>(getInstruction())->op_end() - 1;
70 }
71 
72 //===----------------------------------------------------------------------===//
73 //                              SelectInst Class
74 //===----------------------------------------------------------------------===//
75 
76 /// areInvalidOperands - Return a string if the specified operands are invalid
77 /// for a select operation, otherwise return null.
78 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
79   if (Op1->getType() != Op2->getType())
80     return "both values to select must have same type";
81 
82   if (Op1->getType()->isTokenTy())
83     return "select values cannot have token type";
84 
85   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
86     // Vector select.
87     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
88       return "vector select condition element type must be i1";
89     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
90     if (!ET)
91       return "selected values for vector select must be vectors";
92     if (ET->getNumElements() != VT->getNumElements())
93       return "vector select requires selected vectors to have "
94                    "the same vector length as select condition";
95   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
96     return "select condition must be i1 or <n x i1>";
97   }
98   return nullptr;
99 }
100 
101 //===----------------------------------------------------------------------===//
102 //                               PHINode Class
103 //===----------------------------------------------------------------------===//
104 
105 PHINode::PHINode(const PHINode &PN)
106     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
107       ReservedSpace(PN.getNumOperands()) {
108   allocHungoffUses(PN.getNumOperands());
109   std::copy(PN.op_begin(), PN.op_end(), op_begin());
110   std::copy(PN.block_begin(), PN.block_end(), block_begin());
111   SubclassOptionalData = PN.SubclassOptionalData;
112 }
113 
114 // removeIncomingValue - Remove an incoming value.  This is useful if a
115 // predecessor basic block is deleted.
116 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
117   Value *Removed = getIncomingValue(Idx);
118 
119   // Move everything after this operand down.
120   //
121   // FIXME: we could just swap with the end of the list, then erase.  However,
122   // clients might not expect this to happen.  The code as it is thrashes the
123   // use/def lists, which is kinda lame.
124   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
125   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
126 
127   // Nuke the last value.
128   Op<-1>().set(nullptr);
129   setNumHungOffUseOperands(getNumOperands() - 1);
130 
131   // If the PHI node is dead, because it has zero entries, nuke it now.
132   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
133     // If anyone is using this PHI, make them use a dummy value instead...
134     replaceAllUsesWith(UndefValue::get(getType()));
135     eraseFromParent();
136   }
137   return Removed;
138 }
139 
140 /// growOperands - grow operands - This grows the operand list in response
141 /// to a push_back style of operation.  This grows the number of ops by 1.5
142 /// times.
143 ///
144 void PHINode::growOperands() {
145   unsigned e = getNumOperands();
146   unsigned NumOps = e + e / 2;
147   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
148 
149   ReservedSpace = NumOps;
150   growHungoffUses(ReservedSpace, /* IsPhi */ true);
151 }
152 
153 /// hasConstantValue - If the specified PHI node always merges together the same
154 /// value, return the value, otherwise return null.
155 Value *PHINode::hasConstantValue() const {
156   // Exploit the fact that phi nodes always have at least one entry.
157   Value *ConstantValue = getIncomingValue(0);
158   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
159     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
160       if (ConstantValue != this)
161         return nullptr; // Incoming values not all the same.
162        // The case where the first value is this PHI.
163       ConstantValue = getIncomingValue(i);
164     }
165   if (ConstantValue == this)
166     return UndefValue::get(getType());
167   return ConstantValue;
168 }
169 
170 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
171 /// together the same value, assuming that undefs result in the same value as
172 /// non-undefs.
173 /// Unlike \ref hasConstantValue, this does not return a value because the
174 /// unique non-undef incoming value need not dominate the PHI node.
175 bool PHINode::hasConstantOrUndefValue() const {
176   Value *ConstantValue = nullptr;
177   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
178     Value *Incoming = getIncomingValue(i);
179     if (Incoming != this && !isa<UndefValue>(Incoming)) {
180       if (ConstantValue && ConstantValue != Incoming)
181         return false;
182       ConstantValue = Incoming;
183     }
184   }
185   return true;
186 }
187 
188 //===----------------------------------------------------------------------===//
189 //                       LandingPadInst Implementation
190 //===----------------------------------------------------------------------===//
191 
192 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
193                                const Twine &NameStr, Instruction *InsertBefore)
194     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
195   init(NumReservedValues, NameStr);
196 }
197 
198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
199                                const Twine &NameStr, BasicBlock *InsertAtEnd)
200     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
201   init(NumReservedValues, NameStr);
202 }
203 
204 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
205     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
206                   LP.getNumOperands()),
207       ReservedSpace(LP.getNumOperands()) {
208   allocHungoffUses(LP.getNumOperands());
209   Use *OL = getOperandList();
210   const Use *InOL = LP.getOperandList();
211   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
212     OL[I] = InOL[I];
213 
214   setCleanup(LP.isCleanup());
215 }
216 
217 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
218                                        const Twine &NameStr,
219                                        Instruction *InsertBefore) {
220   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
221 }
222 
223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
224                                        const Twine &NameStr,
225                                        BasicBlock *InsertAtEnd) {
226   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
227 }
228 
229 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
230   ReservedSpace = NumReservedValues;
231   setNumHungOffUseOperands(0);
232   allocHungoffUses(ReservedSpace);
233   setName(NameStr);
234   setCleanup(false);
235 }
236 
237 /// growOperands - grow operands - This grows the operand list in response to a
238 /// push_back style of operation. This grows the number of ops by 2 times.
239 void LandingPadInst::growOperands(unsigned Size) {
240   unsigned e = getNumOperands();
241   if (ReservedSpace >= e + Size) return;
242   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
243   growHungoffUses(ReservedSpace);
244 }
245 
246 void LandingPadInst::addClause(Constant *Val) {
247   unsigned OpNo = getNumOperands();
248   growOperands(1);
249   assert(OpNo < ReservedSpace && "Growing didn't work!");
250   setNumHungOffUseOperands(getNumOperands() + 1);
251   getOperandList()[OpNo] = Val;
252 }
253 
254 //===----------------------------------------------------------------------===//
255 //                        CallBase Implementation
256 //===----------------------------------------------------------------------===//
257 
258 Function *CallBase::getCaller() { return getParent()->getParent(); }
259 
260 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
261   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
262   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
263 }
264 
265 bool CallBase::isIndirectCall() const {
266   const Value *V = getCalledValue();
267   if (isa<Function>(V) || isa<Constant>(V))
268     return false;
269   if (const CallInst *CI = dyn_cast<CallInst>(this))
270     if (CI->isInlineAsm())
271       return false;
272   return true;
273 }
274 
275 /// Tests if this call site must be tail call optimized. Only a CallInst can
276 /// be tail call optimized.
277 bool CallBase::isMustTailCall() const {
278   if (auto *CI = dyn_cast<CallInst>(this))
279     return CI->isMustTailCall();
280   return false;
281 }
282 
283 /// Tests if this call site is marked as a tail call.
284 bool CallBase::isTailCall() const {
285   if (auto *CI = dyn_cast<CallInst>(this))
286     return CI->isTailCall();
287   return false;
288 }
289 
290 Intrinsic::ID CallBase::getIntrinsicID() const {
291   if (auto *F = getCalledFunction())
292     return F->getIntrinsicID();
293   return Intrinsic::not_intrinsic;
294 }
295 
296 bool CallBase::isReturnNonNull() const {
297   if (hasRetAttr(Attribute::NonNull))
298     return true;
299 
300   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
301            !NullPointerIsDefined(getCaller(),
302                                  getType()->getPointerAddressSpace()))
303     return true;
304 
305   return false;
306 }
307 
308 Value *CallBase::getReturnedArgOperand() const {
309   unsigned Index;
310 
311   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
312     return getArgOperand(Index - AttributeList::FirstArgIndex);
313   if (const Function *F = getCalledFunction())
314     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
315         Index)
316       return getArgOperand(Index - AttributeList::FirstArgIndex);
317 
318   return nullptr;
319 }
320 
321 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
322   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
323     return true;
324 
325   // Look at the callee, if available.
326   if (const Function *F = getCalledFunction())
327     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
328   return false;
329 }
330 
331 /// Determine whether the argument or parameter has the given attribute.
332 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
333   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
334 
335   if (Attrs.hasParamAttribute(ArgNo, Kind))
336     return true;
337   if (const Function *F = getCalledFunction())
338     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
339   return false;
340 }
341 
342 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
343   if (const Function *F = getCalledFunction())
344     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
345   return false;
346 }
347 
348 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
349   if (const Function *F = getCalledFunction())
350     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
351   return false;
352 }
353 
354 CallBase::op_iterator
355 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
356                                      const unsigned BeginIndex) {
357   auto It = op_begin() + BeginIndex;
358   for (auto &B : Bundles)
359     It = std::copy(B.input_begin(), B.input_end(), It);
360 
361   auto *ContextImpl = getContext().pImpl;
362   auto BI = Bundles.begin();
363   unsigned CurrentIndex = BeginIndex;
364 
365   for (auto &BOI : bundle_op_infos()) {
366     assert(BI != Bundles.end() && "Incorrect allocation?");
367 
368     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
369     BOI.Begin = CurrentIndex;
370     BOI.End = CurrentIndex + BI->input_size();
371     CurrentIndex = BOI.End;
372     BI++;
373   }
374 
375   assert(BI == Bundles.end() && "Incorrect allocation?");
376 
377   return It;
378 }
379 
380 //===----------------------------------------------------------------------===//
381 //                        CallInst Implementation
382 //===----------------------------------------------------------------------===//
383 
384 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
385                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
386   this->FTy = FTy;
387   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
388          "NumOperands not set up?");
389   setCalledOperand(Func);
390 
391 #ifndef NDEBUG
392   assert((Args.size() == FTy->getNumParams() ||
393           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
394          "Calling a function with bad signature!");
395 
396   for (unsigned i = 0; i != Args.size(); ++i)
397     assert((i >= FTy->getNumParams() ||
398             FTy->getParamType(i) == Args[i]->getType()) &&
399            "Calling a function with a bad signature!");
400 #endif
401 
402   llvm::copy(Args, op_begin());
403 
404   auto It = populateBundleOperandInfos(Bundles, Args.size());
405   (void)It;
406   assert(It + 1 == op_end() && "Should add up!");
407 
408   setName(NameStr);
409 }
410 
411 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
412   this->FTy = FTy;
413   assert(getNumOperands() == 1 && "NumOperands not set up?");
414   setCalledOperand(Func);
415 
416   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
417 
418   setName(NameStr);
419 }
420 
421 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
422                    Instruction *InsertBefore)
423     : CallBase(Ty->getReturnType(), Instruction::Call,
424                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
425   init(Ty, Func, Name);
426 }
427 
428 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
429                    BasicBlock *InsertAtEnd)
430     : CallBase(Ty->getReturnType(), Instruction::Call,
431                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
432   init(Ty, Func, Name);
433 }
434 
435 CallInst::CallInst(const CallInst &CI)
436     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
437                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
438                CI.getNumOperands()) {
439   setTailCallKind(CI.getTailCallKind());
440   setCallingConv(CI.getCallingConv());
441 
442   std::copy(CI.op_begin(), CI.op_end(), op_begin());
443   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
444             bundle_op_info_begin());
445   SubclassOptionalData = CI.SubclassOptionalData;
446 }
447 
448 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
449                            Instruction *InsertPt) {
450   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
451 
452   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
453                                  Args, OpB, CI->getName(), InsertPt);
454   NewCI->setTailCallKind(CI->getTailCallKind());
455   NewCI->setCallingConv(CI->getCallingConv());
456   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
457   NewCI->setAttributes(CI->getAttributes());
458   NewCI->setDebugLoc(CI->getDebugLoc());
459   return NewCI;
460 }
461 
462 // Update profile weight for call instruction by scaling it using the ratio
463 // of S/T. The meaning of "branch_weights" meta data for call instruction is
464 // transfered to represent call count.
465 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
466   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
467   if (ProfileData == nullptr)
468     return;
469 
470   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
471   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
472                         !ProfDataName->getString().equals("VP")))
473     return;
474 
475   if (T == 0) {
476     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
477                          "div by 0. Ignoring. Likely the function "
478                       << getParent()->getParent()->getName()
479                       << " has 0 entry count, and contains call instructions "
480                          "with non-zero prof info.");
481     return;
482   }
483 
484   MDBuilder MDB(getContext());
485   SmallVector<Metadata *, 3> Vals;
486   Vals.push_back(ProfileData->getOperand(0));
487   APInt APS(128, S), APT(128, T);
488   if (ProfDataName->getString().equals("branch_weights") &&
489       ProfileData->getNumOperands() > 0) {
490     // Using APInt::div may be expensive, but most cases should fit 64 bits.
491     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
492                        ->getValue()
493                        .getZExtValue());
494     Val *= APS;
495     Vals.push_back(MDB.createConstant(ConstantInt::get(
496         Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
497   } else if (ProfDataName->getString().equals("VP"))
498     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
499       // The first value is the key of the value profile, which will not change.
500       Vals.push_back(ProfileData->getOperand(i));
501       // Using APInt::div may be expensive, but most cases should fit 64 bits.
502       APInt Val(128,
503                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
504                     ->getValue()
505                     .getZExtValue());
506       Val *= APS;
507       Vals.push_back(MDB.createConstant(
508           ConstantInt::get(Type::getInt64Ty(getContext()),
509                            Val.udiv(APT).getLimitedValue())));
510     }
511   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
512 }
513 
514 /// IsConstantOne - Return true only if val is constant int 1
515 static bool IsConstantOne(Value *val) {
516   assert(val && "IsConstantOne does not work with nullptr val");
517   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
518   return CVal && CVal->isOne();
519 }
520 
521 static Instruction *createMalloc(Instruction *InsertBefore,
522                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
523                                  Type *AllocTy, Value *AllocSize,
524                                  Value *ArraySize,
525                                  ArrayRef<OperandBundleDef> OpB,
526                                  Function *MallocF, const Twine &Name) {
527   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
528          "createMalloc needs either InsertBefore or InsertAtEnd");
529 
530   // malloc(type) becomes:
531   //       bitcast (i8* malloc(typeSize)) to type*
532   // malloc(type, arraySize) becomes:
533   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
534   if (!ArraySize)
535     ArraySize = ConstantInt::get(IntPtrTy, 1);
536   else if (ArraySize->getType() != IntPtrTy) {
537     if (InsertBefore)
538       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
539                                               "", InsertBefore);
540     else
541       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
542                                               "", InsertAtEnd);
543   }
544 
545   if (!IsConstantOne(ArraySize)) {
546     if (IsConstantOne(AllocSize)) {
547       AllocSize = ArraySize;         // Operand * 1 = Operand
548     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
549       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
550                                                      false /*ZExt*/);
551       // Malloc arg is constant product of type size and array size
552       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
553     } else {
554       // Multiply type size by the array size...
555       if (InsertBefore)
556         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
557                                               "mallocsize", InsertBefore);
558       else
559         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
560                                               "mallocsize", InsertAtEnd);
561     }
562   }
563 
564   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
565   // Create the call to Malloc.
566   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
567   Module *M = BB->getParent()->getParent();
568   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
569   FunctionCallee MallocFunc = MallocF;
570   if (!MallocFunc)
571     // prototype malloc as "void *malloc(size_t)"
572     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
573   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
574   CallInst *MCall = nullptr;
575   Instruction *Result = nullptr;
576   if (InsertBefore) {
577     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
578                              InsertBefore);
579     Result = MCall;
580     if (Result->getType() != AllocPtrType)
581       // Create a cast instruction to convert to the right type...
582       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
583   } else {
584     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
585     Result = MCall;
586     if (Result->getType() != AllocPtrType) {
587       InsertAtEnd->getInstList().push_back(MCall);
588       // Create a cast instruction to convert to the right type...
589       Result = new BitCastInst(MCall, AllocPtrType, Name);
590     }
591   }
592   MCall->setTailCall();
593   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
594     MCall->setCallingConv(F->getCallingConv());
595     if (!F->returnDoesNotAlias())
596       F->setReturnDoesNotAlias();
597   }
598   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
599 
600   return Result;
601 }
602 
603 /// CreateMalloc - Generate the IR for a call to malloc:
604 /// 1. Compute the malloc call's argument as the specified type's size,
605 ///    possibly multiplied by the array size if the array size is not
606 ///    constant 1.
