1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstdint>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 //===----------------------------------------------------------------------===//
48 //                            CallSite Class
49 //===----------------------------------------------------------------------===//
50 
51 User::op_iterator CallSite::getCallee() const {
52   Instruction *II(getInstruction());
53   return isCall()
54     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
55     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
56 }
57 
58 //===----------------------------------------------------------------------===//
59 //                            TerminatorInst Class
60 //===----------------------------------------------------------------------===//
61 
62 unsigned TerminatorInst::getNumSuccessors() const {
63   switch (getOpcode()) {
64 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
65   case Instruction::OPC:                                                       \
66     return static_cast<const CLASS *>(this)->getNumSuccessors();
67 #include "llvm/IR/Instruction.def"
68   default:
69     break;
70   }
71   llvm_unreachable("not a terminator");
72 }
73 
74 BasicBlock *TerminatorInst::getSuccessor(unsigned idx) const {
75   switch (getOpcode()) {
76 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
77   case Instruction::OPC:                                                       \
78     return static_cast<const CLASS *>(this)->getSuccessor(idx);
79 #include "llvm/IR/Instruction.def"
80   default:
81     break;
82   }
83   llvm_unreachable("not a terminator");
84 }
85 
86 void TerminatorInst::setSuccessor(unsigned idx, BasicBlock *B) {
87   switch (getOpcode()) {
88 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
89   case Instruction::OPC:                                                       \
90     return static_cast<CLASS *>(this)->setSuccessor(idx, B);
91 #include "llvm/IR/Instruction.def"
92   default:
93     break;
94   }
95   llvm_unreachable("not a terminator");
96 }
97 
98 //===----------------------------------------------------------------------===//
99 //                              SelectInst Class
100 //===----------------------------------------------------------------------===//
101 
102 /// areInvalidOperands - Return a string if the specified operands are invalid
103 /// for a select operation, otherwise return null.
104 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
105   if (Op1->getType() != Op2->getType())
106     return "both values to select must have same type";
107 
108   if (Op1->getType()->isTokenTy())
109     return "select values cannot have token type";
110 
111   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
112     // Vector select.
113     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
114       return "vector select condition element type must be i1";
115     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
116     if (!ET)
117       return "selected values for vector select must be vectors";
118     if (ET->getNumElements() != VT->getNumElements())
119       return "vector select requires selected vectors to have "
120                    "the same vector length as select condition";
121   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
122     return "select condition must be i1 or <n x i1>";
123   }
124   return nullptr;
125 }
126 
127 //===----------------------------------------------------------------------===//
128 //                               PHINode Class
129 //===----------------------------------------------------------------------===//
130 
131 PHINode::PHINode(const PHINode &PN)
132     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
133       ReservedSpace(PN.getNumOperands()) {
134   allocHungoffUses(PN.getNumOperands());
135   std::copy(PN.op_begin(), PN.op_end(), op_begin());
136   std::copy(PN.block_begin(), PN.block_end(), block_begin());
137   SubclassOptionalData = PN.SubclassOptionalData;
138 }
139 
140 // removeIncomingValue - Remove an incoming value.  This is useful if a
141 // predecessor basic block is deleted.
142 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
143   Value *Removed = getIncomingValue(Idx);
144 
145   // Move everything after this operand down.
146   //
147   // FIXME: we could just swap with the end of the list, then erase.  However,
148   // clients might not expect this to happen.  The code as it is thrashes the
149   // use/def lists, which is kinda lame.
150   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
151   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
152 
153   // Nuke the last value.
154   Op<-1>().set(nullptr);
155   setNumHungOffUseOperands(getNumOperands() - 1);
156 
157   // If the PHI node is dead, because it has zero entries, nuke it now.
158   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
159     // If anyone is using this PHI, make them use a dummy value instead...
160     replaceAllUsesWith(UndefValue::get(getType()));
161     eraseFromParent();
162   }
163   return Removed;
164 }
165 
166 /// growOperands - grow operands - This grows the operand list in response
167 /// to a push_back style of operation.  This grows the number of ops by 1.5
168 /// times.
169 ///
170 void PHINode::growOperands() {
171   unsigned e = getNumOperands();
172   unsigned NumOps = e + e / 2;
173   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
174 
175   ReservedSpace = NumOps;
176   growHungoffUses(ReservedSpace, /* IsPhi */ true);
177 }
178 
179 /// hasConstantValue - If the specified PHI node always merges together the same
180 /// value, return the value, otherwise return null.
181 Value *PHINode::hasConstantValue() const {
182   // Exploit the fact that phi nodes always have at least one entry.
183   Value *ConstantValue = getIncomingValue(0);
184   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
185     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
186       if (ConstantValue != this)
187         return nullptr; // Incoming values not all the same.
188        // The case where the first value is this PHI.
189       ConstantValue = getIncomingValue(i);
190     }
191   if (ConstantValue == this)
192     return UndefValue::get(getType());
193   return ConstantValue;
194 }
195 
196 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
197 /// together the same value, assuming that undefs result in the same value as
198 /// non-undefs.
199 /// Unlike \ref hasConstantValue, this does not return a value because the
200 /// unique non-undef incoming value need not dominate the PHI node.
201 bool PHINode::hasConstantOrUndefValue() const {
202   Value *ConstantValue = nullptr;
203   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
204     Value *Incoming = getIncomingValue(i);
205     if (Incoming != this && !isa<UndefValue>(Incoming)) {
206       if (ConstantValue && ConstantValue != Incoming)
207         return false;
208       ConstantValue = Incoming;
209     }
210   }
211   return true;
212 }
213 
214 //===----------------------------------------------------------------------===//
215 //                       LandingPadInst Implementation
216 //===----------------------------------------------------------------------===//
217 
218 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
219                                const Twine &NameStr, Instruction *InsertBefore)
220     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
221   init(NumReservedValues, NameStr);
222 }
223 
224 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
225                                const Twine &NameStr, BasicBlock *InsertAtEnd)
226     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
227   init(NumReservedValues, NameStr);
228 }
229 
230 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
231     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
232                   LP.getNumOperands()),
233       ReservedSpace(LP.getNumOperands()) {
234   allocHungoffUses(LP.getNumOperands());
235   Use *OL = getOperandList();
236   const Use *InOL = LP.getOperandList();
237   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
238     OL[I] = InOL[I];
239 
240   setCleanup(LP.isCleanup());
241 }
242 
243 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
244                                        const Twine &NameStr,
245                                        Instruction *InsertBefore) {
246   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
247 }
248 
249 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
250                                        const Twine &NameStr,
251                                        BasicBlock *InsertAtEnd) {
252   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
253 }
254 
255 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
256   ReservedSpace = NumReservedValues;
257   setNumHungOffUseOperands(0);
258   allocHungoffUses(ReservedSpace);
259   setName(NameStr);
260   setCleanup(false);
261 }
262 
263 /// growOperands - grow operands - This grows the operand list in response to a
264 /// push_back style of operation. This grows the number of ops by 2 times.
265 void LandingPadInst::growOperands(unsigned Size) {
266   unsigned e = getNumOperands();
267   if (ReservedSpace >= e + Size) return;
268   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
269   growHungoffUses(ReservedSpace);
270 }
271 
272 void LandingPadInst::addClause(Constant *Val) {
273   unsigned OpNo = getNumOperands();
274   growOperands(1);
275   assert(OpNo < ReservedSpace && "Growing didn't work!");
276   setNumHungOffUseOperands(getNumOperands() + 1);
277   getOperandList()[OpNo] = Val;
278 }
279 
280 //===----------------------------------------------------------------------===//
281 //                        CallInst Implementation
282 //===----------------------------------------------------------------------===//
283 
284 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
285                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
286   this->FTy = FTy;
287   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
288          "NumOperands not set up?");
289   Op<-1>() = Func;
290 
291 #ifndef NDEBUG
292   assert((Args.size() == FTy->getNumParams() ||
293           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
294          "Calling a function with bad signature!");
295 
296   for (unsigned i = 0; i != Args.size(); ++i)
297     assert((i >= FTy->getNumParams() ||
298             FTy->getParamType(i) == Args[i]->getType()) &&
299            "Calling a function with a bad signature!");
300 #endif
301 
302   std::copy(Args.begin(), Args.end(), op_begin());
303 
304   auto It = populateBundleOperandInfos(Bundles, Args.size());
305   (void)It;
306   assert(It + 1 == op_end() && "Should add up!");
307 
308   setName(NameStr);
309 }
310 
311 void CallInst::init(Value *Func, const Twine &NameStr) {
312   FTy =
313       cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
314   assert(getNumOperands() == 1 && "NumOperands not set up?");
315   Op<-1>() = Func;
316 
317   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
318 
319   setName(NameStr);
320 }
321 
322 CallInst::CallInst(Value *Func, const Twine &Name, Instruction *InsertBefore)
323     : CallBase<CallInst>(
324           cast<FunctionType>(
325               cast<PointerType>(Func->getType())->getElementType())
326               ->getReturnType(),
327           Instruction::Call,
328           OperandTraits<CallBase<CallInst>>::op_end(this) - 1, 1,
329           InsertBefore) {
330   init(Func, Name);
331 }
332 
333 CallInst::CallInst(Value *Func, const Twine &Name, BasicBlock *InsertAtEnd)
334     : CallBase<CallInst>(
335           cast<FunctionType>(
336               cast<PointerType>(Func->getType())->getElementType())
337               ->getReturnType(),
338           Instruction::Call,
339           OperandTraits<CallBase<CallInst>>::op_end(this) - 1, 1, InsertAtEnd) {
340   init(Func, Name);
341 }
342 
343 CallInst::CallInst(const CallInst &CI)
344     : CallBase<CallInst>(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
345                          OperandTraits<CallBase<CallInst>>::op_end(this) -
346                              CI.getNumOperands(),
347                          CI.getNumOperands()) {
348   setTailCallKind(CI.getTailCallKind());
349   setCallingConv(CI.getCallingConv());
350 
351   std::copy(CI.op_begin(), CI.op_end(), op_begin());
352   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
353             bundle_op_info_begin());
354   SubclassOptionalData = CI.SubclassOptionalData;
355 }
356 
357 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
358                            Instruction *InsertPt) {
359   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
360 
361   auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
362                                  InsertPt);
363   NewCI->setTailCallKind(CI->getTailCallKind());
364   NewCI->setCallingConv(CI->getCallingConv());
365   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
366   NewCI->setAttributes(CI->getAttributes());
367   NewCI->setDebugLoc(CI->getDebugLoc());
368   return NewCI;
369 }
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 /// IsConstantOne - Return true only if val is constant int 1
381 static bool IsConstantOne(Value *val) {
382   assert(val && "IsConstantOne does not work with nullptr val");
383   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
384   return CVal && CVal->isOne();
385 }
386 
387 static Instruction *createMalloc(Instruction *InsertBefore,
388                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
389                                  Type *AllocTy, Value *AllocSize,
390                                  Value *ArraySize,
391                                  ArrayRef<OperandBundleDef> OpB,
392                                  Function *MallocF, const Twine &Name) {
393   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
394          "createMalloc needs either InsertBefore or InsertAtEnd");
395 
396   // malloc(type) becomes:
397   //       bitcast (i8* malloc(typeSize)) to type*
398   // malloc(type, arraySize) becomes:
399   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
400   if (!ArraySize)
401     ArraySize = ConstantInt::get(IntPtrTy, 1);
402   else if (ArraySize->getType() != IntPtrTy) {
403     if (InsertBefore)
404       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
405                                               "", InsertBefore);
406     else
407       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
408                                               "", InsertAtEnd);
409   }
410 
411   if (!IsConstantOne(ArraySize)) {
412     if (IsConstantOne(AllocSize)) {
413       AllocSize = ArraySize;         // Operand * 1 = Operand
414     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
415       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
416                                                      false /*ZExt*/);
417       // Malloc arg is constant product of type size and array size
418       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
419     } else {
420       // Multiply type size by the array size...
421       if (InsertBefore)
422         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
423                                               "mallocsize", InsertBefore);
424       else
425         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
426                                               "mallocsize", InsertAtEnd);
427     }
428   }
429 
430   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
431   // Create the call to Malloc.
432   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
433   Module *M = BB->getParent()->getParent();
434   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
435   Value *MallocFunc = MallocF;
436   if (!MallocFunc)
437     // prototype malloc as "void *malloc(size_t)"
438     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
439   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
440   CallInst *MCall = nullptr;
441   Instruction *Result = nullptr;
442   if (InsertBefore) {
443     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
444                              InsertBefore);
445     Result = MCall;
446     if (Result->getType() != AllocPtrType)
447       // Create a cast instruction to convert to the right type...
448       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
449   } else {
450     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
451     Result = MCall;
452     if (Result->getType() != AllocPtrType) {
453       InsertAtEnd->getInstList().push_back(MCall);
454       // Create a cast instruction to convert to the right type...
455       Result = new BitCastInst(MCall, AllocPtrType, Name);
456     }
457   }
458   MCall->setTailCall();
459   if (Function *F = dyn_cast<Function>(MallocFunc)) {
460     MCall->setCallingConv(F->getCallingConv());
461     if (!F->returnDoesNotAlias())
462       F->setReturnDoesNotAlias();
463   }
464   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
465 
466   return Result;
467 }
468 
469 /// CreateMalloc - Generate the IR for a call to malloc:
470 /// 1. Compute the malloc call's argument as the specified type's size,
471 ///    possibly multiplied by the array size if the array size is not
472 ///    constant 1.
473 /// 2. Call malloc with that argument.
474 /// 3. Bitcast the result of the malloc call to the specified type.
475 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
476                                     Type *IntPtrTy, Type *AllocTy,
477                                     Value *AllocSize, Value *ArraySize,
478                                     Function *MallocF,
479                                     const Twine &Name) {
480   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
481                       ArraySize, None, MallocF, Name);
482 }
483 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
484                                     Type *IntPtrTy, Type *AllocTy,
485                                     Value *AllocSize, Value *ArraySize,
486                                     ArrayRef<OperandBundleDef> OpB,
487                                     Function *MallocF,
488                                     const Twine &Name) {
489   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
490                       ArraySize, OpB, MallocF, Name);
491 }
492 
493 /// CreateMalloc - Generate the IR for a call to malloc:
494 /// 1. Compute the malloc call's argument as the specified type's size,
495 ///    possibly multiplied by the array size if the array size is not
496 ///    constant 1.
497 /// 2. Call malloc with that argument.
