1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstdint>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 //===----------------------------------------------------------------------===//
48 //                            AllocaInst Class
49 //===----------------------------------------------------------------------===//
50 
51 Optional<uint64_t>
52 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
53   uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
54   if (isArrayAllocation()) {
55     auto C = dyn_cast<ConstantInt>(getArraySize());
56     if (!C)
57       return None;
58     Size *= C->getZExtValue();
59   }
60   return Size;
61 }
62 
63 //===----------------------------------------------------------------------===//
64 //                            CallSite Class
65 //===----------------------------------------------------------------------===//
66 
67 User::op_iterator CallSite::getCallee() const {
68   return cast<CallBase>(getInstruction())->op_end() - 1;
69 }
70 
71 //===----------------------------------------------------------------------===//
72 //                              SelectInst Class
73 //===----------------------------------------------------------------------===//
74 
75 /// areInvalidOperands - Return a string if the specified operands are invalid
76 /// for a select operation, otherwise return null.
77 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
78   if (Op1->getType() != Op2->getType())
79     return "both values to select must have same type";
80 
81   if (Op1->getType()->isTokenTy())
82     return "select values cannot have token type";
83 
84   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
85     // Vector select.
86     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
87       return "vector select condition element type must be i1";
88     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
89     if (!ET)
90       return "selected values for vector select must be vectors";
91     if (ET->getNumElements() != VT->getNumElements())
92       return "vector select requires selected vectors to have "
93                    "the same vector length as select condition";
94   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
95     return "select condition must be i1 or <n x i1>";
96   }
97   return nullptr;
98 }
99 
100 //===----------------------------------------------------------------------===//
101 //                               PHINode Class
102 //===----------------------------------------------------------------------===//
103 
104 PHINode::PHINode(const PHINode &PN)
105     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
106       ReservedSpace(PN.getNumOperands()) {
107   allocHungoffUses(PN.getNumOperands());
108   std::copy(PN.op_begin(), PN.op_end(), op_begin());
109   std::copy(PN.block_begin(), PN.block_end(), block_begin());
110   SubclassOptionalData = PN.SubclassOptionalData;
111 }
112 
113 // removeIncomingValue - Remove an incoming value.  This is useful if a
114 // predecessor basic block is deleted.
115 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
116   Value *Removed = getIncomingValue(Idx);
117 
118   // Move everything after this operand down.
119   //
120   // FIXME: we could just swap with the end of the list, then erase.  However,
121   // clients might not expect this to happen.  The code as it is thrashes the
122   // use/def lists, which is kinda lame.
123   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
124   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
125 
126   // Nuke the last value.
127   Op<-1>().set(nullptr);
128   setNumHungOffUseOperands(getNumOperands() - 1);
129 
130   // If the PHI node is dead, because it has zero entries, nuke it now.
131   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
132     // If anyone is using this PHI, make them use a dummy value instead...
133     replaceAllUsesWith(UndefValue::get(getType()));
134     eraseFromParent();
135   }
136   return Removed;
137 }
138 
139 /// growOperands - grow operands - This grows the operand list in response
140 /// to a push_back style of operation.  This grows the number of ops by 1.5
141 /// times.
142 ///
143 void PHINode::growOperands() {
144   unsigned e = getNumOperands();
145   unsigned NumOps = e + e / 2;
146   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
147 
148   ReservedSpace = NumOps;
149   growHungoffUses(ReservedSpace, /* IsPhi */ true);
150 }
151 
152 /// hasConstantValue - If the specified PHI node always merges together the same
153 /// value, return the value, otherwise return null.
154 Value *PHINode::hasConstantValue() const {
155   // Exploit the fact that phi nodes always have at least one entry.
156   Value *ConstantValue = getIncomingValue(0);
157   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
158     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
159       if (ConstantValue != this)
160         return nullptr; // Incoming values not all the same.
161        // The case where the first value is this PHI.
162       ConstantValue = getIncomingValue(i);
163     }
164   if (ConstantValue == this)
165     return UndefValue::get(getType());
166   return ConstantValue;
167 }
168 
169 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
170 /// together the same value, assuming that undefs result in the same value as
171 /// non-undefs.
172 /// Unlike \ref hasConstantValue, this does not return a value because the
173 /// unique non-undef incoming value need not dominate the PHI node.
174 bool PHINode::hasConstantOrUndefValue() const {
175   Value *ConstantValue = nullptr;
176   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
177     Value *Incoming = getIncomingValue(i);
178     if (Incoming != this && !isa<UndefValue>(Incoming)) {
179       if (ConstantValue && ConstantValue != Incoming)
180         return false;
181       ConstantValue = Incoming;
182     }
183   }
184   return true;
185 }
186 
187 //===----------------------------------------------------------------------===//
188 //                       LandingPadInst Implementation
189 //===----------------------------------------------------------------------===//
190 
191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
192                                const Twine &NameStr, Instruction *InsertBefore)
193     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
194   init(NumReservedValues, NameStr);
195 }
196 
197 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
198                                const Twine &NameStr, BasicBlock *InsertAtEnd)
199     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
200   init(NumReservedValues, NameStr);
201 }
202 
203 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
204     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
205                   LP.getNumOperands()),
206       ReservedSpace(LP.getNumOperands()) {
207   allocHungoffUses(LP.getNumOperands());
208   Use *OL = getOperandList();
209   const Use *InOL = LP.getOperandList();
210   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
211     OL[I] = InOL[I];
212 
213   setCleanup(LP.isCleanup());
214 }
215 
216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
217                                        const Twine &NameStr,
218                                        Instruction *InsertBefore) {
219   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
220 }
221 
222 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
223                                        const Twine &NameStr,
224                                        BasicBlock *InsertAtEnd) {
225   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
226 }
227 
228 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
229   ReservedSpace = NumReservedValues;
230   setNumHungOffUseOperands(0);
231   allocHungoffUses(ReservedSpace);
232   setName(NameStr);
233   setCleanup(false);
234 }
235 
236 /// growOperands - grow operands - This grows the operand list in response to a
237 /// push_back style of operation. This grows the number of ops by 2 times.
238 void LandingPadInst::growOperands(unsigned Size) {
239   unsigned e = getNumOperands();
240   if (ReservedSpace >= e + Size) return;
241   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
242   growHungoffUses(ReservedSpace);
243 }
244 
245 void LandingPadInst::addClause(Constant *Val) {
246   unsigned OpNo = getNumOperands();
247   growOperands(1);
248   assert(OpNo < ReservedSpace && "Growing didn't work!");
249   setNumHungOffUseOperands(getNumOperands() + 1);
250   getOperandList()[OpNo] = Val;
251 }
252 
253 //===----------------------------------------------------------------------===//
254 //                        CallBase Implementation
255 //===----------------------------------------------------------------------===//
256 
257 Function *CallBase::getCaller() { return getParent()->getParent(); }
258 
259 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
260   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
261   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
262 }
263 
264 bool CallBase::isIndirectCall() const {
265   const Value *V = getCalledValue();
266   if (isa<Function>(V) || isa<Constant>(V))
267     return false;
268   if (const CallInst *CI = dyn_cast<CallInst>(this))
269     if (CI->isInlineAsm())
270       return false;
271   return true;
272 }
273 
274 /// Tests if this call site must be tail call optimized. Only a CallInst can
275 /// be tail call optimized.
276 bool CallBase::isMustTailCall() const {
277   if (auto *CI = dyn_cast<CallInst>(this))
278     return CI->isMustTailCall();
279   return false;
280 }
281 
282 /// Tests if this call site is marked as a tail call.
283 bool CallBase::isTailCall() const {
284   if (auto *CI = dyn_cast<CallInst>(this))
285     return CI->isTailCall();
286   return false;
287 }
288 
289 Intrinsic::ID CallBase::getIntrinsicID() const {
290   if (auto *F = getCalledFunction())
291     return F->getIntrinsicID();
292   return Intrinsic::not_intrinsic;
293 }
294 
295 bool CallBase::isReturnNonNull() const {
296   if (hasRetAttr(Attribute::NonNull))
297     return true;
298 
299   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
300            !NullPointerIsDefined(getCaller(),
301                                  getType()->getPointerAddressSpace()))
302     return true;
303 
304   return false;
305 }
306 
307 Value *CallBase::getReturnedArgOperand() const {
308   unsigned Index;
309 
310   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
311     return getArgOperand(Index - AttributeList::FirstArgIndex);
312   if (const Function *F = getCalledFunction())
313     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
314         Index)
315       return getArgOperand(Index - AttributeList::FirstArgIndex);
316 
317   return nullptr;
318 }
319 
320 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
321   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
322     return true;
323 
324   // Look at the callee, if available.
325   if (const Function *F = getCalledFunction())
326     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
327   return false;
328 }
329 
330 /// Determine whether the argument or parameter has the given attribute.
331 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
332   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
333 
334   if (Attrs.hasParamAttribute(ArgNo, Kind))
335     return true;
336   if (const Function *F = getCalledFunction())
337     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
338   return false;
339 }
340 
341 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
342   if (const Function *F = getCalledFunction())
343     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
344   return false;
345 }
346 
347 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
348   if (const Function *F = getCalledFunction())
349     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
350   return false;
351 }
352 
353 CallBase::op_iterator
354 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
355                                      const unsigned BeginIndex) {
356   auto It = op_begin() + BeginIndex;
357   for (auto &B : Bundles)
358     It = std::copy(B.input_begin(), B.input_end(), It);
359 
360   auto *ContextImpl = getContext().pImpl;
361   auto BI = Bundles.begin();
362   unsigned CurrentIndex = BeginIndex;
363 
364   for (auto &BOI : bundle_op_infos()) {
365     assert(BI != Bundles.end() && "Incorrect allocation?");
366 
367     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
368     BOI.Begin = CurrentIndex;
369     BOI.End = CurrentIndex + BI->input_size();
370     CurrentIndex = BOI.End;
371     BI++;
372   }
373 
374   assert(BI == Bundles.end() && "Incorrect allocation?");
375 
376   return It;
377 }
378 
379 //===----------------------------------------------------------------------===//
380 //                        CallInst Implementation
381 //===----------------------------------------------------------------------===//
382 
383 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
384                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
385   this->FTy = FTy;
386   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
387          "NumOperands not set up?");
388   setCalledOperand(Func);
389 
390 #ifndef NDEBUG
391   assert((Args.size() == FTy->getNumParams() ||
392           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
393          "Calling a function with bad signature!");
394 
395   for (unsigned i = 0; i != Args.size(); ++i)
396     assert((i >= FTy->getNumParams() ||
397             FTy->getParamType(i) == Args[i]->getType()) &&
398            "Calling a function with a bad signature!");
399 #endif
400 
401   llvm::copy(Args, op_begin());
402 
403   auto It = populateBundleOperandInfos(Bundles, Args.size());
404   (void)It;
405   assert(It + 1 == op_end() && "Should add up!");
406 
407   setName(NameStr);
408 }
409 
410 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
411   this->FTy = FTy;
412   assert(getNumOperands() == 1 && "NumOperands not set up?");
413   setCalledOperand(Func);
414 
415   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
416 
417   setName(NameStr);
418 }
419 
420 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
421                    Instruction *InsertBefore)
422     : CallBase(Ty->getReturnType(), Instruction::Call,
423                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
424   init(Ty, Func, Name);
425 }
426 
427 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
428                    BasicBlock *InsertAtEnd)
429     : CallBase(Ty->getReturnType(), Instruction::Call,
430                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
431   init(Ty, Func, Name);
432 }
433 
434 CallInst::CallInst(const CallInst &CI)
435     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
436                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
437                CI.getNumOperands()) {
438   setTailCallKind(CI.getTailCallKind());
439   setCallingConv(CI.getCallingConv());
440 
441   std::copy(CI.op_begin(), CI.op_end(), op_begin());
442   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
443             bundle_op_info_begin());
444   SubclassOptionalData = CI.SubclassOptionalData;
445 }
446 
447 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
448                            Instruction *InsertPt) {
449   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
450 
451   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
452                                  Args, OpB, CI->getName(), InsertPt);
453   NewCI->setTailCallKind(CI->getTailCallKind());
454   NewCI->setCallingConv(CI->getCallingConv());
455   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
456   NewCI->setAttributes(CI->getAttributes());
457   NewCI->setDebugLoc(CI->getDebugLoc());
458   return NewCI;
459 }
460 
461 /// IsConstantOne - Return true only if val is constant int 1
462 static bool IsConstantOne(Value *val) {
463   assert(val && "IsConstantOne does not work with nullptr val");
464   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
465   return CVal && CVal->isOne();
466 }
467 
468 static Instruction *createMalloc(Instruction *InsertBefore,
469                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
470                                  Type *AllocTy, Value *AllocSize,
471                                  Value *ArraySize,
472                                  ArrayRef<OperandBundleDef> OpB,
473                                  Function *MallocF, const Twine &Name) {
474   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
475          "createMalloc needs either InsertBefore or InsertAtEnd");
476 
477   // malloc(type) becomes:
478   //       bitcast (i8* malloc(typeSize)) to type*
479   // malloc(type, arraySize) becomes:
480   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
481   if (!ArraySize)
482     ArraySize = ConstantInt::get(IntPtrTy, 1);
483   else if (ArraySize->getType() != IntPtrTy) {
484     if (InsertBefore)
485       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
486                                               "", InsertBefore);
487     else
488       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
489                                               "", InsertAtEnd);
490   }
491 
492   if (!IsConstantOne(ArraySize)) {
493     if (IsConstantOne(AllocSize)) {
494       AllocSize = ArraySize;         // Operand * 1 = Operand
495     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
496       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
497                                                      false /*ZExt*/);
498       // Malloc arg is constant product of type size and array size
499       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
500     } else {
501       // Multiply type size by the array size...
502       if (InsertBefore)
503         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
504                                               "mallocsize", InsertBefore);
505       else
506         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
507                                               "mallocsize", InsertAtEnd);
508     }
509   }
510 
511   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
512   // Create the call to Malloc.
513   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
514   Module *M = BB->getParent()->getParent();
515   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
516   FunctionCallee MallocFunc = MallocF;
517   if (!MallocFunc)
518     // prototype malloc as "void *malloc(size_t)"
519     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
520   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
521   CallInst *MCall = nullptr;
522   Instruction *Result = nullptr;
523   if (InsertBefore) {
524     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
525                              InsertBefore);
526     Result = MCall;
527     if (Result->getType() != AllocPtrType)
528       // Create a cast instruction to convert to the right type...
529       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
530   } else {
531     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
532     Result = MCall;
533     if (Result->getType() != AllocPtrType) {
534       InsertAtEnd->getInstList().push_back(MCall);
535       // Create a cast instruction to convert to the right type...
536       Result = new BitCastInst(MCall, AllocPtrType, Name);
537     }
538   }
539   MCall->setTailCall();
540   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
541     MCall->setCallingConv(F->getCallingConv());
542     if (!F->returnDoesNotAlias())
543       F->setReturnDoesNotAlias();
544   }
545   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
546 
547   return Result;
548 }
549 
550 /// CreateMalloc - Generate the IR for a call to malloc:
551 /// 1. Compute the malloc call's argument as the specified type's size,
552 ///    possibly multiplied by the array size if the array size is not
553 ///    constant 1.
