1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements all of the non-inline methods for the LLVM instruction 10 // classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Instructions.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/IR/Attributes.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/TypeSize.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <vector> 45 46 using namespace llvm; 47 48 //===----------------------------------------------------------------------===// 49 // AllocaInst Class 50 //===----------------------------------------------------------------------===// 51 52 Optional<uint64_t> 53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { 54 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType()); 55 if (isArrayAllocation()) { 56 auto *C = dyn_cast<ConstantInt>(getArraySize()); 57 if (!C) 58 return None; 59 Size *= C->getZExtValue(); 60 } 61 return Size; 62 } 63 64 //===----------------------------------------------------------------------===// 65 // SelectInst Class 66 //===----------------------------------------------------------------------===// 67 68 /// areInvalidOperands - Return a string if the specified operands are invalid 69 /// for a select operation, otherwise return null. 70 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 71 if (Op1->getType() != Op2->getType()) 72 return "both values to select must have same type"; 73 74 if (Op1->getType()->isTokenTy()) 75 return "select values cannot have token type"; 76 77 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 78 // Vector select. 79 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 80 return "vector select condition element type must be i1"; 81 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 82 if (!ET) 83 return "selected values for vector select must be vectors"; 84 if (ET->getElementCount() != VT->getElementCount()) 85 return "vector select requires selected vectors to have " 86 "the same vector length as select condition"; 87 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 88 return "select condition must be i1 or <n x i1>"; 89 } 90 return nullptr; 91 } 92 93 //===----------------------------------------------------------------------===// 94 // PHINode Class 95 //===----------------------------------------------------------------------===// 96 97 PHINode::PHINode(const PHINode &PN) 98 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 99 ReservedSpace(PN.getNumOperands()) { 100 allocHungoffUses(PN.getNumOperands()); 101 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 102 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 103 SubclassOptionalData = PN.SubclassOptionalData; 104 } 105 106 // removeIncomingValue - Remove an incoming value. This is useful if a 107 // predecessor basic block is deleted. 108 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 109 Value *Removed = getIncomingValue(Idx); 110 111 // Move everything after this operand down. 112 // 113 // FIXME: we could just swap with the end of the list, then erase. However, 114 // clients might not expect this to happen. The code as it is thrashes the 115 // use/def lists, which is kinda lame. 116 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 117 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 118 119 // Nuke the last value. 120 Op<-1>().set(nullptr); 121 setNumHungOffUseOperands(getNumOperands() - 1); 122 123 // If the PHI node is dead, because it has zero entries, nuke it now. 124 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 125 // If anyone is using this PHI, make them use a dummy value instead... 126 replaceAllUsesWith(UndefValue::get(getType())); 127 eraseFromParent(); 128 } 129 return Removed; 130 } 131 132 /// growOperands - grow operands - This grows the operand list in response 133 /// to a push_back style of operation. This grows the number of ops by 1.5 134 /// times. 135 /// 136 void PHINode::growOperands() { 137 unsigned e = getNumOperands(); 138 unsigned NumOps = e + e / 2; 139 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 140 141 ReservedSpace = NumOps; 142 growHungoffUses(ReservedSpace, /* IsPhi */ true); 143 } 144 145 /// hasConstantValue - If the specified PHI node always merges together the same 146 /// value, return the value, otherwise return null. 147 Value *PHINode::hasConstantValue() const { 148 // Exploit the fact that phi nodes always have at least one entry. 149 Value *ConstantValue = getIncomingValue(0); 150 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 151 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 152 if (ConstantValue != this) 153 return nullptr; // Incoming values not all the same. 154 // The case where the first value is this PHI. 155 ConstantValue = getIncomingValue(i); 156 } 157 if (ConstantValue == this) 158 return UndefValue::get(getType()); 159 return ConstantValue; 160 } 161 162 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 163 /// together the same value, assuming that undefs result in the same value as 164 /// non-undefs. 165 /// Unlike \ref hasConstantValue, this does not return a value because the 166 /// unique non-undef incoming value need not dominate the PHI node. 167 bool PHINode::hasConstantOrUndefValue() const { 168 Value *ConstantValue = nullptr; 169 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 170 Value *Incoming = getIncomingValue(i); 171 if (Incoming != this && !isa<UndefValue>(Incoming)) { 172 if (ConstantValue && ConstantValue != Incoming) 173 return false; 174 ConstantValue = Incoming; 175 } 176 } 177 return true; 178 } 179 180 //===----------------------------------------------------------------------===// 181 // LandingPadInst Implementation 182 //===----------------------------------------------------------------------===// 183 184 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 185 const Twine &NameStr, Instruction *InsertBefore) 186 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 187 init(NumReservedValues, NameStr); 188 } 189 190 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 191 const Twine &NameStr, BasicBlock *InsertAtEnd) 192 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 193 init(NumReservedValues, NameStr); 194 } 195 196 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 197 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 198 LP.getNumOperands()), 199 ReservedSpace(LP.getNumOperands()) { 200 allocHungoffUses(LP.getNumOperands()); 201 Use *OL = getOperandList(); 202 const Use *InOL = LP.getOperandList(); 203 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 204 OL[I] = InOL[I]; 205 206 setCleanup(LP.isCleanup()); 207 } 208 209 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 210 const Twine &NameStr, 211 Instruction *InsertBefore) { 212 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 213 } 214 215 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 216 const Twine &NameStr, 217 BasicBlock *InsertAtEnd) { 218 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 219 } 220 221 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 222 ReservedSpace = NumReservedValues; 223 setNumHungOffUseOperands(0); 224 allocHungoffUses(ReservedSpace); 225 setName(NameStr); 226 setCleanup(false); 227 } 228 229 /// growOperands - grow operands - This grows the operand list in response to a 230 /// push_back style of operation. This grows the number of ops by 2 times. 231 void LandingPadInst::growOperands(unsigned Size) { 232 unsigned e = getNumOperands(); 233 if (ReservedSpace >= e + Size) return; 234 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 235 growHungoffUses(ReservedSpace); 236 } 237 238 void LandingPadInst::addClause(Constant *Val) { 239 unsigned OpNo = getNumOperands(); 240 growOperands(1); 241 assert(OpNo < ReservedSpace && "Growing didn't work!"); 242 setNumHungOffUseOperands(getNumOperands() + 1); 243 getOperandList()[OpNo] = Val; 244 } 245 246 //===----------------------------------------------------------------------===// 247 // CallBase Implementation 248 //===----------------------------------------------------------------------===// 249 250 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles, 251 Instruction *InsertPt) { 252 switch (CB->getOpcode()) { 253 case Instruction::Call: 254 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt); 255 case Instruction::Invoke: 256 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt); 257 case Instruction::CallBr: 258 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt); 259 default: 260 llvm_unreachable("Unknown CallBase sub-class!"); 261 } 262 } 263 264 Function *CallBase::getCaller() { return getParent()->getParent(); } 265 266 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { 267 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!"); 268 return cast<CallBrInst>(this)->getNumIndirectDests() + 1; 269 } 270 271 bool CallBase::isIndirectCall() const { 272 const Value *V = getCalledOperand(); 273 if (isa<Function>(V) || isa<Constant>(V)) 274 return false; 275 return !isInlineAsm(); 276 } 277 278 /// Tests if this call site must be tail call optimized. Only a CallInst can 279 /// be tail call optimized. 280 bool CallBase::isMustTailCall() const { 281 if (auto *CI = dyn_cast<CallInst>(this)) 282 return CI->isMustTailCall(); 283 return false; 284 } 285 286 /// Tests if this call site is marked as a tail call. 287 bool CallBase::isTailCall() const { 288 if (auto *CI = dyn_cast<CallInst>(this)) 289 return CI->isTailCall(); 290 return false; 291 } 292 293 Intrinsic::ID CallBase::getIntrinsicID() const { 294 if (auto *F = getCalledFunction()) 295 return F->getIntrinsicID(); 296 return Intrinsic::not_intrinsic; 297 } 298 299 bool CallBase::isReturnNonNull() const { 300 if (hasRetAttr(Attribute::NonNull)) 301 return true; 302 303 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 && 304 !NullPointerIsDefined(getCaller(), 305 getType()->getPointerAddressSpace())) 306 return true; 307 308 return false; 309 } 310 311 Value *CallBase::getReturnedArgOperand() const { 312 unsigned Index; 313 314 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 315 return getArgOperand(Index - AttributeList::FirstArgIndex); 316 if (const Function *F = getCalledFunction()) 317 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 318 Index) 319 return getArgOperand(Index - AttributeList::FirstArgIndex); 320 321 return nullptr; 322 } 323 324 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const { 325 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind)) 326 return true; 327 328 // Look at the callee, if available. 329 if (const Function *F = getCalledFunction()) 330 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind); 331 return false; 332 } 333 334 /// Determine whether the argument or parameter has the given attribute. 335 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { 336 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!"); 337 338 if (Attrs.hasParamAttribute(ArgNo, Kind)) 339 return true; 340 if (const Function *F = getCalledFunction()) 341 return F->getAttributes().hasParamAttribute(ArgNo, Kind); 342 return false; 343 } 344 345 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { 346 if (const Function *F = getCalledFunction()) 347 return F->getAttributes().hasFnAttribute(Kind); 348 return false; 349 } 350 351 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { 352 if (const Function *F = getCalledFunction()) 353 return F->getAttributes().hasFnAttribute(Kind); 354 return false; 355 } 356 357 void CallBase::getOperandBundlesAsDefs( 358 SmallVectorImpl<OperandBundleDef> &Defs) const { 359 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) 360 Defs.emplace_back(getOperandBundleAt(i)); 361 } 362 363 CallBase::op_iterator 364 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, 365 const unsigned BeginIndex) { 366 auto It = op_begin() + BeginIndex; 367 for (auto &B : Bundles) 368 It = std::copy(B.input_begin(), B.input_end(), It); 369 370 auto *ContextImpl = getContext().pImpl; 371 auto BI = Bundles.begin(); 372 unsigned CurrentIndex = BeginIndex; 373 374 for (auto &BOI : bundle_op_infos()) { 375 assert(BI != Bundles.end() && "Incorrect allocation?"); 376 377 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); 378 BOI.Begin = CurrentIndex; 379 BOI.End = CurrentIndex + BI->input_size(); 380 CurrentIndex = BOI.End; 381 BI++; 382 } 383 384 assert(BI == Bundles.end() && "Incorrect allocation?"); 385 386 return It; 387 } 388 389 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) { 390 /// When there isn't many bundles, we do a simple linear search. 391 /// Else fallback to a binary-search that use the fact that bundles usually 392 /// have similar number of argument to get faster convergence. 393 if (bundle_op_info_end() - bundle_op_info_begin() < 8) { 394 for (auto &BOI : bundle_op_infos()) 395 if (BOI.Begin <= OpIdx && OpIdx < BOI.End) 396 return BOI; 397 398 llvm_unreachable("Did not find operand bundle for operand!"); 399 } 400 401 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles"); 402 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 && 403 OpIdx < std::prev(bundle_op_info_end())->End && 404 "The Idx isn't in the operand bundle"); 405 406 /// We need a decimal number below and to prevent using floating point numbers 407 /// we use an intergal value multiplied by this constant. 408 constexpr unsigned NumberScaling = 1024; 409 410 bundle_op_iterator Begin = bundle_op_info_begin(); 411 bundle_op_iterator End = bundle_op_info_end(); 412 bundle_op_iterator Current; 413 414 while (Begin != End) { 415 unsigned ScaledOperandPerBundle = 416 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin); 417 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) / 418 ScaledOperandPerBundle); 419 if (Current >= End) 420 Current = std::prev(End); 421 assert(Current < End && Current >= Begin && 422 "the operand bundle doesn't cover every value in the range"); 423 if (OpIdx >= Current->Begin && OpIdx < Current->End) 424 break; 425 if (OpIdx >= Current->End) 426 Begin = Current + 1; 427 else 428 End = Current; 429 } 430 431 assert(OpIdx >= Current->Begin && OpIdx < Current->End && 432 "the operand bundle doesn't cover every value in the range"); 433 return *Current; 434 } 435 436 //===----------------------------------------------------------------------===// 437 // CallInst Implementation 438 //===----------------------------------------------------------------------===// 439 440 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 441 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 442 this->FTy = FTy; 443 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 444 "NumOperands not set up?"); 445 setCalledOperand(Func); 446 447 #ifndef NDEBUG 448 assert((Args.size() == FTy->getNumParams() || 449 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 450 "Calling a function with bad signature!"); 451 452 for (unsigned i = 0; i != Args.size(); ++i) 453 assert((i >= FTy->getNumParams() || 454 FTy->getParamType(i) == Args[i]->getType()) && 455 "Calling a function with a bad signature!"); 456 #endif 457 458 llvm::copy(Args, op_begin()); 459 460 auto It = populateBundleOperandInfos(Bundles, Args.size()); 461 (void)It; 462 assert(It + 1 == op_end() && "Should add up!"); 463 464 setName(NameStr); 465 } 466 467 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { 468 this->FTy = FTy; 469 assert(getNumOperands() == 1 && "NumOperands not set up?"); 470 setCalledOperand(Func); 471 472 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 473 474 setName(NameStr); 475 } 476 477 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 478 Instruction *InsertBefore) 479 : CallBase(Ty->getReturnType(), Instruction::Call, 480 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { 481 init(Ty, Func, Name); 482 } 483 484 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 485 BasicBlock *InsertAtEnd) 486 : CallBase(Ty->getReturnType(), Instruction::Call, 487 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) { 488 init(Ty, Func, Name); 489 } 490 491 CallInst::CallInst(const CallInst &CI) 492 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, 493 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), 494 CI.getNumOperands()) { 495 setTailCallKind(CI.getTailCallKind()); 496 setCallingConv(CI.getCallingConv()); 497 498 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 499 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 500 bundle_op_info_begin()); 501 SubclassOptionalData = CI.SubclassOptionalData; 502 } 503 504 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 505 Instruction *InsertPt) { 506 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 507 508 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(), 509 Args, OpB, CI->getName(), InsertPt); 510 NewCI->setTailCallKind(CI->getTailCallKind()); 511 NewCI->setCallingConv(CI->getCallingConv()); 512 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 513 NewCI->setAttributes(CI->getAttributes()); 514 NewCI->setDebugLoc(CI->getDebugLoc()); 515 return NewCI; 516 } 517 518 CallInst *CallInst::CreateWithReplacedBundle(CallInst *CI, OperandBundleDef OpB, 519 Instruction *InsertPt) { 520 SmallVector<OperandBundleDef, 2> OpDefs; 521 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) { 522 auto ChildOB = CI->getOperandBundleAt(i); 523 if (ChildOB.getTagName() != OpB.getTag()) 524 OpDefs.emplace_back(ChildOB); 525 } 526 OpDefs.emplace_back(OpB); 527 return CallInst::Create(CI, OpDefs, InsertPt); 528 } 529 530 // Update profile weight for call instruction by scaling it using the ratio 531 // of S/T. The meaning of "branch_weights" meta data for call instruction is 532 // transfered to represent call count. 533 void CallInst::updateProfWeight(uint64_t S, uint64_t T) { 534 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 535 if (ProfileData == nullptr) 536 return; 537 538 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 539 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") && 540 !ProfDataName->getString().equals("VP"))) 541 return; 542 543 if (T == 0) { 544 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " 545 "div by 0. Ignoring. Likely the function " 546 << getParent()->getParent()->getName() 547 << " has 0 entry count, and contains call instructions " 548 "with non-zero prof info."); 549 return; 550 } 551 552 MDBuilder MDB(getContext()); 553 SmallVector<Metadata *, 3> Vals; 554 Vals.push_back(ProfileData->getOperand(0)); 555 APInt APS(128, S), APT(128, T); 556 if (ProfDataName->getString().equals("branch_weights") && 557 ProfileData->getNumOperands() > 0) { 558 // Using APInt::div may be expensive, but most cases should fit 64 bits. 559 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)) 560 ->getValue() 561 .getZExtValue()); 562 Val *= APS; 563 Vals.push_back(MDB.createConstant(ConstantInt::get( 564 Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue()))); 565 } else if (ProfDataName->getString().equals("VP")) 566 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) { 567 // The first value is the key of the value profile, which will not change. 