1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool> DisableI2pP2iOpt(
49     "disable-i2p-p2i-opt", cl::init(false),
50     cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51 
52 //===----------------------------------------------------------------------===//
53 //                            AllocaInst Class
54 //===----------------------------------------------------------------------===//
55 
56 Optional<TypeSize>
57 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
58   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59   if (isArrayAllocation()) {
60     auto *C = dyn_cast<ConstantInt>(getArraySize());
61     if (!C)
62       return None;
63     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
64     Size *= C->getZExtValue();
65   }
66   return Size;
67 }
68 
69 //===----------------------------------------------------------------------===//
70 //                              SelectInst Class
71 //===----------------------------------------------------------------------===//
72 
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76   if (Op1->getType() != Op2->getType())
77     return "both values to select must have same type";
78 
79   if (Op1->getType()->isTokenTy())
80     return "select values cannot have token type";
81 
82   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83     // Vector select.
84     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85       return "vector select condition element type must be i1";
86     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87     if (!ET)
88       return "selected values for vector select must be vectors";
89     if (ET->getElementCount() != VT->getElementCount())
90       return "vector select requires selected vectors to have "
91                    "the same vector length as select condition";
92   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93     return "select condition must be i1 or <n x i1>";
94   }
95   return nullptr;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 //                               PHINode Class
100 //===----------------------------------------------------------------------===//
101 
102 PHINode::PHINode(const PHINode &PN)
103     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104       ReservedSpace(PN.getNumOperands()) {
105   allocHungoffUses(PN.getNumOperands());
106   std::copy(PN.op_begin(), PN.op_end(), op_begin());
107   std::copy(PN.block_begin(), PN.block_end(), block_begin());
108   SubclassOptionalData = PN.SubclassOptionalData;
109 }
110 
111 // removeIncomingValue - Remove an incoming value.  This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114   Value *Removed = getIncomingValue(Idx);
115 
116   // Move everything after this operand down.
117   //
118   // FIXME: we could just swap with the end of the list, then erase.  However,
119   // clients might not expect this to happen.  The code as it is thrashes the
120   // use/def lists, which is kinda lame.
121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123 
124   // Nuke the last value.
125   Op<-1>().set(nullptr);
126   setNumHungOffUseOperands(getNumOperands() - 1);
127 
128   // If the PHI node is dead, because it has zero entries, nuke it now.
129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130     // If anyone is using this PHI, make them use a dummy value instead...
131     replaceAllUsesWith(UndefValue::get(getType()));
132     eraseFromParent();
133   }
134   return Removed;
135 }
136 
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation.  This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142   unsigned e = getNumOperands();
143   unsigned NumOps = e + e / 2;
144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
145 
146   ReservedSpace = NumOps;
147   growHungoffUses(ReservedSpace, /* IsPhi */ true);
148 }
149 
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
152 Value *PHINode::hasConstantValue() const {
153   // Exploit the fact that phi nodes always have at least one entry.
154   Value *ConstantValue = getIncomingValue(0);
155   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157       if (ConstantValue != this)
158         return nullptr; // Incoming values not all the same.
159        // The case where the first value is this PHI.
160       ConstantValue = getIncomingValue(i);
161     }
162   if (ConstantValue == this)
163     return UndefValue::get(getType());
164   return ConstantValue;
165 }
166 
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
169 /// non-undefs.
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
172 bool PHINode::hasConstantOrUndefValue() const {
173   Value *ConstantValue = nullptr;
174   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175     Value *Incoming = getIncomingValue(i);
176     if (Incoming != this && !isa<UndefValue>(Incoming)) {
177       if (ConstantValue && ConstantValue != Incoming)
178         return false;
179       ConstantValue = Incoming;
180     }
181   }
182   return true;
183 }
184 
185 //===----------------------------------------------------------------------===//
186 //                       LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
188 
189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190                                const Twine &NameStr, Instruction *InsertBefore)
191     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192   init(NumReservedValues, NameStr);
193 }
194 
195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196                                const Twine &NameStr, BasicBlock *InsertAtEnd)
197     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198   init(NumReservedValues, NameStr);
199 }
200 
201 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203                   LP.getNumOperands()),
204       ReservedSpace(LP.getNumOperands()) {
205   allocHungoffUses(LP.getNumOperands());
206   Use *OL = getOperandList();
207   const Use *InOL = LP.getOperandList();
208   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209     OL[I] = InOL[I];
210 
211   setCleanup(LP.isCleanup());
212 }
213 
214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215                                        const Twine &NameStr,
216                                        Instruction *InsertBefore) {
217   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218 }
219 
220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221                                        const Twine &NameStr,
222                                        BasicBlock *InsertAtEnd) {
223   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224 }
225 
226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227   ReservedSpace = NumReservedValues;
228   setNumHungOffUseOperands(0);
229   allocHungoffUses(ReservedSpace);
230   setName(NameStr);
231   setCleanup(false);
232 }
233 
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size) {
237   unsigned e = getNumOperands();
238   if (ReservedSpace >= e + Size) return;
239   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240   growHungoffUses(ReservedSpace);
241 }
242 
243 void LandingPadInst::addClause(Constant *Val) {
244   unsigned OpNo = getNumOperands();
245   growOperands(1);
246   assert(OpNo < ReservedSpace && "Growing didn't work!");
247   setNumHungOffUseOperands(getNumOperands() + 1);
248   getOperandList()[OpNo] = Val;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                        CallBase Implementation
253 //===----------------------------------------------------------------------===//
254 
255 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
256                            Instruction *InsertPt) {
257   switch (CB->getOpcode()) {
258   case Instruction::Call:
259     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260   case Instruction::Invoke:
261     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262   case Instruction::CallBr:
263     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264   default:
265     llvm_unreachable("Unknown CallBase sub-class!");
266   }
267 }
268 
269 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
270                            Instruction *InsertPt) {
271   SmallVector<OperandBundleDef, 2> OpDefs;
272   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273     auto ChildOB = CI->getOperandBundleAt(i);
274     if (ChildOB.getTagName() != OpB.getTag())
275       OpDefs.emplace_back(ChildOB);
276   }
277   OpDefs.emplace_back(OpB);
278   return CallBase::Create(CI, OpDefs, InsertPt);
279 }
280 
281 
282 Function *CallBase::getCaller() { return getParent()->getParent(); }
283 
284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
286   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287 }
288 
289 bool CallBase::isIndirectCall() const {
290   const Value *V = getCalledOperand();
291   if (isa<Function>(V) || isa<Constant>(V))
292     return false;
293   return !isInlineAsm();
294 }
295 
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
298 bool CallBase::isMustTailCall() const {
299   if (auto *CI = dyn_cast<CallInst>(this))
300     return CI->isMustTailCall();
301   return false;
302 }
303 
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306   if (auto *CI = dyn_cast<CallInst>(this))
307     return CI->isTailCall();
308   return false;
309 }
310 
311 Intrinsic::ID CallBase::getIntrinsicID() const {
312   if (auto *F = getCalledFunction())
313     return F->getIntrinsicID();
314   return Intrinsic::not_intrinsic;
315 }
316 
317 bool CallBase::isReturnNonNull() const {
318   if (hasRetAttr(Attribute::NonNull))
319     return true;
320 
321   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
322            !NullPointerIsDefined(getCaller(),
323                                  getType()->getPointerAddressSpace()))
324     return true;
325 
326   return false;
327 }
328 
329 Value *CallBase::getReturnedArgOperand() const {
330   unsigned Index;
331 
332   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
333     return getArgOperand(Index - AttributeList::FirstArgIndex);
334   if (const Function *F = getCalledFunction())
335     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
336         Index)
337       return getArgOperand(Index - AttributeList::FirstArgIndex);
338 
339   return nullptr;
340 }
341 
342 /// Determine whether the argument or parameter has the given attribute.
343 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
344   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
345 
346   if (Attrs.hasParamAttr(ArgNo, Kind))
347     return true;
348   if (const Function *F = getCalledFunction())
349     return F->getAttributes().hasParamAttr(ArgNo, Kind);
350   return false;
351 }
352 
353 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
354   if (const Function *F = getCalledFunction())
355     return F->getAttributes().hasFnAttr(Kind);
356   return false;
357 }
358 
359 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
360   if (const Function *F = getCalledFunction())
361     return F->getAttributes().hasFnAttr(Kind);
362   return false;
363 }
364 
365 void CallBase::getOperandBundlesAsDefs(
366     SmallVectorImpl<OperandBundleDef> &Defs) const {
367   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
368     Defs.emplace_back(getOperandBundleAt(i));
369 }
370 
371 CallBase::op_iterator
372 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
373                                      const unsigned BeginIndex) {
374   auto It = op_begin() + BeginIndex;
375   for (auto &B : Bundles)
376     It = std::copy(B.input_begin(), B.input_end(), It);
377 
378   auto *ContextImpl = getContext().pImpl;
379   auto BI = Bundles.begin();
380   unsigned CurrentIndex = BeginIndex;
381 
382   for (auto &BOI : bundle_op_infos()) {
383     assert(BI != Bundles.end() && "Incorrect allocation?");
384 
385     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
386     BOI.Begin = CurrentIndex;
387     BOI.End = CurrentIndex + BI->input_size();
388     CurrentIndex = BOI.End;
389     BI++;
390   }
391 
392   assert(BI == Bundles.end() && "Incorrect allocation?");
393 
394   return It;
395 }
396 
397 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
398   /// When there isn't many bundles, we do a simple linear search.
399   /// Else fallback to a binary-search that use the fact that bundles usually
400   /// have similar number of argument to get faster convergence.
401   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
402     for (auto &BOI : bundle_op_infos())
403       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
404         return BOI;
405 
406     llvm_unreachable("Did not find operand bundle for operand!");
407   }
408 
409   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
410   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
411          OpIdx < std::prev(bundle_op_info_end())->End &&
412          "The Idx isn't in the operand bundle");
413 
414   /// We need a decimal number below and to prevent using floating point numbers
415   /// we use an intergal value multiplied by this constant.
416   constexpr unsigned NumberScaling = 1024;
417 
418   bundle_op_iterator Begin = bundle_op_info_begin();
419   bundle_op_iterator End = bundle_op_info_end();
420   bundle_op_iterator Current = Begin;
421 
422   while (Begin != End) {
423     unsigned ScaledOperandPerBundle =
424         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
425     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
426                        ScaledOperandPerBundle);
427     if (Current >= End)
428       Current = std::prev(End);
429     assert(Current < End && Current >= Begin &&
430            "the operand bundle doesn't cover every value in the range");
431     if (OpIdx >= Current->Begin && OpIdx < Current->End)
432       break;
433     if (OpIdx >= Current->End)
434       Begin = Current + 1;
435     else
436       End = Current;
437   }
438 
439   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
440          "the operand bundle doesn't cover every value in the range");
441   return *Current;
442 }
443 
444 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
445                                      OperandBundleDef OB,
446                                      Instruction *InsertPt) {
447   if (CB->getOperandBundle(ID))
448     return CB;
449 
450   SmallVector<OperandBundleDef, 1> Bundles;
451   CB->getOperandBundlesAsDefs(Bundles);
452   Bundles.push_back(OB);
453   return Create(CB, Bundles, InsertPt);
454 }
455 
456 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
457                                         Instruction *InsertPt) {
458   SmallVector<OperandBundleDef, 1> Bundles;
459   bool CreateNew = false;
460 
461   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
462     auto Bundle = CB->getOperandBundleAt(I);
463     if (Bundle.getTagID() == ID) {
464       CreateNew = true;
465       continue;
466     }
467     Bundles.emplace_back(Bundle);
468   }
469 
470   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
471 }
472 
473 bool CallBase::hasReadingOperandBundles() const {
474   // Implementation note: this is a conservative implementation of operand
475   // bundle semantics, where *any* non-assume operand bundle forces a callsite
476   // to be at least readonly.
477   return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
478 }
479 
480 //===----------------------------------------------------------------------===//
481 //                        CallInst Implementation
482 //===----------------------------------------------------------------------===//
483 
484 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
485                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
486   this->FTy = FTy;
487   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
488          "NumOperands not set up?");
489 
490 #ifndef NDEBUG
491   assert((Args.size() == FTy->getNumParams() ||
492           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
493          "Calling a function with bad signature!");
494 
495   for (unsigned i = 0; i != Args.size(); ++i)
496     assert((i >= FTy->getNumParams() ||
497             FTy->getParamType(i) == Args[i]->getType()) &&
498            "Calling a function with a bad signature!");
499 #endif
500 
501   // Set operands in order of their index to match use-list-order
502   // prediction.
503   llvm::copy(Args, op_begin());
504   setCalledOperand(Func);
505 
506   auto It = populateBundleOperandInfos(Bundles, Args.size());
507   (void)It;
508   assert(It + 1 == op_end() && "Should add up!");
509 
510   setName(NameStr);
511 }
512 
513 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
514   this->FTy = FTy;
515   assert(getNumOperands() == 1 && "NumOperands not set up?");
516   setCalledOperand(Func);
517 
518   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
519 
520   setName(NameStr);
521 }
522 
523 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
524                    Instruction *InsertBefore)
525     : CallBase(Ty->getReturnType(), Instruction::Call,
526                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
527   init(Ty, Func, Name);
528 }
529 
530 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
531                    BasicBlock *InsertAtEnd)
532     : CallBase(Ty->getReturnType(), Instruction::Call,
533                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
534   init(Ty, Func, Name);
535 }
536 
537 CallInst::CallInst(const CallInst &CI)
538     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
539                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
540                CI.getNumOperands()) {
541   setTailCallKind(CI.getTailCallKind());
542   setCallingConv(CI.getCallingConv());
543 
544   std::copy(CI.op_begin(), CI.op_end(), op_begin());
545   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
546             bundle_op_info_begin());
547   SubclassOptionalData = CI.SubclassOptionalData;
548 }
549 
550 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
551                            Instruction *InsertPt) {
552   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
553 
554   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
555                                  Args, OpB, CI->getName(), InsertPt);
556   NewCI->setTailCallKind(CI->getTailCallKind());
557   NewCI->setCallingConv(CI->getCallingConv());
558   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
559   NewCI->setAttributes(CI->getAttributes());
560   NewCI->setDebugLoc(CI->getDebugLoc());
561   return NewCI;
562 }
563 
564 // Update profile weight for call instruction by scaling it using the ratio
565 // of S/T. The meaning of "branch_weights" meta data for call instruction is
566 // transfered to represent call count.
567 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
568   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
569   if (ProfileData == nullptr)
570     return;
571 
572   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
573   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
574                         !ProfDataName->getString().equals("VP")))
575     return;
576 
577   if (T == 0) {
578     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
579                          "div by 0. Ignoring. Likely the function "
580                       << getParent()->getParent()->getName()
581                       << " has 0 entry count, and contains call instructions "
582                          "with non-zero prof info.");
583     return;
584   }
585 
586   MDBuilder MDB(getContext());
587   SmallVector<Metadata *, 3> Vals;
588   Vals.push_back(ProfileData->getOperand(0));
589   APInt APS(128, S), APT(128, T);
590   if (ProfDataName->getString().equals("branch_weights") &&
591       ProfileData->getNumOperands() > 0) {
592     // Using APInt::div may be expensive, but most cases should fit 64 bits.
593     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
594                        ->getValue()
595                        .getZExtValue());
596     Val *= APS;
597     Vals.push_back(MDB.createConstant(
598         ConstantInt::get(Type::getInt32Ty(getContext()),
599                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
600   } else if (ProfDataName->getString().equals("VP"))
601     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
602       // The first value is the key of the value profile, which will not change.
603       Vals.push_back(ProfileData->getOperand(i));
604       uint64_t Count =
605           mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
606               ->getValue()
607               .getZExtValue();
608       // Don't scale the magic number.
609       if (Count == NOMORE_ICP_MAGICNUM) {
610         Vals.push_back(ProfileData->getOperand(i + 1));
611         continue;
612       }
613       // Using APInt::div may be expensive, but most cases should fit 64 bits.
614       APInt Val(128, Count);
615       Val *= APS;
616       Vals.push_back(MDB.createConstant(
617           ConstantInt::get(Type::getInt64Ty(getContext()),
618                            Val.udiv(APT).getLimitedValue())));
619     }
620   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
621 }
622 
623 /// IsConstantOne - Return true only if val is constant int 1
624 static bool IsConstantOne(Value *val) {
625   assert(val && "IsConstantOne does not work with nullptr val");
626   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
627   return CVal && CVal->isOne();
628 }
629 
630 static Instruction *createMalloc(Instruction *InsertBefore,
631                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
632                                  Type *AllocTy, Value *AllocSize,
633                                  Value *ArraySize,
634                                  ArrayRef<OperandBundleDef> OpB,
635                                  Function *MallocF, const Twine &Name) {
636   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
637          "createMalloc needs either InsertBefore or InsertAtEnd");
638 
639   // malloc(type) becomes:
640   //       bitcast (i8* malloc(typeSize)) to type*
641   // malloc(type, arraySize) becomes:
642   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
643   if (!ArraySize)
644     ArraySize = ConstantInt::get(IntPtrTy, 1);
645   else if (ArraySize->getType() != IntPtrTy) {
646     if (InsertBefore)
647       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
648                                               "", InsertBefore);
649     else
650       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
651                                               "", InsertAtEnd);
652   }
653 
654   if (!IsConstantOne(ArraySize)) {
655     if (IsConstantOne(AllocSize)) {
656       AllocSize = ArraySize;         // Operand * 1 = Operand
657     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
658       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
659                                                      false /*ZExt*/);
660       // Malloc arg is constant product of type size and array size
661       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
662     } else {
663       // Multiply type size by the array size...