498 /// 3. Bitcast the result of the malloc call to the specified type.
499 /// Note: This function does not add the bitcast to the basic block, that is the
500 /// responsibility of the caller.
501 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
502                                     Type *IntPtrTy, Type *AllocTy,
503                                     Value *AllocSize, Value *ArraySize,
504                                     Function *MallocF, const Twine &Name) {
505   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
506                       ArraySize, None, MallocF, Name);
507 }
508 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
509                                     Type *IntPtrTy, Type *AllocTy,
510                                     Value *AllocSize, Value *ArraySize,
511                                     ArrayRef<OperandBundleDef> OpB,
512                                     Function *MallocF, const Twine &Name) {
513   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
514                       ArraySize, OpB, MallocF, Name);
515 }
516 
517 static Instruction *createFree(Value *Source,
518                                ArrayRef<OperandBundleDef> Bundles,
519                                Instruction *InsertBefore,
520                                BasicBlock *InsertAtEnd) {
521   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
522          "createFree needs either InsertBefore or InsertAtEnd");
523   assert(Source->getType()->isPointerTy() &&
524          "Can not free something of nonpointer type!");
525 
526   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
527   Module *M = BB->getParent()->getParent();
528 
529   Type *VoidTy = Type::getVoidTy(M->getContext());
530   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
531   // prototype free as "void free(void*)"
532   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
533   CallInst *Result = nullptr;
534   Value *PtrCast = Source;
535   if (InsertBefore) {
536     if (Source->getType() != IntPtrTy)
537       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
538     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
539   } else {
540     if (Source->getType() != IntPtrTy)
541       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
542     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
543   }
544   Result->setTailCall();
545   if (Function *F = dyn_cast<Function>(FreeFunc))
546     Result->setCallingConv(F->getCallingConv());
547 
548   return Result;
549 }
550 
551 /// CreateFree - Generate the IR for a call to the builtin free function.
552 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
553   return createFree(Source, None, InsertBefore, nullptr);
554 }
555 Instruction *CallInst::CreateFree(Value *Source,
556                                   ArrayRef<OperandBundleDef> Bundles,
557                                   Instruction *InsertBefore) {
558   return createFree(Source, Bundles, InsertBefore, nullptr);
559 }
560 
561 /// CreateFree - Generate the IR for a call to the builtin free function.
562 /// Note: This function does not add the call to the basic block, that is the
563 /// responsibility of the caller.
564 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
565   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
566   assert(FreeCall && "CreateFree did not create a CallInst");
567   return FreeCall;
568 }
569 Instruction *CallInst::CreateFree(Value *Source,
570                                   ArrayRef<OperandBundleDef> Bundles,
571                                   BasicBlock *InsertAtEnd) {
572   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
573   assert(FreeCall && "CreateFree did not create a CallInst");
574   return FreeCall;
575 }
576 
577 //===----------------------------------------------------------------------===//
578 //                        InvokeInst Implementation
579 //===----------------------------------------------------------------------===//
580 
581 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
582                       BasicBlock *IfException, ArrayRef<Value *> Args,
583                       ArrayRef<OperandBundleDef> Bundles,
584                       const Twine &NameStr) {
585   this->FTy = FTy;
586 
587   assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) &&
588          "NumOperands not set up?");
589   Op<-3>() = Fn;
590   Op<-2>() = IfNormal;
591   Op<-1>() = IfException;
592 
593 #ifndef NDEBUG
594   assert(((Args.size() == FTy->getNumParams()) ||
595           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
596          "Invoking a function with bad signature");
597 
598   for (unsigned i = 0, e = Args.size(); i != e; i++)
599     assert((i >= FTy->getNumParams() ||
600             FTy->getParamType(i) == Args[i]->getType()) &&
601            "Invoking a function with a bad signature!");
602 #endif
603 
604   std::copy(Args.begin(), Args.end(), op_begin());
605 
606   auto It = populateBundleOperandInfos(Bundles, Args.size());
607   (void)It;
608   assert(It + 3 == op_end() && "Should add up!");
609 
610   setName(NameStr);
611 }
612 
613 InvokeInst::InvokeInst(const InvokeInst &II)
614     : CallBase<InvokeInst>(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
615                            OperandTraits<CallBase<InvokeInst>>::op_end(this) -
616                                II.getNumOperands(),
617                            II.getNumOperands()) {
618   setCallingConv(II.getCallingConv());
619   std::copy(II.op_begin(), II.op_end(), op_begin());
620   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
621             bundle_op_info_begin());
622   SubclassOptionalData = II.SubclassOptionalData;
623 }
624 
625 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
626                                Instruction *InsertPt) {
627   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
628 
629   auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
630                                    II->getUnwindDest(), Args, OpB,
631                                    II->getName(), InsertPt);
632   NewII->setCallingConv(II->getCallingConv());
633   NewII->SubclassOptionalData = II->SubclassOptionalData;
634   NewII->setAttributes(II->getAttributes());
635   NewII->setDebugLoc(II->getDebugLoc());
636   return NewII;
637 }
638 
639 
640 LandingPadInst *InvokeInst::getLandingPadInst() const {
641   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
642 }
643 
644 //===----------------------------------------------------------------------===//
645 //                        ReturnInst Implementation
646 //===----------------------------------------------------------------------===//
647 
648 ReturnInst::ReturnInst(const ReturnInst &RI)
649   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
650                    OperandTraits<ReturnInst>::op_end(this) -
651                      RI.getNumOperands(),
652                    RI.getNumOperands()) {
653   if (RI.getNumOperands())
654     Op<0>() = RI.Op<0>();
655   SubclassOptionalData = RI.SubclassOptionalData;
656 }
657 
658 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
659   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
660                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
661                    InsertBefore) {
662   if (retVal)
663     Op<0>() = retVal;
664 }
665 
666 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
667   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
668                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
669                    InsertAtEnd) {
670   if (retVal)
671     Op<0>() = retVal;
672 }
673 
674 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
675   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
676                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
677 }
678 
679 //===----------------------------------------------------------------------===//
680 //                        ResumeInst Implementation
681 //===----------------------------------------------------------------------===//
682 
683 ResumeInst::ResumeInst(const ResumeInst &RI)
684   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
685                    OperandTraits<ResumeInst>::op_begin(this), 1) {
686   Op<0>() = RI.Op<0>();
687 }
688 
689 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
690   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
691                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
692   Op<0>() = Exn;
693 }
694 
695 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
696   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
697                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
698   Op<0>() = Exn;
699 }
700 
701 //===----------------------------------------------------------------------===//
702 //                        CleanupReturnInst Implementation
703 //===----------------------------------------------------------------------===//
704 
705 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
706     : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
707                      OperandTraits<CleanupReturnInst>::op_end(this) -
708                          CRI.getNumOperands(),
709                      CRI.getNumOperands()) {
710   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
711   Op<0>() = CRI.Op<0>();
712   if (CRI.hasUnwindDest())
713     Op<1>() = CRI.Op<1>();
714 }
715 
716 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
717   if (UnwindBB)
718     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
719 
720   Op<0>() = CleanupPad;
721   if (UnwindBB)
722     Op<1>() = UnwindBB;
723 }
724 
725 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
726                                      unsigned Values, Instruction *InsertBefore)
727     : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
728                      Instruction::CleanupRet,
729                      OperandTraits<CleanupReturnInst>::op_end(this) - Values,
730                      Values, InsertBefore) {
731   init(CleanupPad, UnwindBB);
732 }
733 
734 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
735                                      unsigned Values, BasicBlock *InsertAtEnd)
736     : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
737                      Instruction::CleanupRet,
738                      OperandTraits<CleanupReturnInst>::op_end(this) - Values,
739                      Values, InsertAtEnd) {
740   init(CleanupPad, UnwindBB);
741 }
742 
743 //===----------------------------------------------------------------------===//
744 //                        CatchReturnInst Implementation
745 //===----------------------------------------------------------------------===//
746 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
747   Op<0>() = CatchPad;
748   Op<1>() = BB;
749 }
750 
751 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
752     : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
753                      OperandTraits<CatchReturnInst>::op_begin(this), 2) {
754   Op<0>() = CRI.Op<0>();
755   Op<1>() = CRI.Op<1>();
756 }
757 
758 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
759                                  Instruction *InsertBefore)
760     : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
761                      OperandTraits<CatchReturnInst>::op_begin(this), 2,
762                      InsertBefore) {
763   init(CatchPad, BB);
764 }
765 
766 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
767                                  BasicBlock *InsertAtEnd)
768     : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
769                      OperandTraits<CatchReturnInst>::op_begin(this), 2,
770                      InsertAtEnd) {
771   init(CatchPad, BB);
772 }
773 
774 //===----------------------------------------------------------------------===//
775 //                       CatchSwitchInst Implementation
776 //===----------------------------------------------------------------------===//
777 
778 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
779                                  unsigned NumReservedValues,
780                                  const Twine &NameStr,
781                                  Instruction *InsertBefore)
782     : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
783                      InsertBefore) {
784   if (UnwindDest)
785     ++NumReservedValues;
786   init(ParentPad, UnwindDest, NumReservedValues + 1);
787   setName(NameStr);
788 }
789 
790 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
791                                  unsigned NumReservedValues,
792                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
793     : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
794                      InsertAtEnd) {
795   if (UnwindDest)
796     ++NumReservedValues;
797   init(ParentPad, UnwindDest, NumReservedValues + 1);
798   setName(NameStr);
799 }
800 
801 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
802     : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr,
803                      CSI.getNumOperands()) {
804   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
805   setNumHungOffUseOperands(ReservedSpace);
806   Use *OL = getOperandList();
807   const Use *InOL = CSI.getOperandList();
808   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
809     OL[I] = InOL[I];
810 }
811 
812 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
813                            unsigned NumReservedValues) {
814   assert(ParentPad && NumReservedValues);
815 
816   ReservedSpace = NumReservedValues;
817   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
818   allocHungoffUses(ReservedSpace);
819 
820   Op<0>() = ParentPad;
821   if (UnwindDest) {
822     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
823     setUnwindDest(UnwindDest);
824   }
825 }
826 
827 /// growOperands - grow operands - This grows the operand list in response to a
828 /// push_back style of operation. This grows the number of ops by 2 times.
829 void CatchSwitchInst::growOperands(unsigned Size) {
830   unsigned NumOperands = getNumOperands();
831   assert(NumOperands >= 1);
832   if (ReservedSpace >= NumOperands + Size)
833     return;
834   ReservedSpace = (NumOperands + Size / 2) * 2;
835   growHungoffUses(ReservedSpace);
836 }
837 
838 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
839   unsigned OpNo = getNumOperands();
840   growOperands(1);
841   assert(OpNo < ReservedSpace && "Growing didn't work!");
842   setNumHungOffUseOperands(getNumOperands() + 1);
843   getOperandList()[OpNo] = Handler;
844 }
845 
846 void CatchSwitchInst::removeHandler(handler_iterator HI) {
847   // Move all subsequent handlers up one.
848   Use *EndDst = op_end() - 1;
849   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
850     *CurDst = *(CurDst + 1);
851   // Null out the last handler use.
852   *EndDst = nullptr;
853 
854   setNumHungOffUseOperands(getNumOperands() - 1);
855 }
856 
857 //===----------------------------------------------------------------------===//
858 //                        FuncletPadInst Implementation
859 //===----------------------------------------------------------------------===//
860 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
861                           const Twine &NameStr) {
862   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
863   std::copy(Args.begin(), Args.end(), op_begin());
864   setParentPad(ParentPad);
865   setName(NameStr);
866 }
867 
868 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
869     : Instruction(FPI.getType(), FPI.getOpcode(),
870                   OperandTraits<FuncletPadInst>::op_end(this) -
871                       FPI.getNumOperands(),
872                   FPI.getNumOperands()) {
873   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
874   setParentPad(FPI.getParentPad());
875 }
876 
877 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
878                                ArrayRef<Value *> Args, unsigned Values,
879                                const Twine &NameStr, Instruction *InsertBefore)
880     : Instruction(ParentPad->getType(), Op,
881                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
882                   InsertBefore) {
883   init(ParentPad, Args, NameStr);
884 }
885 
886 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
887                                ArrayRef<Value *> Args, unsigned Values,
888                                const Twine &NameStr, BasicBlock *InsertAtEnd)
889     : Instruction(ParentPad->getType(), Op,
890                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
891                   InsertAtEnd) {
892   init(ParentPad, Args, NameStr);
893 }
894 
895 //===----------------------------------------------------------------------===//
896 //                      UnreachableInst Implementation
897 //===----------------------------------------------------------------------===//
898 
899 UnreachableInst::UnreachableInst(LLVMContext &Context,
900                                  Instruction *InsertBefore)
901   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
902                    nullptr, 0, InsertBefore) {
903 }
904 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
905   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
906                    nullptr, 0, InsertAtEnd) {
907 }
908 
909 //===----------------------------------------------------------------------===//
910 //                        BranchInst Implementation
911 //===----------------------------------------------------------------------===//
912 
913 void BranchInst::AssertOK() {
914   if (isConditional())
915     assert(getCondition()->getType()->isIntegerTy(1) &&
916            "May only branch on boolean predicates!");
917 }
918 
919 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
920   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
921                    OperandTraits<BranchInst>::op_end(this) - 1,
922                    1, InsertBefore) {
923   assert(IfTrue && "Branch destination may not be null!");
924   Op<-1>() = IfTrue;
925 }
926 
927 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
928                        Instruction *InsertBefore)
929   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
930                    OperandTraits<BranchInst>::op_end(this) - 3,
931                    3, InsertBefore) {
932   Op<-1>() = IfTrue;
933   Op<-2>() = IfFalse;
934   Op<-3>() = Cond;
935 #ifndef NDEBUG
936   AssertOK();
937 #endif
938 }
939 
940 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
941   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
942                    OperandTraits<BranchInst>::op_end(this) - 1,
943                    1, InsertAtEnd) {
944   assert(IfTrue && "Branch destination may not be null!");
945   Op<-1>() = IfTrue;
946 }
947 
948 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
949            BasicBlock *InsertAtEnd)
950   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
951                    OperandTraits<BranchInst>::op_end(this) - 3,
952                    3, InsertAtEnd) {
953   Op<-1>() = IfTrue;
954   Op<-2>() = IfFalse;
955   Op<-3>() = Cond;
956 #ifndef NDEBUG
957   AssertOK();
958 #endif
959 }
960 
961 BranchInst::BranchInst(const BranchInst &BI) :
962   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
963                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
964                  BI.getNumOperands()) {
965   Op<-1>() = BI.Op<-1>();
966   if (BI.getNumOperands() != 1) {
967     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
968     Op<-3>() = BI.Op<-3>();
969     Op<-2>() = BI.Op<-2>();
970   }
971   SubclassOptionalData = BI.SubclassOptionalData;
972 }
973 
974 void BranchInst::swapSuccessors() {
975   assert(isConditional() &&
976          "Cannot swap successors of an unconditional branch");
977   Op<-1>().swap(Op<-2>());
978 
979   // Update profile metadata if present and it matches our structural
980   // expectations.