568 Vals.push_back(ProfileData->getOperand(i)); 569 // Using APInt::div may be expensive, but most cases should fit 64 bits. 570 APInt Val(128, 571 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1)) 572 ->getValue() 573 .getZExtValue()); 574 Val *= APS; 575 Vals.push_back(MDB.createConstant( 576 ConstantInt::get(Type::getInt64Ty(getContext()), 577 Val.udiv(APT).getLimitedValue()))); 578 } 579 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals)); 580 } 581 582 /// IsConstantOne - Return true only if val is constant int 1 583 static bool IsConstantOne(Value *val) { 584 assert(val && "IsConstantOne does not work with nullptr val"); 585 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 586 return CVal && CVal->isOne(); 587 } 588 589 static Instruction *createMalloc(Instruction *InsertBefore, 590 BasicBlock *InsertAtEnd, Type *IntPtrTy, 591 Type *AllocTy, Value *AllocSize, 592 Value *ArraySize, 593 ArrayRef<OperandBundleDef> OpB, 594 Function *MallocF, const Twine &Name) { 595 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 596 "createMalloc needs either InsertBefore or InsertAtEnd"); 597 598 // malloc(type) becomes: 599 // bitcast (i8* malloc(typeSize)) to type* 600 // malloc(type, arraySize) becomes: 601 // bitcast (i8* malloc(typeSize*arraySize)) to type* 602 if (!ArraySize) 603 ArraySize = ConstantInt::get(IntPtrTy, 1); 604 else if (ArraySize->getType() != IntPtrTy) { 605 if (InsertBefore) 606 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 607 "", InsertBefore); 608 else 609 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 610 "", InsertAtEnd); 611 } 612 613 if (!IsConstantOne(ArraySize)) { 614 if (IsConstantOne(AllocSize)) { 615 AllocSize = ArraySize; // Operand * 1 = Operand 616 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 617 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 618 false /*ZExt*/); 619 // Malloc arg is constant product of type size and array size 620 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 621 } else { 622 // Multiply type size by the array size... 623 if (InsertBefore) 624 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 625 "mallocsize", InsertBefore); 626 else 627 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 628 "mallocsize", InsertAtEnd); 629 } 630 } 631 632 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 633 // Create the call to Malloc. 634 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 635 Module *M = BB->getParent()->getParent(); 636 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 637 FunctionCallee MallocFunc = MallocF; 638 if (!MallocFunc) 639 // prototype malloc as "void *malloc(size_t)" 640 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); 641 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 642 CallInst *MCall = nullptr; 643 Instruction *Result = nullptr; 644 if (InsertBefore) { 645 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 646 InsertBefore); 647 Result = MCall; 648 if (Result->getType() != AllocPtrType) 649 // Create a cast instruction to convert to the right type... 650 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 651 } else { 652 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 653 Result = MCall; 654 if (Result->getType() != AllocPtrType) { 655 InsertAtEnd->getInstList().push_back(MCall); 656 // Create a cast instruction to convert to the right type... 657 Result = new BitCastInst(MCall, AllocPtrType, Name); 658 } 659 } 660 MCall->setTailCall(); 661 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { 662 MCall->setCallingConv(F->getCallingConv()); 663 if (!F->returnDoesNotAlias()) 664 F->setReturnDoesNotAlias(); 665 } 666 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 667 668 return Result; 669 } 670 671 /// CreateMalloc - Generate the IR for a call to malloc: 672 /// 1. Compute the malloc call's argument as the specified type's size, 673 /// possibly multiplied by the array size if the array size is not 674 /// constant 1. 675 /// 2. Call malloc with that argument. 676 /// 3. Bitcast the result of the malloc call to the specified type. 677 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 678 Type *IntPtrTy, Type *AllocTy, 679 Value *AllocSize, Value *ArraySize, 680 Function *MallocF, 681 const Twine &Name) { 682 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 683 ArraySize, None, MallocF, Name); 684 } 685 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 686 Type *IntPtrTy, Type *AllocTy, 687 Value *AllocSize, Value *ArraySize, 688 ArrayRef<OperandBundleDef> OpB, 689 Function *MallocF, 690 const Twine &Name) { 691 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 692 ArraySize, OpB, MallocF, Name); 693 } 694 695 /// CreateMalloc - Generate the IR for a call to malloc: 696 /// 1. Compute the malloc call's argument as the specified type's size, 697 /// possibly multiplied by the array size if the array size is not 698 /// constant 1. 699 /// 2. Call malloc with that argument. 700 /// 3. Bitcast the result of the malloc call to the specified type. 701 /// Note: This function does not add the bitcast to the basic block, that is the 702 /// responsibility of the caller. 703 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 704 Type *IntPtrTy, Type *AllocTy, 705 Value *AllocSize, Value *ArraySize, 706 Function *MallocF, const Twine &Name) { 707 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 708 ArraySize, None, MallocF, Name); 709 } 710 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 711 Type *IntPtrTy, Type *AllocTy, 712 Value *AllocSize, Value *ArraySize, 713 ArrayRef<OperandBundleDef> OpB, 714 Function *MallocF, const Twine &Name) { 715 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 716 ArraySize, OpB, MallocF, Name); 717 } 718 719 static Instruction *createFree(Value *Source, 720 ArrayRef<OperandBundleDef> Bundles, 721 Instruction *InsertBefore, 722 BasicBlock *InsertAtEnd) { 723 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 724 "createFree needs either InsertBefore or InsertAtEnd"); 725 assert(Source->getType()->isPointerTy() && 726 "Can not free something of nonpointer type!"); 727 728 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 729 Module *M = BB->getParent()->getParent(); 730 731 Type *VoidTy = Type::getVoidTy(M->getContext()); 732 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 733 // prototype free as "void free(void*)" 734 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); 735 CallInst *Result = nullptr; 736 Value *PtrCast = Source; 737 if (InsertBefore) { 738 if (Source->getType() != IntPtrTy) 739 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 740 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 741 } else { 742 if (Source->getType() != IntPtrTy) 743 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 744 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 745 } 746 Result->setTailCall(); 747 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) 748 Result->setCallingConv(F->getCallingConv()); 749 750 return Result; 751 } 752 753 /// CreateFree - Generate the IR for a call to the builtin free function. 754 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 755 return createFree(Source, None, InsertBefore, nullptr); 756 } 757 Instruction *CallInst::CreateFree(Value *Source, 758 ArrayRef<OperandBundleDef> Bundles, 759 Instruction *InsertBefore) { 760 return createFree(Source, Bundles, InsertBefore, nullptr); 761 } 762 763 /// CreateFree - Generate the IR for a call to the builtin free function. 764 /// Note: This function does not add the call to the basic block, that is the 765 /// responsibility of the caller. 766 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 767 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 768 assert(FreeCall && "CreateFree did not create a CallInst"); 769 return FreeCall; 770 } 771 Instruction *CallInst::CreateFree(Value *Source, 772 ArrayRef<OperandBundleDef> Bundles, 773 BasicBlock *InsertAtEnd) { 774 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 775 assert(FreeCall && "CreateFree did not create a CallInst"); 776 return FreeCall; 777 } 778 779 //===----------------------------------------------------------------------===// 780 // InvokeInst Implementation 781 //===----------------------------------------------------------------------===// 782 783 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 784 BasicBlock *IfException, ArrayRef<Value *> Args, 785 ArrayRef<OperandBundleDef> Bundles, 786 const Twine &NameStr) { 787 this->FTy = FTy; 788 789 assert((int)getNumOperands() == 790 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && 791 "NumOperands not set up?"); 792 setNormalDest(IfNormal); 793 setUnwindDest(IfException); 794 setCalledOperand(Fn); 795 796 #ifndef NDEBUG 797 assert(((Args.size() == FTy->getNumParams()) || 798 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 799 "Invoking a function with bad signature"); 800 801 for (unsigned i = 0, e = Args.size(); i != e; i++) 802 assert((i >= FTy->getNumParams() || 803 FTy->getParamType(i) == Args[i]->getType()) && 804 "Invoking a function with a bad signature!"); 805 #endif 806 807 llvm::copy(Args, op_begin()); 808 809 auto It = populateBundleOperandInfos(Bundles, Args.size()); 810 (void)It; 811 assert(It + 3 == op_end() && "Should add up!"); 812 813 setName(NameStr); 814 } 815 816 InvokeInst::InvokeInst(const InvokeInst &II) 817 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, 818 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), 819 II.getNumOperands()) { 820 setCallingConv(II.getCallingConv()); 821 std::copy(II.op_begin(), II.op_end(), op_begin()); 822 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 823 bundle_op_info_begin()); 824 SubclassOptionalData = II.SubclassOptionalData; 825 } 826 827 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 828 Instruction *InsertPt) { 829 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 830 831 auto *NewII = InvokeInst::Create( 832 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(), 833 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt); 834 NewII->setCallingConv(II->getCallingConv()); 835 NewII->SubclassOptionalData = II->SubclassOptionalData; 836 NewII->setAttributes(II->getAttributes()); 837 NewII->setDebugLoc(II->getDebugLoc()); 838 return NewII; 839 } 840 841 InvokeInst *InvokeInst::CreateWithReplacedBundle(InvokeInst *II, 842 OperandBundleDef OpB, 843 Instruction *InsertPt) { 844 SmallVector<OperandBundleDef, 2> OpDefs; 845 for (unsigned i = 0, e = II->getNumOperandBundles(); i < e; ++i) { 846 auto ChildOB = II->getOperandBundleAt(i); 847 if (ChildOB.getTagName() != OpB.getTag()) 848 OpDefs.emplace_back(ChildOB); 849 } 850 OpDefs.emplace_back(OpB); 851 return InvokeInst::Create(II, OpDefs, InsertPt); 852 } 853 854 LandingPadInst *InvokeInst::getLandingPadInst() const { 855 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 856 } 857 858 //===----------------------------------------------------------------------===// 859 // CallBrInst Implementation 860 //===----------------------------------------------------------------------===// 861 862 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, 863 ArrayRef<BasicBlock *> IndirectDests, 864 ArrayRef<Value *> Args, 865 ArrayRef<OperandBundleDef> Bundles, 866 const Twine &NameStr) { 867 this->FTy = FTy; 868 869 assert((int)getNumOperands() == 870 ComputeNumOperands(Args.size(), IndirectDests.size(), 871 CountBundleInputs(Bundles)) && 872 "NumOperands not set up?"); 873 NumIndirectDests = IndirectDests.size(); 874 setDefaultDest(Fallthrough); 875 for (unsigned i = 0; i != NumIndirectDests; ++i) 876 setIndirectDest(i, IndirectDests[i]); 877 setCalledOperand(Fn); 878 879 #ifndef NDEBUG 880 assert(((Args.size() == FTy->getNumParams()) || 881 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 882 "Calling a function with bad signature"); 883 884 for (unsigned i = 0, e = Args.size(); i != e; i++) 885 assert((i >= FTy->getNumParams() || 886 FTy->getParamType(i) == Args[i]->getType()) && 887 "Calling a function with a bad signature!"); 888 #endif 889 890 std::copy(Args.begin(), Args.end(), op_begin()); 891 892 auto It = populateBundleOperandInfos(Bundles, Args.size()); 893 (void)It; 894 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!"); 895 896 setName(NameStr); 897 } 898 899 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) { 900 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr"); 901 if (BasicBlock *OldBB = getIndirectDest(i)) { 902 BlockAddress *Old = BlockAddress::get(OldBB); 903 BlockAddress *New = BlockAddress::get(B); 904 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo) 905 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old) 906 setArgOperand(ArgNo, New); 907 } 908 } 909 910 CallBrInst::CallBrInst(const CallBrInst &CBI) 911 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, 912 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(), 913 CBI.getNumOperands()) { 914 setCallingConv(CBI.getCallingConv()); 915 std::copy(CBI.op_begin(), CBI.op_end(), op_begin()); 916 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(), 917 bundle_op_info_begin()); 918 SubclassOptionalData = CBI.SubclassOptionalData; 919 NumIndirectDests = CBI.NumIndirectDests; 920 } 921 922 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, 923 Instruction *InsertPt) { 924 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); 925 926 auto *NewCBI = CallBrInst::Create( 927 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(), 928 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt); 929 NewCBI->setCallingConv(CBI->getCallingConv()); 930 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; 931 NewCBI->setAttributes(CBI->getAttributes()); 932 NewCBI->setDebugLoc(CBI->getDebugLoc()); 933 NewCBI->NumIndirectDests = CBI->NumIndirectDests; 934 return NewCBI; 935 } 936 937 //===----------------------------------------------------------------------===// 938 // ReturnInst Implementation 939 //===----------------------------------------------------------------------===// 940 941 ReturnInst::ReturnInst(const ReturnInst &RI) 942 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, 943 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), 944 RI.getNumOperands()) { 945 if (RI.getNumOperands()) 946 Op<0>() = RI.Op<0>(); 947 SubclassOptionalData = RI.SubclassOptionalData; 948 } 949 950 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 951 : Instruction(Type::getVoidTy(C), Instruction::Ret, 952 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 953 InsertBefore) { 954 if (retVal) 955 Op<0>() = retVal; 956 } 957 958 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 959 : Instruction(Type::getVoidTy(C), Instruction::Ret, 960 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 961 InsertAtEnd) { 962 if (retVal) 963 Op<0>() = retVal; 964 } 965 966 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 967 : Instruction(Type::getVoidTy(Context), Instruction::Ret, 968 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {} 969 970 //===----------------------------------------------------------------------===// 971 // ResumeInst Implementation 972 //===----------------------------------------------------------------------===// 973 974 ResumeInst::ResumeInst(const ResumeInst &RI) 975 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, 976 OperandTraits<ResumeInst>::op_begin(this), 1) { 977 Op<0>() = RI.Op<0>(); 978 } 979 980 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 981 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 982 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 983 Op<0>() = Exn; 984 } 985 986 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 987 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 988 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 989 Op<0>() = Exn; 990 } 991 992 //===----------------------------------------------------------------------===// 993 // CleanupReturnInst Implementation 994 //===----------------------------------------------------------------------===// 995 996 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 997 : Instruction(CRI.getType(), Instruction::CleanupRet, 998 OperandTraits<CleanupReturnInst>::op_end(this) - 999 CRI.getNumOperands(), 1000 CRI.getNumOperands()) { 1001 setSubclassData<Instruction::OpaqueField>( 1002 CRI.getSubclassData<Instruction::OpaqueField>()); 1003 Op<0>() = CRI.Op<0>(); 1004 if (CRI.hasUnwindDest()) 1005 Op<1>() = CRI.Op<1>(); 1006 } 1007 1008 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 1009 if (UnwindBB) 1010 setSubclassData<UnwindDestField>(true); 1011 1012 Op<0>() = CleanupPad; 1013 if (UnwindBB) 1014 Op<1>() = UnwindBB; 1015 } 1016 1017 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 1018 unsigned Values, Instruction *InsertBefore) 1019 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 1020 Instruction::CleanupRet, 1021 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 1022 Values, InsertBefore) { 1023 init(CleanupPad, UnwindBB); 1024 } 1025 1026 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 1027 unsigned Values, BasicBlock *InsertAtEnd) 1028 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 1029 Instruction::CleanupRet, 1030 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 1031 Values, InsertAtEnd) { 1032 init(CleanupPad, UnwindBB); 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // CatchReturnInst Implementation 1037 //===----------------------------------------------------------------------===// 1038 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 1039 Op<0>() = CatchPad; 1040 Op<1>() = BB; 1041 } 1042 1043 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 1044 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 1045 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 1046 Op<0>() = CRI.Op<0>(); 1047 Op<1>() = CRI.Op<1>(); 1048 } 1049 1050 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1051 Instruction *InsertBefore) 1052 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1053 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1054 InsertBefore) { 1055 init(CatchPad, BB); 1056 } 1057 1058 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1059 BasicBlock *InsertAtEnd) 1060 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1061 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1062 InsertAtEnd) { 1063 init(CatchPad, BB); 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // CatchSwitchInst Implementation 1068 //===----------------------------------------------------------------------===// 1069 1070 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1071 unsigned NumReservedValues, 1072 const Twine &NameStr, 1073 Instruction *InsertBefore) 1074 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1075 InsertBefore) { 1076 if (UnwindDest) 1077 ++NumReservedValues; 1078 init(ParentPad, UnwindDest, NumReservedValues + 1); 1079 setName(NameStr); 1080 } 1081 1082 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1083 unsigned NumReservedValues, 1084 const Twine &NameStr, BasicBlock *InsertAtEnd) 1085 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1086 InsertAtEnd) { 1087 if (UnwindDest) 1088 ++NumReservedValues; 1089 init(ParentPad, UnwindDest, NumReservedValues + 1); 1090 setName(NameStr); 1091 } 1092 1093 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 1094 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, 1095 CSI.getNumOperands()) { 1096 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 1097 setNumHungOffUseOperands(ReservedSpace); 1098 Use *OL = getOperandList(); 1099 const Use *InOL = CSI.getOperandList(); 1100 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 1101 OL[I] = InOL[I]; 1102 } 1103 1104 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 1105 unsigned NumReservedValues) { 1106 assert(ParentPad && NumReservedValues); 1107 1108 ReservedSpace = NumReservedValues; 1109 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 1110 allocHungoffUses(ReservedSpace); 1111 1112 Op<0>() = ParentPad; 1113 if (UnwindDest) { 1114 setSubclassData<UnwindDestField>(true); 1115 setUnwindDest(UnwindDest); 1116 } 1117 } 1118 1119 /// growOperands - grow operands - This grows the operand list in response to a 1120 /// push_back style of operation. This grows the number of ops by 2 times. 