664       if (InsertBefore)
665         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
666                                               "mallocsize", InsertBefore);
667       else
668         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
669                                               "mallocsize", InsertAtEnd);
670     }
671   }
672 
673   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
674   // Create the call to Malloc.
675   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
676   Module *M = BB->getParent()->getParent();
677   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
678   FunctionCallee MallocFunc = MallocF;
679   if (!MallocFunc)
680     // prototype malloc as "void *malloc(size_t)"
681     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
682   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
683   CallInst *MCall = nullptr;
684   Instruction *Result = nullptr;
685   if (InsertBefore) {
686     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
687                              InsertBefore);
688     Result = MCall;
689     if (Result->getType() != AllocPtrType)
690       // Create a cast instruction to convert to the right type...
691       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
692   } else {
693     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
694     Result = MCall;
695     if (Result->getType() != AllocPtrType) {
696       InsertAtEnd->getInstList().push_back(MCall);
697       // Create a cast instruction to convert to the right type...
698       Result = new BitCastInst(MCall, AllocPtrType, Name);
699     }
700   }
701   MCall->setTailCall();
702   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
703     MCall->setCallingConv(F->getCallingConv());
704     if (!F->returnDoesNotAlias())
705       F->setReturnDoesNotAlias();
706   }
707   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
708 
709   return Result;
710 }
711 
712 /// CreateMalloc - Generate the IR for a call to malloc:
713 /// 1. Compute the malloc call's argument as the specified type's size,
714 ///    possibly multiplied by the array size if the array size is not
715 ///    constant 1.
716 /// 2. Call malloc with that argument.
717 /// 3. Bitcast the result of the malloc call to the specified type.
718 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
719                                     Type *IntPtrTy, Type *AllocTy,
720                                     Value *AllocSize, Value *ArraySize,
721                                     Function *MallocF,
722                                     const Twine &Name) {
723   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
724                       ArraySize, None, MallocF, Name);
725 }
726 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
727                                     Type *IntPtrTy, Type *AllocTy,
728                                     Value *AllocSize, Value *ArraySize,
729                                     ArrayRef<OperandBundleDef> OpB,
730                                     Function *MallocF,
731                                     const Twine &Name) {
732   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
733                       ArraySize, OpB, MallocF, Name);
734 }
735 
736 /// CreateMalloc - Generate the IR for a call to malloc:
737 /// 1. Compute the malloc call's argument as the specified type's size,
738 ///    possibly multiplied by the array size if the array size is not
739 ///    constant 1.
740 /// 2. Call malloc with that argument.
741 /// 3. Bitcast the result of the malloc call to the specified type.
742 /// Note: This function does not add the bitcast to the basic block, that is the
743 /// responsibility of the caller.
744 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
745                                     Type *IntPtrTy, Type *AllocTy,
746                                     Value *AllocSize, Value *ArraySize,
747                                     Function *MallocF, const Twine &Name) {
748   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
749                       ArraySize, None, MallocF, Name);
750 }
751 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
752                                     Type *IntPtrTy, Type *AllocTy,
753                                     Value *AllocSize, Value *ArraySize,
754                                     ArrayRef<OperandBundleDef> OpB,
755                                     Function *MallocF, const Twine &Name) {
756   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
757                       ArraySize, OpB, MallocF, Name);
758 }
759 
760 static Instruction *createFree(Value *Source,
761                                ArrayRef<OperandBundleDef> Bundles,
762                                Instruction *InsertBefore,
763                                BasicBlock *InsertAtEnd) {
764   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
765          "createFree needs either InsertBefore or InsertAtEnd");
766   assert(Source->getType()->isPointerTy() &&
767          "Can not free something of nonpointer type!");
768 
769   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
770   Module *M = BB->getParent()->getParent();
771 
772   Type *VoidTy = Type::getVoidTy(M->getContext());
773   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
774   // prototype free as "void free(void*)"
775   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
776   CallInst *Result = nullptr;
777   Value *PtrCast = Source;
778   if (InsertBefore) {
779     if (Source->getType() != IntPtrTy)
780       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
781     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
782   } else {
783     if (Source->getType() != IntPtrTy)
784       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
785     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
786   }
787   Result->setTailCall();
788   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
789     Result->setCallingConv(F->getCallingConv());
790 
791   return Result;
792 }
793 
794 /// CreateFree - Generate the IR for a call to the builtin free function.
795 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
796   return createFree(Source, None, InsertBefore, nullptr);
797 }
798 Instruction *CallInst::CreateFree(Value *Source,
799                                   ArrayRef<OperandBundleDef> Bundles,
800                                   Instruction *InsertBefore) {
801   return createFree(Source, Bundles, InsertBefore, nullptr);
802 }
803 
804 /// CreateFree - Generate the IR for a call to the builtin free function.
805 /// Note: This function does not add the call to the basic block, that is the
806 /// responsibility of the caller.
807 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
808   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
809   assert(FreeCall && "CreateFree did not create a CallInst");
810   return FreeCall;
811 }
812 Instruction *CallInst::CreateFree(Value *Source,
813                                   ArrayRef<OperandBundleDef> Bundles,
814                                   BasicBlock *InsertAtEnd) {
815   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
816   assert(FreeCall && "CreateFree did not create a CallInst");
817   return FreeCall;
818 }
819 
820 //===----------------------------------------------------------------------===//
821 //                        InvokeInst Implementation
822 //===----------------------------------------------------------------------===//
823 
824 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
825                       BasicBlock *IfException, ArrayRef<Value *> Args,
826                       ArrayRef<OperandBundleDef> Bundles,
827                       const Twine &NameStr) {
828   this->FTy = FTy;
829 
830   assert((int)getNumOperands() ==
831              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
832          "NumOperands not set up?");
833 
834 #ifndef NDEBUG
835   assert(((Args.size() == FTy->getNumParams()) ||
836           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
837          "Invoking a function with bad signature");
838 
839   for (unsigned i = 0, e = Args.size(); i != e; i++)
840     assert((i >= FTy->getNumParams() ||
841             FTy->getParamType(i) == Args[i]->getType()) &&
842            "Invoking a function with a bad signature!");
843 #endif
844 
845   // Set operands in order of their index to match use-list-order
846   // prediction.
847   llvm::copy(Args, op_begin());
848   setNormalDest(IfNormal);
849   setUnwindDest(IfException);
850   setCalledOperand(Fn);
851 
852   auto It = populateBundleOperandInfos(Bundles, Args.size());
853   (void)It;
854   assert(It + 3 == op_end() && "Should add up!");
855 
856   setName(NameStr);
857 }
858 
859 InvokeInst::InvokeInst(const InvokeInst &II)
860     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
861                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
862                II.getNumOperands()) {
863   setCallingConv(II.getCallingConv());
864   std::copy(II.op_begin(), II.op_end(), op_begin());
865   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
866             bundle_op_info_begin());
867   SubclassOptionalData = II.SubclassOptionalData;
868 }
869 
870 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
871                                Instruction *InsertPt) {
872   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
873 
874   auto *NewII = InvokeInst::Create(
875       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
876       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
877   NewII->setCallingConv(II->getCallingConv());
878   NewII->SubclassOptionalData = II->SubclassOptionalData;
879   NewII->setAttributes(II->getAttributes());
880   NewII->setDebugLoc(II->getDebugLoc());
881   return NewII;
882 }
883 
884 LandingPadInst *InvokeInst::getLandingPadInst() const {
885   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
886 }
887 
888 //===----------------------------------------------------------------------===//
889 //                        CallBrInst Implementation
890 //===----------------------------------------------------------------------===//
891 
892 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
893                       ArrayRef<BasicBlock *> IndirectDests,
894                       ArrayRef<Value *> Args,
895                       ArrayRef<OperandBundleDef> Bundles,
896                       const Twine &NameStr) {
897   this->FTy = FTy;
898 
899   assert((int)getNumOperands() ==
900              ComputeNumOperands(Args.size(), IndirectDests.size(),
901                                 CountBundleInputs(Bundles)) &&
902          "NumOperands not set up?");
903 
904 #ifndef NDEBUG
905   assert(((Args.size() == FTy->getNumParams()) ||
906           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
907          "Calling a function with bad signature");
908 
909   for (unsigned i = 0, e = Args.size(); i != e; i++)
910     assert((i >= FTy->getNumParams() ||
911             FTy->getParamType(i) == Args[i]->getType()) &&
912            "Calling a function with a bad signature!");
913 #endif
914 
915   // Set operands in order of their index to match use-list-order
916   // prediction.
917   std::copy(Args.begin(), Args.end(), op_begin());
918   NumIndirectDests = IndirectDests.size();
919   setDefaultDest(Fallthrough);
920   for (unsigned i = 0; i != NumIndirectDests; ++i)
921     setIndirectDest(i, IndirectDests[i]);
922   setCalledOperand(Fn);
923 
924   auto It = populateBundleOperandInfos(Bundles, Args.size());
925   (void)It;
926   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
927 
928   setName(NameStr);
929 }
930 
931 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
932   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
933   if (BasicBlock *OldBB = getIndirectDest(i)) {
934     BlockAddress *Old = BlockAddress::get(OldBB);
935     BlockAddress *New = BlockAddress::get(B);
936     for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
937       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
938         setArgOperand(ArgNo, New);
939   }
940 }
941 
942 CallBrInst::CallBrInst(const CallBrInst &CBI)
943     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
944                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
945                CBI.getNumOperands()) {
946   setCallingConv(CBI.getCallingConv());
947   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
948   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
949             bundle_op_info_begin());
950   SubclassOptionalData = CBI.SubclassOptionalData;
951   NumIndirectDests = CBI.NumIndirectDests;
952 }
953 
954 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
955                                Instruction *InsertPt) {
956   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
957 
958   auto *NewCBI = CallBrInst::Create(
959       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
960       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
961   NewCBI->setCallingConv(CBI->getCallingConv());
962   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
963   NewCBI->setAttributes(CBI->getAttributes());
964   NewCBI->setDebugLoc(CBI->getDebugLoc());
965   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
966   return NewCBI;
967 }
968 
969 //===----------------------------------------------------------------------===//
970 //                        ReturnInst Implementation
971 //===----------------------------------------------------------------------===//
972 
973 ReturnInst::ReturnInst(const ReturnInst &RI)
974     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
975                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
976                   RI.getNumOperands()) {
977   if (RI.getNumOperands())
978     Op<0>() = RI.Op<0>();
979   SubclassOptionalData = RI.SubclassOptionalData;
980 }
981 
982 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
983     : Instruction(Type::getVoidTy(C), Instruction::Ret,
984                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
985                   InsertBefore) {
986   if (retVal)
987     Op<0>() = retVal;
988 }
989 
990 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
991     : Instruction(Type::getVoidTy(C), Instruction::Ret,
992                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
993                   InsertAtEnd) {
994   if (retVal)
995     Op<0>() = retVal;
996 }
997 
998 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
999     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1000                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1001 
1002 //===----------------------------------------------------------------------===//
1003 //                        ResumeInst Implementation
1004 //===----------------------------------------------------------------------===//
1005 
1006 ResumeInst::ResumeInst(const ResumeInst &RI)
1007     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1008                   OperandTraits<ResumeInst>::op_begin(this), 1) {
1009   Op<0>() = RI.Op<0>();
1010 }
1011 
1012 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1013     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1014                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1015   Op<0>() = Exn;
1016 }
1017 
1018 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1019     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1020                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1021   Op<0>() = Exn;
1022 }
1023 
1024 //===----------------------------------------------------------------------===//
1025 //                        CleanupReturnInst Implementation
1026 //===----------------------------------------------------------------------===//
1027 
1028 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1029     : Instruction(CRI.getType(), Instruction::CleanupRet,
1030                   OperandTraits<CleanupReturnInst>::op_end(this) -
1031                       CRI.getNumOperands(),
1032                   CRI.getNumOperands()) {
1033   setSubclassData<Instruction::OpaqueField>(
1034       CRI.getSubclassData<Instruction::OpaqueField>());
1035   Op<0>() = CRI.Op<0>();
1036   if (CRI.hasUnwindDest())
1037     Op<1>() = CRI.Op<1>();
1038 }
1039 
1040 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1041   if (UnwindBB)
1042     setSubclassData<UnwindDestField>(true);
1043 
1044   Op<0>() = CleanupPad;
1045   if (UnwindBB)
1046     Op<1>() = UnwindBB;
1047 }
1048 
1049 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1050                                      unsigned Values, Instruction *InsertBefore)
1051     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1052                   Instruction::CleanupRet,
1053                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1054                   Values, InsertBefore) {
1055   init(CleanupPad, UnwindBB);
1056 }
1057 
1058 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1059                                      unsigned Values, BasicBlock *InsertAtEnd)
1060     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1061                   Instruction::CleanupRet,
1062                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1063                   Values, InsertAtEnd) {
1064   init(CleanupPad, UnwindBB);
1065 }
1066 
1067 //===----------------------------------------------------------------------===//
1068 //                        CatchReturnInst Implementation
1069 //===----------------------------------------------------------------------===//
1070 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1071   Op<0>() = CatchPad;
1072   Op<1>() = BB;
1073 }
1074 
1075 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1076     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1077                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1078   Op<0>() = CRI.Op<0>();
1079   Op<1>() = CRI.Op<1>();
1080 }
1081 
1082 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1083                                  Instruction *InsertBefore)
1084     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1085                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1086                   InsertBefore) {
1087   init(CatchPad, BB);
1088 }
1089 
1090 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1091                                  BasicBlock *InsertAtEnd)
1092     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1093                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1094                   InsertAtEnd) {
1095   init(CatchPad, BB);
1096 }
1097 
1098 //===----------------------------------------------------------------------===//
1099 //                       CatchSwitchInst Implementation
1100 //===----------------------------------------------------------------------===//
1101 
1102 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1103                                  unsigned NumReservedValues,
1104                                  const Twine &NameStr,
1105                                  Instruction *InsertBefore)
1106     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1107                   InsertBefore) {
1108   if (UnwindDest)
1109     ++NumReservedValues;
1110   init(ParentPad, UnwindDest, NumReservedValues + 1);
1111   setName(NameStr);
1112 }
1113 
1114 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1115                                  unsigned NumReservedValues,
1116                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1117     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1118                   InsertAtEnd) {
1119   if (UnwindDest)
1120     ++NumReservedValues;
1121   init(ParentPad, UnwindDest, NumReservedValues + 1);
1122   setName(NameStr);
1123 }
1124 
1125 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1126     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1127                   CSI.getNumOperands()) {
1128   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1129   setNumHungOffUseOperands(ReservedSpace);
1130   Use *OL = getOperandList();
1131   const Use *InOL = CSI.getOperandList();
1132   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1133     OL[I] = InOL[I];
1134 }
1135 
1136 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1137                            unsigned NumReservedValues) {
1138   assert(ParentPad && NumReservedValues);
1139 
1140   ReservedSpace = NumReservedValues;
1141   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1142   allocHungoffUses(ReservedSpace);
1143 
1144   Op<0>() = ParentPad;
1145   if (UnwindDest) {
1146     setSubclassData<UnwindDestField>(true);
1147     setUnwindDest(UnwindDest);
1148   }
1149 }
1150 
1151 /// growOperands - grow operands - This grows the operand list in response to a
1152 /// push_back style of operation. This grows the number of ops by 2 times.
1153 void CatchSwitchInst::growOperands(unsigned Size) {
1154   unsigned NumOperands = getNumOperands();
1155   assert(NumOperands >= 1);
1156   if (ReservedSpace >= NumOperands + Size)
1157     return;
1158   ReservedSpace = (NumOperands + Size / 2) * 2;
1159   growHungoffUses(ReservedSpace);
1160 }
1161 
1162 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1163   unsigned OpNo = getNumOperands();
1164   growOperands(1);
1165   assert(OpNo < ReservedSpace && "Growing didn't work!");
1166   setNumHungOffUseOperands(getNumOperands() + 1);
1167   getOperandList()[OpNo] = Handler;
1168 }
1169 
1170 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1171   // Move all subsequent handlers up one.
1172   Use *EndDst = op_end() - 1;
1173   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1174     *CurDst = *(CurDst + 1);
1175   // Null out the last handler use.