607 /// 2. Call malloc with that argument.
608 /// 3. Bitcast the result of the malloc call to the specified type.
609 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
610                                     Type *IntPtrTy, Type *AllocTy,
611                                     Value *AllocSize, Value *ArraySize,
612                                     Function *MallocF,
613                                     const Twine &Name) {
614   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
615                       ArraySize, None, MallocF, Name);
616 }
617 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
618                                     Type *IntPtrTy, Type *AllocTy,
619                                     Value *AllocSize, Value *ArraySize,
620                                     ArrayRef<OperandBundleDef> OpB,
621                                     Function *MallocF,
622                                     const Twine &Name) {
623   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
624                       ArraySize, OpB, MallocF, Name);
625 }
626 
627 /// CreateMalloc - Generate the IR for a call to malloc:
628 /// 1. Compute the malloc call's argument as the specified type's size,
629 ///    possibly multiplied by the array size if the array size is not
630 ///    constant 1.
631 /// 2. Call malloc with that argument.
632 /// 3. Bitcast the result of the malloc call to the specified type.
633 /// Note: This function does not add the bitcast to the basic block, that is the
634 /// responsibility of the caller.
635 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
636                                     Type *IntPtrTy, Type *AllocTy,
637                                     Value *AllocSize, Value *ArraySize,
638                                     Function *MallocF, const Twine &Name) {
639   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
640                       ArraySize, None, MallocF, Name);
641 }
642 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
643                                     Type *IntPtrTy, Type *AllocTy,
644                                     Value *AllocSize, Value *ArraySize,
645                                     ArrayRef<OperandBundleDef> OpB,
646                                     Function *MallocF, const Twine &Name) {
647   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
648                       ArraySize, OpB, MallocF, Name);
649 }
650 
651 static Instruction *createFree(Value *Source,
652                                ArrayRef<OperandBundleDef> Bundles,
653                                Instruction *InsertBefore,
654                                BasicBlock *InsertAtEnd) {
655   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
656          "createFree needs either InsertBefore or InsertAtEnd");
657   assert(Source->getType()->isPointerTy() &&
658          "Can not free something of nonpointer type!");
659 
660   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
661   Module *M = BB->getParent()->getParent();
662 
663   Type *VoidTy = Type::getVoidTy(M->getContext());
664   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
665   // prototype free as "void free(void*)"
666   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
667   CallInst *Result = nullptr;
668   Value *PtrCast = Source;
669   if (InsertBefore) {
670     if (Source->getType() != IntPtrTy)
671       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
672     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
673   } else {
674     if (Source->getType() != IntPtrTy)
675       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
676     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
677   }
678   Result->setTailCall();
679   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
680     Result->setCallingConv(F->getCallingConv());
681 
682   return Result;
683 }
684 
685 /// CreateFree - Generate the IR for a call to the builtin free function.
686 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
687   return createFree(Source, None, InsertBefore, nullptr);
688 }
689 Instruction *CallInst::CreateFree(Value *Source,
690                                   ArrayRef<OperandBundleDef> Bundles,
691                                   Instruction *InsertBefore) {
692   return createFree(Source, Bundles, InsertBefore, nullptr);
693 }
694 
695 /// CreateFree - Generate the IR for a call to the builtin free function.
696 /// Note: This function does not add the call to the basic block, that is the
697 /// responsibility of the caller.
698 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
699   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
700   assert(FreeCall && "CreateFree did not create a CallInst");
701   return FreeCall;
702 }
703 Instruction *CallInst::CreateFree(Value *Source,
704                                   ArrayRef<OperandBundleDef> Bundles,
705                                   BasicBlock *InsertAtEnd) {
706   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
707   assert(FreeCall && "CreateFree did not create a CallInst");
708   return FreeCall;
709 }
710 
711 //===----------------------------------------------------------------------===//
712 //                        InvokeInst Implementation
713 //===----------------------------------------------------------------------===//
714 
715 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
716                       BasicBlock *IfException, ArrayRef<Value *> Args,
717                       ArrayRef<OperandBundleDef> Bundles,
718                       const Twine &NameStr) {
719   this->FTy = FTy;
720 
721   assert((int)getNumOperands() ==
722              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
723          "NumOperands not set up?");
724   setNormalDest(IfNormal);
725   setUnwindDest(IfException);
726   setCalledOperand(Fn);
727 
728 #ifndef NDEBUG
729   assert(((Args.size() == FTy->getNumParams()) ||
730           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
731          "Invoking a function with bad signature");
732 
733   for (unsigned i = 0, e = Args.size(); i != e; i++)
734     assert((i >= FTy->getNumParams() ||
735             FTy->getParamType(i) == Args[i]->getType()) &&
736            "Invoking a function with a bad signature!");
737 #endif
738 
739   llvm::copy(Args, op_begin());
740 
741   auto It = populateBundleOperandInfos(Bundles, Args.size());
742   (void)It;
743   assert(It + 3 == op_end() && "Should add up!");
744 
745   setName(NameStr);
746 }
747 
748 InvokeInst::InvokeInst(const InvokeInst &II)
749     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
750                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
751                II.getNumOperands()) {
752   setCallingConv(II.getCallingConv());
753   std::copy(II.op_begin(), II.op_end(), op_begin());
754   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
755             bundle_op_info_begin());
756   SubclassOptionalData = II.SubclassOptionalData;
757 }
758 
759 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
760                                Instruction *InsertPt) {
761   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
762 
763   auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
764                                    II->getNormalDest(), II->getUnwindDest(),
765                                    Args, OpB, II->getName(), InsertPt);
766   NewII->setCallingConv(II->getCallingConv());
767   NewII->SubclassOptionalData = II->SubclassOptionalData;
768   NewII->setAttributes(II->getAttributes());
769   NewII->setDebugLoc(II->getDebugLoc());
770   return NewII;
771 }
772 
773 
774 LandingPadInst *InvokeInst::getLandingPadInst() const {
775   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
776 }
777 
778 //===----------------------------------------------------------------------===//
779 //                        CallBrInst Implementation
780 //===----------------------------------------------------------------------===//
781 
782 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
783                       ArrayRef<BasicBlock *> IndirectDests,
784                       ArrayRef<Value *> Args,
785                       ArrayRef<OperandBundleDef> Bundles,
786                       const Twine &NameStr) {
787   this->FTy = FTy;
788 
789   assert((int)getNumOperands() ==
790              ComputeNumOperands(Args.size(), IndirectDests.size(),
791                                 CountBundleInputs(Bundles)) &&
792          "NumOperands not set up?");
793   NumIndirectDests = IndirectDests.size();
794   setDefaultDest(Fallthrough);
795   for (unsigned i = 0; i != NumIndirectDests; ++i)
796     setIndirectDest(i, IndirectDests[i]);
797   setCalledOperand(Fn);
798 
799 #ifndef NDEBUG
800   assert(((Args.size() == FTy->getNumParams()) ||
801           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
802          "Calling a function with bad signature");
803 
804   for (unsigned i = 0, e = Args.size(); i != e; i++)
805     assert((i >= FTy->getNumParams() ||
806             FTy->getParamType(i) == Args[i]->getType()) &&
807            "Calling a function with a bad signature!");
808 #endif
809 
810   std::copy(Args.begin(), Args.end(), op_begin());
811 
812   auto It = populateBundleOperandInfos(Bundles, Args.size());
813   (void)It;
814   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
815 
816   setName(NameStr);
817 }
818 
819 CallBrInst::CallBrInst(const CallBrInst &CBI)
820     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
821                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
822                CBI.getNumOperands()) {
823   setCallingConv(CBI.getCallingConv());
824   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
825   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
826             bundle_op_info_begin());
827   SubclassOptionalData = CBI.SubclassOptionalData;
828   NumIndirectDests = CBI.NumIndirectDests;
829 }
830 
831 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
832                                Instruction *InsertPt) {
833   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
834 
835   auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
836                                     CBI->getCalledValue(),
837                                     CBI->getDefaultDest(),
838                                     CBI->getIndirectDests(),
839                                     Args, OpB, CBI->getName(), InsertPt);
840   NewCBI->setCallingConv(CBI->getCallingConv());
841   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
842   NewCBI->setAttributes(CBI->getAttributes());
843   NewCBI->setDebugLoc(CBI->getDebugLoc());
844   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
845   return NewCBI;
846 }
847 
848 //===----------------------------------------------------------------------===//
849 //                        ReturnInst Implementation
850 //===----------------------------------------------------------------------===//
851 
852 ReturnInst::ReturnInst(const ReturnInst &RI)
853     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
854                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
855                   RI.getNumOperands()) {
856   if (RI.getNumOperands())
857     Op<0>() = RI.Op<0>();
858   SubclassOptionalData = RI.SubclassOptionalData;
859 }
860 
861 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
862     : Instruction(Type::getVoidTy(C), Instruction::Ret,
863                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
864                   InsertBefore) {
865   if (retVal)
866     Op<0>() = retVal;
867 }
868 
869 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
870     : Instruction(Type::getVoidTy(C), Instruction::Ret,
871                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
872                   InsertAtEnd) {
873   if (retVal)
874     Op<0>() = retVal;
875 }
876 
877 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
878     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
879                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
880 
881 //===----------------------------------------------------------------------===//
882 //                        ResumeInst Implementation
883 //===----------------------------------------------------------------------===//
884 
885 ResumeInst::ResumeInst(const ResumeInst &RI)
886     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
887                   OperandTraits<ResumeInst>::op_begin(this), 1) {
888   Op<0>() = RI.Op<0>();
889 }
890 
891 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
892     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
893                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
894   Op<0>() = Exn;
895 }
896 
897 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
898     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
899                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
900   Op<0>() = Exn;
901 }
902 
903 //===----------------------------------------------------------------------===//
904 //                        CleanupReturnInst Implementation
905 //===----------------------------------------------------------------------===//
906 
907 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
908     : Instruction(CRI.getType(), Instruction::CleanupRet,
909                   OperandTraits<CleanupReturnInst>::op_end(this) -
910                       CRI.getNumOperands(),
911                   CRI.getNumOperands()) {
912   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
913   Op<0>() = CRI.Op<0>();
914   if (CRI.hasUnwindDest())
915     Op<1>() = CRI.Op<1>();
916 }
917 
918 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
919   if (UnwindBB)
920     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
921 
922   Op<0>() = CleanupPad;
923   if (UnwindBB)
924     Op<1>() = UnwindBB;
925 }
926 
927 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
928                                      unsigned Values, Instruction *InsertBefore)
929     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
930                   Instruction::CleanupRet,
931                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
932                   Values, InsertBefore) {
933   init(CleanupPad, UnwindBB);
934 }
935 
936 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
937                                      unsigned Values, BasicBlock *InsertAtEnd)
938     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
939                   Instruction::CleanupRet,
940                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
941                   Values, InsertAtEnd) {
942   init(CleanupPad, UnwindBB);
943 }
944 
945 //===----------------------------------------------------------------------===//
946 //                        CatchReturnInst Implementation
947 //===----------------------------------------------------------------------===//
948 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
949   Op<0>() = CatchPad;
950   Op<1>() = BB;
951 }
952 
953 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
954     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
955                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
956   Op<0>() = CRI.Op<0>();
957   Op<1>() = CRI.Op<1>();
958 }
959 
960 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
961                                  Instruction *InsertBefore)
962     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
963                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
964                   InsertBefore) {
965   init(CatchPad, BB);
966 }
967 
968 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
969                                  BasicBlock *InsertAtEnd)
970     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
971                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
972                   InsertAtEnd) {
973   init(CatchPad, BB);
974 }
975 
976 //===----------------------------------------------------------------------===//
977 //                       CatchSwitchInst Implementation
978 //===----------------------------------------------------------------------===//
979 
980 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
981                                  unsigned NumReservedValues,
982                                  const Twine &NameStr,
983                                  Instruction *InsertBefore)
984     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
985                   InsertBefore) {
986   if (UnwindDest)
987     ++NumReservedValues;
988   init(ParentPad, UnwindDest, NumReservedValues + 1);
989   setName(NameStr);
990 }
991 
992 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
993                                  unsigned NumReservedValues,
994                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
995     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
996                   InsertAtEnd) {
997   if (UnwindDest)
998     ++NumReservedValues;
999   init(ParentPad, UnwindDest, NumReservedValues + 1);
1000   setName(NameStr);
1001 }
1002 
1003 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1004     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1005                   CSI.getNumOperands()) {
1006   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1007   setNumHungOffUseOperands(ReservedSpace);
1008   Use *OL = getOperandList();
1009   const Use *InOL = CSI.getOperandList();
1010   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1011     OL[I] = InOL[I];
1012 }
1013 
1014 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1015                            unsigned NumReservedValues) {
1016   assert(ParentPad && NumReservedValues);
1017 
1018   ReservedSpace = NumReservedValues;
1019   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1020   allocHungoffUses(ReservedSpace);
1021 
1022   Op<0>() = ParentPad;
1023   if (UnwindDest) {
1024     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1025     setUnwindDest(UnwindDest);
1026   }
1027 }
1028 
1029 /// growOperands - grow operands - This grows the operand list in response to a
1030 /// push_back style of operation. This grows the number of ops by 2 times.
1031 void CatchSwitchInst::growOperands(unsigned Size) {
1032   unsigned NumOperands = getNumOperands();
1033   assert(NumOperands >= 1);
1034   if (ReservedSpace >= NumOperands + Size)
1035     return;
1036   ReservedSpace = (NumOperands + Size / 2) * 2;
1037   growHungoffUses(ReservedSpace);
1038 }
1039 
1040 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1041   unsigned OpNo = getNumOperands();
1042   growOperands(1);
1043   assert(OpNo < ReservedSpace && "Growing didn't work!");
1044   setNumHungOffUseOperands(getNumOperands() + 1);
1045   getOperandList()[OpNo] = Handler;
1046 }
1047 
1048 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1049   // Move all subsequent handlers up one.
1050   Use *EndDst = op_end() - 1;
1051   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1052     *CurDst = *(CurDst + 1);
1053   // Null out the last handler use.
1054   *EndDst = nullptr;
1055 
1056   setNumHungOffUseOperands(getNumOperands() - 1);
1057 }
1058 
1059 //===----------------------------------------------------------------------===//
1060 //                        FuncletPadInst Implementation
1061 //===----------------------------------------------------------------------===//
1062 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1063                           const Twine &NameStr) {
1064   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1065   llvm::copy(Args, op_begin());
1066   setParentPad(ParentPad);
1067   setName(NameStr);
1068 }
1069 
1070 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1071     : Instruction(FPI.getType(), FPI.getOpcode(),
1072                   OperandTraits<FuncletPadInst>::op_end(this) -
1073                       FPI.getNumOperands(),
1074                   FPI.getNumOperands()) {
1075   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1076   setParentPad(FPI.getParentPad());
1077 }
1078 
1079 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1080                                ArrayRef<Value *> Args, unsigned Values,
1081                                const Twine &NameStr, Instruction *InsertBefore)
1082     : Instruction(ParentPad->getType(), Op,
1083                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1084                   InsertBefore) {
1085   init(ParentPad, Args, NameStr);
1086 }
1087 
1088 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1089                                ArrayRef<Value *> Args, unsigned Values,
1090                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1091     : Instruction(ParentPad->getType(), Op,
1092                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1093                   InsertAtEnd) {
1094   init(ParentPad, Args, NameStr);
1095 }
1096 
1097 //===----------------------------------------------------------------------===//
1098 //                      UnreachableInst Implementation
1099 //===----------------------------------------------------------------------===//
1100 
1101 UnreachableInst::UnreachableInst(LLVMContext &Context,
1102                                  Instruction *InsertBefore)
1103     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1104                   0, InsertBefore) {}
1105 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1106     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1107                   0, InsertAtEnd) {}
1108 
1109 //===----------------------------------------------------------------------===//
1110 //                        BranchInst Implementation
1111 //===----------------------------------------------------------------------===//
1112 
1113 void BranchInst::AssertOK() {
1114   if (isConditional())
1115     assert(getCondition()->getType()->isIntegerTy(1) &&
1116            "May only branch on boolean predicates!");
1117 }
1118 
1119 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1120     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1121                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1122                   InsertBefore) {
1123   assert(IfTrue && "Branch destination may not be null!");
1124   Op<-1>() = IfTrue;
1125 }
1126 
1127 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1128                        Instruction *InsertBefore)
1129     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1130                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1131                   InsertBefore) {
1132   Op<-1>() = IfTrue;
1133   Op<-2>() = IfFalse;
1134   Op<-3>() = Cond;
1135 #ifndef NDEBUG
1136   AssertOK();
1137 #endif
1138 }
1139 
1140 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1141     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1142                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1143   assert(IfTrue && "Branch destination may not be null!");
1144   Op<-1>() = IfTrue;
1145 }
1146 
1147 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1148                        BasicBlock *InsertAtEnd)
1149     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1150                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1151   Op<-1>() = IfTrue;
1152   Op<-2>() = IfFalse;
1153   Op<-3>() = Cond;
1154 #ifndef NDEBUG
1155   AssertOK();
1156 #endif
1157 }
1158 
1159 BranchInst::BranchInst(const BranchInst &BI)
1160     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1161                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1162                   BI.getNumOperands()) {
1163   Op<-1>() = BI.Op<-1>();
1164   if (BI.getNumOperands() != 1) {
1165     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1166     Op<-3>() = BI.Op<-3>();
1167     Op<-2>() = BI.Op<-2>();
1168   }
1169   SubclassOptionalData = BI.SubclassOptionalData;
1170 }
1171 
1172 void BranchInst::swapSuccessors() {
1173   assert(isConditional() &&
1174          "Cannot swap successors of an unconditional branch");
1175   Op<-1>().swap(Op<-2>());
1176 
1177   // Update profile metadata if present and it matches our structural
1178   // expectations.