1121 void CatchSwitchInst::growOperands(unsigned Size) { 1122 unsigned NumOperands = getNumOperands(); 1123 assert(NumOperands >= 1); 1124 if (ReservedSpace >= NumOperands + Size) 1125 return; 1126 ReservedSpace = (NumOperands + Size / 2) * 2; 1127 growHungoffUses(ReservedSpace); 1128 } 1129 1130 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 1131 unsigned OpNo = getNumOperands(); 1132 growOperands(1); 1133 assert(OpNo < ReservedSpace && "Growing didn't work!"); 1134 setNumHungOffUseOperands(getNumOperands() + 1); 1135 getOperandList()[OpNo] = Handler; 1136 } 1137 1138 void CatchSwitchInst::removeHandler(handler_iterator HI) { 1139 // Move all subsequent handlers up one. 1140 Use *EndDst = op_end() - 1; 1141 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 1142 *CurDst = *(CurDst + 1); 1143 // Null out the last handler use. 1144 *EndDst = nullptr; 1145 1146 setNumHungOffUseOperands(getNumOperands() - 1); 1147 } 1148 1149 //===----------------------------------------------------------------------===// 1150 // FuncletPadInst Implementation 1151 //===----------------------------------------------------------------------===// 1152 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1153 const Twine &NameStr) { 1154 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1155 llvm::copy(Args, op_begin()); 1156 setParentPad(ParentPad); 1157 setName(NameStr); 1158 } 1159 1160 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1161 : Instruction(FPI.getType(), FPI.getOpcode(), 1162 OperandTraits<FuncletPadInst>::op_end(this) - 1163 FPI.getNumOperands(), 1164 FPI.getNumOperands()) { 1165 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1166 setParentPad(FPI.getParentPad()); 1167 } 1168 1169 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1170 ArrayRef<Value *> Args, unsigned Values, 1171 const Twine &NameStr, Instruction *InsertBefore) 1172 : Instruction(ParentPad->getType(), Op, 1173 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1174 InsertBefore) { 1175 init(ParentPad, Args, NameStr); 1176 } 1177 1178 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1179 ArrayRef<Value *> Args, unsigned Values, 1180 const Twine &NameStr, BasicBlock *InsertAtEnd) 1181 : Instruction(ParentPad->getType(), Op, 1182 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1183 InsertAtEnd) { 1184 init(ParentPad, Args, NameStr); 1185 } 1186 1187 //===----------------------------------------------------------------------===// 1188 // UnreachableInst Implementation 1189 //===----------------------------------------------------------------------===// 1190 1191 UnreachableInst::UnreachableInst(LLVMContext &Context, 1192 Instruction *InsertBefore) 1193 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1194 0, InsertBefore) {} 1195 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1196 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1197 0, InsertAtEnd) {} 1198 1199 //===----------------------------------------------------------------------===// 1200 // BranchInst Implementation 1201 //===----------------------------------------------------------------------===// 1202 1203 void BranchInst::AssertOK() { 1204 if (isConditional()) 1205 assert(getCondition()->getType()->isIntegerTy(1) && 1206 "May only branch on boolean predicates!"); 1207 } 1208 1209 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1210 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1211 OperandTraits<BranchInst>::op_end(this) - 1, 1, 1212 InsertBefore) { 1213 assert(IfTrue && "Branch destination may not be null!"); 1214 Op<-1>() = IfTrue; 1215 } 1216 1217 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1218 Instruction *InsertBefore) 1219 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1220 OperandTraits<BranchInst>::op_end(this) - 3, 3, 1221 InsertBefore) { 1222 Op<-1>() = IfTrue; 1223 Op<-2>() = IfFalse; 1224 Op<-3>() = Cond; 1225 #ifndef NDEBUG 1226 AssertOK(); 1227 #endif 1228 } 1229 1230 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1231 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1232 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { 1233 assert(IfTrue && "Branch destination may not be null!"); 1234 Op<-1>() = IfTrue; 1235 } 1236 1237 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1238 BasicBlock *InsertAtEnd) 1239 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1240 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { 1241 Op<-1>() = IfTrue; 1242 Op<-2>() = IfFalse; 1243 Op<-3>() = Cond; 1244 #ifndef NDEBUG 1245 AssertOK(); 1246 #endif 1247 } 1248 1249 BranchInst::BranchInst(const BranchInst &BI) 1250 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, 1251 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1252 BI.getNumOperands()) { 1253 Op<-1>() = BI.Op<-1>(); 1254 if (BI.getNumOperands() != 1) { 1255 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1256 Op<-3>() = BI.Op<-3>(); 1257 Op<-2>() = BI.Op<-2>(); 1258 } 1259 SubclassOptionalData = BI.SubclassOptionalData; 1260 } 1261 1262 void BranchInst::swapSuccessors() { 1263 assert(isConditional() && 1264 "Cannot swap successors of an unconditional branch"); 1265 Op<-1>().swap(Op<-2>()); 1266 1267 // Update profile metadata if present and it matches our structural 1268 // expectations. 1269 swapProfMetadata(); 1270 } 1271 1272 //===----------------------------------------------------------------------===// 1273 // AllocaInst Implementation 1274 //===----------------------------------------------------------------------===// 1275 1276 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1277 if (!Amt) 1278 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1279 else { 1280 assert(!isa<BasicBlock>(Amt) && 1281 "Passed basic block into allocation size parameter! Use other ctor"); 1282 assert(Amt->getType()->isIntegerTy() && 1283 "Allocation array size is not an integer!"); 1284 } 1285 return Amt; 1286 } 1287 1288 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) { 1289 assert(BB && "Insertion BB cannot be null when alignment not provided!"); 1290 assert(BB->getParent() && 1291 "BB must be in a Function when alignment not provided!"); 1292 const DataLayout &DL = BB->getModule()->getDataLayout(); 1293 return DL.getPrefTypeAlign(Ty); 1294 } 1295 1296 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) { 1297 assert(I && "Insertion position cannot be null when alignment not provided!"); 1298 return computeAllocaDefaultAlign(Ty, I->getParent()); 1299 } 1300 1301 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1302 Instruction *InsertBefore) 1303 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1304 1305 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1306 BasicBlock *InsertAtEnd) 1307 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1308 1309 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1310 const Twine &Name, Instruction *InsertBefore) 1311 : AllocaInst(Ty, AddrSpace, ArraySize, 1312 computeAllocaDefaultAlign(Ty, InsertBefore), Name, 1313 InsertBefore) {} 1314 1315 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1316 const Twine &Name, BasicBlock *InsertAtEnd) 1317 : AllocaInst(Ty, AddrSpace, ArraySize, 1318 computeAllocaDefaultAlign(Ty, InsertAtEnd), Name, 1319 InsertAtEnd) {} 1320 1321 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1322 Align Align, const Twine &Name, 1323 Instruction *InsertBefore) 1324 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1325 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1326 AllocatedType(Ty) { 1327 setAlignment(Align); 1328 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1329 setName(Name); 1330 } 1331 1332 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1333 Align Align, const Twine &Name, BasicBlock *InsertAtEnd) 1334 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1335 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1336 AllocatedType(Ty) { 1337 setAlignment(Align); 1338 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1339 setName(Name); 1340 } 1341 1342 1343 bool AllocaInst::isArrayAllocation() const { 1344 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1345 return !CI->isOne(); 1346 return true; 1347 } 1348 1349 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1350 /// function and is a constant size. If so, the code generator will fold it 1351 /// into the prolog/epilog code, so it is basically free. 1352 bool AllocaInst::isStaticAlloca() const { 1353 // Must be constant size. 1354 if (!isa<ConstantInt>(getArraySize())) return false; 1355 1356 // Must be in the entry block. 1357 const BasicBlock *Parent = getParent(); 1358 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1359 } 1360 1361 //===----------------------------------------------------------------------===// 1362 // LoadInst Implementation 1363 //===----------------------------------------------------------------------===// 1364 1365 void LoadInst::AssertOK() { 1366 assert(getOperand(0)->getType()->isPointerTy() && 1367 "Ptr must have pointer type."); 1368 assert(!(isAtomic() && getAlignment() == 0) && 1369 "Alignment required for atomic load"); 1370 } 1371 1372 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) { 1373 assert(BB && "Insertion BB cannot be null when alignment not provided!"); 1374 assert(BB->getParent() && 1375 "BB must be in a Function when alignment not provided!"); 1376 const DataLayout &DL = BB->getModule()->getDataLayout(); 1377 return DL.getABITypeAlign(Ty); 1378 } 1379 1380 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) { 1381 assert(I && "Insertion position cannot be null when alignment not provided!"); 1382 return computeLoadStoreDefaultAlign(Ty, I->getParent()); 1383 } 1384 1385 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1386 Instruction *InsertBef) 1387 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1388 1389 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1390 BasicBlock *InsertAE) 1391 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1392 1393 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1394 Instruction *InsertBef) 1395 : LoadInst(Ty, Ptr, Name, isVolatile, 1396 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {} 1397 1398 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1399 BasicBlock *InsertAE) 1400 : LoadInst(Ty, Ptr, Name, isVolatile, 1401 computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {} 1402 1403 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1404 Align Align, Instruction *InsertBef) 1405 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1406 SyncScope::System, InsertBef) {} 1407 1408 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1409 Align Align, BasicBlock *InsertAE) 1410 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1411 SyncScope::System, InsertAE) {} 1412 1413 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1414 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1415 Instruction *InsertBef) 1416 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1417 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1418 setVolatile(isVolatile); 1419 setAlignment(Align); 1420 setAtomic(Order, SSID); 1421 AssertOK(); 1422 setName(Name); 1423 } 1424 1425 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1426 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1427 BasicBlock *InsertAE) 1428 : UnaryInstruction(Ty, Load, Ptr, InsertAE) { 1429 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1430 setVolatile(isVolatile); 1431 setAlignment(Align); 1432 setAtomic(Order, SSID); 1433 AssertOK(); 1434 setName(Name); 1435 } 1436 1437 //===----------------------------------------------------------------------===// 1438 // StoreInst Implementation 1439 //===----------------------------------------------------------------------===// 1440 1441 void StoreInst::AssertOK() { 1442 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1443 assert(getOperand(1)->getType()->isPointerTy() && 1444 "Ptr must have pointer type!"); 1445 assert(getOperand(0)->getType() == 1446 cast<PointerType>(getOperand(1)->getType())->getElementType() 1447 && "Ptr must be a pointer to Val type!"); 1448 assert(!(isAtomic() && getAlignment() == 0) && 1449 "Alignment required for atomic store"); 1450 } 1451 1452 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1453 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1454 1455 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1456 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1457 1458 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1459 Instruction *InsertBefore) 1460 : StoreInst(val, addr, isVolatile, 1461 computeLoadStoreDefaultAlign(val->getType(), InsertBefore), 1462 InsertBefore) {} 1463 1464 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1465 BasicBlock *InsertAtEnd) 1466 : StoreInst(val, addr, isVolatile, 1467 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd), 1468 InsertAtEnd) {} 1469 1470 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1471 Instruction *InsertBefore) 1472 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1473 SyncScope::System, InsertBefore) {} 1474 1475 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1476 BasicBlock *InsertAtEnd) 1477 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1478 SyncScope::System, InsertAtEnd) {} 1479 1480 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1481 AtomicOrdering Order, SyncScope::ID SSID, 1482 Instruction *InsertBefore) 1483 : Instruction(Type::getVoidTy(val->getContext()), Store, 1484 OperandTraits<StoreInst>::op_begin(this), 1485 OperandTraits<StoreInst>::operands(this), InsertBefore) { 1486 Op<0>() = val; 1487 Op<1>() = addr; 1488 setVolatile(isVolatile); 1489 setAlignment(Align); 1490 setAtomic(Order, SSID); 1491 AssertOK(); 1492 } 1493 1494 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1495 AtomicOrdering Order, SyncScope::ID SSID, 1496 BasicBlock *InsertAtEnd) 1497 : Instruction(Type::getVoidTy(val->getContext()), Store, 1498 OperandTraits<StoreInst>::op_begin(this), 1499 OperandTraits<StoreInst>::operands(this), InsertAtEnd) { 1500 Op<0>() = val; 1501 Op<1>() = addr; 1502 setVolatile(isVolatile); 1503 setAlignment(Align); 1504 setAtomic(Order, SSID); 1505 AssertOK(); 1506 } 1507 1508 1509 //===----------------------------------------------------------------------===// 1510 // AtomicCmpXchgInst Implementation 1511 //===----------------------------------------------------------------------===// 1512 1513 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1514 Align Alignment, AtomicOrdering SuccessOrdering, 1515 AtomicOrdering FailureOrdering, 1516 SyncScope::ID SSID) { 1517 Op<0>() = Ptr; 1518 Op<1>() = Cmp; 1519 Op<2>() = NewVal; 1520 setSuccessOrdering(SuccessOrdering); 1521 setFailureOrdering(FailureOrdering); 1522 setSyncScopeID(SSID); 1523 setAlignment(Alignment); 1524 1525 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1526 "All operands must be non-null!"); 1527 assert(getOperand(0)->getType()->isPointerTy() && 1528 "Ptr must have pointer type!"); 1529 assert(getOperand(1)->getType() == 1530 cast<PointerType>(getOperand(0)->getType())->getElementType() 1531 && "Ptr must be a pointer to Cmp type!"); 1532 assert(getOperand(2)->getType() == 1533 cast<PointerType>(getOperand(0)->getType())->getElementType() 1534 && "Ptr must be a pointer to NewVal type!"); 1535 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 1536 "AtomicCmpXchg instructions must be atomic!"); 1537 assert(FailureOrdering != AtomicOrdering::NotAtomic && 1538 "AtomicCmpXchg instructions must be atomic!"); 1539 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && 1540 "AtomicCmpXchg failure argument shall be no stronger than the success " 1541 "argument"); 1542 assert(FailureOrdering != AtomicOrdering::Release && 1543 FailureOrdering != AtomicOrdering::AcquireRelease && 1544 "AtomicCmpXchg failure ordering cannot include release semantics"); 1545 } 1546 1547 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1548 Align Alignment, 1549 AtomicOrdering SuccessOrdering, 1550 AtomicOrdering FailureOrdering, 1551 SyncScope::ID SSID, 1552 Instruction *InsertBefore) 1553 : Instruction( 1554 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1555 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1556 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1557 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1558 } 1559 1560 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1561 Align Alignment, 1562 AtomicOrdering SuccessOrdering, 1563 AtomicOrdering FailureOrdering, 1564 SyncScope::ID SSID, 1565 BasicBlock *InsertAtEnd) 1566 : Instruction( 1567 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1568 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1569 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1570 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1571 } 1572 1573 //===----------------------------------------------------------------------===// 1574 // AtomicRMWInst Implementation 1575 //===----------------------------------------------------------------------===// 1576 1577 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1578 Align Alignment, AtomicOrdering Ordering, 1579 SyncScope::ID SSID) { 1580 Op<0>() = Ptr; 1581 Op<1>() = Val; 1582 setOperation(Operation); 1583 setOrdering(Ordering); 1584 setSyncScopeID(SSID); 1585 setAlignment(Alignment); 1586 1587 assert(getOperand(0) && getOperand(1) && 1588 "All operands must be non-null!"); 1589 assert(getOperand(0)->getType()->isPointerTy() && 1590 "Ptr must have pointer type!"); 1591 assert(getOperand(1)->getType() == 1592 cast<PointerType>(getOperand(0)->getType())->getElementType() 1593 && "Ptr must be a pointer to Val type!"); 1594 assert(Ordering != AtomicOrdering::NotAtomic && 1595 "AtomicRMW instructions must be atomic!"); 1596 } 1597 1598 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1599 Align Alignment, AtomicOrdering Ordering, 1600 SyncScope::ID SSID, Instruction *InsertBefore) 1601 : Instruction(Val->getType(), AtomicRMW, 1602 OperandTraits<AtomicRMWInst>::op_begin(this), 1603 OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) { 1604 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1605 } 1606 1607 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1608 Align Alignment, AtomicOrdering Ordering, 1609 SyncScope::ID SSID, BasicBlock *InsertAtEnd) 1610 : Instruction(Val->getType(), AtomicRMW, 1611 OperandTraits<AtomicRMWInst>::op_begin(this), 1612 OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) { 1613 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1614 } 1615 1616 StringRef AtomicRMWInst::getOperationName(BinOp Op) { 1617 switch (Op) { 1618 case AtomicRMWInst::Xchg: 1619 return "xchg"; 1620 case AtomicRMWInst::Add: 1621 return "add"; 1622 case AtomicRMWInst::Sub: 1623 return "sub"; 1624 case AtomicRMWInst::And: 1625 return "and"; 1626 case AtomicRMWInst::Nand: 1627 return "nand"; 1628 case AtomicRMWInst::Or: 1629 return "or"; 1630 case AtomicRMWInst::Xor: 1631 return "xor"; 1632 case AtomicRMWInst::Max: 1633 return "max"; 1634 case AtomicRMWInst::Min: 1635 return "min"; 1636 case AtomicRMWInst::UMax: 1637 return "umax"; 1638 case AtomicRMWInst::UMin: 1639 return "umin"; 1640 case AtomicRMWInst::FAdd: 1641 return "fadd"; 1642 case AtomicRMWInst::FSub: 1643 return "fsub"; 1644 case AtomicRMWInst::BAD_BINOP: 1645 return "<invalid operation>"; 1646 } 1647 1648 llvm_unreachable("invalid atomicrmw operation"); 1649 } 1650 1651 //===----------------------------------------------------------------------===// 1652 // FenceInst Implementation 1653 //===----------------------------------------------------------------------===// 1654 1655 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1656 SyncScope::ID SSID, 1657 Instruction *InsertBefore) 1658 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1659 setOrdering(Ordering); 1660 setSyncScopeID(SSID); 1661 } 1662 1663 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1664 SyncScope::ID SSID, 1665 BasicBlock *InsertAtEnd) 1666 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1667 setOrdering(Ordering); 1668 setSyncScopeID(SSID); 1669 } 1670 1671 //===----------------------------------------------------------------------===// 1672 // GetElementPtrInst Implementation 1673 //===----------------------------------------------------------------------===// 1674 1675 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1676 const Twine &Name) { 1677 assert(getNumOperands() == 1 + IdxList.size() && 1678 "NumOperands not initialized?"); 1679 Op<0>() = Ptr; 1680 llvm::copy(IdxList, op_begin() + 1); 1681 setName(Name); 1682 } 1683 1684 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1685 : Instruction(GEPI.getType(), GetElementPtr, 1686 OperandTraits<GetElementPtrInst>::op_end(this) - 1687 GEPI.getNumOperands(), 1688 GEPI.getNumOperands()), 1689 SourceElementType(GEPI.SourceElementType), 1690 ResultElementType(GEPI.ResultElementType) { 1691 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1692 SubclassOptionalData = GEPI.SubclassOptionalData; 1693 } 1694 1695 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) { 1696 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1697 if (!Struct->indexValid(Idx)) 1698 return nullptr; 1699 return Struct->getTypeAtIndex(Idx); 1700 } 1701 if (!Idx->getType()->isIntOrIntVectorTy()) 1702 return nullptr; 1703 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1704 return Array->getElementType(); 1705 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1706 return Vector->getElementType(); 1707 return nullptr; 1708 } 1709 1710 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) { 1711 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1712 if (Idx >= Struct->getNumElements()) 1713 return nullptr; 1714 return Struct->getElementType(Idx); 1715 } 1716 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1717 return Array->getElementType(); 1718 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1719 return Vector->getElementType(); 1720 return nullptr; 1721 } 1722 1723 template <typename IndexTy> 1724 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) { 1725 if (IdxList.empty()) 1726 return Ty; 1727 for (IndexTy V : IdxList.slice(1)) { 1728 Ty = GetElementPtrInst::getTypeAtIndex(Ty, V); 1729 if (!Ty) 1730 return Ty; 1731 } 1732 return Ty; 1733 } 1734 1735 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1736 return getIndexedTypeInternal(Ty, IdxList); 1737 } 1738 1739 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1740 ArrayRef<Constant *> IdxList) { 1741 return getIndexedTypeInternal(Ty, IdxList); 1742 } 1743 1744 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1745 return getIndexedTypeInternal(Ty, IdxList); 1746 } 1747 1748 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1749 /// zeros. If so, the result pointer and the first operand have the same 1750 /// value, just potentially different types. 