554 /// 2. Call malloc with that argument.
555 /// 3. Bitcast the result of the malloc call to the specified type.
556 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
557                                     Type *IntPtrTy, Type *AllocTy,
558                                     Value *AllocSize, Value *ArraySize,
559                                     Function *MallocF,
560                                     const Twine &Name) {
561   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
562                       ArraySize, None, MallocF, Name);
563 }
564 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
565                                     Type *IntPtrTy, Type *AllocTy,
566                                     Value *AllocSize, Value *ArraySize,
567                                     ArrayRef<OperandBundleDef> OpB,
568                                     Function *MallocF,
569                                     const Twine &Name) {
570   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
571                       ArraySize, OpB, MallocF, Name);
572 }
573 
574 /// CreateMalloc - Generate the IR for a call to malloc:
575 /// 1. Compute the malloc call's argument as the specified type's size,
576 ///    possibly multiplied by the array size if the array size is not
577 ///    constant 1.
578 /// 2. Call malloc with that argument.
579 /// 3. Bitcast the result of the malloc call to the specified type.
580 /// Note: This function does not add the bitcast to the basic block, that is the
581 /// responsibility of the caller.
582 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
583                                     Type *IntPtrTy, Type *AllocTy,
584                                     Value *AllocSize, Value *ArraySize,
585                                     Function *MallocF, const Twine &Name) {
586   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
587                       ArraySize, None, MallocF, Name);
588 }
589 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
590                                     Type *IntPtrTy, Type *AllocTy,
591                                     Value *AllocSize, Value *ArraySize,
592                                     ArrayRef<OperandBundleDef> OpB,
593                                     Function *MallocF, const Twine &Name) {
594   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
595                       ArraySize, OpB, MallocF, Name);
596 }
597 
598 static Instruction *createFree(Value *Source,
599                                ArrayRef<OperandBundleDef> Bundles,
600                                Instruction *InsertBefore,
601                                BasicBlock *InsertAtEnd) {
602   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
603          "createFree needs either InsertBefore or InsertAtEnd");
604   assert(Source->getType()->isPointerTy() &&
605          "Can not free something of nonpointer type!");
606 
607   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
608   Module *M = BB->getParent()->getParent();
609 
610   Type *VoidTy = Type::getVoidTy(M->getContext());
611   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
612   // prototype free as "void free(void*)"
613   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
614   CallInst *Result = nullptr;
615   Value *PtrCast = Source;
616   if (InsertBefore) {
617     if (Source->getType() != IntPtrTy)
618       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
619     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
620   } else {
621     if (Source->getType() != IntPtrTy)
622       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
623     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
624   }
625   Result->setTailCall();
626   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
627     Result->setCallingConv(F->getCallingConv());
628 
629   return Result;
630 }
631 
632 /// CreateFree - Generate the IR for a call to the builtin free function.
633 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
634   return createFree(Source, None, InsertBefore, nullptr);
635 }
636 Instruction *CallInst::CreateFree(Value *Source,
637                                   ArrayRef<OperandBundleDef> Bundles,
638                                   Instruction *InsertBefore) {
639   return createFree(Source, Bundles, InsertBefore, nullptr);
640 }
641 
642 /// CreateFree - Generate the IR for a call to the builtin free function.
643 /// Note: This function does not add the call to the basic block, that is the
644 /// responsibility of the caller.
645 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
646   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
647   assert(FreeCall && "CreateFree did not create a CallInst");
648   return FreeCall;
649 }
650 Instruction *CallInst::CreateFree(Value *Source,
651                                   ArrayRef<OperandBundleDef> Bundles,
652                                   BasicBlock *InsertAtEnd) {
653   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
654   assert(FreeCall && "CreateFree did not create a CallInst");
655   return FreeCall;
656 }
657 
658 //===----------------------------------------------------------------------===//
659 //                        InvokeInst Implementation
660 //===----------------------------------------------------------------------===//
661 
662 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
663                       BasicBlock *IfException, ArrayRef<Value *> Args,
664                       ArrayRef<OperandBundleDef> Bundles,
665                       const Twine &NameStr) {
666   this->FTy = FTy;
667 
668   assert((int)getNumOperands() ==
669              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
670          "NumOperands not set up?");
671   setNormalDest(IfNormal);
672   setUnwindDest(IfException);
673   setCalledOperand(Fn);
674 
675 #ifndef NDEBUG
676   assert(((Args.size() == FTy->getNumParams()) ||
677           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
678          "Invoking a function with bad signature");
679 
680   for (unsigned i = 0, e = Args.size(); i != e; i++)
681     assert((i >= FTy->getNumParams() ||
682             FTy->getParamType(i) == Args[i]->getType()) &&
683            "Invoking a function with a bad signature!");
684 #endif
685 
686   llvm::copy(Args, op_begin());
687 
688   auto It = populateBundleOperandInfos(Bundles, Args.size());
689   (void)It;
690   assert(It + 3 == op_end() && "Should add up!");
691 
692   setName(NameStr);
693 }
694 
695 InvokeInst::InvokeInst(const InvokeInst &II)
696     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
697                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
698                II.getNumOperands()) {
699   setCallingConv(II.getCallingConv());
700   std::copy(II.op_begin(), II.op_end(), op_begin());
701   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
702             bundle_op_info_begin());
703   SubclassOptionalData = II.SubclassOptionalData;
704 }
705 
706 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
707                                Instruction *InsertPt) {
708   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
709 
710   auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
711                                    II->getNormalDest(), II->getUnwindDest(),
712                                    Args, OpB, II->getName(), InsertPt);
713   NewII->setCallingConv(II->getCallingConv());
714   NewII->SubclassOptionalData = II->SubclassOptionalData;
715   NewII->setAttributes(II->getAttributes());
716   NewII->setDebugLoc(II->getDebugLoc());
717   return NewII;
718 }
719 
720 
721 LandingPadInst *InvokeInst::getLandingPadInst() const {
722   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
723 }
724 
725 //===----------------------------------------------------------------------===//
726 //                        CallBrInst Implementation
727 //===----------------------------------------------------------------------===//
728 
729 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
730                       ArrayRef<BasicBlock *> IndirectDests,
731                       ArrayRef<Value *> Args,
732                       ArrayRef<OperandBundleDef> Bundles,
733                       const Twine &NameStr) {
734   this->FTy = FTy;
735 
736   assert((int)getNumOperands() ==
737              ComputeNumOperands(Args.size(), IndirectDests.size(),
738                                 CountBundleInputs(Bundles)) &&
739          "NumOperands not set up?");
740   NumIndirectDests = IndirectDests.size();
741   setDefaultDest(Fallthrough);
742   for (unsigned i = 0; i != NumIndirectDests; ++i)
743     setIndirectDest(i, IndirectDests[i]);
744   setCalledOperand(Fn);
745 
746 #ifndef NDEBUG
747   assert(((Args.size() == FTy->getNumParams()) ||
748           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
749          "Calling a function with bad signature");
750 
751   for (unsigned i = 0, e = Args.size(); i != e; i++)
752     assert((i >= FTy->getNumParams() ||
753             FTy->getParamType(i) == Args[i]->getType()) &&
754            "Calling a function with a bad signature!");
755 #endif
756 
757   std::copy(Args.begin(), Args.end(), op_begin());
758 
759   auto It = populateBundleOperandInfos(Bundles, Args.size());
760   (void)It;
761   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
762 
763   setName(NameStr);
764 }
765 
766 CallBrInst::CallBrInst(const CallBrInst &CBI)
767     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
768                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
769                CBI.getNumOperands()) {
770   setCallingConv(CBI.getCallingConv());
771   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
772   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
773             bundle_op_info_begin());
774   SubclassOptionalData = CBI.SubclassOptionalData;
775   NumIndirectDests = CBI.NumIndirectDests;
776 }
777 
778 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
779                                Instruction *InsertPt) {
780   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
781 
782   auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
783                                     CBI->getCalledValue(),
784                                     CBI->getDefaultDest(),
785                                     CBI->getIndirectDests(),
786                                     Args, OpB, CBI->getName(), InsertPt);
787   NewCBI->setCallingConv(CBI->getCallingConv());
788   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
789   NewCBI->setAttributes(CBI->getAttributes());
790   NewCBI->setDebugLoc(CBI->getDebugLoc());
791   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
792   return NewCBI;
793 }
794 
795 //===----------------------------------------------------------------------===//
796 //                        ReturnInst Implementation
797 //===----------------------------------------------------------------------===//
798 
799 ReturnInst::ReturnInst(const ReturnInst &RI)
800     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
801                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
802                   RI.getNumOperands()) {
803   if (RI.getNumOperands())
804     Op<0>() = RI.Op<0>();
805   SubclassOptionalData = RI.SubclassOptionalData;
806 }
807 
808 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
809     : Instruction(Type::getVoidTy(C), Instruction::Ret,
810                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
811                   InsertBefore) {
812   if (retVal)
813     Op<0>() = retVal;
814 }
815 
816 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
817     : Instruction(Type::getVoidTy(C), Instruction::Ret,
818                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
819                   InsertAtEnd) {
820   if (retVal)
821     Op<0>() = retVal;
822 }
823 
824 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
825     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
826                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
827 
828 //===----------------------------------------------------------------------===//
829 //                        ResumeInst Implementation
830 //===----------------------------------------------------------------------===//
831 
832 ResumeInst::ResumeInst(const ResumeInst &RI)
833     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
834                   OperandTraits<ResumeInst>::op_begin(this), 1) {
835   Op<0>() = RI.Op<0>();
836 }
837 
838 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
839     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
840                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
841   Op<0>() = Exn;
842 }
843 
844 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
845     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
846                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
847   Op<0>() = Exn;
848 }
849 
850 //===----------------------------------------------------------------------===//
851 //                        CleanupReturnInst Implementation
852 //===----------------------------------------------------------------------===//
853 
854 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
855     : Instruction(CRI.getType(), Instruction::CleanupRet,
856                   OperandTraits<CleanupReturnInst>::op_end(this) -
857                       CRI.getNumOperands(),
858                   CRI.getNumOperands()) {
859   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
860   Op<0>() = CRI.Op<0>();
861   if (CRI.hasUnwindDest())
862     Op<1>() = CRI.Op<1>();
863 }
864 
865 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
866   if (UnwindBB)
867     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
868 
869   Op<0>() = CleanupPad;
870   if (UnwindBB)
871     Op<1>() = UnwindBB;
872 }
873 
874 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
875                                      unsigned Values, Instruction *InsertBefore)
876     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
877                   Instruction::CleanupRet,
878                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
879                   Values, InsertBefore) {
880   init(CleanupPad, UnwindBB);
881 }
882 
883 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
884                                      unsigned Values, BasicBlock *InsertAtEnd)
885     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
886                   Instruction::CleanupRet,
887                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
888                   Values, InsertAtEnd) {
889   init(CleanupPad, UnwindBB);
890 }
891 
892 //===----------------------------------------------------------------------===//
893 //                        CatchReturnInst Implementation
894 //===----------------------------------------------------------------------===//
895 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
896   Op<0>() = CatchPad;
897   Op<1>() = BB;
898 }
899 
900 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
901     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
902                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
903   Op<0>() = CRI.Op<0>();
904   Op<1>() = CRI.Op<1>();
905 }
906 
907 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
908                                  Instruction *InsertBefore)
909     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
910                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
911                   InsertBefore) {
912   init(CatchPad, BB);
913 }
914 
915 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
916                                  BasicBlock *InsertAtEnd)
917     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
918                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
919                   InsertAtEnd) {
920   init(CatchPad, BB);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 //                       CatchSwitchInst Implementation
925 //===----------------------------------------------------------------------===//
926 
927 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
928                                  unsigned NumReservedValues,
929                                  const Twine &NameStr,
930                                  Instruction *InsertBefore)
931     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
932                   InsertBefore) {
933   if (UnwindDest)
934     ++NumReservedValues;
935   init(ParentPad, UnwindDest, NumReservedValues + 1);
936   setName(NameStr);
937 }
938 
939 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
940                                  unsigned NumReservedValues,
941                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
942     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
943                   InsertAtEnd) {
944   if (UnwindDest)
945     ++NumReservedValues;
946   init(ParentPad, UnwindDest, NumReservedValues + 1);
947   setName(NameStr);
948 }
949 
950 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
951     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
952                   CSI.getNumOperands()) {
953   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
954   setNumHungOffUseOperands(ReservedSpace);
955   Use *OL = getOperandList();
956   const Use *InOL = CSI.getOperandList();
957   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
958     OL[I] = InOL[I];
959 }
960 
961 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
962                            unsigned NumReservedValues) {
963   assert(ParentPad && NumReservedValues);
964 
965   ReservedSpace = NumReservedValues;
966   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
967   allocHungoffUses(ReservedSpace);
968 
969   Op<0>() = ParentPad;
970   if (UnwindDest) {
971     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
972     setUnwindDest(UnwindDest);
973   }
974 }
975 
976 /// growOperands - grow operands - This grows the operand list in response to a
977 /// push_back style of operation. This grows the number of ops by 2 times.
978 void CatchSwitchInst::growOperands(unsigned Size) {
979   unsigned NumOperands = getNumOperands();
980   assert(NumOperands >= 1);
981   if (ReservedSpace >= NumOperands + Size)
982     return;
983   ReservedSpace = (NumOperands + Size / 2) * 2;
984   growHungoffUses(ReservedSpace);
985 }
986 
987 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
988   unsigned OpNo = getNumOperands();
989   growOperands(1);
990   assert(OpNo < ReservedSpace && "Growing didn't work!");
991   setNumHungOffUseOperands(getNumOperands() + 1);
992   getOperandList()[OpNo] = Handler;
993 }
994 
995 void CatchSwitchInst::removeHandler(handler_iterator HI) {
996   // Move all subsequent handlers up one.
997   Use *EndDst = op_end() - 1;
998   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
999     *CurDst = *(CurDst + 1);
1000   // Null out the last handler use.