981   swapProfMetadata();
982 }
983 
984 //===----------------------------------------------------------------------===//
985 //                        AllocaInst Implementation
986 //===----------------------------------------------------------------------===//
987 
988 static Value *getAISize(LLVMContext &Context, Value *Amt) {
989   if (!Amt)
990     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
991   else {
992     assert(!isa<BasicBlock>(Amt) &&
993            "Passed basic block into allocation size parameter! Use other ctor");
994     assert(Amt->getType()->isIntegerTy() &&
995            "Allocation array size is not an integer!");
996   }
997   return Amt;
998 }
999 
1000 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1001                        Instruction *InsertBefore)
1002   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1003 
1004 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1005                        BasicBlock *InsertAtEnd)
1006   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1007 
1008 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1009                        const Twine &Name, Instruction *InsertBefore)
1010   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1011 
1012 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1013                        const Twine &Name, BasicBlock *InsertAtEnd)
1014   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1015 
1016 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1017                        unsigned Align, const Twine &Name,
1018                        Instruction *InsertBefore)
1019   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1020                      getAISize(Ty->getContext(), ArraySize), InsertBefore),
1021     AllocatedType(Ty) {
1022   setAlignment(Align);
1023   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1024   setName(Name);
1025 }
1026 
1027 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1028                        unsigned Align, const Twine &Name,
1029                        BasicBlock *InsertAtEnd)
1030   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1031                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1032       AllocatedType(Ty) {
1033   setAlignment(Align);
1034   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1035   setName(Name);
1036 }
1037 
1038 void AllocaInst::setAlignment(unsigned Align) {
1039   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1040   assert(Align <= MaximumAlignment &&
1041          "Alignment is greater than MaximumAlignment!");
1042   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1043                              (Log2_32(Align) + 1));
1044   assert(getAlignment() == Align && "Alignment representation error!");
1045 }
1046 
1047 bool AllocaInst::isArrayAllocation() const {
1048   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1049     return !CI->isOne();
1050   return true;
1051 }
1052 
1053 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1054 /// function and is a constant size.  If so, the code generator will fold it
1055 /// into the prolog/epilog code, so it is basically free.
1056 bool AllocaInst::isStaticAlloca() const {
1057   // Must be constant size.
1058   if (!isa<ConstantInt>(getArraySize())) return false;
1059 
1060   // Must be in the entry block.
1061   const BasicBlock *Parent = getParent();
1062   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1063 }
1064 
1065 //===----------------------------------------------------------------------===//
1066 //                           LoadInst Implementation
1067 //===----------------------------------------------------------------------===//
1068 
1069 void LoadInst::AssertOK() {
1070   assert(getOperand(0)->getType()->isPointerTy() &&
1071          "Ptr must have pointer type.");
1072   assert(!(isAtomic() && getAlignment() == 0) &&
1073          "Alignment required for atomic load");
1074 }
1075 
1076 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1077     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1078 
1079 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1080     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1081 
1082 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1083                    Instruction *InsertBef)
1084     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1085 
1086 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1087                    BasicBlock *InsertAE)
1088     : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1089 
1090 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1091                    unsigned Align, Instruction *InsertBef)
1092     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1093                SyncScope::System, InsertBef) {}
1094 
1095 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1096                    unsigned Align, BasicBlock *InsertAE)
1097     : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1098                SyncScope::System, InsertAE) {}
1099 
1100 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1101                    unsigned Align, AtomicOrdering Order,
1102                    SyncScope::ID SSID, Instruction *InsertBef)
1103     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1104   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1105   setVolatile(isVolatile);
1106   setAlignment(Align);
1107   setAtomic(Order, SSID);
1108   AssertOK();
1109   setName(Name);
1110 }
1111 
1112 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1113                    unsigned Align, AtomicOrdering Order,
1114                    SyncScope::ID SSID,
1115                    BasicBlock *InsertAE)
1116   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1117                      Load, Ptr, InsertAE) {
1118   setVolatile(isVolatile);
1119   setAlignment(Align);
1120   setAtomic(Order, SSID);
1121   AssertOK();
1122   setName(Name);
1123 }
1124 
1125 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1126   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1127                      Load, Ptr, InsertBef) {
1128   setVolatile(false);
1129   setAlignment(0);
1130   setAtomic(AtomicOrdering::NotAtomic);
1131   AssertOK();
1132   if (Name && Name[0]) setName(Name);
1133 }
1134 
1135 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1136   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1137                      Load, Ptr, InsertAE) {
1138   setVolatile(false);
1139   setAlignment(0);
1140   setAtomic(AtomicOrdering::NotAtomic);
1141   AssertOK();
1142   if (Name && Name[0]) setName(Name);
1143 }
1144 
1145 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1146                    Instruction *InsertBef)
1147     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1148   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1149   setVolatile(isVolatile);
1150   setAlignment(0);
1151   setAtomic(AtomicOrdering::NotAtomic);
1152   AssertOK();
1153   if (Name && Name[0]) setName(Name);
1154 }
1155 
1156 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1157                    BasicBlock *InsertAE)
1158   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1159                      Load, Ptr, InsertAE) {
1160   setVolatile(isVolatile);
1161   setAlignment(0);
1162   setAtomic(AtomicOrdering::NotAtomic);
1163   AssertOK();
1164   if (Name && Name[0]) setName(Name);
1165 }
1166 
1167 void LoadInst::setAlignment(unsigned Align) {
1168   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1169   assert(Align <= MaximumAlignment &&
1170          "Alignment is greater than MaximumAlignment!");
1171   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1172                              ((Log2_32(Align)+1)<<1));
1173   assert(getAlignment() == Align && "Alignment representation error!");
1174 }
1175 
1176 //===----------------------------------------------------------------------===//
1177 //                           StoreInst Implementation
1178 //===----------------------------------------------------------------------===//
1179 
1180 void StoreInst::AssertOK() {
1181   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1182   assert(getOperand(1)->getType()->isPointerTy() &&
1183          "Ptr must have pointer type!");
1184   assert(getOperand(0)->getType() ==
1185                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1186          && "Ptr must be a pointer to Val type!");
1187   assert(!(isAtomic() && getAlignment() == 0) &&
1188          "Alignment required for atomic store");
1189 }
1190 
1191 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1192     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1193 
1194 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1195     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1196 
1197 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1198                      Instruction *InsertBefore)
1199     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1200 
1201 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1202                      BasicBlock *InsertAtEnd)
1203     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1204 
1205 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1206                      Instruction *InsertBefore)
1207     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1208                 SyncScope::System, InsertBefore) {}
1209 
1210 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1211                      BasicBlock *InsertAtEnd)
1212     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1213                 SyncScope::System, InsertAtEnd) {}
1214 
1215 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1216                      unsigned Align, AtomicOrdering Order,
1217                      SyncScope::ID SSID,
1218                      Instruction *InsertBefore)
1219   : Instruction(Type::getVoidTy(val->getContext()), Store,
1220                 OperandTraits<StoreInst>::op_begin(this),
1221                 OperandTraits<StoreInst>::operands(this),
1222                 InsertBefore) {
1223   Op<0>() = val;
1224   Op<1>() = addr;
1225   setVolatile(isVolatile);
1226   setAlignment(Align);
1227   setAtomic(Order, SSID);
1228   AssertOK();
1229 }
1230 
1231 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1232                      unsigned Align, AtomicOrdering Order,
1233                      SyncScope::ID SSID,
1234                      BasicBlock *InsertAtEnd)
1235   : Instruction(Type::getVoidTy(val->getContext()), Store,
1236                 OperandTraits<StoreInst>::op_begin(this),
1237                 OperandTraits<StoreInst>::operands(this),
1238                 InsertAtEnd) {
1239   Op<0>() = val;
1240   Op<1>() = addr;
1241   setVolatile(isVolatile);
1242   setAlignment(Align);
1243   setAtomic(Order, SSID);
1244   AssertOK();
1245 }
1246 
1247 void StoreInst::setAlignment(unsigned Align) {
1248   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1249   assert(Align <= MaximumAlignment &&
1250          "Alignment is greater than MaximumAlignment!");
1251   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1252                              ((Log2_32(Align)+1) << 1));
1253   assert(getAlignment() == Align && "Alignment representation error!");
1254 }
1255 
1256 //===----------------------------------------------------------------------===//
1257 //                       AtomicCmpXchgInst Implementation
1258 //===----------------------------------------------------------------------===//
1259 
1260 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1261                              AtomicOrdering SuccessOrdering,
1262                              AtomicOrdering FailureOrdering,
1263                              SyncScope::ID SSID) {
1264   Op<0>() = Ptr;
1265   Op<1>() = Cmp;
1266   Op<2>() = NewVal;
1267   setSuccessOrdering(SuccessOrdering);
1268   setFailureOrdering(FailureOrdering);
1269   setSyncScopeID(SSID);
1270 
1271   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1272          "All operands must be non-null!");
1273   assert(getOperand(0)->getType()->isPointerTy() &&
1274          "Ptr must have pointer type!");
1275   assert(getOperand(1)->getType() ==
1276                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1277          && "Ptr must be a pointer to Cmp type!");
1278   assert(getOperand(2)->getType() ==
1279                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1280          && "Ptr must be a pointer to NewVal type!");
1281   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1282          "AtomicCmpXchg instructions must be atomic!");
1283   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1284          "AtomicCmpXchg instructions must be atomic!");
1285   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1286          "AtomicCmpXchg failure argument shall be no stronger than the success "
1287          "argument");
1288   assert(FailureOrdering != AtomicOrdering::Release &&
1289          FailureOrdering != AtomicOrdering::AcquireRelease &&
1290          "AtomicCmpXchg failure ordering cannot include release semantics");
1291 }
1292 
1293 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1294                                      AtomicOrdering SuccessOrdering,
1295                                      AtomicOrdering FailureOrdering,
1296                                      SyncScope::ID SSID,
1297                                      Instruction *InsertBefore)
1298     : Instruction(
1299           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1300           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1301           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1302   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1303 }
1304 
1305 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1306                                      AtomicOrdering SuccessOrdering,
1307                                      AtomicOrdering FailureOrdering,
1308                                      SyncScope::ID SSID,
1309                                      BasicBlock *InsertAtEnd)
1310     : Instruction(
1311           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1312           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1313           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1314   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1315 }
1316 
1317 //===----------------------------------------------------------------------===//
1318 //                       AtomicRMWInst Implementation
1319 //===----------------------------------------------------------------------===//
1320 
1321 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1322                          AtomicOrdering Ordering,
1323                          SyncScope::ID SSID) {
1324   Op<0>() = Ptr;
1325   Op<1>() = Val;
1326   setOperation(Operation);
1327   setOrdering(Ordering);
1328   setSyncScopeID(SSID);
1329 
1330   assert(getOperand(0) && getOperand(1) &&
1331          "All operands must be non-null!");
1332   assert(getOperand(0)->getType()->isPointerTy() &&
1333          "Ptr must have pointer type!");
1334   assert(getOperand(1)->getType() ==
1335          cast<PointerType>(getOperand(0)->getType())->getElementType()
1336          && "Ptr must be a pointer to Val type!");
1337   assert(Ordering != AtomicOrdering::NotAtomic &&
1338          "AtomicRMW instructions must be atomic!");
1339 }
1340 
1341 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1342                              AtomicOrdering Ordering,
1343                              SyncScope::ID SSID,
1344                              Instruction *InsertBefore)
1345   : Instruction(Val->getType(), AtomicRMW,
1346                 OperandTraits<AtomicRMWInst>::op_begin(this),
1347                 OperandTraits<AtomicRMWInst>::operands(this),
1348                 InsertBefore) {
1349   Init(Operation, Ptr, Val, Ordering, SSID);
1350 }
1351 
1352 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1353                              AtomicOrdering Ordering,
1354                              SyncScope::ID SSID,
1355                              BasicBlock *InsertAtEnd)
1356   : Instruction(Val->getType(), AtomicRMW,
1357                 OperandTraits<AtomicRMWInst>::op_begin(this),
1358                 OperandTraits<AtomicRMWInst>::operands(this),
1359                 InsertAtEnd) {
1360   Init(Operation, Ptr, Val, Ordering, SSID);
1361 }
1362 
1363 //===----------------------------------------------------------------------===//
1364 //                       FenceInst Implementation
1365 //===----------------------------------------------------------------------===//
1366 
1367 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1368                      SyncScope::ID SSID,
1369                      Instruction *InsertBefore)
1370   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1371   setOrdering(Ordering);
1372   setSyncScopeID(SSID);
1373 }
1374 
1375 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1376                      SyncScope::ID SSID,
1377                      BasicBlock *InsertAtEnd)
1378   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1379   setOrdering(Ordering);
1380   setSyncScopeID(SSID);
1381 }
1382 
1383 //===----------------------------------------------------------------------===//
1384 //                       GetElementPtrInst Implementation
1385 //===----------------------------------------------------------------------===//
1386 
1387 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1388                              const Twine &Name) {
1389   assert(getNumOperands() == 1 + IdxList.size() &&
1390          "NumOperands not initialized?");
1391   Op<0>() = Ptr;
1392   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1393   setName(Name);
1394 }
1395 
1396 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1397     : Instruction(GEPI.getType(), GetElementPtr,
1398                   OperandTraits<GetElementPtrInst>::op_end(this) -
1399                       GEPI.getNumOperands(),
1400                   GEPI.getNumOperands()),
1401       SourceElementType(GEPI.SourceElementType),
1402       ResultElementType(GEPI.ResultElementType) {
1403   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1404   SubclassOptionalData = GEPI.SubclassOptionalData;
1405 }
1406 
1407 /// getIndexedType - Returns the type of the element that would be accessed with
1408 /// a gep instruction with the specified parameters.
1409 ///
1410 /// The Idxs pointer should point to a continuous piece of memory containing the
1411 /// indices, either as Value* or uint64_t.