1751 bool GetElementPtrInst::hasAllZeroIndices() const { 1752 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1753 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1754 if (!CI->isZero()) return false; 1755 } else { 1756 return false; 1757 } 1758 } 1759 return true; 1760 } 1761 1762 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1763 /// constant integers. If so, the result pointer and the first operand have 1764 /// a constant offset between them. 1765 bool GetElementPtrInst::hasAllConstantIndices() const { 1766 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1767 if (!isa<ConstantInt>(getOperand(i))) 1768 return false; 1769 } 1770 return true; 1771 } 1772 1773 void GetElementPtrInst::setIsInBounds(bool B) { 1774 cast<GEPOperator>(this)->setIsInBounds(B); 1775 } 1776 1777 bool GetElementPtrInst::isInBounds() const { 1778 return cast<GEPOperator>(this)->isInBounds(); 1779 } 1780 1781 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1782 APInt &Offset) const { 1783 // Delegate to the generic GEPOperator implementation. 1784 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1785 } 1786 1787 //===----------------------------------------------------------------------===// 1788 // ExtractElementInst Implementation 1789 //===----------------------------------------------------------------------===// 1790 1791 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1792 const Twine &Name, 1793 Instruction *InsertBef) 1794 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1795 ExtractElement, 1796 OperandTraits<ExtractElementInst>::op_begin(this), 1797 2, InsertBef) { 1798 assert(isValidOperands(Val, Index) && 1799 "Invalid extractelement instruction operands!"); 1800 Op<0>() = Val; 1801 Op<1>() = Index; 1802 setName(Name); 1803 } 1804 1805 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1806 const Twine &Name, 1807 BasicBlock *InsertAE) 1808 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1809 ExtractElement, 1810 OperandTraits<ExtractElementInst>::op_begin(this), 1811 2, InsertAE) { 1812 assert(isValidOperands(Val, Index) && 1813 "Invalid extractelement instruction operands!"); 1814 1815 Op<0>() = Val; 1816 Op<1>() = Index; 1817 setName(Name); 1818 } 1819 1820 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1821 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1822 return false; 1823 return true; 1824 } 1825 1826 //===----------------------------------------------------------------------===// 1827 // InsertElementInst Implementation 1828 //===----------------------------------------------------------------------===// 1829 1830 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1831 const Twine &Name, 1832 Instruction *InsertBef) 1833 : Instruction(Vec->getType(), InsertElement, 1834 OperandTraits<InsertElementInst>::op_begin(this), 1835 3, InsertBef) { 1836 assert(isValidOperands(Vec, Elt, Index) && 1837 "Invalid insertelement instruction operands!"); 1838 Op<0>() = Vec; 1839 Op<1>() = Elt; 1840 Op<2>() = Index; 1841 setName(Name); 1842 } 1843 1844 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1845 const Twine &Name, 1846 BasicBlock *InsertAE) 1847 : Instruction(Vec->getType(), InsertElement, 1848 OperandTraits<InsertElementInst>::op_begin(this), 1849 3, InsertAE) { 1850 assert(isValidOperands(Vec, Elt, Index) && 1851 "Invalid insertelement instruction operands!"); 1852 1853 Op<0>() = Vec; 1854 Op<1>() = Elt; 1855 Op<2>() = Index; 1856 setName(Name); 1857 } 1858 1859 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1860 const Value *Index) { 1861 if (!Vec->getType()->isVectorTy()) 1862 return false; // First operand of insertelement must be vector type. 1863 1864 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1865 return false;// Second operand of insertelement must be vector element type. 1866 1867 if (!Index->getType()->isIntegerTy()) 1868 return false; // Third operand of insertelement must be i32. 1869 return true; 1870 } 1871 1872 //===----------------------------------------------------------------------===// 1873 // ShuffleVectorInst Implementation 1874 //===----------------------------------------------------------------------===// 1875 1876 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1877 const Twine &Name, 1878 Instruction *InsertBefore) 1879 : Instruction( 1880 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1881 cast<VectorType>(Mask->getType())->getElementCount()), 1882 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1883 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1884 assert(isValidOperands(V1, V2, Mask) && 1885 "Invalid shuffle vector instruction operands!"); 1886 1887 Op<0>() = V1; 1888 Op<1>() = V2; 1889 SmallVector<int, 16> MaskArr; 1890 getShuffleMask(cast<Constant>(Mask), MaskArr); 1891 setShuffleMask(MaskArr); 1892 setName(Name); 1893 } 1894 1895 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1896 const Twine &Name, BasicBlock *InsertAtEnd) 1897 : Instruction( 1898 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1899 cast<VectorType>(Mask->getType())->getElementCount()), 1900 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1901 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { 1902 assert(isValidOperands(V1, V2, Mask) && 1903 "Invalid shuffle vector instruction operands!"); 1904 1905 Op<0>() = V1; 1906 Op<1>() = V2; 1907 SmallVector<int, 16> MaskArr; 1908 getShuffleMask(cast<Constant>(Mask), MaskArr); 1909 setShuffleMask(MaskArr); 1910 setName(Name); 1911 } 1912 1913 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 1914 const Twine &Name, 1915 Instruction *InsertBefore) 1916 : Instruction( 1917 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1918 Mask.size(), isa<ScalableVectorType>(V1->getType())), 1919 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1920 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1921 assert(isValidOperands(V1, V2, Mask) && 1922 "Invalid shuffle vector instruction operands!"); 1923 Op<0>() = V1; 1924 Op<1>() = V2; 1925 setShuffleMask(Mask); 1926 setName(Name); 1927 } 1928 1929 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 1930 const Twine &Name, BasicBlock *InsertAtEnd) 1931 : Instruction( 1932 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1933 Mask.size(), isa<ScalableVectorType>(V1->getType())), 1934 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1935 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { 1936 assert(isValidOperands(V1, V2, Mask) && 1937 "Invalid shuffle vector instruction operands!"); 1938 1939 Op<0>() = V1; 1940 Op<1>() = V2; 1941 setShuffleMask(Mask); 1942 setName(Name); 1943 } 1944 1945 void ShuffleVectorInst::commute() { 1946 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 1947 int NumMaskElts = ShuffleMask.size(); 1948 SmallVector<int, 16> NewMask(NumMaskElts); 1949 for (int i = 0; i != NumMaskElts; ++i) { 1950 int MaskElt = getMaskValue(i); 1951 if (MaskElt == UndefMaskElem) { 1952 NewMask[i] = UndefMaskElem; 1953 continue; 1954 } 1955 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask"); 1956 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts; 1957 NewMask[i] = MaskElt; 1958 } 1959 setShuffleMask(NewMask); 1960 Op<0>().swap(Op<1>()); 1961 } 1962 1963 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1964 ArrayRef<int> Mask) { 1965 // V1 and V2 must be vectors of the same type. 1966 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType()) 1967 return false; 1968 1969 // Make sure the mask elements make sense. 1970 int V1Size = 1971 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 1972 for (int Elem : Mask) 1973 if (Elem != UndefMaskElem && Elem >= V1Size * 2) 1974 return false; 1975 1976 if (isa<ScalableVectorType>(V1->getType())) 1977 if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask)) 1978 return false; 1979 1980 return true; 1981 } 1982 1983 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1984 const Value *Mask) { 1985 // V1 and V2 must be vectors of the same type. 1986 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1987 return false; 1988 1989 // Mask must be vector of i32, and must be the same kind of vector as the 1990 // input vectors 1991 auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1992 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) || 1993 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType())) 1994 return false; 1995 1996 // Check to see if Mask is valid. 1997 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1998 return true; 1999 2000 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { 2001 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 2002 for (Value *Op : MV->operands()) { 2003 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 2004 if (CI->uge(V1Size*2)) 2005 return false; 2006 } else if (!isa<UndefValue>(Op)) { 2007 return false; 2008 } 2009 } 2010 return true; 2011 } 2012 2013 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 2014 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 2015 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements(); 2016 i != e; ++i) 2017 if (CDS->getElementAsInteger(i) >= V1Size*2) 2018 return false; 2019 return true; 2020 } 2021 2022 return false; 2023 } 2024 2025 void ShuffleVectorInst::getShuffleMask(const Constant *Mask, 2026 SmallVectorImpl<int> &Result) { 2027 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount(); 2028 2029 if (isa<ConstantAggregateZero>(Mask)) { 2030 Result.resize(EC.getKnownMinValue(), 0); 2031 return; 2032 } 2033 2034 Result.reserve(EC.getKnownMinValue()); 2035 2036 if (EC.isScalable()) { 2037 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) && 2038 "Scalable vector shuffle mask must be undef or zeroinitializer"); 2039 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0; 2040 for (unsigned I = 0; I < EC.getKnownMinValue(); ++I) 2041 Result.emplace_back(MaskVal); 2042 return; 2043 } 2044 2045 unsigned NumElts = EC.getKnownMinValue(); 2046 2047 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 2048 for (unsigned i = 0; i != NumElts; ++i) 2049 Result.push_back(CDS->getElementAsInteger(i)); 2050 return; 2051 } 2052 for (unsigned i = 0; i != NumElts; ++i) { 2053 Constant *C = Mask->getAggregateElement(i); 2054 Result.push_back(isa<UndefValue>(C) ? -1 : 2055 cast<ConstantInt>(C)->getZExtValue()); 2056 } 2057 } 2058 2059 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) { 2060 ShuffleMask.assign(Mask.begin(), Mask.end()); 2061 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType()); 2062 } 2063 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask, 2064 Type *ResultTy) { 2065 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext()); 2066 if (isa<ScalableVectorType>(ResultTy)) { 2067 assert(is_splat(Mask) && "Unexpected shuffle"); 2068 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true); 2069 if (Mask[0] == 0) 2070 return Constant::getNullValue(VecTy); 2071 return UndefValue::get(VecTy); 2072 } 2073 SmallVector<Constant *, 16> MaskConst; 2074 for (int Elem : Mask) { 2075 if (Elem == UndefMaskElem) 2076 MaskConst.push_back(UndefValue::get(Int32Ty)); 2077 else 2078 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem)); 2079 } 2080 return ConstantVector::get(MaskConst); 2081 } 2082 2083 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 2084 assert(!Mask.empty() && "Shuffle mask must contain elements"); 2085 bool UsesLHS = false; 2086 bool UsesRHS = false; 2087 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 2088 if (Mask[i] == -1) 2089 continue; 2090 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) && 2091 "Out-of-bounds shuffle mask element"); 2092 UsesLHS |= (Mask[i] < NumOpElts); 2093 UsesRHS |= (Mask[i] >= NumOpElts); 2094 if (UsesLHS && UsesRHS) 2095 return false; 2096 } 2097 // Allow for degenerate case: completely undef mask means neither source is used. 2098 return UsesLHS || UsesRHS; 2099 } 2100 2101 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { 2102 // We don't have vector operand size information, so assume operands are the 2103 // same size as the mask. 2104 return isSingleSourceMaskImpl(Mask, Mask.size()); 2105 } 2106 2107 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 2108 if (!isSingleSourceMaskImpl(Mask, NumOpElts)) 2109 return false; 2110 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 2111 if (Mask[i] == -1) 2112 continue; 2113 if (Mask[i] != i && Mask[i] != (NumOpElts + i)) 2114 return false; 2115 } 2116 return true; 2117 } 2118 2119 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { 2120 // We don't have vector operand size information, so assume operands are the 2121 // same size as the mask. 2122 return isIdentityMaskImpl(Mask, Mask.size()); 2123 } 2124 2125 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { 2126 if (!isSingleSourceMask(Mask)) 2127 return false; 2128 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2129 if (Mask[i] == -1) 2130 continue; 2131 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) 2132 return false; 2133 } 2134 return true; 2135 } 2136 2137 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { 2138 if (!isSingleSourceMask(Mask)) 2139 return false; 2140 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2141 if (Mask[i] == -1) 2142 continue; 2143 if (Mask[i] != 0 && Mask[i] != NumElts) 2144 return false; 2145 } 2146 return true; 2147 } 2148 2149 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { 2150 // Select is differentiated from identity. It requires using both sources. 2151 if (isSingleSourceMask(Mask)) 2152 return false; 2153 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2154 if (Mask[i] == -1) 2155 continue; 2156 if (Mask[i] != i && Mask[i] != (NumElts + i)) 2157 return false; 2158 } 2159 return true; 2160 } 2161 2162 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { 2163 // Example masks that will return true: 2164 // v1 = <a, b, c, d> 2165 // v2 = <e, f, g, h> 2166 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> 2167 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> 2168 2169 // 1. The number of elements in the mask must be a power-of-2 and at least 2. 2170 int NumElts = Mask.size(); 2171 if (NumElts < 2 || !isPowerOf2_32(NumElts)) 2172 return false; 2173 2174 // 2. The first element of the mask must be either a 0 or a 1. 2175 if (Mask[0] != 0 && Mask[0] != 1) 2176 return false; 2177 2178 // 3. The difference between the first 2 elements must be equal to the 2179 // number of elements in the mask. 2180 if ((Mask[1] - Mask[0]) != NumElts) 2181 return false; 2182 2183 // 4. The difference between consecutive even-numbered and odd-numbered 2184 // elements must be equal to 2. 2185 for (int i = 2; i < NumElts; ++i) { 2186 int MaskEltVal = Mask[i]; 2187 if (MaskEltVal == -1) 2188 return false; 2189 int MaskEltPrevVal = Mask[i - 2]; 2190 if (MaskEltVal - MaskEltPrevVal != 2) 2191 return false; 2192 } 2193 return true; 2194 } 2195 2196 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, 2197 int NumSrcElts, int &Index) { 2198 // Must extract from a single source. 2199 if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) 2200 return false; 2201 2202 // Must be smaller (else this is an Identity shuffle). 2203 if (NumSrcElts <= (int)Mask.size()) 2204 return false; 2205 2206 // Find start of extraction, accounting that we may start with an UNDEF. 2207 int SubIndex = -1; 2208 for (int i = 0, e = Mask.size(); i != e; ++i) { 2209 int M = Mask[i]; 2210 if (M < 0) 2211 continue; 2212 int Offset = (M % NumSrcElts) - i; 2213 if (0 <= SubIndex && SubIndex != Offset) 2214 return false; 2215 SubIndex = Offset; 2216 } 2217 2218 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) { 2219 Index = SubIndex; 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 bool ShuffleVectorInst::isIdentityWithPadding() const { 2226 if (isa<UndefValue>(Op<2>())) 2227 return false; 2228 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2229 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2230 if (NumMaskElts <= NumOpElts) 2231 return false; 2232 2233 // The first part of the mask must choose elements from exactly 1 source op. 2234 ArrayRef<int> Mask = getShuffleMask(); 2235 if (!isIdentityMaskImpl(Mask, NumOpElts)) 2236 return false; 2237 2238 // All extending must be with undef elements. 2239 for (int i = NumOpElts; i < NumMaskElts; ++i) 2240 if (Mask[i] != -1) 2241 return false; 2242 2243 return true; 2244 } 2245 2246 bool ShuffleVectorInst::isIdentityWithExtract() const { 2247 if (isa<UndefValue>(Op<2>())) 2248 return false; 2249 2250 // FIXME: Not currently possible to express a shuffle mask for a scalable 2251 // vector for this case 2252 if (isa<ScalableVectorType>(getType())) 2253 return false; 2254 2255 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2256 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2257 if (NumMaskElts >= NumOpElts) 2258 return false; 2259 2260 return isIdentityMaskImpl(getShuffleMask(), NumOpElts); 2261 } 2262 2263 bool ShuffleVectorInst::isConcat() const { 2264 // Vector concatenation is differentiated from identity with padding. 2265 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) || 2266 isa<UndefValue>(Op<2>())) 2267 return false; 2268 2269 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2270 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2271 if (NumMaskElts != NumOpElts * 2) 2272 return false; 2273 2274 // Use the mask length rather than the operands' vector lengths here. We 2275 // already know that the shuffle returns a vector twice as long as the inputs, 2276 // and neither of the inputs are undef vectors. If the mask picks consecutive 2277 // elements from both inputs, then this is a concatenation of the inputs. 