1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 //===----------------------------------------------------------------------===//
49 //                            AllocaInst Class
50 //===----------------------------------------------------------------------===//
51 
52 Optional<TypeSize>
53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55   if (isArrayAllocation()) {
56     auto *C = dyn_cast<ConstantInt>(getArraySize());
57     if (!C)
58       return None;
59     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
60     Size *= C->getZExtValue();
61   }
62   return Size;
63 }
64 
65 //===----------------------------------------------------------------------===//
66 //                              SelectInst Class
67 //===----------------------------------------------------------------------===//
68 
69 /// areInvalidOperands - Return a string if the specified operands are invalid
70 /// for a select operation, otherwise return null.
71 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
72   if (Op1->getType() != Op2->getType())
73     return "both values to select must have same type";
74 
75   if (Op1->getType()->isTokenTy())
76     return "select values cannot have token type";
77 
78   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
79     // Vector select.
80     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
81       return "vector select condition element type must be i1";
82     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
83     if (!ET)
84       return "selected values for vector select must be vectors";
85     if (ET->getElementCount() != VT->getElementCount())
86       return "vector select requires selected vectors to have "
87                    "the same vector length as select condition";
88   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
89     return "select condition must be i1 or <n x i1>";
90   }
91   return nullptr;
92 }
93 
94 //===----------------------------------------------------------------------===//
95 //                               PHINode Class
96 //===----------------------------------------------------------------------===//
97 
98 PHINode::PHINode(const PHINode &PN)
99     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
100       ReservedSpace(PN.getNumOperands()) {
101   allocHungoffUses(PN.getNumOperands());
102   std::copy(PN.op_begin(), PN.op_end(), op_begin());
103   std::copy(PN.block_begin(), PN.block_end(), block_begin());
104   SubclassOptionalData = PN.SubclassOptionalData;
105 }
106 
107 // removeIncomingValue - Remove an incoming value.  This is useful if a
108 // predecessor basic block is deleted.
109 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
110   Value *Removed = getIncomingValue(Idx);
111 
112   // Move everything after this operand down.
113   //
114   // FIXME: we could just swap with the end of the list, then erase.  However,
115   // clients might not expect this to happen.  The code as it is thrashes the
116   // use/def lists, which is kinda lame.
117   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
118   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
119 
120   // Nuke the last value.
121   Op<-1>().set(nullptr);
122   setNumHungOffUseOperands(getNumOperands() - 1);
123 
124   // If the PHI node is dead, because it has zero entries, nuke it now.
125   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
126     // If anyone is using this PHI, make them use a dummy value instead...
127     replaceAllUsesWith(UndefValue::get(getType()));
128     eraseFromParent();
129   }
130   return Removed;
131 }
132 
133 /// growOperands - grow operands - This grows the operand list in response
134 /// to a push_back style of operation.  This grows the number of ops by 1.5
135 /// times.
136 ///
137 void PHINode::growOperands() {
138   unsigned e = getNumOperands();
139   unsigned NumOps = e + e / 2;
140   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
141 
142   ReservedSpace = NumOps;
143   growHungoffUses(ReservedSpace, /* IsPhi */ true);
144 }
145 
146 /// hasConstantValue - If the specified PHI node always merges together the same
147 /// value, return the value, otherwise return null.
148 Value *PHINode::hasConstantValue() const {
149   // Exploit the fact that phi nodes always have at least one entry.
150   Value *ConstantValue = getIncomingValue(0);
151   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
152     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
153       if (ConstantValue != this)
154         return nullptr; // Incoming values not all the same.
155        // The case where the first value is this PHI.
156       ConstantValue = getIncomingValue(i);
157     }
158   if (ConstantValue == this)
159     return UndefValue::get(getType());
160   return ConstantValue;
161 }
162 
163 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
164 /// together the same value, assuming that undefs result in the same value as
165 /// non-undefs.
166 /// Unlike \ref hasConstantValue, this does not return a value because the
167 /// unique non-undef incoming value need not dominate the PHI node.
168 bool PHINode::hasConstantOrUndefValue() const {
169   Value *ConstantValue = nullptr;
170   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
171     Value *Incoming = getIncomingValue(i);
172     if (Incoming != this && !isa<UndefValue>(Incoming)) {
173       if (ConstantValue && ConstantValue != Incoming)
174         return false;
175       ConstantValue = Incoming;
176     }
177   }
178   return true;
179 }
180 
181 //===----------------------------------------------------------------------===//
182 //                       LandingPadInst Implementation
183 //===----------------------------------------------------------------------===//
184 
185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
186                                const Twine &NameStr, Instruction *InsertBefore)
187     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
188   init(NumReservedValues, NameStr);
189 }
190 
191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
192                                const Twine &NameStr, BasicBlock *InsertAtEnd)
193     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
194   init(NumReservedValues, NameStr);
195 }
196 
197 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
198     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
199                   LP.getNumOperands()),
200       ReservedSpace(LP.getNumOperands()) {
201   allocHungoffUses(LP.getNumOperands());
202   Use *OL = getOperandList();
203   const Use *InOL = LP.getOperandList();
204   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
205     OL[I] = InOL[I];
206 
207   setCleanup(LP.isCleanup());
208 }
209 
210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
211                                        const Twine &NameStr,
212                                        Instruction *InsertBefore) {
213   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
214 }
215 
216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
217                                        const Twine &NameStr,
218                                        BasicBlock *InsertAtEnd) {
219   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
220 }
221 
222 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
223   ReservedSpace = NumReservedValues;
224   setNumHungOffUseOperands(0);
225   allocHungoffUses(ReservedSpace);
226   setName(NameStr);
227   setCleanup(false);
228 }
229 
230 /// growOperands - grow operands - This grows the operand list in response to a
231 /// push_back style of operation. This grows the number of ops by 2 times.
232 void LandingPadInst::growOperands(unsigned Size) {
233   unsigned e = getNumOperands();
234   if (ReservedSpace >= e + Size) return;
235   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
236   growHungoffUses(ReservedSpace);
237 }
238 
239 void LandingPadInst::addClause(Constant *Val) {
240   unsigned OpNo = getNumOperands();
241   growOperands(1);
242   assert(OpNo < ReservedSpace && "Growing didn't work!");
243   setNumHungOffUseOperands(getNumOperands() + 1);
244   getOperandList()[OpNo] = Val;
245 }
246 
247 //===----------------------------------------------------------------------===//
248 //                        CallBase Implementation
249 //===----------------------------------------------------------------------===//
250 
251 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
252                            Instruction *InsertPt) {
253   switch (CB->getOpcode()) {
254   case Instruction::Call:
255     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
256   case Instruction::Invoke:
257     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
258   case Instruction::CallBr:
259     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
260   default:
261     llvm_unreachable("Unknown CallBase sub-class!");
262   }
263 }
264 
265 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
266                            Instruction *InsertPt) {
267   SmallVector<OperandBundleDef, 2> OpDefs;
268   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
269     auto ChildOB = CI->getOperandBundleAt(i);
270     if (ChildOB.getTagName() != OpB.getTag())
271       OpDefs.emplace_back(ChildOB);
272   }
273   OpDefs.emplace_back(OpB);
274   return CallBase::Create(CI, OpDefs, InsertPt);
275 }
276 
277 
278 Function *CallBase::getCaller() { return getParent()->getParent(); }
279 
280 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
281   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
282   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
283 }
284 
285 bool CallBase::isIndirectCall() const {
286   const Value *V = getCalledOperand();
287   if (isa<Function>(V) || isa<Constant>(V))
288     return false;
289   return !isInlineAsm();
290 }
291 
292 /// Tests if this call site must be tail call optimized. Only a CallInst can
293 /// be tail call optimized.
294 bool CallBase::isMustTailCall() const {
295   if (auto *CI = dyn_cast<CallInst>(this))
296     return CI->isMustTailCall();
297   return false;
298 }
299 
300 /// Tests if this call site is marked as a tail call.
301 bool CallBase::isTailCall() const {
302   if (auto *CI = dyn_cast<CallInst>(this))
303     return CI->isTailCall();
304   return false;
305 }
306 
307 Intrinsic::ID CallBase::getIntrinsicID() const {
308   if (auto *F = getCalledFunction())
309     return F->getIntrinsicID();
310   return Intrinsic::not_intrinsic;
311 }
312 
313 bool CallBase::isReturnNonNull() const {
314   if (hasRetAttr(Attribute::NonNull))
315     return true;
316 
317   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
318            !NullPointerIsDefined(getCaller(),
319                                  getType()->getPointerAddressSpace()))
320     return true;
321 
322   return false;
323 }
324 
325 Value *CallBase::getReturnedArgOperand() const {
326   unsigned Index;
327 
328   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
329     return getArgOperand(Index - AttributeList::FirstArgIndex);
330   if (const Function *F = getCalledFunction())
331     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
332         Index)
333       return getArgOperand(Index - AttributeList::FirstArgIndex);
334 
335   return nullptr;
336 }
337 
338 /// Determine whether the argument or parameter has the given attribute.
339 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
340   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
341 
342   if (Attrs.hasParamAttribute(ArgNo, Kind))
343     return true;
344   if (const Function *F = getCalledFunction())
345     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
346   return false;
347 }
348 
349 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
350   if (const Function *F = getCalledFunction())
351     return F->getAttributes().hasFnAttribute(Kind);
352   return false;
353 }
354 
355 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
356   if (const Function *F = getCalledFunction())
357     return F->getAttributes().hasFnAttribute(Kind);
358   return false;
359 }
360 
361 void CallBase::getOperandBundlesAsDefs(
362     SmallVectorImpl<OperandBundleDef> &Defs) const {
363   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
364     Defs.emplace_back(getOperandBundleAt(i));
365 }
366 
367 CallBase::op_iterator
368 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
369                                      const unsigned BeginIndex) {
370   auto It = op_begin() + BeginIndex;
371   for (auto &B : Bundles)
372     It = std::copy(B.input_begin(), B.input_end(), It);
373 
374   auto *ContextImpl = getContext().pImpl;
375   auto BI = Bundles.begin();
376   unsigned CurrentIndex = BeginIndex;
377 
378   for (auto &BOI : bundle_op_infos()) {
379     assert(BI != Bundles.end() && "Incorrect allocation?");
380 
381     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
382     BOI.Begin = CurrentIndex;
383     BOI.End = CurrentIndex + BI->input_size();
384     CurrentIndex = BOI.End;
385     BI++;
386   }
387 
388   assert(BI == Bundles.end() && "Incorrect allocation?");
389 
390   return It;
391 }
392 
393 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
394   /// When there isn't many bundles, we do a simple linear search.
395   /// Else fallback to a binary-search that use the fact that bundles usually
396   /// have similar number of argument to get faster convergence.
397   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
398     for (auto &BOI : bundle_op_infos())
399       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
400         return BOI;
401 
402     llvm_unreachable("Did not find operand bundle for operand!");
403   }
404 
405   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
406   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
407          OpIdx < std::prev(bundle_op_info_end())->End &&
408          "The Idx isn't in the operand bundle");
409 
410   /// We need a decimal number below and to prevent using floating point numbers
411   /// we use an intergal value multiplied by this constant.
412   constexpr unsigned NumberScaling = 1024;
413 
414   bundle_op_iterator Begin = bundle_op_info_begin();
415   bundle_op_iterator End = bundle_op_info_end();
416   bundle_op_iterator Current = Begin;
417 
418   while (Begin != End) {
419     unsigned ScaledOperandPerBundle =
420         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
421     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
422                        ScaledOperandPerBundle);
423     if (Current >= End)
424       Current = std::prev(End);
425     assert(Current < End && Current >= Begin &&
426            "the operand bundle doesn't cover every value in the range");
427     if (OpIdx >= Current->Begin && OpIdx < Current->End)
428       break;
429     if (OpIdx >= Current->End)
430       Begin = Current + 1;
431     else
432       End = Current;
433   }
434 
435   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
436          "the operand bundle doesn't cover every value in the range");
437   return *Current;
438 }
439 
440 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
441                                      OperandBundleDef OB,
442                                      Instruction *InsertPt) {
443   if (CB->getOperandBundle(ID))
444     return CB;
445 
446   SmallVector<OperandBundleDef, 1> Bundles;
447   CB->getOperandBundlesAsDefs(Bundles);
448   Bundles.push_back(OB);
449   return Create(CB, Bundles, InsertPt);
450 }
451 
452 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
453                                         Instruction *InsertPt) {
454   SmallVector<OperandBundleDef, 1> Bundles;
455   bool CreateNew = false;
456 
457   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
458     auto Bundle = CB->getOperandBundleAt(I);
459     if (Bundle.getTagID() == ID) {
460       CreateNew = true;
461       continue;
462     }
463     Bundles.emplace_back(Bundle);
464   }
465 
466   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
467 }
468 
469 bool CallBase::hasReadingOperandBundles() const {
470   // Implementation note: this is a conservative implementation of operand
471   // bundle semantics, where *any* non-assume operand bundle forces a callsite
472   // to be at least readonly.
473   return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
474 }
475 
476 //===----------------------------------------------------------------------===//
477 //                        CallInst Implementation
478 //===----------------------------------------------------------------------===//
479 
480 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
481                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
482   this->FTy = FTy;
483   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
484          "NumOperands not set up?");
485   setCalledOperand(Func);
486 
487 #ifndef NDEBUG
488   assert((Args.size() == FTy->getNumParams() ||
489           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
490          "Calling a function with bad signature!");
491 
492   for (unsigned i = 0; i != Args.size(); ++i)
493     assert((i >= FTy->getNumParams() ||
494             FTy->getParamType(i) == Args[i]->getType()) &&
495            "Calling a function with a bad signature!");
496 #endif
497 
498   llvm::copy(Args, op_begin());
499 
500   auto It = populateBundleOperandInfos(Bundles, Args.size());
501   (void)It;
502   assert(It + 1 == op_end() && "Should add up!");
503 
504   setName(NameStr);
505 }
506 
507 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
508   this->FTy = FTy;
509   assert(getNumOperands() == 1 && "NumOperands not set up?");
510   setCalledOperand(Func);
511 
512   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
513 
514   setName(NameStr);
515 }
516 
517 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
518                    Instruction *InsertBefore)
519     : CallBase(Ty->getReturnType(), Instruction::Call,
520                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
521   init(Ty, Func, Name);
522 }
523 
524 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
525                    BasicBlock *InsertAtEnd)
526     : CallBase(Ty->getReturnType(), Instruction::Call,
527                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
528   init(Ty, Func, Name);
529 }
530 
531 CallInst::CallInst(const CallInst &CI)
532     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
533                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
534                CI.getNumOperands()) {
535   setTailCallKind(CI.getTailCallKind());
536   setCallingConv(CI.getCallingConv());
537 
538   std::copy(CI.op_begin(), CI.op_end(), op_begin());
539   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
540             bundle_op_info_begin());
541   SubclassOptionalData = CI.SubclassOptionalData;
542 }
543 
544 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
545                            Instruction *InsertPt) {
546   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
547 
548   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
549                                  Args, OpB, CI->getName(), InsertPt);
550   NewCI->setTailCallKind(CI->getTailCallKind());
551   NewCI->setCallingConv(CI->getCallingConv());
552   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
553   NewCI->setAttributes(CI->getAttributes());
554   NewCI->setDebugLoc(CI->getDebugLoc());
555   return NewCI;
556 }
557 
558 // Update profile weight for call instruction by scaling it using the ratio
559 // of S/T. The meaning of "branch_weights" meta data for call instruction is
560 // transfered to represent call count.
561 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
562   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
563   if (ProfileData == nullptr)
564     return;
565 
566   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
567   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
568                         !ProfDataName->getString().equals("VP")))
569     return;
570 
571   if (T == 0) {
572     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
573                          "div by 0. Ignoring. Likely the function "
574                       << getParent()->getParent()->getName()
575                       << " has 0 entry count, and contains call instructions "
576                          "with non-zero prof info.");
577     return;
578   }
579 
580   MDBuilder MDB(getContext());
581   SmallVector<Metadata *, 3> Vals;
582   Vals.push_back(ProfileData->getOperand(0));
583   APInt APS(128, S), APT(128, T);
584   if (ProfDataName->getString().equals("branch_weights") &&
585       ProfileData->getNumOperands() > 0) {
586     // Using APInt::div may be expensive, but most cases should fit 64 bits.
587     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
588                        ->getValue()
589                        .getZExtValue());
590     Val *= APS;
591     Vals.push_back(MDB.createConstant(
592         ConstantInt::get(Type::getInt32Ty(getContext()),
593                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
594   } else if (ProfDataName->getString().equals("VP"))
595     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
596       // The first value is the key of the value profile, which will not change.
597       Vals.push_back(ProfileData->getOperand(i));
598       uint64_t Count =
599           mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
600               ->getValue()
601               .getZExtValue();
602       // Don't scale the magic number.