1412 ///
1413 /// A null type is returned if the indices are invalid for the specified
1414 /// pointer type.
1415 ///
1416 template <typename IndexTy>
1417 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1418   // Handle the special case of the empty set index set, which is always valid.
1419   if (IdxList.empty())
1420     return Agg;
1421 
1422   // If there is at least one index, the top level type must be sized, otherwise
1423   // it cannot be 'stepped over'.
1424   if (!Agg->isSized())
1425     return nullptr;
1426 
1427   unsigned CurIdx = 1;
1428   for (; CurIdx != IdxList.size(); ++CurIdx) {
1429     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1430     if (!CT || CT->isPointerTy()) return nullptr;
1431     IndexTy Index = IdxList[CurIdx];
1432     if (!CT->indexValid(Index)) return nullptr;
1433     Agg = CT->getTypeAtIndex(Index);
1434   }
1435   return CurIdx == IdxList.size() ? Agg : nullptr;
1436 }
1437 
1438 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1439   return getIndexedTypeInternal(Ty, IdxList);
1440 }
1441 
1442 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1443                                         ArrayRef<Constant *> IdxList) {
1444   return getIndexedTypeInternal(Ty, IdxList);
1445 }
1446 
1447 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1448   return getIndexedTypeInternal(Ty, IdxList);
1449 }
1450 
1451 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1452 /// zeros.  If so, the result pointer and the first operand have the same
1453 /// value, just potentially different types.
1454 bool GetElementPtrInst::hasAllZeroIndices() const {
1455   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1456     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1457       if (!CI->isZero()) return false;
1458     } else {
1459       return false;
1460     }
1461   }
1462   return true;
1463 }
1464 
1465 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1466 /// constant integers.  If so, the result pointer and the first operand have
1467 /// a constant offset between them.
1468 bool GetElementPtrInst::hasAllConstantIndices() const {
1469   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1470     if (!isa<ConstantInt>(getOperand(i)))
1471       return false;
1472   }
1473   return true;
1474 }
1475 
1476 void GetElementPtrInst::setIsInBounds(bool B) {
1477   cast<GEPOperator>(this)->setIsInBounds(B);
1478 }
1479 
1480 bool GetElementPtrInst::isInBounds() const {
1481   return cast<GEPOperator>(this)->isInBounds();
1482 }
1483 
1484 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1485                                                  APInt &Offset) const {
1486   // Delegate to the generic GEPOperator implementation.
1487   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1488 }
1489 
1490 //===----------------------------------------------------------------------===//
1491 //                           ExtractElementInst Implementation
1492 //===----------------------------------------------------------------------===//
1493 
1494 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1495                                        const Twine &Name,
1496                                        Instruction *InsertBef)
1497   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1498                 ExtractElement,
1499                 OperandTraits<ExtractElementInst>::op_begin(this),
1500                 2, InsertBef) {
1501   assert(isValidOperands(Val, Index) &&
1502          "Invalid extractelement instruction operands!");
1503   Op<0>() = Val;
1504   Op<1>() = Index;
1505   setName(Name);
1506 }
1507 
1508 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1509                                        const Twine &Name,
1510                                        BasicBlock *InsertAE)
1511   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1512                 ExtractElement,
1513                 OperandTraits<ExtractElementInst>::op_begin(this),
1514                 2, InsertAE) {
1515   assert(isValidOperands(Val, Index) &&
1516          "Invalid extractelement instruction operands!");
1517 
1518   Op<0>() = Val;
1519   Op<1>() = Index;
1520   setName(Name);
1521 }
1522 
1523 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1524   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1525     return false;
1526   return true;
1527 }
1528 
1529 //===----------------------------------------------------------------------===//
1530 //                           InsertElementInst Implementation
1531 //===----------------------------------------------------------------------===//
1532 
1533 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1534                                      const Twine &Name,
1535                                      Instruction *InsertBef)
1536   : Instruction(Vec->getType(), InsertElement,
1537                 OperandTraits<InsertElementInst>::op_begin(this),
1538                 3, InsertBef) {
1539   assert(isValidOperands(Vec, Elt, Index) &&
1540          "Invalid insertelement instruction operands!");
1541   Op<0>() = Vec;
1542   Op<1>() = Elt;
1543   Op<2>() = Index;
1544   setName(Name);
1545 }
1546 
1547 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1548                                      const Twine &Name,
1549                                      BasicBlock *InsertAE)
1550   : Instruction(Vec->getType(), InsertElement,
1551                 OperandTraits<InsertElementInst>::op_begin(this),
1552                 3, InsertAE) {
1553   assert(isValidOperands(Vec, Elt, Index) &&
1554          "Invalid insertelement instruction operands!");
1555 
1556   Op<0>() = Vec;
1557   Op<1>() = Elt;
1558   Op<2>() = Index;
1559   setName(Name);
1560 }
1561 
1562 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1563                                         const Value *Index) {
1564   if (!Vec->getType()->isVectorTy())
1565     return false;   // First operand of insertelement must be vector type.
1566 
1567   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1568     return false;// Second operand of insertelement must be vector element type.
1569 
1570   if (!Index->getType()->isIntegerTy())
1571     return false;  // Third operand of insertelement must be i32.
1572   return true;
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                      ShuffleVectorInst Implementation
1577 //===----------------------------------------------------------------------===//
1578 
1579 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1580                                      const Twine &Name,
1581                                      Instruction *InsertBefore)
1582 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1583                 cast<VectorType>(Mask->getType())->getNumElements()),
1584               ShuffleVector,
1585               OperandTraits<ShuffleVectorInst>::op_begin(this),
1586               OperandTraits<ShuffleVectorInst>::operands(this),
1587               InsertBefore) {
1588   assert(isValidOperands(V1, V2, Mask) &&
1589          "Invalid shuffle vector instruction operands!");
1590   Op<0>() = V1;
1591   Op<1>() = V2;
1592   Op<2>() = Mask;
1593   setName(Name);
1594 }
1595 
1596 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1597                                      const Twine &Name,
1598                                      BasicBlock *InsertAtEnd)
1599 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1600                 cast<VectorType>(Mask->getType())->getNumElements()),
1601               ShuffleVector,
1602               OperandTraits<ShuffleVectorInst>::op_begin(this),
1603               OperandTraits<ShuffleVectorInst>::operands(this),
1604               InsertAtEnd) {
1605   assert(isValidOperands(V1, V2, Mask) &&
1606          "Invalid shuffle vector instruction operands!");
1607 
1608   Op<0>() = V1;
1609   Op<1>() = V2;
1610   Op<2>() = Mask;
1611   setName(Name);
1612 }
1613 
1614 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1615                                         const Value *Mask) {
1616   // V1 and V2 must be vectors of the same type.
1617   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1618     return false;
1619 
1620   // Mask must be vector of i32.
1621   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1622   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1623     return false;
1624 
1625   // Check to see if Mask is valid.
1626   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1627     return true;
1628 
1629   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1630     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1631     for (Value *Op : MV->operands()) {
1632       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1633         if (CI->uge(V1Size*2))
1634           return false;
1635       } else if (!isa<UndefValue>(Op)) {
1636         return false;
1637       }
1638     }
1639     return true;
1640   }
1641 
1642   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1643     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1644     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1645       if (CDS->getElementAsInteger(i) >= V1Size*2)
1646         return false;
1647     return true;
1648   }
1649 
1650   // The bitcode reader can create a place holder for a forward reference
1651   // used as the shuffle mask. When this occurs, the shuffle mask will
1652   // fall into this case and fail. To avoid this error, do this bit of
1653   // ugliness to allow such a mask pass.
1654   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1655     if (CE->getOpcode() == Instruction::UserOp1)
1656       return true;
1657 
1658   return false;
1659 }
1660 
1661 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1662   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1663   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1664     return CDS->getElementAsInteger(i);
1665   Constant *C = Mask->getAggregateElement(i);
1666   if (isa<UndefValue>(C))
1667     return -1;
1668   return cast<ConstantInt>(C)->getZExtValue();
1669 }
1670 
1671 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1672                                        SmallVectorImpl<int> &Result) {
1673   unsigned NumElts = Mask->getType()->getVectorNumElements();
1674 
1675   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1676     for (unsigned i = 0; i != NumElts; ++i)
1677       Result.push_back(CDS->getElementAsInteger(i));
1678     return;
1679   }
1680   for (unsigned i = 0; i != NumElts; ++i) {
1681     Constant *C = Mask->getAggregateElement(i);
1682     Result.push_back(isa<UndefValue>(C) ? -1 :
1683                      cast<ConstantInt>(C)->getZExtValue());
1684   }
1685 }
1686 
1687 //===----------------------------------------------------------------------===//
1688 //                             InsertValueInst Class
1689 //===----------------------------------------------------------------------===//
1690 
1691 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1692                            const Twine &Name) {
1693   assert(getNumOperands() == 2 && "NumOperands not initialized?");
1694 
1695   // There's no fundamental reason why we require at least one index
1696   // (other than weirdness with &*IdxBegin being invalid; see
1697   // getelementptr's init routine for example). But there's no
1698   // present need to support it.
1699   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
1700 
1701   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1702          Val->getType() && "Inserted value must match indexed type!");
1703   Op<0>() = Agg;
1704   Op<1>() = Val;
1705 
1706   Indices.append(Idxs.begin(), Idxs.end());
1707   setName(Name);
1708 }
1709 
1710 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1711   : Instruction(IVI.getType(), InsertValue,
1712                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1713     Indices(IVI.Indices) {
1714   Op<0>() = IVI.getOperand(0);
1715   Op<1>() = IVI.getOperand(1);
1716   SubclassOptionalData = IVI.SubclassOptionalData;
1717 }
1718 
1719 //===----------------------------------------------------------------------===//
1720 //                             ExtractValueInst Class
1721 //===----------------------------------------------------------------------===//
1722 
1723 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1724   assert(getNumOperands() == 1 && "NumOperands not initialized?");
1725 
1726   // There's no fundamental reason why we require at least one index.
1727   // But there's no present need to support it.
1728   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
1729 
1730   Indices.append(Idxs.begin(), Idxs.end());
1731   setName(Name);
1732 }
1733 
1734 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1735   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1736     Indices(EVI.Indices) {
1737   SubclassOptionalData = EVI.SubclassOptionalData;
1738 }
1739 
1740 // getIndexedType - Returns the type of the element that would be extracted
1741 // with an extractvalue instruction with the specified parameters.
1742 //
1743 // A null type is returned if the indices are invalid for the specified
1744 // pointer type.
1745 //
1746 Type *ExtractValueInst::getIndexedType(Type *Agg,
1747                                        ArrayRef<unsigned> Idxs) {
1748   for (unsigned Index : Idxs) {
1749     // We can't use CompositeType::indexValid(Index) here.
1750     // indexValid() always returns true for arrays because getelementptr allows
1751     // out-of-bounds indices. Since we don't allow those for extractvalue and
1752     // insertvalue we need to check array indexing manually.
1753     // Since the only other types we can index into are struct types it's just
1754     // as easy to check those manually as well.
1755     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1756       if (Index >= AT->getNumElements())
1757         return nullptr;
1758     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1759       if (Index >= ST->getNumElements())
1760         return nullptr;
1761     } else {
1762       // Not a valid type to index into.
1763       return nullptr;
1764     }
1765 
1766     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1767   }
1768   return const_cast<Type*>(Agg);
1769 }
1770 
1771 //===----------------------------------------------------------------------===//
1772 //                             BinaryOperator Class
1773 //===----------------------------------------------------------------------===//
1774 
1775 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1776                                Type *Ty, const Twine &Name,
1777                                Instruction *InsertBefore)
1778   : Instruction(Ty, iType,
1779                 OperandTraits<BinaryOperator>::op_begin(this),
1780                 OperandTraits<BinaryOperator>::operands(this),
1781                 InsertBefore) {
1782   Op<0>() = S1;
1783   Op<1>() = S2;
1784   setName(Name);
1785   AssertOK();
1786 }
1787 
1788 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1789                                Type *Ty, const Twine &Name,
1790                                BasicBlock *InsertAtEnd)
1791   : Instruction(Ty, iType,
1792                 OperandTraits<BinaryOperator>::op_begin(this),
1793                 OperandTraits<BinaryOperator>::operands(this),
1794                 InsertAtEnd) {
1795   Op<0>() = S1;
1796   Op<1>() = S2;
1797   setName(Name);
1798   AssertOK();
1799 }
1800 
1801 void BinaryOperator::AssertOK() {
1802   Value *LHS = getOperand(0), *RHS = getOperand(1);
1803   (void)LHS; (void)RHS; // Silence warnings.