1179   swapProfMetadata();
1180 }
1181 
1182 //===----------------------------------------------------------------------===//
1183 //                        AllocaInst Implementation
1184 //===----------------------------------------------------------------------===//
1185 
1186 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1187   if (!Amt)
1188     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1189   else {
1190     assert(!isa<BasicBlock>(Amt) &&
1191            "Passed basic block into allocation size parameter! Use other ctor");
1192     assert(Amt->getType()->isIntegerTy() &&
1193            "Allocation array size is not an integer!");
1194   }
1195   return Amt;
1196 }
1197 
1198 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1199                        Instruction *InsertBefore)
1200   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1201 
1202 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1203                        BasicBlock *InsertAtEnd)
1204   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1205 
1206 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1207                        const Twine &Name, Instruction *InsertBefore)
1208   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1209 
1210 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1211                        const Twine &Name, BasicBlock *InsertAtEnd)
1212   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1213 
1214 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1215                        unsigned Align, const Twine &Name,
1216                        Instruction *InsertBefore)
1217   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1218                      getAISize(Ty->getContext(), ArraySize), InsertBefore),
1219     AllocatedType(Ty) {
1220   setAlignment(Align);
1221   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1222   setName(Name);
1223 }
1224 
1225 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1226                        unsigned Align, const Twine &Name,
1227                        BasicBlock *InsertAtEnd)
1228   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1229                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1230       AllocatedType(Ty) {
1231   setAlignment(Align);
1232   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1233   setName(Name);
1234 }
1235 
1236 void AllocaInst::setAlignment(unsigned Align) {
1237   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1238   assert(Align <= MaximumAlignment &&
1239          "Alignment is greater than MaximumAlignment!");
1240   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1241                              (Log2_32(Align) + 1));
1242   assert(getAlignment() == Align && "Alignment representation error!");
1243 }
1244 
1245 bool AllocaInst::isArrayAllocation() const {
1246   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1247     return !CI->isOne();
1248   return true;
1249 }
1250 
1251 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1252 /// function and is a constant size.  If so, the code generator will fold it
1253 /// into the prolog/epilog code, so it is basically free.
1254 bool AllocaInst::isStaticAlloca() const {
1255   // Must be constant size.
1256   if (!isa<ConstantInt>(getArraySize())) return false;
1257 
1258   // Must be in the entry block.
1259   const BasicBlock *Parent = getParent();
1260   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1261 }
1262 
1263 //===----------------------------------------------------------------------===//
1264 //                           LoadInst Implementation
1265 //===----------------------------------------------------------------------===//
1266 
1267 void LoadInst::AssertOK() {
1268   assert(getOperand(0)->getType()->isPointerTy() &&
1269          "Ptr must have pointer type.");
1270   assert(!(isAtomic() && getAlignment() == 0) &&
1271          "Alignment required for atomic load");
1272 }
1273 
1274 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1275                    Instruction *InsertBef)
1276     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1277 
1278 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1279                    BasicBlock *InsertAE)
1280     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1281 
1282 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1283                    Instruction *InsertBef)
1284     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1285 
1286 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1287                    BasicBlock *InsertAE)
1288     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1289 
1290 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1291                    unsigned Align, Instruction *InsertBef)
1292     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1293                SyncScope::System, InsertBef) {}
1294 
1295 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1296                    unsigned Align, BasicBlock *InsertAE)
1297     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1298                SyncScope::System, InsertAE) {}
1299 
1300 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1301                    unsigned Align, AtomicOrdering Order,
1302                    SyncScope::ID SSID, Instruction *InsertBef)
1303     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1304   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1305   setVolatile(isVolatile);
1306   setAlignment(Align);
1307   setAtomic(Order, SSID);
1308   AssertOK();
1309   setName(Name);
1310 }
1311 
1312 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1313                    unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1314                    BasicBlock *InsertAE)
1315     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1316   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1317   setVolatile(isVolatile);
1318   setAlignment(Align);
1319   setAtomic(Order, SSID);
1320   AssertOK();
1321   setName(Name);
1322 }
1323 
1324 void LoadInst::setAlignment(unsigned Align) {
1325   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1326   assert(Align <= MaximumAlignment &&
1327          "Alignment is greater than MaximumAlignment!");
1328   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1329                              ((Log2_32(Align)+1)<<1));
1330   assert(getAlignment() == Align && "Alignment representation error!");
1331 }
1332 
1333 //===----------------------------------------------------------------------===//
1334 //                           StoreInst Implementation
1335 //===----------------------------------------------------------------------===//
1336 
1337 void StoreInst::AssertOK() {
1338   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1339   assert(getOperand(1)->getType()->isPointerTy() &&
1340          "Ptr must have pointer type!");
1341   assert(getOperand(0)->getType() ==
1342                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1343          && "Ptr must be a pointer to Val type!");
1344   assert(!(isAtomic() && getAlignment() == 0) &&
1345          "Alignment required for atomic store");
1346 }
1347 
1348 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1349     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1350 
1351 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1352     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1353 
1354 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1355                      Instruction *InsertBefore)
1356     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1357 
1358 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1359                      BasicBlock *InsertAtEnd)
1360     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1361 
1362 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1363                      Instruction *InsertBefore)
1364     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1365                 SyncScope::System, InsertBefore) {}
1366 
1367 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1368                      BasicBlock *InsertAtEnd)
1369     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1370                 SyncScope::System, InsertAtEnd) {}
1371 
1372 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1373                      unsigned Align, AtomicOrdering Order,
1374                      SyncScope::ID SSID,
1375                      Instruction *InsertBefore)
1376   : Instruction(Type::getVoidTy(val->getContext()), Store,
1377                 OperandTraits<StoreInst>::op_begin(this),
1378                 OperandTraits<StoreInst>::operands(this),
1379                 InsertBefore) {
1380   Op<0>() = val;
1381   Op<1>() = addr;
1382   setVolatile(isVolatile);
1383   setAlignment(Align);
1384   setAtomic(Order, SSID);
1385   AssertOK();
1386 }
1387 
1388 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1389                      unsigned Align, AtomicOrdering Order,
1390                      SyncScope::ID SSID,
1391                      BasicBlock *InsertAtEnd)
1392   : Instruction(Type::getVoidTy(val->getContext()), Store,
1393                 OperandTraits<StoreInst>::op_begin(this),
1394                 OperandTraits<StoreInst>::operands(this),
1395                 InsertAtEnd) {
1396   Op<0>() = val;
1397   Op<1>() = addr;
1398   setVolatile(isVolatile);
1399   setAlignment(Align);
1400   setAtomic(Order, SSID);
1401   AssertOK();
1402 }
1403 
1404 void StoreInst::setAlignment(unsigned Align) {
1405   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1406   assert(Align <= MaximumAlignment &&
1407          "Alignment is greater than MaximumAlignment!");
1408   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1409                              ((Log2_32(Align)+1) << 1));
1410   assert(getAlignment() == Align && "Alignment representation error!");
1411 }
1412 
1413 //===----------------------------------------------------------------------===//
1414 //                       AtomicCmpXchgInst Implementation
1415 //===----------------------------------------------------------------------===//
1416 
1417 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1418                              AtomicOrdering SuccessOrdering,
1419                              AtomicOrdering FailureOrdering,
1420                              SyncScope::ID SSID) {
1421   Op<0>() = Ptr;
1422   Op<1>() = Cmp;
1423   Op<2>() = NewVal;
1424   setSuccessOrdering(SuccessOrdering);
1425   setFailureOrdering(FailureOrdering);
1426   setSyncScopeID(SSID);
1427 
1428   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1429          "All operands must be non-null!");
1430   assert(getOperand(0)->getType()->isPointerTy() &&
1431          "Ptr must have pointer type!");
1432   assert(getOperand(1)->getType() ==
1433                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1434          && "Ptr must be a pointer to Cmp type!");
1435   assert(getOperand(2)->getType() ==
1436                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1437          && "Ptr must be a pointer to NewVal type!");
1438   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1439          "AtomicCmpXchg instructions must be atomic!");
1440   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1441          "AtomicCmpXchg instructions must be atomic!");
1442   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1443          "AtomicCmpXchg failure argument shall be no stronger than the success "
1444          "argument");
1445   assert(FailureOrdering != AtomicOrdering::Release &&
1446          FailureOrdering != AtomicOrdering::AcquireRelease &&
1447          "AtomicCmpXchg failure ordering cannot include release semantics");
1448 }
1449 
1450 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1451                                      AtomicOrdering SuccessOrdering,
1452                                      AtomicOrdering FailureOrdering,
1453                                      SyncScope::ID SSID,
1454                                      Instruction *InsertBefore)
1455     : Instruction(
1456           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1457           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1458           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1459   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1460 }
1461 
1462 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1463                                      AtomicOrdering SuccessOrdering,
1464                                      AtomicOrdering FailureOrdering,
1465                                      SyncScope::ID SSID,
1466                                      BasicBlock *InsertAtEnd)
1467     : Instruction(
1468           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1469           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1470           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1471   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1472 }
1473 
1474 //===----------------------------------------------------------------------===//
1475 //                       AtomicRMWInst Implementation
1476 //===----------------------------------------------------------------------===//
1477 
1478 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1479                          AtomicOrdering Ordering,
1480                          SyncScope::ID SSID) {
1481   Op<0>() = Ptr;
1482   Op<1>() = Val;
1483   setOperation(Operation);
1484   setOrdering(Ordering);
1485   setSyncScopeID(SSID);
1486 
1487   assert(getOperand(0) && getOperand(1) &&
1488          "All operands must be non-null!");
1489   assert(getOperand(0)->getType()->isPointerTy() &&
1490          "Ptr must have pointer type!");
1491   assert(getOperand(1)->getType() ==
1492          cast<PointerType>(getOperand(0)->getType())->getElementType()
1493          && "Ptr must be a pointer to Val type!");
1494   assert(Ordering != AtomicOrdering::NotAtomic &&
1495          "AtomicRMW instructions must be atomic!");
1496 }
1497 
1498 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1499                              AtomicOrdering Ordering,
1500                              SyncScope::ID SSID,
1501                              Instruction *InsertBefore)
1502   : Instruction(Val->getType(), AtomicRMW,
1503                 OperandTraits<AtomicRMWInst>::op_begin(this),
1504                 OperandTraits<AtomicRMWInst>::operands(this),
1505                 InsertBefore) {
1506   Init(Operation, Ptr, Val, Ordering, SSID);
1507 }
1508 
1509 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1510                              AtomicOrdering Ordering,
1511                              SyncScope::ID SSID,
1512                              BasicBlock *InsertAtEnd)
1513   : Instruction(Val->getType(), AtomicRMW,
1514                 OperandTraits<AtomicRMWInst>::op_begin(this),
1515                 OperandTraits<AtomicRMWInst>::operands(this),
1516                 InsertAtEnd) {
1517   Init(Operation, Ptr, Val, Ordering, SSID);
1518 }
1519 
1520 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1521   switch (Op) {
1522   case AtomicRMWInst::Xchg:
1523     return "xchg";
1524   case AtomicRMWInst::Add:
1525     return "add";
1526   case AtomicRMWInst::Sub:
1527     return "sub";
1528   case AtomicRMWInst::And:
1529     return "and";
1530   case AtomicRMWInst::Nand:
1531     return "nand";
1532   case AtomicRMWInst::Or:
1533     return "or";
1534   case AtomicRMWInst::Xor:
1535     return "xor";
1536   case AtomicRMWInst::Max:
1537     return "max";
1538   case AtomicRMWInst::Min:
1539     return "min";
1540   case AtomicRMWInst::UMax:
1541     return "umax";
1542   case AtomicRMWInst::UMin:
1543     return "umin";
1544   case AtomicRMWInst::FAdd:
1545     return "fadd";
1546   case AtomicRMWInst::FSub:
1547     return "fsub";
1548   case AtomicRMWInst::BAD_BINOP:
1549     return "<invalid operation>";
1550   }
1551 
1552   llvm_unreachable("invalid atomicrmw operation");
1553 }
1554 
1555 //===----------------------------------------------------------------------===//
1556 //                       FenceInst Implementation
1557 //===----------------------------------------------------------------------===//
1558 
1559 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1560                      SyncScope::ID SSID,
1561                      Instruction *InsertBefore)
1562   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1563   setOrdering(Ordering);
1564   setSyncScopeID(SSID);
1565 }
1566 
1567 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1568                      SyncScope::ID SSID,
1569                      BasicBlock *InsertAtEnd)
1570   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1571   setOrdering(Ordering);
1572   setSyncScopeID(SSID);
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                       GetElementPtrInst Implementation
1577 //===----------------------------------------------------------------------===//
1578 
1579 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1580                              const Twine &Name) {
1581   assert(getNumOperands() == 1 + IdxList.size() &&
1582          "NumOperands not initialized?");
1583   Op<0>() = Ptr;
1584   llvm::copy(IdxList, op_begin() + 1);
1585   setName(Name);
1586 }
1587 
1588 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1589     : Instruction(GEPI.getType(), GetElementPtr,
1590                   OperandTraits<GetElementPtrInst>::op_end(this) -
1591                       GEPI.getNumOperands(),
1592                   GEPI.getNumOperands()),
1593       SourceElementType(GEPI.SourceElementType),
1594       ResultElementType(GEPI.ResultElementType) {
1595   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1596   SubclassOptionalData = GEPI.SubclassOptionalData;
1597 }
1598 
1599 /// getIndexedType - Returns the type of the element that would be accessed with
1600 /// a gep instruction with the specified parameters.
1601 ///
1602 /// The Idxs pointer should point to a continuous piece of memory containing the
1603 /// indices, either as Value* or uint64_t.
1604 ///
1605 /// A null type is returned if the indices are invalid for the specified
1606 /// pointer type.
1607 ///
1608 template <typename IndexTy>
1609 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1610   // Handle the special case of the empty set index set, which is always valid.
1611   if (IdxList.empty())
1612     return Agg;
1613 
1614   // If there is at least one index, the top level type must be sized, otherwise
1615   // it cannot be 'stepped over'.