603       if (Count == NOMORE_ICP_MAGICNUM) {
604         Vals.push_back(ProfileData->getOperand(i + 1));
605         continue;
606       }
607       // Using APInt::div may be expensive, but most cases should fit 64 bits.
608       APInt Val(128, Count);
609       Val *= APS;
610       Vals.push_back(MDB.createConstant(
611           ConstantInt::get(Type::getInt64Ty(getContext()),
612                            Val.udiv(APT).getLimitedValue())));
613     }
614   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
615 }
616 
617 /// IsConstantOne - Return true only if val is constant int 1
618 static bool IsConstantOne(Value *val) {
619   assert(val && "IsConstantOne does not work with nullptr val");
620   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
621   return CVal && CVal->isOne();
622 }
623 
624 static Instruction *createMalloc(Instruction *InsertBefore,
625                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
626                                  Type *AllocTy, Value *AllocSize,
627                                  Value *ArraySize,
628                                  ArrayRef<OperandBundleDef> OpB,
629                                  Function *MallocF, const Twine &Name) {
630   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
631          "createMalloc needs either InsertBefore or InsertAtEnd");
632 
633   // malloc(type) becomes:
634   //       bitcast (i8* malloc(typeSize)) to type*
635   // malloc(type, arraySize) becomes:
636   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
637   if (!ArraySize)
638     ArraySize = ConstantInt::get(IntPtrTy, 1);
639   else if (ArraySize->getType() != IntPtrTy) {
640     if (InsertBefore)
641       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
642                                               "", InsertBefore);
643     else
644       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
645                                               "", InsertAtEnd);
646   }
647 
648   if (!IsConstantOne(ArraySize)) {
649     if (IsConstantOne(AllocSize)) {
650       AllocSize = ArraySize;         // Operand * 1 = Operand
651     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
652       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
653                                                      false /*ZExt*/);
654       // Malloc arg is constant product of type size and array size
655       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
656     } else {
657       // Multiply type size by the array size...
658       if (InsertBefore)
659         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
660                                               "mallocsize", InsertBefore);
661       else
662         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
663                                               "mallocsize", InsertAtEnd);
664     }
665   }
666 
667   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
668   // Create the call to Malloc.
669   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
670   Module *M = BB->getParent()->getParent();
671   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
672   FunctionCallee MallocFunc = MallocF;
673   if (!MallocFunc)
674     // prototype malloc as "void *malloc(size_t)"
675     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
676   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
677   CallInst *MCall = nullptr;
678   Instruction *Result = nullptr;
679   if (InsertBefore) {
680     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
681                              InsertBefore);
682     Result = MCall;
683     if (Result->getType() != AllocPtrType)
684       // Create a cast instruction to convert to the right type...
685       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
686   } else {
687     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
688     Result = MCall;
689     if (Result->getType() != AllocPtrType) {
690       InsertAtEnd->getInstList().push_back(MCall);
691       // Create a cast instruction to convert to the right type...
692       Result = new BitCastInst(MCall, AllocPtrType, Name);
693     }
694   }
695   MCall->setTailCall();
696   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
697     MCall->setCallingConv(F->getCallingConv());
698     if (!F->returnDoesNotAlias())
699       F->setReturnDoesNotAlias();
700   }
701   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
702 
703   return Result;
704 }
705 
706 /// CreateMalloc - Generate the IR for a call to malloc:
707 /// 1. Compute the malloc call's argument as the specified type's size,
708 ///    possibly multiplied by the array size if the array size is not
709 ///    constant 1.
710 /// 2. Call malloc with that argument.
711 /// 3. Bitcast the result of the malloc call to the specified type.
712 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
713                                     Type *IntPtrTy, Type *AllocTy,
714                                     Value *AllocSize, Value *ArraySize,
715                                     Function *MallocF,
716                                     const Twine &Name) {
717   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
718                       ArraySize, None, MallocF, Name);
719 }
720 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
721                                     Type *IntPtrTy, Type *AllocTy,
722                                     Value *AllocSize, Value *ArraySize,
723                                     ArrayRef<OperandBundleDef> OpB,
724                                     Function *MallocF,
725                                     const Twine &Name) {
726   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
727                       ArraySize, OpB, MallocF, Name);
728 }
729 
730 /// CreateMalloc - Generate the IR for a call to malloc:
731 /// 1. Compute the malloc call's argument as the specified type's size,
732 ///    possibly multiplied by the array size if the array size is not
733 ///    constant 1.
734 /// 2. Call malloc with that argument.
735 /// 3. Bitcast the result of the malloc call to the specified type.
736 /// Note: This function does not add the bitcast to the basic block, that is the
737 /// responsibility of the caller.
738 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
739                                     Type *IntPtrTy, Type *AllocTy,
740                                     Value *AllocSize, Value *ArraySize,
741                                     Function *MallocF, const Twine &Name) {
742   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
743                       ArraySize, None, MallocF, Name);
744 }
745 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
746                                     Type *IntPtrTy, Type *AllocTy,
747                                     Value *AllocSize, Value *ArraySize,
748                                     ArrayRef<OperandBundleDef> OpB,
749                                     Function *MallocF, const Twine &Name) {
750   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
751                       ArraySize, OpB, MallocF, Name);
752 }
753 
754 static Instruction *createFree(Value *Source,
755                                ArrayRef<OperandBundleDef> Bundles,
756                                Instruction *InsertBefore,
757                                BasicBlock *InsertAtEnd) {
758   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
759          "createFree needs either InsertBefore or InsertAtEnd");
760   assert(Source->getType()->isPointerTy() &&
761          "Can not free something of nonpointer type!");
762 
763   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
764   Module *M = BB->getParent()->getParent();
765 
766   Type *VoidTy = Type::getVoidTy(M->getContext());
767   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
768   // prototype free as "void free(void*)"
769   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
770   CallInst *Result = nullptr;
771   Value *PtrCast = Source;
772   if (InsertBefore) {
773     if (Source->getType() != IntPtrTy)
774       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
775     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
776   } else {
777     if (Source->getType() != IntPtrTy)
778       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
779     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
780   }
781   Result->setTailCall();
782   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
783     Result->setCallingConv(F->getCallingConv());
784 
785   return Result;
786 }
787 
788 /// CreateFree - Generate the IR for a call to the builtin free function.
789 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
790   return createFree(Source, None, InsertBefore, nullptr);
791 }
792 Instruction *CallInst::CreateFree(Value *Source,
793                                   ArrayRef<OperandBundleDef> Bundles,
794                                   Instruction *InsertBefore) {
795   return createFree(Source, Bundles, InsertBefore, nullptr);
796 }
797 
798 /// CreateFree - Generate the IR for a call to the builtin free function.
799 /// Note: This function does not add the call to the basic block, that is the
800 /// responsibility of the caller.
801 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
802   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
803   assert(FreeCall && "CreateFree did not create a CallInst");
804   return FreeCall;
805 }
806 Instruction *CallInst::CreateFree(Value *Source,
807                                   ArrayRef<OperandBundleDef> Bundles,
808                                   BasicBlock *InsertAtEnd) {
809   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
810   assert(FreeCall && "CreateFree did not create a CallInst");
811   return FreeCall;
812 }
813 
814 //===----------------------------------------------------------------------===//
815 //                        InvokeInst Implementation
816 //===----------------------------------------------------------------------===//
817 
818 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
819                       BasicBlock *IfException, ArrayRef<Value *> Args,
820                       ArrayRef<OperandBundleDef> Bundles,
821                       const Twine &NameStr) {
822   this->FTy = FTy;
823 
824   assert((int)getNumOperands() ==
825              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
826          "NumOperands not set up?");
827   setNormalDest(IfNormal);
828   setUnwindDest(IfException);
829   setCalledOperand(Fn);
830 
831 #ifndef NDEBUG
832   assert(((Args.size() == FTy->getNumParams()) ||
833           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
834          "Invoking a function with bad signature");
835 
836   for (unsigned i = 0, e = Args.size(); i != e; i++)
837     assert((i >= FTy->getNumParams() ||
838             FTy->getParamType(i) == Args[i]->getType()) &&
839            "Invoking a function with a bad signature!");
840 #endif
841 
842   llvm::copy(Args, op_begin());
843 
844   auto It = populateBundleOperandInfos(Bundles, Args.size());
845   (void)It;
846   assert(It + 3 == op_end() && "Should add up!");
847 
848   setName(NameStr);
849 }
850 
851 InvokeInst::InvokeInst(const InvokeInst &II)
852     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
853                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
854                II.getNumOperands()) {
855   setCallingConv(II.getCallingConv());
856   std::copy(II.op_begin(), II.op_end(), op_begin());
857   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
858             bundle_op_info_begin());
859   SubclassOptionalData = II.SubclassOptionalData;
860 }
861 
862 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
863                                Instruction *InsertPt) {
864   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
865 
866   auto *NewII = InvokeInst::Create(
867       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
868       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
869   NewII->setCallingConv(II->getCallingConv());
870   NewII->SubclassOptionalData = II->SubclassOptionalData;
871   NewII->setAttributes(II->getAttributes());
872   NewII->setDebugLoc(II->getDebugLoc());
873   return NewII;
874 }
875 
876 LandingPadInst *InvokeInst::getLandingPadInst() const {
877   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
878 }
879 
880 //===----------------------------------------------------------------------===//
881 //                        CallBrInst Implementation
882 //===----------------------------------------------------------------------===//
883 
884 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
885                       ArrayRef<BasicBlock *> IndirectDests,
886                       ArrayRef<Value *> Args,
887                       ArrayRef<OperandBundleDef> Bundles,
888                       const Twine &NameStr) {
889   this->FTy = FTy;
890 
891   assert((int)getNumOperands() ==
892              ComputeNumOperands(Args.size(), IndirectDests.size(),
893                                 CountBundleInputs(Bundles)) &&
894          "NumOperands not set up?");
895   NumIndirectDests = IndirectDests.size();
896   setDefaultDest(Fallthrough);
897   for (unsigned i = 0; i != NumIndirectDests; ++i)
898     setIndirectDest(i, IndirectDests[i]);
899   setCalledOperand(Fn);
900 
901 #ifndef NDEBUG
902   assert(((Args.size() == FTy->getNumParams()) ||
903           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
904          "Calling a function with bad signature");
905 
906   for (unsigned i = 0, e = Args.size(); i != e; i++)
907     assert((i >= FTy->getNumParams() ||
908             FTy->getParamType(i) == Args[i]->getType()) &&
909            "Calling a function with a bad signature!");
910 #endif
911 
912   std::copy(Args.begin(), Args.end(), op_begin());
913 
914   auto It = populateBundleOperandInfos(Bundles, Args.size());
915   (void)It;
916   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
917 
918   setName(NameStr);
919 }
920 
921 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
922   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
923   if (BasicBlock *OldBB = getIndirectDest(i)) {
924     BlockAddress *Old = BlockAddress::get(OldBB);
925     BlockAddress *New = BlockAddress::get(B);
926     for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
927       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
928         setArgOperand(ArgNo, New);
929   }
930 }
931 
932 CallBrInst::CallBrInst(const CallBrInst &CBI)
933     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
934                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
935                CBI.getNumOperands()) {
936   setCallingConv(CBI.getCallingConv());
937   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
938   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
939             bundle_op_info_begin());
940   SubclassOptionalData = CBI.SubclassOptionalData;
941   NumIndirectDests = CBI.NumIndirectDests;
942 }
943 
944 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
945                                Instruction *InsertPt) {
946   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
947 
948   auto *NewCBI = CallBrInst::Create(
949       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
950       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
951   NewCBI->setCallingConv(CBI->getCallingConv());
952   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
953   NewCBI->setAttributes(CBI->getAttributes());
954   NewCBI->setDebugLoc(CBI->getDebugLoc());
955   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
956   return NewCBI;
957 }
958 
959 //===----------------------------------------------------------------------===//
960 //                        ReturnInst Implementation
961 //===----------------------------------------------------------------------===//
962 
963 ReturnInst::ReturnInst(const ReturnInst &RI)
964     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
965                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
966                   RI.getNumOperands()) {
967   if (RI.getNumOperands())
968     Op<0>() = RI.Op<0>();
969   SubclassOptionalData = RI.SubclassOptionalData;
970 }
971 
972 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
973     : Instruction(Type::getVoidTy(C), Instruction::Ret,
974                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
975                   InsertBefore) {
976   if (retVal)
977     Op<0>() = retVal;
978 }
979 
980 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
981     : Instruction(Type::getVoidTy(C), Instruction::Ret,
982                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
983                   InsertAtEnd) {
984   if (retVal)
985     Op<0>() = retVal;
986 }
987 
988 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
989     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
990                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
991 
992 //===----------------------------------------------------------------------===//
993 //                        ResumeInst Implementation
994 //===----------------------------------------------------------------------===//
995 
996 ResumeInst::ResumeInst(const ResumeInst &RI)
997     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
998                   OperandTraits<ResumeInst>::op_begin(this), 1) {
999   Op<0>() = RI.Op<0>();
1000 }
1001 
1002 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1003     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1004                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1005   Op<0>() = Exn;
1006 }
1007 
1008 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1009     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1010                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1011   Op<0>() = Exn;
1012 }
1013 
1014 //===----------------------------------------------------------------------===//
1015 //                        CleanupReturnInst Implementation
1016 //===----------------------------------------------------------------------===//
1017 
1018 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1019     : Instruction(CRI.getType(), Instruction::CleanupRet,
1020                   OperandTraits<CleanupReturnInst>::op_end(this) -
1021                       CRI.getNumOperands(),
1022                   CRI.getNumOperands()) {
1023   setSubclassData<Instruction::OpaqueField>(
1024       CRI.getSubclassData<Instruction::OpaqueField>());
1025   Op<0>() = CRI.Op<0>();
1026   if (CRI.hasUnwindDest())
1027     Op<1>() = CRI.Op<1>();
1028 }
1029 
1030 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1031   if (UnwindBB)
1032     setSubclassData<UnwindDestField>(true);
1033 
1034   Op<0>() = CleanupPad;
1035   if (UnwindBB)
1036     Op<1>() = UnwindBB;
1037 }
1038 
1039 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1040                                      unsigned Values, Instruction *InsertBefore)
1041     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1042                   Instruction::CleanupRet,
1043                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1044                   Values, InsertBefore) {
1045   init(CleanupPad, UnwindBB);
1046 }
1047 
1048 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1049                                      unsigned Values, BasicBlock *InsertAtEnd)
1050     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1051                   Instruction::CleanupRet,
1052                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1053                   Values, InsertAtEnd) {
1054   init(CleanupPad, UnwindBB);
1055 }
1056 
1057 //===----------------------------------------------------------------------===//
1058 //                        CatchReturnInst Implementation
1059 //===----------------------------------------------------------------------===//
1060 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1061   Op<0>() = CatchPad;
1062   Op<1>() = BB;
1063 }
1064 
1065 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1066     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1067                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1068   Op<0>() = CRI.Op<0>();
1069   Op<1>() = CRI.Op<1>();
1070 }
1071 
1072 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1073                                  Instruction *InsertBefore)
1074     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1075                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1076                   InsertBefore) {
1077   init(CatchPad, BB);
1078 }
1079 
1080 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1081                                  BasicBlock *InsertAtEnd)
1082     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1083                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1084                   InsertAtEnd) {
1085   init(CatchPad, BB);
1086 }
1087 
1088 //===----------------------------------------------------------------------===//
1089 //                       CatchSwitchInst Implementation
1090 //===----------------------------------------------------------------------===//
1091 
1092 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1093                                  unsigned NumReservedValues,
1094                                  const Twine &NameStr,
1095                                  Instruction *InsertBefore)
1096     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1097                   InsertBefore) {
1098   if (UnwindDest)
1099     ++NumReservedValues;
1100   init(ParentPad, UnwindDest, NumReservedValues + 1);
1101   setName(NameStr);
1102 }
1103 
1104 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1105                                  unsigned NumReservedValues,
1106                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1107     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1108                   InsertAtEnd) {
1109   if (UnwindDest)
1110     ++NumReservedValues;
1111   init(ParentPad, UnwindDest, NumReservedValues + 1);
1112   setName(NameStr);
1113 }
1114 
1115 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1116     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1117                   CSI.getNumOperands()) {
1118   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1119   setNumHungOffUseOperands(ReservedSpace);
1120   Use *OL = getOperandList();
1121   const Use *InOL = CSI.getOperandList();
1122   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1123     OL[I] = InOL[I];
1124 }
1125 
1126 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1127                            unsigned NumReservedValues) {
1128   assert(ParentPad && NumReservedValues);
1129 
1130   ReservedSpace = NumReservedValues;
1131   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1132   allocHungoffUses(ReservedSpace);
1133 
1134   Op<0>() = ParentPad;
1135   if (UnwindDest) {
1136     setSubclassData<UnwindDestField>(true);
1137     setUnwindDest(UnwindDest);
1138   }
1139 }
1140 
1141 /// growOperands - grow operands - This grows the operand list in response to a
1142 /// push_back style of operation. This grows the number of ops by 2 times.