1804   assert(LHS->getType() == RHS->getType() &&
1805          "Binary operator operand types must match!");
1806 #ifndef NDEBUG
1807   switch (getOpcode()) {
1808   case Add: case Sub:
1809   case Mul:
1810     assert(getType() == LHS->getType() &&
1811            "Arithmetic operation should return same type as operands!");
1812     assert(getType()->isIntOrIntVectorTy() &&
1813            "Tried to create an integer operation on a non-integer type!");
1814     break;
1815   case FAdd: case FSub:
1816   case FMul:
1817     assert(getType() == LHS->getType() &&
1818            "Arithmetic operation should return same type as operands!");
1819     assert(getType()->isFPOrFPVectorTy() &&
1820            "Tried to create a floating-point operation on a "
1821            "non-floating-point type!");
1822     break;
1823   case UDiv:
1824   case SDiv:
1825     assert(getType() == LHS->getType() &&
1826            "Arithmetic operation should return same type as operands!");
1827     assert(getType()->isIntOrIntVectorTy() &&
1828            "Incorrect operand type (not integer) for S/UDIV");
1829     break;
1830   case FDiv:
1831     assert(getType() == LHS->getType() &&
1832            "Arithmetic operation should return same type as operands!");
1833     assert(getType()->isFPOrFPVectorTy() &&
1834            "Incorrect operand type (not floating point) for FDIV");
1835     break;
1836   case URem:
1837   case SRem:
1838     assert(getType() == LHS->getType() &&
1839            "Arithmetic operation should return same type as operands!");
1840     assert(getType()->isIntOrIntVectorTy() &&
1841            "Incorrect operand type (not integer) for S/UREM");
1842     break;
1843   case FRem:
1844     assert(getType() == LHS->getType() &&
1845            "Arithmetic operation should return same type as operands!");
1846     assert(getType()->isFPOrFPVectorTy() &&
1847            "Incorrect operand type (not floating point) for FREM");
1848     break;
1849   case Shl:
1850   case LShr:
1851   case AShr:
1852     assert(getType() == LHS->getType() &&
1853            "Shift operation should return same type as operands!");
1854     assert(getType()->isIntOrIntVectorTy() &&
1855            "Tried to create a shift operation on a non-integral type!");
1856     break;
1857   case And: case Or:
1858   case Xor:
1859     assert(getType() == LHS->getType() &&
1860            "Logical operation should return same type as operands!");
1861     assert(getType()->isIntOrIntVectorTy() &&
1862            "Tried to create a logical operation on a non-integral type!");
1863     break;
1864   default: llvm_unreachable("Invalid opcode provided");
1865   }
1866 #endif
1867 }
1868 
1869 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1870                                        const Twine &Name,
1871                                        Instruction *InsertBefore) {
1872   assert(S1->getType() == S2->getType() &&
1873          "Cannot create binary operator with two operands of differing type!");
1874   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1875 }
1876 
1877 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1878                                        const Twine &Name,
1879                                        BasicBlock *InsertAtEnd) {
1880   BinaryOperator *Res = Create(Op, S1, S2, Name);
1881   InsertAtEnd->getInstList().push_back(Res);
1882   return Res;
1883 }
1884 
1885 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1886                                           Instruction *InsertBefore) {
1887   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1888   return new BinaryOperator(Instruction::Sub,
1889                             zero, Op,
1890                             Op->getType(), Name, InsertBefore);
1891 }
1892 
1893 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1894                                           BasicBlock *InsertAtEnd) {
1895   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1896   return new BinaryOperator(Instruction::Sub,
1897                             zero, Op,
1898                             Op->getType(), Name, InsertAtEnd);
1899 }
1900 
1901 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1902                                              Instruction *InsertBefore) {
1903   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1904   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1905 }
1906 
1907 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1908                                              BasicBlock *InsertAtEnd) {
1909   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1910   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1911 }
1912 
1913 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1914                                              Instruction *InsertBefore) {
1915   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1916   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1917 }
1918 
1919 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1920                                              BasicBlock *InsertAtEnd) {
1921   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1922   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1923 }
1924 
1925 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1926                                            Instruction *InsertBefore) {
1927   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1928   return new BinaryOperator(Instruction::FSub, zero, Op,
1929                             Op->getType(), Name, InsertBefore);
1930 }
1931 
1932 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1933                                            BasicBlock *InsertAtEnd) {
1934   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1935   return new BinaryOperator(Instruction::FSub, zero, Op,
1936                             Op->getType(), Name, InsertAtEnd);
1937 }
1938 
1939 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1940                                           Instruction *InsertBefore) {
1941   Constant *C = Constant::getAllOnesValue(Op->getType());
1942   return new BinaryOperator(Instruction::Xor, Op, C,
1943                             Op->getType(), Name, InsertBefore);
1944 }
1945 
1946 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1947                                           BasicBlock *InsertAtEnd) {
1948   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1949   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1950                             Op->getType(), Name, InsertAtEnd);
1951 }
1952 
1953 // isConstantAllOnes - Helper function for several functions below
1954 static inline bool isConstantAllOnes(const Value *V) {
1955   if (const Constant *C = dyn_cast<Constant>(V))
1956     return C->isAllOnesValue();
1957   return false;
1958 }
1959 
1960 bool BinaryOperator::isNeg(const Value *V) {
1961   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1962     if (Bop->getOpcode() == Instruction::Sub)
1963       if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0)))
1964         return C->isNegativeZeroValue();
1965   return false;
1966 }
1967 
1968 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1969   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1970     if (Bop->getOpcode() == Instruction::FSub)
1971       if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) {
1972         if (!IgnoreZeroSign)
1973           IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1974         return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1975       }
1976   return false;
1977 }
1978 
1979 bool BinaryOperator::isNot(const Value *V) {
1980   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1981     return (Bop->getOpcode() == Instruction::Xor &&
1982             (isConstantAllOnes(Bop->getOperand(1)) ||
1983              isConstantAllOnes(Bop->getOperand(0))));
1984   return false;
1985 }
1986 
1987 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1988   return cast<BinaryOperator>(BinOp)->getOperand(1);
1989 }
1990 
1991 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1992   return getNegArgument(const_cast<Value*>(BinOp));
1993 }
1994 
1995 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1996   return cast<BinaryOperator>(BinOp)->getOperand(1);
1997 }
1998 
1999 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
2000   return getFNegArgument(const_cast<Value*>(BinOp));
2001 }
2002 
2003 Value *BinaryOperator::getNotArgument(Value *BinOp) {
2004   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2005   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2006   Value *Op0 = BO->getOperand(0);
2007   Value *Op1 = BO->getOperand(1);
2008   if (isConstantAllOnes(Op0)) return Op1;
2009 
2010   assert(isConstantAllOnes(Op1));
2011   return Op0;
2012 }
2013 
2014 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
2015   return getNotArgument(const_cast<Value*>(BinOp));
2016 }
2017 
2018 // Exchange the two operands to this instruction. This instruction is safe to
2019 // use on any binary instruction and does not modify the semantics of the
2020 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2021 // is changed.
2022 bool BinaryOperator::swapOperands() {
2023   if (!isCommutative())
2024     return true; // Can't commute operands
2025   Op<0>().swap(Op<1>());
2026   return false;
2027 }
2028 
2029 //===----------------------------------------------------------------------===//
2030 //                             FPMathOperator Class
2031 //===----------------------------------------------------------------------===//
2032 
2033 float FPMathOperator::getFPAccuracy() const {
2034   const MDNode *MD =
2035       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2036   if (!MD)
2037     return 0.0;
2038   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2039   return Accuracy->getValueAPF().convertToFloat();
2040 }
2041 
2042 //===----------------------------------------------------------------------===//
2043 //                                CastInst Class
2044 //===----------------------------------------------------------------------===//
2045 
2046 // Just determine if this cast only deals with integral->integral conversion.
2047 bool CastInst::isIntegerCast() const {
2048   switch (getOpcode()) {
2049     default: return false;
2050     case Instruction::ZExt:
2051     case Instruction::SExt:
2052     case Instruction::Trunc:
2053       return true;
2054     case Instruction::BitCast:
2055       return getOperand(0)->getType()->isIntegerTy() &&
2056         getType()->isIntegerTy();
2057   }
2058 }
2059 
2060 bool CastInst::isLosslessCast() const {
2061   // Only BitCast can be lossless, exit fast if we're not BitCast
2062   if (getOpcode() != Instruction::BitCast)
2063     return false;
2064 
2065   // Identity cast is always lossless
2066   Type *SrcTy = getOperand(0)->getType();
2067   Type *DstTy = getType();
2068   if (SrcTy == DstTy)
2069     return true;
2070 
2071   // Pointer to pointer is always lossless.
2072   if (SrcTy->isPointerTy())
2073     return DstTy->isPointerTy();
2074   return false;  // Other types have no identity values
2075 }
2076 
2077 /// This function determines if the CastInst does not require any bits to be
2078 /// changed in order to effect the cast. Essentially, it identifies cases where
2079 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2080 /// example, the following are all no-op casts:
2081 /// # bitcast i32* %x to i8*
2082 /// # bitcast <2 x i32> %x to <4 x i16>
2083 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2084 /// Determine if the described cast is a no-op.
2085 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2086                           Type *SrcTy,
2087                           Type *DestTy,
2088                           const DataLayout &DL) {
2089   switch (Opcode) {
2090     default: llvm_unreachable("Invalid CastOp");
2091     case Instruction::Trunc:
2092     case Instruction::ZExt:
2093     case Instruction::SExt:
2094     case Instruction::FPTrunc:
2095     case Instruction::FPExt:
2096     case Instruction::UIToFP:
2097     case Instruction::SIToFP:
2098     case Instruction::FPToUI:
2099     case Instruction::FPToSI:
2100     case Instruction::AddrSpaceCast:
2101       // TODO: Target informations may give a more accurate answer here.
2102       return false;
2103     case Instruction::BitCast:
2104       return true;  // BitCast never modifies bits.
2105     case Instruction::PtrToInt:
2106       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2107              DestTy->getScalarSizeInBits();
2108     case Instruction::IntToPtr:
2109       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2110              SrcTy->getScalarSizeInBits();
2111   }
2112 }
2113 
2114 bool CastInst::isNoopCast(const DataLayout &DL) const {
2115   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2116 }
2117 
2118 /// This function determines if a pair of casts can be eliminated and what
2119 /// opcode should be used in the elimination. This assumes that there are two
2120 /// instructions like this:
2121 /// *  %F = firstOpcode SrcTy %x to MidTy
2122 /// *  %S = secondOpcode MidTy %F to DstTy
2123 /// The function returns a resultOpcode so these two casts can be replaced with:
2124 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2125 /// If no such cast is permitted, the function returns 0.
2126 unsigned CastInst::isEliminableCastPair(
2127   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2128   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2129   Type *DstIntPtrTy) {
2130   // Define the 144 possibilities for these two cast instructions. The values
2131   // in this matrix determine what to do in a given situation and select the
2132   // case in the switch below.  The rows correspond to firstOp, the columns
2133   // correspond to secondOp.  In looking at the table below, keep in mind
2134   // the following cast properties:
2135   //
2136   //          Size Compare       Source               Destination
2137   // Operator  Src ? Size   Type       Sign         Type       Sign
2138   // -------- ------------ -------------------   ---------------------
2139   // TRUNC         >       Integer      Any        Integral     Any
2140   // ZEXT          <       Integral   Unsigned     Integer      Any
2141   // SEXT          <       Integral    Signed      Integer      Any
2142   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2143   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2144   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2145   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2146   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2147   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2148   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2149   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2150   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2151   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2152   //
2153   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2154   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2155   // into "fptoui double to i64", but this loses information about the range
2156   // of the produced value (we no longer know the top-part is all zeros).
2157   // Further this conversion is often much more expensive for typical hardware,
2158   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2159   // same reason.
2160   const unsigned numCastOps =
2161     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2162   static const uint8_t CastResults[numCastOps][numCastOps] = {
2163     // T        F  F  U  S  F  F  P  I  B  A  -+
2164     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2165     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2166     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2167     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2168     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2169     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2170     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2171     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2172     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2173     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2174     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2175     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2176     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2177     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2178     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2179     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2180     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2181   };
2182 
2183   // TODO: This logic could be encoded into the table above and handled in the
2184   // switch below.
2185   // If either of the casts are a bitcast from scalar to vector, disallow the
2186   // merging. However, any pair of bitcasts are allowed.
2187   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2188   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2189   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2190 
2191   // Check if any of the casts convert scalars <-> vectors.
2192   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2193       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2194     if (!AreBothBitcasts)
2195       return 0;
2196 
2197   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2198                             [secondOp-Instruction::CastOpsBegin];
2199   switch (ElimCase) {
2200     case 0:
2201       // Categorically disallowed.
2202       return 0;
2203     case 1:
2204       // Allowed, use first cast's opcode.
2205       return firstOp;
2206     case 2:
2207       // Allowed, use second cast's opcode.
2208       return secondOp;
2209     case 3:
2210       // No-op cast in second op implies firstOp as long as the DestTy
2211       // is integer and we are not converting between a vector and a
2212       // non-vector type.
2213       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2214         return firstOp;
2215       return 0;
2216     case 4:
2217       // No-op cast in second op implies firstOp as long as the DestTy
2218       // is floating point.
2219       if (DstTy->isFloatingPointTy())
2220         return firstOp;
2221       return 0;
2222     case 5:
2223       // No-op cast in first op implies secondOp as long as the SrcTy
2224       // is an integer.
2225       if (SrcTy->isIntegerTy())
2226         return secondOp;
2227       return 0;
2228     case 6:
2229       // No-op cast in first op implies secondOp as long as the SrcTy
2230       // is a floating point.
2231       if (SrcTy->isFloatingPointTy())
2232         return secondOp;
2233       return 0;
2234     case 7: {
2235       // Cannot simplify if address spaces are different!
2236       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2237         return 0;
2238 
2239       unsigned MidSize = MidTy->getScalarSizeInBits();
2240       // We can still fold this without knowing the actual sizes as long we
2241       // know that the intermediate pointer is the largest possible
2242       // pointer size.
2243       // FIXME: Is this always true?
2244       if (MidSize == 64)
2245         return Instruction::BitCast;
2246 
2247       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2248       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2249         return 0;
2250       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2251       if (MidSize >= PtrSize)
2252         return Instruction::BitCast;
2253       return 0;
2254     }
2255     case 8: {
2256       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2257       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2258       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2259       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2260       unsigned DstSize = DstTy->getScalarSizeInBits();
2261       if (SrcSize == DstSize)
2262         return Instruction::BitCast;
2263       else if (SrcSize < DstSize)
2264         return firstOp;
2265       return secondOp;
2266     }
2267     case 9:
2268       // zext, sext -> zext, because sext can't sign extend after zext
2269       return Instruction::ZExt;
2270     case 11: {
2271       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2272       if (!MidIntPtrTy)
2273         return 0;
2274       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2275       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2276       unsigned DstSize = DstTy->getScalarSizeInBits();
2277       if (SrcSize <= PtrSize && SrcSize == DstSize)
2278         return Instruction::BitCast;
2279       return 0;
2280     }
2281     case 12:
2282       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2283       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2284       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2285         return Instruction::AddrSpaceCast;
2286       return Instruction::BitCast;
2287     case 13:
2288       // FIXME: this state can be merged with (1), but the following assert
2289       // is useful to check the correcteness of the sequence due to semantic
2290       // change of bitcast.
2291       assert(
2292         SrcTy->isPtrOrPtrVectorTy() &&
2293         MidTy->isPtrOrPtrVectorTy() &&
2294         DstTy->isPtrOrPtrVectorTy() &&
2295         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2296         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2297         "Illegal addrspacecast, bitcast sequence!");
2298       // Allowed, use first cast's opcode
2299       return firstOp;
2300     case 14:
2301       // bitcast, addrspacecast -> addrspacecast if the element type of
2302       // bitcast's source is the same as that of addrspacecast's destination.
2303       if (SrcTy->getScalarType()->getPointerElementType() ==
2304           DstTy->getScalarType()->getPointerElementType())
2305         return Instruction::AddrSpaceCast;
2306       return 0;
2307     case 15:
2308       // FIXME: this state can be merged with (1), but the following assert
2309       // is useful to check the correcteness of the sequence due to semantic
2310       // change of bitcast.