1616   if (!Agg->isSized())
1617     return nullptr;
1618 
1619   unsigned CurIdx = 1;
1620   for (; CurIdx != IdxList.size(); ++CurIdx) {
1621     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1622     if (!CT || CT->isPointerTy()) return nullptr;
1623     IndexTy Index = IdxList[CurIdx];
1624     if (!CT->indexValid(Index)) return nullptr;
1625     Agg = CT->getTypeAtIndex(Index);
1626   }
1627   return CurIdx == IdxList.size() ? Agg : nullptr;
1628 }
1629 
1630 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1631   return getIndexedTypeInternal(Ty, IdxList);
1632 }
1633 
1634 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1635                                         ArrayRef<Constant *> IdxList) {
1636   return getIndexedTypeInternal(Ty, IdxList);
1637 }
1638 
1639 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1640   return getIndexedTypeInternal(Ty, IdxList);
1641 }
1642 
1643 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1644 /// zeros.  If so, the result pointer and the first operand have the same
1645 /// value, just potentially different types.
1646 bool GetElementPtrInst::hasAllZeroIndices() const {
1647   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1648     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1649       if (!CI->isZero()) return false;
1650     } else {
1651       return false;
1652     }
1653   }
1654   return true;
1655 }
1656 
1657 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1658 /// constant integers.  If so, the result pointer and the first operand have
1659 /// a constant offset between them.
1660 bool GetElementPtrInst::hasAllConstantIndices() const {
1661   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1662     if (!isa<ConstantInt>(getOperand(i)))
1663       return false;
1664   }
1665   return true;
1666 }
1667 
1668 void GetElementPtrInst::setIsInBounds(bool B) {
1669   cast<GEPOperator>(this)->setIsInBounds(B);
1670 }
1671 
1672 bool GetElementPtrInst::isInBounds() const {
1673   return cast<GEPOperator>(this)->isInBounds();
1674 }
1675 
1676 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1677                                                  APInt &Offset) const {
1678   // Delegate to the generic GEPOperator implementation.
1679   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1680 }
1681 
1682 //===----------------------------------------------------------------------===//
1683 //                           ExtractElementInst Implementation
1684 //===----------------------------------------------------------------------===//
1685 
1686 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1687                                        const Twine &Name,
1688                                        Instruction *InsertBef)
1689   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1690                 ExtractElement,
1691                 OperandTraits<ExtractElementInst>::op_begin(this),
1692                 2, InsertBef) {
1693   assert(isValidOperands(Val, Index) &&
1694          "Invalid extractelement instruction operands!");
1695   Op<0>() = Val;
1696   Op<1>() = Index;
1697   setName(Name);
1698 }
1699 
1700 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1701                                        const Twine &Name,
1702                                        BasicBlock *InsertAE)
1703   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1704                 ExtractElement,
1705                 OperandTraits<ExtractElementInst>::op_begin(this),
1706                 2, InsertAE) {
1707   assert(isValidOperands(Val, Index) &&
1708          "Invalid extractelement instruction operands!");
1709 
1710   Op<0>() = Val;
1711   Op<1>() = Index;
1712   setName(Name);
1713 }
1714 
1715 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1716   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1717     return false;
1718   return true;
1719 }
1720 
1721 //===----------------------------------------------------------------------===//
1722 //                           InsertElementInst Implementation
1723 //===----------------------------------------------------------------------===//
1724 
1725 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1726                                      const Twine &Name,
1727                                      Instruction *InsertBef)
1728   : Instruction(Vec->getType(), InsertElement,
1729                 OperandTraits<InsertElementInst>::op_begin(this),
1730                 3, InsertBef) {
1731   assert(isValidOperands(Vec, Elt, Index) &&
1732          "Invalid insertelement instruction operands!");
1733   Op<0>() = Vec;
1734   Op<1>() = Elt;
1735   Op<2>() = Index;
1736   setName(Name);
1737 }
1738 
1739 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1740                                      const Twine &Name,
1741                                      BasicBlock *InsertAE)
1742   : Instruction(Vec->getType(), InsertElement,
1743                 OperandTraits<InsertElementInst>::op_begin(this),
1744                 3, InsertAE) {
1745   assert(isValidOperands(Vec, Elt, Index) &&
1746          "Invalid insertelement instruction operands!");
1747 
1748   Op<0>() = Vec;
1749   Op<1>() = Elt;
1750   Op<2>() = Index;
1751   setName(Name);
1752 }
1753 
1754 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1755                                         const Value *Index) {
1756   if (!Vec->getType()->isVectorTy())
1757     return false;   // First operand of insertelement must be vector type.
1758 
1759   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1760     return false;// Second operand of insertelement must be vector element type.
1761 
1762   if (!Index->getType()->isIntegerTy())
1763     return false;  // Third operand of insertelement must be i32.
1764   return true;
1765 }
1766 
1767 //===----------------------------------------------------------------------===//
1768 //                      ShuffleVectorInst Implementation
1769 //===----------------------------------------------------------------------===//
1770 
1771 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1772                                      const Twine &Name,
1773                                      Instruction *InsertBefore)
1774 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1775                 cast<VectorType>(Mask->getType())->getNumElements()),
1776               ShuffleVector,
1777               OperandTraits<ShuffleVectorInst>::op_begin(this),
1778               OperandTraits<ShuffleVectorInst>::operands(this),
1779               InsertBefore) {
1780   assert(isValidOperands(V1, V2, Mask) &&
1781          "Invalid shuffle vector instruction operands!");
1782   Op<0>() = V1;
1783   Op<1>() = V2;
1784   Op<2>() = Mask;
1785   setName(Name);
1786 }
1787 
1788 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1789                                      const Twine &Name,
1790                                      BasicBlock *InsertAtEnd)
1791 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1792                 cast<VectorType>(Mask->getType())->getNumElements()),
1793               ShuffleVector,
1794               OperandTraits<ShuffleVectorInst>::op_begin(this),
1795               OperandTraits<ShuffleVectorInst>::operands(this),
1796               InsertAtEnd) {
1797   assert(isValidOperands(V1, V2, Mask) &&
1798          "Invalid shuffle vector instruction operands!");
1799 
1800   Op<0>() = V1;
1801   Op<1>() = V2;
1802   Op<2>() = Mask;
1803   setName(Name);
1804 }
1805 
1806 void ShuffleVectorInst::commute() {
1807   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1808   int NumMaskElts = getMask()->getType()->getVectorNumElements();
1809   SmallVector<Constant*, 16> NewMask(NumMaskElts);
1810   Type *Int32Ty = Type::getInt32Ty(getContext());
1811   for (int i = 0; i != NumMaskElts; ++i) {
1812     int MaskElt = getMaskValue(i);
1813     if (MaskElt == -1) {
1814       NewMask[i] = UndefValue::get(Int32Ty);
1815       continue;
1816     }
1817     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1818     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1819     NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1820   }
1821   Op<2>() = ConstantVector::get(NewMask);
1822   Op<0>().swap(Op<1>());
1823 }
1824 
1825 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1826                                         const Value *Mask) {
1827   // V1 and V2 must be vectors of the same type.
1828   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1829     return false;
1830 
1831   // Mask must be vector of i32.
1832   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1833   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1834     return false;
1835 
1836   // Check to see if Mask is valid.
1837   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1838     return true;
1839 
1840   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1841     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1842     for (Value *Op : MV->operands()) {
1843       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1844         if (CI->uge(V1Size*2))
1845           return false;
1846       } else if (!isa<UndefValue>(Op)) {
1847         return false;
1848       }
1849     }
1850     return true;
1851   }
1852 
1853   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1854     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1855     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1856       if (CDS->getElementAsInteger(i) >= V1Size*2)
1857         return false;
1858     return true;
1859   }
1860 
1861   // The bitcode reader can create a place holder for a forward reference
1862   // used as the shuffle mask. When this occurs, the shuffle mask will
1863   // fall into this case and fail. To avoid this error, do this bit of
1864   // ugliness to allow such a mask pass.
1865   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1866     if (CE->getOpcode() == Instruction::UserOp1)
1867       return true;
1868 
1869   return false;
1870 }
1871 
1872 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1873   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1874   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1875     return CDS->getElementAsInteger(i);
1876   Constant *C = Mask->getAggregateElement(i);
1877   if (isa<UndefValue>(C))
1878     return -1;
1879   return cast<ConstantInt>(C)->getZExtValue();
1880 }
1881 
1882 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1883                                        SmallVectorImpl<int> &Result) {
1884   unsigned NumElts = Mask->getType()->getVectorNumElements();
1885 
1886   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1887     for (unsigned i = 0; i != NumElts; ++i)
1888       Result.push_back(CDS->getElementAsInteger(i));
1889     return;
1890   }
1891   for (unsigned i = 0; i != NumElts; ++i) {
1892     Constant *C = Mask->getAggregateElement(i);
1893     Result.push_back(isa<UndefValue>(C) ? -1 :
1894                      cast<ConstantInt>(C)->getZExtValue());
1895   }
1896 }
1897 
1898 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1899   assert(!Mask.empty() && "Shuffle mask must contain elements");
1900   bool UsesLHS = false;
1901   bool UsesRHS = false;
1902   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1903     if (Mask[i] == -1)
1904       continue;
1905     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1906            "Out-of-bounds shuffle mask element");
1907     UsesLHS |= (Mask[i] < NumOpElts);
1908     UsesRHS |= (Mask[i] >= NumOpElts);
1909     if (UsesLHS && UsesRHS)
1910       return false;
1911   }
1912   assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1913   return true;
1914 }
1915 
1916 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1917   // We don't have vector operand size information, so assume operands are the
1918   // same size as the mask.
1919   return isSingleSourceMaskImpl(Mask, Mask.size());
1920 }
1921 
1922 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1923   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1924     return false;
1925   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1926     if (Mask[i] == -1)
1927       continue;
1928     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1929       return false;
1930   }
1931   return true;
1932 }
1933 
1934 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1935   // We don't have vector operand size information, so assume operands are the
1936   // same size as the mask.
1937   return isIdentityMaskImpl(Mask, Mask.size());
1938 }
1939 
1940 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1941   if (!isSingleSourceMask(Mask))
1942     return false;
1943   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1944     if (Mask[i] == -1)
1945       continue;
1946     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1947       return false;
1948   }
1949   return true;
1950 }
1951 
1952 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1953   if (!isSingleSourceMask(Mask))
1954     return false;
1955   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1956     if (Mask[i] == -1)
1957       continue;
1958     if (Mask[i] != 0 && Mask[i] != NumElts)
1959       return false;
1960   }
1961   return true;
1962 }
1963 
1964 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1965   // Select is differentiated from identity. It requires using both sources.
1966   if (isSingleSourceMask(Mask))
1967     return false;
1968   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1969     if (Mask[i] == -1)
1970       continue;
1971     if (Mask[i] != i && Mask[i] != (NumElts + i))
1972       return false;
1973   }
1974   return true;
1975 }
1976 
1977 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1978   // Example masks that will return true:
1979   // v1 = <a, b, c, d>
1980   // v2 = <e, f, g, h>
1981   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1982   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1983 
1984   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1985   int NumElts = Mask.size();
1986   if (NumElts < 2 || !isPowerOf2_32(NumElts))
1987     return false;
1988 
1989   // 2. The first element of the mask must be either a 0 or a 1.
1990   if (Mask[0] != 0 && Mask[0] != 1)
1991     return false;
1992 
1993   // 3. The difference between the first 2 elements must be equal to the
1994   // number of elements in the mask.
1995   if ((Mask[1] - Mask[0]) != NumElts)
1996     return false;
1997 
1998   // 4. The difference between consecutive even-numbered and odd-numbered
1999   // elements must be equal to 2.
2000   for (int i = 2; i < NumElts; ++i) {
2001     int MaskEltVal = Mask[i];
2002     if (MaskEltVal == -1)
2003       return false;
2004     int MaskEltPrevVal = Mask[i - 2];
2005     if (MaskEltVal - MaskEltPrevVal != 2)
2006       return false;
2007   }
2008   return true;
2009 }
2010 
2011 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2012                                                int NumSrcElts, int &Index) {
2013   // Must extract from a single source.
2014   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2015     return false;
2016 
2017   // Must be smaller (else this is an Identity shuffle).
2018   if (NumSrcElts <= (int)Mask.size())
2019     return false;
2020 
2021   // Find start of extraction, accounting that we may start with an UNDEF.
2022   int SubIndex = -1;
2023   for (int i = 0, e = Mask.size(); i != e; ++i) {
2024     int M = Mask[i];
2025     if (M < 0)
2026       continue;
2027     int Offset = (M % NumSrcElts) - i;
2028     if (0 <= SubIndex && SubIndex != Offset)
2029       return false;
2030     SubIndex = Offset;
2031   }
2032 
2033   if (0 <= SubIndex) {
2034     Index = SubIndex;
2035     return true;
2036   }
2037   return false;
2038 }
2039 
2040 bool ShuffleVectorInst::isIdentityWithPadding() const {
2041   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2042   int NumMaskElts = getType()->getVectorNumElements();
2043   if (NumMaskElts <= NumOpElts)
2044     return false;
2045 
2046   // The first part of the mask must choose elements from exactly 1 source op.
2047   SmallVector<int, 16> Mask = getShuffleMask();
2048   if (!isIdentityMaskImpl(Mask, NumOpElts))
2049     return false;
2050 
2051   // All extending must be with undef elements.
2052   for (int i = NumOpElts; i < NumMaskElts; ++i)
2053     if (Mask[i] != -1)
2054       return false;
2055 
2056   return true;
2057 }
2058 
2059 bool ShuffleVectorInst::isIdentityWithExtract() const {
2060   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2061   int NumMaskElts = getType()->getVectorNumElements();
2062   if (NumMaskElts >= NumOpElts)
2063     return false;
2064 
2065   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2066 }
2067 
2068 bool ShuffleVectorInst::isConcat() const {
2069   // Vector concatenation is differentiated from identity with padding.
2070   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2071     return false;
2072 
2073   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2074   int NumMaskElts = getType()->getVectorNumElements();
2075   if (NumMaskElts != NumOpElts * 2)
2076     return false;
2077 
2078   // Use the mask length rather than the operands' vector lengths here. We
2079   // already know that the shuffle returns a vector twice as long as the inputs,
2080   // and neither of the inputs are undef vectors. If the mask picks consecutive
2081   // elements from both inputs, then this is a concatenation of the inputs.
2082   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2083 }
2084 
2085 //===----------------------------------------------------------------------===//
2086 //                             InsertValueInst Class
2087 //===----------------------------------------------------------------------===//
2088 
2089 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2090                            const Twine &Name) {
2091   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2092 
2093   // There's no fundamental reason why we require at least one index
2094   // (other than weirdness with &*IdxBegin being invalid; see
2095   // getelementptr's init routine for example). But there's no
2096   // present need to support it.
2097   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2098 
2099   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2100          Val->getType() && "Inserted value must match indexed type!");
2101   Op<0>() = Agg;
2102   Op<1>() = Val;
2103 
2104   Indices.append(Idxs.begin(), Idxs.end());
2105   setName(Name);
2106 }
2107 
2108 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2109   : Instruction(IVI.getType(), InsertValue,
2110                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2111     Indices(IVI.Indices) {
2112   Op<0>() = IVI.getOperand(0);
2113   Op<1>() = IVI.getOperand(1);
2114   SubclassOptionalData = IVI.SubclassOptionalData;
2115 }
2116 
2117 //===----------------------------------------------------------------------===//
2118 //                             ExtractValueInst Class
2119 //===----------------------------------------------------------------------===//
2120 
2121 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2122   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2123 
2124   // There's no fundamental reason why we require at least one index.
2125   // But there's no present need to support it.
2126   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2127 
2128   Indices.append(Idxs.begin(), Idxs.end());
2129   setName(Name);
2130 }
2131 
2132 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2133   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2134     Indices(EVI.Indices) {
2135   SubclassOptionalData = EVI.SubclassOptionalData;
2136 }
2137 
2138 // getIndexedType - Returns the type of the element that would be extracted
2139 // with an extractvalue instruction with the specified parameters.
2140 //
2141 // A null type is returned if the indices are invalid for the specified
2142 // pointer type.
2143 //
2144 Type *ExtractValueInst::getIndexedType(Type *Agg,
2145                                        ArrayRef<unsigned> Idxs) {
2146   for (unsigned Index : Idxs) {
2147     // We can't use CompositeType::indexValid(Index) here.
