1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements all of the non-inline methods for the LLVM instruction 10 // classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Instructions.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/IR/Attributes.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cstdint> 43 #include <vector> 44 45 using namespace llvm; 46 47 //===----------------------------------------------------------------------===// 48 // AllocaInst Class 49 //===----------------------------------------------------------------------===// 50 51 Optional<uint64_t> 52 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { 53 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType()); 54 if (isArrayAllocation()) { 55 auto C = dyn_cast<ConstantInt>(getArraySize()); 56 if (!C) 57 return None; 58 Size *= C->getZExtValue(); 59 } 60 return Size; 61 } 62 63 //===----------------------------------------------------------------------===// 64 // CallSite Class 65 //===----------------------------------------------------------------------===// 66 67 User::op_iterator CallSite::getCallee() const { 68 return cast<CallBase>(getInstruction())->op_end() - 1; 69 } 70 71 //===----------------------------------------------------------------------===// 72 // SelectInst Class 73 //===----------------------------------------------------------------------===// 74 75 /// areInvalidOperands - Return a string if the specified operands are invalid 76 /// for a select operation, otherwise return null. 77 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 78 if (Op1->getType() != Op2->getType()) 79 return "both values to select must have same type"; 80 81 if (Op1->getType()->isTokenTy()) 82 return "select values cannot have token type"; 83 84 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 85 // Vector select. 86 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 87 return "vector select condition element type must be i1"; 88 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 89 if (!ET) 90 return "selected values for vector select must be vectors"; 91 if (ET->getNumElements() != VT->getNumElements()) 92 return "vector select requires selected vectors to have " 93 "the same vector length as select condition"; 94 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 95 return "select condition must be i1 or <n x i1>"; 96 } 97 return nullptr; 98 } 99 100 //===----------------------------------------------------------------------===// 101 // PHINode Class 102 //===----------------------------------------------------------------------===// 103 104 PHINode::PHINode(const PHINode &PN) 105 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 106 ReservedSpace(PN.getNumOperands()) { 107 allocHungoffUses(PN.getNumOperands()); 108 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 109 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 110 SubclassOptionalData = PN.SubclassOptionalData; 111 } 112 113 // removeIncomingValue - Remove an incoming value. This is useful if a 114 // predecessor basic block is deleted. 115 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 116 Value *Removed = getIncomingValue(Idx); 117 118 // Move everything after this operand down. 119 // 120 // FIXME: we could just swap with the end of the list, then erase. However, 121 // clients might not expect this to happen. The code as it is thrashes the 122 // use/def lists, which is kinda lame. 123 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 124 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 125 126 // Nuke the last value. 127 Op<-1>().set(nullptr); 128 setNumHungOffUseOperands(getNumOperands() - 1); 129 130 // If the PHI node is dead, because it has zero entries, nuke it now. 131 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 132 // If anyone is using this PHI, make them use a dummy value instead... 133 replaceAllUsesWith(UndefValue::get(getType())); 134 eraseFromParent(); 135 } 136 return Removed; 137 } 138 139 /// growOperands - grow operands - This grows the operand list in response 140 /// to a push_back style of operation. This grows the number of ops by 1.5 141 /// times. 142 /// 143 void PHINode::growOperands() { 144 unsigned e = getNumOperands(); 145 unsigned NumOps = e + e / 2; 146 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 147 148 ReservedSpace = NumOps; 149 growHungoffUses(ReservedSpace, /* IsPhi */ true); 150 } 151 152 /// hasConstantValue - If the specified PHI node always merges together the same 153 /// value, return the value, otherwise return null. 154 Value *PHINode::hasConstantValue() const { 155 // Exploit the fact that phi nodes always have at least one entry. 156 Value *ConstantValue = getIncomingValue(0); 157 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 158 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 159 if (ConstantValue != this) 160 return nullptr; // Incoming values not all the same. 161 // The case where the first value is this PHI. 162 ConstantValue = getIncomingValue(i); 163 } 164 if (ConstantValue == this) 165 return UndefValue::get(getType()); 166 return ConstantValue; 167 } 168 169 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 170 /// together the same value, assuming that undefs result in the same value as 171 /// non-undefs. 172 /// Unlike \ref hasConstantValue, this does not return a value because the 173 /// unique non-undef incoming value need not dominate the PHI node. 174 bool PHINode::hasConstantOrUndefValue() const { 175 Value *ConstantValue = nullptr; 176 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 177 Value *Incoming = getIncomingValue(i); 178 if (Incoming != this && !isa<UndefValue>(Incoming)) { 179 if (ConstantValue && ConstantValue != Incoming) 180 return false; 181 ConstantValue = Incoming; 182 } 183 } 184 return true; 185 } 186 187 //===----------------------------------------------------------------------===// 188 // LandingPadInst Implementation 189 //===----------------------------------------------------------------------===// 190 191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 192 const Twine &NameStr, Instruction *InsertBefore) 193 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 194 init(NumReservedValues, NameStr); 195 } 196 197 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 198 const Twine &NameStr, BasicBlock *InsertAtEnd) 199 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 200 init(NumReservedValues, NameStr); 201 } 202 203 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 204 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 205 LP.getNumOperands()), 206 ReservedSpace(LP.getNumOperands()) { 207 allocHungoffUses(LP.getNumOperands()); 208 Use *OL = getOperandList(); 209 const Use *InOL = LP.getOperandList(); 210 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 211 OL[I] = InOL[I]; 212 213 setCleanup(LP.isCleanup()); 214 } 215 216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 217 const Twine &NameStr, 218 Instruction *InsertBefore) { 219 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 220 } 221 222 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 223 const Twine &NameStr, 224 BasicBlock *InsertAtEnd) { 225 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 226 } 227 228 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 229 ReservedSpace = NumReservedValues; 230 setNumHungOffUseOperands(0); 231 allocHungoffUses(ReservedSpace); 232 setName(NameStr); 233 setCleanup(false); 234 } 235 236 /// growOperands - grow operands - This grows the operand list in response to a 237 /// push_back style of operation. This grows the number of ops by 2 times. 238 void LandingPadInst::growOperands(unsigned Size) { 239 unsigned e = getNumOperands(); 240 if (ReservedSpace >= e + Size) return; 241 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 242 growHungoffUses(ReservedSpace); 243 } 244 245 void LandingPadInst::addClause(Constant *Val) { 246 unsigned OpNo = getNumOperands(); 247 growOperands(1); 248 assert(OpNo < ReservedSpace && "Growing didn't work!"); 249 setNumHungOffUseOperands(getNumOperands() + 1); 250 getOperandList()[OpNo] = Val; 251 } 252 253 //===----------------------------------------------------------------------===// 254 // CallBase Implementation 255 //===----------------------------------------------------------------------===// 256 257 Function *CallBase::getCaller() { return getParent()->getParent(); } 258 259 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { 260 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!"); 261 return cast<CallBrInst>(this)->getNumIndirectDests() + 1; 262 } 263 264 bool CallBase::isIndirectCall() const { 265 const Value *V = getCalledValue(); 266 if (isa<Function>(V) || isa<Constant>(V)) 267 return false; 268 if (const CallInst *CI = dyn_cast<CallInst>(this)) 269 if (CI->isInlineAsm()) 270 return false; 271 return true; 272 } 273 274 /// Tests if this call site must be tail call optimized. Only a CallInst can 275 /// be tail call optimized. 276 bool CallBase::isMustTailCall() const { 277 if (auto *CI = dyn_cast<CallInst>(this)) 278 return CI->isMustTailCall(); 279 return false; 280 } 281 282 /// Tests if this call site is marked as a tail call. 283 bool CallBase::isTailCall() const { 284 if (auto *CI = dyn_cast<CallInst>(this)) 285 return CI->isTailCall(); 286 return false; 287 } 288 289 Intrinsic::ID CallBase::getIntrinsicID() const { 290 if (auto *F = getCalledFunction()) 291 return F->getIntrinsicID(); 292 return Intrinsic::not_intrinsic; 293 } 294 295 bool CallBase::isReturnNonNull() const { 296 if (hasRetAttr(Attribute::NonNull)) 297 return true; 298 299 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 && 300 !NullPointerIsDefined(getCaller(), 301 getType()->getPointerAddressSpace())) 302 return true; 303 304 return false; 305 } 306 307 Value *CallBase::getReturnedArgOperand() const { 308 unsigned Index; 309 310 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 311 return getArgOperand(Index - AttributeList::FirstArgIndex); 312 if (const Function *F = getCalledFunction()) 313 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 314 Index) 315 return getArgOperand(Index - AttributeList::FirstArgIndex); 316 317 return nullptr; 318 } 319 320 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const { 321 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind)) 322 return true; 323 324 // Look at the callee, if available. 325 if (const Function *F = getCalledFunction()) 326 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind); 327 return false; 328 } 329 330 /// Determine whether the argument or parameter has the given attribute. 331 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { 332 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!"); 333 334 if (Attrs.hasParamAttribute(ArgNo, Kind)) 335 return true; 336 if (const Function *F = getCalledFunction()) 337 return F->getAttributes().hasParamAttribute(ArgNo, Kind); 338 return false; 339 } 340 341 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { 342 if (const Function *F = getCalledFunction()) 343 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); 344 return false; 345 } 346 347 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { 348 if (const Function *F = getCalledFunction()) 349 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); 350 return false; 351 } 352 353 CallBase::op_iterator 354 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, 355 const unsigned BeginIndex) { 356 auto It = op_begin() + BeginIndex; 357 for (auto &B : Bundles) 358 It = std::copy(B.input_begin(), B.input_end(), It); 359 360 auto *ContextImpl = getContext().pImpl; 361 auto BI = Bundles.begin(); 362 unsigned CurrentIndex = BeginIndex; 363 364 for (auto &BOI : bundle_op_infos()) { 365 assert(BI != Bundles.end() && "Incorrect allocation?"); 366 367 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); 368 BOI.Begin = CurrentIndex; 369 BOI.End = CurrentIndex + BI->input_size(); 370 CurrentIndex = BOI.End; 371 BI++; 372 } 373 374 assert(BI == Bundles.end() && "Incorrect allocation?"); 375 376 return It; 377 } 378 379 //===----------------------------------------------------------------------===// 380 // CallInst Implementation 381 //===----------------------------------------------------------------------===// 382 383 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 384 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 385 this->FTy = FTy; 386 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 387 "NumOperands not set up?"); 388 setCalledOperand(Func); 389 390 #ifndef NDEBUG 391 assert((Args.size() == FTy->getNumParams() || 392 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 393 "Calling a function with bad signature!"); 394 395 for (unsigned i = 0; i != Args.size(); ++i) 396 assert((i >= FTy->getNumParams() || 397 FTy->getParamType(i) == Args[i]->getType()) && 398 "Calling a function with a bad signature!"); 399 #endif 400 401 llvm::copy(Args, op_begin()); 402 403 auto It = populateBundleOperandInfos(Bundles, Args.size()); 404 (void)It; 405 assert(It + 1 == op_end() && "Should add up!"); 406 407 setName(NameStr); 408 } 409 410 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { 411 this->FTy = FTy; 412 assert(getNumOperands() == 1 && "NumOperands not set up?"); 413 setCalledOperand(Func); 414 415 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 416 417 setName(NameStr); 418 } 419 420 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 421 Instruction *InsertBefore) 422 : CallBase(Ty->getReturnType(), Instruction::Call, 423 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { 424 init(Ty, Func, Name); 425 } 426 427 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 428 BasicBlock *InsertAtEnd) 429 : CallBase(Ty->getReturnType(), Instruction::Call, 430 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) { 431 init(Ty, Func, Name); 432 } 433 434 CallInst::CallInst(const CallInst &CI) 435 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, 436 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), 437 CI.getNumOperands()) { 438 setTailCallKind(CI.getTailCallKind()); 439 setCallingConv(CI.getCallingConv()); 440 441 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 442 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 443 bundle_op_info_begin()); 444 SubclassOptionalData = CI.SubclassOptionalData; 445 } 446 447 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 448 Instruction *InsertPt) { 449 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 450 451 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(), 452 Args, OpB, CI->getName(), InsertPt); 453 NewCI->setTailCallKind(CI->getTailCallKind()); 454 NewCI->setCallingConv(CI->getCallingConv()); 455 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 456 NewCI->setAttributes(CI->getAttributes()); 457 NewCI->setDebugLoc(CI->getDebugLoc()); 458 return NewCI; 459 } 460 461 /// IsConstantOne - Return true only if val is constant int 1 462 static bool IsConstantOne(Value *val) { 463 assert(val && "IsConstantOne does not work with nullptr val"); 464 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 465 return CVal && CVal->isOne(); 466 } 467 468 static Instruction *createMalloc(Instruction *InsertBefore, 469 BasicBlock *InsertAtEnd, Type *IntPtrTy, 470 Type *AllocTy, Value *AllocSize, 471 Value *ArraySize, 472 ArrayRef<OperandBundleDef> OpB, 473 Function *MallocF, const Twine &Name) { 474 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 475 "createMalloc needs either InsertBefore or InsertAtEnd"); 476 477 // malloc(type) becomes: 478 // bitcast (i8* malloc(typeSize)) to type* 479 // malloc(type, arraySize) becomes: 480 // bitcast (i8* malloc(typeSize*arraySize)) to type* 481 if (!ArraySize) 482 ArraySize = ConstantInt::get(IntPtrTy, 1); 483 else if (ArraySize->getType() != IntPtrTy) { 484 if (InsertBefore) 485 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 486 "", InsertBefore); 487 else 488 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 489 "", InsertAtEnd); 490 } 491 492 if (!IsConstantOne(ArraySize)) { 493 if (IsConstantOne(AllocSize)) { 494 AllocSize = ArraySize; // Operand * 1 = Operand 495 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 496 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 497 false /*ZExt*/); 498 // Malloc arg is constant product of type size and array size 499 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 500 } else { 501 // Multiply type size by the array size... 502 if (InsertBefore) 503 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 504 "mallocsize", InsertBefore); 505 else 506 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 507 "mallocsize", InsertAtEnd); 508 } 509 } 510 511 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 512 // Create the call to Malloc. 513 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 514 Module *M = BB->getParent()->getParent(); 515 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 516 FunctionCallee MallocFunc = MallocF; 517 if (!MallocFunc) 518 // prototype malloc as "void *malloc(size_t)" 519 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); 520 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 521 CallInst *MCall = nullptr; 522 Instruction *Result = nullptr; 523 if (InsertBefore) { 524 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 525 InsertBefore); 526 Result = MCall; 527 if (Result->getType() != AllocPtrType) 528 // Create a cast instruction to convert to the right type... 529 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 530 } else { 531 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 532 Result = MCall; 533 if (Result->getType() != AllocPtrType) { 534 InsertAtEnd->getInstList().push_back(MCall); 535 // Create a cast instruction to convert to the right type... 536 Result = new BitCastInst(MCall, AllocPtrType, Name); 537 } 538 } 539 MCall->setTailCall(); 540 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { 541 MCall->setCallingConv(F->getCallingConv()); 542 if (!F->returnDoesNotAlias()) 543 F->setReturnDoesNotAlias(); 544 } 545 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 546 547 return Result; 548 } 549 550 /// CreateMalloc - Generate the IR for a call to malloc: 551 /// 1. Compute the malloc call's argument as the specified type's size, 552 /// possibly multiplied by the array size if the array size is not 553 /// constant 1. 