1176   *EndDst = nullptr;
1177 
1178   setNumHungOffUseOperands(getNumOperands() - 1);
1179 }
1180 
1181 //===----------------------------------------------------------------------===//
1182 //                        FuncletPadInst Implementation
1183 //===----------------------------------------------------------------------===//
1184 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1185                           const Twine &NameStr) {
1186   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1187   llvm::copy(Args, op_begin());
1188   setParentPad(ParentPad);
1189   setName(NameStr);
1190 }
1191 
1192 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1193     : Instruction(FPI.getType(), FPI.getOpcode(),
1194                   OperandTraits<FuncletPadInst>::op_end(this) -
1195                       FPI.getNumOperands(),
1196                   FPI.getNumOperands()) {
1197   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1198   setParentPad(FPI.getParentPad());
1199 }
1200 
1201 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1202                                ArrayRef<Value *> Args, unsigned Values,
1203                                const Twine &NameStr, Instruction *InsertBefore)
1204     : Instruction(ParentPad->getType(), Op,
1205                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1206                   InsertBefore) {
1207   init(ParentPad, Args, NameStr);
1208 }
1209 
1210 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1211                                ArrayRef<Value *> Args, unsigned Values,
1212                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1213     : Instruction(ParentPad->getType(), Op,
1214                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1215                   InsertAtEnd) {
1216   init(ParentPad, Args, NameStr);
1217 }
1218 
1219 //===----------------------------------------------------------------------===//
1220 //                      UnreachableInst Implementation
1221 //===----------------------------------------------------------------------===//
1222 
1223 UnreachableInst::UnreachableInst(LLVMContext &Context,
1224                                  Instruction *InsertBefore)
1225     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1226                   0, InsertBefore) {}
1227 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1228     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1229                   0, InsertAtEnd) {}
1230 
1231 //===----------------------------------------------------------------------===//
1232 //                        BranchInst Implementation
1233 //===----------------------------------------------------------------------===//
1234 
1235 void BranchInst::AssertOK() {
1236   if (isConditional())
1237     assert(getCondition()->getType()->isIntegerTy(1) &&
1238            "May only branch on boolean predicates!");
1239 }
1240 
1241 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1242     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1243                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1244                   InsertBefore) {
1245   assert(IfTrue && "Branch destination may not be null!");
1246   Op<-1>() = IfTrue;
1247 }
1248 
1249 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1250                        Instruction *InsertBefore)
1251     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1252                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1253                   InsertBefore) {
1254   // Assign in order of operand index to make use-list order predictable.
1255   Op<-3>() = Cond;
1256   Op<-2>() = IfFalse;
1257   Op<-1>() = IfTrue;
1258 #ifndef NDEBUG
1259   AssertOK();
1260 #endif
1261 }
1262 
1263 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1264     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1265                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1266   assert(IfTrue && "Branch destination may not be null!");
1267   Op<-1>() = IfTrue;
1268 }
1269 
1270 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1271                        BasicBlock *InsertAtEnd)
1272     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1273                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1274   // Assign in order of operand index to make use-list order predictable.
1275   Op<-3>() = Cond;
1276   Op<-2>() = IfFalse;
1277   Op<-1>() = IfTrue;
1278 #ifndef NDEBUG
1279   AssertOK();
1280 #endif
1281 }
1282 
1283 BranchInst::BranchInst(const BranchInst &BI)
1284     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1285                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1286                   BI.getNumOperands()) {
1287   // Assign in order of operand index to make use-list order predictable.
1288   if (BI.getNumOperands() != 1) {
1289     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1290     Op<-3>() = BI.Op<-3>();
1291     Op<-2>() = BI.Op<-2>();
1292   }
1293   Op<-1>() = BI.Op<-1>();
1294   SubclassOptionalData = BI.SubclassOptionalData;
1295 }
1296 
1297 void BranchInst::swapSuccessors() {
1298   assert(isConditional() &&
1299          "Cannot swap successors of an unconditional branch");
1300   Op<-1>().swap(Op<-2>());
1301 
1302   // Update profile metadata if present and it matches our structural
1303   // expectations.
1304   swapProfMetadata();
1305 }
1306 
1307 //===----------------------------------------------------------------------===//
1308 //                        AllocaInst Implementation
1309 //===----------------------------------------------------------------------===//
1310 
1311 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1312   if (!Amt)
1313     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1314   else {
1315     assert(!isa<BasicBlock>(Amt) &&
1316            "Passed basic block into allocation size parameter! Use other ctor");
1317     assert(Amt->getType()->isIntegerTy() &&
1318            "Allocation array size is not an integer!");
1319   }
1320   return Amt;
1321 }
1322 
1323 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1324   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1325   assert(BB->getParent() &&
1326          "BB must be in a Function when alignment not provided!");
1327   const DataLayout &DL = BB->getModule()->getDataLayout();
1328   return DL.getPrefTypeAlign(Ty);
1329 }
1330 
1331 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1332   assert(I && "Insertion position cannot be null when alignment not provided!");
1333   return computeAllocaDefaultAlign(Ty, I->getParent());
1334 }
1335 
1336 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1337                        Instruction *InsertBefore)
1338   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1339 
1340 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1341                        BasicBlock *InsertAtEnd)
1342   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1343 
1344 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1345                        const Twine &Name, Instruction *InsertBefore)
1346     : AllocaInst(Ty, AddrSpace, ArraySize,
1347                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1348                  InsertBefore) {}
1349 
1350 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1351                        const Twine &Name, BasicBlock *InsertAtEnd)
1352     : AllocaInst(Ty, AddrSpace, ArraySize,
1353                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1354                  InsertAtEnd) {}
1355 
1356 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1357                        Align Align, const Twine &Name,
1358                        Instruction *InsertBefore)
1359     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1360                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1361       AllocatedType(Ty) {
1362   setAlignment(Align);
1363   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1364   setName(Name);
1365 }
1366 
1367 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1368                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1369     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1370                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1371       AllocatedType(Ty) {
1372   setAlignment(Align);
1373   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1374   setName(Name);
1375 }
1376 
1377 
1378 bool AllocaInst::isArrayAllocation() const {
1379   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1380     return !CI->isOne();
1381   return true;
1382 }
1383 
1384 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1385 /// function and is a constant size.  If so, the code generator will fold it
1386 /// into the prolog/epilog code, so it is basically free.
1387 bool AllocaInst::isStaticAlloca() const {
1388   // Must be constant size.
1389   if (!isa<ConstantInt>(getArraySize())) return false;
1390 
1391   // Must be in the entry block.
1392   const BasicBlock *Parent = getParent();
1393   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1394 }
1395 
1396 //===----------------------------------------------------------------------===//
1397 //                           LoadInst Implementation
1398 //===----------------------------------------------------------------------===//
1399 
1400 void LoadInst::AssertOK() {
1401   assert(getOperand(0)->getType()->isPointerTy() &&
1402          "Ptr must have pointer type.");
1403   assert(!(isAtomic() && getAlignment() == 0) &&
1404          "Alignment required for atomic load");
1405 }
1406 
1407 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1408   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1409   assert(BB->getParent() &&
1410          "BB must be in a Function when alignment not provided!");
1411   const DataLayout &DL = BB->getModule()->getDataLayout();
1412   return DL.getABITypeAlign(Ty);
1413 }
1414 
1415 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1416   assert(I && "Insertion position cannot be null when alignment not provided!");
1417   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1418 }
1419 
1420 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1421                    Instruction *InsertBef)
1422     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1423 
1424 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1425                    BasicBlock *InsertAE)
1426     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1427 
1428 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1429                    Instruction *InsertBef)
1430     : LoadInst(Ty, Ptr, Name, isVolatile,
1431                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1432 
1433 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1434                    BasicBlock *InsertAE)
1435     : LoadInst(Ty, Ptr, Name, isVolatile,
1436                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1437 
1438 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1439                    Align Align, Instruction *InsertBef)
1440     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1441                SyncScope::System, InsertBef) {}
1442 
1443 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1444                    Align Align, BasicBlock *InsertAE)
1445     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1446                SyncScope::System, InsertAE) {}
1447 
1448 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1449                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1450                    Instruction *InsertBef)
1451     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1452   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1453   setVolatile(isVolatile);
1454   setAlignment(Align);
1455   setAtomic(Order, SSID);
1456   AssertOK();
1457   setName(Name);
1458 }
1459 
1460 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1461                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1462                    BasicBlock *InsertAE)
1463     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1464   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1465   setVolatile(isVolatile);
1466   setAlignment(Align);
1467   setAtomic(Order, SSID);
1468   AssertOK();
1469   setName(Name);
1470 }
1471 
1472 //===----------------------------------------------------------------------===//
1473 //                           StoreInst Implementation
1474 //===----------------------------------------------------------------------===//
1475 
1476 void StoreInst::AssertOK() {
1477   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1478   assert(getOperand(1)->getType()->isPointerTy() &&
1479          "Ptr must have pointer type!");
1480   assert(cast<PointerType>(getOperand(1)->getType())
1481              ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1482          "Ptr must be a pointer to Val type!");
1483   assert(!(isAtomic() && getAlignment() == 0) &&
1484          "Alignment required for atomic store");
1485 }
1486 
1487 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1488     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1489 
1490 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1491     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1492 
1493 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1494                      Instruction *InsertBefore)
1495     : StoreInst(val, addr, isVolatile,
1496                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1497                 InsertBefore) {}
1498 
1499 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1500                      BasicBlock *InsertAtEnd)
1501     : StoreInst(val, addr, isVolatile,
1502                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1503                 InsertAtEnd) {}
1504 
1505 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1506                      Instruction *InsertBefore)
1507     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1508                 SyncScope::System, InsertBefore) {}
1509 
1510 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1511                      BasicBlock *InsertAtEnd)
1512     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1513                 SyncScope::System, InsertAtEnd) {}
1514 
1515 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1516                      AtomicOrdering Order, SyncScope::ID SSID,
1517                      Instruction *InsertBefore)
1518     : Instruction(Type::getVoidTy(val->getContext()), Store,
1519                   OperandTraits<StoreInst>::op_begin(this),
1520                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1521   Op<0>() = val;
1522   Op<1>() = addr;
1523   setVolatile(isVolatile);
1524   setAlignment(Align);
1525   setAtomic(Order, SSID);
1526   AssertOK();
1527 }
1528 
1529 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1530                      AtomicOrdering Order, SyncScope::ID SSID,
1531                      BasicBlock *InsertAtEnd)
1532     : Instruction(Type::getVoidTy(val->getContext()), Store,
1533                   OperandTraits<StoreInst>::op_begin(this),
1534                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1535   Op<0>() = val;
1536   Op<1>() = addr;
1537   setVolatile(isVolatile);
1538   setAlignment(Align);
1539   setAtomic(Order, SSID);
1540   AssertOK();
1541 }
1542 
1543 
1544 //===----------------------------------------------------------------------===//
1545 //                       AtomicCmpXchgInst Implementation
1546 //===----------------------------------------------------------------------===//
1547 
1548 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1549                              Align Alignment, AtomicOrdering SuccessOrdering,
1550                              AtomicOrdering FailureOrdering,
1551                              SyncScope::ID SSID) {
1552   Op<0>() = Ptr;
1553   Op<1>() = Cmp;
1554   Op<2>() = NewVal;
1555   setSuccessOrdering(SuccessOrdering);
1556   setFailureOrdering(FailureOrdering);
1557   setSyncScopeID(SSID);
1558   setAlignment(Alignment);
1559 
1560   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1561          "All operands must be non-null!");
1562   assert(getOperand(0)->getType()->isPointerTy() &&
1563          "Ptr must have pointer type!");
1564   assert(cast<PointerType>(getOperand(0)->getType())
1565              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1566          "Ptr must be a pointer to Cmp type!");
1567   assert(cast<PointerType>(getOperand(0)->getType())
1568              ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1569          "Ptr must be a pointer to NewVal type!");
1570   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1571          "Cmp type and NewVal type must be same!");
1572 }
1573 
1574 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1575                                      Align Alignment,
1576                                      AtomicOrdering SuccessOrdering,
1577                                      AtomicOrdering FailureOrdering,
1578                                      SyncScope::ID SSID,
1579                                      Instruction *InsertBefore)
1580     : Instruction(
1581           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1582           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1583           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1584   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1585 }
1586 
1587 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1588                                      Align Alignment,
1589                                      AtomicOrdering SuccessOrdering,
1590                                      AtomicOrdering FailureOrdering,
1591                                      SyncScope::ID SSID,
1592                                      BasicBlock *InsertAtEnd)
1593     : Instruction(
1594           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1595           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1596           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1597   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1598 }
1599 
1600 //===----------------------------------------------------------------------===//
1601 //                       AtomicRMWInst Implementation
1602 //===----------------------------------------------------------------------===//
1603 
1604 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1605                          Align Alignment, AtomicOrdering Ordering,
1606                          SyncScope::ID SSID) {
1607   Op<0>() = Ptr;
1608   Op<1>() = Val;
1609   setOperation(Operation);
1610   setOrdering(Ordering);
1611   setSyncScopeID(SSID);
1612   setAlignment(Alignment);
1613 
1614   assert(getOperand(0) && getOperand(1) &&
1615          "All operands must be non-null!");
1616   assert(getOperand(0)->getType()->isPointerTy() &&
1617          "Ptr must have pointer type!");
1618   assert(cast<PointerType>(getOperand(0)->getType())
1619              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1620          "Ptr must be a pointer to Val type!");
1621   assert(Ordering != AtomicOrdering::NotAtomic &&
1622          "AtomicRMW instructions must be atomic!");
1623 }
1624 
1625 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1626                              Align Alignment, AtomicOrdering Ordering,
1627                              SyncScope::ID SSID, Instruction *InsertBefore)
1628     : Instruction(Val->getType(), AtomicRMW,
1629                   OperandTraits<AtomicRMWInst>::op_begin(this),
1630                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1631   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1632 }
1633 
1634 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1635                              Align Alignment, AtomicOrdering Ordering,
1636                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1637     : Instruction(Val->getType(), AtomicRMW,
1638                   OperandTraits<AtomicRMWInst>::op_begin(this),
1639                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1640   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1641 }
1642 
1643 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1644   switch (Op) {
1645   case AtomicRMWInst::Xchg:
1646     return "xchg";
1647   case AtomicRMWInst::Add:
1648     return "add";
1649   case AtomicRMWInst::Sub:
1650     return "sub";
1651   case AtomicRMWInst::And:
1652     return "and";
1653   case AtomicRMWInst::Nand:
1654     return "nand";
1655   case AtomicRMWInst::Or:
1656     return "or";
1657   case AtomicRMWInst::Xor:
1658     return "xor";
1659   case AtomicRMWInst::Max:
1660     return "max";
1661   case AtomicRMWInst::Min:
1662     return "min";
1663   case AtomicRMWInst::UMax:
1664     return "umax";
1665   case AtomicRMWInst::UMin:
1666     return "umin";
1667   case AtomicRMWInst::FAdd:
1668     return "fadd";
1669   case AtomicRMWInst::FSub:
1670     return "fsub";
1671   case AtomicRMWInst::BAD_BINOP:
1672     return "<invalid operation>";
1673   }
1674 
1675   llvm_unreachable("invalid atomicrmw operation");
1676 }
1677 
1678 //===----------------------------------------------------------------------===//
1679 //                       FenceInst Implementation
1680 //===----------------------------------------------------------------------===//
1681 
1682 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1683                      SyncScope::ID SSID,
1684                      Instruction *InsertBefore)
1685   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1686   setOrdering(Ordering);
1687   setSyncScopeID(SSID);
1688 }
1689 
1690 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1691                      SyncScope::ID SSID,
1692                      BasicBlock *InsertAtEnd)
1693   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1694   setOrdering(Ordering);
1695   setSyncScopeID(SSID);
1696 }
1697 
1698 //===----------------------------------------------------------------------===//
1699 //                       GetElementPtrInst Implementation
1700 //===----------------------------------------------------------------------===//
1701 
1702 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1703                              const Twine &Name) {
1704   assert(getNumOperands() == 1 + IdxList.size() &&
1705          "NumOperands not initialized?");
1706   Op<0>() = Ptr;
1707   llvm::copy(IdxList, op_begin() + 1);
1708   setName(Name);
1709 }
1710 
1711 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1712     : Instruction(GEPI.getType(), GetElementPtr,
1713                   OperandTraits<GetElementPtrInst>::op_end(this) -
1714                       GEPI.getNumOperands(),
1715                   GEPI.getNumOperands()),
1716       SourceElementType(GEPI.SourceElementType),
1717       ResultElementType(GEPI.ResultElementType) {
1718   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1719   SubclassOptionalData = GEPI.SubclassOptionalData;
1720 }
1721 
1722 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1723   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1724     if (!Struct->indexValid(Idx))
1725       return nullptr;
1726     return Struct->getTypeAtIndex(Idx);
1727   }
1728   if (!Idx->getType()->isIntOrIntVectorTy())
1729     return nullptr;
1730   if (auto *Array = dyn_cast<ArrayType>(Ty))
1731     return Array->getElementType();
1732   if (auto *Vector = dyn_cast<VectorType>(Ty))
1733     return Vector->getElementType();
1734   return nullptr;
1735 }
1736 
1737 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1738   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1739     if (Idx >= Struct->getNumElements())
1740       return nullptr;
1741     return Struct->getElementType(Idx);
1742   }
1743   if (auto *Array = dyn_cast<ArrayType>(Ty))
1744     return Array->getElementType();
1745   if (auto *Vector = dyn_cast<VectorType>(Ty))
1746     return Vector->getElementType();
1747   return nullptr;
1748 }
1749 
1750 template <typename IndexTy>
1751 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1752   if (IdxList.empty())
1753     return Ty;
1754   for (IndexTy V : IdxList.slice(1)) {
1755     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1756     if (!Ty)
1757       return Ty;
1758   }
1759   return Ty;
1760 }
1761 
1762 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1763   return getIndexedTypeInternal(Ty, IdxList);
1764 }
1765 
1766 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1767                                         ArrayRef<Constant *> IdxList) {
1768   return getIndexedTypeInternal(Ty, IdxList);
1769 }
1770 
1771 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1772   return getIndexedTypeInternal(Ty, IdxList);
1773 }
1774 
1775 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1776 /// zeros.  If so, the result pointer and the first operand have the same
1777 /// value, just potentially different types.