2148     // indexValid() always returns true for arrays because getelementptr allows
2149     // out-of-bounds indices. Since we don't allow those for extractvalue and
2150     // insertvalue we need to check array indexing manually.
2151     // Since the only other types we can index into are struct types it's just
2152     // as easy to check those manually as well.
2153     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2154       if (Index >= AT->getNumElements())
2155         return nullptr;
2156     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2157       if (Index >= ST->getNumElements())
2158         return nullptr;
2159     } else {
2160       // Not a valid type to index into.
2161       return nullptr;
2162     }
2163 
2164     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2165   }
2166   return const_cast<Type*>(Agg);
2167 }
2168 
2169 //===----------------------------------------------------------------------===//
2170 //                             UnaryOperator Class
2171 //===----------------------------------------------------------------------===//
2172 
2173 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2174                              Type *Ty, const Twine &Name,
2175                              Instruction *InsertBefore)
2176   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2177   Op<0>() = S;
2178   setName(Name);
2179   AssertOK();
2180 }
2181 
2182 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2183                              Type *Ty, const Twine &Name,
2184                              BasicBlock *InsertAtEnd)
2185   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2186   Op<0>() = S;
2187   setName(Name);
2188   AssertOK();
2189 }
2190 
2191 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2192                                      const Twine &Name,
2193                                      Instruction *InsertBefore) {
2194   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2195 }
2196 
2197 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2198                                      const Twine &Name,
2199                                      BasicBlock *InsertAtEnd) {
2200   UnaryOperator *Res = Create(Op, S, Name);
2201   InsertAtEnd->getInstList().push_back(Res);
2202   return Res;
2203 }
2204 
2205 void UnaryOperator::AssertOK() {
2206   Value *LHS = getOperand(0);
2207   (void)LHS; // Silence warnings.
2208 #ifndef NDEBUG
2209   switch (getOpcode()) {
2210   case FNeg:
2211     assert(getType() == LHS->getType() &&
2212            "Unary operation should return same type as operand!");
2213     assert(getType()->isFPOrFPVectorTy() &&
2214            "Tried to create a floating-point operation on a "
2215            "non-floating-point type!");
2216     break;
2217   default: llvm_unreachable("Invalid opcode provided");
2218   }
2219 #endif
2220 }
2221 
2222 //===----------------------------------------------------------------------===//
2223 //                             BinaryOperator Class
2224 //===----------------------------------------------------------------------===//
2225 
2226 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2227                                Type *Ty, const Twine &Name,
2228                                Instruction *InsertBefore)
2229   : Instruction(Ty, iType,
2230                 OperandTraits<BinaryOperator>::op_begin(this),
2231                 OperandTraits<BinaryOperator>::operands(this),
2232                 InsertBefore) {
2233   Op<0>() = S1;
2234   Op<1>() = S2;
2235   setName(Name);
2236   AssertOK();
2237 }
2238 
2239 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2240                                Type *Ty, const Twine &Name,
2241                                BasicBlock *InsertAtEnd)
2242   : Instruction(Ty, iType,
2243                 OperandTraits<BinaryOperator>::op_begin(this),
2244                 OperandTraits<BinaryOperator>::operands(this),
2245                 InsertAtEnd) {
2246   Op<0>() = S1;
2247   Op<1>() = S2;
2248   setName(Name);
2249   AssertOK();
2250 }
2251 
2252 void BinaryOperator::AssertOK() {
2253   Value *LHS = getOperand(0), *RHS = getOperand(1);
2254   (void)LHS; (void)RHS; // Silence warnings.
2255   assert(LHS->getType() == RHS->getType() &&
2256          "Binary operator operand types must match!");
2257 #ifndef NDEBUG
2258   switch (getOpcode()) {
2259   case Add: case Sub:
2260   case Mul:
2261     assert(getType() == LHS->getType() &&
2262            "Arithmetic operation should return same type as operands!");
2263     assert(getType()->isIntOrIntVectorTy() &&
2264            "Tried to create an integer operation on a non-integer type!");
2265     break;
2266   case FAdd: case FSub:
2267   case FMul:
2268     assert(getType() == LHS->getType() &&
2269            "Arithmetic operation should return same type as operands!");
2270     assert(getType()->isFPOrFPVectorTy() &&
2271            "Tried to create a floating-point operation on a "
2272            "non-floating-point type!");
2273     break;
2274   case UDiv:
2275   case SDiv:
2276     assert(getType() == LHS->getType() &&
2277            "Arithmetic operation should return same type as operands!");
2278     assert(getType()->isIntOrIntVectorTy() &&
2279            "Incorrect operand type (not integer) for S/UDIV");
2280     break;
2281   case FDiv:
2282     assert(getType() == LHS->getType() &&
2283            "Arithmetic operation should return same type as operands!");
2284     assert(getType()->isFPOrFPVectorTy() &&
2285            "Incorrect operand type (not floating point) for FDIV");
2286     break;
2287   case URem:
2288   case SRem:
2289     assert(getType() == LHS->getType() &&
2290            "Arithmetic operation should return same type as operands!");
2291     assert(getType()->isIntOrIntVectorTy() &&
2292            "Incorrect operand type (not integer) for S/UREM");
2293     break;
2294   case FRem:
2295     assert(getType() == LHS->getType() &&
2296            "Arithmetic operation should return same type as operands!");
2297     assert(getType()->isFPOrFPVectorTy() &&
2298            "Incorrect operand type (not floating point) for FREM");
2299     break;
2300   case Shl:
2301   case LShr:
2302   case AShr:
2303     assert(getType() == LHS->getType() &&
2304            "Shift operation should return same type as operands!");
2305     assert(getType()->isIntOrIntVectorTy() &&
2306            "Tried to create a shift operation on a non-integral type!");
2307     break;
2308   case And: case Or:
2309   case Xor:
2310     assert(getType() == LHS->getType() &&
2311            "Logical operation should return same type as operands!");
2312     assert(getType()->isIntOrIntVectorTy() &&
2313            "Tried to create a logical operation on a non-integral type!");
2314     break;
2315   default: llvm_unreachable("Invalid opcode provided");
2316   }
2317 #endif
2318 }
2319 
2320 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2321                                        const Twine &Name,
2322                                        Instruction *InsertBefore) {
2323   assert(S1->getType() == S2->getType() &&
2324          "Cannot create binary operator with two operands of differing type!");
2325   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2326 }
2327 
2328 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2329                                        const Twine &Name,
2330                                        BasicBlock *InsertAtEnd) {
2331   BinaryOperator *Res = Create(Op, S1, S2, Name);
2332   InsertAtEnd->getInstList().push_back(Res);
2333   return Res;
2334 }
2335 
2336 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2337                                           Instruction *InsertBefore) {
2338   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2339   return new BinaryOperator(Instruction::Sub,
2340                             zero, Op,
2341                             Op->getType(), Name, InsertBefore);
2342 }
2343 
2344 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2345                                           BasicBlock *InsertAtEnd) {
2346   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2347   return new BinaryOperator(Instruction::Sub,
2348                             zero, Op,
2349                             Op->getType(), Name, InsertAtEnd);
2350 }
2351 
2352 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2353                                              Instruction *InsertBefore) {
2354   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2355   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2356 }
2357 
2358 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2359                                              BasicBlock *InsertAtEnd) {
2360   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2361   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2362 }
2363 
2364 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2365                                              Instruction *InsertBefore) {
2366   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2367   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2368 }
2369 
2370 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2371                                              BasicBlock *InsertAtEnd) {
2372   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2373   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2374 }
2375 
2376 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2377                                            Instruction *InsertBefore) {
2378   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2379   return new BinaryOperator(Instruction::FSub, zero, Op,
2380                             Op->getType(), Name, InsertBefore);
2381 }
2382 
2383 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2384                                            BasicBlock *InsertAtEnd) {
2385   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2386   return new BinaryOperator(Instruction::FSub, zero, Op,
2387                             Op->getType(), Name, InsertAtEnd);
2388 }
2389 
2390 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2391                                           Instruction *InsertBefore) {
2392   Constant *C = Constant::getAllOnesValue(Op->getType());
2393   return new BinaryOperator(Instruction::Xor, Op, C,
2394                             Op->getType(), Name, InsertBefore);
2395 }
2396 
2397 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2398                                           BasicBlock *InsertAtEnd) {
2399   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2400   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2401                             Op->getType(), Name, InsertAtEnd);
2402 }
2403 
2404 // Exchange the two operands to this instruction. This instruction is safe to
2405 // use on any binary instruction and does not modify the semantics of the
2406 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2407 // is changed.
2408 bool BinaryOperator::swapOperands() {
2409   if (!isCommutative())
2410     return true; // Can't commute operands
2411   Op<0>().swap(Op<1>());
2412   return false;
2413 }
2414 
2415 //===----------------------------------------------------------------------===//
2416 //                             FPMathOperator Class
2417 //===----------------------------------------------------------------------===//
2418 
2419 float FPMathOperator::getFPAccuracy() const {
2420   const MDNode *MD =
2421       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2422   if (!MD)
2423     return 0.0;
2424   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2425   return Accuracy->getValueAPF().convertToFloat();
2426 }
2427 
2428 //===----------------------------------------------------------------------===//
2429 //                                CastInst Class
2430 //===----------------------------------------------------------------------===//
2431 
2432 // Just determine if this cast only deals with integral->integral conversion.
2433 bool CastInst::isIntegerCast() const {
2434   switch (getOpcode()) {
2435     default: return false;
2436     case Instruction::ZExt:
2437     case Instruction::SExt:
2438     case Instruction::Trunc:
2439       return true;
2440     case Instruction::BitCast:
2441       return getOperand(0)->getType()->isIntegerTy() &&
2442         getType()->isIntegerTy();
2443   }
2444 }
2445 
2446 bool CastInst::isLosslessCast() const {
2447   // Only BitCast can be lossless, exit fast if we're not BitCast
2448   if (getOpcode() != Instruction::BitCast)
2449     return false;
2450 
2451   // Identity cast is always lossless
2452   Type *SrcTy = getOperand(0)->getType();
2453   Type *DstTy = getType();
2454   if (SrcTy == DstTy)
2455     return true;
2456 
2457   // Pointer to pointer is always lossless.
2458   if (SrcTy->isPointerTy())
2459     return DstTy->isPointerTy();
2460   return false;  // Other types have no identity values
2461 }
2462 
2463 /// This function determines if the CastInst does not require any bits to be
2464 /// changed in order to effect the cast. Essentially, it identifies cases where
2465 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2466 /// example, the following are all no-op casts:
2467 /// # bitcast i32* %x to i8*
2468 /// # bitcast <2 x i32> %x to <4 x i16>
2469 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2470 /// Determine if the described cast is a no-op.
2471 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2472                           Type *SrcTy,
2473                           Type *DestTy,
2474                           const DataLayout &DL) {
2475   switch (Opcode) {
2476     default: llvm_unreachable("Invalid CastOp");
2477     case Instruction::Trunc:
2478     case Instruction::ZExt:
2479     case Instruction::SExt:
2480     case Instruction::FPTrunc:
2481     case Instruction::FPExt:
2482     case Instruction::UIToFP:
2483     case Instruction::SIToFP:
2484     case Instruction::FPToUI:
2485     case Instruction::FPToSI:
2486     case Instruction::AddrSpaceCast:
2487       // TODO: Target informations may give a more accurate answer here.
2488       return false;
2489     case Instruction::BitCast:
2490       return true;  // BitCast never modifies bits.
2491     case Instruction::PtrToInt:
2492       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2493              DestTy->getScalarSizeInBits();
2494     case Instruction::IntToPtr:
2495       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2496              SrcTy->getScalarSizeInBits();
2497   }
2498 }
2499 
2500 bool CastInst::isNoopCast(const DataLayout &DL) const {
2501   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2502 }
2503 
2504 /// This function determines if a pair of casts can be eliminated and what
2505 /// opcode should be used in the elimination. This assumes that there are two
2506 /// instructions like this:
2507 /// *  %F = firstOpcode SrcTy %x to MidTy
2508 /// *  %S = secondOpcode MidTy %F to DstTy
2509 /// The function returns a resultOpcode so these two casts can be replaced with:
2510 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2511 /// If no such cast is permitted, the function returns 0.
2512 unsigned CastInst::isEliminableCastPair(
2513   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2514   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2515   Type *DstIntPtrTy) {
2516   // Define the 144 possibilities for these two cast instructions. The values
2517   // in this matrix determine what to do in a given situation and select the
2518   // case in the switch below.  The rows correspond to firstOp, the columns
2519   // correspond to secondOp.  In looking at the table below, keep in mind
2520   // the following cast properties:
2521   //
2522   //          Size Compare       Source               Destination
2523   // Operator  Src ? Size   Type       Sign         Type       Sign
2524   // -------- ------------ -------------------   ---------------------
2525   // TRUNC         >       Integer      Any        Integral     Any
2526   // ZEXT          <       Integral   Unsigned     Integer      Any
2527   // SEXT          <       Integral    Signed      Integer      Any
2528   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2529   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2530   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2531   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2532   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2533   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2534   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2535   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2536   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2537   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2538   //
2539   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2540   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2541   // into "fptoui double to i64", but this loses information about the range
2542   // of the produced value (we no longer know the top-part is all zeros).
2543   // Further this conversion is often much more expensive for typical hardware,
2544   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2545   // same reason.
2546   const unsigned numCastOps =
2547     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2548   static const uint8_t CastResults[numCastOps][numCastOps] = {
2549     // T        F  F  U  S  F  F  P  I  B  A  -+
2550     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2551     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2552     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2553     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2554     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2555     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2556     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2557     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2558     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2559     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2560     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2561     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2562     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2563     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2564     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2565     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2566     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2567   };
2568 
2569   // TODO: This logic could be encoded into the table above and handled in the
2570   // switch below.
2571   // If either of the casts are a bitcast from scalar to vector, disallow the
2572   // merging. However, any pair of bitcasts are allowed.
2573   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2574   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2575   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2576 
2577   // Check if any of the casts convert scalars <-> vectors.
2578   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2579       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2580     if (!AreBothBitcasts)
2581       return 0;
2582 
2583   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2584                             [secondOp-Instruction::CastOpsBegin];
2585   switch (ElimCase) {
2586     case 0:
2587       // Categorically disallowed.
2588       return 0;
2589     case 1:
2590       // Allowed, use first cast's opcode.
2591       return firstOp;
2592     case 2:
2593       // Allowed, use second cast's opcode.
2594       return secondOp;
2595     case 3:
2596       // No-op cast in second op implies firstOp as long as the DestTy
2597       // is integer and we are not converting between a vector and a
2598       // non-vector type.
2599       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2600         return firstOp;
2601       return 0;
2602     case 4:
2603       // No-op cast in second op implies firstOp as long as the DestTy
2604       // is floating point.
2605       if (DstTy->isFloatingPointTy())
2606         return firstOp;
2607       return 0;
2608     case 5:
2609       // No-op cast in first op implies secondOp as long as the SrcTy
2610       // is an integer.
2611       if (SrcTy->isIntegerTy())
2612         return secondOp;
2613       return 0;
2614     case 6:
2615       // No-op cast in first op implies secondOp as long as the SrcTy
2616       // is a floating point.
2617       if (SrcTy->isFloatingPointTy())
2618         return secondOp;
2619       return 0;
2620     case 7: {
2621       // Cannot simplify if address spaces are different!
2622       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2623         return 0;
2624 
2625       unsigned MidSize = MidTy->getScalarSizeInBits();
2626       // We can still fold this without knowing the actual sizes as long we
2627       // know that the intermediate pointer is the largest possible
2628       // pointer size.
2629       // FIXME: Is this always true?