554 /// 2. Call malloc with that argument. 555 /// 3. Bitcast the result of the malloc call to the specified type. 556 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 557 Type *IntPtrTy, Type *AllocTy, 558 Value *AllocSize, Value *ArraySize, 559 Function *MallocF, 560 const Twine &Name) { 561 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 562 ArraySize, None, MallocF, Name); 563 } 564 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 565 Type *IntPtrTy, Type *AllocTy, 566 Value *AllocSize, Value *ArraySize, 567 ArrayRef<OperandBundleDef> OpB, 568 Function *MallocF, 569 const Twine &Name) { 570 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 571 ArraySize, OpB, MallocF, Name); 572 } 573 574 /// CreateMalloc - Generate the IR for a call to malloc: 575 /// 1. Compute the malloc call's argument as the specified type's size, 576 /// possibly multiplied by the array size if the array size is not 577 /// constant 1. 578 /// 2. Call malloc with that argument. 579 /// 3. Bitcast the result of the malloc call to the specified type. 580 /// Note: This function does not add the bitcast to the basic block, that is the 581 /// responsibility of the caller. 582 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 583 Type *IntPtrTy, Type *AllocTy, 584 Value *AllocSize, Value *ArraySize, 585 Function *MallocF, const Twine &Name) { 586 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 587 ArraySize, None, MallocF, Name); 588 } 589 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 590 Type *IntPtrTy, Type *AllocTy, 591 Value *AllocSize, Value *ArraySize, 592 ArrayRef<OperandBundleDef> OpB, 593 Function *MallocF, const Twine &Name) { 594 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 595 ArraySize, OpB, MallocF, Name); 596 } 597 598 static Instruction *createFree(Value *Source, 599 ArrayRef<OperandBundleDef> Bundles, 600 Instruction *InsertBefore, 601 BasicBlock *InsertAtEnd) { 602 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 603 "createFree needs either InsertBefore or InsertAtEnd"); 604 assert(Source->getType()->isPointerTy() && 605 "Can not free something of nonpointer type!"); 606 607 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 608 Module *M = BB->getParent()->getParent(); 609 610 Type *VoidTy = Type::getVoidTy(M->getContext()); 611 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 612 // prototype free as "void free(void*)" 613 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); 614 CallInst *Result = nullptr; 615 Value *PtrCast = Source; 616 if (InsertBefore) { 617 if (Source->getType() != IntPtrTy) 618 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 619 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 620 } else { 621 if (Source->getType() != IntPtrTy) 622 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 623 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 624 } 625 Result->setTailCall(); 626 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) 627 Result->setCallingConv(F->getCallingConv()); 628 629 return Result; 630 } 631 632 /// CreateFree - Generate the IR for a call to the builtin free function. 633 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 634 return createFree(Source, None, InsertBefore, nullptr); 635 } 636 Instruction *CallInst::CreateFree(Value *Source, 637 ArrayRef<OperandBundleDef> Bundles, 638 Instruction *InsertBefore) { 639 return createFree(Source, Bundles, InsertBefore, nullptr); 640 } 641 642 /// CreateFree - Generate the IR for a call to the builtin free function. 643 /// Note: This function does not add the call to the basic block, that is the 644 /// responsibility of the caller. 645 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 646 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 647 assert(FreeCall && "CreateFree did not create a CallInst"); 648 return FreeCall; 649 } 650 Instruction *CallInst::CreateFree(Value *Source, 651 ArrayRef<OperandBundleDef> Bundles, 652 BasicBlock *InsertAtEnd) { 653 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 654 assert(FreeCall && "CreateFree did not create a CallInst"); 655 return FreeCall; 656 } 657 658 //===----------------------------------------------------------------------===// 659 // InvokeInst Implementation 660 //===----------------------------------------------------------------------===// 661 662 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 663 BasicBlock *IfException, ArrayRef<Value *> Args, 664 ArrayRef<OperandBundleDef> Bundles, 665 const Twine &NameStr) { 666 this->FTy = FTy; 667 668 assert((int)getNumOperands() == 669 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && 670 "NumOperands not set up?"); 671 setNormalDest(IfNormal); 672 setUnwindDest(IfException); 673 setCalledOperand(Fn); 674 675 #ifndef NDEBUG 676 assert(((Args.size() == FTy->getNumParams()) || 677 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 678 "Invoking a function with bad signature"); 679 680 for (unsigned i = 0, e = Args.size(); i != e; i++) 681 assert((i >= FTy->getNumParams() || 682 FTy->getParamType(i) == Args[i]->getType()) && 683 "Invoking a function with a bad signature!"); 684 #endif 685 686 llvm::copy(Args, op_begin()); 687 688 auto It = populateBundleOperandInfos(Bundles, Args.size()); 689 (void)It; 690 assert(It + 3 == op_end() && "Should add up!"); 691 692 setName(NameStr); 693 } 694 695 InvokeInst::InvokeInst(const InvokeInst &II) 696 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, 697 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), 698 II.getNumOperands()) { 699 setCallingConv(II.getCallingConv()); 700 std::copy(II.op_begin(), II.op_end(), op_begin()); 701 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 702 bundle_op_info_begin()); 703 SubclassOptionalData = II.SubclassOptionalData; 704 } 705 706 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 707 Instruction *InsertPt) { 708 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 709 710 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(), 711 II->getNormalDest(), II->getUnwindDest(), 712 Args, OpB, II->getName(), InsertPt); 713 NewII->setCallingConv(II->getCallingConv()); 714 NewII->SubclassOptionalData = II->SubclassOptionalData; 715 NewII->setAttributes(II->getAttributes()); 716 NewII->setDebugLoc(II->getDebugLoc()); 717 return NewII; 718 } 719 720 721 LandingPadInst *InvokeInst::getLandingPadInst() const { 722 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 723 } 724 725 //===----------------------------------------------------------------------===// 726 // CallBrInst Implementation 727 //===----------------------------------------------------------------------===// 728 729 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, 730 ArrayRef<BasicBlock *> IndirectDests, 731 ArrayRef<Value *> Args, 732 ArrayRef<OperandBundleDef> Bundles, 733 const Twine &NameStr) { 734 this->FTy = FTy; 735 736 assert((int)getNumOperands() == 737 ComputeNumOperands(Args.size(), IndirectDests.size(), 738 CountBundleInputs(Bundles)) && 739 "NumOperands not set up?"); 740 NumIndirectDests = IndirectDests.size(); 741 setDefaultDest(Fallthrough); 742 for (unsigned i = 0; i != NumIndirectDests; ++i) 743 setIndirectDest(i, IndirectDests[i]); 744 setCalledOperand(Fn); 745 746 #ifndef NDEBUG 747 assert(((Args.size() == FTy->getNumParams()) || 748 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 749 "Calling a function with bad signature"); 750 751 for (unsigned i = 0, e = Args.size(); i != e; i++) 752 assert((i >= FTy->getNumParams() || 753 FTy->getParamType(i) == Args[i]->getType()) && 754 "Calling a function with a bad signature!"); 755 #endif 756 757 std::copy(Args.begin(), Args.end(), op_begin()); 758 759 auto It = populateBundleOperandInfos(Bundles, Args.size()); 760 (void)It; 761 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!"); 762 763 setName(NameStr); 764 } 765 766 CallBrInst::CallBrInst(const CallBrInst &CBI) 767 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, 768 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(), 769 CBI.getNumOperands()) { 770 setCallingConv(CBI.getCallingConv()); 771 std::copy(CBI.op_begin(), CBI.op_end(), op_begin()); 772 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(), 773 bundle_op_info_begin()); 774 SubclassOptionalData = CBI.SubclassOptionalData; 775 NumIndirectDests = CBI.NumIndirectDests; 776 } 777 778 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, 779 Instruction *InsertPt) { 780 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); 781 782 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(), 783 CBI->getCalledValue(), 784 CBI->getDefaultDest(), 785 CBI->getIndirectDests(), 786 Args, OpB, CBI->getName(), InsertPt); 787 NewCBI->setCallingConv(CBI->getCallingConv()); 788 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; 789 NewCBI->setAttributes(CBI->getAttributes()); 790 NewCBI->setDebugLoc(CBI->getDebugLoc()); 791 NewCBI->NumIndirectDests = CBI->NumIndirectDests; 792 return NewCBI; 793 } 794 795 //===----------------------------------------------------------------------===// 796 // ReturnInst Implementation 797 //===----------------------------------------------------------------------===// 798 799 ReturnInst::ReturnInst(const ReturnInst &RI) 800 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, 801 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), 802 RI.getNumOperands()) { 803 if (RI.getNumOperands()) 804 Op<0>() = RI.Op<0>(); 805 SubclassOptionalData = RI.SubclassOptionalData; 806 } 807 808 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 809 : Instruction(Type::getVoidTy(C), Instruction::Ret, 810 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 811 InsertBefore) { 812 if (retVal) 813 Op<0>() = retVal; 814 } 815 816 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 817 : Instruction(Type::getVoidTy(C), Instruction::Ret, 818 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 819 InsertAtEnd) { 820 if (retVal) 821 Op<0>() = retVal; 822 } 823 824 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 825 : Instruction(Type::getVoidTy(Context), Instruction::Ret, 826 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {} 827 828 //===----------------------------------------------------------------------===// 829 // ResumeInst Implementation 830 //===----------------------------------------------------------------------===// 831 832 ResumeInst::ResumeInst(const ResumeInst &RI) 833 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, 834 OperandTraits<ResumeInst>::op_begin(this), 1) { 835 Op<0>() = RI.Op<0>(); 836 } 837 838 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 839 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 840 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 841 Op<0>() = Exn; 842 } 843 844 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 845 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 846 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 847 Op<0>() = Exn; 848 } 849 850 //===----------------------------------------------------------------------===// 851 // CleanupReturnInst Implementation 852 //===----------------------------------------------------------------------===// 853 854 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 855 : Instruction(CRI.getType(), Instruction::CleanupRet, 856 OperandTraits<CleanupReturnInst>::op_end(this) - 857 CRI.getNumOperands(), 858 CRI.getNumOperands()) { 859 setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); 860 Op<0>() = CRI.Op<0>(); 861 if (CRI.hasUnwindDest()) 862 Op<1>() = CRI.Op<1>(); 863 } 864 865 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 866 if (UnwindBB) 867 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 868 869 Op<0>() = CleanupPad; 870 if (UnwindBB) 871 Op<1>() = UnwindBB; 872 } 873 874 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 875 unsigned Values, Instruction *InsertBefore) 876 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 877 Instruction::CleanupRet, 878 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 879 Values, InsertBefore) { 880 init(CleanupPad, UnwindBB); 881 } 882 883 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 884 unsigned Values, BasicBlock *InsertAtEnd) 885 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 886 Instruction::CleanupRet, 887 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 888 Values, InsertAtEnd) { 889 init(CleanupPad, UnwindBB); 890 } 891 892 //===----------------------------------------------------------------------===// 893 // CatchReturnInst Implementation 894 //===----------------------------------------------------------------------===// 895 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 896 Op<0>() = CatchPad; 897 Op<1>() = BB; 898 } 899 900 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 901 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 902 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 903 Op<0>() = CRI.Op<0>(); 904 Op<1>() = CRI.Op<1>(); 905 } 906 907 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 908 Instruction *InsertBefore) 909 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 910 OperandTraits<CatchReturnInst>::op_begin(this), 2, 911 InsertBefore) { 912 init(CatchPad, BB); 913 } 914 915 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 916 BasicBlock *InsertAtEnd) 917 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 918 OperandTraits<CatchReturnInst>::op_begin(this), 2, 919 InsertAtEnd) { 920 init(CatchPad, BB); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // CatchSwitchInst Implementation 925 //===----------------------------------------------------------------------===// 926 927 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 928 unsigned NumReservedValues, 929 const Twine &NameStr, 930 Instruction *InsertBefore) 931 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 932 InsertBefore) { 933 if (UnwindDest) 934 ++NumReservedValues; 935 init(ParentPad, UnwindDest, NumReservedValues + 1); 936 setName(NameStr); 937 } 938 939 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 940 unsigned NumReservedValues, 941 const Twine &NameStr, BasicBlock *InsertAtEnd) 942 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 943 InsertAtEnd) { 944 if (UnwindDest) 945 ++NumReservedValues; 946 init(ParentPad, UnwindDest, NumReservedValues + 1); 947 setName(NameStr); 948 } 949 950 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 951 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, 952 CSI.getNumOperands()) { 953 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 954 setNumHungOffUseOperands(ReservedSpace); 955 Use *OL = getOperandList(); 956 const Use *InOL = CSI.getOperandList(); 957 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 958 OL[I] = InOL[I]; 959 } 960 961 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 962 unsigned NumReservedValues) { 963 assert(ParentPad && NumReservedValues); 964 965 ReservedSpace = NumReservedValues; 966 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 967 allocHungoffUses(ReservedSpace); 968 969 Op<0>() = ParentPad; 970 if (UnwindDest) { 971 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 972 setUnwindDest(UnwindDest); 973 } 974 } 975 976 /// growOperands - grow operands - This grows the operand list in response to a 977 /// push_back style of operation. This grows the number of ops by 2 times. 