2278 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); 2279 } 2280 2281 //===----------------------------------------------------------------------===// 2282 // InsertValueInst Class 2283 //===----------------------------------------------------------------------===// 2284 2285 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2286 const Twine &Name) { 2287 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 2288 2289 // There's no fundamental reason why we require at least one index 2290 // (other than weirdness with &*IdxBegin being invalid; see 2291 // getelementptr's init routine for example). But there's no 2292 // present need to support it. 2293 assert(!Idxs.empty() && "InsertValueInst must have at least one index"); 2294 2295 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 2296 Val->getType() && "Inserted value must match indexed type!"); 2297 Op<0>() = Agg; 2298 Op<1>() = Val; 2299 2300 Indices.append(Idxs.begin(), Idxs.end()); 2301 setName(Name); 2302 } 2303 2304 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 2305 : Instruction(IVI.getType(), InsertValue, 2306 OperandTraits<InsertValueInst>::op_begin(this), 2), 2307 Indices(IVI.Indices) { 2308 Op<0>() = IVI.getOperand(0); 2309 Op<1>() = IVI.getOperand(1); 2310 SubclassOptionalData = IVI.SubclassOptionalData; 2311 } 2312 2313 //===----------------------------------------------------------------------===// 2314 // ExtractValueInst Class 2315 //===----------------------------------------------------------------------===// 2316 2317 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 2318 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 2319 2320 // There's no fundamental reason why we require at least one index. 2321 // But there's no present need to support it. 2322 assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); 2323 2324 Indices.append(Idxs.begin(), Idxs.end()); 2325 setName(Name); 2326 } 2327 2328 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 2329 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 2330 Indices(EVI.Indices) { 2331 SubclassOptionalData = EVI.SubclassOptionalData; 2332 } 2333 2334 // getIndexedType - Returns the type of the element that would be extracted 2335 // with an extractvalue instruction with the specified parameters. 2336 // 2337 // A null type is returned if the indices are invalid for the specified 2338 // pointer type. 2339 // 2340 Type *ExtractValueInst::getIndexedType(Type *Agg, 2341 ArrayRef<unsigned> Idxs) { 2342 for (unsigned Index : Idxs) { 2343 // We can't use CompositeType::indexValid(Index) here. 2344 // indexValid() always returns true for arrays because getelementptr allows 2345 // out-of-bounds indices. Since we don't allow those for extractvalue and 2346 // insertvalue we need to check array indexing manually. 2347 // Since the only other types we can index into are struct types it's just 2348 // as easy to check those manually as well. 2349 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 2350 if (Index >= AT->getNumElements()) 2351 return nullptr; 2352 Agg = AT->getElementType(); 2353 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2354 if (Index >= ST->getNumElements()) 2355 return nullptr; 2356 Agg = ST->getElementType(Index); 2357 } else { 2358 // Not a valid type to index into. 2359 return nullptr; 2360 } 2361 } 2362 return const_cast<Type*>(Agg); 2363 } 2364 2365 //===----------------------------------------------------------------------===// 2366 // UnaryOperator Class 2367 //===----------------------------------------------------------------------===// 2368 2369 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2370 Type *Ty, const Twine &Name, 2371 Instruction *InsertBefore) 2372 : UnaryInstruction(Ty, iType, S, InsertBefore) { 2373 Op<0>() = S; 2374 setName(Name); 2375 AssertOK(); 2376 } 2377 2378 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2379 Type *Ty, const Twine &Name, 2380 BasicBlock *InsertAtEnd) 2381 : UnaryInstruction(Ty, iType, S, InsertAtEnd) { 2382 Op<0>() = S; 2383 setName(Name); 2384 AssertOK(); 2385 } 2386 2387 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2388 const Twine &Name, 2389 Instruction *InsertBefore) { 2390 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); 2391 } 2392 2393 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2394 const Twine &Name, 2395 BasicBlock *InsertAtEnd) { 2396 UnaryOperator *Res = Create(Op, S, Name); 2397 InsertAtEnd->getInstList().push_back(Res); 2398 return Res; 2399 } 2400 2401 void UnaryOperator::AssertOK() { 2402 Value *LHS = getOperand(0); 2403 (void)LHS; // Silence warnings. 2404 #ifndef NDEBUG 2405 switch (getOpcode()) { 2406 case FNeg: 2407 assert(getType() == LHS->getType() && 2408 "Unary operation should return same type as operand!"); 2409 assert(getType()->isFPOrFPVectorTy() && 2410 "Tried to create a floating-point operation on a " 2411 "non-floating-point type!"); 2412 break; 2413 default: llvm_unreachable("Invalid opcode provided"); 2414 } 2415 #endif 2416 } 2417 2418 //===----------------------------------------------------------------------===// 2419 // BinaryOperator Class 2420 //===----------------------------------------------------------------------===// 2421 2422 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2423 Type *Ty, const Twine &Name, 2424 Instruction *InsertBefore) 2425 : Instruction(Ty, iType, 2426 OperandTraits<BinaryOperator>::op_begin(this), 2427 OperandTraits<BinaryOperator>::operands(this), 2428 InsertBefore) { 2429 Op<0>() = S1; 2430 Op<1>() = S2; 2431 setName(Name); 2432 AssertOK(); 2433 } 2434 2435 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2436 Type *Ty, const Twine &Name, 2437 BasicBlock *InsertAtEnd) 2438 : Instruction(Ty, iType, 2439 OperandTraits<BinaryOperator>::op_begin(this), 2440 OperandTraits<BinaryOperator>::operands(this), 2441 InsertAtEnd) { 2442 Op<0>() = S1; 2443 Op<1>() = S2; 2444 setName(Name); 2445 AssertOK(); 2446 } 2447 2448 void BinaryOperator::AssertOK() { 2449 Value *LHS = getOperand(0), *RHS = getOperand(1); 2450 (void)LHS; (void)RHS; // Silence warnings. 2451 assert(LHS->getType() == RHS->getType() && 2452 "Binary operator operand types must match!"); 2453 #ifndef NDEBUG 2454 switch (getOpcode()) { 2455 case Add: case Sub: 2456 case Mul: 2457 assert(getType() == LHS->getType() && 2458 "Arithmetic operation should return same type as operands!"); 2459 assert(getType()->isIntOrIntVectorTy() && 2460 "Tried to create an integer operation on a non-integer type!"); 2461 break; 2462 case FAdd: case FSub: 2463 case FMul: 2464 assert(getType() == LHS->getType() && 2465 "Arithmetic operation should return same type as operands!"); 2466 assert(getType()->isFPOrFPVectorTy() && 2467 "Tried to create a floating-point operation on a " 2468 "non-floating-point type!"); 2469 break; 2470 case UDiv: 2471 case SDiv: 2472 assert(getType() == LHS->getType() && 2473 "Arithmetic operation should return same type as operands!"); 2474 assert(getType()->isIntOrIntVectorTy() && 2475 "Incorrect operand type (not integer) for S/UDIV"); 2476 break; 2477 case FDiv: 2478 assert(getType() == LHS->getType() && 2479 "Arithmetic operation should return same type as operands!"); 2480 assert(getType()->isFPOrFPVectorTy() && 2481 "Incorrect operand type (not floating point) for FDIV"); 2482 break; 2483 case URem: 2484 case SRem: 2485 assert(getType() == LHS->getType() && 2486 "Arithmetic operation should return same type as operands!"); 2487 assert(getType()->isIntOrIntVectorTy() && 2488 "Incorrect operand type (not integer) for S/UREM"); 2489 break; 2490 case FRem: 2491 assert(getType() == LHS->getType() && 2492 "Arithmetic operation should return same type as operands!"); 2493 assert(getType()->isFPOrFPVectorTy() && 2494 "Incorrect operand type (not floating point) for FREM"); 2495 break; 2496 case Shl: 2497 case LShr: 2498 case AShr: 2499 assert(getType() == LHS->getType() && 2500 "Shift operation should return same type as operands!"); 2501 assert(getType()->isIntOrIntVectorTy() && 2502 "Tried to create a shift operation on a non-integral type!"); 2503 break; 2504 case And: case Or: 2505 case Xor: 2506 assert(getType() == LHS->getType() && 2507 "Logical operation should return same type as operands!"); 2508 assert(getType()->isIntOrIntVectorTy() && 2509 "Tried to create a logical operation on a non-integral type!"); 2510 break; 2511 default: llvm_unreachable("Invalid opcode provided"); 2512 } 2513 #endif 2514 } 2515 2516 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2517 const Twine &Name, 2518 Instruction *InsertBefore) { 2519 assert(S1->getType() == S2->getType() && 2520 "Cannot create binary operator with two operands of differing type!"); 2521 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2522 } 2523 2524 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2525 const Twine &Name, 2526 BasicBlock *InsertAtEnd) { 2527 BinaryOperator *Res = Create(Op, S1, S2, Name); 2528 InsertAtEnd->getInstList().push_back(Res); 2529 return Res; 2530 } 2531 2532 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2533 Instruction *InsertBefore) { 2534 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2535 return new BinaryOperator(Instruction::Sub, 2536 zero, Op, 2537 Op->getType(), Name, InsertBefore); 2538 } 2539 2540 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2541 BasicBlock *InsertAtEnd) { 2542 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2543 return new BinaryOperator(Instruction::Sub, 2544 zero, Op, 2545 Op->getType(), Name, InsertAtEnd); 2546 } 2547 2548 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2549 Instruction *InsertBefore) { 2550 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2551 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2552 } 2553 2554 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2555 BasicBlock *InsertAtEnd) { 2556 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2557 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2558 } 2559 2560 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2561 Instruction *InsertBefore) { 2562 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2563 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2564 } 2565 2566 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2567 BasicBlock *InsertAtEnd) { 2568 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2569 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2570 } 2571 2572 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2573 Instruction *InsertBefore) { 2574 Constant *C = Constant::getAllOnesValue(Op->getType()); 2575 return new BinaryOperator(Instruction::Xor, Op, C, 2576 Op->getType(), Name, InsertBefore); 2577 } 2578 2579 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2580 BasicBlock *InsertAtEnd) { 2581 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2582 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2583 Op->getType(), Name, InsertAtEnd); 2584 } 2585 2586 // Exchange the two operands to this instruction. This instruction is safe to 2587 // use on any binary instruction and does not modify the semantics of the 2588 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode 2589 // is changed. 2590 bool BinaryOperator::swapOperands() { 2591 if (!isCommutative()) 2592 return true; // Can't commute operands 2593 Op<0>().swap(Op<1>()); 2594 return false; 2595 } 2596 2597 //===----------------------------------------------------------------------===// 2598 // FPMathOperator Class 2599 //===----------------------------------------------------------------------===// 2600 2601 float FPMathOperator::getFPAccuracy() const { 2602 const MDNode *MD = 2603 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2604 if (!MD) 2605 return 0.0; 2606 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2607 return Accuracy->getValueAPF().convertToFloat(); 2608 } 2609 2610 //===----------------------------------------------------------------------===// 2611 // CastInst Class 2612 //===----------------------------------------------------------------------===// 2613 2614 // Just determine if this cast only deals with integral->integral conversion. 2615 bool CastInst::isIntegerCast() const { 2616 switch (getOpcode()) { 2617 default: return false; 2618 case Instruction::ZExt: 2619 case Instruction::SExt: 2620 case Instruction::Trunc: 2621 return true; 2622 case Instruction::BitCast: 2623 return getOperand(0)->getType()->isIntegerTy() && 2624 getType()->isIntegerTy(); 2625 } 2626 } 2627 2628 bool CastInst::isLosslessCast() const { 2629 // Only BitCast can be lossless, exit fast if we're not BitCast 2630 if (getOpcode() != Instruction::BitCast) 2631 return false; 2632 2633 // Identity cast is always lossless 2634 Type *SrcTy = getOperand(0)->getType(); 2635 Type *DstTy = getType(); 2636 if (SrcTy == DstTy) 2637 return true; 2638 2639 // Pointer to pointer is always lossless. 2640 if (SrcTy->isPointerTy()) 2641 return DstTy->isPointerTy(); 2642 return false; // Other types have no identity values 2643 } 2644 2645 /// This function determines if the CastInst does not require any bits to be 2646 /// changed in order to effect the cast. Essentially, it identifies cases where 2647 /// no code gen is necessary for the cast, hence the name no-op cast. For 2648 /// example, the following are all no-op casts: 2649 /// # bitcast i32* %x to i8* 2650 /// # bitcast <2 x i32> %x to <4 x i16> 2651 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2652 /// Determine if the described cast is a no-op. 2653 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2654 Type *SrcTy, 2655 Type *DestTy, 2656 const DataLayout &DL) { 2657 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition"); 2658 switch (Opcode) { 2659 default: llvm_unreachable("Invalid CastOp"); 2660 case Instruction::Trunc: 2661 case Instruction::ZExt: 2662 case Instruction::SExt: 2663 case Instruction::FPTrunc: 2664 case Instruction::FPExt: 2665 case Instruction::UIToFP: 2666 case Instruction::SIToFP: 2667 case Instruction::FPToUI: 2668 case Instruction::FPToSI: 2669 case Instruction::AddrSpaceCast: 2670 // TODO: Target informations may give a more accurate answer here. 2671 return false; 2672 case Instruction::BitCast: 2673 return true; // BitCast never modifies bits. 2674 case Instruction::PtrToInt: 2675 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == 2676 DestTy->getScalarSizeInBits(); 2677 case Instruction::IntToPtr: 2678 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == 2679 SrcTy->getScalarSizeInBits(); 2680 } 2681 } 2682 2683 bool CastInst::isNoopCast(const DataLayout &DL) const { 2684 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); 2685 } 2686 2687 /// This function determines if a pair of casts can be eliminated and what 2688 /// opcode should be used in the elimination. This assumes that there are two 2689 /// instructions like this: 2690 /// * %F = firstOpcode SrcTy %x to MidTy 2691 /// * %S = secondOpcode MidTy %F to DstTy 2692 /// The function returns a resultOpcode so these two casts can be replaced with: 2693 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2694 /// If no such cast is permitted, the function returns 0. 2695 unsigned CastInst::isEliminableCastPair( 2696 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2697 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2698 Type *DstIntPtrTy) { 2699 // Define the 144 possibilities for these two cast instructions. The values 2700 // in this matrix determine what to do in a given situation and select the 2701 // case in the switch below. The rows correspond to firstOp, the columns 2702 // correspond to secondOp. In looking at the table below, keep in mind 2703 // the following cast properties: 2704 // 2705 // Size Compare Source Destination 2706 // Operator Src ? Size Type Sign Type Sign 2707 // -------- ------------ ------------------- --------------------- 2708 // TRUNC > Integer Any Integral Any 2709 // ZEXT < Integral Unsigned Integer Any 2710 // SEXT < Integral Signed Integer Any 2711 // FPTOUI n/a FloatPt n/a Integral Unsigned 2712 // FPTOSI n/a FloatPt n/a Integral Signed 2713 // UITOFP n/a Integral Unsigned FloatPt n/a 2714 // SITOFP n/a Integral Signed FloatPt n/a 2715 // FPTRUNC > FloatPt n/a FloatPt n/a 2716 // FPEXT < FloatPt n/a FloatPt n/a 2717 // PTRTOINT n/a Pointer n/a Integral Unsigned 2718 // INTTOPTR n/a Integral Unsigned Pointer n/a 2719 // BITCAST = FirstClass n/a FirstClass n/a 2720 // ADDRSPCST n/a Pointer n/a Pointer n/a 2721 // 2722 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2723 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2724 // into "fptoui double to i64", but this loses information about the range 2725 // of the produced value (we no longer know the top-part is all zeros). 2726 // Further this conversion is often much more expensive for typical hardware, 2727 // and causes issues when building libgcc. We disallow fptosi+sext for the 2728 // same reason. 2729 const unsigned numCastOps = 2730 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2731 static const uint8_t CastResults[numCastOps][numCastOps] = { 2732 // T F F U S F F P I B A -+ 2733 // R Z S P P I I T P 2 N T S | 2734 // U E E 2 2 2 2 R E I T C C +- secondOp 2735 // N X X U S F F N X N 2 V V | 2736 // C T T I I P P C T T P T T -+ 2737 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2738 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2739 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2740 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2741 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2742 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2743 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2744 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2745 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | 2746 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2747 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2748 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2749 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2750 }; 2751 2752 // TODO: This logic could be encoded into the table above and handled in the 2753 // switch below. 2754 // If either of the casts are a bitcast from scalar to vector, disallow the 2755 // merging. However, any pair of bitcasts are allowed. 2756 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2757 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2758 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2759 2760 // Check if any of the casts convert scalars <-> vectors. 2761 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2762 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2763 if (!AreBothBitcasts) 2764 return 0; 2765 2766 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2767 [secondOp-Instruction::CastOpsBegin]; 2768 switch (ElimCase) { 2769 case 0: 2770 // Categorically disallowed. 2771 return 0; 2772 case 1: 2773 // Allowed, use first cast's opcode. 2774 return firstOp; 2775 case 2: 2776 // Allowed, use second cast's opcode. 2777 return secondOp; 2778 case 3: 2779 // No-op cast in second op implies firstOp as long as the DestTy 2780 // is integer and we are not converting between a vector and a 2781 // non-vector type. 2782 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2783 return firstOp; 2784 return 0; 2785 case 4: 2786 // No-op cast in second op implies firstOp as long as the DestTy 2787 // is floating point. 2788 if (DstTy->isFloatingPointTy()) 2789 return firstOp; 2790 return 0; 2791 case 5: 2792 // No-op cast in first op implies secondOp as long as the SrcTy 2793 // is an integer. 