2311       assert(
2312         SrcTy->isIntOrIntVectorTy() &&
2313         MidTy->isPtrOrPtrVectorTy() &&
2314         DstTy->isPtrOrPtrVectorTy() &&
2315         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2316         "Illegal inttoptr, bitcast sequence!");
2317       // Allowed, use first cast's opcode
2318       return firstOp;
2319     case 16:
2320       // FIXME: this state can be merged with (2), but the following assert
2321       // is useful to check the correcteness of the sequence due to semantic
2322       // change of bitcast.
2323       assert(
2324         SrcTy->isPtrOrPtrVectorTy() &&
2325         MidTy->isPtrOrPtrVectorTy() &&
2326         DstTy->isIntOrIntVectorTy() &&
2327         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2328         "Illegal bitcast, ptrtoint sequence!");
2329       // Allowed, use second cast's opcode
2330       return secondOp;
2331     case 17:
2332       // (sitofp (zext x)) -> (uitofp x)
2333       return Instruction::UIToFP;
2334     case 99:
2335       // Cast combination can't happen (error in input). This is for all cases
2336       // where the MidTy is not the same for the two cast instructions.
2337       llvm_unreachable("Invalid Cast Combination");
2338     default:
2339       llvm_unreachable("Error in CastResults table!!!");
2340   }
2341 }
2342 
2343 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2344   const Twine &Name, Instruction *InsertBefore) {
2345   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2346   // Construct and return the appropriate CastInst subclass
2347   switch (op) {
2348   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2349   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2350   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2351   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2352   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2353   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2354   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2355   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2356   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2357   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2358   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2359   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2360   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2361   default: llvm_unreachable("Invalid opcode provided");
2362   }
2363 }
2364 
2365 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2366   const Twine &Name, BasicBlock *InsertAtEnd) {
2367   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2368   // Construct and return the appropriate CastInst subclass
2369   switch (op) {
2370   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2371   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2372   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2373   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2374   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2375   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2376   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2377   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2378   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2379   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2380   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2381   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2382   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2383   default: llvm_unreachable("Invalid opcode provided");
2384   }
2385 }
2386 
2387 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2388                                         const Twine &Name,
2389                                         Instruction *InsertBefore) {
2390   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2391     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2392   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2393 }
2394 
2395 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2396                                         const Twine &Name,
2397                                         BasicBlock *InsertAtEnd) {
2398   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2399     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2400   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2401 }
2402 
2403 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2404                                         const Twine &Name,
2405                                         Instruction *InsertBefore) {
2406   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2407     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2408   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2409 }
2410 
2411 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2412                                         const Twine &Name,
2413                                         BasicBlock *InsertAtEnd) {
2414   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2415     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2416   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2417 }
2418 
2419 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2420                                          const Twine &Name,
2421                                          Instruction *InsertBefore) {
2422   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2423     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2424   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2425 }
2426 
2427 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2428                                          const Twine &Name,
2429                                          BasicBlock *InsertAtEnd) {
2430   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2431     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2432   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2433 }
2434 
2435 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2436                                       const Twine &Name,
2437                                       BasicBlock *InsertAtEnd) {
2438   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2439   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2440          "Invalid cast");
2441   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2442   assert((!Ty->isVectorTy() ||
2443           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2444          "Invalid cast");
2445 
2446   if (Ty->isIntOrIntVectorTy())
2447     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2448 
2449   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2450 }
2451 
2452 /// Create a BitCast or a PtrToInt cast instruction
2453 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2454                                       const Twine &Name,
2455                                       Instruction *InsertBefore) {
2456   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2457   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2458          "Invalid cast");
2459   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2460   assert((!Ty->isVectorTy() ||
2461           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2462          "Invalid cast");
2463 
2464   if (Ty->isIntOrIntVectorTy())
2465     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2466 
2467   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2468 }
2469 
2470 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2471   Value *S, Type *Ty,
2472   const Twine &Name,
2473   BasicBlock *InsertAtEnd) {
2474   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2475   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2476 
2477   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2478     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2479 
2480   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2481 }
2482 
2483 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2484   Value *S, Type *Ty,
2485   const Twine &Name,
2486   Instruction *InsertBefore) {
2487   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2488   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2489 
2490   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2491     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2492 
2493   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2494 }
2495 
2496 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2497                                            const Twine &Name,
2498                                            Instruction *InsertBefore) {
2499   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2500     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2501   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2502     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2503 
2504   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2505 }
2506 
2507 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2508                                       bool isSigned, const Twine &Name,
2509                                       Instruction *InsertBefore) {
2510   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2511          "Invalid integer cast");
2512   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2513   unsigned DstBits = Ty->getScalarSizeInBits();
2514   Instruction::CastOps opcode =
2515     (SrcBits == DstBits ? Instruction::BitCast :
2516      (SrcBits > DstBits ? Instruction::Trunc :
2517       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2518   return Create(opcode, C, Ty, Name, InsertBefore);
2519 }
2520 
2521 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2522                                       bool isSigned, const Twine &Name,
2523                                       BasicBlock *InsertAtEnd) {
2524   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2525          "Invalid cast");
2526   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2527   unsigned DstBits = Ty->getScalarSizeInBits();
2528   Instruction::CastOps opcode =
2529     (SrcBits == DstBits ? Instruction::BitCast :
2530      (SrcBits > DstBits ? Instruction::Trunc :
2531       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2532   return Create(opcode, C, Ty, Name, InsertAtEnd);
2533 }
2534 
2535 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2536                                  const Twine &Name,
2537                                  Instruction *InsertBefore) {
2538   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2539          "Invalid cast");
2540   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2541   unsigned DstBits = Ty->getScalarSizeInBits();
2542   Instruction::CastOps opcode =
2543     (SrcBits == DstBits ? Instruction::BitCast :
2544      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2545   return Create(opcode, C, Ty, Name, InsertBefore);
2546 }
2547 
2548 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2549                                  const Twine &Name,
2550                                  BasicBlock *InsertAtEnd) {
2551   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2552          "Invalid cast");
2553   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2554   unsigned DstBits = Ty->getScalarSizeInBits();
2555   Instruction::CastOps opcode =
2556     (SrcBits == DstBits ? Instruction::BitCast :
2557      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2558   return Create(opcode, C, Ty, Name, InsertAtEnd);
2559 }
2560 
2561 // Check whether it is valid to call getCastOpcode for these types.
2562 // This routine must be kept in sync with getCastOpcode.
2563 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2564   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2565     return false;
2566 
2567   if (SrcTy == DestTy)
2568     return true;
2569 
2570   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2571     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2572       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2573         // An element by element cast.  Valid if casting the elements is valid.
2574         SrcTy = SrcVecTy->getElementType();
2575         DestTy = DestVecTy->getElementType();
2576       }
2577 
2578   // Get the bit sizes, we'll need these
2579   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2580   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2581 
2582   // Run through the possibilities ...
2583   if (DestTy->isIntegerTy()) {               // Casting to integral
2584     if (SrcTy->isIntegerTy())                // Casting from integral
2585         return true;
2586     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2587       return true;
2588     if (SrcTy->isVectorTy())          // Casting from vector
2589       return DestBits == SrcBits;
2590                                       // Casting from something else
2591     return SrcTy->isPointerTy();
2592   }
2593   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2594     if (SrcTy->isIntegerTy())                // Casting from integral
2595       return true;
2596     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2597       return true;
2598     if (SrcTy->isVectorTy())          // Casting from vector
2599       return DestBits == SrcBits;
2600                                     // Casting from something else
2601     return false;
2602   }
2603   if (DestTy->isVectorTy())         // Casting to vector
2604     return DestBits == SrcBits;
2605   if (DestTy->isPointerTy()) {        // Casting to pointer
2606     if (SrcTy->isPointerTy())                // Casting from pointer
2607       return true;
2608     return SrcTy->isIntegerTy();             // Casting from integral
2609   }
2610   if (DestTy->isX86_MMXTy()) {
2611     if (SrcTy->isVectorTy())
2612       return DestBits == SrcBits;       // 64-bit vector to MMX
2613     return false;
2614   }                                    // Casting to something else
2615   return false;
2616 }
2617 
2618 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2619   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2620     return false;
2621 
2622   if (SrcTy == DestTy)
2623     return true;
2624 
2625   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2626     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2627       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2628         // An element by element cast. Valid if casting the elements is valid.
2629         SrcTy = SrcVecTy->getElementType();
2630         DestTy = DestVecTy->getElementType();
2631       }
2632     }
2633   }
2634 
2635   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2636     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2637       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2638     }
2639   }
2640 
2641   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2642   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2643 
2644   // Could still have vectors of pointers if the number of elements doesn't
2645   // match
2646   if (SrcBits == 0 || DestBits == 0)
2647     return false;
2648 
2649   if (SrcBits != DestBits)
2650     return false;
2651 
2652   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2653     return false;
2654 
2655   return true;
2656 }
2657 
2658 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2659                                           const DataLayout &DL) {
2660   // ptrtoint and inttoptr are not allowed on non-integral pointers
2661   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2662     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2663       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2664               !DL.isNonIntegralPointerType(PtrTy));
2665   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2666     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2667       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2668               !DL.isNonIntegralPointerType(PtrTy));
2669 
2670   return isBitCastable(SrcTy, DestTy);
2671 }
2672 
2673 // Provide a way to get a "cast" where the cast opcode is inferred from the
2674 // types and size of the operand. This, basically, is a parallel of the
2675 // logic in the castIsValid function below.  This axiom should hold:
2676 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2677 // should not assert in castIsValid. In other words, this produces a "correct"
2678 // casting opcode for the arguments passed to it.
2679 // This routine must be kept in sync with isCastable.
2680 Instruction::CastOps
2681 CastInst::getCastOpcode(
2682   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2683   Type *SrcTy = Src->getType();
2684 
2685   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2686          "Only first class types are castable!");
2687 
2688   if (SrcTy == DestTy)
2689     return BitCast;
2690 
2691   // FIXME: Check address space sizes here
2692   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2693     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2694       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2695         // An element by element cast.  Find the appropriate opcode based on the
2696         // element types.
2697         SrcTy = SrcVecTy->getElementType();
2698         DestTy = DestVecTy->getElementType();
2699       }
2700 
2701   // Get the bit sizes, we'll need these
2702   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2703   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2704 
2705   // Run through the possibilities ...
2706   if (DestTy->isIntegerTy()) {                      // Casting to integral
2707     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2708       if (DestBits < SrcBits)
2709         return Trunc;                               // int -> smaller int
2710       else if (DestBits > SrcBits) {                // its an extension
2711         if (SrcIsSigned)
2712           return SExt;                              // signed -> SEXT
2713         else
2714           return ZExt;                              // unsigned -> ZEXT
2715       } else {
2716         return BitCast;                             // Same size, No-op cast
2717       }
2718     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2719       if (DestIsSigned)
2720         return FPToSI;                              // FP -> sint
2721       else
2722         return FPToUI;                              // FP -> uint
2723     } else if (SrcTy->isVectorTy()) {
2724       assert(DestBits == SrcBits &&
2725              "Casting vector to integer of different width");
2726       return BitCast;                             // Same size, no-op cast
2727     } else {
2728       assert(SrcTy->isPointerTy() &&
2729              "Casting from a value that is not first-class type");
2730       return PtrToInt;                              // ptr -> int
2731     }
2732   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2733     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2734       if (SrcIsSigned)
2735         return SIToFP;                              // sint -> FP
2736       else
2737         return UIToFP;                              // uint -> FP
2738     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2739       if (DestBits < SrcBits) {
2740         return FPTrunc;                             // FP -> smaller FP
2741       } else if (DestBits > SrcBits) {
2742         return FPExt;                               // FP -> larger FP
2743       } else  {
2744         return BitCast;                             // same size, no-op cast
2745       }
2746     } else if (SrcTy->isVectorTy()) {
2747       assert(DestBits == SrcBits &&
2748              "Casting vector to floating point of different width");
2749       return BitCast;                             // same size, no-op cast
2750     }
2751     llvm_unreachable("Casting pointer or non-first class to float");
2752   } else if (DestTy->isVectorTy()) {
2753     assert(DestBits == SrcBits &&
2754            "Illegal cast to vector (wrong type or size)");
2755     return BitCast;
2756   } else if (DestTy->isPointerTy()) {
2757     if (SrcTy->isPointerTy()) {
2758       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2759         return AddrSpaceCast;
2760       return BitCast;                               // ptr -> ptr
2761     } else if (SrcTy->isIntegerTy()) {
2762       return IntToPtr;                              // int -> ptr
2763     }
2764     llvm_unreachable("Casting pointer to other than pointer or int");
2765   } else if (DestTy->isX86_MMXTy()) {
2766     if (SrcTy->isVectorTy()) {
2767       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2768       return BitCast;                               // 64-bit vector to MMX
2769     }
2770     llvm_unreachable("Illegal cast to X86_MMX");
2771   }
2772   llvm_unreachable("Casting to type that is not first-class");
2773 }
2774 
2775 //===----------------------------------------------------------------------===//
2776 //                    CastInst SubClass Constructors
2777 //===----------------------------------------------------------------------===//
2778 
2779 /// Check that the construction parameters for a CastInst are correct. This
2780 /// could be broken out into the separate constructors but it is useful to have
2781 /// it in one place and to eliminate the redundant code for getting the sizes
2782 /// of the types involved.
2783 bool
2784 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2785   // Check for type sanity on the arguments
2786   Type *SrcTy = S->getType();
2787 
2788   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2789       SrcTy->isAggregateType() || DstTy->isAggregateType())
2790     return false;
2791 
2792   // Get the size of the types in bits, we'll need this later
2793   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2794   unsigned DstBitSize = DstTy->getScalarSizeInBits();
2795 
2796   // If these are vector types, get the lengths of the vectors (using zero for
2797   // scalar types means that checking that vector lengths match also checks that
2798   // scalars are not being converted to vectors or vectors to scalars).
2799   unsigned SrcLength = SrcTy->isVectorTy() ?
2800     cast<VectorType>(SrcTy)->getNumElements() : 0;
2801   unsigned DstLength = DstTy->isVectorTy() ?