978 void CatchSwitchInst::growOperands(unsigned Size) { 979 unsigned NumOperands = getNumOperands(); 980 assert(NumOperands >= 1); 981 if (ReservedSpace >= NumOperands + Size) 982 return; 983 ReservedSpace = (NumOperands + Size / 2) * 2; 984 growHungoffUses(ReservedSpace); 985 } 986 987 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 988 unsigned OpNo = getNumOperands(); 989 growOperands(1); 990 assert(OpNo < ReservedSpace && "Growing didn't work!"); 991 setNumHungOffUseOperands(getNumOperands() + 1); 992 getOperandList()[OpNo] = Handler; 993 } 994 995 void CatchSwitchInst::removeHandler(handler_iterator HI) { 996 // Move all subsequent handlers up one. 997 Use *EndDst = op_end() - 1; 998 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 999 *CurDst = *(CurDst + 1); 1000 // Null out the last handler use. 1001 *EndDst = nullptr; 1002 1003 setNumHungOffUseOperands(getNumOperands() - 1); 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // FuncletPadInst Implementation 1008 //===----------------------------------------------------------------------===// 1009 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1010 const Twine &NameStr) { 1011 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1012 llvm::copy(Args, op_begin()); 1013 setParentPad(ParentPad); 1014 setName(NameStr); 1015 } 1016 1017 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1018 : Instruction(FPI.getType(), FPI.getOpcode(), 1019 OperandTraits<FuncletPadInst>::op_end(this) - 1020 FPI.getNumOperands(), 1021 FPI.getNumOperands()) { 1022 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1023 setParentPad(FPI.getParentPad()); 1024 } 1025 1026 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1027 ArrayRef<Value *> Args, unsigned Values, 1028 const Twine &NameStr, Instruction *InsertBefore) 1029 : Instruction(ParentPad->getType(), Op, 1030 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1031 InsertBefore) { 1032 init(ParentPad, Args, NameStr); 1033 } 1034 1035 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1036 ArrayRef<Value *> Args, unsigned Values, 1037 const Twine &NameStr, BasicBlock *InsertAtEnd) 1038 : Instruction(ParentPad->getType(), Op, 1039 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1040 InsertAtEnd) { 1041 init(ParentPad, Args, NameStr); 1042 } 1043 1044 //===----------------------------------------------------------------------===// 1045 // UnreachableInst Implementation 1046 //===----------------------------------------------------------------------===// 1047 1048 UnreachableInst::UnreachableInst(LLVMContext &Context, 1049 Instruction *InsertBefore) 1050 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1051 0, InsertBefore) {} 1052 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1053 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1054 0, InsertAtEnd) {} 1055 1056 //===----------------------------------------------------------------------===// 1057 // BranchInst Implementation 1058 //===----------------------------------------------------------------------===// 1059 1060 void BranchInst::AssertOK() { 1061 if (isConditional()) 1062 assert(getCondition()->getType()->isIntegerTy(1) && 1063 "May only branch on boolean predicates!"); 1064 } 1065 1066 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1067 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1068 OperandTraits<BranchInst>::op_end(this) - 1, 1, 1069 InsertBefore) { 1070 assert(IfTrue && "Branch destination may not be null!"); 1071 Op<-1>() = IfTrue; 1072 } 1073 1074 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1075 Instruction *InsertBefore) 1076 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1077 OperandTraits<BranchInst>::op_end(this) - 3, 3, 1078 InsertBefore) { 1079 Op<-1>() = IfTrue; 1080 Op<-2>() = IfFalse; 1081 Op<-3>() = Cond; 1082 #ifndef NDEBUG 1083 AssertOK(); 1084 #endif 1085 } 1086 1087 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1088 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1089 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { 1090 assert(IfTrue && "Branch destination may not be null!"); 1091 Op<-1>() = IfTrue; 1092 } 1093 1094 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1095 BasicBlock *InsertAtEnd) 1096 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1097 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { 1098 Op<-1>() = IfTrue; 1099 Op<-2>() = IfFalse; 1100 Op<-3>() = Cond; 1101 #ifndef NDEBUG 1102 AssertOK(); 1103 #endif 1104 } 1105 1106 BranchInst::BranchInst(const BranchInst &BI) 1107 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, 1108 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1109 BI.getNumOperands()) { 1110 Op<-1>() = BI.Op<-1>(); 1111 if (BI.getNumOperands() != 1) { 1112 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1113 Op<-3>() = BI.Op<-3>(); 1114 Op<-2>() = BI.Op<-2>(); 1115 } 1116 SubclassOptionalData = BI.SubclassOptionalData; 1117 } 1118 1119 void BranchInst::swapSuccessors() { 1120 assert(isConditional() && 1121 "Cannot swap successors of an unconditional branch"); 1122 Op<-1>().swap(Op<-2>()); 1123 1124 // Update profile metadata if present and it matches our structural 1125 // expectations. 1126 swapProfMetadata(); 1127 } 1128 1129 //===----------------------------------------------------------------------===// 1130 // AllocaInst Implementation 1131 //===----------------------------------------------------------------------===// 1132 1133 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1134 if (!Amt) 1135 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1136 else { 1137 assert(!isa<BasicBlock>(Amt) && 1138 "Passed basic block into allocation size parameter! Use other ctor"); 1139 assert(Amt->getType()->isIntegerTy() && 1140 "Allocation array size is not an integer!"); 1141 } 1142 return Amt; 1143 } 1144 1145 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1146 Instruction *InsertBefore) 1147 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1148 1149 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1150 BasicBlock *InsertAtEnd) 1151 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1152 1153 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1154 const Twine &Name, Instruction *InsertBefore) 1155 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {} 1156 1157 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1158 const Twine &Name, BasicBlock *InsertAtEnd) 1159 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} 1160 1161 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1162 unsigned Align, const Twine &Name, 1163 Instruction *InsertBefore) 1164 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1165 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1166 AllocatedType(Ty) { 1167 setAlignment(Align); 1168 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1169 setName(Name); 1170 } 1171 1172 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1173 unsigned Align, const Twine &Name, 1174 BasicBlock *InsertAtEnd) 1175 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1176 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1177 AllocatedType(Ty) { 1178 setAlignment(Align); 1179 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1180 setName(Name); 1181 } 1182 1183 void AllocaInst::setAlignment(unsigned Align) { 1184 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1185 assert(Align <= MaximumAlignment && 1186 "Alignment is greater than MaximumAlignment!"); 1187 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | 1188 (Log2_32(Align) + 1)); 1189 assert(getAlignment() == Align && "Alignment representation error!"); 1190 } 1191 1192 bool AllocaInst::isArrayAllocation() const { 1193 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1194 return !CI->isOne(); 1195 return true; 1196 } 1197 1198 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1199 /// function and is a constant size. If so, the code generator will fold it 1200 /// into the prolog/epilog code, so it is basically free. 1201 bool AllocaInst::isStaticAlloca() const { 1202 // Must be constant size. 1203 if (!isa<ConstantInt>(getArraySize())) return false; 1204 1205 // Must be in the entry block. 1206 const BasicBlock *Parent = getParent(); 1207 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1208 } 1209 1210 //===----------------------------------------------------------------------===// 1211 // LoadInst Implementation 1212 //===----------------------------------------------------------------------===// 1213 1214 void LoadInst::AssertOK() { 1215 assert(getOperand(0)->getType()->isPointerTy() && 1216 "Ptr must have pointer type."); 1217 assert(!(isAtomic() && getAlignment() == 0) && 1218 "Alignment required for atomic load"); 1219 } 1220 1221 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1222 Instruction *InsertBef) 1223 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1224 1225 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1226 BasicBlock *InsertAE) 1227 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1228 1229 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1230 Instruction *InsertBef) 1231 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} 1232 1233 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1234 BasicBlock *InsertAE) 1235 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} 1236 1237 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1238 unsigned Align, Instruction *InsertBef) 1239 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1240 SyncScope::System, InsertBef) {} 1241 1242 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1243 unsigned Align, BasicBlock *InsertAE) 1244 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1245 SyncScope::System, InsertAE) {} 1246 1247 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1248 unsigned Align, AtomicOrdering Order, 1249 SyncScope::ID SSID, Instruction *InsertBef) 1250 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1251 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1252 setVolatile(isVolatile); 1253 setAlignment(Align); 1254 setAtomic(Order, SSID); 1255 AssertOK(); 1256 setName(Name); 1257 } 1258 1259 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1260 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID, 1261 BasicBlock *InsertAE) 1262 : UnaryInstruction(Ty, Load, Ptr, InsertAE) { 1263 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1264 setVolatile(isVolatile); 1265 setAlignment(Align); 1266 setAtomic(Order, SSID); 1267 AssertOK(); 1268 setName(Name); 1269 } 1270 1271 void LoadInst::setAlignment(unsigned Align) { 1272 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1273 assert(Align <= MaximumAlignment && 1274 "Alignment is greater than MaximumAlignment!"); 1275 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1276 ((Log2_32(Align)+1)<<1)); 1277 assert(getAlignment() == Align && "Alignment representation error!"); 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // StoreInst Implementation 1282 //===----------------------------------------------------------------------===// 1283 1284 void StoreInst::AssertOK() { 1285 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1286 assert(getOperand(1)->getType()->isPointerTy() && 1287 "Ptr must have pointer type!"); 1288 assert(getOperand(0)->getType() == 1289 cast<PointerType>(getOperand(1)->getType())->getElementType() 1290 && "Ptr must be a pointer to Val type!"); 1291 assert(!(isAtomic() && getAlignment() == 0) && 1292 "Alignment required for atomic store"); 1293 } 1294 1295 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1296 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1297 1298 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1299 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1300 1301 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1302 Instruction *InsertBefore) 1303 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} 1304 1305 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1306 BasicBlock *InsertAtEnd) 1307 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} 1308 1309 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1310 Instruction *InsertBefore) 1311 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1312 SyncScope::System, InsertBefore) {} 1313 1314 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1315 BasicBlock *InsertAtEnd) 1316 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1317 SyncScope::System, InsertAtEnd) {} 1318 1319 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1320 unsigned Align, AtomicOrdering Order, 1321 SyncScope::ID SSID, 1322 Instruction *InsertBefore) 1323 : Instruction(Type::getVoidTy(val->getContext()), Store, 1324 OperandTraits<StoreInst>::op_begin(this), 1325 OperandTraits<StoreInst>::operands(this), 1326 InsertBefore) { 1327 Op<0>() = val; 1328 Op<1>() = addr; 1329 setVolatile(isVolatile); 1330 setAlignment(Align); 1331 setAtomic(Order, SSID); 1332 AssertOK(); 1333 } 1334 1335 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1336 unsigned Align, AtomicOrdering Order, 1337 SyncScope::ID SSID, 1338 BasicBlock *InsertAtEnd) 1339 : Instruction(Type::getVoidTy(val->getContext()), Store, 1340 OperandTraits<StoreInst>::op_begin(this), 1341 OperandTraits<StoreInst>::operands(this), 1342 InsertAtEnd) { 1343 Op<0>() = val; 1344 Op<1>() = addr; 1345 setVolatile(isVolatile); 1346 setAlignment(Align); 1347 setAtomic(Order, SSID); 1348 AssertOK(); 1349 } 1350 1351 void StoreInst::setAlignment(unsigned Align) { 1352 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1353 assert(Align <= MaximumAlignment && 1354 "Alignment is greater than MaximumAlignment!"); 1355 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1356 ((Log2_32(Align)+1) << 1)); 1357 assert(getAlignment() == Align && "Alignment representation error!"); 1358 } 1359 1360 //===----------------------------------------------------------------------===// 1361 // AtomicCmpXchgInst Implementation 1362 //===----------------------------------------------------------------------===// 1363 1364 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1365 AtomicOrdering SuccessOrdering, 1366 AtomicOrdering FailureOrdering, 1367 SyncScope::ID SSID) { 1368 Op<0>() = Ptr; 1369 Op<1>() = Cmp; 1370 Op<2>() = NewVal; 1371 setSuccessOrdering(SuccessOrdering); 1372 setFailureOrdering(FailureOrdering); 1373 setSyncScopeID(SSID); 1374 1375 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1376 "All operands must be non-null!"); 1377 assert(getOperand(0)->getType()->isPointerTy() && 1378 "Ptr must have pointer type!"); 1379 assert(getOperand(1)->getType() == 1380 cast<PointerType>(getOperand(0)->getType())->getElementType() 1381 && "Ptr must be a pointer to Cmp type!"); 1382 assert(getOperand(2)->getType() == 1383 cast<PointerType>(getOperand(0)->getType())->getElementType() 1384 && "Ptr must be a pointer to NewVal type!"); 1385 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 1386 "AtomicCmpXchg instructions must be atomic!"); 1387 assert(FailureOrdering != AtomicOrdering::NotAtomic && 1388 "AtomicCmpXchg instructions must be atomic!"); 1389 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && 1390 "AtomicCmpXchg failure argument shall be no stronger than the success " 1391 "argument"); 1392 assert(FailureOrdering != AtomicOrdering::Release && 1393 FailureOrdering != AtomicOrdering::AcquireRelease && 1394 "AtomicCmpXchg failure ordering cannot include release semantics"); 1395 } 1396 1397 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1398 AtomicOrdering SuccessOrdering, 1399 AtomicOrdering FailureOrdering, 1400 SyncScope::ID SSID, 1401 Instruction *InsertBefore) 1402 : Instruction( 1403 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1404 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1405 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1406 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); 1407 } 1408 1409 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1410 AtomicOrdering SuccessOrdering, 1411 AtomicOrdering FailureOrdering, 1412 SyncScope::ID SSID, 1413 BasicBlock *InsertAtEnd) 1414 : Instruction( 1415 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1416 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1417 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1418 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); 1419 } 1420 1421 //===----------------------------------------------------------------------===// 1422 // AtomicRMWInst Implementation 1423 //===----------------------------------------------------------------------===// 1424 1425 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1426 AtomicOrdering Ordering, 1427 SyncScope::ID SSID) { 1428 Op<0>() = Ptr; 1429 Op<1>() = Val; 1430 setOperation(Operation); 1431 setOrdering(Ordering); 1432 setSyncScopeID(SSID); 1433 1434 assert(getOperand(0) && getOperand(1) && 1435 "All operands must be non-null!"); 1436 assert(getOperand(0)->getType()->isPointerTy() && 1437 "Ptr must have pointer type!"); 1438 assert(getOperand(1)->getType() == 1439 cast<PointerType>(getOperand(0)->getType())->getElementType() 1440 && "Ptr must be a pointer to Val type!"); 1441 assert(Ordering != AtomicOrdering::NotAtomic && 1442 "AtomicRMW instructions must be atomic!"); 1443 } 1444 1445 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1446 AtomicOrdering Ordering, 1447 SyncScope::ID SSID, 1448 Instruction *InsertBefore) 1449 : Instruction(Val->getType(), AtomicRMW, 1450 OperandTraits<AtomicRMWInst>::op_begin(this), 1451 OperandTraits<AtomicRMWInst>::operands(this), 1452 InsertBefore) { 1453 Init(Operation, Ptr, Val, Ordering, SSID); 1454 } 1455 1456 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1457 AtomicOrdering Ordering, 1458 SyncScope::ID SSID, 1459 BasicBlock *InsertAtEnd) 1460 : Instruction(Val->getType(), AtomicRMW, 1461 OperandTraits<AtomicRMWInst>::op_begin(this), 1462 OperandTraits<AtomicRMWInst>::operands(this), 1463 InsertAtEnd) { 1464 Init(Operation, Ptr, Val, Ordering, SSID); 1465 } 1466 1467 StringRef AtomicRMWInst::getOperationName(BinOp Op) { 1468 switch (Op) { 1469 case AtomicRMWInst::Xchg: 1470 return "xchg"; 1471 case AtomicRMWInst::Add: 1472 return "add"; 1473 case AtomicRMWInst::Sub: 1474 return "sub"; 1475 case AtomicRMWInst::And: 1476 return "and"; 1477 case AtomicRMWInst::Nand: 1478 return "nand"; 1479 case AtomicRMWInst::Or: 1480 return "or"; 1481 case AtomicRMWInst::Xor: 1482 return "xor"; 1483 case AtomicRMWInst::Max: 1484 return "max"; 1485 case AtomicRMWInst::Min: 1486 return "min"; 1487 case AtomicRMWInst::UMax: 1488 return "umax"; 1489 case AtomicRMWInst::UMin: 1490 return "umin"; 1491 case AtomicRMWInst::FAdd: 1492 return "fadd"; 1493 case AtomicRMWInst::FSub: 1494 return "fsub"; 1495 case AtomicRMWInst::BAD_BINOP: 1496 return "<invalid operation>"; 1497 } 1498 1499 llvm_unreachable("invalid atomicrmw operation"); 1500 } 1501 1502 //===----------------------------------------------------------------------===// 1503 // FenceInst Implementation 1504 //===----------------------------------------------------------------------===// 1505 1506 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1507 SyncScope::ID SSID, 1508 Instruction *InsertBefore) 1509 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1510 setOrdering(Ordering); 1511 setSyncScopeID(SSID); 1512 } 1513 1514 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1515 SyncScope::ID SSID, 1516 BasicBlock *InsertAtEnd) 1517 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1518 setOrdering(Ordering); 1519 setSyncScopeID(SSID); 1520 } 1521 1522 //===----------------------------------------------------------------------===// 1523 // GetElementPtrInst Implementation 1524 //===----------------------------------------------------------------------===// 1525 1526 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1527 const Twine &Name) { 1528 assert(getNumOperands() == 1 + IdxList.size() && 1529 "NumOperands not initialized?"); 1530 Op<0>() = Ptr; 1531 llvm::copy(IdxList, op_begin() + 1); 1532 setName(Name); 1533 } 1534 1535 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1536 : Instruction(GEPI.getType(), GetElementPtr, 1537 OperandTraits<GetElementPtrInst>::op_end(this) - 1538 GEPI.getNumOperands(), 1539 GEPI.getNumOperands()), 1540 SourceElementType(GEPI.SourceElementType), 1541 ResultElementType(GEPI.ResultElementType) { 1542 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1543 SubclassOptionalData = GEPI.SubclassOptionalData; 1544 } 1545 1546 /// getIndexedType - Returns the type of the element that would be accessed with 1547 /// a gep instruction with the specified parameters. 