2794 if (SrcTy->isIntegerTy()) 2795 return secondOp; 2796 return 0; 2797 case 6: 2798 // No-op cast in first op implies secondOp as long as the SrcTy 2799 // is a floating point. 2800 if (SrcTy->isFloatingPointTy()) 2801 return secondOp; 2802 return 0; 2803 case 7: { 2804 // Cannot simplify if address spaces are different! 2805 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2806 return 0; 2807 2808 unsigned MidSize = MidTy->getScalarSizeInBits(); 2809 // We can still fold this without knowing the actual sizes as long we 2810 // know that the intermediate pointer is the largest possible 2811 // pointer size. 2812 // FIXME: Is this always true? 2813 if (MidSize == 64) 2814 return Instruction::BitCast; 2815 2816 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2817 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2818 return 0; 2819 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2820 if (MidSize >= PtrSize) 2821 return Instruction::BitCast; 2822 return 0; 2823 } 2824 case 8: { 2825 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2826 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2827 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2828 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2829 unsigned DstSize = DstTy->getScalarSizeInBits(); 2830 if (SrcSize == DstSize) 2831 return Instruction::BitCast; 2832 else if (SrcSize < DstSize) 2833 return firstOp; 2834 return secondOp; 2835 } 2836 case 9: 2837 // zext, sext -> zext, because sext can't sign extend after zext 2838 return Instruction::ZExt; 2839 case 11: { 2840 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2841 if (!MidIntPtrTy) 2842 return 0; 2843 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2844 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2845 unsigned DstSize = DstTy->getScalarSizeInBits(); 2846 if (SrcSize <= PtrSize && SrcSize == DstSize) 2847 return Instruction::BitCast; 2848 return 0; 2849 } 2850 case 12: 2851 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2852 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2853 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2854 return Instruction::AddrSpaceCast; 2855 return Instruction::BitCast; 2856 case 13: 2857 // FIXME: this state can be merged with (1), but the following assert 2858 // is useful to check the correcteness of the sequence due to semantic 2859 // change of bitcast. 2860 assert( 2861 SrcTy->isPtrOrPtrVectorTy() && 2862 MidTy->isPtrOrPtrVectorTy() && 2863 DstTy->isPtrOrPtrVectorTy() && 2864 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2865 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2866 "Illegal addrspacecast, bitcast sequence!"); 2867 // Allowed, use first cast's opcode 2868 return firstOp; 2869 case 14: 2870 // bitcast, addrspacecast -> addrspacecast if the element type of 2871 // bitcast's source is the same as that of addrspacecast's destination. 2872 if (SrcTy->getScalarType()->getPointerElementType() == 2873 DstTy->getScalarType()->getPointerElementType()) 2874 return Instruction::AddrSpaceCast; 2875 return 0; 2876 case 15: 2877 // FIXME: this state can be merged with (1), but the following assert 2878 // is useful to check the correcteness of the sequence due to semantic 2879 // change of bitcast. 2880 assert( 2881 SrcTy->isIntOrIntVectorTy() && 2882 MidTy->isPtrOrPtrVectorTy() && 2883 DstTy->isPtrOrPtrVectorTy() && 2884 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2885 "Illegal inttoptr, bitcast sequence!"); 2886 // Allowed, use first cast's opcode 2887 return firstOp; 2888 case 16: 2889 // FIXME: this state can be merged with (2), but the following assert 2890 // is useful to check the correcteness of the sequence due to semantic 2891 // change of bitcast. 2892 assert( 2893 SrcTy->isPtrOrPtrVectorTy() && 2894 MidTy->isPtrOrPtrVectorTy() && 2895 DstTy->isIntOrIntVectorTy() && 2896 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2897 "Illegal bitcast, ptrtoint sequence!"); 2898 // Allowed, use second cast's opcode 2899 return secondOp; 2900 case 17: 2901 // (sitofp (zext x)) -> (uitofp x) 2902 return Instruction::UIToFP; 2903 case 99: 2904 // Cast combination can't happen (error in input). This is for all cases 2905 // where the MidTy is not the same for the two cast instructions. 2906 llvm_unreachable("Invalid Cast Combination"); 2907 default: 2908 llvm_unreachable("Error in CastResults table!!!"); 2909 } 2910 } 2911 2912 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2913 const Twine &Name, Instruction *InsertBefore) { 2914 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2915 // Construct and return the appropriate CastInst subclass 2916 switch (op) { 2917 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2918 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2919 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2920 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2921 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2922 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2923 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2924 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2925 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2926 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2927 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2928 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2929 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2930 default: llvm_unreachable("Invalid opcode provided"); 2931 } 2932 } 2933 2934 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2935 const Twine &Name, BasicBlock *InsertAtEnd) { 2936 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2937 // Construct and return the appropriate CastInst subclass 2938 switch (op) { 2939 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2940 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2941 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2942 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2943 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2944 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2945 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2946 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2947 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2948 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2949 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2950 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2951 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2952 default: llvm_unreachable("Invalid opcode provided"); 2953 } 2954 } 2955 2956 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2957 const Twine &Name, 2958 Instruction *InsertBefore) { 2959 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2960 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2961 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2962 } 2963 2964 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2965 const Twine &Name, 2966 BasicBlock *InsertAtEnd) { 2967 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2968 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2969 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2970 } 2971 2972 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2973 const Twine &Name, 2974 Instruction *InsertBefore) { 2975 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2976 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2977 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2978 } 2979 2980 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2981 const Twine &Name, 2982 BasicBlock *InsertAtEnd) { 2983 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2984 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2985 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2986 } 2987 2988 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2989 const Twine &Name, 2990 Instruction *InsertBefore) { 2991 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2992 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2993 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2994 } 2995 2996 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2997 const Twine &Name, 2998 BasicBlock *InsertAtEnd) { 2999 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3000 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3001 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 3002 } 3003 3004 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 3005 const Twine &Name, 3006 BasicBlock *InsertAtEnd) { 3007 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3008 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3009 "Invalid cast"); 3010 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3011 assert((!Ty->isVectorTy() || 3012 cast<FixedVectorType>(Ty)->getNumElements() == 3013 cast<FixedVectorType>(S->getType())->getNumElements()) && 3014 "Invalid cast"); 3015 3016 if (Ty->isIntOrIntVectorTy()) 3017 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 3018 3019 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 3020 } 3021 3022 /// Create a BitCast or a PtrToInt cast instruction 3023 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 3024 const Twine &Name, 3025 Instruction *InsertBefore) { 3026 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3027 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3028 "Invalid cast"); 3029 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3030 assert((!Ty->isVectorTy() || 3031 cast<FixedVectorType>(Ty)->getNumElements() == 3032 cast<FixedVectorType>(S->getType())->getNumElements()) && 3033 "Invalid cast"); 3034 3035 if (Ty->isIntOrIntVectorTy()) 3036 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3037 3038 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 3039 } 3040 3041 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3042 Value *S, Type *Ty, 3043 const Twine &Name, 3044 BasicBlock *InsertAtEnd) { 3045 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3046 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3047 3048 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3049 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 3050 3051 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3052 } 3053 3054 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3055 Value *S, Type *Ty, 3056 const Twine &Name, 3057 Instruction *InsertBefore) { 3058 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3059 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3060 3061 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3062 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 3063 3064 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3065 } 3066 3067 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 3068 const Twine &Name, 3069 Instruction *InsertBefore) { 3070 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 3071 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3072 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 3073 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 3074 3075 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3076 } 3077 3078 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 3079 bool isSigned, const Twine &Name, 3080 Instruction *InsertBefore) { 3081 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3082 "Invalid integer cast"); 3083 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3084 unsigned DstBits = Ty->getScalarSizeInBits(); 3085 Instruction::CastOps opcode = 3086 (SrcBits == DstBits ? Instruction::BitCast : 3087 (SrcBits > DstBits ? Instruction::Trunc : 3088 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3089 return Create(opcode, C, Ty, Name, InsertBefore); 3090 } 3091 3092 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 3093 bool isSigned, const Twine &Name, 3094 BasicBlock *InsertAtEnd) { 3095 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3096 "Invalid cast"); 3097 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3098 unsigned DstBits = Ty->getScalarSizeInBits(); 3099 Instruction::CastOps opcode = 3100 (SrcBits == DstBits ? Instruction::BitCast : 3101 (SrcBits > DstBits ? Instruction::Trunc : 3102 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3103 return Create(opcode, C, Ty, Name, InsertAtEnd); 3104 } 3105 3106 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 3107 const Twine &Name, 3108 Instruction *InsertBefore) { 3109 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3110 "Invalid cast"); 3111 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3112 unsigned DstBits = Ty->getScalarSizeInBits(); 3113 Instruction::CastOps opcode = 3114 (SrcBits == DstBits ? Instruction::BitCast : 3115 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3116 return Create(opcode, C, Ty, Name, InsertBefore); 3117 } 3118 3119 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 3120 const Twine &Name, 3121 BasicBlock *InsertAtEnd) { 3122 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3123 "Invalid cast"); 3124 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3125 unsigned DstBits = Ty->getScalarSizeInBits(); 3126 Instruction::CastOps opcode = 3127 (SrcBits == DstBits ? Instruction::BitCast : 3128 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3129 return Create(opcode, C, Ty, Name, InsertAtEnd); 3130 } 3131 3132 // Check whether it is valid to call getCastOpcode for these types. 3133 // This routine must be kept in sync with getCastOpcode. 3134 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 3135 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 3136 return false; 3137 3138 if (SrcTy == DestTy) 3139 return true; 3140 3141 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 3142 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 3143 if (cast<FixedVectorType>(SrcVecTy)->getNumElements() == 3144 cast<FixedVectorType>(DestVecTy)->getNumElements()) { 3145 // An element by element cast. Valid if casting the elements is valid. 3146 SrcTy = SrcVecTy->getElementType(); 3147 DestTy = DestVecTy->getElementType(); 3148 } 3149 3150 // Get the bit sizes, we'll need these 3151 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3152 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3153 3154 // Run through the possibilities ... 3155 if (DestTy->isIntegerTy()) { // Casting to integral 3156 if (SrcTy->isIntegerTy()) // Casting from integral 3157 return true; 3158 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 3159 return true; 3160 if (SrcTy->isVectorTy()) // Casting from vector 3161 return DestBits == SrcBits; 3162 // Casting from something else 3163 return SrcTy->isPointerTy(); 3164 } 3165 if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3166 if (SrcTy->isIntegerTy()) // Casting from integral 3167 return true; 3168 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 3169 return true; 3170 if (SrcTy->isVectorTy()) // Casting from vector 3171 return DestBits == SrcBits; 3172 // Casting from something else 3173 return false; 3174 } 3175 if (DestTy->isVectorTy()) // Casting to vector 3176 return DestBits == SrcBits; 3177 if (DestTy->isPointerTy()) { // Casting to pointer 3178 if (SrcTy->isPointerTy()) // Casting from pointer 3179 return true; 3180 return SrcTy->isIntegerTy(); // Casting from integral 3181 } 3182 if (DestTy->isX86_MMXTy()) { 3183 if (SrcTy->isVectorTy()) 3184 return DestBits == SrcBits; // 64-bit vector to MMX 3185 return false; 3186 } // Casting to something else 3187 return false; 3188 } 3189 3190 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 3191 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 3192 return false; 3193 3194 if (SrcTy == DestTy) 3195 return true; 3196 3197 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3198 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 3199 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3200 // An element by element cast. Valid if casting the elements is valid. 3201 SrcTy = SrcVecTy->getElementType(); 3202 DestTy = DestVecTy->getElementType(); 3203 } 3204 } 3205 } 3206 3207 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 3208 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 3209 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 3210 } 3211 } 3212 3213 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3214 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3215 3216 // Could still have vectors of pointers if the number of elements doesn't 3217 // match 3218 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0) 3219 return false; 3220 3221 if (SrcBits != DestBits) 3222 return false; 3223 3224 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 3225 return false; 3226 3227 return true; 3228 } 3229 3230 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 3231 const DataLayout &DL) { 3232 // ptrtoint and inttoptr are not allowed on non-integral pointers 3233 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 3234 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 3235 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3236 !DL.isNonIntegralPointerType(PtrTy)); 3237 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 3238 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 3239 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3240 !DL.isNonIntegralPointerType(PtrTy)); 3241 3242 return isBitCastable(SrcTy, DestTy); 3243 } 3244 3245 // Provide a way to get a "cast" where the cast opcode is inferred from the 3246 // types and size of the operand. This, basically, is a parallel of the 3247 // logic in the castIsValid function below. This axiom should hold: 3248 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 3249 // should not assert in castIsValid. In other words, this produces a "correct" 3250 // casting opcode for the arguments passed to it. 3251 // This routine must be kept in sync with isCastable. 3252 Instruction::CastOps 3253 CastInst::getCastOpcode( 3254 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 3255 Type *SrcTy = Src->getType(); 3256 3257 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 3258 "Only first class types are castable!"); 3259 3260 if (SrcTy == DestTy) 3261 return BitCast; 3262 3263 // FIXME: Check address space sizes here 3264 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 3265 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 3266 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3267 // An element by element cast. Find the appropriate opcode based on the 3268 // element types. 3269 SrcTy = SrcVecTy->getElementType(); 3270 DestTy = DestVecTy->getElementType(); 3271 } 3272 3273 // Get the bit sizes, we'll need these 3274 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3275 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3276 3277 // Run through the possibilities ... 