2630       if (MidSize == 64)
2631         return Instruction::BitCast;
2632 
2633       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2634       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2635         return 0;
2636       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2637       if (MidSize >= PtrSize)
2638         return Instruction::BitCast;
2639       return 0;
2640     }
2641     case 8: {
2642       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2643       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2644       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2645       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2646       unsigned DstSize = DstTy->getScalarSizeInBits();
2647       if (SrcSize == DstSize)
2648         return Instruction::BitCast;
2649       else if (SrcSize < DstSize)
2650         return firstOp;
2651       return secondOp;
2652     }
2653     case 9:
2654       // zext, sext -> zext, because sext can't sign extend after zext
2655       return Instruction::ZExt;
2656     case 11: {
2657       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2658       if (!MidIntPtrTy)
2659         return 0;
2660       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2661       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2662       unsigned DstSize = DstTy->getScalarSizeInBits();
2663       if (SrcSize <= PtrSize && SrcSize == DstSize)
2664         return Instruction::BitCast;
2665       return 0;
2666     }
2667     case 12:
2668       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2669       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2670       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2671         return Instruction::AddrSpaceCast;
2672       return Instruction::BitCast;
2673     case 13:
2674       // FIXME: this state can be merged with (1), but the following assert
2675       // is useful to check the correcteness of the sequence due to semantic
2676       // change of bitcast.
2677       assert(
2678         SrcTy->isPtrOrPtrVectorTy() &&
2679         MidTy->isPtrOrPtrVectorTy() &&
2680         DstTy->isPtrOrPtrVectorTy() &&
2681         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2682         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2683         "Illegal addrspacecast, bitcast sequence!");
2684       // Allowed, use first cast's opcode
2685       return firstOp;
2686     case 14:
2687       // bitcast, addrspacecast -> addrspacecast if the element type of
2688       // bitcast's source is the same as that of addrspacecast's destination.
2689       if (SrcTy->getScalarType()->getPointerElementType() ==
2690           DstTy->getScalarType()->getPointerElementType())
2691         return Instruction::AddrSpaceCast;
2692       return 0;
2693     case 15:
2694       // FIXME: this state can be merged with (1), but the following assert
2695       // is useful to check the correcteness of the sequence due to semantic
2696       // change of bitcast.
2697       assert(
2698         SrcTy->isIntOrIntVectorTy() &&
2699         MidTy->isPtrOrPtrVectorTy() &&
2700         DstTy->isPtrOrPtrVectorTy() &&
2701         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2702         "Illegal inttoptr, bitcast sequence!");
2703       // Allowed, use first cast's opcode
2704       return firstOp;
2705     case 16:
2706       // FIXME: this state can be merged with (2), but the following assert
2707       // is useful to check the correcteness of the sequence due to semantic
2708       // change of bitcast.
2709       assert(
2710         SrcTy->isPtrOrPtrVectorTy() &&
2711         MidTy->isPtrOrPtrVectorTy() &&
2712         DstTy->isIntOrIntVectorTy() &&
2713         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2714         "Illegal bitcast, ptrtoint sequence!");
2715       // Allowed, use second cast's opcode
2716       return secondOp;
2717     case 17:
2718       // (sitofp (zext x)) -> (uitofp x)
2719       return Instruction::UIToFP;
2720     case 99:
2721       // Cast combination can't happen (error in input). This is for all cases
2722       // where the MidTy is not the same for the two cast instructions.
2723       llvm_unreachable("Invalid Cast Combination");
2724     default:
2725       llvm_unreachable("Error in CastResults table!!!");
2726   }
2727 }
2728 
2729 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2730   const Twine &Name, Instruction *InsertBefore) {
2731   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2732   // Construct and return the appropriate CastInst subclass
2733   switch (op) {
2734   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2735   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2736   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2737   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2738   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2739   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2740   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2741   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2742   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2743   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2744   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2745   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2746   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2747   default: llvm_unreachable("Invalid opcode provided");
2748   }
2749 }
2750 
2751 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2752   const Twine &Name, BasicBlock *InsertAtEnd) {
2753   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2754   // Construct and return the appropriate CastInst subclass
2755   switch (op) {
2756   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2757   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2758   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2759   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2760   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2761   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2762   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2763   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2764   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2765   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2766   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2767   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2768   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2769   default: llvm_unreachable("Invalid opcode provided");
2770   }
2771 }
2772 
2773 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2774                                         const Twine &Name,
2775                                         Instruction *InsertBefore) {
2776   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2777     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2778   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2779 }
2780 
2781 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2782                                         const Twine &Name,
2783                                         BasicBlock *InsertAtEnd) {
2784   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2785     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2786   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2787 }
2788 
2789 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2790                                         const Twine &Name,
2791                                         Instruction *InsertBefore) {
2792   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2793     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2794   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2795 }
2796 
2797 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2798                                         const Twine &Name,
2799                                         BasicBlock *InsertAtEnd) {
2800   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2801     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2802   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2803 }
2804 
2805 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2806                                          const Twine &Name,
2807                                          Instruction *InsertBefore) {
2808   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2809     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2810   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2811 }
2812 
2813 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2814                                          const Twine &Name,
2815                                          BasicBlock *InsertAtEnd) {
2816   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2817     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2818   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2819 }
2820 
2821 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2822                                       const Twine &Name,
2823                                       BasicBlock *InsertAtEnd) {
2824   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2825   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2826          "Invalid cast");
2827   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2828   assert((!Ty->isVectorTy() ||
2829           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2830          "Invalid cast");
2831 
2832   if (Ty->isIntOrIntVectorTy())
2833     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2834 
2835   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2836 }
2837 
2838 /// Create a BitCast or a PtrToInt cast instruction
2839 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2840                                       const Twine &Name,
2841                                       Instruction *InsertBefore) {
2842   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2843   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2844          "Invalid cast");
2845   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2846   assert((!Ty->isVectorTy() ||
2847           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2848          "Invalid cast");
2849 
2850   if (Ty->isIntOrIntVectorTy())
2851     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2852 
2853   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2854 }
2855 
2856 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2857   Value *S, Type *Ty,
2858   const Twine &Name,
2859   BasicBlock *InsertAtEnd) {
2860   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2861   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2862 
2863   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2864     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2865 
2866   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2867 }
2868 
2869 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2870   Value *S, Type *Ty,
2871   const Twine &Name,
2872   Instruction *InsertBefore) {
2873   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2874   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2875 
2876   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2877     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2878 
2879   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2880 }
2881 
2882 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2883                                            const Twine &Name,
2884                                            Instruction *InsertBefore) {
2885   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2886     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2887   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2888     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2889 
2890   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2891 }
2892 
2893 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2894                                       bool isSigned, const Twine &Name,
2895                                       Instruction *InsertBefore) {
2896   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2897          "Invalid integer cast");
2898   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2899   unsigned DstBits = Ty->getScalarSizeInBits();
2900   Instruction::CastOps opcode =
2901     (SrcBits == DstBits ? Instruction::BitCast :
2902      (SrcBits > DstBits ? Instruction::Trunc :
2903       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2904   return Create(opcode, C, Ty, Name, InsertBefore);
2905 }
2906 
2907 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2908                                       bool isSigned, const Twine &Name,
2909                                       BasicBlock *InsertAtEnd) {
2910   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2911          "Invalid cast");
2912   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2913   unsigned DstBits = Ty->getScalarSizeInBits();
2914   Instruction::CastOps opcode =
2915     (SrcBits == DstBits ? Instruction::BitCast :
2916      (SrcBits > DstBits ? Instruction::Trunc :
2917       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2918   return Create(opcode, C, Ty, Name, InsertAtEnd);
2919 }
2920 
2921 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2922                                  const Twine &Name,
2923                                  Instruction *InsertBefore) {
2924   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2925          "Invalid cast");
2926   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2927   unsigned DstBits = Ty->getScalarSizeInBits();
2928   Instruction::CastOps opcode =
2929     (SrcBits == DstBits ? Instruction::BitCast :
2930      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2931   return Create(opcode, C, Ty, Name, InsertBefore);
2932 }
2933 
2934 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2935                                  const Twine &Name,
2936                                  BasicBlock *InsertAtEnd) {
2937   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2938          "Invalid cast");
2939   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2940   unsigned DstBits = Ty->getScalarSizeInBits();
2941   Instruction::CastOps opcode =
2942     (SrcBits == DstBits ? Instruction::BitCast :
2943      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2944   return Create(opcode, C, Ty, Name, InsertAtEnd);
2945 }
2946 
2947 // Check whether it is valid to call getCastOpcode for these types.
2948 // This routine must be kept in sync with getCastOpcode.
2949 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2950   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2951     return false;
2952 
2953   if (SrcTy == DestTy)
2954     return true;
2955 
2956   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2957     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2958       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2959         // An element by element cast.  Valid if casting the elements is valid.
2960         SrcTy = SrcVecTy->getElementType();
2961         DestTy = DestVecTy->getElementType();
2962       }
2963 
2964   // Get the bit sizes, we'll need these
2965   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2966   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2967 
2968   // Run through the possibilities ...
2969   if (DestTy->isIntegerTy()) {               // Casting to integral
2970     if (SrcTy->isIntegerTy())                // Casting from integral
2971         return true;
2972     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2973       return true;
2974     if (SrcTy->isVectorTy())          // Casting from vector
2975       return DestBits == SrcBits;
2976                                       // Casting from something else
2977     return SrcTy->isPointerTy();
2978   }
2979   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2980     if (SrcTy->isIntegerTy())                // Casting from integral
2981       return true;
2982     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2983       return true;
2984     if (SrcTy->isVectorTy())          // Casting from vector
2985       return DestBits == SrcBits;
2986                                     // Casting from something else
2987     return false;
2988   }
2989   if (DestTy->isVectorTy())         // Casting to vector
2990     return DestBits == SrcBits;
2991   if (DestTy->isPointerTy()) {        // Casting to pointer
2992     if (SrcTy->isPointerTy())                // Casting from pointer
2993       return true;
2994     return SrcTy->isIntegerTy();             // Casting from integral
2995   }
2996   if (DestTy->isX86_MMXTy()) {
2997     if (SrcTy->isVectorTy())
2998       return DestBits == SrcBits;       // 64-bit vector to MMX
2999     return false;
3000   }                                    // Casting to something else
3001   return false;
3002 }
3003 
3004 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3005   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3006     return false;
3007 
3008   if (SrcTy == DestTy)
3009     return true;
3010 
3011   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3012     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3013       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3014         // An element by element cast. Valid if casting the elements is valid.
3015         SrcTy = SrcVecTy->getElementType();
3016         DestTy = DestVecTy->getElementType();
3017       }
3018     }
3019   }
3020 
3021   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3022     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3023       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3024     }
3025   }
3026 
3027   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3028   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3029 
3030   // Could still have vectors of pointers if the number of elements doesn't
3031   // match
3032   if (SrcBits == 0 || DestBits == 0)
3033     return false;
3034 
3035   if (SrcBits != DestBits)
3036     return false;
3037 
3038   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3039     return false;
3040 
3041   return true;
3042 }
3043 
3044 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3045                                           const DataLayout &DL) {
3046   // ptrtoint and inttoptr are not allowed on non-integral pointers
3047   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3048     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3049       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3050               !DL.isNonIntegralPointerType(PtrTy));
3051   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3052     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3053       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3054               !DL.isNonIntegralPointerType(PtrTy));
3055 
3056   return isBitCastable(SrcTy, DestTy);
3057 }
3058 
3059 // Provide a way to get a "cast" where the cast opcode is inferred from the
3060 // types and size of the operand. This, basically, is a parallel of the
3061 // logic in the castIsValid function below.  This axiom should hold:
3062 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3063 // should not assert in castIsValid. In other words, this produces a "correct"
3064 // casting opcode for the arguments passed to it.
3065 // This routine must be kept in sync with isCastable.
3066 Instruction::CastOps
3067 CastInst::getCastOpcode(
3068   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3069   Type *SrcTy = Src->getType();
3070 
3071   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3072          "Only first class types are castable!");
3073 
3074   if (SrcTy == DestTy)
3075     return BitCast;
3076 
3077   // FIXME: Check address space sizes here
3078   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3079     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3080       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3081         // An element by element cast.  Find the appropriate opcode based on the
3082         // element types.
3083         SrcTy = SrcVecTy->getElementType();
3084         DestTy = DestVecTy->getElementType();
3085       }
3086 
3087   // Get the bit sizes, we'll need these
3088   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3089   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3090 
3091   // Run through the possibilities ...
3092   if (DestTy->isIntegerTy()) {                      // Casting to integral
3093     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3094       if (DestBits < SrcBits)
3095         return Trunc;                               // int -> smaller int
3096       else if (DestBits > SrcBits) {                // its an extension
3097         if (SrcIsSigned)
3098           return SExt;                              // signed -> SEXT
3099         else
3100           return ZExt;                              // unsigned -> ZEXT
3101       } else {
3102         return BitCast;                             // Same size, No-op cast
3103       }
3104     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3105       if (DestIsSigned)
3106         return FPToSI;                              // FP -> sint
3107       else
3108         return FPToUI;                              // FP -> uint
3109     } else if (SrcTy->isVectorTy()) {
3110       assert(DestBits == SrcBits &&
3111              "Casting vector to integer of different width");
3112       return BitCast;                             // Same size, no-op cast
3113     } else {
3114       assert(SrcTy->isPointerTy() &&
3115              "Casting from a value that is not first-class type");
3116       return PtrToInt;                              // ptr -> int
3117     }
3118   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3119     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3120       if (SrcIsSigned)
3121         return SIToFP;                              // sint -> FP
3122       else
3123         return UIToFP;                              // uint -> FP
3124     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3125       if (DestBits < SrcBits) {
3126         return FPTrunc;                             // FP -> smaller FP
3127       } else if (DestBits > SrcBits) {
3128         return FPExt;                               // FP -> larger FP
3129       } else  {
3130         return BitCast;                             // same size, no-op cast
3131       }
3132     } else if (SrcTy->isVectorTy()) {
3133       assert(DestBits == SrcBits &&
3134              "Casting vector to floating point of different width");
3135       return BitCast;                             // same size, no-op cast
3136     }
3137     llvm_unreachable("Casting pointer or non-first class to float");
3138   } else if (DestTy->isVectorTy()) {
3139     assert(DestBits == SrcBits &&
3140            "Illegal cast to vector (wrong type or size)");
3141     return BitCast;
3142   } else if (DestTy->isPointerTy()) {
3143     if (SrcTy->isPointerTy()) {
3144       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3145         return AddrSpaceCast;
3146       return BitCast;                               // ptr -> ptr
3147     } else if (SrcTy->isIntegerTy()) {
3148       return IntToPtr;                              // int -> ptr
3149     }
3150     llvm_unreachable("Casting pointer to other than pointer or int");
3151   } else if (DestTy->isX86_MMXTy()) {
3152     if (SrcTy->isVectorTy()) {
3153       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3154       return BitCast;                               // 64-bit vector to MMX
3155     }
3156     llvm_unreachable("Illegal cast to X86_MMX");
3157   }
3158   llvm_unreachable("Casting to type that is not first-class");
3159 }
3160 
3161 //===----------------------------------------------------------------------===//
3162 //                    CastInst SubClass Constructors
3163 //===----------------------------------------------------------------------===//
3164 
3165 /// Check that the construction parameters for a CastInst are correct. This
3166 /// could be broken out into the separate constructors but it is useful to have
3167 /// it in one place and to eliminate the redundant code for getting the sizes
3168 /// of the types involved.
3169 bool
3170 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3171   // Check for type sanity on the arguments
3172   Type *SrcTy = S->getType();
3173 
3174   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3175       SrcTy->isAggregateType() || DstTy->isAggregateType())
3176     return false;
3177 
3178   // Get the size of the types in bits, we'll need this later
3179   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3180   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3181 
3182   // If these are vector types, get the lengths of the vectors (using zero for
3183   // scalar types means that checking that vector lengths match also checks that
3184   // scalars are not being converted to vectors or vectors to scalars).
3185   unsigned SrcLength = SrcTy->isVectorTy() ?
3186     cast<VectorType>(SrcTy)->getNumElements() : 0;
3187   unsigned DstLength = DstTy->isVectorTy() ?