1548 /// 1549 /// The Idxs pointer should point to a continuous piece of memory containing the 1550 /// indices, either as Value* or uint64_t. 1551 /// 1552 /// A null type is returned if the indices are invalid for the specified 1553 /// pointer type. 1554 /// 1555 template <typename IndexTy> 1556 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { 1557 // Handle the special case of the empty set index set, which is always valid. 1558 if (IdxList.empty()) 1559 return Agg; 1560 1561 // If there is at least one index, the top level type must be sized, otherwise 1562 // it cannot be 'stepped over'. 1563 if (!Agg->isSized()) 1564 return nullptr; 1565 1566 unsigned CurIdx = 1; 1567 for (; CurIdx != IdxList.size(); ++CurIdx) { 1568 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1569 if (!CT || CT->isPointerTy()) return nullptr; 1570 IndexTy Index = IdxList[CurIdx]; 1571 if (!CT->indexValid(Index)) return nullptr; 1572 Agg = CT->getTypeAtIndex(Index); 1573 } 1574 return CurIdx == IdxList.size() ? Agg : nullptr; 1575 } 1576 1577 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1578 return getIndexedTypeInternal(Ty, IdxList); 1579 } 1580 1581 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1582 ArrayRef<Constant *> IdxList) { 1583 return getIndexedTypeInternal(Ty, IdxList); 1584 } 1585 1586 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1587 return getIndexedTypeInternal(Ty, IdxList); 1588 } 1589 1590 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1591 /// zeros. If so, the result pointer and the first operand have the same 1592 /// value, just potentially different types. 1593 bool GetElementPtrInst::hasAllZeroIndices() const { 1594 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1595 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1596 if (!CI->isZero()) return false; 1597 } else { 1598 return false; 1599 } 1600 } 1601 return true; 1602 } 1603 1604 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1605 /// constant integers. If so, the result pointer and the first operand have 1606 /// a constant offset between them. 1607 bool GetElementPtrInst::hasAllConstantIndices() const { 1608 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1609 if (!isa<ConstantInt>(getOperand(i))) 1610 return false; 1611 } 1612 return true; 1613 } 1614 1615 void GetElementPtrInst::setIsInBounds(bool B) { 1616 cast<GEPOperator>(this)->setIsInBounds(B); 1617 } 1618 1619 bool GetElementPtrInst::isInBounds() const { 1620 return cast<GEPOperator>(this)->isInBounds(); 1621 } 1622 1623 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1624 APInt &Offset) const { 1625 // Delegate to the generic GEPOperator implementation. 1626 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1627 } 1628 1629 //===----------------------------------------------------------------------===// 1630 // ExtractElementInst Implementation 1631 //===----------------------------------------------------------------------===// 1632 1633 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1634 const Twine &Name, 1635 Instruction *InsertBef) 1636 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1637 ExtractElement, 1638 OperandTraits<ExtractElementInst>::op_begin(this), 1639 2, InsertBef) { 1640 assert(isValidOperands(Val, Index) && 1641 "Invalid extractelement instruction operands!"); 1642 Op<0>() = Val; 1643 Op<1>() = Index; 1644 setName(Name); 1645 } 1646 1647 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1648 const Twine &Name, 1649 BasicBlock *InsertAE) 1650 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1651 ExtractElement, 1652 OperandTraits<ExtractElementInst>::op_begin(this), 1653 2, InsertAE) { 1654 assert(isValidOperands(Val, Index) && 1655 "Invalid extractelement instruction operands!"); 1656 1657 Op<0>() = Val; 1658 Op<1>() = Index; 1659 setName(Name); 1660 } 1661 1662 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1663 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1664 return false; 1665 return true; 1666 } 1667 1668 //===----------------------------------------------------------------------===// 1669 // InsertElementInst Implementation 1670 //===----------------------------------------------------------------------===// 1671 1672 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1673 const Twine &Name, 1674 Instruction *InsertBef) 1675 : Instruction(Vec->getType(), InsertElement, 1676 OperandTraits<InsertElementInst>::op_begin(this), 1677 3, InsertBef) { 1678 assert(isValidOperands(Vec, Elt, Index) && 1679 "Invalid insertelement instruction operands!"); 1680 Op<0>() = Vec; 1681 Op<1>() = Elt; 1682 Op<2>() = Index; 1683 setName(Name); 1684 } 1685 1686 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1687 const Twine &Name, 1688 BasicBlock *InsertAE) 1689 : Instruction(Vec->getType(), InsertElement, 1690 OperandTraits<InsertElementInst>::op_begin(this), 1691 3, InsertAE) { 1692 assert(isValidOperands(Vec, Elt, Index) && 1693 "Invalid insertelement instruction operands!"); 1694 1695 Op<0>() = Vec; 1696 Op<1>() = Elt; 1697 Op<2>() = Index; 1698 setName(Name); 1699 } 1700 1701 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1702 const Value *Index) { 1703 if (!Vec->getType()->isVectorTy()) 1704 return false; // First operand of insertelement must be vector type. 1705 1706 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1707 return false;// Second operand of insertelement must be vector element type. 1708 1709 if (!Index->getType()->isIntegerTy()) 1710 return false; // Third operand of insertelement must be i32. 1711 return true; 1712 } 1713 1714 //===----------------------------------------------------------------------===// 1715 // ShuffleVectorInst Implementation 1716 //===----------------------------------------------------------------------===// 1717 1718 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1719 const Twine &Name, 1720 Instruction *InsertBefore) 1721 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1722 cast<VectorType>(Mask->getType())->getNumElements()), 1723 ShuffleVector, 1724 OperandTraits<ShuffleVectorInst>::op_begin(this), 1725 OperandTraits<ShuffleVectorInst>::operands(this), 1726 InsertBefore) { 1727 assert(isValidOperands(V1, V2, Mask) && 1728 "Invalid shuffle vector instruction operands!"); 1729 Op<0>() = V1; 1730 Op<1>() = V2; 1731 Op<2>() = Mask; 1732 setName(Name); 1733 } 1734 1735 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1736 const Twine &Name, 1737 BasicBlock *InsertAtEnd) 1738 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1739 cast<VectorType>(Mask->getType())->getNumElements()), 1740 ShuffleVector, 1741 OperandTraits<ShuffleVectorInst>::op_begin(this), 1742 OperandTraits<ShuffleVectorInst>::operands(this), 1743 InsertAtEnd) { 1744 assert(isValidOperands(V1, V2, Mask) && 1745 "Invalid shuffle vector instruction operands!"); 1746 1747 Op<0>() = V1; 1748 Op<1>() = V2; 1749 Op<2>() = Mask; 1750 setName(Name); 1751 } 1752 1753 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1754 const Value *Mask) { 1755 // V1 and V2 must be vectors of the same type. 1756 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1757 return false; 1758 1759 // Mask must be vector of i32. 1760 auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1761 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) 1762 return false; 1763 1764 // Check to see if Mask is valid. 1765 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1766 return true; 1767 1768 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { 1769 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1770 for (Value *Op : MV->operands()) { 1771 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1772 if (CI->uge(V1Size*2)) 1773 return false; 1774 } else if (!isa<UndefValue>(Op)) { 1775 return false; 1776 } 1777 } 1778 return true; 1779 } 1780 1781 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 1782 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1783 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1784 if (CDS->getElementAsInteger(i) >= V1Size*2) 1785 return false; 1786 return true; 1787 } 1788 1789 // The bitcode reader can create a place holder for a forward reference 1790 // used as the shuffle mask. When this occurs, the shuffle mask will 1791 // fall into this case and fail. To avoid this error, do this bit of 1792 // ugliness to allow such a mask pass. 1793 if (const auto *CE = dyn_cast<ConstantExpr>(Mask)) 1794 if (CE->getOpcode() == Instruction::UserOp1) 1795 return true; 1796 1797 return false; 1798 } 1799 1800 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) { 1801 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1802 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) 1803 return CDS->getElementAsInteger(i); 1804 Constant *C = Mask->getAggregateElement(i); 1805 if (isa<UndefValue>(C)) 1806 return -1; 1807 return cast<ConstantInt>(C)->getZExtValue(); 1808 } 1809 1810 void ShuffleVectorInst::getShuffleMask(const Constant *Mask, 1811 SmallVectorImpl<int> &Result) { 1812 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1813 1814 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 1815 for (unsigned i = 0; i != NumElts; ++i) 1816 Result.push_back(CDS->getElementAsInteger(i)); 1817 return; 1818 } 1819 for (unsigned i = 0; i != NumElts; ++i) { 1820 Constant *C = Mask->getAggregateElement(i); 1821 Result.push_back(isa<UndefValue>(C) ? -1 : 1822 cast<ConstantInt>(C)->getZExtValue()); 1823 } 1824 } 1825 1826 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 1827 assert(!Mask.empty() && "Shuffle mask must contain elements"); 1828 bool UsesLHS = false; 1829 bool UsesRHS = false; 1830 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 1831 if (Mask[i] == -1) 1832 continue; 1833 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) && 1834 "Out-of-bounds shuffle mask element"); 1835 UsesLHS |= (Mask[i] < NumOpElts); 1836 UsesRHS |= (Mask[i] >= NumOpElts); 1837 if (UsesLHS && UsesRHS) 1838 return false; 1839 } 1840 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source"); 1841 return true; 1842 } 1843 1844 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { 1845 // We don't have vector operand size information, so assume operands are the 1846 // same size as the mask. 1847 return isSingleSourceMaskImpl(Mask, Mask.size()); 1848 } 1849 1850 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 1851 if (!isSingleSourceMaskImpl(Mask, NumOpElts)) 1852 return false; 1853 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 1854 if (Mask[i] == -1) 1855 continue; 1856 if (Mask[i] != i && Mask[i] != (NumOpElts + i)) 1857 return false; 1858 } 1859 return true; 1860 } 1861 1862 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { 1863 // We don't have vector operand size information, so assume operands are the 1864 // same size as the mask. 1865 return isIdentityMaskImpl(Mask, Mask.size()); 1866 } 1867 1868 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { 1869 if (!isSingleSourceMask(Mask)) 1870 return false; 1871 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1872 if (Mask[i] == -1) 1873 continue; 1874 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) 1875 return false; 1876 } 1877 return true; 1878 } 1879 1880 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { 1881 if (!isSingleSourceMask(Mask)) 1882 return false; 1883 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1884 if (Mask[i] == -1) 1885 continue; 1886 if (Mask[i] != 0 && Mask[i] != NumElts) 1887 return false; 1888 } 1889 return true; 1890 } 1891 1892 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { 1893 // Select is differentiated from identity. It requires using both sources. 1894 if (isSingleSourceMask(Mask)) 1895 return false; 1896 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1897 if (Mask[i] == -1) 1898 continue; 1899 if (Mask[i] != i && Mask[i] != (NumElts + i)) 1900 return false; 1901 } 1902 return true; 1903 } 1904 1905 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { 1906 // Example masks that will return true: 1907 // v1 = <a, b, c, d> 1908 // v2 = <e, f, g, h> 1909 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> 1910 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> 1911 1912 // 1. The number of elements in the mask must be a power-of-2 and at least 2. 1913 int NumElts = Mask.size(); 1914 if (NumElts < 2 || !isPowerOf2_32(NumElts)) 1915 return false; 1916 1917 // 2. The first element of the mask must be either a 0 or a 1. 1918 if (Mask[0] != 0 && Mask[0] != 1) 1919 return false; 1920 1921 // 3. The difference between the first 2 elements must be equal to the 1922 // number of elements in the mask. 1923 if ((Mask[1] - Mask[0]) != NumElts) 1924 return false; 1925 1926 // 4. The difference between consecutive even-numbered and odd-numbered 1927 // elements must be equal to 2. 1928 for (int i = 2; i < NumElts; ++i) { 1929 int MaskEltVal = Mask[i]; 1930 if (MaskEltVal == -1) 1931 return false; 1932 int MaskEltPrevVal = Mask[i - 2]; 1933 if (MaskEltVal - MaskEltPrevVal != 2) 1934 return false; 1935 } 1936 return true; 1937 } 1938 1939 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, 1940 int NumSrcElts, int &Index) { 1941 // Must extract from a single source. 1942 if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) 1943 return false; 1944 1945 // Must be smaller (else this is an Identity shuffle). 1946 if (NumSrcElts <= (int)Mask.size()) 1947 return false; 1948 1949 // Find start of extraction, accounting that we may start with an UNDEF. 1950 int SubIndex = -1; 1951 for (int i = 0, e = Mask.size(); i != e; ++i) { 1952 int M = Mask[i]; 1953 if (M < 0) 1954 continue; 1955 int Offset = (M % NumSrcElts) - i; 1956 if (0 <= SubIndex && SubIndex != Offset) 1957 return false; 1958 SubIndex = Offset; 1959 } 1960 1961 if (0 <= SubIndex) { 1962 Index = SubIndex; 1963 return true; 1964 } 1965 return false; 1966 } 1967 1968 bool ShuffleVectorInst::isIdentityWithPadding() const { 1969 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 1970 int NumMaskElts = getType()->getVectorNumElements(); 1971 if (NumMaskElts <= NumOpElts) 1972 return false; 1973 1974 // The first part of the mask must choose elements from exactly 1 source op. 1975 SmallVector<int, 16> Mask = getShuffleMask(); 1976 if (!isIdentityMaskImpl(Mask, NumOpElts)) 1977 return false; 1978 1979 // All extending must be with undef elements. 1980 for (int i = NumOpElts; i < NumMaskElts; ++i) 1981 if (Mask[i] != -1) 1982 return false; 1983 1984 return true; 1985 } 1986 1987 bool ShuffleVectorInst::isIdentityWithExtract() const { 1988 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 1989 int NumMaskElts = getType()->getVectorNumElements(); 1990 if (NumMaskElts >= NumOpElts) 1991 return false; 1992 1993 return isIdentityMaskImpl(getShuffleMask(), NumOpElts); 1994 } 1995 1996 bool ShuffleVectorInst::isConcat() const { 1997 // Vector concatenation is differentiated from identity with padding. 1998 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>())) 1999 return false; 2000 2001 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 2002 int NumMaskElts = getType()->getVectorNumElements(); 2003 if (NumMaskElts != NumOpElts * 2) 2004 return false; 2005 2006 // Use the mask length rather than the operands' vector lengths here. We 2007 // already know that the shuffle returns a vector twice as long as the inputs, 2008 // and neither of the inputs are undef vectors. If the mask picks consecutive 2009 // elements from both inputs, then this is a concatenation of the inputs. 2010 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); 2011 } 2012 2013 //===----------------------------------------------------------------------===// 2014 // InsertValueInst Class 2015 //===----------------------------------------------------------------------===// 2016 2017 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2018 const Twine &Name) { 2019 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 2020 2021 // There's no fundamental reason why we require at least one index 2022 // (other than weirdness with &*IdxBegin being invalid; see 2023 // getelementptr's init routine for example). But there's no 2024 // present need to support it. 2025 assert(!Idxs.empty() && "InsertValueInst must have at least one index"); 2026 2027 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 2028 Val->getType() && "Inserted value must match indexed type!"); 2029 Op<0>() = Agg; 2030 Op<1>() = Val; 2031 2032 Indices.append(Idxs.begin(), Idxs.end()); 2033 setName(Name); 2034 } 2035 2036 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 2037 : Instruction(IVI.getType(), InsertValue, 2038 OperandTraits<InsertValueInst>::op_begin(this), 2), 2039 Indices(IVI.Indices) { 2040 Op<0>() = IVI.getOperand(0); 2041 Op<1>() = IVI.getOperand(1); 2042 SubclassOptionalData = IVI.SubclassOptionalData; 2043 } 2044 2045 //===----------------------------------------------------------------------===// 2046 // ExtractValueInst Class 2047 //===----------------------------------------------------------------------===// 2048 2049 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 2050 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 2051 2052 // There's no fundamental reason why we require at least one index. 2053 // But there's no present need to support it. 2054 assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); 2055 2056 Indices.append(Idxs.begin(), Idxs.end()); 2057 setName(Name); 2058 } 2059 2060 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 2061 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 2062 Indices(EVI.Indices) { 2063 SubclassOptionalData = EVI.SubclassOptionalData; 2064 } 2065 2066 // getIndexedType - Returns the type of the element that would be extracted 2067 // with an extractvalue instruction with the specified parameters. 2068 // 2069 // A null type is returned if the indices are invalid for the specified 2070 // pointer type. 2071 // 2072 Type *ExtractValueInst::getIndexedType(Type *Agg, 2073 ArrayRef<unsigned> Idxs) { 2074 for (unsigned Index : Idxs) { 2075 // We can't use CompositeType::indexValid(Index) here. 2076 // indexValid() always returns true for arrays because getelementptr allows 2077 // out-of-bounds indices. Since we don't allow those for extractvalue and 2078 // insertvalue we need to check array indexing manually. 