1143 void CatchSwitchInst::growOperands(unsigned Size) {
1144   unsigned NumOperands = getNumOperands();
1145   assert(NumOperands >= 1);
1146   if (ReservedSpace >= NumOperands + Size)
1147     return;
1148   ReservedSpace = (NumOperands + Size / 2) * 2;
1149   growHungoffUses(ReservedSpace);
1150 }
1151 
1152 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1153   unsigned OpNo = getNumOperands();
1154   growOperands(1);
1155   assert(OpNo < ReservedSpace && "Growing didn't work!");
1156   setNumHungOffUseOperands(getNumOperands() + 1);
1157   getOperandList()[OpNo] = Handler;
1158 }
1159 
1160 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1161   // Move all subsequent handlers up one.
1162   Use *EndDst = op_end() - 1;
1163   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1164     *CurDst = *(CurDst + 1);
1165   // Null out the last handler use.
1166   *EndDst = nullptr;
1167 
1168   setNumHungOffUseOperands(getNumOperands() - 1);
1169 }
1170 
1171 //===----------------------------------------------------------------------===//
1172 //                        FuncletPadInst Implementation
1173 //===----------------------------------------------------------------------===//
1174 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1175                           const Twine &NameStr) {
1176   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1177   llvm::copy(Args, op_begin());
1178   setParentPad(ParentPad);
1179   setName(NameStr);
1180 }
1181 
1182 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1183     : Instruction(FPI.getType(), FPI.getOpcode(),
1184                   OperandTraits<FuncletPadInst>::op_end(this) -
1185                       FPI.getNumOperands(),
1186                   FPI.getNumOperands()) {
1187   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1188   setParentPad(FPI.getParentPad());
1189 }
1190 
1191 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1192                                ArrayRef<Value *> Args, unsigned Values,
1193                                const Twine &NameStr, Instruction *InsertBefore)
1194     : Instruction(ParentPad->getType(), Op,
1195                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1196                   InsertBefore) {
1197   init(ParentPad, Args, NameStr);
1198 }
1199 
1200 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1201                                ArrayRef<Value *> Args, unsigned Values,
1202                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1203     : Instruction(ParentPad->getType(), Op,
1204                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1205                   InsertAtEnd) {
1206   init(ParentPad, Args, NameStr);
1207 }
1208 
1209 //===----------------------------------------------------------------------===//
1210 //                      UnreachableInst Implementation
1211 //===----------------------------------------------------------------------===//
1212 
1213 UnreachableInst::UnreachableInst(LLVMContext &Context,
1214                                  Instruction *InsertBefore)
1215     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1216                   0, InsertBefore) {}
1217 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1218     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1219                   0, InsertAtEnd) {}
1220 
1221 //===----------------------------------------------------------------------===//
1222 //                        BranchInst Implementation
1223 //===----------------------------------------------------------------------===//
1224 
1225 void BranchInst::AssertOK() {
1226   if (isConditional())
1227     assert(getCondition()->getType()->isIntegerTy(1) &&
1228            "May only branch on boolean predicates!");
1229 }
1230 
1231 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1232     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1233                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1234                   InsertBefore) {
1235   assert(IfTrue && "Branch destination may not be null!");
1236   Op<-1>() = IfTrue;
1237 }
1238 
1239 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1240                        Instruction *InsertBefore)
1241     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1242                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1243                   InsertBefore) {
1244   Op<-1>() = IfTrue;
1245   Op<-2>() = IfFalse;
1246   Op<-3>() = Cond;
1247 #ifndef NDEBUG
1248   AssertOK();
1249 #endif
1250 }
1251 
1252 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1253     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1254                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1255   assert(IfTrue && "Branch destination may not be null!");
1256   Op<-1>() = IfTrue;
1257 }
1258 
1259 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1260                        BasicBlock *InsertAtEnd)
1261     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1262                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1263   Op<-1>() = IfTrue;
1264   Op<-2>() = IfFalse;
1265   Op<-3>() = Cond;
1266 #ifndef NDEBUG
1267   AssertOK();
1268 #endif
1269 }
1270 
1271 BranchInst::BranchInst(const BranchInst &BI)
1272     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1273                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1274                   BI.getNumOperands()) {
1275   Op<-1>() = BI.Op<-1>();
1276   if (BI.getNumOperands() != 1) {
1277     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1278     Op<-3>() = BI.Op<-3>();
1279     Op<-2>() = BI.Op<-2>();
1280   }
1281   SubclassOptionalData = BI.SubclassOptionalData;
1282 }
1283 
1284 void BranchInst::swapSuccessors() {
1285   assert(isConditional() &&
1286          "Cannot swap successors of an unconditional branch");
1287   Op<-1>().swap(Op<-2>());
1288 
1289   // Update profile metadata if present and it matches our structural
1290   // expectations.
1291   swapProfMetadata();
1292 }
1293 
1294 //===----------------------------------------------------------------------===//
1295 //                        AllocaInst Implementation
1296 //===----------------------------------------------------------------------===//
1297 
1298 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1299   if (!Amt)
1300     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1301   else {
1302     assert(!isa<BasicBlock>(Amt) &&
1303            "Passed basic block into allocation size parameter! Use other ctor");
1304     assert(Amt->getType()->isIntegerTy() &&
1305            "Allocation array size is not an integer!");
1306   }
1307   return Amt;
1308 }
1309 
1310 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1311   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1312   assert(BB->getParent() &&
1313          "BB must be in a Function when alignment not provided!");
1314   const DataLayout &DL = BB->getModule()->getDataLayout();
1315   return DL.getPrefTypeAlign(Ty);
1316 }
1317 
1318 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1319   assert(I && "Insertion position cannot be null when alignment not provided!");
1320   return computeAllocaDefaultAlign(Ty, I->getParent());
1321 }
1322 
1323 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1324                        Instruction *InsertBefore)
1325   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1326 
1327 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1328                        BasicBlock *InsertAtEnd)
1329   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1330 
1331 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1332                        const Twine &Name, Instruction *InsertBefore)
1333     : AllocaInst(Ty, AddrSpace, ArraySize,
1334                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1335                  InsertBefore) {}
1336 
1337 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1338                        const Twine &Name, BasicBlock *InsertAtEnd)
1339     : AllocaInst(Ty, AddrSpace, ArraySize,
1340                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1341                  InsertAtEnd) {}
1342 
1343 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1344                        Align Align, const Twine &Name,
1345                        Instruction *InsertBefore)
1346     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1347                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1348       AllocatedType(Ty) {
1349   setAlignment(Align);
1350   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1351   setName(Name);
1352 }
1353 
1354 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1355                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1356     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1357                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1358       AllocatedType(Ty) {
1359   setAlignment(Align);
1360   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1361   setName(Name);
1362 }
1363 
1364 
1365 bool AllocaInst::isArrayAllocation() const {
1366   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1367     return !CI->isOne();
1368   return true;
1369 }
1370 
1371 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1372 /// function and is a constant size.  If so, the code generator will fold it
1373 /// into the prolog/epilog code, so it is basically free.
1374 bool AllocaInst::isStaticAlloca() const {
1375   // Must be constant size.
1376   if (!isa<ConstantInt>(getArraySize())) return false;
1377 
1378   // Must be in the entry block.
1379   const BasicBlock *Parent = getParent();
1380   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1381 }
1382 
1383 //===----------------------------------------------------------------------===//
1384 //                           LoadInst Implementation
1385 //===----------------------------------------------------------------------===//
1386 
1387 void LoadInst::AssertOK() {
1388   assert(getOperand(0)->getType()->isPointerTy() &&
1389          "Ptr must have pointer type.");
1390   assert(!(isAtomic() && getAlignment() == 0) &&
1391          "Alignment required for atomic load");
1392 }
1393 
1394 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1395   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1396   assert(BB->getParent() &&
1397          "BB must be in a Function when alignment not provided!");
1398   const DataLayout &DL = BB->getModule()->getDataLayout();
1399   return DL.getABITypeAlign(Ty);
1400 }
1401 
1402 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1403   assert(I && "Insertion position cannot be null when alignment not provided!");
1404   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1405 }
1406 
1407 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1408                    Instruction *InsertBef)
1409     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1410 
1411 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1412                    BasicBlock *InsertAE)
1413     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1414 
1415 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1416                    Instruction *InsertBef)
1417     : LoadInst(Ty, Ptr, Name, isVolatile,
1418                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1419 
1420 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1421                    BasicBlock *InsertAE)
1422     : LoadInst(Ty, Ptr, Name, isVolatile,
1423                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1424 
1425 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1426                    Align Align, Instruction *InsertBef)
1427     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1428                SyncScope::System, InsertBef) {}
1429 
1430 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1431                    Align Align, BasicBlock *InsertAE)
1432     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1433                SyncScope::System, InsertAE) {}
1434 
1435 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1436                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1437                    Instruction *InsertBef)
1438     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1439   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1440   setVolatile(isVolatile);
1441   setAlignment(Align);
1442   setAtomic(Order, SSID);
1443   AssertOK();
1444   setName(Name);
1445 }
1446 
1447 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1448                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1449                    BasicBlock *InsertAE)
1450     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1451   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1452   setVolatile(isVolatile);
1453   setAlignment(Align);
1454   setAtomic(Order, SSID);
1455   AssertOK();
1456   setName(Name);
1457 }
1458 
1459 //===----------------------------------------------------------------------===//
1460 //                           StoreInst Implementation
1461 //===----------------------------------------------------------------------===//
1462 
1463 void StoreInst::AssertOK() {
1464   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1465   assert(getOperand(1)->getType()->isPointerTy() &&
1466          "Ptr must have pointer type!");
1467   assert(cast<PointerType>(getOperand(1)->getType())
1468              ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1469          "Ptr must be a pointer to Val type!");
1470   assert(!(isAtomic() && getAlignment() == 0) &&
1471          "Alignment required for atomic store");
1472 }
1473 
1474 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1475     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1476 
1477 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1478     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1479 
1480 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1481                      Instruction *InsertBefore)
1482     : StoreInst(val, addr, isVolatile,
1483                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1484                 InsertBefore) {}
1485 
1486 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1487                      BasicBlock *InsertAtEnd)
1488     : StoreInst(val, addr, isVolatile,
1489                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1490                 InsertAtEnd) {}
1491 
1492 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1493                      Instruction *InsertBefore)
1494     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1495                 SyncScope::System, InsertBefore) {}
1496 
1497 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1498                      BasicBlock *InsertAtEnd)
1499     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1500                 SyncScope::System, InsertAtEnd) {}
1501 
1502 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1503                      AtomicOrdering Order, SyncScope::ID SSID,
1504                      Instruction *InsertBefore)
1505     : Instruction(Type::getVoidTy(val->getContext()), Store,
1506                   OperandTraits<StoreInst>::op_begin(this),
1507                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1508   Op<0>() = val;
1509   Op<1>() = addr;
1510   setVolatile(isVolatile);
1511   setAlignment(Align);
1512   setAtomic(Order, SSID);
1513   AssertOK();
1514 }
1515 
1516 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1517                      AtomicOrdering Order, SyncScope::ID SSID,
1518                      BasicBlock *InsertAtEnd)
1519     : Instruction(Type::getVoidTy(val->getContext()), Store,
1520                   OperandTraits<StoreInst>::op_begin(this),
1521                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1522   Op<0>() = val;
1523   Op<1>() = addr;
1524   setVolatile(isVolatile);
1525   setAlignment(Align);
1526   setAtomic(Order, SSID);
1527   AssertOK();
1528 }
1529 
1530 
1531 //===----------------------------------------------------------------------===//
1532 //                       AtomicCmpXchgInst Implementation
1533 //===----------------------------------------------------------------------===//
1534 
1535 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1536                              Align Alignment, AtomicOrdering SuccessOrdering,
1537                              AtomicOrdering FailureOrdering,
1538                              SyncScope::ID SSID) {
1539   Op<0>() = Ptr;
1540   Op<1>() = Cmp;
1541   Op<2>() = NewVal;
1542   setSuccessOrdering(SuccessOrdering);
1543   setFailureOrdering(FailureOrdering);
1544   setSyncScopeID(SSID);
1545   setAlignment(Alignment);
1546 
1547   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1548          "All operands must be non-null!");
1549   assert(getOperand(0)->getType()->isPointerTy() &&
1550          "Ptr must have pointer type!");
1551   assert(cast<PointerType>(getOperand(0)->getType())
1552              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1553          "Ptr must be a pointer to Cmp type!");
1554   assert(cast<PointerType>(getOperand(0)->getType())
1555              ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1556          "Ptr must be a pointer to NewVal type!");
1557   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1558          "Cmp type and NewVal type must be same!");
1559 }
1560 
1561 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1562                                      Align Alignment,
1563                                      AtomicOrdering SuccessOrdering,
1564                                      AtomicOrdering FailureOrdering,
1565                                      SyncScope::ID SSID,
1566                                      Instruction *InsertBefore)
1567     : Instruction(
1568           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1569           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1570           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1571   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1572 }
1573 
1574 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1575                                      Align Alignment,
1576                                      AtomicOrdering SuccessOrdering,
1577                                      AtomicOrdering FailureOrdering,
1578                                      SyncScope::ID SSID,
1579                                      BasicBlock *InsertAtEnd)
1580     : Instruction(
1581           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1582           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1583           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1584   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1585 }
1586 
1587 //===----------------------------------------------------------------------===//
1588 //                       AtomicRMWInst Implementation
1589 //===----------------------------------------------------------------------===//
1590 
1591 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1592                          Align Alignment, AtomicOrdering Ordering,
1593                          SyncScope::ID SSID) {
1594   Op<0>() = Ptr;
1595   Op<1>() = Val;
1596   setOperation(Operation);
1597   setOrdering(Ordering);
1598   setSyncScopeID(SSID);
1599   setAlignment(Alignment);
1600 
1601   assert(getOperand(0) && getOperand(1) &&
1602          "All operands must be non-null!");
1603   assert(getOperand(0)->getType()->isPointerTy() &&
1604          "Ptr must have pointer type!");
1605   assert(cast<PointerType>(getOperand(0)->getType())
1606              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1607          "Ptr must be a pointer to Val type!");
1608   assert(Ordering != AtomicOrdering::NotAtomic &&
1609          "AtomicRMW instructions must be atomic!");
1610 }
1611 
1612 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1613                              Align Alignment, AtomicOrdering Ordering,
1614                              SyncScope::ID SSID, Instruction *InsertBefore)
1615     : Instruction(Val->getType(), AtomicRMW,
1616                   OperandTraits<AtomicRMWInst>::op_begin(this),
1617                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1618   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1619 }
1620 
1621 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1622                              Align Alignment, AtomicOrdering Ordering,
1623                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1624     : Instruction(Val->getType(), AtomicRMW,
1625                   OperandTraits<AtomicRMWInst>::op_begin(this),
1626                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1627   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1628 }
1629 
1630 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1631   switch (Op) {
1632   case AtomicRMWInst::Xchg:
1633     return "xchg";
1634   case AtomicRMWInst::Add:
1635     return "add";
1636   case AtomicRMWInst::Sub:
1637     return "sub";
1638   case AtomicRMWInst::And:
1639     return "and";
1640   case AtomicRMWInst::Nand:
1641     return "nand";
1642   case AtomicRMWInst::Or:
1643     return "or";
1644   case AtomicRMWInst::Xor:
1645     return "xor";
1646   case AtomicRMWInst::Max:
1647     return "max";
1648   case AtomicRMWInst::Min:
1649     return "min";
1650   case AtomicRMWInst::UMax:
1651     return "umax";
1652   case AtomicRMWInst::UMin:
1653     return "umin";
1654   case AtomicRMWInst::FAdd:
1655     return "fadd";
1656   case AtomicRMWInst::FSub:
1657     return "fsub";
1658   case AtomicRMWInst::BAD_BINOP:
1659     return "<invalid operation>";
1660   }
1661 
1662   llvm_unreachable("invalid atomicrmw operation");
1663 }
1664 
1665 //===----------------------------------------------------------------------===//
1666 //                       FenceInst Implementation
1667 //===----------------------------------------------------------------------===//
1668 
1669 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1670                      SyncScope::ID SSID,
1671                      Instruction *InsertBefore)
1672   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1673   setOrdering(Ordering);
1674   setSyncScopeID(SSID);
1675 }
1676 
1677 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1678                      SyncScope::ID SSID,
1679                      BasicBlock *InsertAtEnd)
1680   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1681   setOrdering(Ordering);
1682   setSyncScopeID(SSID);
1683 }
1684 
1685 //===----------------------------------------------------------------------===//
1686 //                       GetElementPtrInst Implementation
1687 //===----------------------------------------------------------------------===//
1688 
1689 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1690                              const Twine &Name) {
1691   assert(getNumOperands() == 1 + IdxList.size() &&
1692          "NumOperands not initialized?");
1693   Op<0>() = Ptr;
1694   llvm::copy(IdxList, op_begin() + 1);
1695   setName(Name);
1696 }
1697 
1698 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1699     : Instruction(GEPI.getType(), GetElementPtr,
1700                   OperandTraits<GetElementPtrInst>::op_end(this) -
1701                       GEPI.getNumOperands(),
1702                   GEPI.getNumOperands()),
1703       SourceElementType(GEPI.SourceElementType),
1704       ResultElementType(GEPI.ResultElementType) {
1705   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1706   SubclassOptionalData = GEPI.SubclassOptionalData;
1707 }
1708 
1709 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1710   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1711     if (!Struct->indexValid(Idx))
1712       return nullptr;
1713     return Struct->getTypeAtIndex(Idx);
1714   }
1715   if (!Idx->getType()->isIntOrIntVectorTy())
1716     return nullptr;
1717   if (auto *Array = dyn_cast<ArrayType>(Ty))
1718     return Array->getElementType();
1719   if (auto *Vector = dyn_cast<VectorType>(Ty))
1720     return Vector->getElementType();
1721   return nullptr;
1722 }
1723 
1724 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1725   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1726     if (Idx >= Struct->getNumElements())
1727       return nullptr;
1728     return Struct->getElementType(Idx);
1729   }
1730   if (auto *Array = dyn_cast<ArrayType>(Ty))
1731     return Array->getElementType();
1732   if (auto *Vector = dyn_cast<VectorType>(Ty))
1733     return Vector->getElementType();
1734   return nullptr;
1735 }
1736 
1737 template <typename IndexTy>
1738 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1739   if (IdxList.empty())
1740     return Ty;
1741   for (IndexTy V : IdxList.slice(1)) {
1742     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1743     if (!Ty)
1744       return Ty;
1745   }
1746   return Ty;
1747 }
1748 
1749 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1750   return getIndexedTypeInternal(Ty, IdxList);
1751 }
1752 
1753 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1754                                         ArrayRef<Constant *> IdxList) {
1755   return getIndexedTypeInternal(Ty, IdxList);
1756 }
1757 
1758 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1759   return getIndexedTypeInternal(Ty, IdxList);
1760 }
1761 
1762 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1763 /// zeros.  If so, the result pointer and the first operand have the same
1764 /// value, just potentially different types.