1778 bool GetElementPtrInst::hasAllZeroIndices() const {
1779   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1780     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1781       if (!CI->isZero()) return false;
1782     } else {
1783       return false;
1784     }
1785   }
1786   return true;
1787 }
1788 
1789 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1790 /// constant integers.  If so, the result pointer and the first operand have
1791 /// a constant offset between them.
1792 bool GetElementPtrInst::hasAllConstantIndices() const {
1793   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1794     if (!isa<ConstantInt>(getOperand(i)))
1795       return false;
1796   }
1797   return true;
1798 }
1799 
1800 void GetElementPtrInst::setIsInBounds(bool B) {
1801   cast<GEPOperator>(this)->setIsInBounds(B);
1802 }
1803 
1804 bool GetElementPtrInst::isInBounds() const {
1805   return cast<GEPOperator>(this)->isInBounds();
1806 }
1807 
1808 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1809                                                  APInt &Offset) const {
1810   // Delegate to the generic GEPOperator implementation.
1811   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1812 }
1813 
1814 bool GetElementPtrInst::collectOffset(
1815     const DataLayout &DL, unsigned BitWidth,
1816     MapVector<Value *, APInt> &VariableOffsets,
1817     APInt &ConstantOffset) const {
1818   // Delegate to the generic GEPOperator implementation.
1819   return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1820                                                 ConstantOffset);
1821 }
1822 
1823 //===----------------------------------------------------------------------===//
1824 //                           ExtractElementInst Implementation
1825 //===----------------------------------------------------------------------===//
1826 
1827 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1828                                        const Twine &Name,
1829                                        Instruction *InsertBef)
1830   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1831                 ExtractElement,
1832                 OperandTraits<ExtractElementInst>::op_begin(this),
1833                 2, InsertBef) {
1834   assert(isValidOperands(Val, Index) &&
1835          "Invalid extractelement instruction operands!");
1836   Op<0>() = Val;
1837   Op<1>() = Index;
1838   setName(Name);
1839 }
1840 
1841 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1842                                        const Twine &Name,
1843                                        BasicBlock *InsertAE)
1844   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1845                 ExtractElement,
1846                 OperandTraits<ExtractElementInst>::op_begin(this),
1847                 2, InsertAE) {
1848   assert(isValidOperands(Val, Index) &&
1849          "Invalid extractelement instruction operands!");
1850 
1851   Op<0>() = Val;
1852   Op<1>() = Index;
1853   setName(Name);
1854 }
1855 
1856 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1857   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1858     return false;
1859   return true;
1860 }
1861 
1862 //===----------------------------------------------------------------------===//
1863 //                           InsertElementInst Implementation
1864 //===----------------------------------------------------------------------===//
1865 
1866 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1867                                      const Twine &Name,
1868                                      Instruction *InsertBef)
1869   : Instruction(Vec->getType(), InsertElement,
1870                 OperandTraits<InsertElementInst>::op_begin(this),
1871                 3, InsertBef) {
1872   assert(isValidOperands(Vec, Elt, Index) &&
1873          "Invalid insertelement instruction operands!");
1874   Op<0>() = Vec;
1875   Op<1>() = Elt;
1876   Op<2>() = Index;
1877   setName(Name);
1878 }
1879 
1880 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1881                                      const Twine &Name,
1882                                      BasicBlock *InsertAE)
1883   : Instruction(Vec->getType(), InsertElement,
1884                 OperandTraits<InsertElementInst>::op_begin(this),
1885                 3, InsertAE) {
1886   assert(isValidOperands(Vec, Elt, Index) &&
1887          "Invalid insertelement instruction operands!");
1888 
1889   Op<0>() = Vec;
1890   Op<1>() = Elt;
1891   Op<2>() = Index;
1892   setName(Name);
1893 }
1894 
1895 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1896                                         const Value *Index) {
1897   if (!Vec->getType()->isVectorTy())
1898     return false;   // First operand of insertelement must be vector type.
1899 
1900   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1901     return false;// Second operand of insertelement must be vector element type.
1902 
1903   if (!Index->getType()->isIntegerTy())
1904     return false;  // Third operand of insertelement must be i32.
1905   return true;
1906 }
1907 
1908 //===----------------------------------------------------------------------===//
1909 //                      ShuffleVectorInst Implementation
1910 //===----------------------------------------------------------------------===//
1911 
1912 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1913                                      const Twine &Name,
1914                                      Instruction *InsertBefore)
1915     : Instruction(
1916           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1917                           cast<VectorType>(Mask->getType())->getElementCount()),
1918           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1919           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1920   assert(isValidOperands(V1, V2, Mask) &&
1921          "Invalid shuffle vector instruction operands!");
1922 
1923   Op<0>() = V1;
1924   Op<1>() = V2;
1925   SmallVector<int, 16> MaskArr;
1926   getShuffleMask(cast<Constant>(Mask), MaskArr);
1927   setShuffleMask(MaskArr);
1928   setName(Name);
1929 }
1930 
1931 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1932                                      const Twine &Name, BasicBlock *InsertAtEnd)
1933     : Instruction(
1934           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1935                           cast<VectorType>(Mask->getType())->getElementCount()),
1936           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1937           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1938   assert(isValidOperands(V1, V2, Mask) &&
1939          "Invalid shuffle vector instruction operands!");
1940 
1941   Op<0>() = V1;
1942   Op<1>() = V2;
1943   SmallVector<int, 16> MaskArr;
1944   getShuffleMask(cast<Constant>(Mask), MaskArr);
1945   setShuffleMask(MaskArr);
1946   setName(Name);
1947 }
1948 
1949 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1950                                      const Twine &Name,
1951                                      Instruction *InsertBefore)
1952     : Instruction(
1953           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1954                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1955           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1956           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1957   assert(isValidOperands(V1, V2, Mask) &&
1958          "Invalid shuffle vector instruction operands!");
1959   Op<0>() = V1;
1960   Op<1>() = V2;
1961   setShuffleMask(Mask);
1962   setName(Name);
1963 }
1964 
1965 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1966                                      const Twine &Name, BasicBlock *InsertAtEnd)
1967     : Instruction(
1968           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1969                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1970           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1971           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1972   assert(isValidOperands(V1, V2, Mask) &&
1973          "Invalid shuffle vector instruction operands!");
1974 
1975   Op<0>() = V1;
1976   Op<1>() = V2;
1977   setShuffleMask(Mask);
1978   setName(Name);
1979 }
1980 
1981 void ShuffleVectorInst::commute() {
1982   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1983   int NumMaskElts = ShuffleMask.size();
1984   SmallVector<int, 16> NewMask(NumMaskElts);
1985   for (int i = 0; i != NumMaskElts; ++i) {
1986     int MaskElt = getMaskValue(i);
1987     if (MaskElt == UndefMaskElem) {
1988       NewMask[i] = UndefMaskElem;
1989       continue;
1990     }
1991     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1992     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1993     NewMask[i] = MaskElt;
1994   }
1995   setShuffleMask(NewMask);
1996   Op<0>().swap(Op<1>());
1997 }
1998 
1999 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2000                                         ArrayRef<int> Mask) {
2001   // V1 and V2 must be vectors of the same type.
2002   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2003     return false;
2004 
2005   // Make sure the mask elements make sense.
2006   int V1Size =
2007       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2008   for (int Elem : Mask)
2009     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2010       return false;
2011 
2012   if (isa<ScalableVectorType>(V1->getType()))
2013     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2014       return false;
2015 
2016   return true;
2017 }
2018 
2019 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2020                                         const Value *Mask) {
2021   // V1 and V2 must be vectors of the same type.
2022   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2023     return false;
2024 
2025   // Mask must be vector of i32, and must be the same kind of vector as the
2026   // input vectors
2027   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2028   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2029       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2030     return false;
2031 
2032   // Check to see if Mask is valid.
2033   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2034     return true;
2035 
2036   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2037     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2038     for (Value *Op : MV->operands()) {
2039       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2040         if (CI->uge(V1Size*2))
2041           return false;
2042       } else if (!isa<UndefValue>(Op)) {
2043         return false;
2044       }
2045     }
2046     return true;
2047   }
2048 
2049   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2050     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2051     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2052          i != e; ++i)
2053       if (CDS->getElementAsInteger(i) >= V1Size*2)
2054         return false;
2055     return true;
2056   }
2057 
2058   return false;
2059 }
2060 
2061 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2062                                        SmallVectorImpl<int> &Result) {
2063   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2064 
2065   if (isa<ConstantAggregateZero>(Mask)) {
2066     Result.resize(EC.getKnownMinValue(), 0);
2067     return;
2068   }
2069 
2070   Result.reserve(EC.getKnownMinValue());
2071 
2072   if (EC.isScalable()) {
2073     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2074            "Scalable vector shuffle mask must be undef or zeroinitializer");
2075     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2076     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2077       Result.emplace_back(MaskVal);
2078     return;
2079   }
2080 
2081   unsigned NumElts = EC.getKnownMinValue();
2082 
2083   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2084     for (unsigned i = 0; i != NumElts; ++i)
2085       Result.push_back(CDS->getElementAsInteger(i));
2086     return;
2087   }
2088   for (unsigned i = 0; i != NumElts; ++i) {
2089     Constant *C = Mask->getAggregateElement(i);
2090     Result.push_back(isa<UndefValue>(C) ? -1 :
2091                      cast<ConstantInt>(C)->getZExtValue());
2092   }
2093 }
2094 
2095 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2096   ShuffleMask.assign(Mask.begin(), Mask.end());
2097   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2098 }
2099 
2100 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2101                                                           Type *ResultTy) {
2102   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2103   if (isa<ScalableVectorType>(ResultTy)) {
2104     assert(is_splat(Mask) && "Unexpected shuffle");
2105     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2106     if (Mask[0] == 0)
2107       return Constant::getNullValue(VecTy);
2108     return UndefValue::get(VecTy);
2109   }
2110   SmallVector<Constant *, 16> MaskConst;
2111   for (int Elem : Mask) {
2112     if (Elem == UndefMaskElem)
2113       MaskConst.push_back(UndefValue::get(Int32Ty));
2114     else
2115       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2116   }
2117   return ConstantVector::get(MaskConst);
2118 }
2119 
2120 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2121   assert(!Mask.empty() && "Shuffle mask must contain elements");
2122   bool UsesLHS = false;
2123   bool UsesRHS = false;
2124   for (int I : Mask) {
2125     if (I == -1)
2126       continue;
2127     assert(I >= 0 && I < (NumOpElts * 2) &&
2128            "Out-of-bounds shuffle mask element");
2129     UsesLHS |= (I < NumOpElts);
2130     UsesRHS |= (I >= NumOpElts);
2131     if (UsesLHS && UsesRHS)
2132       return false;
2133   }
2134   // Allow for degenerate case: completely undef mask means neither source is used.
2135   return UsesLHS || UsesRHS;
2136 }
2137 
2138 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2139   // We don't have vector operand size information, so assume operands are the
2140   // same size as the mask.
2141   return isSingleSourceMaskImpl(Mask, Mask.size());
2142 }
2143 
2144 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2145   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2146     return false;
2147   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2148     if (Mask[i] == -1)
2149       continue;
2150     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2151       return false;
2152   }
2153   return true;
2154 }
2155 
2156 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2157   // We don't have vector operand size information, so assume operands are the
2158   // same size as the mask.
2159   return isIdentityMaskImpl(Mask, Mask.size());
2160 }
2161 
2162 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2163   if (!isSingleSourceMask(Mask))
2164     return false;
2165   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2166     if (Mask[i] == -1)
2167       continue;
2168     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2169       return false;
2170   }
2171   return true;
2172 }
2173 
2174 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2175   if (!isSingleSourceMask(Mask))
2176     return false;
2177   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2178     if (Mask[i] == -1)
2179       continue;
2180     if (Mask[i] != 0 && Mask[i] != NumElts)
2181       return false;
2182   }
2183   return true;
2184 }
2185 
2186 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2187   // Select is differentiated from identity. It requires using both sources.
2188   if (isSingleSourceMask(Mask))
2189     return false;
2190   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2191     if (Mask[i] == -1)
2192       continue;
2193     if (Mask[i] != i && Mask[i] != (NumElts + i))
2194       return false;
2195   }
2196   return true;
2197 }
2198 
2199 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2200   // Example masks that will return true:
2201   // v1 = <a, b, c, d>
2202   // v2 = <e, f, g, h>
2203   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2204   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2205 
2206   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2207   int NumElts = Mask.size();
2208   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2209     return false;
2210 
2211   // 2. The first element of the mask must be either a 0 or a 1.
2212   if (Mask[0] != 0 && Mask[0] != 1)
2213     return false;
2214 
2215   // 3. The difference between the first 2 elements must be equal to the
2216   // number of elements in the mask.
2217   if ((Mask[1] - Mask[0]) != NumElts)
2218     return false;
2219 
2220   // 4. The difference between consecutive even-numbered and odd-numbered
2221   // elements must be equal to 2.
2222   for (int i = 2; i < NumElts; ++i) {
2223     int MaskEltVal = Mask[i];
2224     if (MaskEltVal == -1)
2225       return false;
2226     int MaskEltPrevVal = Mask[i - 2];
2227     if (MaskEltVal - MaskEltPrevVal != 2)
2228       return false;
2229   }
2230   return true;
2231 }
2232 
2233 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2234                                                int NumSrcElts, int &Index) {
2235   // Must extract from a single source.
2236   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2237     return false;
2238 
2239   // Must be smaller (else this is an Identity shuffle).
2240   if (NumSrcElts <= (int)Mask.size())
2241     return false;
2242 
2243   // Find start of extraction, accounting that we may start with an UNDEF.
2244   int SubIndex = -1;
2245   for (int i = 0, e = Mask.size(); i != e; ++i) {
2246     int M = Mask[i];
2247     if (M < 0)
2248       continue;
2249     int Offset = (M % NumSrcElts) - i;
2250     if (0 <= SubIndex && SubIndex != Offset)
2251       return false;
2252     SubIndex = Offset;
2253   }
2254 
2255   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2256     Index = SubIndex;
2257     return true;
2258   }
2259   return false;
2260 }
2261 
2262 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2263                                               int NumSrcElts, int &NumSubElts,
2264                                               int &Index) {
2265   int NumMaskElts = Mask.size();
2266 
2267   // Don't try to match if we're shuffling to a smaller size.
2268   if (NumMaskElts < NumSrcElts)
2269     return false;
2270 
2271   // TODO: We don't recognize self-insertion/widening.
2272   if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2273     return false;
2274 
2275   // Determine which mask elements are attributed to which source.
2276   APInt UndefElts = APInt::getNullValue(NumMaskElts);
2277   APInt Src0Elts = APInt::getNullValue(NumMaskElts);
2278   APInt Src1Elts = APInt::getNullValue(NumMaskElts);
2279   bool Src0Identity = true;
2280   bool Src1Identity = true;
2281 
2282   for (int i = 0; i != NumMaskElts; ++i) {
2283     int M = Mask[i];
2284     if (M < 0) {
2285       UndefElts.setBit(i);
2286       continue;
2287     }
2288     if (M < NumSrcElts) {
2289       Src0Elts.setBit(i);
2290       Src0Identity &= (M == i);
2291       continue;
2292     }
2293     Src1Elts.setBit(i);
2294     Src1Identity &= (M == (i + NumSrcElts));
2295     continue;
2296   }
2297   assert((Src0Elts | Src1Elts | UndefElts).isAllOnesValue() &&
2298          "unknown shuffle elements");
2299   assert(!Src0Elts.isNullValue() && !Src1Elts.isNullValue() &&
2300          "2-source shuffle not found");
2301 
2302   // Determine lo/hi span ranges.
2303   // TODO: How should we handle undefs at the start of subvector insertions?
2304   int Src0Lo = Src0Elts.countTrailingZeros();
2305   int Src1Lo = Src1Elts.countTrailingZeros();
2306   int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2307   int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2308 
2309   // If src0 is in place, see if the src1 elements is inplace within its own
2310   // span.
2311   if (Src0Identity) {
2312     int NumSub1Elts = Src1Hi - Src1Lo;
2313     ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2314     if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2315       NumSubElts = NumSub1Elts;
2316       Index = Src1Lo;
2317       return true;
2318     }
2319   }
2320 
2321   // If src1 is in place, see if the src0 elements is inplace within its own
2322   // span.
2323   if (Src1Identity) {
2324     int NumSub0Elts = Src0Hi - Src0Lo;
2325     ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2326     if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2327       NumSubElts = NumSub0Elts;
2328       Index = Src0Lo;
2329       return true;
2330     }
2331   }
2332 
2333   return false;
2334 }
2335 
2336 bool ShuffleVectorInst::isIdentityWithPadding() const {
2337   if (isa<UndefValue>(Op<2>()))
2338     return false;
2339 
2340   // FIXME: Not currently possible to express a shuffle mask for a scalable
2341   // vector for this case.