1001   *EndDst = nullptr;
1002 
1003   setNumHungOffUseOperands(getNumOperands() - 1);
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 //                        FuncletPadInst Implementation
1008 //===----------------------------------------------------------------------===//
1009 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1010                           const Twine &NameStr) {
1011   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1012   llvm::copy(Args, op_begin());
1013   setParentPad(ParentPad);
1014   setName(NameStr);
1015 }
1016 
1017 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1018     : Instruction(FPI.getType(), FPI.getOpcode(),
1019                   OperandTraits<FuncletPadInst>::op_end(this) -
1020                       FPI.getNumOperands(),
1021                   FPI.getNumOperands()) {
1022   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1023   setParentPad(FPI.getParentPad());
1024 }
1025 
1026 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1027                                ArrayRef<Value *> Args, unsigned Values,
1028                                const Twine &NameStr, Instruction *InsertBefore)
1029     : Instruction(ParentPad->getType(), Op,
1030                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1031                   InsertBefore) {
1032   init(ParentPad, Args, NameStr);
1033 }
1034 
1035 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1036                                ArrayRef<Value *> Args, unsigned Values,
1037                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1038     : Instruction(ParentPad->getType(), Op,
1039                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1040                   InsertAtEnd) {
1041   init(ParentPad, Args, NameStr);
1042 }
1043 
1044 //===----------------------------------------------------------------------===//
1045 //                      UnreachableInst Implementation
1046 //===----------------------------------------------------------------------===//
1047 
1048 UnreachableInst::UnreachableInst(LLVMContext &Context,
1049                                  Instruction *InsertBefore)
1050     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1051                   0, InsertBefore) {}
1052 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1053     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1054                   0, InsertAtEnd) {}
1055 
1056 //===----------------------------------------------------------------------===//
1057 //                        BranchInst Implementation
1058 //===----------------------------------------------------------------------===//
1059 
1060 void BranchInst::AssertOK() {
1061   if (isConditional())
1062     assert(getCondition()->getType()->isIntegerTy(1) &&
1063            "May only branch on boolean predicates!");
1064 }
1065 
1066 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1067     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1068                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1069                   InsertBefore) {
1070   assert(IfTrue && "Branch destination may not be null!");
1071   Op<-1>() = IfTrue;
1072 }
1073 
1074 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1075                        Instruction *InsertBefore)
1076     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1077                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1078                   InsertBefore) {
1079   Op<-1>() = IfTrue;
1080   Op<-2>() = IfFalse;
1081   Op<-3>() = Cond;
1082 #ifndef NDEBUG
1083   AssertOK();
1084 #endif
1085 }
1086 
1087 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1088     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1089                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1090   assert(IfTrue && "Branch destination may not be null!");
1091   Op<-1>() = IfTrue;
1092 }
1093 
1094 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1095                        BasicBlock *InsertAtEnd)
1096     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1097                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1098   Op<-1>() = IfTrue;
1099   Op<-2>() = IfFalse;
1100   Op<-3>() = Cond;
1101 #ifndef NDEBUG
1102   AssertOK();
1103 #endif
1104 }
1105 
1106 BranchInst::BranchInst(const BranchInst &BI)
1107     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1108                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1109                   BI.getNumOperands()) {
1110   Op<-1>() = BI.Op<-1>();
1111   if (BI.getNumOperands() != 1) {
1112     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1113     Op<-3>() = BI.Op<-3>();
1114     Op<-2>() = BI.Op<-2>();
1115   }
1116   SubclassOptionalData = BI.SubclassOptionalData;
1117 }
1118 
1119 void BranchInst::swapSuccessors() {
1120   assert(isConditional() &&
1121          "Cannot swap successors of an unconditional branch");
1122   Op<-1>().swap(Op<-2>());
1123 
1124   // Update profile metadata if present and it matches our structural
1125   // expectations.
1126   swapProfMetadata();
1127 }
1128 
1129 //===----------------------------------------------------------------------===//
1130 //                        AllocaInst Implementation
1131 //===----------------------------------------------------------------------===//
1132 
1133 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1134   if (!Amt)
1135     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1136   else {
1137     assert(!isa<BasicBlock>(Amt) &&
1138            "Passed basic block into allocation size parameter! Use other ctor");
1139     assert(Amt->getType()->isIntegerTy() &&
1140            "Allocation array size is not an integer!");
1141   }
1142   return Amt;
1143 }
1144 
1145 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1146                        Instruction *InsertBefore)
1147   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1148 
1149 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1150                        BasicBlock *InsertAtEnd)
1151   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1152 
1153 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1154                        const Twine &Name, Instruction *InsertBefore)
1155   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1156 
1157 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1158                        const Twine &Name, BasicBlock *InsertAtEnd)
1159   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1160 
1161 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1162                        unsigned Align, const Twine &Name,
1163                        Instruction *InsertBefore)
1164   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1165                      getAISize(Ty->getContext(), ArraySize), InsertBefore),
1166     AllocatedType(Ty) {
1167   setAlignment(Align);
1168   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1169   setName(Name);
1170 }
1171 
1172 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1173                        unsigned Align, const Twine &Name,
1174                        BasicBlock *InsertAtEnd)
1175   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1176                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1177       AllocatedType(Ty) {
1178   setAlignment(Align);
1179   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1180   setName(Name);
1181 }
1182 
1183 void AllocaInst::setAlignment(unsigned Align) {
1184   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1185   assert(Align <= MaximumAlignment &&
1186          "Alignment is greater than MaximumAlignment!");
1187   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1188                              (Log2_32(Align) + 1));
1189   assert(getAlignment() == Align && "Alignment representation error!");
1190 }
1191 
1192 bool AllocaInst::isArrayAllocation() const {
1193   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1194     return !CI->isOne();
1195   return true;
1196 }
1197 
1198 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1199 /// function and is a constant size.  If so, the code generator will fold it
1200 /// into the prolog/epilog code, so it is basically free.
1201 bool AllocaInst::isStaticAlloca() const {
1202   // Must be constant size.
1203   if (!isa<ConstantInt>(getArraySize())) return false;
1204 
1205   // Must be in the entry block.
1206   const BasicBlock *Parent = getParent();
1207   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1208 }
1209 
1210 //===----------------------------------------------------------------------===//
1211 //                           LoadInst Implementation
1212 //===----------------------------------------------------------------------===//
1213 
1214 void LoadInst::AssertOK() {
1215   assert(getOperand(0)->getType()->isPointerTy() &&
1216          "Ptr must have pointer type.");
1217   assert(!(isAtomic() && getAlignment() == 0) &&
1218          "Alignment required for atomic load");
1219 }
1220 
1221 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1222                    Instruction *InsertBef)
1223     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1224 
1225 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1226                    BasicBlock *InsertAE)
1227     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1228 
1229 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1230                    Instruction *InsertBef)
1231     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1232 
1233 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1234                    BasicBlock *InsertAE)
1235     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1236 
1237 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1238                    unsigned Align, Instruction *InsertBef)
1239     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1240                SyncScope::System, InsertBef) {}
1241 
1242 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1243                    unsigned Align, BasicBlock *InsertAE)
1244     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1245                SyncScope::System, InsertAE) {}
1246 
1247 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1248                    unsigned Align, AtomicOrdering Order,
1249                    SyncScope::ID SSID, Instruction *InsertBef)
1250     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1251   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1252   setVolatile(isVolatile);
1253   setAlignment(Align);
1254   setAtomic(Order, SSID);
1255   AssertOK();
1256   setName(Name);
1257 }
1258 
1259 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1260                    unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1261                    BasicBlock *InsertAE)
1262     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1263   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1264   setVolatile(isVolatile);
1265   setAlignment(Align);
1266   setAtomic(Order, SSID);
1267   AssertOK();
1268   setName(Name);
1269 }
1270 
1271 void LoadInst::setAlignment(unsigned Align) {
1272   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1273   assert(Align <= MaximumAlignment &&
1274          "Alignment is greater than MaximumAlignment!");
1275   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1276                              ((Log2_32(Align)+1)<<1));
1277   assert(getAlignment() == Align && "Alignment representation error!");
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 //                           StoreInst Implementation
1282 //===----------------------------------------------------------------------===//
1283 
1284 void StoreInst::AssertOK() {
1285   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1286   assert(getOperand(1)->getType()->isPointerTy() &&
1287          "Ptr must have pointer type!");
1288   assert(getOperand(0)->getType() ==
1289                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1290          && "Ptr must be a pointer to Val type!");
1291   assert(!(isAtomic() && getAlignment() == 0) &&
1292          "Alignment required for atomic store");
1293 }
1294 
1295 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1296     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1297 
1298 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1299     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1300 
1301 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1302                      Instruction *InsertBefore)
1303     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1304 
1305 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1306                      BasicBlock *InsertAtEnd)
1307     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1308 
1309 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1310                      Instruction *InsertBefore)
1311     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1312                 SyncScope::System, InsertBefore) {}
1313 
1314 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1315                      BasicBlock *InsertAtEnd)
1316     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1317                 SyncScope::System, InsertAtEnd) {}
1318 
1319 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1320                      unsigned Align, AtomicOrdering Order,
1321                      SyncScope::ID SSID,
1322                      Instruction *InsertBefore)
1323   : Instruction(Type::getVoidTy(val->getContext()), Store,
1324                 OperandTraits<StoreInst>::op_begin(this),
1325                 OperandTraits<StoreInst>::operands(this),
1326                 InsertBefore) {
1327   Op<0>() = val;
1328   Op<1>() = addr;
1329   setVolatile(isVolatile);
1330   setAlignment(Align);
1331   setAtomic(Order, SSID);
1332   AssertOK();
1333 }
1334 
1335 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1336                      unsigned Align, AtomicOrdering Order,
1337                      SyncScope::ID SSID,
1338                      BasicBlock *InsertAtEnd)
1339   : Instruction(Type::getVoidTy(val->getContext()), Store,
1340                 OperandTraits<StoreInst>::op_begin(this),
1341                 OperandTraits<StoreInst>::operands(this),
1342                 InsertAtEnd) {
1343   Op<0>() = val;
1344   Op<1>() = addr;
1345   setVolatile(isVolatile);
1346   setAlignment(Align);
1347   setAtomic(Order, SSID);
1348   AssertOK();
1349 }
1350 
1351 void StoreInst::setAlignment(unsigned Align) {
1352   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1353   assert(Align <= MaximumAlignment &&
1354          "Alignment is greater than MaximumAlignment!");
1355   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1356                              ((Log2_32(Align)+1) << 1));
1357   assert(getAlignment() == Align && "Alignment representation error!");
1358 }
1359 
1360 //===----------------------------------------------------------------------===//
1361 //                       AtomicCmpXchgInst Implementation
1362 //===----------------------------------------------------------------------===//
1363 
1364 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1365                              AtomicOrdering SuccessOrdering,
1366                              AtomicOrdering FailureOrdering,
1367                              SyncScope::ID SSID) {
1368   Op<0>() = Ptr;
1369   Op<1>() = Cmp;
1370   Op<2>() = NewVal;
1371   setSuccessOrdering(SuccessOrdering);
1372   setFailureOrdering(FailureOrdering);
1373   setSyncScopeID(SSID);
1374 
1375   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1376          "All operands must be non-null!");
1377   assert(getOperand(0)->getType()->isPointerTy() &&
1378          "Ptr must have pointer type!");
1379   assert(getOperand(1)->getType() ==
1380                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1381          && "Ptr must be a pointer to Cmp type!");
1382   assert(getOperand(2)->getType() ==
1383                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1384          && "Ptr must be a pointer to NewVal type!");
1385   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1386          "AtomicCmpXchg instructions must be atomic!");
1387   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1388          "AtomicCmpXchg instructions must be atomic!");
1389   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1390          "AtomicCmpXchg failure argument shall be no stronger than the success "
1391          "argument");
1392   assert(FailureOrdering != AtomicOrdering::Release &&
1393          FailureOrdering != AtomicOrdering::AcquireRelease &&
1394          "AtomicCmpXchg failure ordering cannot include release semantics");
1395 }
1396 
1397 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1398                                      AtomicOrdering SuccessOrdering,
1399                                      AtomicOrdering FailureOrdering,
1400                                      SyncScope::ID SSID,
1401                                      Instruction *InsertBefore)
1402     : Instruction(
1403           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1404           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1405           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1406   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1407 }
1408 
1409 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1410                                      AtomicOrdering SuccessOrdering,
1411                                      AtomicOrdering FailureOrdering,
1412                                      SyncScope::ID SSID,
1413                                      BasicBlock *InsertAtEnd)
1414     : Instruction(
1415           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1416           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1417           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1418   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1419 }
1420 
1421 //===----------------------------------------------------------------------===//
1422 //                       AtomicRMWInst Implementation
1423 //===----------------------------------------------------------------------===//
1424 
1425 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1426                          AtomicOrdering Ordering,
1427                          SyncScope::ID SSID) {
1428   Op<0>() = Ptr;
1429   Op<1>() = Val;
1430   setOperation(Operation);
1431   setOrdering(Ordering);
1432   setSyncScopeID(SSID);
1433 
1434   assert(getOperand(0) && getOperand(1) &&
1435          "All operands must be non-null!");
1436   assert(getOperand(0)->getType()->isPointerTy() &&
1437          "Ptr must have pointer type!");
1438   assert(getOperand(1)->getType() ==
1439          cast<PointerType>(getOperand(0)->getType())->getElementType()
1440          && "Ptr must be a pointer to Val type!");
1441   assert(Ordering != AtomicOrdering::NotAtomic &&
1442          "AtomicRMW instructions must be atomic!");
1443 }
1444 
1445 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1446                              AtomicOrdering Ordering,
1447                              SyncScope::ID SSID,
1448                              Instruction *InsertBefore)
1449   : Instruction(Val->getType(), AtomicRMW,
1450                 OperandTraits<AtomicRMWInst>::op_begin(this),
1451                 OperandTraits<AtomicRMWInst>::operands(this),
1452                 InsertBefore) {
1453   Init(Operation, Ptr, Val, Ordering, SSID);
1454 }
1455 
1456 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1457                              AtomicOrdering Ordering,
1458                              SyncScope::ID SSID,
1459                              BasicBlock *InsertAtEnd)
1460   : Instruction(Val->getType(), AtomicRMW,
1461                 OperandTraits<AtomicRMWInst>::op_begin(this),
1462                 OperandTraits<AtomicRMWInst>::operands(this),
1463                 InsertAtEnd) {
1464   Init(Operation, Ptr, Val, Ordering, SSID);
1465 }
1466 
1467 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1468   switch (Op) {
1469   case AtomicRMWInst::Xchg:
1470     return "xchg";
1471   case AtomicRMWInst::Add:
1472     return "add";
1473   case AtomicRMWInst::Sub:
1474     return "sub";
1475   case AtomicRMWInst::And:
1476     return "and";
1477   case AtomicRMWInst::Nand:
1478     return "nand";
1479   case AtomicRMWInst::Or:
1480     return "or";
1481   case AtomicRMWInst::Xor:
1482     return "xor";
1483   case AtomicRMWInst::Max:
1484     return "max";
1485   case AtomicRMWInst::Min:
1486     return "min";
1487   case AtomicRMWInst::UMax:
1488     return "umax";
1489   case AtomicRMWInst::UMin:
1490     return "umin";
1491   case AtomicRMWInst::FAdd:
1492     return "fadd";
1493   case AtomicRMWInst::FSub:
1494     return "fsub";
1495   case AtomicRMWInst::BAD_BINOP:
1496     return "<invalid operation>";
1497   }
1498 
1499   llvm_unreachable("invalid atomicrmw operation");
1500 }
1501 
1502 //===----------------------------------------------------------------------===//
1503 //                       FenceInst Implementation
1504 //===----------------------------------------------------------------------===//
1505 
1506 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1507                      SyncScope::ID SSID,
1508                      Instruction *InsertBefore)
1509   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1510   setOrdering(Ordering);
1511   setSyncScopeID(SSID);
1512 }
1513 
1514 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1515                      SyncScope::ID SSID,
1516                      BasicBlock *InsertAtEnd)
1517   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1518   setOrdering(Ordering);
1519   setSyncScopeID(SSID);
1520 }
1521 
1522 //===----------------------------------------------------------------------===//
1523 //                       GetElementPtrInst Implementation
1524 //===----------------------------------------------------------------------===//
1525 
1526 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1527                              const Twine &Name) {
1528   assert(getNumOperands() == 1 + IdxList.size() &&
1529          "NumOperands not initialized?");
1530   Op<0>() = Ptr;
1531   llvm::copy(IdxList, op_begin() + 1);
1532   setName(Name);
1533 }
1534 
1535 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1536     : Instruction(GEPI.getType(), GetElementPtr,
1537                   OperandTraits<GetElementPtrInst>::op_end(this) -
1538                       GEPI.getNumOperands(),
1539                   GEPI.getNumOperands()),
1540       SourceElementType(GEPI.SourceElementType),
1541       ResultElementType(GEPI.ResultElementType) {
1542   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1543   SubclassOptionalData = GEPI.SubclassOptionalData;
1544 }
1545 
1546 /// getIndexedType - Returns the type of the element that would be accessed with
1547 /// a gep instruction with the specified parameters.