1765 bool GetElementPtrInst::hasAllZeroIndices() const {
1766   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1767     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1768       if (!CI->isZero()) return false;
1769     } else {
1770       return false;
1771     }
1772   }
1773   return true;
1774 }
1775 
1776 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1777 /// constant integers.  If so, the result pointer and the first operand have
1778 /// a constant offset between them.
1779 bool GetElementPtrInst::hasAllConstantIndices() const {
1780   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1781     if (!isa<ConstantInt>(getOperand(i)))
1782       return false;
1783   }
1784   return true;
1785 }
1786 
1787 void GetElementPtrInst::setIsInBounds(bool B) {
1788   cast<GEPOperator>(this)->setIsInBounds(B);
1789 }
1790 
1791 bool GetElementPtrInst::isInBounds() const {
1792   return cast<GEPOperator>(this)->isInBounds();
1793 }
1794 
1795 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1796                                                  APInt &Offset) const {
1797   // Delegate to the generic GEPOperator implementation.
1798   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1799 }
1800 
1801 //===----------------------------------------------------------------------===//
1802 //                           ExtractElementInst Implementation
1803 //===----------------------------------------------------------------------===//
1804 
1805 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1806                                        const Twine &Name,
1807                                        Instruction *InsertBef)
1808   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1809                 ExtractElement,
1810                 OperandTraits<ExtractElementInst>::op_begin(this),
1811                 2, InsertBef) {
1812   assert(isValidOperands(Val, Index) &&
1813          "Invalid extractelement instruction operands!");
1814   Op<0>() = Val;
1815   Op<1>() = Index;
1816   setName(Name);
1817 }
1818 
1819 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1820                                        const Twine &Name,
1821                                        BasicBlock *InsertAE)
1822   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1823                 ExtractElement,
1824                 OperandTraits<ExtractElementInst>::op_begin(this),
1825                 2, InsertAE) {
1826   assert(isValidOperands(Val, Index) &&
1827          "Invalid extractelement instruction operands!");
1828 
1829   Op<0>() = Val;
1830   Op<1>() = Index;
1831   setName(Name);
1832 }
1833 
1834 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1835   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1836     return false;
1837   return true;
1838 }
1839 
1840 //===----------------------------------------------------------------------===//
1841 //                           InsertElementInst Implementation
1842 //===----------------------------------------------------------------------===//
1843 
1844 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1845                                      const Twine &Name,
1846                                      Instruction *InsertBef)
1847   : Instruction(Vec->getType(), InsertElement,
1848                 OperandTraits<InsertElementInst>::op_begin(this),
1849                 3, InsertBef) {
1850   assert(isValidOperands(Vec, Elt, Index) &&
1851          "Invalid insertelement instruction operands!");
1852   Op<0>() = Vec;
1853   Op<1>() = Elt;
1854   Op<2>() = Index;
1855   setName(Name);
1856 }
1857 
1858 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1859                                      const Twine &Name,
1860                                      BasicBlock *InsertAE)
1861   : Instruction(Vec->getType(), InsertElement,
1862                 OperandTraits<InsertElementInst>::op_begin(this),
1863                 3, InsertAE) {
1864   assert(isValidOperands(Vec, Elt, Index) &&
1865          "Invalid insertelement instruction operands!");
1866 
1867   Op<0>() = Vec;
1868   Op<1>() = Elt;
1869   Op<2>() = Index;
1870   setName(Name);
1871 }
1872 
1873 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1874                                         const Value *Index) {
1875   if (!Vec->getType()->isVectorTy())
1876     return false;   // First operand of insertelement must be vector type.
1877 
1878   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1879     return false;// Second operand of insertelement must be vector element type.
1880 
1881   if (!Index->getType()->isIntegerTy())
1882     return false;  // Third operand of insertelement must be i32.
1883   return true;
1884 }
1885 
1886 //===----------------------------------------------------------------------===//
1887 //                      ShuffleVectorInst Implementation
1888 //===----------------------------------------------------------------------===//
1889 
1890 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1891                                      const Twine &Name,
1892                                      Instruction *InsertBefore)
1893     : Instruction(
1894           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1895                           cast<VectorType>(Mask->getType())->getElementCount()),
1896           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1897           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1898   assert(isValidOperands(V1, V2, Mask) &&
1899          "Invalid shuffle vector instruction operands!");
1900 
1901   Op<0>() = V1;
1902   Op<1>() = V2;
1903   SmallVector<int, 16> MaskArr;
1904   getShuffleMask(cast<Constant>(Mask), MaskArr);
1905   setShuffleMask(MaskArr);
1906   setName(Name);
1907 }
1908 
1909 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1910                                      const Twine &Name, BasicBlock *InsertAtEnd)
1911     : Instruction(
1912           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1913                           cast<VectorType>(Mask->getType())->getElementCount()),
1914           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1915           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1916   assert(isValidOperands(V1, V2, Mask) &&
1917          "Invalid shuffle vector instruction operands!");
1918 
1919   Op<0>() = V1;
1920   Op<1>() = V2;
1921   SmallVector<int, 16> MaskArr;
1922   getShuffleMask(cast<Constant>(Mask), MaskArr);
1923   setShuffleMask(MaskArr);
1924   setName(Name);
1925 }
1926 
1927 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1928                                      const Twine &Name,
1929                                      Instruction *InsertBefore)
1930     : Instruction(
1931           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1932                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1933           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1934           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1935   assert(isValidOperands(V1, V2, Mask) &&
1936          "Invalid shuffle vector instruction operands!");
1937   Op<0>() = V1;
1938   Op<1>() = V2;
1939   setShuffleMask(Mask);
1940   setName(Name);
1941 }
1942 
1943 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1944                                      const Twine &Name, BasicBlock *InsertAtEnd)
1945     : Instruction(
1946           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1947                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1948           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1949           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1950   assert(isValidOperands(V1, V2, Mask) &&
1951          "Invalid shuffle vector instruction operands!");
1952 
1953   Op<0>() = V1;
1954   Op<1>() = V2;
1955   setShuffleMask(Mask);
1956   setName(Name);
1957 }
1958 
1959 void ShuffleVectorInst::commute() {
1960   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1961   int NumMaskElts = ShuffleMask.size();
1962   SmallVector<int, 16> NewMask(NumMaskElts);
1963   for (int i = 0; i != NumMaskElts; ++i) {
1964     int MaskElt = getMaskValue(i);
1965     if (MaskElt == UndefMaskElem) {
1966       NewMask[i] = UndefMaskElem;
1967       continue;
1968     }
1969     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1970     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1971     NewMask[i] = MaskElt;
1972   }
1973   setShuffleMask(NewMask);
1974   Op<0>().swap(Op<1>());
1975 }
1976 
1977 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1978                                         ArrayRef<int> Mask) {
1979   // V1 and V2 must be vectors of the same type.
1980   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1981     return false;
1982 
1983   // Make sure the mask elements make sense.
1984   int V1Size =
1985       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
1986   for (int Elem : Mask)
1987     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
1988       return false;
1989 
1990   if (isa<ScalableVectorType>(V1->getType()))
1991     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
1992       return false;
1993 
1994   return true;
1995 }
1996 
1997 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1998                                         const Value *Mask) {
1999   // V1 and V2 must be vectors of the same type.
2000   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2001     return false;
2002 
2003   // Mask must be vector of i32, and must be the same kind of vector as the
2004   // input vectors
2005   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2006   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2007       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2008     return false;
2009 
2010   // Check to see if Mask is valid.
2011   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2012     return true;
2013 
2014   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2015     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2016     for (Value *Op : MV->operands()) {
2017       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2018         if (CI->uge(V1Size*2))
2019           return false;
2020       } else if (!isa<UndefValue>(Op)) {
2021         return false;
2022       }
2023     }
2024     return true;
2025   }
2026 
2027   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2028     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2029     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2030          i != e; ++i)
2031       if (CDS->getElementAsInteger(i) >= V1Size*2)
2032         return false;
2033     return true;
2034   }
2035 
2036   return false;
2037 }
2038 
2039 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2040                                        SmallVectorImpl<int> &Result) {
2041   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2042 
2043   if (isa<ConstantAggregateZero>(Mask)) {
2044     Result.resize(EC.getKnownMinValue(), 0);
2045     return;
2046   }
2047 
2048   Result.reserve(EC.getKnownMinValue());
2049 
2050   if (EC.isScalable()) {
2051     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2052            "Scalable vector shuffle mask must be undef or zeroinitializer");
2053     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2054     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2055       Result.emplace_back(MaskVal);
2056     return;
2057   }
2058 
2059   unsigned NumElts = EC.getKnownMinValue();
2060 
2061   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2062     for (unsigned i = 0; i != NumElts; ++i)
2063       Result.push_back(CDS->getElementAsInteger(i));
2064     return;
2065   }
2066   for (unsigned i = 0; i != NumElts; ++i) {
2067     Constant *C = Mask->getAggregateElement(i);
2068     Result.push_back(isa<UndefValue>(C) ? -1 :
2069                      cast<ConstantInt>(C)->getZExtValue());
2070   }
2071 }
2072 
2073 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2074   ShuffleMask.assign(Mask.begin(), Mask.end());
2075   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2076 }
2077 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2078                                                           Type *ResultTy) {
2079   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2080   if (isa<ScalableVectorType>(ResultTy)) {
2081     assert(is_splat(Mask) && "Unexpected shuffle");
2082     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2083     if (Mask[0] == 0)
2084       return Constant::getNullValue(VecTy);
2085     return UndefValue::get(VecTy);
2086   }
2087   SmallVector<Constant *, 16> MaskConst;
2088   for (int Elem : Mask) {
2089     if (Elem == UndefMaskElem)
2090       MaskConst.push_back(UndefValue::get(Int32Ty));
2091     else
2092       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2093   }
2094   return ConstantVector::get(MaskConst);
2095 }
2096 
2097 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2098   assert(!Mask.empty() && "Shuffle mask must contain elements");
2099   bool UsesLHS = false;
2100   bool UsesRHS = false;
2101   for (int I : Mask) {
2102     if (I == -1)
2103       continue;
2104     assert(I >= 0 && I < (NumOpElts * 2) &&
2105            "Out-of-bounds shuffle mask element");
2106     UsesLHS |= (I < NumOpElts);
2107     UsesRHS |= (I >= NumOpElts);
2108     if (UsesLHS && UsesRHS)
2109       return false;
2110   }
2111   // Allow for degenerate case: completely undef mask means neither source is used.
2112   return UsesLHS || UsesRHS;
2113 }
2114 
2115 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2116   // We don't have vector operand size information, so assume operands are the
2117   // same size as the mask.
2118   return isSingleSourceMaskImpl(Mask, Mask.size());
2119 }
2120 
2121 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2122   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2123     return false;
2124   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2125     if (Mask[i] == -1)
2126       continue;
2127     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2128       return false;
2129   }
2130   return true;
2131 }
2132 
2133 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2134   // We don't have vector operand size information, so assume operands are the
2135   // same size as the mask.
2136   return isIdentityMaskImpl(Mask, Mask.size());
2137 }
2138 
2139 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2140   if (!isSingleSourceMask(Mask))
2141     return false;
2142   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2143     if (Mask[i] == -1)
2144       continue;
2145     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2146       return false;
2147   }
2148   return true;
2149 }
2150 
2151 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2152   if (!isSingleSourceMask(Mask))
2153     return false;
2154   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2155     if (Mask[i] == -1)
2156       continue;
2157     if (Mask[i] != 0 && Mask[i] != NumElts)
2158       return false;
2159   }
2160   return true;
2161 }
2162 
2163 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2164   // Select is differentiated from identity. It requires using both sources.
2165   if (isSingleSourceMask(Mask))
2166     return false;
2167   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2168     if (Mask[i] == -1)
2169       continue;
2170     if (Mask[i] != i && Mask[i] != (NumElts + i))
2171       return false;
2172   }
2173   return true;
2174 }
2175 
2176 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2177   // Example masks that will return true:
2178   // v1 = <a, b, c, d>
2179   // v2 = <e, f, g, h>
2180   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2181   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2182 
2183   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2184   int NumElts = Mask.size();
2185   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2186     return false;
2187 
2188   // 2. The first element of the mask must be either a 0 or a 1.
2189   if (Mask[0] != 0 && Mask[0] != 1)
2190     return false;
2191 
2192   // 3. The difference between the first 2 elements must be equal to the
2193   // number of elements in the mask.
2194   if ((Mask[1] - Mask[0]) != NumElts)
2195     return false;
2196 
2197   // 4. The difference between consecutive even-numbered and odd-numbered
2198   // elements must be equal to 2.
2199   for (int i = 2; i < NumElts; ++i) {
2200     int MaskEltVal = Mask[i];
2201     if (MaskEltVal == -1)
2202       return false;
2203     int MaskEltPrevVal = Mask[i - 2];
2204     if (MaskEltVal - MaskEltPrevVal != 2)
2205       return false;
2206   }
2207   return true;
2208 }
2209 
2210 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2211                                                int NumSrcElts, int &Index) {
2212   // Must extract from a single source.
2213   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2214     return false;
2215 
2216   // Must be smaller (else this is an Identity shuffle).
2217   if (NumSrcElts <= (int)Mask.size())
2218     return false;
2219 
2220   // Find start of extraction, accounting that we may start with an UNDEF.
2221   int SubIndex = -1;
2222   for (int i = 0, e = Mask.size(); i != e; ++i) {
2223     int M = Mask[i];
2224     if (M < 0)
2225       continue;
2226     int Offset = (M % NumSrcElts) - i;
2227     if (0 <= SubIndex && SubIndex != Offset)
2228       return false;
2229     SubIndex = Offset;
2230   }
2231 
2232   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2233     Index = SubIndex;
2234     return true;
2235   }
2236   return false;
2237 }
2238 
2239 bool ShuffleVectorInst::isIdentityWithPadding() const {
2240   if (isa<UndefValue>(Op<2>()))
2241     return false;
2242 
2243   // FIXME: Not currently possible to express a shuffle mask for a scalable
2244   // vector for this case.
2245   if (isa<ScalableVectorType>(getType()))
2246     return false;
2247 
2248   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2249   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2250   if (NumMaskElts <= NumOpElts)
2251     return false;
2252 
2253   // The first part of the mask must choose elements from exactly 1 source op.
2254   ArrayRef<int> Mask = getShuffleMask();
2255   if (!isIdentityMaskImpl(Mask, NumOpElts))
2256     return false;
2257 
2258   // All extending must be with undef elements.
2259   for (int i = NumOpElts; i < NumMaskElts; ++i)
2260     if (Mask[i] != -1)
2261       return false;
2262 
2263   return true;
2264 }
2265 
2266 bool ShuffleVectorInst::isIdentityWithExtract() const {
2267   if (isa<UndefValue>(Op<2>()))
2268     return false;
2269 
2270   // FIXME: Not currently possible to express a shuffle mask for a scalable
2271   // vector for this case.