2342   if (isa<ScalableVectorType>(getType()))
2343     return false;
2344 
2345   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2346   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2347   if (NumMaskElts <= NumOpElts)
2348     return false;
2349 
2350   // The first part of the mask must choose elements from exactly 1 source op.
2351   ArrayRef<int> Mask = getShuffleMask();
2352   if (!isIdentityMaskImpl(Mask, NumOpElts))
2353     return false;
2354 
2355   // All extending must be with undef elements.
2356   for (int i = NumOpElts; i < NumMaskElts; ++i)
2357     if (Mask[i] != -1)
2358       return false;
2359 
2360   return true;
2361 }
2362 
2363 bool ShuffleVectorInst::isIdentityWithExtract() const {
2364   if (isa<UndefValue>(Op<2>()))
2365     return false;
2366 
2367   // FIXME: Not currently possible to express a shuffle mask for a scalable
2368   // vector for this case.
2369   if (isa<ScalableVectorType>(getType()))
2370     return false;
2371 
2372   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2373   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2374   if (NumMaskElts >= NumOpElts)
2375     return false;
2376 
2377   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2378 }
2379 
2380 bool ShuffleVectorInst::isConcat() const {
2381   // Vector concatenation is differentiated from identity with padding.
2382   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2383       isa<UndefValue>(Op<2>()))
2384     return false;
2385 
2386   // FIXME: Not currently possible to express a shuffle mask for a scalable
2387   // vector for this case.
2388   if (isa<ScalableVectorType>(getType()))
2389     return false;
2390 
2391   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2392   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2393   if (NumMaskElts != NumOpElts * 2)
2394     return false;
2395 
2396   // Use the mask length rather than the operands' vector lengths here. We
2397   // already know that the shuffle returns a vector twice as long as the inputs,
2398   // and neither of the inputs are undef vectors. If the mask picks consecutive
2399   // elements from both inputs, then this is a concatenation of the inputs.
2400   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2401 }
2402 
2403 //===----------------------------------------------------------------------===//
2404 //                             InsertValueInst Class
2405 //===----------------------------------------------------------------------===//
2406 
2407 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2408                            const Twine &Name) {
2409   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2410 
2411   // There's no fundamental reason why we require at least one index
2412   // (other than weirdness with &*IdxBegin being invalid; see
2413   // getelementptr's init routine for example). But there's no
2414   // present need to support it.
2415   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2416 
2417   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2418          Val->getType() && "Inserted value must match indexed type!");
2419   Op<0>() = Agg;
2420   Op<1>() = Val;
2421 
2422   Indices.append(Idxs.begin(), Idxs.end());
2423   setName(Name);
2424 }
2425 
2426 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2427   : Instruction(IVI.getType(), InsertValue,
2428                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2429     Indices(IVI.Indices) {
2430   Op<0>() = IVI.getOperand(0);
2431   Op<1>() = IVI.getOperand(1);
2432   SubclassOptionalData = IVI.SubclassOptionalData;
2433 }
2434 
2435 //===----------------------------------------------------------------------===//
2436 //                             ExtractValueInst Class
2437 //===----------------------------------------------------------------------===//
2438 
2439 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2440   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2441 
2442   // There's no fundamental reason why we require at least one index.
2443   // But there's no present need to support it.
2444   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2445 
2446   Indices.append(Idxs.begin(), Idxs.end());
2447   setName(Name);
2448 }
2449 
2450 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2451   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2452     Indices(EVI.Indices) {
2453   SubclassOptionalData = EVI.SubclassOptionalData;
2454 }
2455 
2456 // getIndexedType - Returns the type of the element that would be extracted
2457 // with an extractvalue instruction with the specified parameters.
2458 //
2459 // A null type is returned if the indices are invalid for the specified
2460 // pointer type.
2461 //
2462 Type *ExtractValueInst::getIndexedType(Type *Agg,
2463                                        ArrayRef<unsigned> Idxs) {
2464   for (unsigned Index : Idxs) {
2465     // We can't use CompositeType::indexValid(Index) here.
2466     // indexValid() always returns true for arrays because getelementptr allows
2467     // out-of-bounds indices. Since we don't allow those for extractvalue and
2468     // insertvalue we need to check array indexing manually.
2469     // Since the only other types we can index into are struct types it's just
2470     // as easy to check those manually as well.
2471     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2472       if (Index >= AT->getNumElements())
2473         return nullptr;
2474       Agg = AT->getElementType();
2475     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2476       if (Index >= ST->getNumElements())
2477         return nullptr;
2478       Agg = ST->getElementType(Index);
2479     } else {
2480       // Not a valid type to index into.
2481       return nullptr;
2482     }
2483   }
2484   return const_cast<Type*>(Agg);
2485 }
2486 
2487 //===----------------------------------------------------------------------===//
2488 //                             UnaryOperator Class
2489 //===----------------------------------------------------------------------===//
2490 
2491 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2492                              Type *Ty, const Twine &Name,
2493                              Instruction *InsertBefore)
2494   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2495   Op<0>() = S;
2496   setName(Name);
2497   AssertOK();
2498 }
2499 
2500 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2501                              Type *Ty, const Twine &Name,
2502                              BasicBlock *InsertAtEnd)
2503   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2504   Op<0>() = S;
2505   setName(Name);
2506   AssertOK();
2507 }
2508 
2509 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2510                                      const Twine &Name,
2511                                      Instruction *InsertBefore) {
2512   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2513 }
2514 
2515 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2516                                      const Twine &Name,
2517                                      BasicBlock *InsertAtEnd) {
2518   UnaryOperator *Res = Create(Op, S, Name);
2519   InsertAtEnd->getInstList().push_back(Res);
2520   return Res;
2521 }
2522 
2523 void UnaryOperator::AssertOK() {
2524   Value *LHS = getOperand(0);
2525   (void)LHS; // Silence warnings.
2526 #ifndef NDEBUG
2527   switch (getOpcode()) {
2528   case FNeg:
2529     assert(getType() == LHS->getType() &&
2530            "Unary operation should return same type as operand!");
2531     assert(getType()->isFPOrFPVectorTy() &&
2532            "Tried to create a floating-point operation on a "
2533            "non-floating-point type!");
2534     break;
2535   default: llvm_unreachable("Invalid opcode provided");
2536   }
2537 #endif
2538 }
2539 
2540 //===----------------------------------------------------------------------===//
2541 //                             BinaryOperator Class
2542 //===----------------------------------------------------------------------===//
2543 
2544 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2545                                Type *Ty, const Twine &Name,
2546                                Instruction *InsertBefore)
2547   : Instruction(Ty, iType,
2548                 OperandTraits<BinaryOperator>::op_begin(this),
2549                 OperandTraits<BinaryOperator>::operands(this),
2550                 InsertBefore) {
2551   Op<0>() = S1;
2552   Op<1>() = S2;
2553   setName(Name);
2554   AssertOK();
2555 }
2556 
2557 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2558                                Type *Ty, const Twine &Name,
2559                                BasicBlock *InsertAtEnd)
2560   : Instruction(Ty, iType,
2561                 OperandTraits<BinaryOperator>::op_begin(this),
2562                 OperandTraits<BinaryOperator>::operands(this),
2563                 InsertAtEnd) {
2564   Op<0>() = S1;
2565   Op<1>() = S2;
2566   setName(Name);
2567   AssertOK();
2568 }
2569 
2570 void BinaryOperator::AssertOK() {
2571   Value *LHS = getOperand(0), *RHS = getOperand(1);
2572   (void)LHS; (void)RHS; // Silence warnings.
2573   assert(LHS->getType() == RHS->getType() &&
2574          "Binary operator operand types must match!");
2575 #ifndef NDEBUG
2576   switch (getOpcode()) {
2577   case Add: case Sub:
2578   case Mul:
2579     assert(getType() == LHS->getType() &&
2580            "Arithmetic operation should return same type as operands!");
2581     assert(getType()->isIntOrIntVectorTy() &&
2582            "Tried to create an integer operation on a non-integer type!");
2583     break;
2584   case FAdd: case FSub:
2585   case FMul:
2586     assert(getType() == LHS->getType() &&
2587            "Arithmetic operation should return same type as operands!");
2588     assert(getType()->isFPOrFPVectorTy() &&
2589            "Tried to create a floating-point operation on a "
2590            "non-floating-point type!");
2591     break;
2592   case UDiv:
2593   case SDiv:
2594     assert(getType() == LHS->getType() &&
2595            "Arithmetic operation should return same type as operands!");
2596     assert(getType()->isIntOrIntVectorTy() &&
2597            "Incorrect operand type (not integer) for S/UDIV");
2598     break;
2599   case FDiv:
2600     assert(getType() == LHS->getType() &&
2601            "Arithmetic operation should return same type as operands!");
2602     assert(getType()->isFPOrFPVectorTy() &&
2603            "Incorrect operand type (not floating point) for FDIV");
2604     break;
2605   case URem:
2606   case SRem:
2607     assert(getType() == LHS->getType() &&
2608            "Arithmetic operation should return same type as operands!");
2609     assert(getType()->isIntOrIntVectorTy() &&
2610            "Incorrect operand type (not integer) for S/UREM");
2611     break;
2612   case FRem:
2613     assert(getType() == LHS->getType() &&
2614            "Arithmetic operation should return same type as operands!");
2615     assert(getType()->isFPOrFPVectorTy() &&
2616            "Incorrect operand type (not floating point) for FREM");
2617     break;
2618   case Shl:
2619   case LShr:
2620   case AShr:
2621     assert(getType() == LHS->getType() &&
2622            "Shift operation should return same type as operands!");
2623     assert(getType()->isIntOrIntVectorTy() &&
2624            "Tried to create a shift operation on a non-integral type!");
2625     break;
2626   case And: case Or:
2627   case Xor:
2628     assert(getType() == LHS->getType() &&
2629            "Logical operation should return same type as operands!");
2630     assert(getType()->isIntOrIntVectorTy() &&
2631            "Tried to create a logical operation on a non-integral type!");
2632     break;
2633   default: llvm_unreachable("Invalid opcode provided");
2634   }
2635 #endif
2636 }
2637 
2638 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2639                                        const Twine &Name,
2640                                        Instruction *InsertBefore) {
2641   assert(S1->getType() == S2->getType() &&
2642          "Cannot create binary operator with two operands of differing type!");
2643   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2644 }
2645 
2646 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2647                                        const Twine &Name,
2648                                        BasicBlock *InsertAtEnd) {
2649   BinaryOperator *Res = Create(Op, S1, S2, Name);
2650   InsertAtEnd->getInstList().push_back(Res);
2651   return Res;
2652 }
2653 
2654 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2655                                           Instruction *InsertBefore) {
2656   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2657   return new BinaryOperator(Instruction::Sub,
2658                             zero, Op,
2659                             Op->getType(), Name, InsertBefore);
2660 }
2661 
2662 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2663                                           BasicBlock *InsertAtEnd) {
2664   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2665   return new BinaryOperator(Instruction::Sub,
2666                             zero, Op,
2667                             Op->getType(), Name, InsertAtEnd);
2668 }
2669 
2670 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2671                                              Instruction *InsertBefore) {
2672   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2673   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2674 }
2675 
2676 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2677                                              BasicBlock *InsertAtEnd) {
2678   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2679   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2680 }
2681 
2682 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2683                                              Instruction *InsertBefore) {
2684   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2685   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2686 }
2687 
2688 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2689                                              BasicBlock *InsertAtEnd) {
2690   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2691   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2692 }
2693 
2694 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2695                                           Instruction *InsertBefore) {
2696   Constant *C = Constant::getAllOnesValue(Op->getType());
2697   return new BinaryOperator(Instruction::Xor, Op, C,
2698                             Op->getType(), Name, InsertBefore);
2699 }
2700 
2701 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2702                                           BasicBlock *InsertAtEnd) {
2703   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2704   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2705                             Op->getType(), Name, InsertAtEnd);
2706 }
2707 
2708 // Exchange the two operands to this instruction. This instruction is safe to
2709 // use on any binary instruction and does not modify the semantics of the
2710 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2711 // is changed.
2712 bool BinaryOperator::swapOperands() {
2713   if (!isCommutative())
2714     return true; // Can't commute operands
2715   Op<0>().swap(Op<1>());
2716   return false;
2717 }
2718 
2719 //===----------------------------------------------------------------------===//
2720 //                             FPMathOperator Class
2721 //===----------------------------------------------------------------------===//
2722 
2723 float FPMathOperator::getFPAccuracy() const {
2724   const MDNode *MD =
2725       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2726   if (!MD)
2727     return 0.0;
2728   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2729   return Accuracy->getValueAPF().convertToFloat();
2730 }
2731 
2732 //===----------------------------------------------------------------------===//
2733 //                                CastInst Class
2734 //===----------------------------------------------------------------------===//
2735 
2736 // Just determine if this cast only deals with integral->integral conversion.
2737 bool CastInst::isIntegerCast() const {
2738   switch (getOpcode()) {
2739     default: return false;
2740     case Instruction::ZExt:
2741     case Instruction::SExt:
2742     case Instruction::Trunc:
2743       return true;
2744     case Instruction::BitCast:
2745       return getOperand(0)->getType()->isIntegerTy() &&
2746         getType()->isIntegerTy();
2747   }
2748 }
2749 
2750 bool CastInst::isLosslessCast() const {
2751   // Only BitCast can be lossless, exit fast if we're not BitCast
2752   if (getOpcode() != Instruction::BitCast)
2753     return false;
2754 
2755   // Identity cast is always lossless
2756   Type *SrcTy = getOperand(0)->getType();
2757   Type *DstTy = getType();
2758   if (SrcTy == DstTy)
2759     return true;
2760 
2761   // Pointer to pointer is always lossless.
2762   if (SrcTy->isPointerTy())
2763     return DstTy->isPointerTy();
2764   return false;  // Other types have no identity values
2765 }
2766 
2767 /// This function determines if the CastInst does not require any bits to be
2768 /// changed in order to effect the cast. Essentially, it identifies cases where
2769 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2770 /// example, the following are all no-op casts:
2771 /// # bitcast i32* %x to i8*
2772 /// # bitcast <2 x i32> %x to <4 x i16>
2773 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2774 /// Determine if the described cast is a no-op.
2775 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2776                           Type *SrcTy,
2777                           Type *DestTy,
2778                           const DataLayout &DL) {
2779   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2780   switch (Opcode) {
2781     default: llvm_unreachable("Invalid CastOp");
2782     case Instruction::Trunc:
2783     case Instruction::ZExt:
2784     case Instruction::SExt:
2785     case Instruction::FPTrunc:
2786     case Instruction::FPExt:
2787     case Instruction::UIToFP:
2788     case Instruction::SIToFP:
2789     case Instruction::FPToUI:
2790     case Instruction::FPToSI:
2791     case Instruction::AddrSpaceCast:
2792       // TODO: Target informations may give a more accurate answer here.
2793       return false;
2794     case Instruction::BitCast:
2795       return true;  // BitCast never modifies bits.
2796     case Instruction::PtrToInt:
2797       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2798              DestTy->getScalarSizeInBits();
2799     case Instruction::IntToPtr:
2800       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2801              SrcTy->getScalarSizeInBits();
2802   }
2803 }
2804 
2805 bool CastInst::isNoopCast(const DataLayout &DL) const {
2806   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2807 }
2808 
2809 /// This function determines if a pair of casts can be eliminated and what
2810 /// opcode should be used in the elimination. This assumes that there are two
2811 /// instructions like this:
2812 /// *  %F = firstOpcode SrcTy %x to MidTy
2813 /// *  %S = secondOpcode MidTy %F to DstTy
2814 /// The function returns a resultOpcode so these two casts can be replaced with:
2815 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2816 /// If no such cast is permitted, the function returns 0.
2817 unsigned CastInst::isEliminableCastPair(
2818   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2819   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2820   Type *DstIntPtrTy) {
2821   // Define the 144 possibilities for these two cast instructions. The values
2822   // in this matrix determine what to do in a given situation and select the
2823   // case in the switch below.  The rows correspond to firstOp, the columns
2824   // correspond to secondOp.  In looking at the table below, keep in mind
2825   // the following cast properties:
2826   //
2827   //          Size Compare       Source               Destination
2828   // Operator  Src ? Size   Type       Sign         Type       Sign
2829   // -------- ------------ -------------------   ---------------------
2830   // TRUNC         >       Integer      Any        Integral     Any
2831   // ZEXT          <       Integral   Unsigned     Integer      Any
2832   // SEXT          <       Integral    Signed      Integer      Any
2833   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2834   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2835   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2836   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2837   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2838   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2839   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2840   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2841   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2842   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2843   //
2844   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2845   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2846   // into "fptoui double to i64", but this loses information about the range
2847   // of the produced value (we no longer know the top-part is all zeros).
2848   // Further this conversion is often much more expensive for typical hardware,
2849   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2850   // same reason.