3188     cast<VectorType>(DstTy)->getNumElements() : 0;
3189 
3190   // Switch on the opcode provided
3191   switch (op) {
3192   default: return false; // This is an input error
3193   case Instruction::Trunc:
3194     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3195       SrcLength == DstLength && SrcBitSize > DstBitSize;
3196   case Instruction::ZExt:
3197     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3198       SrcLength == DstLength && SrcBitSize < DstBitSize;
3199   case Instruction::SExt:
3200     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3201       SrcLength == DstLength && SrcBitSize < DstBitSize;
3202   case Instruction::FPTrunc:
3203     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3204       SrcLength == DstLength && SrcBitSize > DstBitSize;
3205   case Instruction::FPExt:
3206     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3207       SrcLength == DstLength && SrcBitSize < DstBitSize;
3208   case Instruction::UIToFP:
3209   case Instruction::SIToFP:
3210     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3211       SrcLength == DstLength;
3212   case Instruction::FPToUI:
3213   case Instruction::FPToSI:
3214     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3215       SrcLength == DstLength;
3216   case Instruction::PtrToInt:
3217     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3218       return false;
3219     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3220       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3221         return false;
3222     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3223   case Instruction::IntToPtr:
3224     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3225       return false;
3226     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3227       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3228         return false;
3229     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3230   case Instruction::BitCast: {
3231     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3232     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3233 
3234     // BitCast implies a no-op cast of type only. No bits change.
3235     // However, you can't cast pointers to anything but pointers.
3236     if (!SrcPtrTy != !DstPtrTy)
3237       return false;
3238 
3239     // For non-pointer cases, the cast is okay if the source and destination bit
3240     // widths are identical.
3241     if (!SrcPtrTy)
3242       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3243 
3244     // If both are pointers then the address spaces must match.
3245     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3246       return false;
3247 
3248     // A vector of pointers must have the same number of elements.
3249     VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3250     VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3251     if (SrcVecTy && DstVecTy)
3252       return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3253     if (SrcVecTy)
3254       return SrcVecTy->getNumElements() == 1;
3255     if (DstVecTy)
3256       return DstVecTy->getNumElements() == 1;
3257 
3258     return true;
3259   }
3260   case Instruction::AddrSpaceCast: {
3261     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3262     if (!SrcPtrTy)
3263       return false;
3264 
3265     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3266     if (!DstPtrTy)
3267       return false;
3268 
3269     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3270       return false;
3271 
3272     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3273       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3274         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3275 
3276       return false;
3277     }
3278 
3279     return true;
3280   }
3281   }
3282 }
3283 
3284 TruncInst::TruncInst(
3285   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3286 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3287   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3288 }
3289 
3290 TruncInst::TruncInst(
3291   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3292 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3293   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3294 }
3295 
3296 ZExtInst::ZExtInst(
3297   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3298 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3299   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3300 }
3301 
3302 ZExtInst::ZExtInst(
3303   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3304 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3305   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3306 }
3307 SExtInst::SExtInst(
3308   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3309 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3310   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3311 }
3312 
3313 SExtInst::SExtInst(
3314   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3315 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3316   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3317 }
3318 
3319 FPTruncInst::FPTruncInst(
3320   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3321 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3322   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3323 }
3324 
3325 FPTruncInst::FPTruncInst(
3326   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3327 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3328   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3329 }
3330 
3331 FPExtInst::FPExtInst(
3332   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3333 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3334   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3335 }
3336 
3337 FPExtInst::FPExtInst(
3338   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3339 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3340   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3341 }
3342 
3343 UIToFPInst::UIToFPInst(
3344   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3345 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3346   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3347 }
3348 
3349 UIToFPInst::UIToFPInst(
3350   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3351 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3352   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3353 }
3354 
3355 SIToFPInst::SIToFPInst(
3356   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3357 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3358   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3359 }
3360 
3361 SIToFPInst::SIToFPInst(
3362   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3363 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3364   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3365 }
3366 
3367 FPToUIInst::FPToUIInst(
3368   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3369 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3370   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3371 }
3372 
3373 FPToUIInst::FPToUIInst(
3374   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3375 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3376   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3377 }
3378 
3379 FPToSIInst::FPToSIInst(
3380   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3381 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3382   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3383 }
3384 
3385 FPToSIInst::FPToSIInst(
3386   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3387 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3388   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3389 }
3390 
3391 PtrToIntInst::PtrToIntInst(
3392   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3393 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3394   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3395 }
3396 
3397 PtrToIntInst::PtrToIntInst(
3398   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3399 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3400   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3401 }
3402 
3403 IntToPtrInst::IntToPtrInst(
3404   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3405 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3406   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3407 }
3408 
3409 IntToPtrInst::IntToPtrInst(
3410   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3411 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3412   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3413 }
3414 
3415 BitCastInst::BitCastInst(
3416   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3417 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3418   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3419 }
3420 
3421 BitCastInst::BitCastInst(
3422   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3423 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3424   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3425 }
3426 
3427 AddrSpaceCastInst::AddrSpaceCastInst(
3428   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3429 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3430   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3431 }
3432 
3433 AddrSpaceCastInst::AddrSpaceCastInst(
3434   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3435 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3436   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3437 }
3438 
3439 //===----------------------------------------------------------------------===//
3440 //                               CmpInst Classes
3441 //===----------------------------------------------------------------------===//
3442 
3443 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3444                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3445                  Instruction *FlagsSource)
3446   : Instruction(ty, op,
3447                 OperandTraits<CmpInst>::op_begin(this),
3448                 OperandTraits<CmpInst>::operands(this),
3449                 InsertBefore) {
3450   Op<0>() = LHS;
3451   Op<1>() = RHS;
3452   setPredicate((Predicate)predicate);
3453   setName(Name);
3454   if (FlagsSource)
3455     copyIRFlags(FlagsSource);
3456 }
3457 
3458 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3459                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3460   : Instruction(ty, op,
3461                 OperandTraits<CmpInst>::op_begin(this),
3462                 OperandTraits<CmpInst>::operands(this),
3463                 InsertAtEnd) {
3464   Op<0>() = LHS;
3465   Op<1>() = RHS;
3466   setPredicate((Predicate)predicate);
3467   setName(Name);
3468 }
3469 
3470 CmpInst *
3471 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3472                 const Twine &Name, Instruction *InsertBefore) {
3473   if (Op == Instruction::ICmp) {
3474     if (InsertBefore)
3475       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3476                           S1, S2, Name);
3477     else
3478       return new ICmpInst(CmpInst::Predicate(predicate),
3479                           S1, S2, Name);
3480   }
3481 
3482   if (InsertBefore)
3483     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3484                         S1, S2, Name);
3485   else
3486     return new FCmpInst(CmpInst::Predicate(predicate),
3487                         S1, S2, Name);
3488 }
3489 
3490 CmpInst *
3491 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3492                 const Twine &Name, BasicBlock *InsertAtEnd) {
3493   if (Op == Instruction::ICmp) {
3494     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3495                         S1, S2, Name);
3496   }
3497   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3498                       S1, S2, Name);
3499 }
3500 
3501 void CmpInst::swapOperands() {
3502   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3503     IC->swapOperands();
3504   else
3505     cast<FCmpInst>(this)->swapOperands();
3506 }
3507 
3508 bool CmpInst::isCommutative() const {
3509   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3510     return IC->isCommutative();
3511   return cast<FCmpInst>(this)->isCommutative();
3512 }
3513 
3514 bool CmpInst::isEquality() const {
3515   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3516     return IC->isEquality();
3517   return cast<FCmpInst>(this)->isEquality();
3518 }
3519 
3520 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3521   switch (pred) {
3522     default: llvm_unreachable("Unknown cmp predicate!");
3523     case ICMP_EQ: return ICMP_NE;
3524     case ICMP_NE: return ICMP_EQ;
3525     case ICMP_UGT: return ICMP_ULE;
3526     case ICMP_ULT: return ICMP_UGE;
3527     case ICMP_UGE: return ICMP_ULT;
3528     case ICMP_ULE: return ICMP_UGT;
3529     case ICMP_SGT: return ICMP_SLE;
3530     case ICMP_SLT: return ICMP_SGE;
3531     case ICMP_SGE: return ICMP_SLT;
3532     case ICMP_SLE: return ICMP_SGT;
3533 
3534     case FCMP_OEQ: return FCMP_UNE;
3535     case FCMP_ONE: return FCMP_UEQ;
3536     case FCMP_OGT: return FCMP_ULE;
3537     case FCMP_OLT: return FCMP_UGE;
3538     case FCMP_OGE: return FCMP_ULT;
3539     case FCMP_OLE: return FCMP_UGT;
3540     case FCMP_UEQ: return FCMP_ONE;
3541     case FCMP_UNE: return FCMP_OEQ;
3542     case FCMP_UGT: return FCMP_OLE;
3543     case FCMP_ULT: return FCMP_OGE;
3544     case FCMP_UGE: return FCMP_OLT;
3545     case FCMP_ULE: return FCMP_OGT;
3546     case FCMP_ORD: return FCMP_UNO;
3547     case FCMP_UNO: return FCMP_ORD;
3548     case FCMP_TRUE: return FCMP_FALSE;
3549     case FCMP_FALSE: return FCMP_TRUE;
3550   }
3551 }
3552 
3553 StringRef CmpInst::getPredicateName(Predicate Pred) {
3554   switch (Pred) {
3555   default:                   return "unknown";
3556   case FCmpInst::FCMP_FALSE: return "false";
3557   case FCmpInst::FCMP_OEQ:   return "oeq";
3558   case FCmpInst::FCMP_OGT:   return "ogt";
3559   case FCmpInst::FCMP_OGE:   return "oge";
3560   case FCmpInst::FCMP_OLT:   return "olt";
3561   case FCmpInst::FCMP_OLE:   return "ole";
3562   case FCmpInst::FCMP_ONE:   return "one";
3563   case FCmpInst::FCMP_ORD:   return "ord";
3564   case FCmpInst::FCMP_UNO:   return "uno";
3565   case FCmpInst::FCMP_UEQ:   return "ueq";
3566   case FCmpInst::FCMP_UGT:   return "ugt";
3567   case FCmpInst::FCMP_UGE:   return "uge";
3568   case FCmpInst::FCMP_ULT:   return "ult";
3569   case FCmpInst::FCMP_ULE:   return "ule";
3570   case FCmpInst::FCMP_UNE:   return "une";
3571   case FCmpInst::FCMP_TRUE:  return "true";
3572   case ICmpInst::ICMP_EQ:    return "eq";
3573   case ICmpInst::ICMP_NE:    return "ne";
3574   case ICmpInst::ICMP_SGT:   return "sgt";
3575   case ICmpInst::ICMP_SGE:   return "sge";
3576   case ICmpInst::ICMP_SLT:   return "slt";
3577   case ICmpInst::ICMP_SLE:   return "sle";
3578   case ICmpInst::ICMP_UGT:   return "ugt";
3579   case ICmpInst::ICMP_UGE:   return "uge";
3580   case ICmpInst::ICMP_ULT:   return "ult";
3581   case ICmpInst::ICMP_ULE:   return "ule";
3582   }
3583 }
3584 
3585 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3586   switch (pred) {
3587     default: llvm_unreachable("Unknown icmp predicate!");
3588     case ICMP_EQ: case ICMP_NE:
3589     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3590        return pred;
3591     case ICMP_UGT: return ICMP_SGT;
3592     case ICMP_ULT: return ICMP_SLT;
3593     case ICMP_UGE: return ICMP_SGE;
3594     case ICMP_ULE: return ICMP_SLE;
3595   }
3596 }
3597 
3598 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3599   switch (pred) {
3600     default: llvm_unreachable("Unknown icmp predicate!");
3601     case ICMP_EQ: case ICMP_NE:
3602     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3603        return pred;
3604     case ICMP_SGT: return ICMP_UGT;
3605     case ICMP_SLT: return ICMP_ULT;
3606     case ICMP_SGE: return ICMP_UGE;
3607     case ICMP_SLE: return ICMP_ULE;
3608   }
3609 }
3610 
3611 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3612   switch (pred) {
3613     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3614     case ICMP_SGT: return ICMP_SGE;
3615     case ICMP_SLT: return ICMP_SLE;
3616     case ICMP_SGE: return ICMP_SGT;
3617     case ICMP_SLE: return ICMP_SLT;
3618     case ICMP_UGT: return ICMP_UGE;
3619     case ICMP_ULT: return ICMP_ULE;
3620     case ICMP_UGE: return ICMP_UGT;
3621     case ICMP_ULE: return ICMP_ULT;
3622 
3623     case FCMP_OGT: return FCMP_OGE;
3624     case FCMP_OLT: return FCMP_OLE;
3625     case FCMP_OGE: return FCMP_OGT;
3626     case FCMP_OLE: return FCMP_OLT;
3627     case FCMP_UGT: return FCMP_UGE;
3628     case FCMP_ULT: return FCMP_ULE;
3629     case FCMP_UGE: return FCMP_UGT;
3630     case FCMP_ULE: return FCMP_ULT;
3631   }
3632 }
3633 
3634 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3635   switch (pred) {
3636     default: llvm_unreachable("Unknown cmp predicate!");
3637     case ICMP_EQ: case ICMP_NE:
3638       return pred;
3639     case ICMP_SGT: return ICMP_SLT;
3640     case ICMP_SLT: return ICMP_SGT;
3641     case ICMP_SGE: return ICMP_SLE;
3642     case ICMP_SLE: return ICMP_SGE;
3643     case ICMP_UGT: return ICMP_ULT;
3644     case ICMP_ULT: return ICMP_UGT;
3645     case ICMP_UGE: return ICMP_ULE;
3646     case ICMP_ULE: return ICMP_UGE;
3647 
3648     case FCMP_FALSE: case FCMP_TRUE:
3649     case FCMP_OEQ: case FCMP_ONE:
3650     case FCMP_UEQ: case FCMP_UNE:
3651     case FCMP_ORD: case FCMP_UNO:
3652       return pred;
3653     case FCMP_OGT: return FCMP_OLT;
3654     case FCMP_OLT: return FCMP_OGT;
3655     case FCMP_OGE: return FCMP_OLE;
3656     case FCMP_OLE: return FCMP_OGE;
3657     case FCMP_UGT: return FCMP_ULT;
3658     case FCMP_ULT: return FCMP_UGT;
3659     case FCMP_UGE: return FCMP_ULE;
3660     case FCMP_ULE: return FCMP_UGE;
3661   }
3662 }
3663 
3664 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3665   switch (pred) {
3666   case ICMP_SGT: return ICMP_SGE;
3667   case ICMP_SLT: return ICMP_SLE;
3668   case ICMP_UGT: return ICMP_UGE;
3669   case ICMP_ULT: return ICMP_ULE;
3670   case FCMP_OGT: return FCMP_OGE;
3671   case FCMP_OLT: return FCMP_OLE;
3672   case FCMP_UGT: return FCMP_UGE;
3673   case FCMP_ULT: return FCMP_ULE;
3674   default: return pred;
3675   }
3676 }
3677 
3678 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3679   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3680 
3681   switch (pred) {
3682   default:
3683     llvm_unreachable("Unknown predicate!");
3684   case CmpInst::ICMP_ULT:
3685     return CmpInst::ICMP_SLT;
3686   case CmpInst::ICMP_ULE:
3687     return CmpInst::ICMP_SLE;
3688   case CmpInst::ICMP_UGT:
3689     return CmpInst::ICMP_SGT;
3690   case CmpInst::ICMP_UGE:
3691     return CmpInst::ICMP_SGE;
3692   }
3693 }
3694 
3695 bool CmpInst::isUnsigned(Predicate predicate) {
3696   switch (predicate) {
3697     default: return false;
3698     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3699     case ICmpInst::ICMP_UGE: return true;
3700   }
3701 }
3702 
3703 bool CmpInst::isSigned(Predicate predicate) {
3704   switch (predicate) {
3705     default: return false;
3706     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3707     case ICmpInst::ICMP_SGE: return true;
3708   }
3709 }
3710 
3711 bool CmpInst::isOrdered(Predicate predicate) {
3712   switch (predicate) {
3713     default: return false;
3714     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3715     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3716     case FCmpInst::FCMP_ORD: return true;
3717   }
3718 }
3719 
3720 bool CmpInst::isUnordered(Predicate predicate) {
3721   switch (predicate) {
3722     default: return false;
3723     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3724     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3725     case FCmpInst::FCMP_UNO: return true;
3726   }
3727 }
3728 
3729 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3730   switch(predicate) {
3731     default: return false;
3732     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3733     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3734   }
3735 }
3736 
3737 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3738   switch(predicate) {
3739   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3740   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3741   default: return false;
3742   }
3743 }
3744 
3745 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3746   // If the predicates match, then we know the first condition implies the
3747   // second is true.