2272   if (isa<ScalableVectorType>(getType()))
2273     return false;
2274 
2275   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2276   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2277   if (NumMaskElts >= NumOpElts)
2278     return false;
2279 
2280   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2281 }
2282 
2283 bool ShuffleVectorInst::isConcat() const {
2284   // Vector concatenation is differentiated from identity with padding.
2285   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2286       isa<UndefValue>(Op<2>()))
2287     return false;
2288 
2289   // FIXME: Not currently possible to express a shuffle mask for a scalable
2290   // vector for this case.
2291   if (isa<ScalableVectorType>(getType()))
2292     return false;
2293 
2294   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2295   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2296   if (NumMaskElts != NumOpElts * 2)
2297     return false;
2298 
2299   // Use the mask length rather than the operands' vector lengths here. We
2300   // already know that the shuffle returns a vector twice as long as the inputs,
2301   // and neither of the inputs are undef vectors. If the mask picks consecutive
2302   // elements from both inputs, then this is a concatenation of the inputs.
2303   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2304 }
2305 
2306 //===----------------------------------------------------------------------===//
2307 //                             InsertValueInst Class
2308 //===----------------------------------------------------------------------===//
2309 
2310 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2311                            const Twine &Name) {
2312   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2313 
2314   // There's no fundamental reason why we require at least one index
2315   // (other than weirdness with &*IdxBegin being invalid; see
2316   // getelementptr's init routine for example). But there's no
2317   // present need to support it.
2318   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2319 
2320   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2321          Val->getType() && "Inserted value must match indexed type!");
2322   Op<0>() = Agg;
2323   Op<1>() = Val;
2324 
2325   Indices.append(Idxs.begin(), Idxs.end());
2326   setName(Name);
2327 }
2328 
2329 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2330   : Instruction(IVI.getType(), InsertValue,
2331                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2332     Indices(IVI.Indices) {
2333   Op<0>() = IVI.getOperand(0);
2334   Op<1>() = IVI.getOperand(1);
2335   SubclassOptionalData = IVI.SubclassOptionalData;
2336 }
2337 
2338 //===----------------------------------------------------------------------===//
2339 //                             ExtractValueInst Class
2340 //===----------------------------------------------------------------------===//
2341 
2342 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2343   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2344 
2345   // There's no fundamental reason why we require at least one index.
2346   // But there's no present need to support it.
2347   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2348 
2349   Indices.append(Idxs.begin(), Idxs.end());
2350   setName(Name);
2351 }
2352 
2353 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2354   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2355     Indices(EVI.Indices) {
2356   SubclassOptionalData = EVI.SubclassOptionalData;
2357 }
2358 
2359 // getIndexedType - Returns the type of the element that would be extracted
2360 // with an extractvalue instruction with the specified parameters.
2361 //
2362 // A null type is returned if the indices are invalid for the specified
2363 // pointer type.
2364 //
2365 Type *ExtractValueInst::getIndexedType(Type *Agg,
2366                                        ArrayRef<unsigned> Idxs) {
2367   for (unsigned Index : Idxs) {
2368     // We can't use CompositeType::indexValid(Index) here.
2369     // indexValid() always returns true for arrays because getelementptr allows
2370     // out-of-bounds indices. Since we don't allow those for extractvalue and
2371     // insertvalue we need to check array indexing manually.
2372     // Since the only other types we can index into are struct types it's just
2373     // as easy to check those manually as well.
2374     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2375       if (Index >= AT->getNumElements())
2376         return nullptr;
2377       Agg = AT->getElementType();
2378     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2379       if (Index >= ST->getNumElements())
2380         return nullptr;
2381       Agg = ST->getElementType(Index);
2382     } else {
2383       // Not a valid type to index into.
2384       return nullptr;
2385     }
2386   }
2387   return const_cast<Type*>(Agg);
2388 }
2389 
2390 //===----------------------------------------------------------------------===//
2391 //                             UnaryOperator Class
2392 //===----------------------------------------------------------------------===//
2393 
2394 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2395                              Type *Ty, const Twine &Name,
2396                              Instruction *InsertBefore)
2397   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2398   Op<0>() = S;
2399   setName(Name);
2400   AssertOK();
2401 }
2402 
2403 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2404                              Type *Ty, const Twine &Name,
2405                              BasicBlock *InsertAtEnd)
2406   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2407   Op<0>() = S;
2408   setName(Name);
2409   AssertOK();
2410 }
2411 
2412 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2413                                      const Twine &Name,
2414                                      Instruction *InsertBefore) {
2415   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2416 }
2417 
2418 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2419                                      const Twine &Name,
2420                                      BasicBlock *InsertAtEnd) {
2421   UnaryOperator *Res = Create(Op, S, Name);
2422   InsertAtEnd->getInstList().push_back(Res);
2423   return Res;
2424 }
2425 
2426 void UnaryOperator::AssertOK() {
2427   Value *LHS = getOperand(0);
2428   (void)LHS; // Silence warnings.
2429 #ifndef NDEBUG
2430   switch (getOpcode()) {
2431   case FNeg:
2432     assert(getType() == LHS->getType() &&
2433            "Unary operation should return same type as operand!");
2434     assert(getType()->isFPOrFPVectorTy() &&
2435            "Tried to create a floating-point operation on a "
2436            "non-floating-point type!");
2437     break;
2438   default: llvm_unreachable("Invalid opcode provided");
2439   }
2440 #endif
2441 }
2442 
2443 //===----------------------------------------------------------------------===//
2444 //                             BinaryOperator Class
2445 //===----------------------------------------------------------------------===//
2446 
2447 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2448                                Type *Ty, const Twine &Name,
2449                                Instruction *InsertBefore)
2450   : Instruction(Ty, iType,
2451                 OperandTraits<BinaryOperator>::op_begin(this),
2452                 OperandTraits<BinaryOperator>::operands(this),
2453                 InsertBefore) {
2454   Op<0>() = S1;
2455   Op<1>() = S2;
2456   setName(Name);
2457   AssertOK();
2458 }
2459 
2460 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2461                                Type *Ty, const Twine &Name,
2462                                BasicBlock *InsertAtEnd)
2463   : Instruction(Ty, iType,
2464                 OperandTraits<BinaryOperator>::op_begin(this),
2465                 OperandTraits<BinaryOperator>::operands(this),
2466                 InsertAtEnd) {
2467   Op<0>() = S1;
2468   Op<1>() = S2;
2469   setName(Name);
2470   AssertOK();
2471 }
2472 
2473 void BinaryOperator::AssertOK() {
2474   Value *LHS = getOperand(0), *RHS = getOperand(1);
2475   (void)LHS; (void)RHS; // Silence warnings.
2476   assert(LHS->getType() == RHS->getType() &&
2477          "Binary operator operand types must match!");
2478 #ifndef NDEBUG
2479   switch (getOpcode()) {
2480   case Add: case Sub:
2481   case Mul:
2482     assert(getType() == LHS->getType() &&
2483            "Arithmetic operation should return same type as operands!");
2484     assert(getType()->isIntOrIntVectorTy() &&
2485            "Tried to create an integer operation on a non-integer type!");
2486     break;
2487   case FAdd: case FSub:
2488   case FMul:
2489     assert(getType() == LHS->getType() &&
2490            "Arithmetic operation should return same type as operands!");
2491     assert(getType()->isFPOrFPVectorTy() &&
2492            "Tried to create a floating-point operation on a "
2493            "non-floating-point type!");
2494     break;
2495   case UDiv:
2496   case SDiv:
2497     assert(getType() == LHS->getType() &&
2498            "Arithmetic operation should return same type as operands!");
2499     assert(getType()->isIntOrIntVectorTy() &&
2500            "Incorrect operand type (not integer) for S/UDIV");
2501     break;
2502   case FDiv:
2503     assert(getType() == LHS->getType() &&
2504            "Arithmetic operation should return same type as operands!");
2505     assert(getType()->isFPOrFPVectorTy() &&
2506            "Incorrect operand type (not floating point) for FDIV");
2507     break;
2508   case URem:
2509   case SRem:
2510     assert(getType() == LHS->getType() &&
2511            "Arithmetic operation should return same type as operands!");
2512     assert(getType()->isIntOrIntVectorTy() &&
2513            "Incorrect operand type (not integer) for S/UREM");
2514     break;
2515   case FRem:
2516     assert(getType() == LHS->getType() &&
2517            "Arithmetic operation should return same type as operands!");
2518     assert(getType()->isFPOrFPVectorTy() &&
2519            "Incorrect operand type (not floating point) for FREM");
2520     break;
2521   case Shl:
2522   case LShr:
2523   case AShr:
2524     assert(getType() == LHS->getType() &&
2525            "Shift operation should return same type as operands!");
2526     assert(getType()->isIntOrIntVectorTy() &&
2527            "Tried to create a shift operation on a non-integral type!");
2528     break;
2529   case And: case Or:
2530   case Xor:
2531     assert(getType() == LHS->getType() &&
2532            "Logical operation should return same type as operands!");
2533     assert(getType()->isIntOrIntVectorTy() &&
2534            "Tried to create a logical operation on a non-integral type!");
2535     break;
2536   default: llvm_unreachable("Invalid opcode provided");
2537   }
2538 #endif
2539 }
2540 
2541 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2542                                        const Twine &Name,
2543                                        Instruction *InsertBefore) {
2544   assert(S1->getType() == S2->getType() &&
2545          "Cannot create binary operator with two operands of differing type!");
2546   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2547 }
2548 
2549 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2550                                        const Twine &Name,
2551                                        BasicBlock *InsertAtEnd) {
2552   BinaryOperator *Res = Create(Op, S1, S2, Name);
2553   InsertAtEnd->getInstList().push_back(Res);
2554   return Res;
2555 }
2556 
2557 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2558                                           Instruction *InsertBefore) {
2559   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2560   return new BinaryOperator(Instruction::Sub,
2561                             zero, Op,
2562                             Op->getType(), Name, InsertBefore);
2563 }
2564 
2565 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2566                                           BasicBlock *InsertAtEnd) {
2567   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2568   return new BinaryOperator(Instruction::Sub,
2569                             zero, Op,
2570                             Op->getType(), Name, InsertAtEnd);
2571 }
2572 
2573 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2574                                              Instruction *InsertBefore) {
2575   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2576   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2577 }
2578 
2579 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2580                                              BasicBlock *InsertAtEnd) {
2581   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2582   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2583 }
2584 
2585 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2586                                              Instruction *InsertBefore) {
2587   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2588   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2589 }
2590 
2591 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2592                                              BasicBlock *InsertAtEnd) {
2593   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2594   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2595 }
2596 
2597 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2598                                           Instruction *InsertBefore) {
2599   Constant *C = Constant::getAllOnesValue(Op->getType());
2600   return new BinaryOperator(Instruction::Xor, Op, C,
2601                             Op->getType(), Name, InsertBefore);
2602 }
2603 
2604 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2605                                           BasicBlock *InsertAtEnd) {
2606   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2607   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2608                             Op->getType(), Name, InsertAtEnd);
2609 }
2610 
2611 // Exchange the two operands to this instruction. This instruction is safe to
2612 // use on any binary instruction and does not modify the semantics of the
2613 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2614 // is changed.
2615 bool BinaryOperator::swapOperands() {
2616   if (!isCommutative())
2617     return true; // Can't commute operands
2618   Op<0>().swap(Op<1>());
2619   return false;
2620 }
2621 
2622 //===----------------------------------------------------------------------===//
2623 //                             FPMathOperator Class
2624 //===----------------------------------------------------------------------===//
2625 
2626 float FPMathOperator::getFPAccuracy() const {
2627   const MDNode *MD =
2628       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2629   if (!MD)
2630     return 0.0;
2631   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2632   return Accuracy->getValueAPF().convertToFloat();
2633 }
2634 
2635 //===----------------------------------------------------------------------===//
2636 //                                CastInst Class
2637 //===----------------------------------------------------------------------===//
2638 
2639 // Just determine if this cast only deals with integral->integral conversion.
2640 bool CastInst::isIntegerCast() const {
2641   switch (getOpcode()) {
2642     default: return false;
2643     case Instruction::ZExt:
2644     case Instruction::SExt:
2645     case Instruction::Trunc:
2646       return true;
2647     case Instruction::BitCast:
2648       return getOperand(0)->getType()->isIntegerTy() &&
2649         getType()->isIntegerTy();
2650   }
2651 }
2652 
2653 bool CastInst::isLosslessCast() const {
2654   // Only BitCast can be lossless, exit fast if we're not BitCast
2655   if (getOpcode() != Instruction::BitCast)
2656     return false;
2657 
2658   // Identity cast is always lossless
2659   Type *SrcTy = getOperand(0)->getType();
2660   Type *DstTy = getType();
2661   if (SrcTy == DstTy)
2662     return true;
2663 
2664   // Pointer to pointer is always lossless.
2665   if (SrcTy->isPointerTy())
2666     return DstTy->isPointerTy();
2667   return false;  // Other types have no identity values
2668 }
2669 
2670 /// This function determines if the CastInst does not require any bits to be
2671 /// changed in order to effect the cast. Essentially, it identifies cases where
2672 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2673 /// example, the following are all no-op casts:
2674 /// # bitcast i32* %x to i8*
2675 /// # bitcast <2 x i32> %x to <4 x i16>
2676 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2677 /// Determine if the described cast is a no-op.
2678 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2679                           Type *SrcTy,
2680                           Type *DestTy,
2681                           const DataLayout &DL) {
2682   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2683   switch (Opcode) {
2684     default: llvm_unreachable("Invalid CastOp");
2685     case Instruction::Trunc:
2686     case Instruction::ZExt:
2687     case Instruction::SExt:
2688     case Instruction::FPTrunc:
2689     case Instruction::FPExt:
2690     case Instruction::UIToFP:
2691     case Instruction::SIToFP:
2692     case Instruction::FPToUI:
2693     case Instruction::FPToSI:
2694     case Instruction::AddrSpaceCast:
2695       // TODO: Target informations may give a more accurate answer here.
2696       return false;
2697     case Instruction::BitCast:
2698       return true;  // BitCast never modifies bits.
2699     case Instruction::PtrToInt:
2700       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2701              DestTy->getScalarSizeInBits();
2702     case Instruction::IntToPtr:
2703       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2704              SrcTy->getScalarSizeInBits();
2705   }
2706 }
2707 
2708 bool CastInst::isNoopCast(const DataLayout &DL) const {
2709   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2710 }
2711 
2712 /// This function determines if a pair of casts can be eliminated and what
2713 /// opcode should be used in the elimination. This assumes that there are two
2714 /// instructions like this:
2715 /// *  %F = firstOpcode SrcTy %x to MidTy
2716 /// *  %S = secondOpcode MidTy %F to DstTy
2717 /// The function returns a resultOpcode so these two casts can be replaced with:
2718 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2719 /// If no such cast is permitted, the function returns 0.
2720 unsigned CastInst::isEliminableCastPair(
2721   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2722   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2723   Type *DstIntPtrTy) {
2724   // Define the 144 possibilities for these two cast instructions. The values
2725   // in this matrix determine what to do in a given situation and select the
2726   // case in the switch below.  The rows correspond to firstOp, the columns
2727   // correspond to secondOp.  In looking at the table below, keep in mind
2728   // the following cast properties:
2729   //
2730   //          Size Compare       Source               Destination
2731   // Operator  Src ? Size   Type       Sign         Type       Sign
2732   // -------- ------------ -------------------   ---------------------
2733   // TRUNC         >       Integer      Any        Integral     Any
2734   // ZEXT          <       Integral   Unsigned     Integer      Any
2735   // SEXT          <       Integral    Signed      Integer      Any
2736   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2737   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2738   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2739   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2740   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2741   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2742   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2743   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2744   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2745   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2746   //
2747   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2748   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2749   // into "fptoui double to i64", but this loses information about the range
2750   // of the produced value (we no longer know the top-part is all zeros).
2751   // Further this conversion is often much more expensive for typical hardware,
2752   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2753   // same reason.
2754   const unsigned numCastOps =
2755     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2756   static const uint8_t CastResults[numCastOps][numCastOps] = {
2757     // T        F  F  U  S  F  F  P  I  B  A  -+
2758     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2759     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2760     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2761     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2762     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2763     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2764     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2765     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2766     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2767     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2768     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2769     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2770     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2771     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2772     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2773     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2774     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2775   };
2776 
2777   // TODO: This logic could be encoded into the table above and handled in the
2778   // switch below.
2779   // If either of the casts are a bitcast from scalar to vector, disallow the
2780   // merging. However, any pair of bitcasts are allowed.
2781   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2782   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2783   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2784 
2785   // Check if any of the casts convert scalars <-> vectors.