2851   const unsigned numCastOps =
2852     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2853   static const uint8_t CastResults[numCastOps][numCastOps] = {
2854     // T        F  F  U  S  F  F  P  I  B  A  -+
2855     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2856     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2857     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2858     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2859     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2860     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2861     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2862     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2863     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2864     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2865     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2866     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2867     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2868     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2869     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2870     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2871     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2872   };
2873 
2874   // TODO: This logic could be encoded into the table above and handled in the
2875   // switch below.
2876   // If either of the casts are a bitcast from scalar to vector, disallow the
2877   // merging. However, any pair of bitcasts are allowed.
2878   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2879   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2880   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2881 
2882   // Check if any of the casts convert scalars <-> vectors.
2883   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2884       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2885     if (!AreBothBitcasts)
2886       return 0;
2887 
2888   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2889                             [secondOp-Instruction::CastOpsBegin];
2890   switch (ElimCase) {
2891     case 0:
2892       // Categorically disallowed.
2893       return 0;
2894     case 1:
2895       // Allowed, use first cast's opcode.
2896       return firstOp;
2897     case 2:
2898       // Allowed, use second cast's opcode.
2899       return secondOp;
2900     case 3:
2901       // No-op cast in second op implies firstOp as long as the DestTy
2902       // is integer and we are not converting between a vector and a
2903       // non-vector type.
2904       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2905         return firstOp;
2906       return 0;
2907     case 4:
2908       // No-op cast in second op implies firstOp as long as the DestTy
2909       // is floating point.
2910       if (DstTy->isFloatingPointTy())
2911         return firstOp;
2912       return 0;
2913     case 5:
2914       // No-op cast in first op implies secondOp as long as the SrcTy
2915       // is an integer.
2916       if (SrcTy->isIntegerTy())
2917         return secondOp;
2918       return 0;
2919     case 6:
2920       // No-op cast in first op implies secondOp as long as the SrcTy
2921       // is a floating point.
2922       if (SrcTy->isFloatingPointTy())
2923         return secondOp;
2924       return 0;
2925     case 7: {
2926       // Disable inttoptr/ptrtoint optimization if enabled.
2927       if (DisableI2pP2iOpt)
2928         return 0;
2929 
2930       // Cannot simplify if address spaces are different!
2931       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2932         return 0;
2933 
2934       unsigned MidSize = MidTy->getScalarSizeInBits();
2935       // We can still fold this without knowing the actual sizes as long we
2936       // know that the intermediate pointer is the largest possible
2937       // pointer size.
2938       // FIXME: Is this always true?
2939       if (MidSize == 64)
2940         return Instruction::BitCast;
2941 
2942       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2943       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2944         return 0;
2945       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2946       if (MidSize >= PtrSize)
2947         return Instruction::BitCast;
2948       return 0;
2949     }
2950     case 8: {
2951       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2952       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2953       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2954       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2955       unsigned DstSize = DstTy->getScalarSizeInBits();
2956       if (SrcSize == DstSize)
2957         return Instruction::BitCast;
2958       else if (SrcSize < DstSize)
2959         return firstOp;
2960       return secondOp;
2961     }
2962     case 9:
2963       // zext, sext -> zext, because sext can't sign extend after zext
2964       return Instruction::ZExt;
2965     case 11: {
2966       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2967       if (!MidIntPtrTy)
2968         return 0;
2969       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2970       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2971       unsigned DstSize = DstTy->getScalarSizeInBits();
2972       if (SrcSize <= PtrSize && SrcSize == DstSize)
2973         return Instruction::BitCast;
2974       return 0;
2975     }
2976     case 12:
2977       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2978       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2979       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2980         return Instruction::AddrSpaceCast;
2981       return Instruction::BitCast;
2982     case 13:
2983       // FIXME: this state can be merged with (1), but the following assert
2984       // is useful to check the correcteness of the sequence due to semantic
2985       // change of bitcast.
2986       assert(
2987         SrcTy->isPtrOrPtrVectorTy() &&
2988         MidTy->isPtrOrPtrVectorTy() &&
2989         DstTy->isPtrOrPtrVectorTy() &&
2990         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2991         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2992         "Illegal addrspacecast, bitcast sequence!");
2993       // Allowed, use first cast's opcode
2994       return firstOp;
2995     case 14: {
2996       // bitcast, addrspacecast -> addrspacecast if the element type of
2997       // bitcast's source is the same as that of addrspacecast's destination.
2998       PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
2999       PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
3000       if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3001         return Instruction::AddrSpaceCast;
3002       return 0;
3003     }
3004     case 15:
3005       // FIXME: this state can be merged with (1), but the following assert
3006       // is useful to check the correcteness of the sequence due to semantic
3007       // change of bitcast.
3008       assert(
3009         SrcTy->isIntOrIntVectorTy() &&
3010         MidTy->isPtrOrPtrVectorTy() &&
3011         DstTy->isPtrOrPtrVectorTy() &&
3012         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3013         "Illegal inttoptr, bitcast sequence!");
3014       // Allowed, use first cast's opcode
3015       return firstOp;
3016     case 16:
3017       // FIXME: this state can be merged with (2), but the following assert
3018       // is useful to check the correcteness of the sequence due to semantic
3019       // change of bitcast.
3020       assert(
3021         SrcTy->isPtrOrPtrVectorTy() &&
3022         MidTy->isPtrOrPtrVectorTy() &&
3023         DstTy->isIntOrIntVectorTy() &&
3024         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3025         "Illegal bitcast, ptrtoint sequence!");
3026       // Allowed, use second cast's opcode
3027       return secondOp;
3028     case 17:
3029       // (sitofp (zext x)) -> (uitofp x)
3030       return Instruction::UIToFP;
3031     case 99:
3032       // Cast combination can't happen (error in input). This is for all cases
3033       // where the MidTy is not the same for the two cast instructions.
3034       llvm_unreachable("Invalid Cast Combination");
3035     default:
3036       llvm_unreachable("Error in CastResults table!!!");
3037   }
3038 }
3039 
3040 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3041   const Twine &Name, Instruction *InsertBefore) {
3042   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3043   // Construct and return the appropriate CastInst subclass
3044   switch (op) {
3045   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
3046   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
3047   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
3048   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
3049   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
3050   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
3051   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
3052   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
3053   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
3054   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
3055   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
3056   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
3057   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3058   default: llvm_unreachable("Invalid opcode provided");
3059   }
3060 }
3061 
3062 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3063   const Twine &Name, BasicBlock *InsertAtEnd) {
3064   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3065   // Construct and return the appropriate CastInst subclass
3066   switch (op) {
3067   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
3068   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
3069   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
3070   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
3071   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
3072   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
3073   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
3074   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
3075   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
3076   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
3077   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
3078   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
3079   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3080   default: llvm_unreachable("Invalid opcode provided");
3081   }
3082 }
3083 
3084 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3085                                         const Twine &Name,
3086                                         Instruction *InsertBefore) {
3087   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3088     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3089   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3090 }
3091 
3092 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3093                                         const Twine &Name,
3094                                         BasicBlock *InsertAtEnd) {
3095   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3096     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3097   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3098 }
3099 
3100 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3101                                         const Twine &Name,
3102                                         Instruction *InsertBefore) {
3103   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3104     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3105   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3106 }
3107 
3108 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3109                                         const Twine &Name,
3110                                         BasicBlock *InsertAtEnd) {
3111   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3112     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3113   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3114 }
3115 
3116 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3117                                          const Twine &Name,
3118                                          Instruction *InsertBefore) {
3119   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3120     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3121   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3122 }
3123 
3124 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3125                                          const Twine &Name,
3126                                          BasicBlock *InsertAtEnd) {
3127   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3128     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3129   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3130 }
3131 
3132 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3133                                       const Twine &Name,
3134                                       BasicBlock *InsertAtEnd) {
3135   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3136   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3137          "Invalid cast");
3138   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3139   assert((!Ty->isVectorTy() ||
3140           cast<VectorType>(Ty)->getElementCount() ==
3141               cast<VectorType>(S->getType())->getElementCount()) &&
3142          "Invalid cast");
3143 
3144   if (Ty->isIntOrIntVectorTy())
3145     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3146 
3147   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3148 }
3149 
3150 /// Create a BitCast or a PtrToInt cast instruction
3151 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3152                                       const Twine &Name,
3153                                       Instruction *InsertBefore) {
3154   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3155   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3156          "Invalid cast");
3157   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3158   assert((!Ty->isVectorTy() ||
3159           cast<VectorType>(Ty)->getElementCount() ==
3160               cast<VectorType>(S->getType())->getElementCount()) &&
3161          "Invalid cast");
3162 
3163   if (Ty->isIntOrIntVectorTy())
3164     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3165 
3166   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3167 }
3168 
3169 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3170   Value *S, Type *Ty,
3171   const Twine &Name,
3172   BasicBlock *InsertAtEnd) {
3173   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3174   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3175 
3176   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3177     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3178 
3179   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3180 }
3181 
3182 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3183   Value *S, Type *Ty,
3184   const Twine &Name,
3185   Instruction *InsertBefore) {
3186   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3187   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3188 
3189   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3190     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3191 
3192   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3193 }
3194 
3195 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3196                                            const Twine &Name,
3197                                            Instruction *InsertBefore) {
3198   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3199     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3200   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3201     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3202 
3203   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3204 }
3205 
3206 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3207                                       bool isSigned, const Twine &Name,
3208                                       Instruction *InsertBefore) {
3209   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3210          "Invalid integer cast");
3211   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3212   unsigned DstBits = Ty->getScalarSizeInBits();
3213   Instruction::CastOps opcode =
3214     (SrcBits == DstBits ? Instruction::BitCast :
3215      (SrcBits > DstBits ? Instruction::Trunc :
3216       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3217   return Create(opcode, C, Ty, Name, InsertBefore);
3218 }
3219 
3220 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3221                                       bool isSigned, const Twine &Name,
3222                                       BasicBlock *InsertAtEnd) {
3223   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3224          "Invalid cast");
3225   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3226   unsigned DstBits = Ty->getScalarSizeInBits();
3227   Instruction::CastOps opcode =
3228     (SrcBits == DstBits ? Instruction::BitCast :
3229      (SrcBits > DstBits ? Instruction::Trunc :
3230       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3231   return Create(opcode, C, Ty, Name, InsertAtEnd);
3232 }
3233 
3234 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3235                                  const Twine &Name,
3236                                  Instruction *InsertBefore) {
3237   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3238          "Invalid cast");
3239   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3240   unsigned DstBits = Ty->getScalarSizeInBits();
3241   Instruction::CastOps opcode =
3242     (SrcBits == DstBits ? Instruction::BitCast :
3243      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3244   return Create(opcode, C, Ty, Name, InsertBefore);
3245 }
3246 
3247 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3248                                  const Twine &Name,
3249                                  BasicBlock *InsertAtEnd) {
3250   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3251          "Invalid cast");
3252   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3253   unsigned DstBits = Ty->getScalarSizeInBits();
3254   Instruction::CastOps opcode =
3255     (SrcBits == DstBits ? Instruction::BitCast :
3256      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3257   return Create(opcode, C, Ty, Name, InsertAtEnd);
3258 }
3259 
3260 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3261   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3262     return false;
3263 
3264   if (SrcTy == DestTy)
3265     return true;
3266 
3267   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3268     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3269       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3270         // An element by element cast. Valid if casting the elements is valid.
3271         SrcTy = SrcVecTy->getElementType();
3272         DestTy = DestVecTy->getElementType();
3273       }
3274     }
3275   }
3276 
3277   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3278     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3279       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3280     }
3281   }
3282 
3283   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3284   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3285 
3286   // Could still have vectors of pointers if the number of elements doesn't
3287   // match
3288   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3289     return false;
3290 
3291   if (SrcBits != DestBits)
3292     return false;
3293 
3294   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3295     return false;
3296 
3297   return true;
3298 }
3299 
3300 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3301                                           const DataLayout &DL) {
3302   // ptrtoint and inttoptr are not allowed on non-integral pointers
3303   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3304     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3305       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3306               !DL.isNonIntegralPointerType(PtrTy));
3307   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3308     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3309       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3310               !DL.isNonIntegralPointerType(PtrTy));
3311 
3312   return isBitCastable(SrcTy, DestTy);
3313 }
3314 
3315 // Provide a way to get a "cast" where the cast opcode is inferred from the
3316 // types and size of the operand. This, basically, is a parallel of the
3317 // logic in the castIsValid function below.  This axiom should hold:
3318 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3319 // should not assert in castIsValid. In other words, this produces a "correct"
3320 // casting opcode for the arguments passed to it.
3321 Instruction::CastOps
3322 CastInst::getCastOpcode(
3323   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3324   Type *SrcTy = Src->getType();
3325 
3326   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3327          "Only first class types are castable!");
3328 
3329   if (SrcTy == DestTy)
3330     return BitCast;
3331 
3332   // FIXME: Check address space sizes here
3333   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3334     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3335       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3336         // An element by element cast.  Find the appropriate opcode based on the
3337         // element types.
3338         SrcTy = SrcVecTy->getElementType();
3339         DestTy = DestVecTy->getElementType();
3340       }
3341 
3342   // Get the bit sizes, we'll need these
3343   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3344   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3345 
3346   // Run through the possibilities ...
3347   if (DestTy->isIntegerTy()) {                      // Casting to integral
3348     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3349       if (DestBits < SrcBits)
3350         return Trunc;                               // int -> smaller int
3351       else if (DestBits > SrcBits) {                // its an extension
3352         if (SrcIsSigned)
3353           return SExt;                              // signed -> SEXT
3354         else
3355           return ZExt;                              // unsigned -> ZEXT
3356       } else {
3357         return BitCast;                             // Same size, No-op cast
3358       }
3359     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3360       if (DestIsSigned)
3361         return FPToSI;                              // FP -> sint
3362       else
3363         return FPToUI;                              // FP -> uint
3364     } else if (SrcTy->isVectorTy()) {
3365       assert(DestBits == SrcBits &&
3366              "Casting vector to integer of different width");
3367       return BitCast;                             // Same size, no-op cast
3368     } else {
3369       assert(SrcTy->isPointerTy() &&
3370              "Casting from a value that is not first-class type");
3371       return PtrToInt;                              // ptr -> int
3372     }
3373   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3374     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3375       if (SrcIsSigned)
3376         return SIToFP;                              // sint -> FP
3377       else
3378         return UIToFP;                              // uint -> FP
3379     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3380       if (DestBits < SrcBits) {
3381         return FPTrunc;                             // FP -> smaller FP
3382       } else if (DestBits > SrcBits) {
3383         return FPExt;                               // FP -> larger FP
3384       } else  {
3385         return BitCast;                             // same size, no-op cast
3386       }
3387     } else if (SrcTy->isVectorTy()) {
3388       assert(DestBits == SrcBits &&
3389              "Casting vector to floating point of different width");
3390       return BitCast;                             // same size, no-op cast
3391     }
3392     llvm_unreachable("Casting pointer or non-first class to float");
3393   } else if (DestTy->isVectorTy()) {
3394     assert(DestBits == SrcBits &&
3395            "Illegal cast to vector (wrong type or size)");
3396     return BitCast;
3397   } else if (DestTy->isPointerTy()) {
3398     if (SrcTy->isPointerTy()) {
3399       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3400         return AddrSpaceCast;
3401       return BitCast;                               // ptr -> ptr
3402     } else if (SrcTy->isIntegerTy()) {
3403       return IntToPtr;                              // int -> ptr
3404     }
3405     llvm_unreachable("Casting pointer to other than pointer or int");
3406   } else if (DestTy->isX86_MMXTy()) {
3407     if (SrcTy->isVectorTy()) {
3408       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3409       return BitCast;                               // 64-bit vector to MMX
3410     }
3411     llvm_unreachable("Illegal cast to X86_MMX");
3412   }
3413   llvm_unreachable("Casting to type that is not first-class");
3414 }
3415 
3416 //===----------------------------------------------------------------------===//
3417 //                    CastInst SubClass Constructors
3418 //===----------------------------------------------------------------------===//
3419 
3420 /// Check that the construction parameters for a CastInst are correct. This
3421 /// could be broken out into the separate constructors but it is useful to have
3422 /// it in one place and to eliminate the redundant code for getting the sizes
3423 /// of the types involved.
3424 bool
3425 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3426   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3427       SrcTy->isAggregateType() || DstTy->isAggregateType())
3428     return false;
3429 
3430   // Get the size of the types in bits, and whether we are dealing
3431   // with vector types, we'll need this later.
3432   bool SrcIsVec = isa<VectorType>(SrcTy);
3433   bool DstIsVec = isa<VectorType>(DstTy);
3434   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3435   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3436 
3437   // If these are vector types, get the lengths of the vectors (using zero for
3438   // scalar types means that checking that vector lengths match also checks that
3439   // scalars are not being converted to vectors or vectors to scalars).