1548 ///
1549 /// The Idxs pointer should point to a continuous piece of memory containing the
1550 /// indices, either as Value* or uint64_t.
1551 ///
1552 /// A null type is returned if the indices are invalid for the specified
1553 /// pointer type.
1554 ///
1555 template <typename IndexTy>
1556 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1557   // Handle the special case of the empty set index set, which is always valid.
1558   if (IdxList.empty())
1559     return Agg;
1560 
1561   // If there is at least one index, the top level type must be sized, otherwise
1562   // it cannot be 'stepped over'.
1563   if (!Agg->isSized())
1564     return nullptr;
1565 
1566   unsigned CurIdx = 1;
1567   for (; CurIdx != IdxList.size(); ++CurIdx) {
1568     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1569     if (!CT || CT->isPointerTy()) return nullptr;
1570     IndexTy Index = IdxList[CurIdx];
1571     if (!CT->indexValid(Index)) return nullptr;
1572     Agg = CT->getTypeAtIndex(Index);
1573   }
1574   return CurIdx == IdxList.size() ? Agg : nullptr;
1575 }
1576 
1577 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1578   return getIndexedTypeInternal(Ty, IdxList);
1579 }
1580 
1581 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1582                                         ArrayRef<Constant *> IdxList) {
1583   return getIndexedTypeInternal(Ty, IdxList);
1584 }
1585 
1586 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1587   return getIndexedTypeInternal(Ty, IdxList);
1588 }
1589 
1590 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1591 /// zeros.  If so, the result pointer and the first operand have the same
1592 /// value, just potentially different types.
1593 bool GetElementPtrInst::hasAllZeroIndices() const {
1594   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1595     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1596       if (!CI->isZero()) return false;
1597     } else {
1598       return false;
1599     }
1600   }
1601   return true;
1602 }
1603 
1604 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1605 /// constant integers.  If so, the result pointer and the first operand have
1606 /// a constant offset between them.
1607 bool GetElementPtrInst::hasAllConstantIndices() const {
1608   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1609     if (!isa<ConstantInt>(getOperand(i)))
1610       return false;
1611   }
1612   return true;
1613 }
1614 
1615 void GetElementPtrInst::setIsInBounds(bool B) {
1616   cast<GEPOperator>(this)->setIsInBounds(B);
1617 }
1618 
1619 bool GetElementPtrInst::isInBounds() const {
1620   return cast<GEPOperator>(this)->isInBounds();
1621 }
1622 
1623 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1624                                                  APInt &Offset) const {
1625   // Delegate to the generic GEPOperator implementation.
1626   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1627 }
1628 
1629 //===----------------------------------------------------------------------===//
1630 //                           ExtractElementInst Implementation
1631 //===----------------------------------------------------------------------===//
1632 
1633 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1634                                        const Twine &Name,
1635                                        Instruction *InsertBef)
1636   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1637                 ExtractElement,
1638                 OperandTraits<ExtractElementInst>::op_begin(this),
1639                 2, InsertBef) {
1640   assert(isValidOperands(Val, Index) &&
1641          "Invalid extractelement instruction operands!");
1642   Op<0>() = Val;
1643   Op<1>() = Index;
1644   setName(Name);
1645 }
1646 
1647 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1648                                        const Twine &Name,
1649                                        BasicBlock *InsertAE)
1650   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1651                 ExtractElement,
1652                 OperandTraits<ExtractElementInst>::op_begin(this),
1653                 2, InsertAE) {
1654   assert(isValidOperands(Val, Index) &&
1655          "Invalid extractelement instruction operands!");
1656 
1657   Op<0>() = Val;
1658   Op<1>() = Index;
1659   setName(Name);
1660 }
1661 
1662 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1663   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1664     return false;
1665   return true;
1666 }
1667 
1668 //===----------------------------------------------------------------------===//
1669 //                           InsertElementInst Implementation
1670 //===----------------------------------------------------------------------===//
1671 
1672 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1673                                      const Twine &Name,
1674                                      Instruction *InsertBef)
1675   : Instruction(Vec->getType(), InsertElement,
1676                 OperandTraits<InsertElementInst>::op_begin(this),
1677                 3, InsertBef) {
1678   assert(isValidOperands(Vec, Elt, Index) &&
1679          "Invalid insertelement instruction operands!");
1680   Op<0>() = Vec;
1681   Op<1>() = Elt;
1682   Op<2>() = Index;
1683   setName(Name);
1684 }
1685 
1686 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1687                                      const Twine &Name,
1688                                      BasicBlock *InsertAE)
1689   : Instruction(Vec->getType(), InsertElement,
1690                 OperandTraits<InsertElementInst>::op_begin(this),
1691                 3, InsertAE) {
1692   assert(isValidOperands(Vec, Elt, Index) &&
1693          "Invalid insertelement instruction operands!");
1694 
1695   Op<0>() = Vec;
1696   Op<1>() = Elt;
1697   Op<2>() = Index;
1698   setName(Name);
1699 }
1700 
1701 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1702                                         const Value *Index) {
1703   if (!Vec->getType()->isVectorTy())
1704     return false;   // First operand of insertelement must be vector type.
1705 
1706   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1707     return false;// Second operand of insertelement must be vector element type.
1708 
1709   if (!Index->getType()->isIntegerTy())
1710     return false;  // Third operand of insertelement must be i32.
1711   return true;
1712 }
1713 
1714 //===----------------------------------------------------------------------===//
1715 //                      ShuffleVectorInst Implementation
1716 //===----------------------------------------------------------------------===//
1717 
1718 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1719                                      const Twine &Name,
1720                                      Instruction *InsertBefore)
1721 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1722                 cast<VectorType>(Mask->getType())->getNumElements()),
1723               ShuffleVector,
1724               OperandTraits<ShuffleVectorInst>::op_begin(this),
1725               OperandTraits<ShuffleVectorInst>::operands(this),
1726               InsertBefore) {
1727   assert(isValidOperands(V1, V2, Mask) &&
1728          "Invalid shuffle vector instruction operands!");
1729   Op<0>() = V1;
1730   Op<1>() = V2;
1731   Op<2>() = Mask;
1732   setName(Name);
1733 }
1734 
1735 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1736                                      const Twine &Name,
1737                                      BasicBlock *InsertAtEnd)
1738 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1739                 cast<VectorType>(Mask->getType())->getNumElements()),
1740               ShuffleVector,
1741               OperandTraits<ShuffleVectorInst>::op_begin(this),
1742               OperandTraits<ShuffleVectorInst>::operands(this),
1743               InsertAtEnd) {
1744   assert(isValidOperands(V1, V2, Mask) &&
1745          "Invalid shuffle vector instruction operands!");
1746 
1747   Op<0>() = V1;
1748   Op<1>() = V2;
1749   Op<2>() = Mask;
1750   setName(Name);
1751 }
1752 
1753 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1754                                         const Value *Mask) {
1755   // V1 and V2 must be vectors of the same type.
1756   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1757     return false;
1758 
1759   // Mask must be vector of i32.
1760   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1761   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1762     return false;
1763 
1764   // Check to see if Mask is valid.
1765   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1766     return true;
1767 
1768   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1769     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1770     for (Value *Op : MV->operands()) {
1771       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1772         if (CI->uge(V1Size*2))
1773           return false;
1774       } else if (!isa<UndefValue>(Op)) {
1775         return false;
1776       }
1777     }
1778     return true;
1779   }
1780 
1781   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1782     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1783     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1784       if (CDS->getElementAsInteger(i) >= V1Size*2)
1785         return false;
1786     return true;
1787   }
1788 
1789   // The bitcode reader can create a place holder for a forward reference
1790   // used as the shuffle mask. When this occurs, the shuffle mask will
1791   // fall into this case and fail. To avoid this error, do this bit of
1792   // ugliness to allow such a mask pass.
1793   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1794     if (CE->getOpcode() == Instruction::UserOp1)
1795       return true;
1796 
1797   return false;
1798 }
1799 
1800 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1801   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1802   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1803     return CDS->getElementAsInteger(i);
1804   Constant *C = Mask->getAggregateElement(i);
1805   if (isa<UndefValue>(C))
1806     return -1;
1807   return cast<ConstantInt>(C)->getZExtValue();
1808 }
1809 
1810 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1811                                        SmallVectorImpl<int> &Result) {
1812   unsigned NumElts = Mask->getType()->getVectorNumElements();
1813 
1814   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1815     for (unsigned i = 0; i != NumElts; ++i)
1816       Result.push_back(CDS->getElementAsInteger(i));
1817     return;
1818   }
1819   for (unsigned i = 0; i != NumElts; ++i) {
1820     Constant *C = Mask->getAggregateElement(i);
1821     Result.push_back(isa<UndefValue>(C) ? -1 :
1822                      cast<ConstantInt>(C)->getZExtValue());
1823   }
1824 }
1825 
1826 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1827   assert(!Mask.empty() && "Shuffle mask must contain elements");
1828   bool UsesLHS = false;
1829   bool UsesRHS = false;
1830   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1831     if (Mask[i] == -1)
1832       continue;
1833     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1834            "Out-of-bounds shuffle mask element");
1835     UsesLHS |= (Mask[i] < NumOpElts);
1836     UsesRHS |= (Mask[i] >= NumOpElts);
1837     if (UsesLHS && UsesRHS)
1838       return false;
1839   }
1840   assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1841   return true;
1842 }
1843 
1844 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1845   // We don't have vector operand size information, so assume operands are the
1846   // same size as the mask.
1847   return isSingleSourceMaskImpl(Mask, Mask.size());
1848 }
1849 
1850 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1851   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1852     return false;
1853   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1854     if (Mask[i] == -1)
1855       continue;
1856     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1857       return false;
1858   }
1859   return true;
1860 }
1861 
1862 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1863   // We don't have vector operand size information, so assume operands are the
1864   // same size as the mask.
1865   return isIdentityMaskImpl(Mask, Mask.size());
1866 }
1867 
1868 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1869   if (!isSingleSourceMask(Mask))
1870     return false;
1871   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1872     if (Mask[i] == -1)
1873       continue;
1874     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1875       return false;
1876   }
1877   return true;
1878 }
1879 
1880 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1881   if (!isSingleSourceMask(Mask))
1882     return false;
1883   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1884     if (Mask[i] == -1)
1885       continue;
1886     if (Mask[i] != 0 && Mask[i] != NumElts)
1887       return false;
1888   }
1889   return true;
1890 }
1891 
1892 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1893   // Select is differentiated from identity. It requires using both sources.
1894   if (isSingleSourceMask(Mask))
1895     return false;
1896   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1897     if (Mask[i] == -1)
1898       continue;
1899     if (Mask[i] != i && Mask[i] != (NumElts + i))
1900       return false;
1901   }
1902   return true;
1903 }
1904 
1905 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1906   // Example masks that will return true:
1907   // v1 = <a, b, c, d>
1908   // v2 = <e, f, g, h>
1909   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1910   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1911 
1912   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1913   int NumElts = Mask.size();
1914   if (NumElts < 2 || !isPowerOf2_32(NumElts))
1915     return false;
1916 
1917   // 2. The first element of the mask must be either a 0 or a 1.
1918   if (Mask[0] != 0 && Mask[0] != 1)
1919     return false;
1920 
1921   // 3. The difference between the first 2 elements must be equal to the
1922   // number of elements in the mask.
1923   if ((Mask[1] - Mask[0]) != NumElts)
1924     return false;
1925 
1926   // 4. The difference between consecutive even-numbered and odd-numbered
1927   // elements must be equal to 2.
1928   for (int i = 2; i < NumElts; ++i) {
1929     int MaskEltVal = Mask[i];
1930     if (MaskEltVal == -1)
1931       return false;
1932     int MaskEltPrevVal = Mask[i - 2];
1933     if (MaskEltVal - MaskEltPrevVal != 2)
1934       return false;
1935   }
1936   return true;
1937 }
1938 
1939 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
1940                                                int NumSrcElts, int &Index) {
1941   // Must extract from a single source.
1942   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
1943     return false;
1944 
1945   // Must be smaller (else this is an Identity shuffle).
1946   if (NumSrcElts <= (int)Mask.size())
1947     return false;
1948 
1949   // Find start of extraction, accounting that we may start with an UNDEF.
1950   int SubIndex = -1;
1951   for (int i = 0, e = Mask.size(); i != e; ++i) {
1952     int M = Mask[i];
1953     if (M < 0)
1954       continue;
1955     int Offset = (M % NumSrcElts) - i;
1956     if (0 <= SubIndex && SubIndex != Offset)
1957       return false;
1958     SubIndex = Offset;
1959   }
1960 
1961   if (0 <= SubIndex) {
1962     Index = SubIndex;
1963     return true;
1964   }
1965   return false;
1966 }
1967 
1968 bool ShuffleVectorInst::isIdentityWithPadding() const {
1969   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1970   int NumMaskElts = getType()->getVectorNumElements();
1971   if (NumMaskElts <= NumOpElts)
1972     return false;
1973 
1974   // The first part of the mask must choose elements from exactly 1 source op.
1975   SmallVector<int, 16> Mask = getShuffleMask();
1976   if (!isIdentityMaskImpl(Mask, NumOpElts))
1977     return false;
1978 
1979   // All extending must be with undef elements.
1980   for (int i = NumOpElts; i < NumMaskElts; ++i)
1981     if (Mask[i] != -1)
1982       return false;
1983 
1984   return true;
1985 }
1986 
1987 bool ShuffleVectorInst::isIdentityWithExtract() const {
1988   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1989   int NumMaskElts = getType()->getVectorNumElements();
1990   if (NumMaskElts >= NumOpElts)
1991     return false;
1992 
1993   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
1994 }
1995 
1996 bool ShuffleVectorInst::isConcat() const {
1997   // Vector concatenation is differentiated from identity with padding.