2786   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2787       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2788     if (!AreBothBitcasts)
2789       return 0;
2790 
2791   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2792                             [secondOp-Instruction::CastOpsBegin];
2793   switch (ElimCase) {
2794     case 0:
2795       // Categorically disallowed.
2796       return 0;
2797     case 1:
2798       // Allowed, use first cast's opcode.
2799       return firstOp;
2800     case 2:
2801       // Allowed, use second cast's opcode.
2802       return secondOp;
2803     case 3:
2804       // No-op cast in second op implies firstOp as long as the DestTy
2805       // is integer and we are not converting between a vector and a
2806       // non-vector type.
2807       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2808         return firstOp;
2809       return 0;
2810     case 4:
2811       // No-op cast in second op implies firstOp as long as the DestTy
2812       // is floating point.
2813       if (DstTy->isFloatingPointTy())
2814         return firstOp;
2815       return 0;
2816     case 5:
2817       // No-op cast in first op implies secondOp as long as the SrcTy
2818       // is an integer.
2819       if (SrcTy->isIntegerTy())
2820         return secondOp;
2821       return 0;
2822     case 6:
2823       // No-op cast in first op implies secondOp as long as the SrcTy
2824       // is a floating point.
2825       if (SrcTy->isFloatingPointTy())
2826         return secondOp;
2827       return 0;
2828     case 7: {
2829       // Cannot simplify if address spaces are different!
2830       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2831         return 0;
2832 
2833       unsigned MidSize = MidTy->getScalarSizeInBits();
2834       // We can still fold this without knowing the actual sizes as long we
2835       // know that the intermediate pointer is the largest possible
2836       // pointer size.
2837       // FIXME: Is this always true?
2838       if (MidSize == 64)
2839         return Instruction::BitCast;
2840 
2841       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2842       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2843         return 0;
2844       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2845       if (MidSize >= PtrSize)
2846         return Instruction::BitCast;
2847       return 0;
2848     }
2849     case 8: {
2850       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2851       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2852       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2853       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2854       unsigned DstSize = DstTy->getScalarSizeInBits();
2855       if (SrcSize == DstSize)
2856         return Instruction::BitCast;
2857       else if (SrcSize < DstSize)
2858         return firstOp;
2859       return secondOp;
2860     }
2861     case 9:
2862       // zext, sext -> zext, because sext can't sign extend after zext
2863       return Instruction::ZExt;
2864     case 11: {
2865       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2866       if (!MidIntPtrTy)
2867         return 0;
2868       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2869       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2870       unsigned DstSize = DstTy->getScalarSizeInBits();
2871       if (SrcSize <= PtrSize && SrcSize == DstSize)
2872         return Instruction::BitCast;
2873       return 0;
2874     }
2875     case 12:
2876       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2877       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2878       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2879         return Instruction::AddrSpaceCast;
2880       return Instruction::BitCast;
2881     case 13:
2882       // FIXME: this state can be merged with (1), but the following assert
2883       // is useful to check the correcteness of the sequence due to semantic
2884       // change of bitcast.
2885       assert(
2886         SrcTy->isPtrOrPtrVectorTy() &&
2887         MidTy->isPtrOrPtrVectorTy() &&
2888         DstTy->isPtrOrPtrVectorTy() &&
2889         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2890         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2891         "Illegal addrspacecast, bitcast sequence!");
2892       // Allowed, use first cast's opcode
2893       return firstOp;
2894     case 14:
2895       // bitcast, addrspacecast -> addrspacecast if the element type of
2896       // bitcast's source is the same as that of addrspacecast's destination.
2897       if (SrcTy->getScalarType()->getPointerElementType() ==
2898           DstTy->getScalarType()->getPointerElementType())
2899         return Instruction::AddrSpaceCast;
2900       return 0;
2901     case 15:
2902       // FIXME: this state can be merged with (1), but the following assert
2903       // is useful to check the correcteness of the sequence due to semantic
2904       // change of bitcast.
2905       assert(
2906         SrcTy->isIntOrIntVectorTy() &&
2907         MidTy->isPtrOrPtrVectorTy() &&
2908         DstTy->isPtrOrPtrVectorTy() &&
2909         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2910         "Illegal inttoptr, bitcast sequence!");
2911       // Allowed, use first cast's opcode
2912       return firstOp;
2913     case 16:
2914       // FIXME: this state can be merged with (2), but the following assert
2915       // is useful to check the correcteness of the sequence due to semantic
2916       // change of bitcast.
2917       assert(
2918         SrcTy->isPtrOrPtrVectorTy() &&
2919         MidTy->isPtrOrPtrVectorTy() &&
2920         DstTy->isIntOrIntVectorTy() &&
2921         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2922         "Illegal bitcast, ptrtoint sequence!");
2923       // Allowed, use second cast's opcode
2924       return secondOp;
2925     case 17:
2926       // (sitofp (zext x)) -> (uitofp x)
2927       return Instruction::UIToFP;
2928     case 99:
2929       // Cast combination can't happen (error in input). This is for all cases
2930       // where the MidTy is not the same for the two cast instructions.
2931       llvm_unreachable("Invalid Cast Combination");
2932     default:
2933       llvm_unreachable("Error in CastResults table!!!");
2934   }
2935 }
2936 
2937 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2938   const Twine &Name, Instruction *InsertBefore) {
2939   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2940   // Construct and return the appropriate CastInst subclass
2941   switch (op) {
2942   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2943   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2944   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2945   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2946   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2947   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2948   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2949   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2950   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2951   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2952   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2953   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2954   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2955   default: llvm_unreachable("Invalid opcode provided");
2956   }
2957 }
2958 
2959 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2960   const Twine &Name, BasicBlock *InsertAtEnd) {
2961   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2962   // Construct and return the appropriate CastInst subclass
2963   switch (op) {
2964   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2965   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2966   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2967   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2968   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2969   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2970   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2971   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2972   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2973   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2974   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2975   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2976   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2977   default: llvm_unreachable("Invalid opcode provided");
2978   }
2979 }
2980 
2981 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2982                                         const Twine &Name,
2983                                         Instruction *InsertBefore) {
2984   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2985     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2986   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2987 }
2988 
2989 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2990                                         const Twine &Name,
2991                                         BasicBlock *InsertAtEnd) {
2992   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2993     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2994   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2995 }
2996 
2997 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2998                                         const Twine &Name,
2999                                         Instruction *InsertBefore) {
3000   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3001     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3002   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3003 }
3004 
3005 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3006                                         const Twine &Name,
3007                                         BasicBlock *InsertAtEnd) {
3008   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3009     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3010   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3011 }
3012 
3013 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3014                                          const Twine &Name,
3015                                          Instruction *InsertBefore) {
3016   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3017     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3018   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3019 }
3020 
3021 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3022                                          const Twine &Name,
3023                                          BasicBlock *InsertAtEnd) {
3024   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3025     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3026   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3027 }
3028 
3029 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3030                                       const Twine &Name,
3031                                       BasicBlock *InsertAtEnd) {
3032   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3033   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3034          "Invalid cast");
3035   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3036   assert((!Ty->isVectorTy() ||
3037           cast<VectorType>(Ty)->getElementCount() ==
3038               cast<VectorType>(S->getType())->getElementCount()) &&
3039          "Invalid cast");
3040 
3041   if (Ty->isIntOrIntVectorTy())
3042     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3043 
3044   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3045 }
3046 
3047 /// Create a BitCast or a PtrToInt cast instruction
3048 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3049                                       const Twine &Name,
3050                                       Instruction *InsertBefore) {
3051   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3052   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3053          "Invalid cast");
3054   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3055   assert((!Ty->isVectorTy() ||
3056           cast<VectorType>(Ty)->getElementCount() ==
3057               cast<VectorType>(S->getType())->getElementCount()) &&
3058          "Invalid cast");
3059 
3060   if (Ty->isIntOrIntVectorTy())
3061     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3062 
3063   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3064 }
3065 
3066 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3067   Value *S, Type *Ty,
3068   const Twine &Name,
3069   BasicBlock *InsertAtEnd) {
3070   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3071   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3072 
3073   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3074     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3075 
3076   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3077 }
3078 
3079 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3080   Value *S, Type *Ty,
3081   const Twine &Name,
3082   Instruction *InsertBefore) {
3083   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3084   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3085 
3086   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3087     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3088 
3089   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3090 }
3091 
3092 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3093                                            const Twine &Name,
3094                                            Instruction *InsertBefore) {
3095   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3096     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3097   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3098     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3099 
3100   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3101 }
3102 
3103 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3104                                       bool isSigned, const Twine &Name,
3105                                       Instruction *InsertBefore) {
3106   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3107          "Invalid integer cast");
3108   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3109   unsigned DstBits = Ty->getScalarSizeInBits();
3110   Instruction::CastOps opcode =
3111     (SrcBits == DstBits ? Instruction::BitCast :
3112      (SrcBits > DstBits ? Instruction::Trunc :
3113       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3114   return Create(opcode, C, Ty, Name, InsertBefore);
3115 }
3116 
3117 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3118                                       bool isSigned, const Twine &Name,
3119                                       BasicBlock *InsertAtEnd) {
3120   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3121          "Invalid cast");
3122   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3123   unsigned DstBits = Ty->getScalarSizeInBits();
3124   Instruction::CastOps opcode =
3125     (SrcBits == DstBits ? Instruction::BitCast :
3126      (SrcBits > DstBits ? Instruction::Trunc :
3127       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3128   return Create(opcode, C, Ty, Name, InsertAtEnd);
3129 }
3130 
3131 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3132                                  const Twine &Name,
3133                                  Instruction *InsertBefore) {
3134   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3135          "Invalid cast");
3136   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3137   unsigned DstBits = Ty->getScalarSizeInBits();
3138   Instruction::CastOps opcode =
3139     (SrcBits == DstBits ? Instruction::BitCast :
3140      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3141   return Create(opcode, C, Ty, Name, InsertBefore);
3142 }
3143 
3144 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3145                                  const Twine &Name,
3146                                  BasicBlock *InsertAtEnd) {
3147   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3148          "Invalid cast");
3149   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3150   unsigned DstBits = Ty->getScalarSizeInBits();
3151   Instruction::CastOps opcode =
3152     (SrcBits == DstBits ? Instruction::BitCast :
3153      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3154   return Create(opcode, C, Ty, Name, InsertAtEnd);
3155 }
3156 
3157 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3158   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3159     return false;
3160 
3161   if (SrcTy == DestTy)
3162     return true;
3163 
3164   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3165     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3166       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3167         // An element by element cast. Valid if casting the elements is valid.
3168         SrcTy = SrcVecTy->getElementType();
3169         DestTy = DestVecTy->getElementType();
3170       }
3171     }
3172   }
3173 
3174   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3175     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3176       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3177     }
3178   }
3179 
3180   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3181   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3182 
3183   // Could still have vectors of pointers if the number of elements doesn't
3184   // match
3185   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3186     return false;
3187 
3188   if (SrcBits != DestBits)
3189     return false;
3190 
3191   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3192     return false;
3193 
3194   return true;
3195 }
3196 
3197 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3198                                           const DataLayout &DL) {
3199   // ptrtoint and inttoptr are not allowed on non-integral pointers
3200   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3201     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3202       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3203               !DL.isNonIntegralPointerType(PtrTy));
3204   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3205     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3206       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3207               !DL.isNonIntegralPointerType(PtrTy));
3208 
3209   return isBitCastable(SrcTy, DestTy);
3210 }
3211 
3212 // Provide a way to get a "cast" where the cast opcode is inferred from the
3213 // types and size of the operand. This, basically, is a parallel of the
3214 // logic in the castIsValid function below.  This axiom should hold:
3215 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3216 // should not assert in castIsValid. In other words, this produces a "correct"
3217 // casting opcode for the arguments passed to it.
3218 Instruction::CastOps
3219 CastInst::getCastOpcode(
3220   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3221   Type *SrcTy = Src->getType();
3222 
3223   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3224          "Only first class types are castable!");
3225 
3226   if (SrcTy == DestTy)
3227     return BitCast;
3228 
3229   // FIXME: Check address space sizes here
3230   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3231     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3232       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3233         // An element by element cast.  Find the appropriate opcode based on the
3234         // element types.
3235         SrcTy = SrcVecTy->getElementType();
3236         DestTy = DestVecTy->getElementType();
3237       }
3238 
3239   // Get the bit sizes, we'll need these
3240   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3241   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3242 
3243   // Run through the possibilities ...
3244   if (DestTy->isIntegerTy()) {                      // Casting to integral
3245     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3246       if (DestBits < SrcBits)
3247         return Trunc;                               // int -> smaller int
3248       else if (DestBits > SrcBits) {                // its an extension
3249         if (SrcIsSigned)
3250           return SExt;                              // signed -> SEXT
3251         else
3252           return ZExt;                              // unsigned -> ZEXT
3253       } else {
3254         return BitCast;                             // Same size, No-op cast
3255       }
3256     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3257       if (DestIsSigned)
3258         return FPToSI;                              // FP -> sint
3259       else
3260         return FPToUI;                              // FP -> uint
3261     } else if (SrcTy->isVectorTy()) {
3262       assert(DestBits == SrcBits &&
3263              "Casting vector to integer of different width");
3264       return BitCast;                             // Same size, no-op cast
3265     } else {
3266       assert(SrcTy->isPointerTy() &&
3267              "Casting from a value that is not first-class type");
3268       return PtrToInt;                              // ptr -> int
3269     }
3270   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3271     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3272       if (SrcIsSigned)
3273         return SIToFP;                              // sint -> FP
3274       else
3275         return UIToFP;                              // uint -> FP
3276     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3277       if (DestBits < SrcBits) {
3278         return FPTrunc;                             // FP -> smaller FP
3279       } else if (DestBits > SrcBits) {
3280         return FPExt;                               // FP -> larger FP
3281       } else  {
3282         return BitCast;                             // same size, no-op cast
3283       }
3284     } else if (SrcTy->isVectorTy()) {
3285       assert(DestBits == SrcBits &&
3286              "Casting vector to floating point of different width");
3287       return BitCast;                             // same size, no-op cast
3288     }
3289     llvm_unreachable("Casting pointer or non-first class to float");
3290   } else if (DestTy->isVectorTy()) {
3291     assert(DestBits == SrcBits &&
3292            "Illegal cast to vector (wrong type or size)");
3293     return BitCast;
3294   } else if (DestTy->isPointerTy()) {
3295     if (SrcTy->isPointerTy()) {
3296       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3297         return AddrSpaceCast;
3298       return BitCast;                               // ptr -> ptr
3299     } else if (SrcTy->isIntegerTy()) {
3300       return IntToPtr;                              // int -> ptr
3301     }
3302     llvm_unreachable("Casting pointer to other than pointer or int");
3303   } else if (DestTy->isX86_MMXTy()) {
3304     if (SrcTy->isVectorTy()) {
3305       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3306       return BitCast;                               // 64-bit vector to MMX
3307     }
3308     llvm_unreachable("Illegal cast to X86_MMX");
3309   }
3310   llvm_unreachable("Casting to type that is not first-class");
3311 }
3312 
3313 //===----------------------------------------------------------------------===//
3314 //                    CastInst SubClass Constructors
3315 //===----------------------------------------------------------------------===//
3316 
3317 /// Check that the construction parameters for a CastInst are correct. This
3318 /// could be broken out into the separate constructors but it is useful to have
3319 /// it in one place and to eliminate the redundant code for getting the sizes
3320 /// of the types involved.
3321 bool
3322 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3323   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3324       SrcTy->isAggregateType() || DstTy->isAggregateType())
3325     return false;
3326 
3327   // Get the size of the types in bits, and whether we are dealing
3328   // with vector types, we'll need this later.
3329   bool SrcIsVec = isa<VectorType>(SrcTy);
3330   bool DstIsVec = isa<VectorType>(DstTy);
3331   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3332   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3333 
3334   // If these are vector types, get the lengths of the vectors (using zero for
3335   // scalar types means that checking that vector lengths match also checks that
3336   // scalars are not being converted to vectors or vectors to scalars).
3337   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3338                                 : ElementCount::getFixed(0);
3339   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3340                                 : ElementCount::getFixed(0);
3341 
3342   // Switch on the opcode provided
3343   switch (op) {
3344   default: return false; // This is an input error
3345   case Instruction::Trunc:
3346     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3347            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3348   case Instruction::ZExt:
3349     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3350            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3351   case Instruction::SExt:
3352     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3353            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3354   case Instruction::FPTrunc:
3355     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3356            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3357   case Instruction::FPExt:
3358     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3359            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3360   case Instruction::UIToFP:
3361   case Instruction::SIToFP:
3362     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3363            SrcEC == DstEC;
3364   case Instruction::FPToUI:
3365   case Instruction::FPToSI:
3366     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3367            SrcEC == DstEC;
3368   case Instruction::PtrToInt:
3369     if (SrcEC != DstEC)
3370       return false;
3371     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3372   case Instruction::IntToPtr:
3373     if (SrcEC != DstEC)
3374       return false;
3375     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3376   case Instruction::BitCast: {
3377     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3378     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3379 
3380     // BitCast implies a no-op cast of type only. No bits change.