3440   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3441                                 : ElementCount::getFixed(0);
3442   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3443                                 : ElementCount::getFixed(0);
3444 
3445   // Switch on the opcode provided
3446   switch (op) {
3447   default: return false; // This is an input error
3448   case Instruction::Trunc:
3449     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3450            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3451   case Instruction::ZExt:
3452     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3453            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3454   case Instruction::SExt:
3455     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3456            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3457   case Instruction::FPTrunc:
3458     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3459            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3460   case Instruction::FPExt:
3461     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3462            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3463   case Instruction::UIToFP:
3464   case Instruction::SIToFP:
3465     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3466            SrcEC == DstEC;
3467   case Instruction::FPToUI:
3468   case Instruction::FPToSI:
3469     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3470            SrcEC == DstEC;
3471   case Instruction::PtrToInt:
3472     if (SrcEC != DstEC)
3473       return false;
3474     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3475   case Instruction::IntToPtr:
3476     if (SrcEC != DstEC)
3477       return false;
3478     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3479   case Instruction::BitCast: {
3480     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3481     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3482 
3483     // BitCast implies a no-op cast of type only. No bits change.
3484     // However, you can't cast pointers to anything but pointers.
3485     if (!SrcPtrTy != !DstPtrTy)
3486       return false;
3487 
3488     // For non-pointer cases, the cast is okay if the source and destination bit
3489     // widths are identical.
3490     if (!SrcPtrTy)
3491       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3492 
3493     // If both are pointers then the address spaces must match.
3494     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3495       return false;
3496 
3497     // A vector of pointers must have the same number of elements.
3498     if (SrcIsVec && DstIsVec)
3499       return SrcEC == DstEC;
3500     if (SrcIsVec)
3501       return SrcEC == ElementCount::getFixed(1);
3502     if (DstIsVec)
3503       return DstEC == ElementCount::getFixed(1);
3504 
3505     return true;
3506   }
3507   case Instruction::AddrSpaceCast: {
3508     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3509     if (!SrcPtrTy)
3510       return false;
3511 
3512     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3513     if (!DstPtrTy)
3514       return false;
3515 
3516     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3517       return false;
3518 
3519     return SrcEC == DstEC;
3520   }
3521   }
3522 }
3523 
3524 TruncInst::TruncInst(
3525   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3526 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3527   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3528 }
3529 
3530 TruncInst::TruncInst(
3531   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3532 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3533   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3534 }
3535 
3536 ZExtInst::ZExtInst(
3537   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3538 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3539   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3540 }
3541 
3542 ZExtInst::ZExtInst(
3543   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3544 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3545   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3546 }
3547 SExtInst::SExtInst(
3548   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3549 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3550   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3551 }
3552 
3553 SExtInst::SExtInst(
3554   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3555 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3556   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3557 }
3558 
3559 FPTruncInst::FPTruncInst(
3560   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3561 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3562   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3563 }
3564 
3565 FPTruncInst::FPTruncInst(
3566   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3567 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3568   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3569 }
3570 
3571 FPExtInst::FPExtInst(
3572   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3573 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3574   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3575 }
3576 
3577 FPExtInst::FPExtInst(
3578   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3579 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3580   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3581 }
3582 
3583 UIToFPInst::UIToFPInst(
3584   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3585 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3586   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3587 }
3588 
3589 UIToFPInst::UIToFPInst(
3590   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3591 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3592   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3593 }
3594 
3595 SIToFPInst::SIToFPInst(
3596   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3597 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3598   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3599 }
3600 
3601 SIToFPInst::SIToFPInst(
3602   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3603 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3604   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3605 }
3606 
3607 FPToUIInst::FPToUIInst(
3608   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3609 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3610   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3611 }
3612 
3613 FPToUIInst::FPToUIInst(
3614   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3615 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3616   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3617 }
3618 
3619 FPToSIInst::FPToSIInst(
3620   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3621 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3622   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3623 }
3624 
3625 FPToSIInst::FPToSIInst(
3626   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3627 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3628   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3629 }
3630 
3631 PtrToIntInst::PtrToIntInst(
3632   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3633 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3634   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3635 }
3636 
3637 PtrToIntInst::PtrToIntInst(
3638   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3639 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3640   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3641 }
3642 
3643 IntToPtrInst::IntToPtrInst(
3644   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3645 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3646   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3647 }
3648 
3649 IntToPtrInst::IntToPtrInst(
3650   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3651 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3652   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3653 }
3654 
3655 BitCastInst::BitCastInst(
3656   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3657 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3658   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3659 }
3660 
3661 BitCastInst::BitCastInst(
3662   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3663 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3664   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3665 }
3666 
3667 AddrSpaceCastInst::AddrSpaceCastInst(
3668   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3669 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3670   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3671 }
3672 
3673 AddrSpaceCastInst::AddrSpaceCastInst(
3674   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3675 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3676   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3677 }
3678 
3679 //===----------------------------------------------------------------------===//
3680 //                               CmpInst Classes
3681 //===----------------------------------------------------------------------===//
3682 
3683 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3684                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3685                  Instruction *FlagsSource)
3686   : Instruction(ty, op,
3687                 OperandTraits<CmpInst>::op_begin(this),
3688                 OperandTraits<CmpInst>::operands(this),
3689                 InsertBefore) {
3690   Op<0>() = LHS;
3691   Op<1>() = RHS;
3692   setPredicate((Predicate)predicate);
3693   setName(Name);
3694   if (FlagsSource)
3695     copyIRFlags(FlagsSource);
3696 }
3697 
3698 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3699                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3700   : Instruction(ty, op,
3701                 OperandTraits<CmpInst>::op_begin(this),
3702                 OperandTraits<CmpInst>::operands(this),
3703                 InsertAtEnd) {
3704   Op<0>() = LHS;
3705   Op<1>() = RHS;
3706   setPredicate((Predicate)predicate);
3707   setName(Name);
3708 }
3709 
3710 CmpInst *
3711 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3712                 const Twine &Name, Instruction *InsertBefore) {
3713   if (Op == Instruction::ICmp) {
3714     if (InsertBefore)
3715       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3716                           S1, S2, Name);
3717     else
3718       return new ICmpInst(CmpInst::Predicate(predicate),
3719                           S1, S2, Name);
3720   }
3721 
3722   if (InsertBefore)
3723     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3724                         S1, S2, Name);
3725   else
3726     return new FCmpInst(CmpInst::Predicate(predicate),
3727                         S1, S2, Name);
3728 }
3729 
3730 CmpInst *
3731 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3732                 const Twine &Name, BasicBlock *InsertAtEnd) {
3733   if (Op == Instruction::ICmp) {
3734     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3735                         S1, S2, Name);
3736   }
3737   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3738                       S1, S2, Name);
3739 }
3740 
3741 void CmpInst::swapOperands() {
3742   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3743     IC->swapOperands();
3744   else
3745     cast<FCmpInst>(this)->swapOperands();
3746 }
3747 
3748 bool CmpInst::isCommutative() const {
3749   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3750     return IC->isCommutative();
3751   return cast<FCmpInst>(this)->isCommutative();
3752 }
3753 
3754 bool CmpInst::isEquality(Predicate P) {
3755   if (ICmpInst::isIntPredicate(P))
3756     return ICmpInst::isEquality(P);
3757   if (FCmpInst::isFPPredicate(P))
3758     return FCmpInst::isEquality(P);
3759   llvm_unreachable("Unsupported predicate kind");
3760 }
3761 
3762 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3763   switch (pred) {
3764     default: llvm_unreachable("Unknown cmp predicate!");
3765     case ICMP_EQ: return ICMP_NE;
3766     case ICMP_NE: return ICMP_EQ;
3767     case ICMP_UGT: return ICMP_ULE;
3768     case ICMP_ULT: return ICMP_UGE;
3769     case ICMP_UGE: return ICMP_ULT;
3770     case ICMP_ULE: return ICMP_UGT;
3771     case ICMP_SGT: return ICMP_SLE;
3772     case ICMP_SLT: return ICMP_SGE;
3773     case ICMP_SGE: return ICMP_SLT;
3774     case ICMP_SLE: return ICMP_SGT;
3775 
3776     case FCMP_OEQ: return FCMP_UNE;
3777     case FCMP_ONE: return FCMP_UEQ;
3778     case FCMP_OGT: return FCMP_ULE;
3779     case FCMP_OLT: return FCMP_UGE;
3780     case FCMP_OGE: return FCMP_ULT;
3781     case FCMP_OLE: return FCMP_UGT;
3782     case FCMP_UEQ: return FCMP_ONE;
3783     case FCMP_UNE: return FCMP_OEQ;
3784     case FCMP_UGT: return FCMP_OLE;
3785     case FCMP_ULT: return FCMP_OGE;
3786     case FCMP_UGE: return FCMP_OLT;
3787     case FCMP_ULE: return FCMP_OGT;
3788     case FCMP_ORD: return FCMP_UNO;
3789     case FCMP_UNO: return FCMP_ORD;
3790     case FCMP_TRUE: return FCMP_FALSE;
3791     case FCMP_FALSE: return FCMP_TRUE;
3792   }
3793 }
3794 
3795 StringRef CmpInst::getPredicateName(Predicate Pred) {
3796   switch (Pred) {
3797   default:                   return "unknown";
3798   case FCmpInst::FCMP_FALSE: return "false";
3799   case FCmpInst::FCMP_OEQ:   return "oeq";
3800   case FCmpInst::FCMP_OGT:   return "ogt";
3801   case FCmpInst::FCMP_OGE:   return "oge";
3802   case FCmpInst::FCMP_OLT:   return "olt";
3803   case FCmpInst::FCMP_OLE:   return "ole";
3804   case FCmpInst::FCMP_ONE:   return "one";
3805   case FCmpInst::FCMP_ORD:   return "ord";
3806   case FCmpInst::FCMP_UNO:   return "uno";
3807   case FCmpInst::FCMP_UEQ:   return "ueq";
3808   case FCmpInst::FCMP_UGT:   return "ugt";
3809   case FCmpInst::FCMP_UGE:   return "uge";
3810   case FCmpInst::FCMP_ULT:   return "ult";
3811   case FCmpInst::FCMP_ULE:   return "ule";
3812   case FCmpInst::FCMP_UNE:   return "une";
3813   case FCmpInst::FCMP_TRUE:  return "true";
3814   case ICmpInst::ICMP_EQ:    return "eq";
3815   case ICmpInst::ICMP_NE:    return "ne";
3816   case ICmpInst::ICMP_SGT:   return "sgt";
3817   case ICmpInst::ICMP_SGE:   return "sge";
3818   case ICmpInst::ICMP_SLT:   return "slt";
3819   case ICmpInst::ICMP_SLE:   return "sle";
3820   case ICmpInst::ICMP_UGT:   return "ugt";
3821   case ICmpInst::ICMP_UGE:   return "uge";
3822   case ICmpInst::ICMP_ULT:   return "ult";
3823   case ICmpInst::ICMP_ULE:   return "ule";
3824   }
3825 }
3826 
3827 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3828   switch (pred) {
3829     default: llvm_unreachable("Unknown icmp predicate!");
3830     case ICMP_EQ: case ICMP_NE:
3831     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3832        return pred;
3833     case ICMP_UGT: return ICMP_SGT;
3834     case ICMP_ULT: return ICMP_SLT;
3835     case ICMP_UGE: return ICMP_SGE;
3836     case ICMP_ULE: return ICMP_SLE;
3837   }
3838 }
3839 
3840 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3841   switch (pred) {
3842     default: llvm_unreachable("Unknown icmp predicate!");
3843     case ICMP_EQ: case ICMP_NE:
3844     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3845        return pred;
3846     case ICMP_SGT: return ICMP_UGT;
3847     case ICMP_SLT: return ICMP_ULT;
3848     case ICMP_SGE: return ICMP_UGE;
3849     case ICMP_SLE: return ICMP_ULE;
3850   }
3851 }
3852 
3853 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3854   switch (pred) {
3855     default: llvm_unreachable("Unknown cmp predicate!");
3856     case ICMP_EQ: case ICMP_NE:
3857       return pred;
3858     case ICMP_SGT: return ICMP_SLT;
3859     case ICMP_SLT: return ICMP_SGT;
3860     case ICMP_SGE: return ICMP_SLE;
3861     case ICMP_SLE: return ICMP_SGE;
3862     case ICMP_UGT: return ICMP_ULT;
3863     case ICMP_ULT: return ICMP_UGT;
3864     case ICMP_UGE: return ICMP_ULE;
3865     case ICMP_ULE: return ICMP_UGE;
3866 
3867     case FCMP_FALSE: case FCMP_TRUE:
3868     case FCMP_OEQ: case FCMP_ONE:
3869     case FCMP_UEQ: case FCMP_UNE:
3870     case FCMP_ORD: case FCMP_UNO:
3871       return pred;
3872     case FCMP_OGT: return FCMP_OLT;
3873     case FCMP_OLT: return FCMP_OGT;
3874     case FCMP_OGE: return FCMP_OLE;
3875     case FCMP_OLE: return FCMP_OGE;
3876     case FCMP_UGT: return FCMP_ULT;
3877     case FCMP_ULT: return FCMP_UGT;
3878     case FCMP_UGE: return FCMP_ULE;
3879     case FCMP_ULE: return FCMP_UGE;
3880   }
3881 }
3882 
3883 bool CmpInst::isNonStrictPredicate(Predicate pred) {
3884   switch (pred) {
3885   case ICMP_SGE:
3886   case ICMP_SLE:
3887   case ICMP_UGE:
3888   case ICMP_ULE:
3889   case FCMP_OGE:
3890   case FCMP_OLE:
3891   case FCMP_UGE:
3892   case FCMP_ULE:
3893     return true;
3894   default:
3895     return false;
3896   }
3897 }
3898 
3899 bool CmpInst::isStrictPredicate(Predicate pred) {
3900   switch (pred) {
3901   case ICMP_SGT:
3902   case ICMP_SLT:
3903   case ICMP_UGT:
3904   case ICMP_ULT:
3905   case FCMP_OGT:
3906   case FCMP_OLT:
3907   case FCMP_UGT:
3908   case FCMP_ULT:
3909     return true;
3910   default:
3911     return false;
3912   }
3913 }
3914 
3915 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3916   switch (pred) {
3917   case ICMP_SGE:
3918     return ICMP_SGT;
3919   case ICMP_SLE:
3920     return ICMP_SLT;
3921   case ICMP_UGE:
3922     return ICMP_UGT;
3923   case ICMP_ULE:
3924     return ICMP_ULT;
3925   case FCMP_OGE:
3926     return FCMP_OGT;
3927   case FCMP_OLE:
3928     return FCMP_OLT;
3929   case FCMP_UGE:
3930     return FCMP_UGT;
3931   case FCMP_ULE:
3932     return FCMP_ULT;
3933   default:
3934     return pred;
3935   }
3936 }
3937 
3938 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3939   switch (pred) {
3940   case ICMP_SGT:
3941     return ICMP_SGE;
3942   case ICMP_SLT:
3943     return ICMP_SLE;
3944   case ICMP_UGT:
3945     return ICMP_UGE;
3946   case ICMP_ULT:
3947     return ICMP_ULE;
3948   case FCMP_OGT:
3949     return FCMP_OGE;
3950   case FCMP_OLT:
3951     return FCMP_OLE;
3952   case FCMP_UGT:
3953     return FCMP_UGE;
3954   case FCMP_ULT:
3955     return FCMP_ULE;
3956   default:
3957     return pred;
3958   }
3959 }
3960 
3961 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3962   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3963 
3964   if (isStrictPredicate(pred))
3965     return getNonStrictPredicate(pred);
3966   if (isNonStrictPredicate(pred))
3967     return getStrictPredicate(pred);
3968 
3969   llvm_unreachable("Unknown predicate!");
3970 }
3971 
3972 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3973   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3974 
3975   switch (pred) {
3976   default:
3977     llvm_unreachable("Unknown predicate!");
3978   case CmpInst::ICMP_ULT:
3979     return CmpInst::ICMP_SLT;
3980   case CmpInst::ICMP_ULE:
3981     return CmpInst::ICMP_SLE;
3982   case CmpInst::ICMP_UGT:
3983     return CmpInst::ICMP_SGT;
3984   case CmpInst::ICMP_UGE:
3985     return CmpInst::ICMP_SGE;
3986   }
3987 }
3988 
3989 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3990   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3991 
3992   switch (pred) {
3993   default:
3994     llvm_unreachable("Unknown predicate!");
3995   case CmpInst::ICMP_SLT:
3996     return CmpInst::ICMP_ULT;
3997   case CmpInst::ICMP_SLE:
3998     return CmpInst::ICMP_ULE;
3999   case CmpInst::ICMP_SGT:
4000     return CmpInst::ICMP_UGT;
4001   case CmpInst::ICMP_SGE:
4002     return CmpInst::ICMP_UGE;
4003   }
4004 }
4005 
4006 bool CmpInst::isUnsigned(Predicate predicate) {
4007   switch (predicate) {
4008     default: return false;
4009     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
4010     case ICmpInst::ICMP_UGE: return true;
4011   }
4012 }
4013 
4014 bool CmpInst::isSigned(Predicate predicate) {
4015   switch (predicate) {
4016     default: return false;
4017     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
4018     case ICmpInst::ICMP_SGE: return true;
4019   }
4020 }
4021 
4022 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
4023   assert(CmpInst::isRelational(pred) &&
4024          "Call only with non-equality predicates!");
4025 
4026   if (isSigned(pred))
4027     return getUnsignedPredicate(pred);
4028   if (isUnsigned(pred))
4029     return getSignedPredicate(pred);
4030 
4031   llvm_unreachable("Unknown predicate!");
4032 }
4033 
4034 bool CmpInst::isOrdered(Predicate predicate) {
4035   switch (predicate) {
4036     default: return false;
4037     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
4038     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
4039     case FCmpInst::FCMP_ORD: return true;
4040   }
4041 }
4042 
4043 bool CmpInst::isUnordered(Predicate predicate) {
4044   switch (predicate) {
4045     default: return false;
4046     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
4047     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
4048     case FCmpInst::FCMP_UNO: return true;
4049   }
4050 }
4051 
4052 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
4053   switch(predicate) {
4054     default: return false;
4055     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4056     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4057   }
4058 }
4059 
4060 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
4061   switch(predicate) {
4062   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4063   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4064   default: return false;
4065   }
4066 }
4067 
4068 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4069   // If the predicates match, then we know the first condition implies the
4070   // second is true.