1998   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
1999     return false;
2000 
2001   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2002   int NumMaskElts = getType()->getVectorNumElements();
2003   if (NumMaskElts != NumOpElts * 2)
2004     return false;
2005 
2006   // Use the mask length rather than the operands' vector lengths here. We
2007   // already know that the shuffle returns a vector twice as long as the inputs,
2008   // and neither of the inputs are undef vectors. If the mask picks consecutive
2009   // elements from both inputs, then this is a concatenation of the inputs.
2010   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2011 }
2012 
2013 //===----------------------------------------------------------------------===//
2014 //                             InsertValueInst Class
2015 //===----------------------------------------------------------------------===//
2016 
2017 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2018                            const Twine &Name) {
2019   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2020 
2021   // There's no fundamental reason why we require at least one index
2022   // (other than weirdness with &*IdxBegin being invalid; see
2023   // getelementptr's init routine for example). But there's no
2024   // present need to support it.
2025   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2026 
2027   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2028          Val->getType() && "Inserted value must match indexed type!");
2029   Op<0>() = Agg;
2030   Op<1>() = Val;
2031 
2032   Indices.append(Idxs.begin(), Idxs.end());
2033   setName(Name);
2034 }
2035 
2036 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2037   : Instruction(IVI.getType(), InsertValue,
2038                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2039     Indices(IVI.Indices) {
2040   Op<0>() = IVI.getOperand(0);
2041   Op<1>() = IVI.getOperand(1);
2042   SubclassOptionalData = IVI.SubclassOptionalData;
2043 }
2044 
2045 //===----------------------------------------------------------------------===//
2046 //                             ExtractValueInst Class
2047 //===----------------------------------------------------------------------===//
2048 
2049 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2050   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2051 
2052   // There's no fundamental reason why we require at least one index.
2053   // But there's no present need to support it.
2054   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2055 
2056   Indices.append(Idxs.begin(), Idxs.end());
2057   setName(Name);
2058 }
2059 
2060 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2061   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2062     Indices(EVI.Indices) {
2063   SubclassOptionalData = EVI.SubclassOptionalData;
2064 }
2065 
2066 // getIndexedType - Returns the type of the element that would be extracted
2067 // with an extractvalue instruction with the specified parameters.
2068 //
2069 // A null type is returned if the indices are invalid for the specified
2070 // pointer type.
2071 //
2072 Type *ExtractValueInst::getIndexedType(Type *Agg,
2073                                        ArrayRef<unsigned> Idxs) {
2074   for (unsigned Index : Idxs) {
2075     // We can't use CompositeType::indexValid(Index) here.
2076     // indexValid() always returns true for arrays because getelementptr allows
2077     // out-of-bounds indices. Since we don't allow those for extractvalue and
2078     // insertvalue we need to check array indexing manually.
2079     // Since the only other types we can index into are struct types it's just
2080     // as easy to check those manually as well.
2081     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2082       if (Index >= AT->getNumElements())
2083         return nullptr;
2084     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2085       if (Index >= ST->getNumElements())
2086         return nullptr;
2087     } else {
2088       // Not a valid type to index into.
2089       return nullptr;
2090     }
2091 
2092     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2093   }
2094   return const_cast<Type*>(Agg);
2095 }
2096 
2097 //===----------------------------------------------------------------------===//
2098 //                             UnaryOperator Class
2099 //===----------------------------------------------------------------------===//
2100 
2101 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2102                              Type *Ty, const Twine &Name,
2103                              Instruction *InsertBefore)
2104   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2105   Op<0>() = S;
2106   setName(Name);
2107   AssertOK();
2108 }
2109 
2110 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2111                              Type *Ty, const Twine &Name,
2112                              BasicBlock *InsertAtEnd)
2113   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2114   Op<0>() = S;
2115   setName(Name);
2116   AssertOK();
2117 }
2118 
2119 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2120                                      const Twine &Name,
2121                                      Instruction *InsertBefore) {
2122   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2123 }
2124 
2125 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2126                                      const Twine &Name,
2127                                      BasicBlock *InsertAtEnd) {
2128   UnaryOperator *Res = Create(Op, S, Name);
2129   InsertAtEnd->getInstList().push_back(Res);
2130   return Res;
2131 }
2132 
2133 void UnaryOperator::AssertOK() {
2134   Value *LHS = getOperand(0);
2135   (void)LHS; // Silence warnings.
2136 #ifndef NDEBUG
2137   switch (getOpcode()) {
2138   case FNeg:
2139     assert(getType() == LHS->getType() &&
2140            "Unary operation should return same type as operand!");
2141     assert(getType()->isFPOrFPVectorTy() &&
2142            "Tried to create a floating-point operation on a "
2143            "non-floating-point type!");
2144     break;
2145   default: llvm_unreachable("Invalid opcode provided");
2146   }
2147 #endif
2148 }
2149 
2150 //===----------------------------------------------------------------------===//
2151 //                             BinaryOperator Class
2152 //===----------------------------------------------------------------------===//
2153 
2154 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2155                                Type *Ty, const Twine &Name,
2156                                Instruction *InsertBefore)
2157   : Instruction(Ty, iType,
2158                 OperandTraits<BinaryOperator>::op_begin(this),
2159                 OperandTraits<BinaryOperator>::operands(this),
2160                 InsertBefore) {
2161   Op<0>() = S1;
2162   Op<1>() = S2;
2163   setName(Name);
2164   AssertOK();
2165 }
2166 
2167 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2168                                Type *Ty, const Twine &Name,
2169                                BasicBlock *InsertAtEnd)
2170   : Instruction(Ty, iType,
2171                 OperandTraits<BinaryOperator>::op_begin(this),
2172                 OperandTraits<BinaryOperator>::operands(this),
2173                 InsertAtEnd) {
2174   Op<0>() = S1;
2175   Op<1>() = S2;
2176   setName(Name);
2177   AssertOK();
2178 }
2179 
2180 void BinaryOperator::AssertOK() {
2181   Value *LHS = getOperand(0), *RHS = getOperand(1);
2182   (void)LHS; (void)RHS; // Silence warnings.
2183   assert(LHS->getType() == RHS->getType() &&
2184          "Binary operator operand types must match!");
2185 #ifndef NDEBUG
2186   switch (getOpcode()) {
2187   case Add: case Sub:
2188   case Mul:
2189     assert(getType() == LHS->getType() &&
2190            "Arithmetic operation should return same type as operands!");
2191     assert(getType()->isIntOrIntVectorTy() &&
2192            "Tried to create an integer operation on a non-integer type!");
2193     break;
2194   case FAdd: case FSub:
2195   case FMul:
2196     assert(getType() == LHS->getType() &&
2197            "Arithmetic operation should return same type as operands!");
2198     assert(getType()->isFPOrFPVectorTy() &&
2199            "Tried to create a floating-point operation on a "
2200            "non-floating-point type!");
2201     break;
2202   case UDiv:
2203   case SDiv:
2204     assert(getType() == LHS->getType() &&
2205            "Arithmetic operation should return same type as operands!");
2206     assert(getType()->isIntOrIntVectorTy() &&
2207            "Incorrect operand type (not integer) for S/UDIV");
2208     break;
2209   case FDiv:
2210     assert(getType() == LHS->getType() &&
2211            "Arithmetic operation should return same type as operands!");
2212     assert(getType()->isFPOrFPVectorTy() &&
2213            "Incorrect operand type (not floating point) for FDIV");
2214     break;
2215   case URem:
2216   case SRem:
2217     assert(getType() == LHS->getType() &&
2218            "Arithmetic operation should return same type as operands!");
2219     assert(getType()->isIntOrIntVectorTy() &&
2220            "Incorrect operand type (not integer) for S/UREM");
2221     break;
2222   case FRem:
2223     assert(getType() == LHS->getType() &&
2224            "Arithmetic operation should return same type as operands!");
2225     assert(getType()->isFPOrFPVectorTy() &&
2226            "Incorrect operand type (not floating point) for FREM");
2227     break;
2228   case Shl:
2229   case LShr:
2230   case AShr:
2231     assert(getType() == LHS->getType() &&
2232            "Shift operation should return same type as operands!");
2233     assert(getType()->isIntOrIntVectorTy() &&
2234            "Tried to create a shift operation on a non-integral type!");
2235     break;
2236   case And: case Or:
2237   case Xor:
2238     assert(getType() == LHS->getType() &&
2239            "Logical operation should return same type as operands!");
2240     assert(getType()->isIntOrIntVectorTy() &&
2241            "Tried to create a logical operation on a non-integral type!");
2242     break;
2243   default: llvm_unreachable("Invalid opcode provided");
2244   }
2245 #endif
2246 }
2247 
2248 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2249                                        const Twine &Name,
2250                                        Instruction *InsertBefore) {
2251   assert(S1->getType() == S2->getType() &&
2252          "Cannot create binary operator with two operands of differing type!");
2253   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2254 }
2255 
2256 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2257                                        const Twine &Name,
2258                                        BasicBlock *InsertAtEnd) {
2259   BinaryOperator *Res = Create(Op, S1, S2, Name);
2260   InsertAtEnd->getInstList().push_back(Res);
2261   return Res;
2262 }
2263 
2264 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2265                                           Instruction *InsertBefore) {
2266   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2267   return new BinaryOperator(Instruction::Sub,
2268                             zero, Op,
2269                             Op->getType(), Name, InsertBefore);
2270 }
2271 
2272 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2273                                           BasicBlock *InsertAtEnd) {
2274   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2275   return new BinaryOperator(Instruction::Sub,
2276                             zero, Op,
2277                             Op->getType(), Name, InsertAtEnd);
2278 }
2279 
2280 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2281                                              Instruction *InsertBefore) {
2282   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2283   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2284 }
2285 
2286 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2287                                              BasicBlock *InsertAtEnd) {
2288   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2289   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2290 }
2291 
2292 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2293                                              Instruction *InsertBefore) {
2294   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2295   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2296 }
2297 
2298 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2299                                              BasicBlock *InsertAtEnd) {
2300   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2301   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2302 }
2303 
2304 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2305                                            Instruction *InsertBefore) {
2306   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2307   return new BinaryOperator(Instruction::FSub, zero, Op,
2308                             Op->getType(), Name, InsertBefore);
2309 }
2310 
2311 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2312                                            BasicBlock *InsertAtEnd) {
2313   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2314   return new BinaryOperator(Instruction::FSub, zero, Op,
2315                             Op->getType(), Name, InsertAtEnd);
2316 }
2317 
2318 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2319                                           Instruction *InsertBefore) {
2320   Constant *C = Constant::getAllOnesValue(Op->getType());
2321   return new BinaryOperator(Instruction::Xor, Op, C,
2322                             Op->getType(), Name, InsertBefore);
2323 }
2324 
2325 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2326                                           BasicBlock *InsertAtEnd) {
2327   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2328   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2329                             Op->getType(), Name, InsertAtEnd);
2330 }
2331 
2332 // Exchange the two operands to this instruction. This instruction is safe to
2333 // use on any binary instruction and does not modify the semantics of the
2334 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2335 // is changed.
2336 bool BinaryOperator::swapOperands() {
2337   if (!isCommutative())
2338     return true; // Can't commute operands
2339   Op<0>().swap(Op<1>());
2340   return false;
2341 }
2342 
2343 //===----------------------------------------------------------------------===//
2344 //                             FPMathOperator Class
2345 //===----------------------------------------------------------------------===//
2346 
2347 float FPMathOperator::getFPAccuracy() const {
2348   const MDNode *MD =
2349       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2350   if (!MD)
2351     return 0.0;
2352   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2353   return Accuracy->getValueAPF().convertToFloat();
2354 }
2355 
2356 //===----------------------------------------------------------------------===//
2357 //                                CastInst Class
2358 //===----------------------------------------------------------------------===//
2359 
2360 // Just determine if this cast only deals with integral->integral conversion.
2361 bool CastInst::isIntegerCast() const {
2362   switch (getOpcode()) {
2363     default: return false;
2364     case Instruction::ZExt:
2365     case Instruction::SExt:
2366     case Instruction::Trunc:
2367       return true;
2368     case Instruction::BitCast:
2369       return getOperand(0)->getType()->isIntegerTy() &&
2370         getType()->isIntegerTy();
2371   }
2372 }
2373 
2374 bool CastInst::isLosslessCast() const {
2375   // Only BitCast can be lossless, exit fast if we're not BitCast
2376   if (getOpcode() != Instruction::BitCast)
2377     return false;
2378 
2379   // Identity cast is always lossless
2380   Type *SrcTy = getOperand(0)->getType();
2381   Type *DstTy = getType();
2382   if (SrcTy == DstTy)
2383     return true;
2384 
2385   // Pointer to pointer is always lossless.
2386   if (SrcTy->isPointerTy())
2387     return DstTy->isPointerTy();
2388   return false;  // Other types have no identity values
2389 }
2390 
2391 /// This function determines if the CastInst does not require any bits to be
2392 /// changed in order to effect the cast. Essentially, it identifies cases where
2393 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2394 /// example, the following are all no-op casts:
2395 /// # bitcast i32* %x to i8*
2396 /// # bitcast <2 x i32> %x to <4 x i16>
2397 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2398 /// Determine if the described cast is a no-op.
2399 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2400                           Type *SrcTy,
2401                           Type *DestTy,
2402                           const DataLayout &DL) {
2403   switch (Opcode) {
2404     default: llvm_unreachable("Invalid CastOp");
2405     case Instruction::Trunc:
2406     case Instruction::ZExt:
2407     case Instruction::SExt:
2408     case Instruction::FPTrunc:
2409     case Instruction::FPExt:
2410     case Instruction::UIToFP:
2411     case Instruction::SIToFP:
2412     case Instruction::FPToUI:
2413     case Instruction::FPToSI:
2414     case Instruction::AddrSpaceCast:
2415       // TODO: Target informations may give a more accurate answer here.
2416       return false;
2417     case Instruction::BitCast:
2418       return true;  // BitCast never modifies bits.
2419     case Instruction::PtrToInt:
2420       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2421              DestTy->getScalarSizeInBits();
2422     case Instruction::IntToPtr:
2423       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2424              SrcTy->getScalarSizeInBits();
2425   }
2426 }
2427 
2428 bool CastInst::isNoopCast(const DataLayout &DL) const {
2429   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2430 }
2431 
2432 /// This function determines if a pair of casts can be eliminated and what
2433 /// opcode should be used in the elimination. This assumes that there are two
2434 /// instructions like this:
2435 /// *  %F = firstOpcode SrcTy %x to MidTy
2436 /// *  %S = secondOpcode MidTy %F to DstTy
2437 /// The function returns a resultOpcode so these two casts can be replaced with:
2438 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2439 /// If no such cast is permitted, the function returns 0.