3381     // However, you can't cast pointers to anything but pointers.
3382     if (!SrcPtrTy != !DstPtrTy)
3383       return false;
3384 
3385     // For non-pointer cases, the cast is okay if the source and destination bit
3386     // widths are identical.
3387     if (!SrcPtrTy)
3388       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3389 
3390     // If both are pointers then the address spaces must match.
3391     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3392       return false;
3393 
3394     // A vector of pointers must have the same number of elements.
3395     if (SrcIsVec && DstIsVec)
3396       return SrcEC == DstEC;
3397     if (SrcIsVec)
3398       return SrcEC == ElementCount::getFixed(1);
3399     if (DstIsVec)
3400       return DstEC == ElementCount::getFixed(1);
3401 
3402     return true;
3403   }
3404   case Instruction::AddrSpaceCast: {
3405     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3406     if (!SrcPtrTy)
3407       return false;
3408 
3409     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3410     if (!DstPtrTy)
3411       return false;
3412 
3413     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3414       return false;
3415 
3416     return SrcEC == DstEC;
3417   }
3418   }
3419 }
3420 
3421 TruncInst::TruncInst(
3422   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3423 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3424   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3425 }
3426 
3427 TruncInst::TruncInst(
3428   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3429 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3430   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3431 }
3432 
3433 ZExtInst::ZExtInst(
3434   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3435 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3436   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3437 }
3438 
3439 ZExtInst::ZExtInst(
3440   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3441 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3442   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3443 }
3444 SExtInst::SExtInst(
3445   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3446 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3447   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3448 }
3449 
3450 SExtInst::SExtInst(
3451   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3452 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3453   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3454 }
3455 
3456 FPTruncInst::FPTruncInst(
3457   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3458 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3459   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3460 }
3461 
3462 FPTruncInst::FPTruncInst(
3463   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3464 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3465   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3466 }
3467 
3468 FPExtInst::FPExtInst(
3469   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3470 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3471   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3472 }
3473 
3474 FPExtInst::FPExtInst(
3475   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3476 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3477   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3478 }
3479 
3480 UIToFPInst::UIToFPInst(
3481   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3482 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3483   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3484 }
3485 
3486 UIToFPInst::UIToFPInst(
3487   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3488 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3489   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3490 }
3491 
3492 SIToFPInst::SIToFPInst(
3493   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3494 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3495   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3496 }
3497 
3498 SIToFPInst::SIToFPInst(
3499   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3500 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3501   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3502 }
3503 
3504 FPToUIInst::FPToUIInst(
3505   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3506 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3507   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3508 }
3509 
3510 FPToUIInst::FPToUIInst(
3511   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3512 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3513   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3514 }
3515 
3516 FPToSIInst::FPToSIInst(
3517   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3518 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3519   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3520 }
3521 
3522 FPToSIInst::FPToSIInst(
3523   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3524 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3525   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3526 }
3527 
3528 PtrToIntInst::PtrToIntInst(
3529   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3530 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3531   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3532 }
3533 
3534 PtrToIntInst::PtrToIntInst(
3535   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3536 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3537   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3538 }
3539 
3540 IntToPtrInst::IntToPtrInst(
3541   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3542 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3543   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3544 }
3545 
3546 IntToPtrInst::IntToPtrInst(
3547   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3548 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3549   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3550 }
3551 
3552 BitCastInst::BitCastInst(
3553   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3554 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3555   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3556 }
3557 
3558 BitCastInst::BitCastInst(
3559   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3560 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3561   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3562 }
3563 
3564 AddrSpaceCastInst::AddrSpaceCastInst(
3565   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3566 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3567   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3568 }
3569 
3570 AddrSpaceCastInst::AddrSpaceCastInst(
3571   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3572 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3573   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3574 }
3575 
3576 //===----------------------------------------------------------------------===//
3577 //                               CmpInst Classes
3578 //===----------------------------------------------------------------------===//
3579 
3580 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3581                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3582                  Instruction *FlagsSource)
3583   : Instruction(ty, op,
3584                 OperandTraits<CmpInst>::op_begin(this),
3585                 OperandTraits<CmpInst>::operands(this),
3586                 InsertBefore) {
3587   Op<0>() = LHS;
3588   Op<1>() = RHS;
3589   setPredicate((Predicate)predicate);
3590   setName(Name);
3591   if (FlagsSource)
3592     copyIRFlags(FlagsSource);
3593 }
3594 
3595 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3596                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3597   : Instruction(ty, op,
3598                 OperandTraits<CmpInst>::op_begin(this),
3599                 OperandTraits<CmpInst>::operands(this),
3600                 InsertAtEnd) {
3601   Op<0>() = LHS;
3602   Op<1>() = RHS;
3603   setPredicate((Predicate)predicate);
3604   setName(Name);
3605 }
3606 
3607 CmpInst *
3608 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3609                 const Twine &Name, Instruction *InsertBefore) {
3610   if (Op == Instruction::ICmp) {
3611     if (InsertBefore)
3612       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3613                           S1, S2, Name);
3614     else
3615       return new ICmpInst(CmpInst::Predicate(predicate),
3616                           S1, S2, Name);
3617   }
3618 
3619   if (InsertBefore)
3620     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3621                         S1, S2, Name);
3622   else
3623     return new FCmpInst(CmpInst::Predicate(predicate),
3624                         S1, S2, Name);
3625 }
3626 
3627 CmpInst *
3628 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3629                 const Twine &Name, BasicBlock *InsertAtEnd) {
3630   if (Op == Instruction::ICmp) {
3631     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3632                         S1, S2, Name);
3633   }
3634   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3635                       S1, S2, Name);
3636 }
3637 
3638 void CmpInst::swapOperands() {
3639   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3640     IC->swapOperands();
3641   else
3642     cast<FCmpInst>(this)->swapOperands();
3643 }
3644 
3645 bool CmpInst::isCommutative() const {
3646   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3647     return IC->isCommutative();
3648   return cast<FCmpInst>(this)->isCommutative();
3649 }
3650 
3651 bool CmpInst::isEquality(Predicate P) {
3652   if (ICmpInst::isIntPredicate(P))
3653     return ICmpInst::isEquality(P);
3654   if (FCmpInst::isFPPredicate(P))
3655     return FCmpInst::isEquality(P);
3656   llvm_unreachable("Unsupported predicate kind");
3657 }
3658 
3659 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3660   switch (pred) {
3661     default: llvm_unreachable("Unknown cmp predicate!");
3662     case ICMP_EQ: return ICMP_NE;
3663     case ICMP_NE: return ICMP_EQ;
3664     case ICMP_UGT: return ICMP_ULE;
3665     case ICMP_ULT: return ICMP_UGE;
3666     case ICMP_UGE: return ICMP_ULT;
3667     case ICMP_ULE: return ICMP_UGT;
3668     case ICMP_SGT: return ICMP_SLE;
3669     case ICMP_SLT: return ICMP_SGE;
3670     case ICMP_SGE: return ICMP_SLT;
3671     case ICMP_SLE: return ICMP_SGT;
3672 
3673     case FCMP_OEQ: return FCMP_UNE;
3674     case FCMP_ONE: return FCMP_UEQ;
3675     case FCMP_OGT: return FCMP_ULE;
3676     case FCMP_OLT: return FCMP_UGE;
3677     case FCMP_OGE: return FCMP_ULT;
3678     case FCMP_OLE: return FCMP_UGT;
3679     case FCMP_UEQ: return FCMP_ONE;
3680     case FCMP_UNE: return FCMP_OEQ;
3681     case FCMP_UGT: return FCMP_OLE;
3682     case FCMP_ULT: return FCMP_OGE;
3683     case FCMP_UGE: return FCMP_OLT;
3684     case FCMP_ULE: return FCMP_OGT;
3685     case FCMP_ORD: return FCMP_UNO;
3686     case FCMP_UNO: return FCMP_ORD;
3687     case FCMP_TRUE: return FCMP_FALSE;
3688     case FCMP_FALSE: return FCMP_TRUE;
3689   }
3690 }
3691 
3692 StringRef CmpInst::getPredicateName(Predicate Pred) {
3693   switch (Pred) {
3694   default:                   return "unknown";
3695   case FCmpInst::FCMP_FALSE: return "false";
3696   case FCmpInst::FCMP_OEQ:   return "oeq";
3697   case FCmpInst::FCMP_OGT:   return "ogt";
3698   case FCmpInst::FCMP_OGE:   return "oge";
3699   case FCmpInst::FCMP_OLT:   return "olt";
3700   case FCmpInst::FCMP_OLE:   return "ole";
3701   case FCmpInst::FCMP_ONE:   return "one";
3702   case FCmpInst::FCMP_ORD:   return "ord";
3703   case FCmpInst::FCMP_UNO:   return "uno";
3704   case FCmpInst::FCMP_UEQ:   return "ueq";
3705   case FCmpInst::FCMP_UGT:   return "ugt";
3706   case FCmpInst::FCMP_UGE:   return "uge";
3707   case FCmpInst::FCMP_ULT:   return "ult";
3708   case FCmpInst::FCMP_ULE:   return "ule";
3709   case FCmpInst::FCMP_UNE:   return "une";
3710   case FCmpInst::FCMP_TRUE:  return "true";
3711   case ICmpInst::ICMP_EQ:    return "eq";
3712   case ICmpInst::ICMP_NE:    return "ne";
3713   case ICmpInst::ICMP_SGT:   return "sgt";
3714   case ICmpInst::ICMP_SGE:   return "sge";
3715   case ICmpInst::ICMP_SLT:   return "slt";
3716   case ICmpInst::ICMP_SLE:   return "sle";
3717   case ICmpInst::ICMP_UGT:   return "ugt";
3718   case ICmpInst::ICMP_UGE:   return "uge";
3719   case ICmpInst::ICMP_ULT:   return "ult";
3720   case ICmpInst::ICMP_ULE:   return "ule";
3721   }
3722 }
3723 
3724 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3725   switch (pred) {
3726     default: llvm_unreachable("Unknown icmp predicate!");
3727     case ICMP_EQ: case ICMP_NE:
3728     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3729        return pred;
3730     case ICMP_UGT: return ICMP_SGT;
3731     case ICMP_ULT: return ICMP_SLT;
3732     case ICMP_UGE: return ICMP_SGE;
3733     case ICMP_ULE: return ICMP_SLE;
3734   }
3735 }
3736 
3737 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3738   switch (pred) {
3739     default: llvm_unreachable("Unknown icmp predicate!");
3740     case ICMP_EQ: case ICMP_NE:
3741     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3742        return pred;
3743     case ICMP_SGT: return ICMP_UGT;
3744     case ICMP_SLT: return ICMP_ULT;
3745     case ICMP_SGE: return ICMP_UGE;
3746     case ICMP_SLE: return ICMP_ULE;
3747   }
3748 }
3749 
3750 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3751   switch (pred) {
3752     default: llvm_unreachable("Unknown cmp predicate!");
3753     case ICMP_EQ: case ICMP_NE:
3754       return pred;
3755     case ICMP_SGT: return ICMP_SLT;
3756     case ICMP_SLT: return ICMP_SGT;
3757     case ICMP_SGE: return ICMP_SLE;
3758     case ICMP_SLE: return ICMP_SGE;
3759     case ICMP_UGT: return ICMP_ULT;
3760     case ICMP_ULT: return ICMP_UGT;
3761     case ICMP_UGE: return ICMP_ULE;
3762     case ICMP_ULE: return ICMP_UGE;
3763 
3764     case FCMP_FALSE: case FCMP_TRUE:
3765     case FCMP_OEQ: case FCMP_ONE:
3766     case FCMP_UEQ: case FCMP_UNE:
3767     case FCMP_ORD: case FCMP_UNO:
3768       return pred;
3769     case FCMP_OGT: return FCMP_OLT;
3770     case FCMP_OLT: return FCMP_OGT;
3771     case FCMP_OGE: return FCMP_OLE;
3772     case FCMP_OLE: return FCMP_OGE;
3773     case FCMP_UGT: return FCMP_ULT;
3774     case FCMP_ULT: return FCMP_UGT;
3775     case FCMP_UGE: return FCMP_ULE;
3776     case FCMP_ULE: return FCMP_UGE;
3777   }
3778 }
3779 
3780 bool CmpInst::isNonStrictPredicate(Predicate pred) {
3781   switch (pred) {
3782   case ICMP_SGE:
3783   case ICMP_SLE:
3784   case ICMP_UGE:
3785   case ICMP_ULE:
3786   case FCMP_OGE:
3787   case FCMP_OLE:
3788   case FCMP_UGE:
3789   case FCMP_ULE:
3790     return true;
3791   default:
3792     return false;
3793   }
3794 }
3795 
3796 bool CmpInst::isStrictPredicate(Predicate pred) {
3797   switch (pred) {
3798   case ICMP_SGT:
3799   case ICMP_SLT:
3800   case ICMP_UGT:
3801   case ICMP_ULT:
3802   case FCMP_OGT:
3803   case FCMP_OLT:
3804   case FCMP_UGT:
3805   case FCMP_ULT:
3806     return true;
3807   default:
3808     return false;
3809   }
3810 }
3811 
3812 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3813   switch (pred) {
3814   case ICMP_SGE:
3815     return ICMP_SGT;
3816   case ICMP_SLE:
3817     return ICMP_SLT;
3818   case ICMP_UGE:
3819     return ICMP_UGT;
3820   case ICMP_ULE:
3821     return ICMP_ULT;
3822   case FCMP_OGE:
3823     return FCMP_OGT;
3824   case FCMP_OLE:
3825     return FCMP_OLT;
3826   case FCMP_UGE:
3827     return FCMP_UGT;
3828   case FCMP_ULE:
3829     return FCMP_ULT;
3830   default:
3831     return pred;
3832   }
3833 }
3834 
3835 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3836   switch (pred) {
3837   case ICMP_SGT:
3838     return ICMP_SGE;
3839   case ICMP_SLT:
3840     return ICMP_SLE;
3841   case ICMP_UGT:
3842     return ICMP_UGE;
3843   case ICMP_ULT:
3844     return ICMP_ULE;
3845   case FCMP_OGT:
3846     return FCMP_OGE;
3847   case FCMP_OLT:
3848     return FCMP_OLE;
3849   case FCMP_UGT:
3850     return FCMP_UGE;
3851   case FCMP_ULT:
3852     return FCMP_ULE;
3853   default:
3854     return pred;
3855   }
3856 }
3857 
3858 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3859   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3860 
3861   if (isStrictPredicate(pred))
3862     return getNonStrictPredicate(pred);
3863   if (isNonStrictPredicate(pred))
3864     return getStrictPredicate(pred);
3865 
3866   llvm_unreachable("Unknown predicate!");
3867 }
3868 
3869 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3870   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3871 
3872   switch (pred) {
3873   default:
3874     llvm_unreachable("Unknown predicate!");
3875   case CmpInst::ICMP_ULT:
3876     return CmpInst::ICMP_SLT;
3877   case CmpInst::ICMP_ULE:
3878     return CmpInst::ICMP_SLE;
3879   case CmpInst::ICMP_UGT:
3880     return CmpInst::ICMP_SGT;
3881   case CmpInst::ICMP_UGE:
3882     return CmpInst::ICMP_SGE;
3883   }
3884 }
3885 
3886 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3887   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3888 
3889   switch (pred) {
3890   default:
3891     llvm_unreachable("Unknown predicate!");
3892   case CmpInst::ICMP_SLT:
3893     return CmpInst::ICMP_ULT;
3894   case CmpInst::ICMP_SLE:
3895     return CmpInst::ICMP_ULE;
3896   case CmpInst::ICMP_SGT:
3897     return CmpInst::ICMP_UGT;
3898   case CmpInst::ICMP_SGE:
3899     return CmpInst::ICMP_UGE;
3900   }
3901 }
3902 
3903 bool CmpInst::isUnsigned(Predicate predicate) {
3904   switch (predicate) {
3905     default: return false;
3906     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3907     case ICmpInst::ICMP_UGE: return true;
3908   }
3909 }
3910 
3911 bool CmpInst::isSigned(Predicate predicate) {
3912   switch (predicate) {
3913     default: return false;
3914     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3915     case ICmpInst::ICMP_SGE: return true;
3916   }
3917 }
3918 
3919 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
3920   assert(CmpInst::isRelational(pred) &&
3921          "Call only with non-equality predicates!");
3922 
3923   if (isSigned(pred))
3924     return getUnsignedPredicate(pred);
3925   if (isUnsigned(pred))
3926     return getSignedPredicate(pred);
3927 
3928   llvm_unreachable("Unknown predicate!");
3929 }
3930 
3931 bool CmpInst::isOrdered(Predicate predicate) {
3932   switch (predicate) {
3933     default: return false;
3934     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3935     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3936     case FCmpInst::FCMP_ORD: return true;
3937   }
3938 }
3939 
3940 bool CmpInst::isUnordered(Predicate predicate) {
3941   switch (predicate) {
3942     default: return false;
3943     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3944     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3945     case FCmpInst::FCMP_UNO: return true;
3946   }
3947 }
3948 
3949 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3950   switch(predicate) {
3951     default: return false;
3952     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3953     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3954   }
3955 }
3956 
3957 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3958   switch(predicate) {
3959   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3960   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3961   default: return false;
3962   }
3963 }
3964 
3965 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3966   // If the predicates match, then we know the first condition implies the
3967   // second is true.