2079 // Since the only other types we can index into are struct types it's just 2080 // as easy to check those manually as well. 2081 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 2082 if (Index >= AT->getNumElements()) 2083 return nullptr; 2084 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2085 if (Index >= ST->getNumElements()) 2086 return nullptr; 2087 } else { 2088 // Not a valid type to index into. 2089 return nullptr; 2090 } 2091 2092 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 2093 } 2094 return const_cast<Type*>(Agg); 2095 } 2096 2097 //===----------------------------------------------------------------------===// 2098 // UnaryOperator Class 2099 //===----------------------------------------------------------------------===// 2100 2101 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2102 Type *Ty, const Twine &Name, 2103 Instruction *InsertBefore) 2104 : UnaryInstruction(Ty, iType, S, InsertBefore) { 2105 Op<0>() = S; 2106 setName(Name); 2107 AssertOK(); 2108 } 2109 2110 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2111 Type *Ty, const Twine &Name, 2112 BasicBlock *InsertAtEnd) 2113 : UnaryInstruction(Ty, iType, S, InsertAtEnd) { 2114 Op<0>() = S; 2115 setName(Name); 2116 AssertOK(); 2117 } 2118 2119 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2120 const Twine &Name, 2121 Instruction *InsertBefore) { 2122 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); 2123 } 2124 2125 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2126 const Twine &Name, 2127 BasicBlock *InsertAtEnd) { 2128 UnaryOperator *Res = Create(Op, S, Name); 2129 InsertAtEnd->getInstList().push_back(Res); 2130 return Res; 2131 } 2132 2133 void UnaryOperator::AssertOK() { 2134 Value *LHS = getOperand(0); 2135 (void)LHS; // Silence warnings. 2136 #ifndef NDEBUG 2137 switch (getOpcode()) { 2138 case FNeg: 2139 assert(getType() == LHS->getType() && 2140 "Unary operation should return same type as operand!"); 2141 assert(getType()->isFPOrFPVectorTy() && 2142 "Tried to create a floating-point operation on a " 2143 "non-floating-point type!"); 2144 break; 2145 default: llvm_unreachable("Invalid opcode provided"); 2146 } 2147 #endif 2148 } 2149 2150 //===----------------------------------------------------------------------===// 2151 // BinaryOperator Class 2152 //===----------------------------------------------------------------------===// 2153 2154 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2155 Type *Ty, const Twine &Name, 2156 Instruction *InsertBefore) 2157 : Instruction(Ty, iType, 2158 OperandTraits<BinaryOperator>::op_begin(this), 2159 OperandTraits<BinaryOperator>::operands(this), 2160 InsertBefore) { 2161 Op<0>() = S1; 2162 Op<1>() = S2; 2163 setName(Name); 2164 AssertOK(); 2165 } 2166 2167 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2168 Type *Ty, const Twine &Name, 2169 BasicBlock *InsertAtEnd) 2170 : Instruction(Ty, iType, 2171 OperandTraits<BinaryOperator>::op_begin(this), 2172 OperandTraits<BinaryOperator>::operands(this), 2173 InsertAtEnd) { 2174 Op<0>() = S1; 2175 Op<1>() = S2; 2176 setName(Name); 2177 AssertOK(); 2178 } 2179 2180 void BinaryOperator::AssertOK() { 2181 Value *LHS = getOperand(0), *RHS = getOperand(1); 2182 (void)LHS; (void)RHS; // Silence warnings. 2183 assert(LHS->getType() == RHS->getType() && 2184 "Binary operator operand types must match!"); 2185 #ifndef NDEBUG 2186 switch (getOpcode()) { 2187 case Add: case Sub: 2188 case Mul: 2189 assert(getType() == LHS->getType() && 2190 "Arithmetic operation should return same type as operands!"); 2191 assert(getType()->isIntOrIntVectorTy() && 2192 "Tried to create an integer operation on a non-integer type!"); 2193 break; 2194 case FAdd: case FSub: 2195 case FMul: 2196 assert(getType() == LHS->getType() && 2197 "Arithmetic operation should return same type as operands!"); 2198 assert(getType()->isFPOrFPVectorTy() && 2199 "Tried to create a floating-point operation on a " 2200 "non-floating-point type!"); 2201 break; 2202 case UDiv: 2203 case SDiv: 2204 assert(getType() == LHS->getType() && 2205 "Arithmetic operation should return same type as operands!"); 2206 assert(getType()->isIntOrIntVectorTy() && 2207 "Incorrect operand type (not integer) for S/UDIV"); 2208 break; 2209 case FDiv: 2210 assert(getType() == LHS->getType() && 2211 "Arithmetic operation should return same type as operands!"); 2212 assert(getType()->isFPOrFPVectorTy() && 2213 "Incorrect operand type (not floating point) for FDIV"); 2214 break; 2215 case URem: 2216 case SRem: 2217 assert(getType() == LHS->getType() && 2218 "Arithmetic operation should return same type as operands!"); 2219 assert(getType()->isIntOrIntVectorTy() && 2220 "Incorrect operand type (not integer) for S/UREM"); 2221 break; 2222 case FRem: 2223 assert(getType() == LHS->getType() && 2224 "Arithmetic operation should return same type as operands!"); 2225 assert(getType()->isFPOrFPVectorTy() && 2226 "Incorrect operand type (not floating point) for FREM"); 2227 break; 2228 case Shl: 2229 case LShr: 2230 case AShr: 2231 assert(getType() == LHS->getType() && 2232 "Shift operation should return same type as operands!"); 2233 assert(getType()->isIntOrIntVectorTy() && 2234 "Tried to create a shift operation on a non-integral type!"); 2235 break; 2236 case And: case Or: 2237 case Xor: 2238 assert(getType() == LHS->getType() && 2239 "Logical operation should return same type as operands!"); 2240 assert(getType()->isIntOrIntVectorTy() && 2241 "Tried to create a logical operation on a non-integral type!"); 2242 break; 2243 default: llvm_unreachable("Invalid opcode provided"); 2244 } 2245 #endif 2246 } 2247 2248 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2249 const Twine &Name, 2250 Instruction *InsertBefore) { 2251 assert(S1->getType() == S2->getType() && 2252 "Cannot create binary operator with two operands of differing type!"); 2253 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2254 } 2255 2256 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2257 const Twine &Name, 2258 BasicBlock *InsertAtEnd) { 2259 BinaryOperator *Res = Create(Op, S1, S2, Name); 2260 InsertAtEnd->getInstList().push_back(Res); 2261 return Res; 2262 } 2263 2264 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2265 Instruction *InsertBefore) { 2266 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2267 return new BinaryOperator(Instruction::Sub, 2268 zero, Op, 2269 Op->getType(), Name, InsertBefore); 2270 } 2271 2272 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2273 BasicBlock *InsertAtEnd) { 2274 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2275 return new BinaryOperator(Instruction::Sub, 2276 zero, Op, 2277 Op->getType(), Name, InsertAtEnd); 2278 } 2279 2280 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2281 Instruction *InsertBefore) { 2282 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2283 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2284 } 2285 2286 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2287 BasicBlock *InsertAtEnd) { 2288 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2289 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2290 } 2291 2292 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2293 Instruction *InsertBefore) { 2294 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2295 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2296 } 2297 2298 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2299 BasicBlock *InsertAtEnd) { 2300 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2301 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2302 } 2303 2304 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2305 Instruction *InsertBefore) { 2306 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2307 return new BinaryOperator(Instruction::FSub, zero, Op, 2308 Op->getType(), Name, InsertBefore); 2309 } 2310 2311 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2312 BasicBlock *InsertAtEnd) { 2313 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2314 return new BinaryOperator(Instruction::FSub, zero, Op, 2315 Op->getType(), Name, InsertAtEnd); 2316 } 2317 2318 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2319 Instruction *InsertBefore) { 2320 Constant *C = Constant::getAllOnesValue(Op->getType()); 2321 return new BinaryOperator(Instruction::Xor, Op, C, 2322 Op->getType(), Name, InsertBefore); 2323 } 2324 2325 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2326 BasicBlock *InsertAtEnd) { 2327 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2328 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2329 Op->getType(), Name, InsertAtEnd); 2330 } 2331 2332 // Exchange the two operands to this instruction. This instruction is safe to 2333 // use on any binary instruction and does not modify the semantics of the 2334 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode 2335 // is changed. 2336 bool BinaryOperator::swapOperands() { 2337 if (!isCommutative()) 2338 return true; // Can't commute operands 2339 Op<0>().swap(Op<1>()); 2340 return false; 2341 } 2342 2343 //===----------------------------------------------------------------------===// 2344 // FPMathOperator Class 2345 //===----------------------------------------------------------------------===// 2346 2347 float FPMathOperator::getFPAccuracy() const { 2348 const MDNode *MD = 2349 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2350 if (!MD) 2351 return 0.0; 2352 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2353 return Accuracy->getValueAPF().convertToFloat(); 2354 } 2355 2356 //===----------------------------------------------------------------------===// 2357 // CastInst Class 2358 //===----------------------------------------------------------------------===// 2359 2360 // Just determine if this cast only deals with integral->integral conversion. 2361 bool CastInst::isIntegerCast() const { 2362 switch (getOpcode()) { 2363 default: return false; 2364 case Instruction::ZExt: 2365 case Instruction::SExt: 2366 case Instruction::Trunc: 2367 return true; 2368 case Instruction::BitCast: 2369 return getOperand(0)->getType()->isIntegerTy() && 2370 getType()->isIntegerTy(); 2371 } 2372 } 2373 2374 bool CastInst::isLosslessCast() const { 2375 // Only BitCast can be lossless, exit fast if we're not BitCast 2376 if (getOpcode() != Instruction::BitCast) 2377 return false; 2378 2379 // Identity cast is always lossless 2380 Type *SrcTy = getOperand(0)->getType(); 2381 Type *DstTy = getType(); 2382 if (SrcTy == DstTy) 2383 return true; 2384 2385 // Pointer to pointer is always lossless. 2386 if (SrcTy->isPointerTy()) 2387 return DstTy->isPointerTy(); 2388 return false; // Other types have no identity values 2389 } 2390 2391 /// This function determines if the CastInst does not require any bits to be 2392 /// changed in order to effect the cast. Essentially, it identifies cases where 2393 /// no code gen is necessary for the cast, hence the name no-op cast. For 2394 /// example, the following are all no-op casts: 2395 /// # bitcast i32* %x to i8* 2396 /// # bitcast <2 x i32> %x to <4 x i16> 2397 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2398 /// Determine if the described cast is a no-op. 2399 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2400 Type *SrcTy, 2401 Type *DestTy, 2402 const DataLayout &DL) { 2403 switch (Opcode) { 2404 default: llvm_unreachable("Invalid CastOp"); 2405 case Instruction::Trunc: 2406 case Instruction::ZExt: 2407 case Instruction::SExt: 2408 case Instruction::FPTrunc: 2409 case Instruction::FPExt: 2410 case Instruction::UIToFP: 2411 case Instruction::SIToFP: 2412 case Instruction::FPToUI: 2413 case Instruction::FPToSI: 2414 case Instruction::AddrSpaceCast: 2415 // TODO: Target informations may give a more accurate answer here. 2416 return false; 2417 case Instruction::BitCast: 2418 return true; // BitCast never modifies bits. 2419 case Instruction::PtrToInt: 2420 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == 2421 DestTy->getScalarSizeInBits(); 2422 case Instruction::IntToPtr: 2423 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == 2424 SrcTy->getScalarSizeInBits(); 2425 } 2426 } 2427 2428 bool CastInst::isNoopCast(const DataLayout &DL) const { 2429 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); 2430 } 2431 2432 /// This function determines if a pair of casts can be eliminated and what 2433 /// opcode should be used in the elimination. This assumes that there are two 2434 /// instructions like this: 2435 /// * %F = firstOpcode SrcTy %x to MidTy 2436 /// * %S = secondOpcode MidTy %F to DstTy 2437 /// The function returns a resultOpcode so these two casts can be replaced with: 2438 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2439 /// If no such cast is permitted, the function returns 0. 2440 unsigned CastInst::isEliminableCastPair( 2441 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2442 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2443 Type *DstIntPtrTy) { 2444 // Define the 144 possibilities for these two cast instructions. The values 2445 // in this matrix determine what to do in a given situation and select the 2446 // case in the switch below. The rows correspond to firstOp, the columns 2447 // correspond to secondOp. In looking at the table below, keep in mind 2448 // the following cast properties: 2449 // 2450 // Size Compare Source Destination 2451 // Operator Src ? Size Type Sign Type Sign 2452 // -------- ------------ ------------------- --------------------- 2453 // TRUNC > Integer Any Integral Any 2454 // ZEXT < Integral Unsigned Integer Any 2455 // SEXT < Integral Signed Integer Any 2456 // FPTOUI n/a FloatPt n/a Integral Unsigned 2457 // FPTOSI n/a FloatPt n/a Integral Signed 2458 // UITOFP n/a Integral Unsigned FloatPt n/a 2459 // SITOFP n/a Integral Signed FloatPt n/a 2460 // FPTRUNC > FloatPt n/a FloatPt n/a 2461 // FPEXT < FloatPt n/a FloatPt n/a 2462 // PTRTOINT n/a Pointer n/a Integral Unsigned 2463 // INTTOPTR n/a Integral Unsigned Pointer n/a 2464 // BITCAST = FirstClass n/a FirstClass n/a 2465 // ADDRSPCST n/a Pointer n/a Pointer n/a 2466 // 2467 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2468 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2469 // into "fptoui double to i64", but this loses information about the range 2470 // of the produced value (we no longer know the top-part is all zeros). 2471 // Further this conversion is often much more expensive for typical hardware, 2472 // and causes issues when building libgcc. We disallow fptosi+sext for the 2473 // same reason. 2474 const unsigned numCastOps = 2475 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2476 static const uint8_t CastResults[numCastOps][numCastOps] = { 2477 // T F F U S F F P I B A -+ 2478 // R Z S P P I I T P 2 N T S | 2479 // U E E 2 2 2 2 R E I T C C +- secondOp 2480 // N X X U S F F N X N 2 V V | 2481 // C T T I I P P C T T P T T -+ 2482 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2483 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2484 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2485 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2486 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2487 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2488 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2489 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2490 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | 2491 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2492 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2493 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2494 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2495 }; 2496 2497 // TODO: This logic could be encoded into the table above and handled in the 2498 // switch below. 2499 // If either of the casts are a bitcast from scalar to vector, disallow the 2500 // merging. However, any pair of bitcasts are allowed. 2501 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2502 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2503 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2504 2505 // Check if any of the casts convert scalars <-> vectors. 2506 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2507 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2508 if (!AreBothBitcasts) 2509 return 0; 2510 2511 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2512 [secondOp-Instruction::CastOpsBegin]; 2513 switch (ElimCase) { 2514 case 0: 2515 // Categorically disallowed. 2516 return 0; 2517 case 1: 2518 // Allowed, use first cast's opcode. 2519 return firstOp; 2520 case 2: 2521 // Allowed, use second cast's opcode. 2522 return secondOp; 2523 case 3: 2524 // No-op cast in second op implies firstOp as long as the DestTy 2525 // is integer and we are not converting between a vector and a 2526 // non-vector type. 2527 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2528 return firstOp; 2529 return 0; 2530 case 4: 2531 // No-op cast in second op implies firstOp as long as the DestTy 2532 // is floating point. 2533 if (DstTy->isFloatingPointTy()) 2534 return firstOp; 2535 return 0; 2536 case 5: 2537 // No-op cast in first op implies secondOp as long as the SrcTy 2538 // is an integer. 2539 if (SrcTy->isIntegerTy()) 2540 return secondOp; 2541 return 0; 2542 case 6: 2543 // No-op cast in first op implies secondOp as long as the SrcTy 2544 // is a floating point. 2545 if (SrcTy->isFloatingPointTy()) 2546 return secondOp; 2547 return 0; 2548 case 7: { 2549 // Cannot simplify if address spaces are different! 