3278 if (DestTy->isIntegerTy()) { // Casting to integral 3279 if (SrcTy->isIntegerTy()) { // Casting from integral 3280 if (DestBits < SrcBits) 3281 return Trunc; // int -> smaller int 3282 else if (DestBits > SrcBits) { // its an extension 3283 if (SrcIsSigned) 3284 return SExt; // signed -> SEXT 3285 else 3286 return ZExt; // unsigned -> ZEXT 3287 } else { 3288 return BitCast; // Same size, No-op cast 3289 } 3290 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3291 if (DestIsSigned) 3292 return FPToSI; // FP -> sint 3293 else 3294 return FPToUI; // FP -> uint 3295 } else if (SrcTy->isVectorTy()) { 3296 assert(DestBits == SrcBits && 3297 "Casting vector to integer of different width"); 3298 return BitCast; // Same size, no-op cast 3299 } else { 3300 assert(SrcTy->isPointerTy() && 3301 "Casting from a value that is not first-class type"); 3302 return PtrToInt; // ptr -> int 3303 } 3304 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3305 if (SrcTy->isIntegerTy()) { // Casting from integral 3306 if (SrcIsSigned) 3307 return SIToFP; // sint -> FP 3308 else 3309 return UIToFP; // uint -> FP 3310 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3311 if (DestBits < SrcBits) { 3312 return FPTrunc; // FP -> smaller FP 3313 } else if (DestBits > SrcBits) { 3314 return FPExt; // FP -> larger FP 3315 } else { 3316 return BitCast; // same size, no-op cast 3317 } 3318 } else if (SrcTy->isVectorTy()) { 3319 assert(DestBits == SrcBits && 3320 "Casting vector to floating point of different width"); 3321 return BitCast; // same size, no-op cast 3322 } 3323 llvm_unreachable("Casting pointer or non-first class to float"); 3324 } else if (DestTy->isVectorTy()) { 3325 assert(DestBits == SrcBits && 3326 "Illegal cast to vector (wrong type or size)"); 3327 return BitCast; 3328 } else if (DestTy->isPointerTy()) { 3329 if (SrcTy->isPointerTy()) { 3330 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3331 return AddrSpaceCast; 3332 return BitCast; // ptr -> ptr 3333 } else if (SrcTy->isIntegerTy()) { 3334 return IntToPtr; // int -> ptr 3335 } 3336 llvm_unreachable("Casting pointer to other than pointer or int"); 3337 } else if (DestTy->isX86_MMXTy()) { 3338 if (SrcTy->isVectorTy()) { 3339 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3340 return BitCast; // 64-bit vector to MMX 3341 } 3342 llvm_unreachable("Illegal cast to X86_MMX"); 3343 } 3344 llvm_unreachable("Casting to type that is not first-class"); 3345 } 3346 3347 //===----------------------------------------------------------------------===// 3348 // CastInst SubClass Constructors 3349 //===----------------------------------------------------------------------===// 3350 3351 /// Check that the construction parameters for a CastInst are correct. This 3352 /// could be broken out into the separate constructors but it is useful to have 3353 /// it in one place and to eliminate the redundant code for getting the sizes 3354 /// of the types involved. 3355 bool 3356 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) { 3357 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3358 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3359 return false; 3360 3361 // Get the size of the types in bits, and whether we are dealing 3362 // with vector types, we'll need this later. 3363 bool SrcIsVec = isa<VectorType>(SrcTy); 3364 bool DstIsVec = isa<VectorType>(DstTy); 3365 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits(); 3366 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits(); 3367 3368 // If these are vector types, get the lengths of the vectors (using zero for 3369 // scalar types means that checking that vector lengths match also checks that 3370 // scalars are not being converted to vectors or vectors to scalars). 3371 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount() 3372 : ElementCount::getFixed(0); 3373 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount() 3374 : ElementCount::getFixed(0); 3375 3376 // Switch on the opcode provided 3377 switch (op) { 3378 default: return false; // This is an input error 3379 case Instruction::Trunc: 3380 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3381 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3382 case Instruction::ZExt: 3383 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3384 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3385 case Instruction::SExt: 3386 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3387 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3388 case Instruction::FPTrunc: 3389 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3390 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3391 case Instruction::FPExt: 3392 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3393 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3394 case Instruction::UIToFP: 3395 case Instruction::SIToFP: 3396 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3397 SrcEC == DstEC; 3398 case Instruction::FPToUI: 3399 case Instruction::FPToSI: 3400 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3401 SrcEC == DstEC; 3402 case Instruction::PtrToInt: 3403 if (SrcEC != DstEC) 3404 return false; 3405 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); 3406 case Instruction::IntToPtr: 3407 if (SrcEC != DstEC) 3408 return false; 3409 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); 3410 case Instruction::BitCast: { 3411 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3412 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3413 3414 // BitCast implies a no-op cast of type only. No bits change. 3415 // However, you can't cast pointers to anything but pointers. 3416 if (!SrcPtrTy != !DstPtrTy) 3417 return false; 3418 3419 // For non-pointer cases, the cast is okay if the source and destination bit 3420 // widths are identical. 3421 if (!SrcPtrTy) 3422 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3423 3424 // If both are pointers then the address spaces must match. 3425 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3426 return false; 3427 3428 // A vector of pointers must have the same number of elements. 3429 if (SrcIsVec && DstIsVec) 3430 return SrcEC == DstEC; 3431 if (SrcIsVec) 3432 return SrcEC == ElementCount::getFixed(1); 3433 if (DstIsVec) 3434 return DstEC == ElementCount::getFixed(1); 3435 3436 return true; 3437 } 3438 case Instruction::AddrSpaceCast: { 3439 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3440 if (!SrcPtrTy) 3441 return false; 3442 3443 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3444 if (!DstPtrTy) 3445 return false; 3446 3447 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3448 return false; 3449 3450 return SrcEC == DstEC; 3451 } 3452 } 3453 } 3454 3455 TruncInst::TruncInst( 3456 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3457 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3458 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3459 } 3460 3461 TruncInst::TruncInst( 3462 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3463 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3464 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3465 } 3466 3467 ZExtInst::ZExtInst( 3468 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3469 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3470 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3471 } 3472 3473 ZExtInst::ZExtInst( 3474 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3475 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3476 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3477 } 3478 SExtInst::SExtInst( 3479 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3480 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3481 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3482 } 3483 3484 SExtInst::SExtInst( 3485 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3486 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3487 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3488 } 3489 3490 FPTruncInst::FPTruncInst( 3491 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3492 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3493 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3494 } 3495 3496 FPTruncInst::FPTruncInst( 3497 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3498 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3499 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3500 } 3501 3502 FPExtInst::FPExtInst( 3503 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3504 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3505 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3506 } 3507 3508 FPExtInst::FPExtInst( 3509 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3510 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3511 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3512 } 3513 3514 UIToFPInst::UIToFPInst( 3515 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3516 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3517 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3518 } 3519 3520 UIToFPInst::UIToFPInst( 3521 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3522 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3523 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3524 } 3525 3526 SIToFPInst::SIToFPInst( 3527 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3528 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3529 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3530 } 3531 3532 SIToFPInst::SIToFPInst( 3533 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3534 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3535 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3536 } 3537 3538 FPToUIInst::FPToUIInst( 3539 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3540 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3541 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3542 } 3543 3544 FPToUIInst::FPToUIInst( 3545 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3546 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3547 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3548 } 3549 3550 FPToSIInst::FPToSIInst( 3551 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3552 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3553 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3554 } 3555 3556 FPToSIInst::FPToSIInst( 3557 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3558 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3559 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3560 } 3561 3562 PtrToIntInst::PtrToIntInst( 3563 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3564 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3565 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3566 } 3567 3568 PtrToIntInst::PtrToIntInst( 3569 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3570 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3571 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3572 } 3573 3574 IntToPtrInst::IntToPtrInst( 3575 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3576 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3577 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3578 } 3579 3580 IntToPtrInst::IntToPtrInst( 3581 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3582 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3583 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3584 } 3585 3586 BitCastInst::BitCastInst( 3587 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3588 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3589 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3590 } 3591 3592 BitCastInst::BitCastInst( 3593 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3594 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3595 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3596 } 3597 3598 AddrSpaceCastInst::AddrSpaceCastInst( 3599 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3600 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3601 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3602 } 3603 3604 AddrSpaceCastInst::AddrSpaceCastInst( 3605 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3606 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3607 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3608 } 3609 3610 //===----------------------------------------------------------------------===// 3611 // CmpInst Classes 3612 //===----------------------------------------------------------------------===// 3613 3614 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3615 Value *RHS, const Twine &Name, Instruction *InsertBefore, 3616 Instruction *FlagsSource) 3617 : Instruction(ty, op, 3618 OperandTraits<CmpInst>::op_begin(this), 3619 OperandTraits<CmpInst>::operands(this), 3620 InsertBefore) { 3621 Op<0>() = LHS; 3622 Op<1>() = RHS; 3623 setPredicate((Predicate)predicate); 3624 setName(Name); 3625 if (FlagsSource) 3626 copyIRFlags(FlagsSource); 3627 } 3628 3629 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3630 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3631 : Instruction(ty, op, 3632 OperandTraits<CmpInst>::op_begin(this), 3633 OperandTraits<CmpInst>::operands(this), 3634 InsertAtEnd) { 3635 Op<0>() = LHS; 3636 Op<1>() = RHS; 3637 setPredicate((Predicate)predicate); 3638 setName(Name); 3639 } 3640 3641 CmpInst * 3642 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3643 const Twine &Name, Instruction *InsertBefore) { 3644 if (Op == Instruction::ICmp) { 3645 if (InsertBefore) 3646 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3647 S1, S2, Name); 3648 else 3649 return new ICmpInst(CmpInst::Predicate(predicate), 3650 S1, S2, Name); 3651 } 3652 3653 if (InsertBefore) 3654 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3655 S1, S2, Name); 3656 else 3657 return new FCmpInst(CmpInst::Predicate(predicate), 3658 S1, S2, Name); 3659 } 3660 3661 CmpInst * 3662 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3663 const Twine &Name, BasicBlock *InsertAtEnd) { 3664 if (Op == Instruction::ICmp) { 3665 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3666 S1, S2, Name); 3667 } 3668 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3669 S1, S2, Name); 3670 } 3671 3672 void CmpInst::swapOperands() { 3673 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3674 IC->swapOperands(); 3675 else 3676 cast<FCmpInst>(this)->swapOperands(); 3677 } 3678 3679 bool CmpInst::isCommutative() const { 3680 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3681 return IC->isCommutative(); 3682 return cast<FCmpInst>(this)->isCommutative(); 3683 } 3684 3685 bool CmpInst::isEquality() const { 3686 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3687 return IC->isEquality(); 3688 return cast<FCmpInst>(this)->isEquality(); 3689 } 3690 3691 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3692 switch (pred) { 3693 default: llvm_unreachable("Unknown cmp predicate!"); 3694 case ICMP_EQ: return ICMP_NE; 3695 case ICMP_NE: return ICMP_EQ; 3696 case ICMP_UGT: return ICMP_ULE; 3697 case ICMP_ULT: return ICMP_UGE; 3698 case ICMP_UGE: return ICMP_ULT; 3699 case ICMP_ULE: return ICMP_UGT; 3700 case ICMP_SGT: return ICMP_SLE; 3701 case ICMP_SLT: return ICMP_SGE; 3702 case ICMP_SGE: return ICMP_SLT; 3703 case ICMP_SLE: return ICMP_SGT; 3704 3705 case FCMP_OEQ: return FCMP_UNE; 3706 case FCMP_ONE: return FCMP_UEQ; 3707 case FCMP_OGT: return FCMP_ULE; 3708 case FCMP_OLT: return FCMP_UGE; 3709 case FCMP_OGE: return FCMP_ULT; 3710 case FCMP_OLE: return FCMP_UGT; 3711 case FCMP_UEQ: return FCMP_ONE; 3712 case FCMP_UNE: return FCMP_OEQ; 3713 case FCMP_UGT: return FCMP_OLE; 3714 case FCMP_ULT: return FCMP_OGE; 3715 case FCMP_UGE: return FCMP_OLT; 3716 case FCMP_ULE: return FCMP_OGT; 3717 case FCMP_ORD: return FCMP_UNO; 3718 case FCMP_UNO: return FCMP_ORD; 3719 case FCMP_TRUE: return FCMP_FALSE; 3720 case FCMP_FALSE: return FCMP_TRUE; 3721 } 3722 } 3723 3724 StringRef CmpInst::getPredicateName(Predicate Pred) { 3725 switch (Pred) { 3726 default: return "unknown"; 3727 case FCmpInst::FCMP_FALSE: return "false"; 3728 case FCmpInst::FCMP_OEQ: return "oeq"; 3729 case FCmpInst::FCMP_OGT: return "ogt"; 3730 case FCmpInst::FCMP_OGE: return "oge"; 3731 case FCmpInst::FCMP_OLT: return "olt"; 3732 case FCmpInst::FCMP_OLE: return "ole"; 3733 case FCmpInst::FCMP_ONE: return "one"; 3734 case FCmpInst::FCMP_ORD: return "ord"; 3735 case FCmpInst::FCMP_UNO: return "uno"; 3736 case FCmpInst::FCMP_UEQ: return "ueq"; 3737 case FCmpInst::FCMP_UGT: return "ugt"; 3738 case FCmpInst::FCMP_UGE: return "uge"; 3739 case FCmpInst::FCMP_ULT: return "ult"; 3740 case FCmpInst::FCMP_ULE: return "ule"; 3741 case FCmpInst::FCMP_UNE: return "une"; 3742 case FCmpInst::FCMP_TRUE: return "true"; 3743 case ICmpInst::ICMP_EQ: return "eq"; 3744 case ICmpInst::ICMP_NE: return "ne"; 3745 case ICmpInst::ICMP_SGT: return "sgt"; 3746 case ICmpInst::ICMP_SGE: return "sge"; 3747 case ICmpInst::ICMP_SLT: return "slt"; 3748 case ICmpInst::ICMP_SLE: return "sle"; 3749 case ICmpInst::ICMP_UGT: return "ugt"; 3750 case ICmpInst::ICMP_UGE: return "uge"; 3751 case ICmpInst::ICMP_ULT: return "ult"; 3752 case ICmpInst::ICMP_ULE: return "ule"; 3753 } 3754 } 3755 3756 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3757 switch (pred) { 3758 default: llvm_unreachable("Unknown icmp predicate!"); 3759 case ICMP_EQ: case ICMP_NE: 3760 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3761 return pred; 3762 case ICMP_UGT: return ICMP_SGT; 3763 case ICMP_ULT: return ICMP_SLT; 3764 case ICMP_UGE: return ICMP_SGE; 3765 case ICMP_ULE: return ICMP_SLE; 3766 } 3767 } 3768 3769 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3770 switch (pred) { 3771 default: llvm_unreachable("Unknown icmp predicate!"); 3772 case ICMP_EQ: case ICMP_NE: 3773 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3774 return pred; 3775 case ICMP_SGT: return ICMP_UGT; 3776 case ICMP_SLT: return ICMP_ULT; 3777 case ICMP_SGE: return ICMP_UGE; 3778 case ICMP_SLE: return ICMP_ULE; 3779 } 3780 } 3781 3782 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { 3783 switch (pred) { 3784 default: llvm_unreachable("Unknown or unsupported cmp predicate!"); 3785 case ICMP_SGT: return ICMP_SGE; 3786 case ICMP_SLT: return ICMP_SLE; 3787 case ICMP_SGE: return ICMP_SGT; 3788 case ICMP_SLE: return ICMP_SLT; 3789 case ICMP_UGT: return ICMP_UGE; 3790 case ICMP_ULT: return ICMP_ULE; 3791 case ICMP_UGE: return ICMP_UGT; 3792 case ICMP_ULE: return ICMP_ULT; 3793 3794 case FCMP_OGT: return FCMP_OGE; 3795 case FCMP_OLT: return FCMP_OLE; 3796 case FCMP_OGE: return FCMP_OGT; 3797 case FCMP_OLE: return FCMP_OLT; 3798 case FCMP_UGT: return FCMP_UGE; 3799 case FCMP_ULT: return FCMP_ULE; 3800 case FCMP_UGE: return FCMP_UGT; 3801 case FCMP_ULE: return FCMP_ULT; 3802 } 3803 } 3804 3805 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3806 switch (pred) { 3807 default: llvm_unreachable("Unknown cmp predicate!"); 3808 case ICMP_EQ: case ICMP_NE: 3809 return pred; 3810 case ICMP_SGT: return ICMP_SLT; 3811 case ICMP_SLT: return ICMP_SGT; 3812 case ICMP_SGE: return ICMP_SLE; 3813 case ICMP_SLE: return ICMP_SGE; 3814 case ICMP_UGT: return ICMP_ULT; 3815 case ICMP_ULT: return ICMP_UGT; 3816 case ICMP_UGE: return ICMP_ULE; 3817 case ICMP_ULE: return ICMP_UGE; 3818 3819 case FCMP_FALSE: case FCMP_TRUE: 3820 case FCMP_OEQ: case FCMP_ONE: 3821 case FCMP_UEQ: case FCMP_UNE: 3822 case FCMP_ORD: case FCMP_UNO: 3823 return pred; 3824 case FCMP_OGT: return FCMP_OLT; 3825 case FCMP_OLT: return FCMP_OGT; 3826 case FCMP_OGE: return FCMP_OLE; 3827 case FCMP_OLE: return FCMP_OGE; 3828 case FCMP_UGT: return FCMP_ULT; 3829 case FCMP_ULT: return FCMP_UGT; 3830 case FCMP_UGE: return FCMP_ULE; 3831 case FCMP_ULE: return FCMP_UGE; 3832 } 3833 } 3834 3835 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { 3836 switch (pred) { 3837 case ICMP_SGT: return ICMP_SGE; 3838 case ICMP_SLT: return ICMP_SLE; 3839 case ICMP_UGT: return ICMP_UGE; 3840 case ICMP_ULT: return ICMP_ULE; 3841 case FCMP_OGT: return FCMP_OGE; 3842 case FCMP_OLT: return FCMP_OLE; 3843 case FCMP_UGT: return FCMP_UGE; 3844 case FCMP_ULT: return FCMP_ULE; 3845 default: return pred; 3846 } 3847 } 3848 3849 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3850 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); 3851 3852 switch (pred) { 3853 default: 3854 llvm_unreachable("Unknown predicate!"); 3855 case CmpInst::ICMP_ULT: 3856 return CmpInst::ICMP_SLT; 3857 case CmpInst::ICMP_ULE: 3858 return CmpInst::ICMP_SLE; 3859 case CmpInst::ICMP_UGT: 3860 return CmpInst::ICMP_SGT; 3861 case CmpInst::ICMP_UGE: 3862 return CmpInst::ICMP_SGE; 3863 } 3864 } 3865 3866 bool CmpInst::isUnsigned(Predicate predicate) { 3867 switch (predicate) { 3868 default: return false; 3869 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3870 case ICmpInst::ICMP_UGE: return true; 3871 } 3872 } 3873 3874 bool CmpInst::isSigned(Predicate predicate) { 3875 switch (predicate) { 3876 default: return false; 3877 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3878 case ICmpInst::ICMP_SGE: return true; 3879 } 3880 } 3881 3882 bool CmpInst::isOrdered(Predicate predicate) { 3883 switch (predicate) { 3884 default: return false; 3885 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3886 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3887 case FCmpInst::FCMP_ORD: return true; 3888 } 3889 } 3890 3891 bool CmpInst::isUnordered(Predicate predicate) { 3892 switch (predicate) { 3893 default: return false; 3894 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3895 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3896 case FCmpInst::FCMP_UNO: return true; 3897 } 3898 } 3899 3900 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3901 switch(predicate) { 3902 default: return false; 3903 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3904 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3905 } 3906 } 3907 3908 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3909 switch(predicate) { 3910 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3911 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3912 default: return false; 3913 } 3914 } 3915 3916 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3917 // If the predicates match, then we know the first condition implies the 3918 // second is true. 3919 if (Pred1 == Pred2) 3920 return true; 3921 3922 switch (Pred1) { 3923 default: 3924 break; 3925 case ICMP_EQ: 3926 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3927 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3928 Pred2 == ICMP_SLE; 3929 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3930 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3931 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3932 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3933 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3934 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3935 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3936 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3937 } 3938 return false; 3939 } 3940 3941 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3942 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3943 } 3944 3945 //===----------------------------------------------------------------------===// 3946 // SwitchInst Implementation 3947 //===----------------------------------------------------------------------===// 3948 3949 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3950 assert(Value && Default && NumReserved); 3951 ReservedSpace = NumReserved; 3952 setNumHungOffUseOperands(2); 3953 allocHungoffUses(ReservedSpace); 3954 3955 Op<0>() = Value; 3956 Op<1>() = Default; 3957 } 3958 3959 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3960 /// switch on and a default destination. The number of additional cases can 3961 /// be specified here to make memory allocation more efficient. This 3962 /// constructor can also autoinsert before another instruction. 