3748   if (Pred1 == Pred2)
3749     return true;
3750 
3751   switch (Pred1) {
3752   default:
3753     break;
3754   case ICMP_EQ:
3755     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3756     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3757            Pred2 == ICMP_SLE;
3758   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3759     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3760   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3761     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3762   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3763     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3764   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3765     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3766   }
3767   return false;
3768 }
3769 
3770 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3771   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3772 }
3773 
3774 //===----------------------------------------------------------------------===//
3775 //                        SwitchInst Implementation
3776 //===----------------------------------------------------------------------===//
3777 
3778 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3779   assert(Value && Default && NumReserved);
3780   ReservedSpace = NumReserved;
3781   setNumHungOffUseOperands(2);
3782   allocHungoffUses(ReservedSpace);
3783 
3784   Op<0>() = Value;
3785   Op<1>() = Default;
3786 }
3787 
3788 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3789 /// switch on and a default destination.  The number of additional cases can
3790 /// be specified here to make memory allocation more efficient.  This
3791 /// constructor can also autoinsert before another instruction.
3792 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3793                        Instruction *InsertBefore)
3794     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3795                   nullptr, 0, InsertBefore) {
3796   init(Value, Default, 2+NumCases*2);
3797 }
3798 
3799 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3800 /// switch on and a default destination.  The number of additional cases can
3801 /// be specified here to make memory allocation more efficient.  This
3802 /// constructor also autoinserts at the end of the specified BasicBlock.
3803 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3804                        BasicBlock *InsertAtEnd)
3805     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3806                   nullptr, 0, InsertAtEnd) {
3807   init(Value, Default, 2+NumCases*2);
3808 }
3809 
3810 SwitchInst::SwitchInst(const SwitchInst &SI)
3811     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3812   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3813   setNumHungOffUseOperands(SI.getNumOperands());
3814   Use *OL = getOperandList();
3815   const Use *InOL = SI.getOperandList();
3816   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3817     OL[i] = InOL[i];
3818     OL[i+1] = InOL[i+1];
3819   }
3820   SubclassOptionalData = SI.SubclassOptionalData;
3821 }
3822 
3823 /// addCase - Add an entry to the switch instruction...
3824 ///
3825 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3826   unsigned NewCaseIdx = getNumCases();
3827   unsigned OpNo = getNumOperands();
3828   if (OpNo+2 > ReservedSpace)
3829     growOperands();  // Get more space!
3830   // Initialize some new operands.
3831   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3832   setNumHungOffUseOperands(OpNo+2);
3833   CaseHandle Case(this, NewCaseIdx);
3834   Case.setValue(OnVal);
3835   Case.setSuccessor(Dest);
3836 }
3837 
3838 /// removeCase - This method removes the specified case and its successor
3839 /// from the switch instruction.
3840 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3841   unsigned idx = I->getCaseIndex();
3842 
3843   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3844 
3845   unsigned NumOps = getNumOperands();
3846   Use *OL = getOperandList();
3847 
3848   // Overwrite this case with the end of the list.
3849   if (2 + (idx + 1) * 2 != NumOps) {
3850     OL[2 + idx * 2] = OL[NumOps - 2];
3851     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3852   }
3853 
3854   // Nuke the last value.
3855   OL[NumOps-2].set(nullptr);
3856   OL[NumOps-2+1].set(nullptr);
3857   setNumHungOffUseOperands(NumOps-2);
3858 
3859   return CaseIt(this, idx);
3860 }
3861 
3862 /// growOperands - grow operands - This grows the operand list in response
3863 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3864 ///
3865 void SwitchInst::growOperands() {
3866   unsigned e = getNumOperands();
3867   unsigned NumOps = e*3;
3868 
3869   ReservedSpace = NumOps;
3870   growHungoffUses(ReservedSpace);
3871 }
3872 
3873 MDNode *
3874 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
3875   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
3876     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
3877       if (MDName->getString() == "branch_weights")
3878         return ProfileData;
3879   return nullptr;
3880 }
3881 
3882 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3883   assert(Changed && "called only if metadata has changed");
3884 
3885   if (!Weights)
3886     return nullptr;
3887 
3888   assert(SI.getNumSuccessors() == Weights->size() &&
3889          "num of prof branch_weights must accord with num of successors");
3890 
3891   bool AllZeroes =
3892       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
3893 
3894   if (AllZeroes || Weights.getValue().size() < 2)
3895     return nullptr;
3896 
3897   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3898 }
3899 
3900 Optional<SmallVector<uint32_t, 8> >
3901 SwitchInstProfUpdateWrapper::getProfBranchWeights() {
3902   MDNode *ProfileData = getProfBranchWeightsMD(SI);
3903   if (!ProfileData)
3904     return None;
3905 
3906   SmallVector<uint32_t, 8> Weights;
3907   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
3908     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
3909     uint32_t CW = C->getValue().getZExtValue();
3910     Weights.push_back(CW);
3911   }
3912   return Weights;
3913 }
3914 
3915 SwitchInst::CaseIt
3916 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
3917   if (Weights) {
3918     assert(SI.getNumSuccessors() == Weights->size() &&
3919            "num of prof branch_weights must accord with num of successors");
3920     Changed = true;
3921     // Copy the last case to the place of the removed one and shrink.
3922     // This is tightly coupled with the way SwitchInst::removeCase() removes
3923     // the cases in SwitchInst::removeCase(CaseIt).
3924     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
3925     Weights.getValue().pop_back();
3926   }
3927   return SI.removeCase(I);
3928 }
3929 
3930 void SwitchInstProfUpdateWrapper::addCase(
3931     ConstantInt *OnVal, BasicBlock *Dest,
3932     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3933   SI.addCase(OnVal, Dest);
3934 
3935   if (!Weights && W && *W) {
3936     Changed = true;
3937     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3938     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
3939   } else if (Weights) {
3940     Changed = true;
3941     Weights.getValue().push_back(W ? *W : 0);
3942   }
3943   if (Weights)
3944     assert(SI.getNumSuccessors() == Weights->size() &&
3945            "num of prof branch_weights must accord with num of successors");
3946 }
3947 
3948 SymbolTableList<Instruction>::iterator
3949 SwitchInstProfUpdateWrapper::eraseFromParent() {
3950   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3951   Changed = false;
3952 
3953   if (Weights)
3954     Weights->resize(0);
3955   return SI.eraseFromParent();
3956 }
3957 
3958 SwitchInstProfUpdateWrapper::CaseWeightOpt
3959 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
3960   if (!Weights)
3961     return None;
3962   return Weights.getValue()[idx];
3963 }
3964 
3965 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
3966     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3967   if (!W)
3968     return;
3969 
3970   if (!Weights && *W)
3971     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3972 
3973   if (Weights) {
3974     auto &OldW = Weights.getValue()[idx];
3975     if (*W != OldW) {
3976       Changed = true;
3977       OldW = *W;
3978     }
3979   }
3980 }
3981 
3982 SwitchInstProfUpdateWrapper::CaseWeightOpt
3983 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
3984                                                 unsigned idx) {
3985   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
3986     return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
3987         ->getValue()
3988         .getZExtValue();
3989 
3990   return None;
3991 }
3992 
3993 //===----------------------------------------------------------------------===//
3994 //                        IndirectBrInst Implementation
3995 //===----------------------------------------------------------------------===//
3996 
3997 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3998   assert(Address && Address->getType()->isPointerTy() &&
3999          "Address of indirectbr must be a pointer");
4000   ReservedSpace = 1+NumDests;
4001   setNumHungOffUseOperands(1);
4002   allocHungoffUses(ReservedSpace);
4003 
4004   Op<0>() = Address;
4005 }
4006 
4007 
4008 /// growOperands - grow operands - This grows the operand list in response
4009 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4010 ///
4011 void IndirectBrInst::growOperands() {
4012   unsigned e = getNumOperands();
4013   unsigned NumOps = e*2;
4014 
4015   ReservedSpace = NumOps;
4016   growHungoffUses(ReservedSpace);
4017 }
4018 
4019 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4020                                Instruction *InsertBefore)
4021     : Instruction(Type::getVoidTy(Address->getContext()),
4022                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4023   init(Address, NumCases);
4024 }
4025 
4026 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4027                                BasicBlock *InsertAtEnd)
4028     : Instruction(Type::getVoidTy(Address->getContext()),
4029                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4030   init(Address, NumCases);
4031 }
4032 
4033 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4034     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4035                   nullptr, IBI.getNumOperands()) {
4036   allocHungoffUses(IBI.getNumOperands());
4037   Use *OL = getOperandList();
4038   const Use *InOL = IBI.getOperandList();
4039   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4040     OL[i] = InOL[i];
4041   SubclassOptionalData = IBI.SubclassOptionalData;
4042 }
4043 
4044 /// addDestination - Add a destination.
4045 ///
4046 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4047   unsigned OpNo = getNumOperands();
4048   if (OpNo+1 > ReservedSpace)
4049     growOperands();  // Get more space!
4050   // Initialize some new operands.
4051   assert(OpNo < ReservedSpace && "Growing didn't work!");
4052   setNumHungOffUseOperands(OpNo+1);
4053   getOperandList()[OpNo] = DestBB;
4054 }
4055 
4056 /// removeDestination - This method removes the specified successor from the
4057 /// indirectbr instruction.
4058 void IndirectBrInst::removeDestination(unsigned idx) {
4059   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4060 
4061   unsigned NumOps = getNumOperands();
4062   Use *OL = getOperandList();
4063 
4064   // Replace this value with the last one.
4065   OL[idx+1] = OL[NumOps-1];
4066 
4067   // Nuke the last value.
4068   OL[NumOps-1].set(nullptr);
4069   setNumHungOffUseOperands(NumOps-1);
4070 }
4071 
4072 //===----------------------------------------------------------------------===//
4073 //                           cloneImpl() implementations
4074 //===----------------------------------------------------------------------===//
4075 
4076 // Define these methods here so vtables don't get emitted into every translation
4077 // unit that uses these classes.
4078 
4079 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4080   return new (getNumOperands()) GetElementPtrInst(*this);
4081 }
4082 
4083 UnaryOperator *UnaryOperator::cloneImpl() const {
4084   return Create(getOpcode(), Op<0>());
4085 }
4086 
4087 BinaryOperator *BinaryOperator::cloneImpl() const {
4088   return Create(getOpcode(), Op<0>(), Op<1>());
4089 }
4090 
4091 FCmpInst *FCmpInst::cloneImpl() const {
4092   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4093 }
4094 
4095 ICmpInst *ICmpInst::cloneImpl() const {
4096   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4097 }
4098 
4099 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4100   return new ExtractValueInst(*this);
4101 }
4102 
4103 InsertValueInst *InsertValueInst::cloneImpl() const {
4104   return new InsertValueInst(*this);
4105 }
4106 
4107 AllocaInst *AllocaInst::cloneImpl() const {
4108   AllocaInst *Result = new AllocaInst(getAllocatedType(),
4109                                       getType()->getAddressSpace(),
4110                                       (Value *)getOperand(0), getAlignment());
4111   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4112   Result->setSwiftError(isSwiftError());
4113   return Result;
4114 }
4115 
4116 LoadInst *LoadInst::cloneImpl() const {
4117   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4118                       getAlignment(), getOrdering(), getSyncScopeID());
4119 }
4120 
4121 StoreInst *StoreInst::cloneImpl() const {
4122   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4123                        getAlignment(), getOrdering(), getSyncScopeID());
4124 
4125 }
4126 
4127 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4128   AtomicCmpXchgInst *Result =
4129     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4130                           getSuccessOrdering(), getFailureOrdering(),
4131                           getSyncScopeID());
4132   Result->setVolatile(isVolatile());
4133   Result->setWeak(isWeak());
4134   return Result;
4135 }
4136 
4137 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4138   AtomicRMWInst *Result =
4139     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4140                       getOrdering(), getSyncScopeID());
4141   Result->setVolatile(isVolatile());
4142   return Result;
4143 }
4144 
4145 FenceInst *FenceInst::cloneImpl() const {
4146   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4147 }
4148 
4149 TruncInst *TruncInst::cloneImpl() const {
4150   return new TruncInst(getOperand(0), getType());
4151 }
4152 
4153 ZExtInst *ZExtInst::cloneImpl() const {
4154   return new ZExtInst(getOperand(0), getType());
4155 }
4156 
4157 SExtInst *SExtInst::cloneImpl() const {
4158   return new SExtInst(getOperand(0), getType());
4159 }
4160 
4161 FPTruncInst *FPTruncInst::cloneImpl() const {
4162   return new FPTruncInst(getOperand(0), getType());
4163 }
4164 
4165 FPExtInst *FPExtInst::cloneImpl() const {
4166   return new FPExtInst(getOperand(0), getType());
4167 }
4168 
4169 UIToFPInst *UIToFPInst::cloneImpl() const {
4170   return new UIToFPInst(getOperand(0), getType());
4171 }
4172 
4173 SIToFPInst *SIToFPInst::cloneImpl() const {
4174   return new SIToFPInst(getOperand(0), getType());
4175 }
4176 
4177 FPToUIInst *FPToUIInst::cloneImpl() const {
4178   return new FPToUIInst(getOperand(0), getType());
4179 }
4180 
4181 FPToSIInst *FPToSIInst::cloneImpl() const {
4182   return new FPToSIInst(getOperand(0), getType());
4183 }
4184 
4185 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4186   return new PtrToIntInst(getOperand(0), getType());
4187 }
4188 
4189 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4190   return new IntToPtrInst(getOperand(0), getType());
4191 }
4192 
4193 BitCastInst *BitCastInst::cloneImpl() const {
4194   return new BitCastInst(getOperand(0), getType());
4195 }
4196 
4197 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4198   return new AddrSpaceCastInst(getOperand(0), getType());
4199 }
4200 
4201 CallInst *CallInst::cloneImpl() const {
4202   if (hasOperandBundles()) {
4203     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4204     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4205   }
4206   return  new(getNumOperands()) CallInst(*this);
4207 }
4208 
4209 SelectInst *SelectInst::cloneImpl() const {
4210   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4211 }
4212 
4213 VAArgInst *VAArgInst::cloneImpl() const {
4214   return new VAArgInst(getOperand(0), getType());
4215 }
4216 
4217 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4218   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4219 }
4220 
4221 InsertElementInst *InsertElementInst::cloneImpl() const {
4222   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4223 }
4224 
4225 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4226   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4227 }
4228 
4229 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4230 
4231 LandingPadInst *LandingPadInst::cloneImpl() const {
4232   return new LandingPadInst(*this);
4233 }
4234 
4235 ReturnInst *ReturnInst::cloneImpl() const {
4236   return new(getNumOperands()) ReturnInst(*this);
4237 }
4238 
4239 BranchInst *BranchInst::cloneImpl() const {
4240   return new(getNumOperands()) BranchInst(*this);
4241 }
4242 
4243 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4244 
4245 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4246   return new IndirectBrInst(*this);
4247 }
4248 
4249 InvokeInst *InvokeInst::cloneImpl() const {
4250   if (hasOperandBundles()) {
4251     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4252     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4253   }
4254   return new(getNumOperands()) InvokeInst(*this);
4255 }
4256 
4257 CallBrInst *CallBrInst::cloneImpl() const {
4258   if (hasOperandBundles()) {
4259     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4260     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4261   }
4262   return new (getNumOperands()) CallBrInst(*this);
4263 }
4264 
4265 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4266 
4267 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4268   return new (getNumOperands()) CleanupReturnInst(*this);
4269 }
4270 
4271 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4272   return new (getNumOperands()) CatchReturnInst(*this);
4273 }
4274 
4275 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4276   return new CatchSwitchInst(*this);
4277 }
4278 
4279 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4280   return new (getNumOperands()) FuncletPadInst(*this);
4281 }
4282 
4283 UnreachableInst *UnreachableInst::cloneImpl() const {
4284   LLVMContext &Context = getContext();
4285   return new UnreachableInst(Context);
4286 }
4287