2440 unsigned CastInst::isEliminableCastPair(
2441   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2442   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2443   Type *DstIntPtrTy) {
2444   // Define the 144 possibilities for these two cast instructions. The values
2445   // in this matrix determine what to do in a given situation and select the
2446   // case in the switch below.  The rows correspond to firstOp, the columns
2447   // correspond to secondOp.  In looking at the table below, keep in mind
2448   // the following cast properties:
2449   //
2450   //          Size Compare       Source               Destination
2451   // Operator  Src ? Size   Type       Sign         Type       Sign
2452   // -------- ------------ -------------------   ---------------------
2453   // TRUNC         >       Integer      Any        Integral     Any
2454   // ZEXT          <       Integral   Unsigned     Integer      Any
2455   // SEXT          <       Integral    Signed      Integer      Any
2456   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2457   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2458   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2459   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2460   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2461   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2462   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2463   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2464   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2465   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2466   //
2467   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2468   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2469   // into "fptoui double to i64", but this loses information about the range
2470   // of the produced value (we no longer know the top-part is all zeros).
2471   // Further this conversion is often much more expensive for typical hardware,
2472   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2473   // same reason.
2474   const unsigned numCastOps =
2475     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2476   static const uint8_t CastResults[numCastOps][numCastOps] = {
2477     // T        F  F  U  S  F  F  P  I  B  A  -+
2478     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2479     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2480     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2481     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2482     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2483     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2484     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2485     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2486     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2487     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2488     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2489     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2490     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2491     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2492     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2493     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2494     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2495   };
2496 
2497   // TODO: This logic could be encoded into the table above and handled in the
2498   // switch below.
2499   // If either of the casts are a bitcast from scalar to vector, disallow the
2500   // merging. However, any pair of bitcasts are allowed.
2501   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2502   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2503   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2504 
2505   // Check if any of the casts convert scalars <-> vectors.
2506   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2507       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2508     if (!AreBothBitcasts)
2509       return 0;
2510 
2511   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2512                             [secondOp-Instruction::CastOpsBegin];
2513   switch (ElimCase) {
2514     case 0:
2515       // Categorically disallowed.
2516       return 0;
2517     case 1:
2518       // Allowed, use first cast's opcode.
2519       return firstOp;
2520     case 2:
2521       // Allowed, use second cast's opcode.
2522       return secondOp;
2523     case 3:
2524       // No-op cast in second op implies firstOp as long as the DestTy
2525       // is integer and we are not converting between a vector and a
2526       // non-vector type.
2527       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2528         return firstOp;
2529       return 0;
2530     case 4:
2531       // No-op cast in second op implies firstOp as long as the DestTy
2532       // is floating point.
2533       if (DstTy->isFloatingPointTy())
2534         return firstOp;
2535       return 0;
2536     case 5:
2537       // No-op cast in first op implies secondOp as long as the SrcTy
2538       // is an integer.
2539       if (SrcTy->isIntegerTy())
2540         return secondOp;
2541       return 0;
2542     case 6:
2543       // No-op cast in first op implies secondOp as long as the SrcTy
2544       // is a floating point.
2545       if (SrcTy->isFloatingPointTy())
2546         return secondOp;
2547       return 0;
2548     case 7: {
2549       // Cannot simplify if address spaces are different!
2550       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2551         return 0;
2552 
2553       unsigned MidSize = MidTy->getScalarSizeInBits();
2554       // We can still fold this without knowing the actual sizes as long we
2555       // know that the intermediate pointer is the largest possible
2556       // pointer size.
2557       // FIXME: Is this always true?
2558       if (MidSize == 64)
2559         return Instruction::BitCast;
2560 
2561       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2562       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2563         return 0;
2564       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2565       if (MidSize >= PtrSize)
2566         return Instruction::BitCast;
2567       return 0;
2568     }
2569     case 8: {
2570       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2571       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2572       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2573       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2574       unsigned DstSize = DstTy->getScalarSizeInBits();
2575       if (SrcSize == DstSize)
2576         return Instruction::BitCast;
2577       else if (SrcSize < DstSize)
2578         return firstOp;
2579       return secondOp;
2580     }
2581     case 9:
2582       // zext, sext -> zext, because sext can't sign extend after zext
2583       return Instruction::ZExt;
2584     case 11: {
2585       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2586       if (!MidIntPtrTy)
2587         return 0;
2588       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2589       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2590       unsigned DstSize = DstTy->getScalarSizeInBits();
2591       if (SrcSize <= PtrSize && SrcSize == DstSize)
2592         return Instruction::BitCast;
2593       return 0;
2594     }
2595     case 12:
2596       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2597       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2598       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2599         return Instruction::AddrSpaceCast;
2600       return Instruction::BitCast;
2601     case 13:
2602       // FIXME: this state can be merged with (1), but the following assert
2603       // is useful to check the correcteness of the sequence due to semantic
2604       // change of bitcast.
2605       assert(
2606         SrcTy->isPtrOrPtrVectorTy() &&
2607         MidTy->isPtrOrPtrVectorTy() &&
2608         DstTy->isPtrOrPtrVectorTy() &&
2609         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2610         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2611         "Illegal addrspacecast, bitcast sequence!");
2612       // Allowed, use first cast's opcode
2613       return firstOp;
2614     case 14:
2615       // bitcast, addrspacecast -> addrspacecast if the element type of
2616       // bitcast's source is the same as that of addrspacecast's destination.
2617       if (SrcTy->getScalarType()->getPointerElementType() ==
2618           DstTy->getScalarType()->getPointerElementType())
2619         return Instruction::AddrSpaceCast;
2620       return 0;
2621     case 15:
2622       // FIXME: this state can be merged with (1), but the following assert
2623       // is useful to check the correcteness of the sequence due to semantic
2624       // change of bitcast.
2625       assert(
2626         SrcTy->isIntOrIntVectorTy() &&
2627         MidTy->isPtrOrPtrVectorTy() &&
2628         DstTy->isPtrOrPtrVectorTy() &&
2629         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2630         "Illegal inttoptr, bitcast sequence!");
2631       // Allowed, use first cast's opcode
2632       return firstOp;
2633     case 16:
2634       // FIXME: this state can be merged with (2), but the following assert
2635       // is useful to check the correcteness of the sequence due to semantic
2636       // change of bitcast.
2637       assert(
2638         SrcTy->isPtrOrPtrVectorTy() &&
2639         MidTy->isPtrOrPtrVectorTy() &&
2640         DstTy->isIntOrIntVectorTy() &&
2641         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2642         "Illegal bitcast, ptrtoint sequence!");
2643       // Allowed, use second cast's opcode
2644       return secondOp;
2645     case 17:
2646       // (sitofp (zext x)) -> (uitofp x)
2647       return Instruction::UIToFP;
2648     case 99:
2649       // Cast combination can't happen (error in input). This is for all cases
2650       // where the MidTy is not the same for the two cast instructions.
2651       llvm_unreachable("Invalid Cast Combination");
2652     default:
2653       llvm_unreachable("Error in CastResults table!!!");
2654   }
2655 }
2656 
2657 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2658   const Twine &Name, Instruction *InsertBefore) {
2659   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2660   // Construct and return the appropriate CastInst subclass
2661   switch (op) {
2662   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2663   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2664   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2665   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2666   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2667   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2668   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2669   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2670   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2671   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2672   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2673   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2674   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2675   default: llvm_unreachable("Invalid opcode provided");
2676   }
2677 }
2678 
2679 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2680   const Twine &Name, BasicBlock *InsertAtEnd) {
2681   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2682   // Construct and return the appropriate CastInst subclass
2683   switch (op) {
2684   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2685   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2686   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2687   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2688   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2689   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2690   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2691   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2692   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2693   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2694   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2695   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2696   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2697   default: llvm_unreachable("Invalid opcode provided");
2698   }
2699 }
2700 
2701 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2702                                         const Twine &Name,
2703                                         Instruction *InsertBefore) {
2704   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2705     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2706   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2707 }
2708 
2709 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2710                                         const Twine &Name,
2711                                         BasicBlock *InsertAtEnd) {
2712   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2713     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2714   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2715 }
2716 
2717 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2718                                         const Twine &Name,
2719                                         Instruction *InsertBefore) {
2720   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2721     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2722   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2723 }
2724 
2725 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2726                                         const Twine &Name,
2727                                         BasicBlock *InsertAtEnd) {
2728   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2729     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2730   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2731 }
2732 
2733 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2734                                          const Twine &Name,
2735                                          Instruction *InsertBefore) {
2736   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2737     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2738   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2739 }
2740 
2741 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2742                                          const Twine &Name,
2743                                          BasicBlock *InsertAtEnd) {
2744   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2745     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2746   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2747 }
2748 
2749 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2750                                       const Twine &Name,
2751                                       BasicBlock *InsertAtEnd) {
2752   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2753   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2754          "Invalid cast");
2755   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2756   assert((!Ty->isVectorTy() ||
2757           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2758          "Invalid cast");
2759 
2760   if (Ty->isIntOrIntVectorTy())
2761     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2762 
2763   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2764 }
2765 
2766 /// Create a BitCast or a PtrToInt cast instruction
2767 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2768                                       const Twine &Name,
2769                                       Instruction *InsertBefore) {
2770   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2771   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2772          "Invalid cast");
2773   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2774   assert((!Ty->isVectorTy() ||
2775           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2776          "Invalid cast");
2777 
2778   if (Ty->isIntOrIntVectorTy())
2779     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2780 
2781   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2782 }
2783 
2784 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2785   Value *S, Type *Ty,
2786   const Twine &Name,
2787   BasicBlock *InsertAtEnd) {
2788   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2789   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2790 
2791   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2792     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2793 
2794   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2795 }
2796 
2797 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2798   Value *S, Type *Ty,
2799   const Twine &Name,
2800   Instruction *InsertBefore) {
2801   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2802   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2803 
2804   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2805     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2806 
2807   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2808 }
2809 
2810 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2811                                            const Twine &Name,
2812                                            Instruction *InsertBefore) {
2813   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2814     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2815   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2816     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2817 
2818   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2819 }
2820 
2821 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2822                                       bool isSigned, const Twine &Name,
2823                                       Instruction *InsertBefore) {
2824   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2825          "Invalid integer cast");
2826   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2827   unsigned DstBits = Ty->getScalarSizeInBits();
2828   Instruction::CastOps opcode =
2829     (SrcBits == DstBits ? Instruction::BitCast :
2830      (SrcBits > DstBits ? Instruction::Trunc :
2831       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2832   return Create(opcode, C, Ty, Name, InsertBefore);
2833 }
2834 
2835 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2836                                       bool isSigned, const Twine &Name,
2837                                       BasicBlock *InsertAtEnd) {
2838   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2839          "Invalid cast");
2840   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2841   unsigned DstBits = Ty->getScalarSizeInBits();
2842   Instruction::CastOps opcode =
2843     (SrcBits == DstBits ? Instruction::BitCast :
2844      (SrcBits > DstBits ? Instruction::Trunc :
2845       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2846   return Create(opcode, C, Ty, Name, InsertAtEnd);
2847 }
2848 
2849 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2850                                  const Twine &Name,
2851                                  Instruction *InsertBefore) {
2852   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2853          "Invalid cast");
2854   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2855   unsigned DstBits = Ty->getScalarSizeInBits();
2856   Instruction::CastOps opcode =
2857     (SrcBits == DstBits ? Instruction::BitCast :
2858      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2859   return Create(opcode, C, Ty, Name, InsertBefore);
2860 }
2861 
2862 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2863                                  const Twine &Name,
2864                                  BasicBlock *InsertAtEnd) {
2865   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2866          "Invalid cast");
2867   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2868   unsigned DstBits = Ty->getScalarSizeInBits();
2869   Instruction::CastOps opcode =
2870     (SrcBits == DstBits ? Instruction::BitCast :
2871      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2872   return Create(opcode, C, Ty, Name, InsertAtEnd);
2873 }
2874 
2875 // Check whether it is valid to call getCastOpcode for these types.
2876 // This routine must be kept in sync with getCastOpcode.
2877 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2878   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2879     return false;
2880 
2881   if (SrcTy == DestTy)
2882     return true;
2883 
2884   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2885     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2886       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2887         // An element by element cast.  Valid if casting the elements is valid.
2888         SrcTy = SrcVecTy->getElementType();
2889         DestTy = DestVecTy->getElementType();
2890       }
2891 
2892   // Get the bit sizes, we'll need these
2893   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2894   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2895 
2896   // Run through the possibilities ...
2897   if (DestTy->isIntegerTy()) {               // Casting to integral
2898     if (SrcTy->isIntegerTy())                // Casting from integral
2899         return true;
2900     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2901       return true;
2902     if (SrcTy->isVectorTy())          // Casting from vector
2903       return DestBits == SrcBits;
2904                                       // Casting from something else
2905     return SrcTy->isPointerTy();
2906   }
2907   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2908     if (SrcTy->isIntegerTy())                // Casting from integral
2909       return true;
2910     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2911       return true;
2912     if (SrcTy->isVectorTy())          // Casting from vector
2913       return DestBits == SrcBits;
2914                                     // Casting from something else
2915     return false;
2916   }
2917   if (DestTy->isVectorTy())         // Casting to vector
2918     return DestBits == SrcBits;
2919   if (DestTy->isPointerTy()) {        // Casting to pointer
2920     if (SrcTy->isPointerTy())                // Casting from pointer
2921       return true;
2922     return SrcTy->isIntegerTy();             // Casting from integral
2923   }
2924   if (DestTy->isX86_MMXTy()) {
2925     if (SrcTy->isVectorTy())
2926       return DestBits == SrcBits;       // 64-bit vector to MMX
2927     return false;
2928   }                                    // Casting to something else
2929   return false;
2930 }
2931 
2932 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2933   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2934     return false;
2935 
2936   if (SrcTy == DestTy)
2937     return true;
2938 
2939   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2940     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2941       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2942         // An element by element cast. Valid if casting the elements is valid.
2943         SrcTy = SrcVecTy->getElementType();
2944         DestTy = DestVecTy->getElementType();
2945       }
2946     }
2947   }
2948 
2949   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2950     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2951       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2952     }
2953   }
2954 
2955   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2956   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2957 
2958   // Could still have vectors of pointers if the number of elements doesn't
2959   // match
2960   if (SrcBits == 0 || DestBits == 0)
2961     return false;
2962 
2963   if (SrcBits != DestBits)
2964     return false;
2965 
2966   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2967     return false;
2968 
2969   return true;
2970 }
2971 
2972 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2973                                           const DataLayout &DL) {
2974   // ptrtoint and inttoptr are not allowed on non-integral pointers
2975   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2976     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2977       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2978               !DL.isNonIntegralPointerType(PtrTy));
2979   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2980     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2981       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2982               !DL.isNonIntegralPointerType(PtrTy));
2983 
2984   return isBitCastable(SrcTy, DestTy);
2985 }
2986 
2987 // Provide a way to get a "cast" where the cast opcode is inferred from the
2988 // types and size of the operand. This, basically, is a parallel of the
2989 // logic in the castIsValid function below.  This axiom should hold:
2990 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2991 // should not assert in castIsValid. In other words, this produces a "correct"
2992 // casting opcode for the arguments passed to it.