2550 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2551 return 0; 2552 2553 unsigned MidSize = MidTy->getScalarSizeInBits(); 2554 // We can still fold this without knowing the actual sizes as long we 2555 // know that the intermediate pointer is the largest possible 2556 // pointer size. 2557 // FIXME: Is this always true? 2558 if (MidSize == 64) 2559 return Instruction::BitCast; 2560 2561 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2562 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2563 return 0; 2564 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2565 if (MidSize >= PtrSize) 2566 return Instruction::BitCast; 2567 return 0; 2568 } 2569 case 8: { 2570 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2571 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2572 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2573 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2574 unsigned DstSize = DstTy->getScalarSizeInBits(); 2575 if (SrcSize == DstSize) 2576 return Instruction::BitCast; 2577 else if (SrcSize < DstSize) 2578 return firstOp; 2579 return secondOp; 2580 } 2581 case 9: 2582 // zext, sext -> zext, because sext can't sign extend after zext 2583 return Instruction::ZExt; 2584 case 11: { 2585 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2586 if (!MidIntPtrTy) 2587 return 0; 2588 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2589 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2590 unsigned DstSize = DstTy->getScalarSizeInBits(); 2591 if (SrcSize <= PtrSize && SrcSize == DstSize) 2592 return Instruction::BitCast; 2593 return 0; 2594 } 2595 case 12: 2596 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2597 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2598 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2599 return Instruction::AddrSpaceCast; 2600 return Instruction::BitCast; 2601 case 13: 2602 // FIXME: this state can be merged with (1), but the following assert 2603 // is useful to check the correcteness of the sequence due to semantic 2604 // change of bitcast. 2605 assert( 2606 SrcTy->isPtrOrPtrVectorTy() && 2607 MidTy->isPtrOrPtrVectorTy() && 2608 DstTy->isPtrOrPtrVectorTy() && 2609 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2610 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2611 "Illegal addrspacecast, bitcast sequence!"); 2612 // Allowed, use first cast's opcode 2613 return firstOp; 2614 case 14: 2615 // bitcast, addrspacecast -> addrspacecast if the element type of 2616 // bitcast's source is the same as that of addrspacecast's destination. 2617 if (SrcTy->getScalarType()->getPointerElementType() == 2618 DstTy->getScalarType()->getPointerElementType()) 2619 return Instruction::AddrSpaceCast; 2620 return 0; 2621 case 15: 2622 // FIXME: this state can be merged with (1), but the following assert 2623 // is useful to check the correcteness of the sequence due to semantic 2624 // change of bitcast. 2625 assert( 2626 SrcTy->isIntOrIntVectorTy() && 2627 MidTy->isPtrOrPtrVectorTy() && 2628 DstTy->isPtrOrPtrVectorTy() && 2629 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2630 "Illegal inttoptr, bitcast sequence!"); 2631 // Allowed, use first cast's opcode 2632 return firstOp; 2633 case 16: 2634 // FIXME: this state can be merged with (2), but the following assert 2635 // is useful to check the correcteness of the sequence due to semantic 2636 // change of bitcast. 2637 assert( 2638 SrcTy->isPtrOrPtrVectorTy() && 2639 MidTy->isPtrOrPtrVectorTy() && 2640 DstTy->isIntOrIntVectorTy() && 2641 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2642 "Illegal bitcast, ptrtoint sequence!"); 2643 // Allowed, use second cast's opcode 2644 return secondOp; 2645 case 17: 2646 // (sitofp (zext x)) -> (uitofp x) 2647 return Instruction::UIToFP; 2648 case 99: 2649 // Cast combination can't happen (error in input). This is for all cases 2650 // where the MidTy is not the same for the two cast instructions. 2651 llvm_unreachable("Invalid Cast Combination"); 2652 default: 2653 llvm_unreachable("Error in CastResults table!!!"); 2654 } 2655 } 2656 2657 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2658 const Twine &Name, Instruction *InsertBefore) { 2659 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2660 // Construct and return the appropriate CastInst subclass 2661 switch (op) { 2662 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2663 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2664 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2665 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2666 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2667 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2668 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2669 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2670 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2671 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2672 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2673 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2674 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2675 default: llvm_unreachable("Invalid opcode provided"); 2676 } 2677 } 2678 2679 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2680 const Twine &Name, BasicBlock *InsertAtEnd) { 2681 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2682 // Construct and return the appropriate CastInst subclass 2683 switch (op) { 2684 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2685 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2686 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2687 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2688 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2689 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2690 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2691 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2692 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2693 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2694 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2695 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2696 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2697 default: llvm_unreachable("Invalid opcode provided"); 2698 } 2699 } 2700 2701 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2702 const Twine &Name, 2703 Instruction *InsertBefore) { 2704 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2705 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2706 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2707 } 2708 2709 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2710 const Twine &Name, 2711 BasicBlock *InsertAtEnd) { 2712 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2713 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2714 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2715 } 2716 2717 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2718 const Twine &Name, 2719 Instruction *InsertBefore) { 2720 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2721 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2722 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2723 } 2724 2725 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2726 const Twine &Name, 2727 BasicBlock *InsertAtEnd) { 2728 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2729 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2730 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2731 } 2732 2733 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2734 const Twine &Name, 2735 Instruction *InsertBefore) { 2736 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2737 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2738 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2739 } 2740 2741 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2742 const Twine &Name, 2743 BasicBlock *InsertAtEnd) { 2744 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2745 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2746 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2747 } 2748 2749 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2750 const Twine &Name, 2751 BasicBlock *InsertAtEnd) { 2752 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2753 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2754 "Invalid cast"); 2755 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2756 assert((!Ty->isVectorTy() || 2757 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2758 "Invalid cast"); 2759 2760 if (Ty->isIntOrIntVectorTy()) 2761 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2762 2763 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 2764 } 2765 2766 /// Create a BitCast or a PtrToInt cast instruction 2767 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2768 const Twine &Name, 2769 Instruction *InsertBefore) { 2770 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2771 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2772 "Invalid cast"); 2773 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2774 assert((!Ty->isVectorTy() || 2775 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2776 "Invalid cast"); 2777 2778 if (Ty->isIntOrIntVectorTy()) 2779 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2780 2781 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 2782 } 2783 2784 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2785 Value *S, Type *Ty, 2786 const Twine &Name, 2787 BasicBlock *InsertAtEnd) { 2788 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2789 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2790 2791 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2792 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 2793 2794 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2795 } 2796 2797 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2798 Value *S, Type *Ty, 2799 const Twine &Name, 2800 Instruction *InsertBefore) { 2801 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2802 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2803 2804 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2805 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 2806 2807 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2808 } 2809 2810 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 2811 const Twine &Name, 2812 Instruction *InsertBefore) { 2813 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 2814 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2815 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 2816 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 2817 2818 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2819 } 2820 2821 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2822 bool isSigned, const Twine &Name, 2823 Instruction *InsertBefore) { 2824 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2825 "Invalid integer cast"); 2826 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2827 unsigned DstBits = Ty->getScalarSizeInBits(); 2828 Instruction::CastOps opcode = 2829 (SrcBits == DstBits ? Instruction::BitCast : 2830 (SrcBits > DstBits ? Instruction::Trunc : 2831 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2832 return Create(opcode, C, Ty, Name, InsertBefore); 2833 } 2834 2835 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2836 bool isSigned, const Twine &Name, 2837 BasicBlock *InsertAtEnd) { 2838 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2839 "Invalid cast"); 2840 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2841 unsigned DstBits = Ty->getScalarSizeInBits(); 2842 Instruction::CastOps opcode = 2843 (SrcBits == DstBits ? Instruction::BitCast : 2844 (SrcBits > DstBits ? Instruction::Trunc : 2845 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2846 return Create(opcode, C, Ty, Name, InsertAtEnd); 2847 } 2848 2849 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2850 const Twine &Name, 2851 Instruction *InsertBefore) { 2852 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2853 "Invalid cast"); 2854 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2855 unsigned DstBits = Ty->getScalarSizeInBits(); 2856 Instruction::CastOps opcode = 2857 (SrcBits == DstBits ? Instruction::BitCast : 2858 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2859 return Create(opcode, C, Ty, Name, InsertBefore); 2860 } 2861 2862 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2863 const Twine &Name, 2864 BasicBlock *InsertAtEnd) { 2865 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2866 "Invalid cast"); 2867 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2868 unsigned DstBits = Ty->getScalarSizeInBits(); 2869 Instruction::CastOps opcode = 2870 (SrcBits == DstBits ? Instruction::BitCast : 2871 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2872 return Create(opcode, C, Ty, Name, InsertAtEnd); 2873 } 2874 2875 // Check whether it is valid to call getCastOpcode for these types. 2876 // This routine must be kept in sync with getCastOpcode. 2877 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2878 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2879 return false; 2880 2881 if (SrcTy == DestTy) 2882 return true; 2883 2884 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2885 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2886 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2887 // An element by element cast. Valid if casting the elements is valid. 2888 SrcTy = SrcVecTy->getElementType(); 2889 DestTy = DestVecTy->getElementType(); 2890 } 2891 2892 // Get the bit sizes, we'll need these 2893 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2894 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2895 2896 // Run through the possibilities ... 2897 if (DestTy->isIntegerTy()) { // Casting to integral 2898 if (SrcTy->isIntegerTy()) // Casting from integral 2899 return true; 2900 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2901 return true; 2902 if (SrcTy->isVectorTy()) // Casting from vector 2903 return DestBits == SrcBits; 2904 // Casting from something else 2905 return SrcTy->isPointerTy(); 2906 } 2907 if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2908 if (SrcTy->isIntegerTy()) // Casting from integral 2909 return true; 2910 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2911 return true; 2912 if (SrcTy->isVectorTy()) // Casting from vector 2913 return DestBits == SrcBits; 2914 // Casting from something else 2915 return false; 2916 } 2917 if (DestTy->isVectorTy()) // Casting to vector 2918 return DestBits == SrcBits; 2919 if (DestTy->isPointerTy()) { // Casting to pointer 2920 if (SrcTy->isPointerTy()) // Casting from pointer 2921 return true; 2922 return SrcTy->isIntegerTy(); // Casting from integral 2923 } 2924 if (DestTy->isX86_MMXTy()) { 2925 if (SrcTy->isVectorTy()) 2926 return DestBits == SrcBits; // 64-bit vector to MMX 2927 return false; 2928 } // Casting to something else 2929 return false; 2930 } 2931 2932 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 2933 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2934 return false; 2935 2936 if (SrcTy == DestTy) 2937 return true; 2938 2939 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2940 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 2941 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2942 // An element by element cast. Valid if casting the elements is valid. 2943 SrcTy = SrcVecTy->getElementType(); 2944 DestTy = DestVecTy->getElementType(); 2945 } 2946 } 2947 } 2948 2949 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 2950 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 2951 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 2952 } 2953 } 2954 2955 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2956 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2957 2958 // Could still have vectors of pointers if the number of elements doesn't 2959 // match 2960 if (SrcBits == 0 || DestBits == 0) 2961 return false; 2962 2963 if (SrcBits != DestBits) 2964 return false; 2965 2966 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 2967 return false; 2968 2969 return true; 2970 } 2971 2972 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 2973 const DataLayout &DL) { 2974 // ptrtoint and inttoptr are not allowed on non-integral pointers 2975 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 2976 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 2977 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 2978 !DL.isNonIntegralPointerType(PtrTy)); 2979 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 2980 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 2981 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 2982 !DL.isNonIntegralPointerType(PtrTy)); 2983 2984 return isBitCastable(SrcTy, DestTy); 2985 } 2986 2987 // Provide a way to get a "cast" where the cast opcode is inferred from the 2988 // types and size of the operand. This, basically, is a parallel of the 2989 // logic in the castIsValid function below. This axiom should hold: 2990 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2991 // should not assert in castIsValid. In other words, this produces a "correct" 2992 // casting opcode for the arguments passed to it. 2993 // This routine must be kept in sync with isCastable. 2994 Instruction::CastOps 2995 CastInst::getCastOpcode( 2996 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2997 Type *SrcTy = Src->getType(); 2998 2999 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 3000 "Only first class types are castable!"); 3001 3002 if (SrcTy == DestTy) 3003 return BitCast; 3004 3005 // FIXME: Check address space sizes here 3006 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 3007 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 3008 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 3009 // An element by element cast. Find the appropriate opcode based on the 3010 // element types. 3011 SrcTy = SrcVecTy->getElementType(); 3012 DestTy = DestVecTy->getElementType(); 3013 } 3014 3015 // Get the bit sizes, we'll need these 3016 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3017 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3018 3019 // Run through the possibilities ... 