4071   if (Pred1 == Pred2)
4072     return true;
4073 
4074   switch (Pred1) {
4075   default:
4076     break;
4077   case ICMP_EQ:
4078     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4079     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4080            Pred2 == ICMP_SLE;
4081   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4082     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4083   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4084     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4085   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4086     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4087   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4088     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4089   }
4090   return false;
4091 }
4092 
4093 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4094   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4095 }
4096 
4097 //===----------------------------------------------------------------------===//
4098 //                        SwitchInst Implementation
4099 //===----------------------------------------------------------------------===//
4100 
4101 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4102   assert(Value && Default && NumReserved);
4103   ReservedSpace = NumReserved;
4104   setNumHungOffUseOperands(2);
4105   allocHungoffUses(ReservedSpace);
4106 
4107   Op<0>() = Value;
4108   Op<1>() = Default;
4109 }
4110 
4111 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4112 /// switch on and a default destination.  The number of additional cases can
4113 /// be specified here to make memory allocation more efficient.  This
4114 /// constructor can also autoinsert before another instruction.
4115 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4116                        Instruction *InsertBefore)
4117     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4118                   nullptr, 0, InsertBefore) {
4119   init(Value, Default, 2+NumCases*2);
4120 }
4121 
4122 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4123 /// switch on and a default destination.  The number of additional cases can
4124 /// be specified here to make memory allocation more efficient.  This
4125 /// constructor also autoinserts at the end of the specified BasicBlock.
4126 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4127                        BasicBlock *InsertAtEnd)
4128     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4129                   nullptr, 0, InsertAtEnd) {
4130   init(Value, Default, 2+NumCases*2);
4131 }
4132 
4133 SwitchInst::SwitchInst(const SwitchInst &SI)
4134     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4135   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4136   setNumHungOffUseOperands(SI.getNumOperands());
4137   Use *OL = getOperandList();
4138   const Use *InOL = SI.getOperandList();
4139   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4140     OL[i] = InOL[i];
4141     OL[i+1] = InOL[i+1];
4142   }
4143   SubclassOptionalData = SI.SubclassOptionalData;
4144 }
4145 
4146 /// addCase - Add an entry to the switch instruction...
4147 ///
4148 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4149   unsigned NewCaseIdx = getNumCases();
4150   unsigned OpNo = getNumOperands();
4151   if (OpNo+2 > ReservedSpace)
4152     growOperands();  // Get more space!
4153   // Initialize some new operands.
4154   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4155   setNumHungOffUseOperands(OpNo+2);
4156   CaseHandle Case(this, NewCaseIdx);
4157   Case.setValue(OnVal);
4158   Case.setSuccessor(Dest);
4159 }
4160 
4161 /// removeCase - This method removes the specified case and its successor
4162 /// from the switch instruction.
4163 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4164   unsigned idx = I->getCaseIndex();
4165 
4166   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4167 
4168   unsigned NumOps = getNumOperands();
4169   Use *OL = getOperandList();
4170 
4171   // Overwrite this case with the end of the list.
4172   if (2 + (idx + 1) * 2 != NumOps) {
4173     OL[2 + idx * 2] = OL[NumOps - 2];
4174     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4175   }
4176 
4177   // Nuke the last value.
4178   OL[NumOps-2].set(nullptr);
4179   OL[NumOps-2+1].set(nullptr);
4180   setNumHungOffUseOperands(NumOps-2);
4181 
4182   return CaseIt(this, idx);
4183 }
4184 
4185 /// growOperands - grow operands - This grows the operand list in response
4186 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4187 ///
4188 void SwitchInst::growOperands() {
4189   unsigned e = getNumOperands();
4190   unsigned NumOps = e*3;
4191 
4192   ReservedSpace = NumOps;
4193   growHungoffUses(ReservedSpace);
4194 }
4195 
4196 MDNode *
4197 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4198   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4199     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4200       if (MDName->getString() == "branch_weights")
4201         return ProfileData;
4202   return nullptr;
4203 }
4204 
4205 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4206   assert(Changed && "called only if metadata has changed");
4207 
4208   if (!Weights)
4209     return nullptr;
4210 
4211   assert(SI.getNumSuccessors() == Weights->size() &&
4212          "num of prof branch_weights must accord with num of successors");
4213 
4214   bool AllZeroes =
4215       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4216 
4217   if (AllZeroes || Weights.getValue().size() < 2)
4218     return nullptr;
4219 
4220   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4221 }
4222 
4223 void SwitchInstProfUpdateWrapper::init() {
4224   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4225   if (!ProfileData)
4226     return;
4227 
4228   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4229     llvm_unreachable("number of prof branch_weights metadata operands does "
4230                      "not correspond to number of succesors");
4231   }
4232 
4233   SmallVector<uint32_t, 8> Weights;
4234   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4235     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4236     uint32_t CW = C->getValue().getZExtValue();
4237     Weights.push_back(CW);
4238   }
4239   this->Weights = std::move(Weights);
4240 }
4241 
4242 SwitchInst::CaseIt
4243 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4244   if (Weights) {
4245     assert(SI.getNumSuccessors() == Weights->size() &&
4246            "num of prof branch_weights must accord with num of successors");
4247     Changed = true;
4248     // Copy the last case to the place of the removed one and shrink.
4249     // This is tightly coupled with the way SwitchInst::removeCase() removes
4250     // the cases in SwitchInst::removeCase(CaseIt).
4251     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4252     Weights.getValue().pop_back();
4253   }
4254   return SI.removeCase(I);
4255 }
4256 
4257 void SwitchInstProfUpdateWrapper::addCase(
4258     ConstantInt *OnVal, BasicBlock *Dest,
4259     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4260   SI.addCase(OnVal, Dest);
4261 
4262   if (!Weights && W && *W) {
4263     Changed = true;
4264     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4265     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4266   } else if (Weights) {
4267     Changed = true;
4268     Weights.getValue().push_back(W ? *W : 0);
4269   }
4270   if (Weights)
4271     assert(SI.getNumSuccessors() == Weights->size() &&
4272            "num of prof branch_weights must accord with num of successors");
4273 }
4274 
4275 SymbolTableList<Instruction>::iterator
4276 SwitchInstProfUpdateWrapper::eraseFromParent() {
4277   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4278   Changed = false;
4279   if (Weights)
4280     Weights->resize(0);
4281   return SI.eraseFromParent();
4282 }
4283 
4284 SwitchInstProfUpdateWrapper::CaseWeightOpt
4285 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4286   if (!Weights)
4287     return None;
4288   return Weights.getValue()[idx];
4289 }
4290 
4291 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4292     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4293   if (!W)
4294     return;
4295 
4296   if (!Weights && *W)
4297     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4298 
4299   if (Weights) {
4300     auto &OldW = Weights.getValue()[idx];
4301     if (*W != OldW) {
4302       Changed = true;
4303       OldW = *W;
4304     }
4305   }
4306 }
4307 
4308 SwitchInstProfUpdateWrapper::CaseWeightOpt
4309 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4310                                                 unsigned idx) {
4311   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4312     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4313       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4314           ->getValue()
4315           .getZExtValue();
4316 
4317   return None;
4318 }
4319 
4320 //===----------------------------------------------------------------------===//
4321 //                        IndirectBrInst Implementation
4322 //===----------------------------------------------------------------------===//
4323 
4324 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4325   assert(Address && Address->getType()->isPointerTy() &&
4326          "Address of indirectbr must be a pointer");
4327   ReservedSpace = 1+NumDests;
4328   setNumHungOffUseOperands(1);
4329   allocHungoffUses(ReservedSpace);
4330 
4331   Op<0>() = Address;
4332 }
4333 
4334 
4335 /// growOperands - grow operands - This grows the operand list in response
4336 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4337 ///
4338 void IndirectBrInst::growOperands() {
4339   unsigned e = getNumOperands();
4340   unsigned NumOps = e*2;
4341 
4342   ReservedSpace = NumOps;
4343   growHungoffUses(ReservedSpace);
4344 }
4345 
4346 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4347                                Instruction *InsertBefore)
4348     : Instruction(Type::getVoidTy(Address->getContext()),
4349                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4350   init(Address, NumCases);
4351 }
4352 
4353 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4354                                BasicBlock *InsertAtEnd)
4355     : Instruction(Type::getVoidTy(Address->getContext()),
4356                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4357   init(Address, NumCases);
4358 }
4359 
4360 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4361     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4362                   nullptr, IBI.getNumOperands()) {
4363   allocHungoffUses(IBI.getNumOperands());
4364   Use *OL = getOperandList();
4365   const Use *InOL = IBI.getOperandList();
4366   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4367     OL[i] = InOL[i];
4368   SubclassOptionalData = IBI.SubclassOptionalData;
4369 }
4370 
4371 /// addDestination - Add a destination.
4372 ///
4373 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4374   unsigned OpNo = getNumOperands();
4375   if (OpNo+1 > ReservedSpace)
4376     growOperands();  // Get more space!
4377   // Initialize some new operands.
4378   assert(OpNo < ReservedSpace && "Growing didn't work!");
4379   setNumHungOffUseOperands(OpNo+1);
4380   getOperandList()[OpNo] = DestBB;
4381 }
4382 
4383 /// removeDestination - This method removes the specified successor from the
4384 /// indirectbr instruction.
4385 void IndirectBrInst::removeDestination(unsigned idx) {
4386   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4387 
4388   unsigned NumOps = getNumOperands();
4389   Use *OL = getOperandList();
4390 
4391   // Replace this value with the last one.
4392   OL[idx+1] = OL[NumOps-1];
4393 
4394   // Nuke the last value.
4395   OL[NumOps-1].set(nullptr);
4396   setNumHungOffUseOperands(NumOps-1);
4397 }
4398 
4399 //===----------------------------------------------------------------------===//
4400 //                            FreezeInst Implementation
4401 //===----------------------------------------------------------------------===//
4402 
4403 FreezeInst::FreezeInst(Value *S,
4404                        const Twine &Name, Instruction *InsertBefore)
4405     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4406   setName(Name);
4407 }
4408 
4409 FreezeInst::FreezeInst(Value *S,
4410                        const Twine &Name, BasicBlock *InsertAtEnd)
4411     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4412   setName(Name);
4413 }
4414 
4415 //===----------------------------------------------------------------------===//
4416 //                           cloneImpl() implementations
4417 //===----------------------------------------------------------------------===//
4418 
4419 // Define these methods here so vtables don't get emitted into every translation
4420 // unit that uses these classes.
4421 
4422 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4423   return new (getNumOperands()) GetElementPtrInst(*this);
4424 }
4425 
4426 UnaryOperator *UnaryOperator::cloneImpl() const {
4427   return Create(getOpcode(), Op<0>());
4428 }
4429 
4430 BinaryOperator *BinaryOperator::cloneImpl() const {
4431   return Create(getOpcode(), Op<0>(), Op<1>());
4432 }
4433 
4434 FCmpInst *FCmpInst::cloneImpl() const {
4435   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4436 }
4437 
4438 ICmpInst *ICmpInst::cloneImpl() const {
4439   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4440 }
4441 
4442 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4443   return new ExtractValueInst(*this);
4444 }
4445 
4446 InsertValueInst *InsertValueInst::cloneImpl() const {
4447   return new InsertValueInst(*this);
4448 }
4449 
4450 AllocaInst *AllocaInst::cloneImpl() const {
4451   AllocaInst *Result =
4452       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4453                      getOperand(0), getAlign());
4454   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4455   Result->setSwiftError(isSwiftError());
4456   return Result;
4457 }
4458 
4459 LoadInst *LoadInst::cloneImpl() const {
4460   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4461                       getAlign(), getOrdering(), getSyncScopeID());
4462 }
4463 
4464 StoreInst *StoreInst::cloneImpl() const {
4465   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4466                        getOrdering(), getSyncScopeID());
4467 }
4468 
4469 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4470   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4471       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4472       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4473   Result->setVolatile(isVolatile());
4474   Result->setWeak(isWeak());
4475   return Result;
4476 }
4477 
4478 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4479   AtomicRMWInst *Result =
4480       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4481                         getAlign(), getOrdering(), getSyncScopeID());
4482   Result->setVolatile(isVolatile());
4483   return Result;
4484 }
4485 
4486 FenceInst *FenceInst::cloneImpl() const {
4487   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4488 }
4489 
4490 TruncInst *TruncInst::cloneImpl() const {
4491   return new TruncInst(getOperand(0), getType());
4492 }
4493 
4494 ZExtInst *ZExtInst::cloneImpl() const {
4495   return new ZExtInst(getOperand(0), getType());
4496 }
4497 
4498 SExtInst *SExtInst::cloneImpl() const {
4499   return new SExtInst(getOperand(0), getType());
4500 }
4501 
4502 FPTruncInst *FPTruncInst::cloneImpl() const {
4503   return new FPTruncInst(getOperand(0), getType());
4504 }
4505 
4506 FPExtInst *FPExtInst::cloneImpl() const {
4507   return new FPExtInst(getOperand(0), getType());
4508 }
4509 
4510 UIToFPInst *UIToFPInst::cloneImpl() const {
4511   return new UIToFPInst(getOperand(0), getType());
4512 }
4513 
4514 SIToFPInst *SIToFPInst::cloneImpl() const {
4515   return new SIToFPInst(getOperand(0), getType());
4516 }
4517 
4518 FPToUIInst *FPToUIInst::cloneImpl() const {
4519   return new FPToUIInst(getOperand(0), getType());
4520 }
4521 
4522 FPToSIInst *FPToSIInst::cloneImpl() const {
4523   return new FPToSIInst(getOperand(0), getType());
4524 }
4525 
4526 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4527   return new PtrToIntInst(getOperand(0), getType());
4528 }
4529 
4530 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4531   return new IntToPtrInst(getOperand(0), getType());
4532 }
4533 
4534 BitCastInst *BitCastInst::cloneImpl() const {
4535   return new BitCastInst(getOperand(0), getType());
4536 }
4537 
4538 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4539   return new AddrSpaceCastInst(getOperand(0), getType());
4540 }
4541 
4542 CallInst *CallInst::cloneImpl() const {
4543   if (hasOperandBundles()) {
4544     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4545     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4546   }
4547   return  new(getNumOperands()) CallInst(*this);
4548 }
4549 
4550 SelectInst *SelectInst::cloneImpl() const {
4551   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4552 }
4553 
4554 VAArgInst *VAArgInst::cloneImpl() const {
4555   return new VAArgInst(getOperand(0), getType());
4556 }
4557 
4558 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4559   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4560 }
4561 
4562 InsertElementInst *InsertElementInst::cloneImpl() const {
4563   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4564 }
4565 
4566 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4567   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4568 }
4569 
4570 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4571 
4572 LandingPadInst *LandingPadInst::cloneImpl() const {
4573   return new LandingPadInst(*this);
4574 }
4575 
4576 ReturnInst *ReturnInst::cloneImpl() const {
4577   return new(getNumOperands()) ReturnInst(*this);
4578 }
4579 
4580 BranchInst *BranchInst::cloneImpl() const {
4581   return new(getNumOperands()) BranchInst(*this);
4582 }
4583 
4584 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4585 
4586 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4587   return new IndirectBrInst(*this);
4588 }
4589 
4590 InvokeInst *InvokeInst::cloneImpl() const {
4591   if (hasOperandBundles()) {
4592     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4593     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4594   }
4595   return new(getNumOperands()) InvokeInst(*this);
4596 }
4597 
4598 CallBrInst *CallBrInst::cloneImpl() const {
4599   if (hasOperandBundles()) {
4600     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4601     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4602   }
4603   return new (getNumOperands()) CallBrInst(*this);
4604 }
4605 
4606 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4607 
4608 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4609   return new (getNumOperands()) CleanupReturnInst(*this);
4610 }
4611 
4612 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4613   return new (getNumOperands()) CatchReturnInst(*this);
4614 }
4615 
4616 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4617   return new CatchSwitchInst(*this);
4618 }
4619 
4620 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4621   return new (getNumOperands()) FuncletPadInst(*this);
4622 }
4623 
4624 UnreachableInst *UnreachableInst::cloneImpl() const {
4625   LLVMContext &Context = getContext();
4626   return new UnreachableInst(Context);
4627 }
4628 
4629 FreezeInst *FreezeInst::cloneImpl() const {
4630   return new FreezeInst(getOperand(0));
4631 }
4632