3963 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3964 Instruction *InsertBefore) 3965 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3966 nullptr, 0, InsertBefore) { 3967 init(Value, Default, 2+NumCases*2); 3968 } 3969 3970 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3971 /// switch on and a default destination. The number of additional cases can 3972 /// be specified here to make memory allocation more efficient. This 3973 /// constructor also autoinserts at the end of the specified BasicBlock. 3974 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3975 BasicBlock *InsertAtEnd) 3976 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3977 nullptr, 0, InsertAtEnd) { 3978 init(Value, Default, 2+NumCases*2); 3979 } 3980 3981 SwitchInst::SwitchInst(const SwitchInst &SI) 3982 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { 3983 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3984 setNumHungOffUseOperands(SI.getNumOperands()); 3985 Use *OL = getOperandList(); 3986 const Use *InOL = SI.getOperandList(); 3987 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3988 OL[i] = InOL[i]; 3989 OL[i+1] = InOL[i+1]; 3990 } 3991 SubclassOptionalData = SI.SubclassOptionalData; 3992 } 3993 3994 /// addCase - Add an entry to the switch instruction... 3995 /// 3996 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3997 unsigned NewCaseIdx = getNumCases(); 3998 unsigned OpNo = getNumOperands(); 3999 if (OpNo+2 > ReservedSpace) 4000 growOperands(); // Get more space! 4001 // Initialize some new operands. 4002 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 4003 setNumHungOffUseOperands(OpNo+2); 4004 CaseHandle Case(this, NewCaseIdx); 4005 Case.setValue(OnVal); 4006 Case.setSuccessor(Dest); 4007 } 4008 4009 /// removeCase - This method removes the specified case and its successor 4010 /// from the switch instruction. 4011 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { 4012 unsigned idx = I->getCaseIndex(); 4013 4014 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 4015 4016 unsigned NumOps = getNumOperands(); 4017 Use *OL = getOperandList(); 4018 4019 // Overwrite this case with the end of the list. 4020 if (2 + (idx + 1) * 2 != NumOps) { 4021 OL[2 + idx * 2] = OL[NumOps - 2]; 4022 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 4023 } 4024 4025 // Nuke the last value. 4026 OL[NumOps-2].set(nullptr); 4027 OL[NumOps-2+1].set(nullptr); 4028 setNumHungOffUseOperands(NumOps-2); 4029 4030 return CaseIt(this, idx); 4031 } 4032 4033 /// growOperands - grow operands - This grows the operand list in response 4034 /// to a push_back style of operation. This grows the number of ops by 3 times. 4035 /// 4036 void SwitchInst::growOperands() { 4037 unsigned e = getNumOperands(); 4038 unsigned NumOps = e*3; 4039 4040 ReservedSpace = NumOps; 4041 growHungoffUses(ReservedSpace); 4042 } 4043 4044 MDNode * 4045 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) { 4046 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof)) 4047 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0))) 4048 if (MDName->getString() == "branch_weights") 4049 return ProfileData; 4050 return nullptr; 4051 } 4052 4053 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() { 4054 assert(Changed && "called only if metadata has changed"); 4055 4056 if (!Weights) 4057 return nullptr; 4058 4059 assert(SI.getNumSuccessors() == Weights->size() && 4060 "num of prof branch_weights must accord with num of successors"); 4061 4062 bool AllZeroes = 4063 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; }); 4064 4065 if (AllZeroes || Weights.getValue().size() < 2) 4066 return nullptr; 4067 4068 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights); 4069 } 4070 4071 void SwitchInstProfUpdateWrapper::init() { 4072 MDNode *ProfileData = getProfBranchWeightsMD(SI); 4073 if (!ProfileData) 4074 return; 4075 4076 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) { 4077 llvm_unreachable("number of prof branch_weights metadata operands does " 4078 "not correspond to number of succesors"); 4079 } 4080 4081 SmallVector<uint32_t, 8> Weights; 4082 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) { 4083 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI)); 4084 uint32_t CW = C->getValue().getZExtValue(); 4085 Weights.push_back(CW); 4086 } 4087 this->Weights = std::move(Weights); 4088 } 4089 4090 SwitchInst::CaseIt 4091 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) { 4092 if (Weights) { 4093 assert(SI.getNumSuccessors() == Weights->size() && 4094 "num of prof branch_weights must accord with num of successors"); 4095 Changed = true; 4096 // Copy the last case to the place of the removed one and shrink. 4097 // This is tightly coupled with the way SwitchInst::removeCase() removes 4098 // the cases in SwitchInst::removeCase(CaseIt). 4099 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back(); 4100 Weights.getValue().pop_back(); 4101 } 4102 return SI.removeCase(I); 4103 } 4104 4105 void SwitchInstProfUpdateWrapper::addCase( 4106 ConstantInt *OnVal, BasicBlock *Dest, 4107 SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4108 SI.addCase(OnVal, Dest); 4109 4110 if (!Weights && W && *W) { 4111 Changed = true; 4112 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4113 Weights.getValue()[SI.getNumSuccessors() - 1] = *W; 4114 } else if (Weights) { 4115 Changed = true; 4116 Weights.getValue().push_back(W ? *W : 0); 4117 } 4118 if (Weights) 4119 assert(SI.getNumSuccessors() == Weights->size() && 4120 "num of prof branch_weights must accord with num of successors"); 4121 } 4122 4123 SymbolTableList<Instruction>::iterator 4124 SwitchInstProfUpdateWrapper::eraseFromParent() { 4125 // Instruction is erased. Mark as unchanged to not touch it in the destructor. 4126 Changed = false; 4127 if (Weights) 4128 Weights->resize(0); 4129 return SI.eraseFromParent(); 4130 } 4131 4132 SwitchInstProfUpdateWrapper::CaseWeightOpt 4133 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) { 4134 if (!Weights) 4135 return None; 4136 return Weights.getValue()[idx]; 4137 } 4138 4139 void SwitchInstProfUpdateWrapper::setSuccessorWeight( 4140 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4141 if (!W) 4142 return; 4143 4144 if (!Weights && *W) 4145 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4146 4147 if (Weights) { 4148 auto &OldW = Weights.getValue()[idx]; 4149 if (*W != OldW) { 4150 Changed = true; 4151 OldW = *W; 4152 } 4153 } 4154 } 4155 4156 SwitchInstProfUpdateWrapper::CaseWeightOpt 4157 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI, 4158 unsigned idx) { 4159 if (MDNode *ProfileData = getProfBranchWeightsMD(SI)) 4160 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1) 4161 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1)) 4162 ->getValue() 4163 .getZExtValue(); 4164 4165 return None; 4166 } 4167 4168 //===----------------------------------------------------------------------===// 4169 // IndirectBrInst Implementation 4170 //===----------------------------------------------------------------------===// 4171 4172 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 4173 assert(Address && Address->getType()->isPointerTy() && 4174 "Address of indirectbr must be a pointer"); 4175 ReservedSpace = 1+NumDests; 4176 setNumHungOffUseOperands(1); 4177 allocHungoffUses(ReservedSpace); 4178 4179 Op<0>() = Address; 4180 } 4181 4182 4183 /// growOperands - grow operands - This grows the operand list in response 4184 /// to a push_back style of operation. This grows the number of ops by 2 times. 4185 /// 4186 void IndirectBrInst::growOperands() { 4187 unsigned e = getNumOperands(); 4188 unsigned NumOps = e*2; 4189 4190 ReservedSpace = NumOps; 4191 growHungoffUses(ReservedSpace); 4192 } 4193 4194 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4195 Instruction *InsertBefore) 4196 : Instruction(Type::getVoidTy(Address->getContext()), 4197 Instruction::IndirectBr, nullptr, 0, InsertBefore) { 4198 init(Address, NumCases); 4199 } 4200 4201 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4202 BasicBlock *InsertAtEnd) 4203 : Instruction(Type::getVoidTy(Address->getContext()), 4204 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) { 4205 init(Address, NumCases); 4206 } 4207 4208 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 4209 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 4210 nullptr, IBI.getNumOperands()) { 4211 allocHungoffUses(IBI.getNumOperands()); 4212 Use *OL = getOperandList(); 4213 const Use *InOL = IBI.getOperandList(); 4214 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 4215 OL[i] = InOL[i]; 4216 SubclassOptionalData = IBI.SubclassOptionalData; 4217 } 4218 4219 /// addDestination - Add a destination. 4220 /// 4221 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 4222 unsigned OpNo = getNumOperands(); 4223 if (OpNo+1 > ReservedSpace) 4224 growOperands(); // Get more space! 4225 // Initialize some new operands. 4226 assert(OpNo < ReservedSpace && "Growing didn't work!"); 4227 setNumHungOffUseOperands(OpNo+1); 4228 getOperandList()[OpNo] = DestBB; 4229 } 4230 4231 /// removeDestination - This method removes the specified successor from the 4232 /// indirectbr instruction. 4233 void IndirectBrInst::removeDestination(unsigned idx) { 4234 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 4235 4236 unsigned NumOps = getNumOperands(); 4237 Use *OL = getOperandList(); 4238 4239 // Replace this value with the last one. 4240 OL[idx+1] = OL[NumOps-1]; 4241 4242 // Nuke the last value. 4243 OL[NumOps-1].set(nullptr); 4244 setNumHungOffUseOperands(NumOps-1); 4245 } 4246 4247 //===----------------------------------------------------------------------===// 4248 // FreezeInst Implementation 4249 //===----------------------------------------------------------------------===// 4250 4251 FreezeInst::FreezeInst(Value *S, 4252 const Twine &Name, Instruction *InsertBefore) 4253 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) { 4254 setName(Name); 4255 } 4256 4257 FreezeInst::FreezeInst(Value *S, 4258 const Twine &Name, BasicBlock *InsertAtEnd) 4259 : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) { 4260 setName(Name); 4261 } 4262 4263 //===----------------------------------------------------------------------===// 4264 // cloneImpl() implementations 4265 //===----------------------------------------------------------------------===// 4266 4267 // Define these methods here so vtables don't get emitted into every translation 4268 // unit that uses these classes. 4269 4270 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 4271 return new (getNumOperands()) GetElementPtrInst(*this); 4272 } 4273 4274 UnaryOperator *UnaryOperator::cloneImpl() const { 4275 return Create(getOpcode(), Op<0>()); 4276 } 4277 4278 BinaryOperator *BinaryOperator::cloneImpl() const { 4279 return Create(getOpcode(), Op<0>(), Op<1>()); 4280 } 4281 4282 FCmpInst *FCmpInst::cloneImpl() const { 4283 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 4284 } 4285 4286 ICmpInst *ICmpInst::cloneImpl() const { 4287 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 4288 } 4289 4290 ExtractValueInst *ExtractValueInst::cloneImpl() const { 4291 return new ExtractValueInst(*this); 4292 } 4293 4294 InsertValueInst *InsertValueInst::cloneImpl() const { 4295 return new InsertValueInst(*this); 4296 } 4297 4298 AllocaInst *AllocaInst::cloneImpl() const { 4299 AllocaInst *Result = 4300 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(), 4301 getOperand(0), getAlign()); 4302 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 4303 Result->setSwiftError(isSwiftError()); 4304 return Result; 4305 } 4306 4307 LoadInst *LoadInst::cloneImpl() const { 4308 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), 4309 getAlign(), getOrdering(), getSyncScopeID()); 4310 } 4311 4312 StoreInst *StoreInst::cloneImpl() const { 4313 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(), 4314 getOrdering(), getSyncScopeID()); 4315 } 4316 4317 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 4318 AtomicCmpXchgInst *Result = new AtomicCmpXchgInst( 4319 getOperand(0), getOperand(1), getOperand(2), getAlign(), 4320 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID()); 4321 Result->setVolatile(isVolatile()); 4322 Result->setWeak(isWeak()); 4323 return Result; 4324 } 4325 4326 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 4327 AtomicRMWInst *Result = 4328 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), 4329 getAlign(), getOrdering(), getSyncScopeID()); 4330 Result->setVolatile(isVolatile()); 4331 return Result; 4332 } 4333 4334 FenceInst *FenceInst::cloneImpl() const { 4335 return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); 4336 } 4337 4338 TruncInst *TruncInst::cloneImpl() const { 4339 return new TruncInst(getOperand(0), getType()); 4340 } 4341 4342 ZExtInst *ZExtInst::cloneImpl() const { 4343 return new ZExtInst(getOperand(0), getType()); 4344 } 4345 4346 SExtInst *SExtInst::cloneImpl() const { 4347 return new SExtInst(getOperand(0), getType()); 4348 } 4349 4350 FPTruncInst *FPTruncInst::cloneImpl() const { 4351 return new FPTruncInst(getOperand(0), getType()); 4352 } 4353 4354 FPExtInst *FPExtInst::cloneImpl() const { 4355 return new FPExtInst(getOperand(0), getType()); 4356 } 4357 4358 UIToFPInst *UIToFPInst::cloneImpl() const { 4359 return new UIToFPInst(getOperand(0), getType()); 4360 } 4361 4362 SIToFPInst *SIToFPInst::cloneImpl() const { 4363 return new SIToFPInst(getOperand(0), getType()); 4364 } 4365 4366 FPToUIInst *FPToUIInst::cloneImpl() const { 4367 return new FPToUIInst(getOperand(0), getType()); 4368 } 4369 4370 FPToSIInst *FPToSIInst::cloneImpl() const { 4371 return new FPToSIInst(getOperand(0), getType()); 4372 } 4373 4374 PtrToIntInst *PtrToIntInst::cloneImpl() const { 4375 return new PtrToIntInst(getOperand(0), getType()); 4376 } 4377 4378 IntToPtrInst *IntToPtrInst::cloneImpl() const { 4379 return new IntToPtrInst(getOperand(0), getType()); 4380 } 4381 4382 BitCastInst *BitCastInst::cloneImpl() const { 4383 return new BitCastInst(getOperand(0), getType()); 4384 } 4385 4386 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 4387 return new AddrSpaceCastInst(getOperand(0), getType()); 4388 } 4389 4390 CallInst *CallInst::cloneImpl() const { 4391 if (hasOperandBundles()) { 4392 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4393 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 4394 } 4395 return new(getNumOperands()) CallInst(*this); 4396 } 4397 4398 SelectInst *SelectInst::cloneImpl() const { 4399 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4400 } 4401 4402 VAArgInst *VAArgInst::cloneImpl() const { 4403 return new VAArgInst(getOperand(0), getType()); 4404 } 4405 4406 ExtractElementInst *ExtractElementInst::cloneImpl() const { 4407 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 4408 } 4409 4410 InsertElementInst *InsertElementInst::cloneImpl() const { 4411 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4412 } 4413 4414 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 4415 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask()); 4416 } 4417 4418 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 4419 4420 LandingPadInst *LandingPadInst::cloneImpl() const { 4421 return new LandingPadInst(*this); 4422 } 4423 4424 ReturnInst *ReturnInst::cloneImpl() const { 4425 return new(getNumOperands()) ReturnInst(*this); 4426 } 4427 4428 BranchInst *BranchInst::cloneImpl() const { 4429 return new(getNumOperands()) BranchInst(*this); 4430 } 4431 4432 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 4433 4434 IndirectBrInst *IndirectBrInst::cloneImpl() const { 4435 return new IndirectBrInst(*this); 4436 } 4437 4438 InvokeInst *InvokeInst::cloneImpl() const { 4439 if (hasOperandBundles()) { 4440 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4441 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 4442 } 4443 return new(getNumOperands()) InvokeInst(*this); 4444 } 4445 4446 CallBrInst *CallBrInst::cloneImpl() const { 4447 if (hasOperandBundles()) { 4448 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4449 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this); 4450 } 4451 return new (getNumOperands()) CallBrInst(*this); 4452 } 4453 4454 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 4455 4456 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4457 return new (getNumOperands()) CleanupReturnInst(*this); 4458 } 4459 4460 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4461 return new (getNumOperands()) CatchReturnInst(*this); 4462 } 4463 4464 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4465 return new CatchSwitchInst(*this); 4466 } 4467 4468 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4469 return new (getNumOperands()) FuncletPadInst(*this); 4470 } 4471 4472 UnreachableInst *UnreachableInst::cloneImpl() const { 4473 LLVMContext &Context = getContext(); 4474 return new UnreachableInst(Context); 4475 } 4476 4477 FreezeInst *FreezeInst::cloneImpl() const { 4478 return new FreezeInst(getOperand(0)); 4479 } 4480