2993 // This routine must be kept in sync with isCastable.
2994 Instruction::CastOps
2995 CastInst::getCastOpcode(
2996   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2997   Type *SrcTy = Src->getType();
2998 
2999   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3000          "Only first class types are castable!");
3001 
3002   if (SrcTy == DestTy)
3003     return BitCast;
3004 
3005   // FIXME: Check address space sizes here
3006   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3007     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3008       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3009         // An element by element cast.  Find the appropriate opcode based on the
3010         // element types.
3011         SrcTy = SrcVecTy->getElementType();
3012         DestTy = DestVecTy->getElementType();
3013       }
3014 
3015   // Get the bit sizes, we'll need these
3016   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3017   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3018 
3019   // Run through the possibilities ...
3020   if (DestTy->isIntegerTy()) {                      // Casting to integral
3021     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3022       if (DestBits < SrcBits)
3023         return Trunc;                               // int -> smaller int
3024       else if (DestBits > SrcBits) {                // its an extension
3025         if (SrcIsSigned)
3026           return SExt;                              // signed -> SEXT
3027         else
3028           return ZExt;                              // unsigned -> ZEXT
3029       } else {
3030         return BitCast;                             // Same size, No-op cast
3031       }
3032     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3033       if (DestIsSigned)
3034         return FPToSI;                              // FP -> sint
3035       else
3036         return FPToUI;                              // FP -> uint
3037     } else if (SrcTy->isVectorTy()) {
3038       assert(DestBits == SrcBits &&
3039              "Casting vector to integer of different width");
3040       return BitCast;                             // Same size, no-op cast
3041     } else {
3042       assert(SrcTy->isPointerTy() &&
3043              "Casting from a value that is not first-class type");
3044       return PtrToInt;                              // ptr -> int
3045     }
3046   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3047     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3048       if (SrcIsSigned)
3049         return SIToFP;                              // sint -> FP
3050       else
3051         return UIToFP;                              // uint -> FP
3052     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3053       if (DestBits < SrcBits) {
3054         return FPTrunc;                             // FP -> smaller FP
3055       } else if (DestBits > SrcBits) {
3056         return FPExt;                               // FP -> larger FP
3057       } else  {
3058         return BitCast;                             // same size, no-op cast
3059       }
3060     } else if (SrcTy->isVectorTy()) {
3061       assert(DestBits == SrcBits &&
3062              "Casting vector to floating point of different width");
3063       return BitCast;                             // same size, no-op cast
3064     }
3065     llvm_unreachable("Casting pointer or non-first class to float");
3066   } else if (DestTy->isVectorTy()) {
3067     assert(DestBits == SrcBits &&
3068            "Illegal cast to vector (wrong type or size)");
3069     return BitCast;
3070   } else if (DestTy->isPointerTy()) {
3071     if (SrcTy->isPointerTy()) {
3072       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3073         return AddrSpaceCast;
3074       return BitCast;                               // ptr -> ptr
3075     } else if (SrcTy->isIntegerTy()) {
3076       return IntToPtr;                              // int -> ptr
3077     }
3078     llvm_unreachable("Casting pointer to other than pointer or int");
3079   } else if (DestTy->isX86_MMXTy()) {
3080     if (SrcTy->isVectorTy()) {
3081       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3082       return BitCast;                               // 64-bit vector to MMX
3083     }
3084     llvm_unreachable("Illegal cast to X86_MMX");
3085   }
3086   llvm_unreachable("Casting to type that is not first-class");
3087 }
3088 
3089 //===----------------------------------------------------------------------===//
3090 //                    CastInst SubClass Constructors
3091 //===----------------------------------------------------------------------===//
3092 
3093 /// Check that the construction parameters for a CastInst are correct. This
3094 /// could be broken out into the separate constructors but it is useful to have
3095 /// it in one place and to eliminate the redundant code for getting the sizes
3096 /// of the types involved.
3097 bool
3098 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3099   // Check for type sanity on the arguments
3100   Type *SrcTy = S->getType();
3101 
3102   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3103       SrcTy->isAggregateType() || DstTy->isAggregateType())
3104     return false;
3105 
3106   // Get the size of the types in bits, we'll need this later
3107   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3108   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3109 
3110   // If these are vector types, get the lengths of the vectors (using zero for
3111   // scalar types means that checking that vector lengths match also checks that
3112   // scalars are not being converted to vectors or vectors to scalars).
3113   unsigned SrcLength = SrcTy->isVectorTy() ?
3114     cast<VectorType>(SrcTy)->getNumElements() : 0;
3115   unsigned DstLength = DstTy->isVectorTy() ?
3116     cast<VectorType>(DstTy)->getNumElements() : 0;
3117 
3118   // Switch on the opcode provided
3119   switch (op) {
3120   default: return false; // This is an input error
3121   case Instruction::Trunc:
3122     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3123       SrcLength == DstLength && SrcBitSize > DstBitSize;
3124   case Instruction::ZExt:
3125     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3126       SrcLength == DstLength && SrcBitSize < DstBitSize;
3127   case Instruction::SExt:
3128     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3129       SrcLength == DstLength && SrcBitSize < DstBitSize;
3130   case Instruction::FPTrunc:
3131     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3132       SrcLength == DstLength && SrcBitSize > DstBitSize;
3133   case Instruction::FPExt:
3134     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3135       SrcLength == DstLength && SrcBitSize < DstBitSize;
3136   case Instruction::UIToFP:
3137   case Instruction::SIToFP:
3138     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3139       SrcLength == DstLength;
3140   case Instruction::FPToUI:
3141   case Instruction::FPToSI:
3142     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3143       SrcLength == DstLength;
3144   case Instruction::PtrToInt:
3145     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3146       return false;
3147     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3148       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3149         return false;
3150     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3151   case Instruction::IntToPtr:
3152     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3153       return false;
3154     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3155       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3156         return false;
3157     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3158   case Instruction::BitCast: {
3159     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3160     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3161 
3162     // BitCast implies a no-op cast of type only. No bits change.
3163     // However, you can't cast pointers to anything but pointers.
3164     if (!SrcPtrTy != !DstPtrTy)
3165       return false;
3166 
3167     // For non-pointer cases, the cast is okay if the source and destination bit
3168     // widths are identical.
3169     if (!SrcPtrTy)
3170       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3171 
3172     // If both are pointers then the address spaces must match.
3173     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3174       return false;
3175 
3176     // A vector of pointers must have the same number of elements.
3177     VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3178     VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3179     if (SrcVecTy && DstVecTy)
3180       return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3181     if (SrcVecTy)
3182       return SrcVecTy->getNumElements() == 1;
3183     if (DstVecTy)
3184       return DstVecTy->getNumElements() == 1;
3185 
3186     return true;
3187   }
3188   case Instruction::AddrSpaceCast: {
3189     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3190     if (!SrcPtrTy)
3191       return false;
3192 
3193     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3194     if (!DstPtrTy)
3195       return false;
3196 
3197     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3198       return false;
3199 
3200     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3201       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3202         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3203 
3204       return false;
3205     }
3206 
3207     return true;
3208   }
3209   }
3210 }
3211 
3212 TruncInst::TruncInst(
3213   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3214 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3215   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3216 }
3217 
3218 TruncInst::TruncInst(
3219   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3220 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3221   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3222 }
3223 
3224 ZExtInst::ZExtInst(
3225   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3226 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3227   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3228 }
3229 
3230 ZExtInst::ZExtInst(
3231   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3232 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3233   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3234 }
3235 SExtInst::SExtInst(
3236   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3237 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3238   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3239 }
3240 
3241 SExtInst::SExtInst(
3242   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3243 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3244   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3245 }
3246 
3247 FPTruncInst::FPTruncInst(
3248   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3249 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3250   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3251 }
3252 
3253 FPTruncInst::FPTruncInst(
3254   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3255 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3256   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3257 }
3258 
3259 FPExtInst::FPExtInst(
3260   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3261 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3262   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3263 }
3264 
3265 FPExtInst::FPExtInst(
3266   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3267 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3268   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3269 }
3270 
3271 UIToFPInst::UIToFPInst(
3272   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3273 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3274   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3275 }
3276 
3277 UIToFPInst::UIToFPInst(
3278   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3279 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3280   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3281 }
3282 
3283 SIToFPInst::SIToFPInst(
3284   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3285 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3286   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3287 }
3288 
3289 SIToFPInst::SIToFPInst(
3290   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3291 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3292   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3293 }
3294 
3295 FPToUIInst::FPToUIInst(
3296   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3297 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3298   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3299 }
3300 
3301 FPToUIInst::FPToUIInst(
3302   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3303 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3304   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3305 }
3306 
3307 FPToSIInst::FPToSIInst(
3308   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3309 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3310   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3311 }
3312 
3313 FPToSIInst::FPToSIInst(
3314   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3315 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3316   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3317 }
3318 
3319 PtrToIntInst::PtrToIntInst(
3320   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3321 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3322   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3323 }
3324 
3325 PtrToIntInst::PtrToIntInst(
3326   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3327 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3328   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3329 }
3330 
3331 IntToPtrInst::IntToPtrInst(
3332   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3333 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3334   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3335 }
3336 
3337 IntToPtrInst::IntToPtrInst(
3338   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3339 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3340   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3341 }
3342 
3343 BitCastInst::BitCastInst(
3344   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3345 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3346   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3347 }
3348 
3349 BitCastInst::BitCastInst(
3350   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3351 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3352   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3353 }
3354 
3355 AddrSpaceCastInst::AddrSpaceCastInst(
3356   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3357 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3358   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3359 }
3360 
3361 AddrSpaceCastInst::AddrSpaceCastInst(
3362   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3363 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3364   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3365 }
3366 
3367 //===----------------------------------------------------------------------===//
3368 //                               CmpInst Classes
3369 //===----------------------------------------------------------------------===//
3370 
3371 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3372                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3373                  Instruction *FlagsSource)
3374   : Instruction(ty, op,
3375                 OperandTraits<CmpInst>::op_begin(this),
3376                 OperandTraits<CmpInst>::operands(this),
3377                 InsertBefore) {
3378   Op<0>() = LHS;
3379   Op<1>() = RHS;
3380   setPredicate((Predicate)predicate);
3381   setName(Name);
3382   if (FlagsSource)
3383     copyIRFlags(FlagsSource);
3384 }
3385 
3386 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3387                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3388   : Instruction(ty, op,
3389                 OperandTraits<CmpInst>::op_begin(this),
3390                 OperandTraits<CmpInst>::operands(this),
3391                 InsertAtEnd) {
3392   Op<0>() = LHS;
3393   Op<1>() = RHS;
3394   setPredicate((Predicate)predicate);
3395   setName(Name);
3396 }
3397 
3398 CmpInst *
3399 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3400                 const Twine &Name, Instruction *InsertBefore) {
3401   if (Op == Instruction::ICmp) {
3402     if (InsertBefore)
3403       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3404                           S1, S2, Name);
3405     else
3406       return new ICmpInst(CmpInst::Predicate(predicate),
3407                           S1, S2, Name);
3408   }
3409 
3410   if (InsertBefore)
3411     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3412                         S1, S2, Name);
3413   else
3414     return new FCmpInst(CmpInst::Predicate(predicate),
3415                         S1, S2, Name);
3416 }
3417 
3418 CmpInst *
3419 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3420                 const Twine &Name, BasicBlock *InsertAtEnd) {
3421   if (Op == Instruction::ICmp) {
3422     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3423                         S1, S2, Name);
3424   }
3425   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3426                       S1, S2, Name);
3427 }
3428 
3429 void CmpInst::swapOperands() {
3430   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3431     IC->swapOperands();
3432   else
3433     cast<FCmpInst>(this)->swapOperands();
3434 }
3435 
3436 bool CmpInst::isCommutative() const {
3437   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3438     return IC->isCommutative();
3439   return cast<FCmpInst>(this)->isCommutative();
3440 }
3441 
3442 bool CmpInst::isEquality() const {
3443   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3444     return IC->isEquality();
3445   return cast<FCmpInst>(this)->isEquality();