3968   if (Pred1 == Pred2)
3969     return true;
3970 
3971   switch (Pred1) {
3972   default:
3973     break;
3974   case ICMP_EQ:
3975     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3976     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3977            Pred2 == ICMP_SLE;
3978   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3979     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3980   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3981     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3982   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3983     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3984   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3985     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3986   }
3987   return false;
3988 }
3989 
3990 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3991   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3992 }
3993 
3994 //===----------------------------------------------------------------------===//
3995 //                        SwitchInst Implementation
3996 //===----------------------------------------------------------------------===//
3997 
3998 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3999   assert(Value && Default && NumReserved);
4000   ReservedSpace = NumReserved;
4001   setNumHungOffUseOperands(2);
4002   allocHungoffUses(ReservedSpace);
4003 
4004   Op<0>() = Value;
4005   Op<1>() = Default;
4006 }
4007 
4008 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4009 /// switch on and a default destination.  The number of additional cases can
4010 /// be specified here to make memory allocation more efficient.  This
4011 /// constructor can also autoinsert before another instruction.
4012 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4013                        Instruction *InsertBefore)
4014     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4015                   nullptr, 0, InsertBefore) {
4016   init(Value, Default, 2+NumCases*2);
4017 }
4018 
4019 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4020 /// switch on and a default destination.  The number of additional cases can
4021 /// be specified here to make memory allocation more efficient.  This
4022 /// constructor also autoinserts at the end of the specified BasicBlock.
4023 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4024                        BasicBlock *InsertAtEnd)
4025     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4026                   nullptr, 0, InsertAtEnd) {
4027   init(Value, Default, 2+NumCases*2);
4028 }
4029 
4030 SwitchInst::SwitchInst(const SwitchInst &SI)
4031     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4032   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4033   setNumHungOffUseOperands(SI.getNumOperands());
4034   Use *OL = getOperandList();
4035   const Use *InOL = SI.getOperandList();
4036   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4037     OL[i] = InOL[i];
4038     OL[i+1] = InOL[i+1];
4039   }
4040   SubclassOptionalData = SI.SubclassOptionalData;
4041 }
4042 
4043 /// addCase - Add an entry to the switch instruction...
4044 ///
4045 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4046   unsigned NewCaseIdx = getNumCases();
4047   unsigned OpNo = getNumOperands();
4048   if (OpNo+2 > ReservedSpace)
4049     growOperands();  // Get more space!
4050   // Initialize some new operands.
4051   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4052   setNumHungOffUseOperands(OpNo+2);
4053   CaseHandle Case(this, NewCaseIdx);
4054   Case.setValue(OnVal);
4055   Case.setSuccessor(Dest);
4056 }
4057 
4058 /// removeCase - This method removes the specified case and its successor
4059 /// from the switch instruction.
4060 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4061   unsigned idx = I->getCaseIndex();
4062 
4063   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4064 
4065   unsigned NumOps = getNumOperands();
4066   Use *OL = getOperandList();
4067 
4068   // Overwrite this case with the end of the list.
4069   if (2 + (idx + 1) * 2 != NumOps) {
4070     OL[2 + idx * 2] = OL[NumOps - 2];
4071     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4072   }
4073 
4074   // Nuke the last value.
4075   OL[NumOps-2].set(nullptr);
4076   OL[NumOps-2+1].set(nullptr);
4077   setNumHungOffUseOperands(NumOps-2);
4078 
4079   return CaseIt(this, idx);
4080 }
4081 
4082 /// growOperands - grow operands - This grows the operand list in response
4083 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4084 ///
4085 void SwitchInst::growOperands() {
4086   unsigned e = getNumOperands();
4087   unsigned NumOps = e*3;
4088 
4089   ReservedSpace = NumOps;
4090   growHungoffUses(ReservedSpace);
4091 }
4092 
4093 MDNode *
4094 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4095   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4096     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4097       if (MDName->getString() == "branch_weights")
4098         return ProfileData;
4099   return nullptr;
4100 }
4101 
4102 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4103   assert(Changed && "called only if metadata has changed");
4104 
4105   if (!Weights)
4106     return nullptr;
4107 
4108   assert(SI.getNumSuccessors() == Weights->size() &&
4109          "num of prof branch_weights must accord with num of successors");
4110 
4111   bool AllZeroes =
4112       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4113 
4114   if (AllZeroes || Weights.getValue().size() < 2)
4115     return nullptr;
4116 
4117   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4118 }
4119 
4120 void SwitchInstProfUpdateWrapper::init() {
4121   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4122   if (!ProfileData)
4123     return;
4124 
4125   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4126     llvm_unreachable("number of prof branch_weights metadata operands does "
4127                      "not correspond to number of succesors");
4128   }
4129 
4130   SmallVector<uint32_t, 8> Weights;
4131   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4132     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4133     uint32_t CW = C->getValue().getZExtValue();
4134     Weights.push_back(CW);
4135   }
4136   this->Weights = std::move(Weights);
4137 }
4138 
4139 SwitchInst::CaseIt
4140 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4141   if (Weights) {
4142     assert(SI.getNumSuccessors() == Weights->size() &&
4143            "num of prof branch_weights must accord with num of successors");
4144     Changed = true;
4145     // Copy the last case to the place of the removed one and shrink.
4146     // This is tightly coupled with the way SwitchInst::removeCase() removes
4147     // the cases in SwitchInst::removeCase(CaseIt).
4148     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4149     Weights.getValue().pop_back();
4150   }
4151   return SI.removeCase(I);
4152 }
4153 
4154 void SwitchInstProfUpdateWrapper::addCase(
4155     ConstantInt *OnVal, BasicBlock *Dest,
4156     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4157   SI.addCase(OnVal, Dest);
4158 
4159   if (!Weights && W && *W) {
4160     Changed = true;
4161     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4162     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4163   } else if (Weights) {
4164     Changed = true;
4165     Weights.getValue().push_back(W ? *W : 0);
4166   }
4167   if (Weights)
4168     assert(SI.getNumSuccessors() == Weights->size() &&
4169            "num of prof branch_weights must accord with num of successors");
4170 }
4171 
4172 SymbolTableList<Instruction>::iterator
4173 SwitchInstProfUpdateWrapper::eraseFromParent() {
4174   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4175   Changed = false;
4176   if (Weights)
4177     Weights->resize(0);
4178   return SI.eraseFromParent();
4179 }
4180 
4181 SwitchInstProfUpdateWrapper::CaseWeightOpt
4182 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4183   if (!Weights)
4184     return None;
4185   return Weights.getValue()[idx];
4186 }
4187 
4188 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4189     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4190   if (!W)
4191     return;
4192 
4193   if (!Weights && *W)
4194     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4195 
4196   if (Weights) {
4197     auto &OldW = Weights.getValue()[idx];
4198     if (*W != OldW) {
4199       Changed = true;
4200       OldW = *W;
4201     }
4202   }
4203 }
4204 
4205 SwitchInstProfUpdateWrapper::CaseWeightOpt
4206 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4207                                                 unsigned idx) {
4208   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4209     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4210       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4211           ->getValue()
4212           .getZExtValue();
4213 
4214   return None;
4215 }
4216 
4217 //===----------------------------------------------------------------------===//
4218 //                        IndirectBrInst Implementation
4219 //===----------------------------------------------------------------------===//
4220 
4221 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4222   assert(Address && Address->getType()->isPointerTy() &&
4223          "Address of indirectbr must be a pointer");
4224   ReservedSpace = 1+NumDests;
4225   setNumHungOffUseOperands(1);
4226   allocHungoffUses(ReservedSpace);
4227 
4228   Op<0>() = Address;
4229 }
4230 
4231 
4232 /// growOperands - grow operands - This grows the operand list in response
4233 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4234 ///
4235 void IndirectBrInst::growOperands() {
4236   unsigned e = getNumOperands();
4237   unsigned NumOps = e*2;
4238 
4239   ReservedSpace = NumOps;
4240   growHungoffUses(ReservedSpace);
4241 }
4242 
4243 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4244                                Instruction *InsertBefore)
4245     : Instruction(Type::getVoidTy(Address->getContext()),
4246                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4247   init(Address, NumCases);
4248 }
4249 
4250 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4251                                BasicBlock *InsertAtEnd)
4252     : Instruction(Type::getVoidTy(Address->getContext()),
4253                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4254   init(Address, NumCases);
4255 }
4256 
4257 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4258     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4259                   nullptr, IBI.getNumOperands()) {
4260   allocHungoffUses(IBI.getNumOperands());
4261   Use *OL = getOperandList();
4262   const Use *InOL = IBI.getOperandList();
4263   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4264     OL[i] = InOL[i];
4265   SubclassOptionalData = IBI.SubclassOptionalData;
4266 }
4267 
4268 /// addDestination - Add a destination.
4269 ///
4270 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4271   unsigned OpNo = getNumOperands();
4272   if (OpNo+1 > ReservedSpace)
4273     growOperands();  // Get more space!
4274   // Initialize some new operands.
4275   assert(OpNo < ReservedSpace && "Growing didn't work!");
4276   setNumHungOffUseOperands(OpNo+1);
4277   getOperandList()[OpNo] = DestBB;
4278 }
4279 
4280 /// removeDestination - This method removes the specified successor from the
4281 /// indirectbr instruction.
4282 void IndirectBrInst::removeDestination(unsigned idx) {
4283   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4284 
4285   unsigned NumOps = getNumOperands();
4286   Use *OL = getOperandList();
4287 
4288   // Replace this value with the last one.
4289   OL[idx+1] = OL[NumOps-1];
4290 
4291   // Nuke the last value.
4292   OL[NumOps-1].set(nullptr);
4293   setNumHungOffUseOperands(NumOps-1);
4294 }
4295 
4296 //===----------------------------------------------------------------------===//
4297 //                            FreezeInst Implementation
4298 //===----------------------------------------------------------------------===//
4299 
4300 FreezeInst::FreezeInst(Value *S,
4301                        const Twine &Name, Instruction *InsertBefore)
4302     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4303   setName(Name);
4304 }
4305 
4306 FreezeInst::FreezeInst(Value *S,
4307                        const Twine &Name, BasicBlock *InsertAtEnd)
4308     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4309   setName(Name);
4310 }
4311 
4312 //===----------------------------------------------------------------------===//
4313 //                           cloneImpl() implementations
4314 //===----------------------------------------------------------------------===//
4315 
4316 // Define these methods here so vtables don't get emitted into every translation
4317 // unit that uses these classes.
4318 
4319 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4320   return new (getNumOperands()) GetElementPtrInst(*this);
4321 }
4322 
4323 UnaryOperator *UnaryOperator::cloneImpl() const {
4324   return Create(getOpcode(), Op<0>());
4325 }
4326 
4327 BinaryOperator *BinaryOperator::cloneImpl() const {
4328   return Create(getOpcode(), Op<0>(), Op<1>());
4329 }
4330 
4331 FCmpInst *FCmpInst::cloneImpl() const {
4332   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4333 }
4334 
4335 ICmpInst *ICmpInst::cloneImpl() const {
4336   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4337 }
4338 
4339 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4340   return new ExtractValueInst(*this);
4341 }
4342 
4343 InsertValueInst *InsertValueInst::cloneImpl() const {
4344   return new InsertValueInst(*this);
4345 }
4346 
4347 AllocaInst *AllocaInst::cloneImpl() const {
4348   AllocaInst *Result =
4349       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4350                      getOperand(0), getAlign());
4351   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4352   Result->setSwiftError(isSwiftError());
4353   return Result;
4354 }
4355 
4356 LoadInst *LoadInst::cloneImpl() const {
4357   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4358                       getAlign(), getOrdering(), getSyncScopeID());
4359 }
4360 
4361 StoreInst *StoreInst::cloneImpl() const {
4362   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4363                        getOrdering(), getSyncScopeID());
4364 }
4365 
4366 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4367   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4368       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4369       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4370   Result->setVolatile(isVolatile());
4371   Result->setWeak(isWeak());
4372   return Result;
4373 }
4374 
4375 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4376   AtomicRMWInst *Result =
4377       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4378                         getAlign(), getOrdering(), getSyncScopeID());
4379   Result->setVolatile(isVolatile());
4380   return Result;
4381 }
4382 
4383 FenceInst *FenceInst::cloneImpl() const {
4384   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4385 }
4386 
4387 TruncInst *TruncInst::cloneImpl() const {
4388   return new TruncInst(getOperand(0), getType());
4389 }
4390 
4391 ZExtInst *ZExtInst::cloneImpl() const {
4392   return new ZExtInst(getOperand(0), getType());
4393 }
4394 
4395 SExtInst *SExtInst::cloneImpl() const {
4396   return new SExtInst(getOperand(0), getType());
4397 }
4398 
4399 FPTruncInst *FPTruncInst::cloneImpl() const {
4400   return new FPTruncInst(getOperand(0), getType());
4401 }
4402 
4403 FPExtInst *FPExtInst::cloneImpl() const {
4404   return new FPExtInst(getOperand(0), getType());
4405 }
4406 
4407 UIToFPInst *UIToFPInst::cloneImpl() const {
4408   return new UIToFPInst(getOperand(0), getType());
4409 }
4410 
4411 SIToFPInst *SIToFPInst::cloneImpl() const {
4412   return new SIToFPInst(getOperand(0), getType());
4413 }
4414 
4415 FPToUIInst *FPToUIInst::cloneImpl() const {
4416   return new FPToUIInst(getOperand(0), getType());
4417 }
4418 
4419 FPToSIInst *FPToSIInst::cloneImpl() const {
4420   return new FPToSIInst(getOperand(0), getType());
4421 }
4422 
4423 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4424   return new PtrToIntInst(getOperand(0), getType());
4425 }
4426 
4427 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4428   return new IntToPtrInst(getOperand(0), getType());
4429 }
4430 
4431 BitCastInst *BitCastInst::cloneImpl() const {
4432   return new BitCastInst(getOperand(0), getType());
4433 }
4434 
4435 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4436   return new AddrSpaceCastInst(getOperand(0), getType());
4437 }
4438 
4439 CallInst *CallInst::cloneImpl() const {
4440   if (hasOperandBundles()) {
4441     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4442     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4443   }
4444   return  new(getNumOperands()) CallInst(*this);
4445 }
4446 
4447 SelectInst *SelectInst::cloneImpl() const {
4448   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4449 }
4450 
4451 VAArgInst *VAArgInst::cloneImpl() const {
4452   return new VAArgInst(getOperand(0), getType());
4453 }
4454 
4455 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4456   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4457 }
4458 
4459 InsertElementInst *InsertElementInst::cloneImpl() const {
4460   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4461 }
4462 
4463 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4464   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4465 }
4466 
4467 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4468 
4469 LandingPadInst *LandingPadInst::cloneImpl() const {
4470   return new LandingPadInst(*this);
4471 }
4472 
4473 ReturnInst *ReturnInst::cloneImpl() const {
4474   return new(getNumOperands()) ReturnInst(*this);
4475 }
4476 
4477 BranchInst *BranchInst::cloneImpl() const {
4478   return new(getNumOperands()) BranchInst(*this);
4479 }
4480 
4481 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4482 
4483 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4484   return new IndirectBrInst(*this);
4485 }
4486 
4487 InvokeInst *InvokeInst::cloneImpl() const {
4488   if (hasOperandBundles()) {
4489     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4490     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4491   }
4492   return new(getNumOperands()) InvokeInst(*this);
4493 }
4494 
4495 CallBrInst *CallBrInst::cloneImpl() const {
4496   if (hasOperandBundles()) {
4497     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4498     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4499   }
4500   return new (getNumOperands()) CallBrInst(*this);
4501 }
4502 
4503 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4504 
4505 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4506   return new (getNumOperands()) CleanupReturnInst(*this);
4507 }
4508 
4509 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4510   return new (getNumOperands()) CatchReturnInst(*this);
4511 }
4512 
4513 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4514   return new CatchSwitchInst(*this);
4515 }
4516 
4517 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4518   return new (getNumOperands()) FuncletPadInst(*this);
4519 }
4520 
4521 UnreachableInst *UnreachableInst::cloneImpl() const {
4522   LLVMContext &Context = getContext();
4523   return new UnreachableInst(Context);
4524 }
4525 
4526 FreezeInst *FreezeInst::cloneImpl() const {
4527   return new FreezeInst(getOperand(0));
4528 }
4529