2802     cast<VectorType>(DstTy)->getNumElements() : 0;
2803 
2804   // Switch on the opcode provided
2805   switch (op) {
2806   default: return false; // This is an input error
2807   case Instruction::Trunc:
2808     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2809       SrcLength == DstLength && SrcBitSize > DstBitSize;
2810   case Instruction::ZExt:
2811     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2812       SrcLength == DstLength && SrcBitSize < DstBitSize;
2813   case Instruction::SExt:
2814     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2815       SrcLength == DstLength && SrcBitSize < DstBitSize;
2816   case Instruction::FPTrunc:
2817     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2818       SrcLength == DstLength && SrcBitSize > DstBitSize;
2819   case Instruction::FPExt:
2820     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2821       SrcLength == DstLength && SrcBitSize < DstBitSize;
2822   case Instruction::UIToFP:
2823   case Instruction::SIToFP:
2824     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2825       SrcLength == DstLength;
2826   case Instruction::FPToUI:
2827   case Instruction::FPToSI:
2828     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2829       SrcLength == DstLength;
2830   case Instruction::PtrToInt:
2831     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2832       return false;
2833     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2834       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2835         return false;
2836     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
2837   case Instruction::IntToPtr:
2838     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2839       return false;
2840     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2841       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2842         return false;
2843     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
2844   case Instruction::BitCast: {
2845     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2846     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2847 
2848     // BitCast implies a no-op cast of type only. No bits change.
2849     // However, you can't cast pointers to anything but pointers.
2850     if (!SrcPtrTy != !DstPtrTy)
2851       return false;
2852 
2853     // For non-pointer cases, the cast is okay if the source and destination bit
2854     // widths are identical.
2855     if (!SrcPtrTy)
2856       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2857 
2858     // If both are pointers then the address spaces must match.
2859     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
2860       return false;
2861 
2862     // A vector of pointers must have the same number of elements.
2863     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2864       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2865         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2866 
2867       return false;
2868     }
2869 
2870     return true;
2871   }
2872   case Instruction::AddrSpaceCast: {
2873     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2874     if (!SrcPtrTy)
2875       return false;
2876 
2877     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2878     if (!DstPtrTy)
2879       return false;
2880 
2881     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2882       return false;
2883 
2884     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2885       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2886         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2887 
2888       return false;
2889     }
2890 
2891     return true;
2892   }
2893   }
2894 }
2895 
2896 TruncInst::TruncInst(
2897   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2898 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2899   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2900 }
2901 
2902 TruncInst::TruncInst(
2903   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2904 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2905   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2906 }
2907 
2908 ZExtInst::ZExtInst(
2909   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2910 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2911   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2912 }
2913 
2914 ZExtInst::ZExtInst(
2915   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2916 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2917   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2918 }
2919 SExtInst::SExtInst(
2920   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2921 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2922   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2923 }
2924 
2925 SExtInst::SExtInst(
2926   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2927 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2928   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2929 }
2930 
2931 FPTruncInst::FPTruncInst(
2932   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2933 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2934   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2935 }
2936 
2937 FPTruncInst::FPTruncInst(
2938   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2939 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2940   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2941 }
2942 
2943 FPExtInst::FPExtInst(
2944   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2945 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2946   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2947 }
2948 
2949 FPExtInst::FPExtInst(
2950   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2951 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2952   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2953 }
2954 
2955 UIToFPInst::UIToFPInst(
2956   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2957 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2958   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2959 }
2960 
2961 UIToFPInst::UIToFPInst(
2962   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2963 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2964   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2965 }
2966 
2967 SIToFPInst::SIToFPInst(
2968   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2969 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2970   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2971 }
2972 
2973 SIToFPInst::SIToFPInst(
2974   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2975 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2976   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2977 }
2978 
2979 FPToUIInst::FPToUIInst(
2980   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2981 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2982   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2983 }
2984 
2985 FPToUIInst::FPToUIInst(
2986   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2987 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2988   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2989 }
2990 
2991 FPToSIInst::FPToSIInst(
2992   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2993 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2994   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2995 }
2996 
2997 FPToSIInst::FPToSIInst(
2998   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2999 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3000   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3001 }
3002 
3003 PtrToIntInst::PtrToIntInst(
3004   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3005 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3006   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3007 }
3008 
3009 PtrToIntInst::PtrToIntInst(
3010   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3011 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3012   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3013 }
3014 
3015 IntToPtrInst::IntToPtrInst(
3016   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3017 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3018   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3019 }
3020 
3021 IntToPtrInst::IntToPtrInst(
3022   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3023 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3024   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3025 }
3026 
3027 BitCastInst::BitCastInst(
3028   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3029 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3030   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3031 }
3032 
3033 BitCastInst::BitCastInst(
3034   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3035 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3036   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3037 }
3038 
3039 AddrSpaceCastInst::AddrSpaceCastInst(
3040   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3041 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3042   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3043 }
3044 
3045 AddrSpaceCastInst::AddrSpaceCastInst(
3046   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3047 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3048   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3049 }
3050 
3051 //===----------------------------------------------------------------------===//
3052 //                               CmpInst Classes
3053 //===----------------------------------------------------------------------===//
3054 
3055 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3056                  Value *RHS, const Twine &Name, Instruction *InsertBefore)
3057   : Instruction(ty, op,
3058                 OperandTraits<CmpInst>::op_begin(this),
3059                 OperandTraits<CmpInst>::operands(this),
3060                 InsertBefore) {
3061     Op<0>() = LHS;
3062     Op<1>() = RHS;
3063   setPredicate((Predicate)predicate);
3064   setName(Name);
3065 }
3066 
3067 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3068                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3069   : Instruction(ty, op,
3070                 OperandTraits<CmpInst>::op_begin(this),
3071                 OperandTraits<CmpInst>::operands(this),
3072                 InsertAtEnd) {
3073   Op<0>() = LHS;
3074   Op<1>() = RHS;
3075   setPredicate((Predicate)predicate);
3076   setName(Name);
3077 }
3078 
3079 CmpInst *
3080 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3081                 const Twine &Name, Instruction *InsertBefore) {
3082   if (Op == Instruction::ICmp) {
3083     if (InsertBefore)
3084       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3085                           S1, S2, Name);
3086     else
3087       return new ICmpInst(CmpInst::Predicate(predicate),
3088                           S1, S2, Name);
3089   }
3090 
3091   if (InsertBefore)
3092     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3093                         S1, S2, Name);
3094   else
3095     return new FCmpInst(CmpInst::Predicate(predicate),
3096                         S1, S2, Name);
3097 }
3098 
3099 CmpInst *
3100 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3101                 const Twine &Name, BasicBlock *InsertAtEnd) {
3102   if (Op == Instruction::ICmp) {
3103     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3104                         S1, S2, Name);
3105   }
3106   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3107                       S1, S2, Name);
3108 }
3109 
3110 void CmpInst::swapOperands() {
3111   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3112     IC->swapOperands();
3113   else
3114     cast<FCmpInst>(this)->swapOperands();
3115 }
3116 
3117 bool CmpInst::isCommutative() const {
3118   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3119     return IC->isCommutative();
3120   return cast<FCmpInst>(this)->isCommutative();
3121 }
3122 
3123 bool CmpInst::isEquality() const {
3124   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3125     return IC->isEquality();
3126   return cast<FCmpInst>(this)->isEquality();
3127 }
3128 
3129 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3130   switch (pred) {
3131     default: llvm_unreachable("Unknown cmp predicate!");
3132     case ICMP_EQ: return ICMP_NE;
3133     case ICMP_NE: return ICMP_EQ;
3134     case ICMP_UGT: return ICMP_ULE;
3135     case ICMP_ULT: return ICMP_UGE;
3136     case ICMP_UGE: return ICMP_ULT;
3137     case ICMP_ULE: return ICMP_UGT;
3138     case ICMP_SGT: return ICMP_SLE;
3139     case ICMP_SLT: return ICMP_SGE;
3140     case ICMP_SGE: return ICMP_SLT;
3141     case ICMP_SLE: return ICMP_SGT;
3142 
3143     case FCMP_OEQ: return FCMP_UNE;
3144     case FCMP_ONE: return FCMP_UEQ;
3145     case FCMP_OGT: return FCMP_ULE;
3146     case FCMP_OLT: return FCMP_UGE;
3147     case FCMP_OGE: return FCMP_ULT;
3148     case FCMP_OLE: return FCMP_UGT;
3149     case FCMP_UEQ: return FCMP_ONE;
3150     case FCMP_UNE: return FCMP_OEQ;
3151     case FCMP_UGT: return FCMP_OLE;
3152     case FCMP_ULT: return FCMP_OGE;
3153     case FCMP_UGE: return FCMP_OLT;
3154     case FCMP_ULE: return FCMP_OGT;
3155     case FCMP_ORD: return FCMP_UNO;
3156     case FCMP_UNO: return FCMP_ORD;
3157     case FCMP_TRUE: return FCMP_FALSE;
3158     case FCMP_FALSE: return FCMP_TRUE;
3159   }
3160 }
3161 
3162 StringRef CmpInst::getPredicateName(Predicate Pred) {
3163   switch (Pred) {
3164   default:                   return "unknown";
3165   case FCmpInst::FCMP_FALSE: return "false";
3166   case FCmpInst::FCMP_OEQ:   return "oeq";
3167   case FCmpInst::FCMP_OGT:   return "ogt";
3168   case FCmpInst::FCMP_OGE:   return "oge";
3169   case FCmpInst::FCMP_OLT:   return "olt";
3170   case FCmpInst::FCMP_OLE:   return "ole";
3171   case FCmpInst::FCMP_ONE:   return "one";
3172   case FCmpInst::FCMP_ORD:   return "ord";
3173   case FCmpInst::FCMP_UNO:   return "uno";
3174   case FCmpInst::FCMP_UEQ:   return "ueq";
3175   case FCmpInst::FCMP_UGT:   return "ugt";
3176   case FCmpInst::FCMP_UGE:   return "uge";
3177   case FCmpInst::FCMP_ULT:   return "ult";
3178   case FCmpInst::FCMP_ULE:   return "ule";
3179   case FCmpInst::FCMP_UNE:   return "une";
3180   case FCmpInst::FCMP_TRUE:  return "true";
3181   case ICmpInst::ICMP_EQ:    return "eq";
3182   case ICmpInst::ICMP_NE:    return "ne";
3183   case ICmpInst::ICMP_SGT:   return "sgt";
3184   case ICmpInst::ICMP_SGE:   return "sge";
3185   case ICmpInst::ICMP_SLT:   return "slt";
3186   case ICmpInst::ICMP_SLE:   return "sle";
3187   case ICmpInst::ICMP_UGT:   return "ugt";
3188   case ICmpInst::ICMP_UGE:   return "uge";
3189   case ICmpInst::ICMP_ULT:   return "ult";
3190   case ICmpInst::ICMP_ULE:   return "ule";
3191   }
3192 }
3193 
3194 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3195   switch (pred) {
3196     default: llvm_unreachable("Unknown icmp predicate!");
3197     case ICMP_EQ: case ICMP_NE:
3198     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3199        return pred;
3200     case ICMP_UGT: return ICMP_SGT;
3201     case ICMP_ULT: return ICMP_SLT;
3202     case ICMP_UGE: return ICMP_SGE;
3203     case ICMP_ULE: return ICMP_SLE;
3204   }
3205 }
3206 
3207 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3208   switch (pred) {
3209     default: llvm_unreachable("Unknown icmp predicate!");
3210     case ICMP_EQ: case ICMP_NE:
3211     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3212        return pred;
3213     case ICMP_SGT: return ICMP_UGT;
3214     case ICMP_SLT: return ICMP_ULT;
3215     case ICMP_SGE: return ICMP_UGE;
3216     case ICMP_SLE: return ICMP_ULE;
3217   }
3218 }
3219 
3220 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3221   switch (pred) {
3222     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3223     case ICMP_SGT: return ICMP_SGE;
3224     case ICMP_SLT: return ICMP_SLE;
3225     case ICMP_SGE: return ICMP_SGT;
3226     case ICMP_SLE: return ICMP_SLT;
3227     case ICMP_UGT: return ICMP_UGE;
3228     case ICMP_ULT: return ICMP_ULE;
3229     case ICMP_UGE: return ICMP_UGT;
3230     case ICMP_ULE: return ICMP_ULT;
3231 
3232     case FCMP_OGT: return FCMP_OGE;
3233     case FCMP_OLT: return FCMP_OLE;
3234     case FCMP_OGE: return FCMP_OGT;
3235     case FCMP_OLE: return FCMP_OLT;
3236     case FCMP_UGT: return FCMP_UGE;
3237     case FCMP_ULT: return FCMP_ULE;
3238     case FCMP_UGE: return FCMP_UGT;
3239     case FCMP_ULE: return FCMP_ULT;
3240   }
3241 }
3242 
3243 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3244   switch (pred) {
3245     default: llvm_unreachable("Unknown cmp predicate!");
3246     case ICMP_EQ: case ICMP_NE:
3247       return pred;
3248     case ICMP_SGT: return ICMP_SLT;
3249     case ICMP_SLT: return ICMP_SGT;
3250     case ICMP_SGE: return ICMP_SLE;
3251     case ICMP_SLE: return ICMP_SGE;
3252     case ICMP_UGT: return ICMP_ULT;
3253     case ICMP_ULT: return ICMP_UGT;
3254     case ICMP_UGE: return ICMP_ULE;
3255     case ICMP_ULE: return ICMP_UGE;
3256 
3257     case FCMP_FALSE: case FCMP_TRUE:
3258     case FCMP_OEQ: case FCMP_ONE:
3259     case FCMP_UEQ: case FCMP_UNE:
3260     case FCMP_ORD: case FCMP_UNO:
3261       return pred;
3262     case FCMP_OGT: return FCMP_OLT;
3263     case FCMP_OLT: return FCMP_OGT;
3264     case FCMP_OGE: return FCMP_OLE;
3265     case FCMP_OLE: return FCMP_OGE;
3266     case FCMP_UGT: return FCMP_ULT;
3267     case FCMP_ULT: return FCMP_UGT;
3268     case FCMP_UGE: return FCMP_ULE;
3269     case FCMP_ULE: return FCMP_UGE;
3270   }
3271 }
3272 
3273 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3274   switch (pred) {
3275   case ICMP_SGT: return ICMP_SGE;
3276   case ICMP_SLT: return ICMP_SLE;
3277   case ICMP_UGT: return ICMP_UGE;
3278   case ICMP_ULT: return ICMP_ULE;
3279   case FCMP_OGT: return FCMP_OGE;
3280   case FCMP_OLT: return FCMP_OLE;
3281   case FCMP_UGT: return FCMP_UGE;
3282   case FCMP_ULT: return FCMP_ULE;
3283   default: return pred;
3284   }
3285 }
3286 
3287 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3288   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3289 
3290   switch (pred) {
3291   default:
3292     llvm_unreachable("Unknown predicate!");
3293   case CmpInst::ICMP_ULT:
3294     return CmpInst::ICMP_SLT;
3295   case CmpInst::ICMP_ULE:
3296     return CmpInst::ICMP_SLE;
3297   case CmpInst::ICMP_UGT:
3298     return CmpInst::ICMP_SGT;
3299   case CmpInst::ICMP_UGE:
3300     return CmpInst::ICMP_SGE;
3301   }
3302 }
3303 
3304 bool CmpInst::isUnsigned(Predicate predicate) {
3305   switch (predicate) {
3306     default: return false;
3307     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3308     case ICmpInst::ICMP_UGE: return true;
3309   }
3310 }
3311 
3312 bool CmpInst::isSigned(Predicate predicate) {
3313   switch (predicate) {
3314     default: return false;
3315     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3316     case ICmpInst::ICMP_SGE: return true;
3317   }
3318 }
3319 
3320 bool CmpInst::isOrdered(Predicate predicate) {
3321   switch (predicate) {
3322     default: return false;
3323     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3324     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3325     case FCmpInst::FCMP_ORD: return true;
3326   }
3327 }
3328 
3329 bool CmpInst::isUnordered(Predicate predicate) {
3330   switch (predicate) {
3331     default: return false;
3332     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3333     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3334     case FCmpInst::FCMP_UNO: return true;
3335   }
3336 }
3337 
3338 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3339   switch(predicate) {
3340     default: return false;
3341     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3342     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3343   }
3344 }
3345 
3346 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3347   switch(predicate) {
3348   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3349   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3350   default: return false;
3351   }
3352 }
3353 
3354 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3355   // If the predicates match, then we know the first condition implies the
3356   // second is true.