3020 if (DestTy->isIntegerTy()) { // Casting to integral 3021 if (SrcTy->isIntegerTy()) { // Casting from integral 3022 if (DestBits < SrcBits) 3023 return Trunc; // int -> smaller int 3024 else if (DestBits > SrcBits) { // its an extension 3025 if (SrcIsSigned) 3026 return SExt; // signed -> SEXT 3027 else 3028 return ZExt; // unsigned -> ZEXT 3029 } else { 3030 return BitCast; // Same size, No-op cast 3031 } 3032 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3033 if (DestIsSigned) 3034 return FPToSI; // FP -> sint 3035 else 3036 return FPToUI; // FP -> uint 3037 } else if (SrcTy->isVectorTy()) { 3038 assert(DestBits == SrcBits && 3039 "Casting vector to integer of different width"); 3040 return BitCast; // Same size, no-op cast 3041 } else { 3042 assert(SrcTy->isPointerTy() && 3043 "Casting from a value that is not first-class type"); 3044 return PtrToInt; // ptr -> int 3045 } 3046 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3047 if (SrcTy->isIntegerTy()) { // Casting from integral 3048 if (SrcIsSigned) 3049 return SIToFP; // sint -> FP 3050 else 3051 return UIToFP; // uint -> FP 3052 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3053 if (DestBits < SrcBits) { 3054 return FPTrunc; // FP -> smaller FP 3055 } else if (DestBits > SrcBits) { 3056 return FPExt; // FP -> larger FP 3057 } else { 3058 return BitCast; // same size, no-op cast 3059 } 3060 } else if (SrcTy->isVectorTy()) { 3061 assert(DestBits == SrcBits && 3062 "Casting vector to floating point of different width"); 3063 return BitCast; // same size, no-op cast 3064 } 3065 llvm_unreachable("Casting pointer or non-first class to float"); 3066 } else if (DestTy->isVectorTy()) { 3067 assert(DestBits == SrcBits && 3068 "Illegal cast to vector (wrong type or size)"); 3069 return BitCast; 3070 } else if (DestTy->isPointerTy()) { 3071 if (SrcTy->isPointerTy()) { 3072 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3073 return AddrSpaceCast; 3074 return BitCast; // ptr -> ptr 3075 } else if (SrcTy->isIntegerTy()) { 3076 return IntToPtr; // int -> ptr 3077 } 3078 llvm_unreachable("Casting pointer to other than pointer or int"); 3079 } else if (DestTy->isX86_MMXTy()) { 3080 if (SrcTy->isVectorTy()) { 3081 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3082 return BitCast; // 64-bit vector to MMX 3083 } 3084 llvm_unreachable("Illegal cast to X86_MMX"); 3085 } 3086 llvm_unreachable("Casting to type that is not first-class"); 3087 } 3088 3089 //===----------------------------------------------------------------------===// 3090 // CastInst SubClass Constructors 3091 //===----------------------------------------------------------------------===// 3092 3093 /// Check that the construction parameters for a CastInst are correct. This 3094 /// could be broken out into the separate constructors but it is useful to have 3095 /// it in one place and to eliminate the redundant code for getting the sizes 3096 /// of the types involved. 3097 bool 3098 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 3099 // Check for type sanity on the arguments 3100 Type *SrcTy = S->getType(); 3101 3102 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3103 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3104 return false; 3105 3106 // Get the size of the types in bits, we'll need this later 3107 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3108 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 3109 3110 // If these are vector types, get the lengths of the vectors (using zero for 3111 // scalar types means that checking that vector lengths match also checks that 3112 // scalars are not being converted to vectors or vectors to scalars). 3113 unsigned SrcLength = SrcTy->isVectorTy() ? 3114 cast<VectorType>(SrcTy)->getNumElements() : 0; 3115 unsigned DstLength = DstTy->isVectorTy() ? 3116 cast<VectorType>(DstTy)->getNumElements() : 0; 3117 3118 // Switch on the opcode provided 3119 switch (op) { 3120 default: return false; // This is an input error 3121 case Instruction::Trunc: 3122 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3123 SrcLength == DstLength && SrcBitSize > DstBitSize; 3124 case Instruction::ZExt: 3125 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3126 SrcLength == DstLength && SrcBitSize < DstBitSize; 3127 case Instruction::SExt: 3128 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3129 SrcLength == DstLength && SrcBitSize < DstBitSize; 3130 case Instruction::FPTrunc: 3131 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3132 SrcLength == DstLength && SrcBitSize > DstBitSize; 3133 case Instruction::FPExt: 3134 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3135 SrcLength == DstLength && SrcBitSize < DstBitSize; 3136 case Instruction::UIToFP: 3137 case Instruction::SIToFP: 3138 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3139 SrcLength == DstLength; 3140 case Instruction::FPToUI: 3141 case Instruction::FPToSI: 3142 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3143 SrcLength == DstLength; 3144 case Instruction::PtrToInt: 3145 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3146 return false; 3147 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3148 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3149 return false; 3150 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); 3151 case Instruction::IntToPtr: 3152 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3153 return false; 3154 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3155 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3156 return false; 3157 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); 3158 case Instruction::BitCast: { 3159 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3160 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3161 3162 // BitCast implies a no-op cast of type only. No bits change. 3163 // However, you can't cast pointers to anything but pointers. 3164 if (!SrcPtrTy != !DstPtrTy) 3165 return false; 3166 3167 // For non-pointer cases, the cast is okay if the source and destination bit 3168 // widths are identical. 3169 if (!SrcPtrTy) 3170 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3171 3172 // If both are pointers then the address spaces must match. 3173 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3174 return false; 3175 3176 // A vector of pointers must have the same number of elements. 3177 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy); 3178 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy); 3179 if (SrcVecTy && DstVecTy) 3180 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3181 if (SrcVecTy) 3182 return SrcVecTy->getNumElements() == 1; 3183 if (DstVecTy) 3184 return DstVecTy->getNumElements() == 1; 3185 3186 return true; 3187 } 3188 case Instruction::AddrSpaceCast: { 3189 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3190 if (!SrcPtrTy) 3191 return false; 3192 3193 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3194 if (!DstPtrTy) 3195 return false; 3196 3197 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3198 return false; 3199 3200 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3201 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3202 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3203 3204 return false; 3205 } 3206 3207 return true; 3208 } 3209 } 3210 } 3211 3212 TruncInst::TruncInst( 3213 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3214 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3215 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3216 } 3217 3218 TruncInst::TruncInst( 3219 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3220 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3221 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3222 } 3223 3224 ZExtInst::ZExtInst( 3225 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3226 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3227 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3228 } 3229 3230 ZExtInst::ZExtInst( 3231 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3232 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3233 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3234 } 3235 SExtInst::SExtInst( 3236 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3237 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3238 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3239 } 3240 3241 SExtInst::SExtInst( 3242 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3243 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3244 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3245 } 3246 3247 FPTruncInst::FPTruncInst( 3248 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3249 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3250 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3251 } 3252 3253 FPTruncInst::FPTruncInst( 3254 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3255 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3256 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3257 } 3258 3259 FPExtInst::FPExtInst( 3260 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3261 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3262 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3263 } 3264 3265 FPExtInst::FPExtInst( 3266 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3267 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3268 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3269 } 3270 3271 UIToFPInst::UIToFPInst( 3272 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3273 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3274 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3275 } 3276 3277 UIToFPInst::UIToFPInst( 3278 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3279 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3280 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3281 } 3282 3283 SIToFPInst::SIToFPInst( 3284 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3285 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3286 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3287 } 3288 3289 SIToFPInst::SIToFPInst( 3290 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3291 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3292 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3293 } 3294 3295 FPToUIInst::FPToUIInst( 3296 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3297 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3298 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3299 } 3300 3301 FPToUIInst::FPToUIInst( 3302 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3303 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3304 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3305 } 3306 3307 FPToSIInst::FPToSIInst( 3308 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3309 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3310 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3311 } 3312 3313 FPToSIInst::FPToSIInst( 3314 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3315 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3316 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3317 } 3318 3319 PtrToIntInst::PtrToIntInst( 3320 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3321 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3322 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3323 } 3324 3325 PtrToIntInst::PtrToIntInst( 3326 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3327 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3328 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3329 } 3330 3331 IntToPtrInst::IntToPtrInst( 3332 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3333 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3334 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3335 } 3336 3337 IntToPtrInst::IntToPtrInst( 3338 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3339 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3340 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3341 } 3342 3343 BitCastInst::BitCastInst( 3344 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3345 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3346 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3347 } 3348 3349 BitCastInst::BitCastInst( 3350 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3351 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3352 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3353 } 3354 3355 AddrSpaceCastInst::AddrSpaceCastInst( 3356 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3357 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3358 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3359 } 3360 3361 AddrSpaceCastInst::AddrSpaceCastInst( 3362 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3363 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3364 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3365 } 3366 3367 //===----------------------------------------------------------------------===// 3368 // CmpInst Classes 3369 //===----------------------------------------------------------------------===// 3370 3371 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3372 Value *RHS, const Twine &Name, Instruction *InsertBefore, 3373 Instruction *FlagsSource) 3374 : Instruction(ty, op, 3375 OperandTraits<CmpInst>::op_begin(this), 3376 OperandTraits<CmpInst>::operands(this), 3377 InsertBefore) { 3378 Op<0>() = LHS; 3379 Op<1>() = RHS; 3380 setPredicate((Predicate)predicate); 3381 setName(Name); 3382 if (FlagsSource) 3383 copyIRFlags(FlagsSource); 3384 } 3385 3386 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3387 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3388 : Instruction(ty, op, 3389 OperandTraits<CmpInst>::op_begin(this), 3390 OperandTraits<CmpInst>::operands(this), 3391 InsertAtEnd) { 3392 Op<0>() = LHS; 3393 Op<1>() = RHS; 3394 setPredicate((Predicate)predicate); 3395 setName(Name); 3396 } 3397 3398 CmpInst * 3399 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3400 const Twine &Name, Instruction *InsertBefore) { 3401 if (Op == Instruction::ICmp) { 3402 if (InsertBefore) 3403 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3404 S1, S2, Name); 3405 else 3406 return new ICmpInst(CmpInst::Predicate(predicate), 3407 S1, S2, Name); 3408 } 3409 3410 if (InsertBefore) 3411 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3412 S1, S2, Name); 3413 else 3414 return new FCmpInst(CmpInst::Predicate(predicate), 3415 S1, S2, Name); 3416 } 3417 3418 CmpInst * 3419 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3420 const Twine &Name, BasicBlock *InsertAtEnd) { 3421 if (Op == Instruction::ICmp) { 3422 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3423 S1, S2, Name); 3424 } 3425 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3426 S1, S2, Name); 3427 } 3428 3429 void CmpInst::swapOperands() { 3430 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3431 IC->swapOperands(); 3432 else 3433 cast<FCmpInst>(this)->swapOperands(); 3434 } 3435 3436 bool CmpInst::isCommutative() const { 3437 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3438 return IC->isCommutative(); 3439 return cast<FCmpInst>(this)->isCommutative(); 3440 } 3441 3442 bool CmpInst::isEquality() const { 3443 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3444 return IC->isEquality(); 3445 return cast<FCmpInst>(this)->isEquality(); 3446 } 3447 3448 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3449 switch (pred) { 3450 default: llvm_unreachable("Unknown cmp predicate!"); 3451 case ICMP_EQ: return ICMP_NE; 3452 case ICMP_NE: return ICMP_EQ; 3453 case ICMP_UGT: return ICMP_ULE; 3454 case ICMP_ULT: return ICMP_UGE; 3455 case ICMP_UGE: return ICMP_ULT; 3456 case ICMP_ULE: return ICMP_UGT; 3457 case ICMP_SGT: return ICMP_SLE; 3458 case ICMP_SLT: return ICMP_SGE; 3459 case ICMP_SGE: return ICMP_SLT; 3460 case ICMP_SLE: return ICMP_SGT; 3461 3462 case FCMP_OEQ: return FCMP_UNE; 3463 case FCMP_ONE: return FCMP_UEQ; 3464 case FCMP_OGT: return FCMP_ULE; 3465 case FCMP_OLT: return FCMP_UGE; 3466 case FCMP_OGE: return FCMP_ULT; 3467 case FCMP_OLE: return FCMP_UGT; 3468 case FCMP_UEQ: return FCMP_ONE; 3469 case FCMP_UNE: return FCMP_OEQ; 3470 case FCMP_UGT: return FCMP_OLE; 3471 case FCMP_ULT: return FCMP_OGE; 3472 case FCMP_UGE: return FCMP_OLT; 3473 case FCMP_ULE: return FCMP_OGT; 3474 case FCMP_ORD: return FCMP_UNO; 3475 case FCMP_UNO: return FCMP_ORD; 3476 case FCMP_TRUE: return FCMP_FALSE; 3477 case FCMP_FALSE: return FCMP_TRUE; 3478 } 3479 } 3480 3481 StringRef CmpInst::getPredicateName(Predicate Pred) { 3482 switch (Pred) { 3483 default: return "unknown"; 3484 case FCmpInst::FCMP_FALSE: return "false"; 3485 case FCmpInst::FCMP_OEQ: return "oeq"; 3486 case FCmpInst::FCMP_OGT: return "ogt"; 3487 case FCmpInst::FCMP_OGE: return "oge"; 3488 case FCmpInst::FCMP_OLT: return "olt"; 3489 case FCmpInst::FCMP_OLE: return "ole"; 3490 case FCmpInst::FCMP_ONE: return "one"; 3491 case FCmpInst::FCMP_ORD: return "ord"; 3492 case FCmpInst::FCMP_UNO: return "uno"; 3493 case FCmpInst::FCMP_UEQ: return "ueq"; 3494 case FCmpInst::FCMP_UGT: return "ugt"; 3495 case FCmpInst::FCMP_UGE: return "uge"; 3496 case FCmpInst::FCMP_ULT: return "ult"; 3497 case FCmpInst::FCMP_ULE: return "ule"; 3498 case FCmpInst::FCMP_UNE: return "une"; 3499 case FCmpInst::FCMP_TRUE: return "true"; 3500 case ICmpInst::ICMP_EQ: return "eq"; 3501 case ICmpInst::ICMP_NE: return "ne"; 3502 case ICmpInst::ICMP_SGT: return "sgt"; 3503 case ICmpInst::ICMP_SGE: return "sge"; 3504 case ICmpInst::ICMP_SLT: return "slt"; 3505 case ICmpInst::ICMP_SLE: return "sle"; 3506 case ICmpInst::ICMP_UGT: return "ugt"; 3507 case ICmpInst::ICMP_UGE: return "uge"; 3508 case ICmpInst::ICMP_ULT: return "ult"; 3509 case ICmpInst::ICMP_ULE: return "ule"; 3510 } 3511 } 3512 3513 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3514 switch (pred) { 3515 default: llvm_unreachable("Unknown icmp predicate!"); 3516 case ICMP_EQ: case ICMP_NE: 3517 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3518 return pred; 3519 case ICMP_UGT: return ICMP_SGT; 3520 case ICMP_ULT: return ICMP_SLT; 3521 case ICMP_UGE: return ICMP_SGE; 3522 case ICMP_ULE: return ICMP_SLE; 3523 } 3524 } 3525 3526 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3527 switch (pred) { 3528 default: llvm_unreachable("Unknown icmp predicate!"); 3529 case ICMP_EQ: case ICMP_NE: 3530 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3531 return pred; 3532 case ICMP_SGT: return ICMP_UGT; 3533 case ICMP_SLT: return ICMP_ULT; 3534 case ICMP_SGE: return ICMP_UGE; 3535 case ICMP_SLE: return ICMP_ULE; 3536 } 3537 } 3538 3539 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { 3540 switch (pred) { 3541 default: llvm_unreachable("Unknown or unsupported cmp