3357   if (Pred1 == Pred2)
3358     return true;
3359 
3360   switch (Pred1) {
3361   default:
3362     break;
3363   case ICMP_EQ:
3364     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3365     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3366            Pred2 == ICMP_SLE;
3367   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3368     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3369   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3370     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3371   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3372     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3373   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3374     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3375   }
3376   return false;
3377 }
3378 
3379 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3380   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3381 }
3382 
3383 //===----------------------------------------------------------------------===//
3384 //                        SwitchInst Implementation
3385 //===----------------------------------------------------------------------===//
3386 
3387 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3388   assert(Value && Default && NumReserved);
3389   ReservedSpace = NumReserved;
3390   setNumHungOffUseOperands(2);
3391   allocHungoffUses(ReservedSpace);
3392 
3393   Op<0>() = Value;
3394   Op<1>() = Default;
3395 }
3396 
3397 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3398 /// switch on and a default destination.  The number of additional cases can
3399 /// be specified here to make memory allocation more efficient.  This
3400 /// constructor can also autoinsert before another instruction.
3401 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3402                        Instruction *InsertBefore)
3403   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3404                    nullptr, 0, InsertBefore) {
3405   init(Value, Default, 2+NumCases*2);
3406 }
3407 
3408 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3409 /// switch on and a default destination.  The number of additional cases can
3410 /// be specified here to make memory allocation more efficient.  This
3411 /// constructor also autoinserts at the end of the specified BasicBlock.
3412 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3413                        BasicBlock *InsertAtEnd)
3414   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3415                    nullptr, 0, InsertAtEnd) {
3416   init(Value, Default, 2+NumCases*2);
3417 }
3418 
3419 SwitchInst::SwitchInst(const SwitchInst &SI)
3420   : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3421   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3422   setNumHungOffUseOperands(SI.getNumOperands());
3423   Use *OL = getOperandList();
3424   const Use *InOL = SI.getOperandList();
3425   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3426     OL[i] = InOL[i];
3427     OL[i+1] = InOL[i+1];
3428   }
3429   SubclassOptionalData = SI.SubclassOptionalData;
3430 }
3431 
3432 
3433 /// addCase - Add an entry to the switch instruction...
3434 ///
3435 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3436   unsigned NewCaseIdx = getNumCases();
3437   unsigned OpNo = getNumOperands();
3438   if (OpNo+2 > ReservedSpace)
3439     growOperands();  // Get more space!
3440   // Initialize some new operands.
3441   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3442   setNumHungOffUseOperands(OpNo+2);
3443   CaseHandle Case(this, NewCaseIdx);
3444   Case.setValue(OnVal);
3445   Case.setSuccessor(Dest);
3446 }
3447 
3448 /// removeCase - This method removes the specified case and its successor
3449 /// from the switch instruction.
3450 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3451   unsigned idx = I->getCaseIndex();
3452 
3453   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3454 
3455   unsigned NumOps = getNumOperands();
3456   Use *OL = getOperandList();
3457 
3458   // Overwrite this case with the end of the list.
3459   if (2 + (idx + 1) * 2 != NumOps) {
3460     OL[2 + idx * 2] = OL[NumOps - 2];
3461     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3462   }
3463 
3464   // Nuke the last value.
3465   OL[NumOps-2].set(nullptr);
3466   OL[NumOps-2+1].set(nullptr);
3467   setNumHungOffUseOperands(NumOps-2);
3468 
3469   return CaseIt(this, idx);
3470 }
3471 
3472 /// growOperands - grow operands - This grows the operand list in response
3473 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3474 ///
3475 void SwitchInst::growOperands() {
3476   unsigned e = getNumOperands();
3477   unsigned NumOps = e*3;
3478 
3479   ReservedSpace = NumOps;
3480   growHungoffUses(ReservedSpace);
3481 }
3482 
3483 //===----------------------------------------------------------------------===//
3484 //                        IndirectBrInst Implementation
3485 //===----------------------------------------------------------------------===//
3486 
3487 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3488   assert(Address && Address->getType()->isPointerTy() &&
3489          "Address of indirectbr must be a pointer");
3490   ReservedSpace = 1+NumDests;
3491   setNumHungOffUseOperands(1);
3492   allocHungoffUses(ReservedSpace);
3493 
3494   Op<0>() = Address;
3495 }
3496 
3497 
3498 /// growOperands - grow operands - This grows the operand list in response
3499 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3500 ///
3501 void IndirectBrInst::growOperands() {
3502   unsigned e = getNumOperands();
3503   unsigned NumOps = e*2;
3504 
3505   ReservedSpace = NumOps;
3506   growHungoffUses(ReservedSpace);
3507 }
3508 
3509 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3510                                Instruction *InsertBefore)
3511 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3512                  nullptr, 0, InsertBefore) {
3513   init(Address, NumCases);
3514 }
3515 
3516 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3517                                BasicBlock *InsertAtEnd)
3518 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3519                  nullptr, 0, InsertAtEnd) {
3520   init(Address, NumCases);
3521 }
3522 
3523 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3524     : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3525                      nullptr, IBI.getNumOperands()) {
3526   allocHungoffUses(IBI.getNumOperands());
3527   Use *OL = getOperandList();
3528   const Use *InOL = IBI.getOperandList();
3529   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3530     OL[i] = InOL[i];
3531   SubclassOptionalData = IBI.SubclassOptionalData;
3532 }
3533 
3534 /// addDestination - Add a destination.
3535 ///
3536 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3537   unsigned OpNo = getNumOperands();
3538   if (OpNo+1 > ReservedSpace)
3539     growOperands();  // Get more space!
3540   // Initialize some new operands.
3541   assert(OpNo < ReservedSpace && "Growing didn't work!");
3542   setNumHungOffUseOperands(OpNo+1);
3543   getOperandList()[OpNo] = DestBB;
3544 }
3545 
3546 /// removeDestination - This method removes the specified successor from the
3547 /// indirectbr instruction.
3548 void IndirectBrInst::removeDestination(unsigned idx) {
3549   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3550 
3551   unsigned NumOps = getNumOperands();
3552   Use *OL = getOperandList();
3553 
3554   // Replace this value with the last one.
3555   OL[idx+1] = OL[NumOps-1];
3556 
3557   // Nuke the last value.
3558   OL[NumOps-1].set(nullptr);
3559   setNumHungOffUseOperands(NumOps-1);
3560 }
3561 
3562 //===----------------------------------------------------------------------===//
3563 //                           cloneImpl() implementations
3564 //===----------------------------------------------------------------------===//
3565 
3566 // Define these methods here so vtables don't get emitted into every translation
3567 // unit that uses these classes.
3568 
3569 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3570   return new (getNumOperands()) GetElementPtrInst(*this);
3571 }
3572 
3573 BinaryOperator *BinaryOperator::cloneImpl() const {
3574   return Create(getOpcode(), Op<0>(), Op<1>());
3575 }
3576 
3577 FCmpInst *FCmpInst::cloneImpl() const {
3578   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3579 }
3580 
3581 ICmpInst *ICmpInst::cloneImpl() const {
3582   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3583 }
3584 
3585 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3586   return new ExtractValueInst(*this);
3587 }
3588 
3589 InsertValueInst *InsertValueInst::cloneImpl() const {
3590   return new InsertValueInst(*this);
3591 }
3592 
3593 AllocaInst *AllocaInst::cloneImpl() const {
3594   AllocaInst *Result = new AllocaInst(getAllocatedType(),
3595                                       getType()->getAddressSpace(),
3596                                       (Value *)getOperand(0), getAlignment());
3597   Result->setUsedWithInAlloca(isUsedWithInAlloca());
3598   Result->setSwiftError(isSwiftError());
3599   return Result;
3600 }
3601 
3602 LoadInst *LoadInst::cloneImpl() const {
3603   return new LoadInst(getOperand(0), Twine(), isVolatile(),
3604                       getAlignment(), getOrdering(), getSyncScopeID());
3605 }
3606 
3607 StoreInst *StoreInst::cloneImpl() const {
3608   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3609                        getAlignment(), getOrdering(), getSyncScopeID());
3610 
3611 }
3612 
3613 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3614   AtomicCmpXchgInst *Result =
3615     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3616                           getSuccessOrdering(), getFailureOrdering(),
3617                           getSyncScopeID());
3618   Result->setVolatile(isVolatile());
3619   Result->setWeak(isWeak());
3620   return Result;
3621 }
3622 
3623 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3624   AtomicRMWInst *Result =
3625     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3626                       getOrdering(), getSyncScopeID());
3627   Result->setVolatile(isVolatile());
3628   return Result;
3629 }
3630 
3631 FenceInst *FenceInst::cloneImpl() const {
3632   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3633 }
3634 
3635 TruncInst *TruncInst::cloneImpl() const {
3636   return new TruncInst(getOperand(0), getType());
3637 }
3638 
3639 ZExtInst *ZExtInst::cloneImpl() const {
3640   return new ZExtInst(getOperand(0), getType());
3641 }
3642 
3643 SExtInst *SExtInst::cloneImpl() const {
3644   return new SExtInst(getOperand(0), getType());
3645 }
3646 
3647 FPTruncInst *FPTruncInst::cloneImpl() const {
3648   return new FPTruncInst(getOperand(0), getType());
3649 }
3650 
3651 FPExtInst *FPExtInst::cloneImpl() const {
3652   return new FPExtInst(getOperand(0), getType());
3653 }
3654 
3655 UIToFPInst *UIToFPInst::cloneImpl() const {
3656   return new UIToFPInst(getOperand(0), getType());
3657 }
3658 
3659 SIToFPInst *SIToFPInst::cloneImpl() const {
3660   return new SIToFPInst(getOperand(0), getType());
3661 }
3662 
3663 FPToUIInst *FPToUIInst::cloneImpl() const {
3664   return new FPToUIInst(getOperand(0), getType());
3665 }
3666 
3667 FPToSIInst *FPToSIInst::cloneImpl() const {
3668   return new FPToSIInst(getOperand(0), getType());
3669 }
3670 
3671 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3672   return new PtrToIntInst(getOperand(0), getType());
3673 }
3674 
3675 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3676   return new IntToPtrInst(getOperand(0), getType());
3677 }
3678 
3679 BitCastInst *BitCastInst::cloneImpl() const {
3680   return new BitCastInst(getOperand(0), getType());
3681 }
3682 
3683 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
3684   return new AddrSpaceCastInst(getOperand(0), getType());
3685 }
3686 
3687 CallInst *CallInst::cloneImpl() const {
3688   if (hasOperandBundles()) {
3689     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3690     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
3691   }
3692   return  new(getNumOperands()) CallInst(*this);
3693 }
3694 
3695 SelectInst *SelectInst::cloneImpl() const {
3696   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3697 }
3698 
3699 VAArgInst *VAArgInst::cloneImpl() const {
3700   return new VAArgInst(getOperand(0), getType());
3701 }
3702 
3703 ExtractElementInst *ExtractElementInst::cloneImpl() const {
3704   return ExtractElementInst::Create(getOperand(0), getOperand(1));
3705 }
3706 
3707 InsertElementInst *InsertElementInst::cloneImpl() const {
3708   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3709 }
3710 
3711 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
3712   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3713 }
3714 
3715 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3716 
3717 LandingPadInst *LandingPadInst::cloneImpl() const {
3718   return new LandingPadInst(*this);
3719 }
3720 
3721 ReturnInst *ReturnInst::cloneImpl() const {
3722   return new(getNumOperands()) ReturnInst(*this);
3723 }
3724 
3725 BranchInst *BranchInst::cloneImpl() const {
3726   return new(getNumOperands()) BranchInst(*this);
3727 }
3728 
3729 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3730 
3731 IndirectBrInst *IndirectBrInst::cloneImpl() const {
3732   return new IndirectBrInst(*this);
3733 }
3734 
3735 InvokeInst *InvokeInst::cloneImpl() const {
3736   if (hasOperandBundles()) {
3737     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3738     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
3739   }
3740   return new(getNumOperands()) InvokeInst(*this);
3741 }
3742 
3743 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3744 
3745 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
3746   return new (getNumOperands()) CleanupReturnInst(*this);
3747 }
3748 
3749 CatchReturnInst *CatchReturnInst::cloneImpl() const {
3750   return new (getNumOperands()) CatchReturnInst(*this);
3751 }
3752 
3753 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
3754   return new CatchSwitchInst(*this);
3755 }
3756 
3757 FuncletPadInst *FuncletPadInst::cloneImpl() const {
3758   return new (getNumOperands()) FuncletPadInst(*this);
3759 }
3760 
3761 UnreachableInst *UnreachableInst::cloneImpl() const {
3762   LLVMContext &Context = getContext();
3763   return new UnreachableInst(Context);
3764 }
3765