predicate!"); 3542 case ICMP_SGT: return ICMP_SGE; 3543 case ICMP_SLT: return ICMP_SLE; 3544 case ICMP_SGE: return ICMP_SGT; 3545 case ICMP_SLE: return ICMP_SLT; 3546 case ICMP_UGT: return ICMP_UGE; 3547 case ICMP_ULT: return ICMP_ULE; 3548 case ICMP_UGE: return ICMP_UGT; 3549 case ICMP_ULE: return ICMP_ULT; 3550 3551 case FCMP_OGT: return FCMP_OGE; 3552 case FCMP_OLT: return FCMP_OLE; 3553 case FCMP_OGE: return FCMP_OGT; 3554 case FCMP_OLE: return FCMP_OLT; 3555 case FCMP_UGT: return FCMP_UGE; 3556 case FCMP_ULT: return FCMP_ULE; 3557 case FCMP_UGE: return FCMP_UGT; 3558 case FCMP_ULE: return FCMP_ULT; 3559 } 3560 } 3561 3562 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3563 switch (pred) { 3564 default: llvm_unreachable("Unknown cmp predicate!"); 3565 case ICMP_EQ: case ICMP_NE: 3566 return pred; 3567 case ICMP_SGT: return ICMP_SLT; 3568 case ICMP_SLT: return ICMP_SGT; 3569 case ICMP_SGE: return ICMP_SLE; 3570 case ICMP_SLE: return ICMP_SGE; 3571 case ICMP_UGT: return ICMP_ULT; 3572 case ICMP_ULT: return ICMP_UGT; 3573 case ICMP_UGE: return ICMP_ULE; 3574 case ICMP_ULE: return ICMP_UGE; 3575 3576 case FCMP_FALSE: case FCMP_TRUE: 3577 case FCMP_OEQ: case FCMP_ONE: 3578 case FCMP_UEQ: case FCMP_UNE: 3579 case FCMP_ORD: case FCMP_UNO: 3580 return pred; 3581 case FCMP_OGT: return FCMP_OLT; 3582 case FCMP_OLT: return FCMP_OGT; 3583 case FCMP_OGE: return FCMP_OLE; 3584 case FCMP_OLE: return FCMP_OGE; 3585 case FCMP_UGT: return FCMP_ULT; 3586 case FCMP_ULT: return FCMP_UGT; 3587 case FCMP_UGE: return FCMP_ULE; 3588 case FCMP_ULE: return FCMP_UGE; 3589 } 3590 } 3591 3592 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { 3593 switch (pred) { 3594 case ICMP_SGT: return ICMP_SGE; 3595 case ICMP_SLT: return ICMP_SLE; 3596 case ICMP_UGT: return ICMP_UGE; 3597 case ICMP_ULT: return ICMP_ULE; 3598 case FCMP_OGT: return FCMP_OGE; 3599 case FCMP_OLT: return FCMP_OLE; 3600 case FCMP_UGT: return FCMP_UGE; 3601 case FCMP_ULT: return FCMP_ULE; 3602 default: return pred; 3603 } 3604 } 3605 3606 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3607 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); 3608 3609 switch (pred) { 3610 default: 3611 llvm_unreachable("Unknown predicate!"); 3612 case CmpInst::ICMP_ULT: 3613 return CmpInst::ICMP_SLT; 3614 case CmpInst::ICMP_ULE: 3615 return CmpInst::ICMP_SLE; 3616 case CmpInst::ICMP_UGT: 3617 return CmpInst::ICMP_SGT; 3618 case CmpInst::ICMP_UGE: 3619 return CmpInst::ICMP_SGE; 3620 } 3621 } 3622 3623 bool CmpInst::isUnsigned(Predicate predicate) { 3624 switch (predicate) { 3625 default: return false; 3626 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3627 case ICmpInst::ICMP_UGE: return true; 3628 } 3629 } 3630 3631 bool CmpInst::isSigned(Predicate predicate) { 3632 switch (predicate) { 3633 default: return false; 3634 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3635 case ICmpInst::ICMP_SGE: return true; 3636 } 3637 } 3638 3639 bool CmpInst::isOrdered(Predicate predicate) { 3640 switch (predicate) { 3641 default: return false; 3642 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3643 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3644 case FCmpInst::FCMP_ORD: return true; 3645 } 3646 } 3647 3648 bool CmpInst::isUnordered(Predicate predicate) { 3649 switch (predicate) { 3650 default: return false; 3651 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3652 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3653 case FCmpInst::FCMP_UNO: return true; 3654 } 3655 } 3656 3657 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3658 switch(predicate) { 3659 default: return false; 3660 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3661 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3662 } 3663 } 3664 3665 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3666 switch(predicate) { 3667 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3668 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3669 default: return false; 3670 } 3671 } 3672 3673 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3674 // If the predicates match, then we know the first condition implies the 3675 // second is true. 3676 if (Pred1 == Pred2) 3677 return true; 3678 3679 switch (Pred1) { 3680 default: 3681 break; 3682 case ICMP_EQ: 3683 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3684 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3685 Pred2 == ICMP_SLE; 3686 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3687 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3688 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3689 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3690 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3691 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3692 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3693 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3694 } 3695 return false; 3696 } 3697 3698 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3699 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3700 } 3701 3702 //===----------------------------------------------------------------------===// 3703 // SwitchInst Implementation 3704 //===----------------------------------------------------------------------===// 3705 3706 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3707 assert(Value && Default && NumReserved); 3708 ReservedSpace = NumReserved; 3709 setNumHungOffUseOperands(2); 3710 allocHungoffUses(ReservedSpace); 3711 3712 Op<0>() = Value; 3713 Op<1>() = Default; 3714 } 3715 3716 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3717 /// switch on and a default destination. The number of additional cases can 3718 /// be specified here to make memory allocation more efficient. This 3719 /// constructor can also autoinsert before another instruction. 3720 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3721 Instruction *InsertBefore) 3722 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3723 nullptr, 0, InsertBefore) { 3724 init(Value, Default, 2+NumCases*2); 3725 } 3726 3727 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3728 /// switch on and a default destination. The number of additional cases can 3729 /// be specified here to make memory allocation more efficient. This 3730 /// constructor also autoinserts at the end of the specified BasicBlock. 3731 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3732 BasicBlock *InsertAtEnd) 3733 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3734 nullptr, 0, InsertAtEnd) { 3735 init(Value, Default, 2+NumCases*2); 3736 } 3737 3738 SwitchInst::SwitchInst(const SwitchInst &SI) 3739 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { 3740 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3741 setNumHungOffUseOperands(SI.getNumOperands()); 3742 Use *OL = getOperandList(); 3743 const Use *InOL = SI.getOperandList(); 3744 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3745 OL[i] = InOL[i]; 3746 OL[i+1] = InOL[i+1]; 3747 } 3748 SubclassOptionalData = SI.SubclassOptionalData; 3749 } 3750 3751 /// addCase - Add an entry to the switch instruction... 3752 /// 3753 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3754 unsigned NewCaseIdx = getNumCases(); 3755 unsigned OpNo = getNumOperands(); 3756 if (OpNo+2 > ReservedSpace) 3757 growOperands(); // Get more space! 3758 // Initialize some new operands. 3759 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3760 setNumHungOffUseOperands(OpNo+2); 3761 CaseHandle Case(this, NewCaseIdx); 3762 Case.setValue(OnVal); 3763 Case.setSuccessor(Dest); 3764 } 3765 3766 /// removeCase - This method removes the specified case and its successor 3767 /// from the switch instruction. 3768 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { 3769 unsigned idx = I->getCaseIndex(); 3770 3771 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3772 3773 unsigned NumOps = getNumOperands(); 3774 Use *OL = getOperandList(); 3775 3776 // Overwrite this case with the end of the list. 3777 if (2 + (idx + 1) * 2 != NumOps) { 3778 OL[2 + idx * 2] = OL[NumOps - 2]; 3779 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3780 } 3781 3782 // Nuke the last value. 3783 OL[NumOps-2].set(nullptr); 3784 OL[NumOps-2+1].set(nullptr); 3785 setNumHungOffUseOperands(NumOps-2); 3786 3787 return CaseIt(this, idx); 3788 } 3789 3790 /// growOperands - grow operands - This grows the operand list in response 3791 /// to a push_back style of operation. This grows the number of ops by 3 times. 3792 /// 3793 void SwitchInst::growOperands() { 3794 unsigned e = getNumOperands(); 3795 unsigned NumOps = e*3; 3796 3797 ReservedSpace = NumOps; 3798 growHungoffUses(ReservedSpace); 3799 } 3800 3801 //===----------------------------------------------------------------------===// 3802 // IndirectBrInst Implementation 3803 //===----------------------------------------------------------------------===// 3804 3805 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3806 assert(Address && Address->getType()->isPointerTy() && 3807 "Address of indirectbr must be a pointer"); 3808 ReservedSpace = 1+NumDests; 3809 setNumHungOffUseOperands(1); 3810 allocHungoffUses(ReservedSpace); 3811 3812 Op<0>() = Address; 3813 } 3814 3815 3816 /// growOperands - grow operands - This grows the operand list in response 3817 /// to a push_back style of operation. This grows the number of ops by 2 times. 3818 /// 3819 void IndirectBrInst::growOperands() { 3820 unsigned e = getNumOperands(); 3821 unsigned NumOps = e*2; 3822 3823 ReservedSpace = NumOps; 3824 growHungoffUses(ReservedSpace); 3825 } 3826 3827 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3828 Instruction *InsertBefore) 3829 : Instruction(Type::getVoidTy(Address->getContext()), 3830 Instruction::IndirectBr, nullptr, 0, InsertBefore) { 3831 init(Address, NumCases); 3832 } 3833 3834 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3835 BasicBlock *InsertAtEnd) 3836 : Instruction(Type::getVoidTy(Address->getContext()), 3837 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) { 3838 init(Address, NumCases); 3839 } 3840 3841 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3842 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3843 nullptr, IBI.getNumOperands()) { 3844 allocHungoffUses(IBI.getNumOperands()); 3845 Use *OL = getOperandList(); 3846 const Use *InOL = IBI.getOperandList(); 3847 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3848 OL[i] = InOL[i]; 3849 SubclassOptionalData = IBI.SubclassOptionalData; 3850 } 3851 3852 /// addDestination - Add a destination. 3853 /// 3854 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3855 unsigned OpNo = getNumOperands(); 3856 if (OpNo+1 > ReservedSpace) 3857 growOperands(); // Get more space! 3858 // Initialize some new operands. 3859 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3860 setNumHungOffUseOperands(OpNo+1); 3861 getOperandList()[OpNo] = DestBB; 3862 } 3863 3864 /// removeDestination - This method removes the specified successor from the 3865 /// indirectbr instruction. 3866 void IndirectBrInst::removeDestination(unsigned idx) { 3867 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3868 3869 unsigned NumOps = getNumOperands(); 3870 Use *OL = getOperandList(); 3871 3872 // Replace this value with the last one. 3873 OL[idx+1] = OL[NumOps-1]; 3874 3875 // Nuke the last value. 3876 OL[NumOps-1].set(nullptr); 3877 setNumHungOffUseOperands(NumOps-1); 3878 } 3879 3880 //===----------------------------------------------------------------------===// 3881 // cloneImpl() implementations 3882 //===----------------------------------------------------------------------===// 3883 3884 // Define these methods here so vtables don't get emitted into every translation 3885 // unit that uses these classes. 3886 3887 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 3888 return new (getNumOperands()) GetElementPtrInst(*this); 3889 } 3890 3891 UnaryOperator *UnaryOperator::cloneImpl() const { 3892 return Create(getOpcode(), Op<0>()); 3893 } 3894 3895 BinaryOperator *BinaryOperator::cloneImpl() const { 3896 return Create(getOpcode(), Op<0>(), Op<1>()); 3897 } 3898 3899 FCmpInst *FCmpInst::cloneImpl() const { 3900 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3901 } 3902 3903 ICmpInst *ICmpInst::cloneImpl() const { 3904 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3905 } 3906 3907 ExtractValueInst *ExtractValueInst::cloneImpl() const { 3908 return new ExtractValueInst(*this); 3909 } 3910 3911 InsertValueInst *InsertValueInst::cloneImpl() const { 3912 return new InsertValueInst(*this); 3913 } 3914 3915 AllocaInst *AllocaInst::cloneImpl() const { 3916 AllocaInst *Result = new AllocaInst(getAllocatedType(), 3917 getType()->getAddressSpace(), 3918 (Value *)getOperand(0), getAlignment()); 3919 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 3920 Result->setSwiftError(isSwiftError()); 3921 return Result; 3922 } 3923 3924 LoadInst *LoadInst::cloneImpl() const { 3925 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), 3926 getAlignment(), getOrdering(), getSyncScopeID()); 3927 } 3928 3929 StoreInst *StoreInst::cloneImpl() const { 3930 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3931 getAlignment(), getOrdering(), getSyncScopeID()); 3932 3933 } 3934 3935 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 3936 AtomicCmpXchgInst *Result = 3937 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3938 getSuccessOrdering(), getFailureOrdering(), 3939 getSyncScopeID()); 3940 Result->setVolatile(isVolatile()); 3941 Result->setWeak(isWeak()); 3942 return Result; 3943 } 3944 3945 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 3946 AtomicRMWInst *Result = 3947 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), 3948 getOrdering(), getSyncScopeID()); 3949 Result->setVolatile(isVolatile()); 3950 return Result; 3951 } 3952 3953 FenceInst *FenceInst::cloneImpl() const { 3954 return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); 3955 } 3956 3957 TruncInst *TruncInst::cloneImpl() const { 3958 return new TruncInst(getOperand(0), getType()); 3959 } 3960 3961 ZExtInst *ZExtInst::cloneImpl() const { 3962 return new ZExtInst(getOperand(0), getType()); 3963 } 3964 3965 SExtInst *SExtInst::cloneImpl() const { 3966 return new SExtInst(getOperand(0), getType()); 3967 } 3968 3969 FPTruncInst *FPTruncInst::cloneImpl() const { 3970 return new FPTruncInst(getOperand(0), getType()); 3971 } 3972 3973 FPExtInst *FPExtInst::cloneImpl() const { 3974 return new FPExtInst(getOperand(0), getType()); 3975 } 3976 3977 UIToFPInst *UIToFPInst::cloneImpl() const { 3978 return new UIToFPInst(getOperand(0), getType()); 3979 } 3980 3981 SIToFPInst *SIToFPInst::cloneImpl() const { 3982 return new SIToFPInst(getOperand(0), getType()); 3983 } 3984 3985 FPToUIInst *FPToUIInst::cloneImpl() const { 3986 return new FPToUIInst(getOperand(0), getType()); 3987 } 3988 3989 FPToSIInst *FPToSIInst::cloneImpl() const { 3990 return new FPToSIInst(getOperand(0), getType()); 3991 } 3992 3993 PtrToIntInst *PtrToIntInst::cloneImpl() const { 3994 return new PtrToIntInst(getOperand(0), getType()); 3995 } 3996 3997 IntToPtrInst *IntToPtrInst::cloneImpl() const { 3998 return new IntToPtrInst(getOperand(0), getType()); 3999 } 4000 4001 BitCastInst *BitCastInst::cloneImpl() const { 4002 return new BitCastInst(getOperand(0), getType()); 4003 } 4004 4005 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 4006 return new AddrSpaceCastInst(getOperand(0), getType()); 4007 } 4008 4009 CallInst *CallInst::cloneImpl() const { 4010 if (hasOperandBundles()) { 4011 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4012 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 4013 } 4014 return new(getNumOperands()) CallInst(*this); 4015 } 4016 4017 SelectInst *SelectInst::cloneImpl() const { 4018 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4019 } 4020 4021 VAArgInst *VAArgInst::cloneImpl() const { 4022 return new VAArgInst(getOperand(0), getType()); 4023 } 4024 4025 ExtractElementInst *ExtractElementInst::cloneImpl() const { 4026 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 4027 } 4028 4029 InsertElementInst *InsertElementInst::cloneImpl() const { 4030 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4031 } 4032 4033 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 4034 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 4035 } 4036 4037 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 4038 4039 LandingPadInst *LandingPadInst::cloneImpl() const { 4040 return new LandingPadInst(*this); 4041 } 4042 4043 ReturnInst *ReturnInst::cloneImpl() const { 4044 return new(getNumOperands()) ReturnInst(*this); 4045 } 4046 4047 BranchInst *BranchInst::cloneImpl() const { 4048 return new(getNumOperands()) BranchInst(*this); 4049 } 4050 4051 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 4052 4053 IndirectBrInst *IndirectBrInst::cloneImpl() const { 4054 return new IndirectBrInst(*this); 4055 } 4056 4057 InvokeInst *InvokeInst::cloneImpl() const { 4058 if (hasOperandBundles()) { 4059 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4060 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 4061 } 4062 return new(getNumOperands()) InvokeInst(*this); 4063 } 4064 4065 CallBrInst *CallBrInst::cloneImpl() const { 4066 if (hasOperandBundles()) { 4067 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4068 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this); 4069 } 4070 return new (getNumOperands()) CallBrInst(*this); 4071 } 4072 4073 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 4074 4075 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4076 return new (getNumOperands()) CleanupReturnInst(*this); 4077 } 4078 4079 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4080 return new (getNumOperands()) CatchReturnInst(*this); 4081 } 4082 4083 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4084 return new CatchSwitchInst(*this); 4085 } 4086 4087 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4088 return new (getNumOperands()) FuncletPadInst(*this); 4089 } 4090 4091 UnreachableInst *UnreachableInst::cloneImpl() const { 4092 LLVMContext &Context = getContext(); 4093 return new UnreachableInst(Context); 4094 } 4095