3446 }
3447 
3448 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3449   switch (pred) {
3450     default: llvm_unreachable("Unknown cmp predicate!");
3451     case ICMP_EQ: return ICMP_NE;
3452     case ICMP_NE: return ICMP_EQ;
3453     case ICMP_UGT: return ICMP_ULE;
3454     case ICMP_ULT: return ICMP_UGE;
3455     case ICMP_UGE: return ICMP_ULT;
3456     case ICMP_ULE: return ICMP_UGT;
3457     case ICMP_SGT: return ICMP_SLE;
3458     case ICMP_SLT: return ICMP_SGE;
3459     case ICMP_SGE: return ICMP_SLT;
3460     case ICMP_SLE: return ICMP_SGT;
3461 
3462     case FCMP_OEQ: return FCMP_UNE;
3463     case FCMP_ONE: return FCMP_UEQ;
3464     case FCMP_OGT: return FCMP_ULE;
3465     case FCMP_OLT: return FCMP_UGE;
3466     case FCMP_OGE: return FCMP_ULT;
3467     case FCMP_OLE: return FCMP_UGT;
3468     case FCMP_UEQ: return FCMP_ONE;
3469     case FCMP_UNE: return FCMP_OEQ;
3470     case FCMP_UGT: return FCMP_OLE;
3471     case FCMP_ULT: return FCMP_OGE;
3472     case FCMP_UGE: return FCMP_OLT;
3473     case FCMP_ULE: return FCMP_OGT;
3474     case FCMP_ORD: return FCMP_UNO;
3475     case FCMP_UNO: return FCMP_ORD;
3476     case FCMP_TRUE: return FCMP_FALSE;
3477     case FCMP_FALSE: return FCMP_TRUE;
3478   }
3479 }
3480 
3481 StringRef CmpInst::getPredicateName(Predicate Pred) {
3482   switch (Pred) {
3483   default:                   return "unknown";
3484   case FCmpInst::FCMP_FALSE: return "false";
3485   case FCmpInst::FCMP_OEQ:   return "oeq";
3486   case FCmpInst::FCMP_OGT:   return "ogt";
3487   case FCmpInst::FCMP_OGE:   return "oge";
3488   case FCmpInst::FCMP_OLT:   return "olt";
3489   case FCmpInst::FCMP_OLE:   return "ole";
3490   case FCmpInst::FCMP_ONE:   return "one";
3491   case FCmpInst::FCMP_ORD:   return "ord";
3492   case FCmpInst::FCMP_UNO:   return "uno";
3493   case FCmpInst::FCMP_UEQ:   return "ueq";
3494   case FCmpInst::FCMP_UGT:   return "ugt";
3495   case FCmpInst::FCMP_UGE:   return "uge";
3496   case FCmpInst::FCMP_ULT:   return "ult";
3497   case FCmpInst::FCMP_ULE:   return "ule";
3498   case FCmpInst::FCMP_UNE:   return "une";
3499   case FCmpInst::FCMP_TRUE:  return "true";
3500   case ICmpInst::ICMP_EQ:    return "eq";
3501   case ICmpInst::ICMP_NE:    return "ne";
3502   case ICmpInst::ICMP_SGT:   return "sgt";
3503   case ICmpInst::ICMP_SGE:   return "sge";
3504   case ICmpInst::ICMP_SLT:   return "slt";
3505   case ICmpInst::ICMP_SLE:   return "sle";
3506   case ICmpInst::ICMP_UGT:   return "ugt";
3507   case ICmpInst::ICMP_UGE:   return "uge";
3508   case ICmpInst::ICMP_ULT:   return "ult";
3509   case ICmpInst::ICMP_ULE:   return "ule";
3510   }
3511 }
3512 
3513 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3514   switch (pred) {
3515     default: llvm_unreachable("Unknown icmp predicate!");
3516     case ICMP_EQ: case ICMP_NE:
3517     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3518        return pred;
3519     case ICMP_UGT: return ICMP_SGT;
3520     case ICMP_ULT: return ICMP_SLT;
3521     case ICMP_UGE: return ICMP_SGE;
3522     case ICMP_ULE: return ICMP_SLE;
3523   }
3524 }
3525 
3526 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3527   switch (pred) {
3528     default: llvm_unreachable("Unknown icmp predicate!");
3529     case ICMP_EQ: case ICMP_NE:
3530     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3531        return pred;
3532     case ICMP_SGT: return ICMP_UGT;
3533     case ICMP_SLT: return ICMP_ULT;
3534     case ICMP_SGE: return ICMP_UGE;
3535     case ICMP_SLE: return ICMP_ULE;
3536   }
3537 }
3538 
3539 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3540   switch (pred) {
3541     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3542     case ICMP_SGT: return ICMP_SGE;
3543     case ICMP_SLT: return ICMP_SLE;
3544     case ICMP_SGE: return ICMP_SGT;
3545     case ICMP_SLE: return ICMP_SLT;
3546     case ICMP_UGT: return ICMP_UGE;
3547     case ICMP_ULT: return ICMP_ULE;
3548     case ICMP_UGE: return ICMP_UGT;
3549     case ICMP_ULE: return ICMP_ULT;
3550 
3551     case FCMP_OGT: return FCMP_OGE;
3552     case FCMP_OLT: return FCMP_OLE;
3553     case FCMP_OGE: return FCMP_OGT;
3554     case FCMP_OLE: return FCMP_OLT;
3555     case FCMP_UGT: return FCMP_UGE;
3556     case FCMP_ULT: return FCMP_ULE;
3557     case FCMP_UGE: return FCMP_UGT;
3558     case FCMP_ULE: return FCMP_ULT;
3559   }
3560 }
3561 
3562 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3563   switch (pred) {
3564     default: llvm_unreachable("Unknown cmp predicate!");
3565     case ICMP_EQ: case ICMP_NE:
3566       return pred;
3567     case ICMP_SGT: return ICMP_SLT;
3568     case ICMP_SLT: return ICMP_SGT;
3569     case ICMP_SGE: return ICMP_SLE;
3570     case ICMP_SLE: return ICMP_SGE;
3571     case ICMP_UGT: return ICMP_ULT;
3572     case ICMP_ULT: return ICMP_UGT;
3573     case ICMP_UGE: return ICMP_ULE;
3574     case ICMP_ULE: return ICMP_UGE;
3575 
3576     case FCMP_FALSE: case FCMP_TRUE:
3577     case FCMP_OEQ: case FCMP_ONE:
3578     case FCMP_UEQ: case FCMP_UNE:
3579     case FCMP_ORD: case FCMP_UNO:
3580       return pred;
3581     case FCMP_OGT: return FCMP_OLT;
3582     case FCMP_OLT: return FCMP_OGT;
3583     case FCMP_OGE: return FCMP_OLE;
3584     case FCMP_OLE: return FCMP_OGE;
3585     case FCMP_UGT: return FCMP_ULT;
3586     case FCMP_ULT: return FCMP_UGT;
3587     case FCMP_UGE: return FCMP_ULE;
3588     case FCMP_ULE: return FCMP_UGE;
3589   }
3590 }
3591 
3592 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3593   switch (pred) {
3594   case ICMP_SGT: return ICMP_SGE;
3595   case ICMP_SLT: return ICMP_SLE;
3596   case ICMP_UGT: return ICMP_UGE;
3597   case ICMP_ULT: return ICMP_ULE;
3598   case FCMP_OGT: return FCMP_OGE;
3599   case FCMP_OLT: return FCMP_OLE;
3600   case FCMP_UGT: return FCMP_UGE;
3601   case FCMP_ULT: return FCMP_ULE;
3602   default: return pred;
3603   }
3604 }
3605 
3606 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3607   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3608 
3609   switch (pred) {
3610   default:
3611     llvm_unreachable("Unknown predicate!");
3612   case CmpInst::ICMP_ULT:
3613     return CmpInst::ICMP_SLT;
3614   case CmpInst::ICMP_ULE:
3615     return CmpInst::ICMP_SLE;
3616   case CmpInst::ICMP_UGT:
3617     return CmpInst::ICMP_SGT;
3618   case CmpInst::ICMP_UGE:
3619     return CmpInst::ICMP_SGE;
3620   }
3621 }
3622 
3623 bool CmpInst::isUnsigned(Predicate predicate) {
3624   switch (predicate) {
3625     default: return false;
3626     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3627     case ICmpInst::ICMP_UGE: return true;
3628   }
3629 }
3630 
3631 bool CmpInst::isSigned(Predicate predicate) {
3632   switch (predicate) {
3633     default: return false;
3634     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3635     case ICmpInst::ICMP_SGE: return true;
3636   }
3637 }
3638 
3639 bool CmpInst::isOrdered(Predicate predicate) {
3640   switch (predicate) {
3641     default: return false;
3642     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3643     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3644     case FCmpInst::FCMP_ORD: return true;
3645   }
3646 }
3647 
3648 bool CmpInst::isUnordered(Predicate predicate) {
3649   switch (predicate) {
3650     default: return false;
3651     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3652     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3653     case FCmpInst::FCMP_UNO: return true;
3654   }
3655 }
3656 
3657 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3658   switch(predicate) {
3659     default: return false;
3660     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3661     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3662   }
3663 }
3664 
3665 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3666   switch(predicate) {
3667   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3668   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3669   default: return false;
3670   }
3671 }
3672 
3673 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3674   // If the predicates match, then we know the first condition implies the
3675   // second is true.
3676   if (Pred1 == Pred2)
3677     return true;
3678 
3679   switch (Pred1) {
3680   default:
3681     break;
3682   case ICMP_EQ:
3683     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3684     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3685            Pred2 == ICMP_SLE;
3686   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3687     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3688   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3689     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3690   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3691     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3692   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3693     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3694   }
3695   return false;
3696 }
3697 
3698 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3699   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3700 }
3701 
3702 //===----------------------------------------------------------------------===//
3703 //                        SwitchInst Implementation
3704 //===----------------------------------------------------------------------===//
3705 
3706 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3707   assert(Value && Default && NumReserved);
3708   ReservedSpace = NumReserved;
3709   setNumHungOffUseOperands(2);
3710   allocHungoffUses(ReservedSpace);
3711 
3712   Op<0>() = Value;
3713   Op<1>() = Default;
3714 }
3715 
3716 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3717 /// switch on and a default destination.  The number of additional cases can
3718 /// be specified here to make memory allocation more efficient.  This
3719 /// constructor can also autoinsert before another instruction.
3720 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3721                        Instruction *InsertBefore)
3722     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3723                   nullptr, 0, InsertBefore) {
3724   init(Value, Default, 2+NumCases*2);
3725 }
3726 
3727 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3728 /// switch on and a default destination.  The number of additional cases can
3729 /// be specified here to make memory allocation more efficient.  This
3730 /// constructor also autoinserts at the end of the specified BasicBlock.
3731 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3732                        BasicBlock *InsertAtEnd)
3733     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3734                   nullptr, 0, InsertAtEnd) {
3735   init(Value, Default, 2+NumCases*2);
3736 }
3737 
3738 SwitchInst::SwitchInst(const SwitchInst &SI)
3739     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3740   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3741   setNumHungOffUseOperands(SI.getNumOperands());
3742   Use *OL = getOperandList();
3743   const Use *InOL = SI.getOperandList();
3744   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3745     OL[i] = InOL[i];
3746     OL[i+1] = InOL[i+1];
3747   }
3748   SubclassOptionalData = SI.SubclassOptionalData;
3749 }
3750 
3751 /// addCase - Add an entry to the switch instruction...
3752 ///
3753 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3754   unsigned NewCaseIdx = getNumCases();
3755   unsigned OpNo = getNumOperands();
3756   if (OpNo+2 > ReservedSpace)
3757     growOperands();  // Get more space!
3758   // Initialize some new operands.
3759   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3760   setNumHungOffUseOperands(OpNo+2);
3761   CaseHandle Case(this, NewCaseIdx);
3762   Case.setValue(OnVal);
3763   Case.setSuccessor(Dest);
3764 }
3765 
3766 /// removeCase - This method removes the specified case and its successor
3767 /// from the switch instruction.
3768 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3769   unsigned idx = I->getCaseIndex();
3770 
3771   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3772 
3773   unsigned NumOps = getNumOperands();
3774   Use *OL = getOperandList();
3775 
3776   // Overwrite this case with the end of the list.
3777   if (2 + (idx + 1) * 2 != NumOps) {
3778     OL[2 + idx * 2] = OL[NumOps - 2];
3779     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3780   }
3781 
3782   // Nuke the last value.
3783   OL[NumOps-2].set(nullptr);
3784   OL[NumOps-2+1].set(nullptr);
3785   setNumHungOffUseOperands(NumOps-2);
3786 
3787   return CaseIt(this, idx);
3788 }
3789 
3790 /// growOperands - grow operands - This grows the operand list in response
3791 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3792 ///
3793 void SwitchInst::growOperands() {
3794   unsigned e = getNumOperands();
3795   unsigned NumOps = e*3;
3796 
3797   ReservedSpace = NumOps;
3798   growHungoffUses(ReservedSpace);
3799 }
3800 
3801 //===----------------------------------------------------------------------===//
3802 //                        IndirectBrInst Implementation
3803 //===----------------------------------------------------------------------===//
3804 
3805 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3806   assert(Address && Address->getType()->isPointerTy() &&
3807          "Address of indirectbr must be a pointer");
3808   ReservedSpace = 1+NumDests;
3809   setNumHungOffUseOperands(1);
3810   allocHungoffUses(ReservedSpace);
3811 
3812   Op<0>() = Address;
3813 }
3814 
3815 
3816 /// growOperands - grow operands - This grows the operand list in response
3817 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3818 ///
3819 void IndirectBrInst::growOperands() {
3820   unsigned e = getNumOperands();
3821   unsigned NumOps = e*2;
3822 
3823   ReservedSpace = NumOps;
3824   growHungoffUses(ReservedSpace);
3825 }
3826 
3827 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3828                                Instruction *InsertBefore)
3829     : Instruction(Type::getVoidTy(Address->getContext()),
3830                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
3831   init(Address, NumCases);
3832 }
3833 
3834 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3835                                BasicBlock *InsertAtEnd)
3836     : Instruction(Type::getVoidTy(Address->getContext()),
3837                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
3838   init(Address, NumCases);
3839 }
3840 
3841 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3842     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3843                   nullptr, IBI.getNumOperands()) {
3844   allocHungoffUses(IBI.getNumOperands());
3845   Use *OL = getOperandList();
3846   const Use *InOL = IBI.getOperandList();
3847   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3848     OL[i] = InOL[i];
3849   SubclassOptionalData = IBI.SubclassOptionalData;
3850 }
3851 
3852 /// addDestination - Add a destination.
3853 ///
3854 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3855   unsigned OpNo = getNumOperands();
3856   if (OpNo+1 > ReservedSpace)
3857     growOperands();  // Get more space!
3858   // Initialize some new operands.
3859   assert(OpNo < ReservedSpace && "Growing didn't work!");
3860   setNumHungOffUseOperands(OpNo+1);
3861   getOperandList()[OpNo] = DestBB;
3862 }
3863 
3864 /// removeDestination - This method removes the specified successor from the
3865 /// indirectbr instruction.
3866 void IndirectBrInst::removeDestination(unsigned idx) {
3867   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3868 
3869   unsigned NumOps = getNumOperands();
3870   Use *OL = getOperandList();
3871 
3872   // Replace this value with the last one.
3873   OL[idx+1] = OL[NumOps-1];
3874 
3875   // Nuke the last value.
3876   OL[NumOps-1].set(nullptr);
3877   setNumHungOffUseOperands(NumOps-1);
3878 }
3879 
3880 //===----------------------------------------------------------------------===//
3881 //                           cloneImpl() implementations
3882 //===----------------------------------------------------------------------===//
3883 
3884 // Define these methods here so vtables don't get emitted into every translation
3885 // unit that uses these classes.
3886 
3887 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3888   return new (getNumOperands()) GetElementPtrInst(*this);
3889 }
3890 
3891 UnaryOperator *UnaryOperator::cloneImpl() const {
3892   return Create(getOpcode(), Op<0>());
3893 }
3894 
3895 BinaryOperator *BinaryOperator::cloneImpl() const {
3896   return Create(getOpcode(), Op<0>(), Op<1>());
3897 }
3898 
3899 FCmpInst *FCmpInst::cloneImpl() const {
3900   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3901 }
3902 
3903 ICmpInst *ICmpInst::cloneImpl() const {
3904   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3905 }
3906 
3907 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3908   return new ExtractValueInst(*this);
3909 }
3910 
3911 InsertValueInst *InsertValueInst::cloneImpl() const {
3912   return new InsertValueInst(*this);
3913 }
3914 
3915 AllocaInst *AllocaInst::cloneImpl() const {
3916   AllocaInst *Result = new AllocaInst(getAllocatedType(),
3917                                       getType()->getAddressSpace(),
3918                                       (Value *)getOperand(0), getAlignment());
3919   Result->setUsedWithInAlloca(isUsedWithInAlloca());
3920   Result->setSwiftError(isSwiftError());
3921   return Result;
3922 }
3923 
3924 LoadInst *LoadInst::cloneImpl() const {
3925   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
3926                       getAlignment(), getOrdering(), getSyncScopeID());
3927 }
3928 
3929 StoreInst *StoreInst::cloneImpl() const {
3930   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3931                        getAlignment(), getOrdering(), getSyncScopeID());
3932 
3933 }
3934 
3935 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3936   AtomicCmpXchgInst *Result =
3937     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3938                           getSuccessOrdering(), getFailureOrdering(),
3939                           getSyncScopeID());
3940   Result->setVolatile(isVolatile());
3941   Result->setWeak(isWeak());
3942   return Result;
3943 }
3944 
3945 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3946   AtomicRMWInst *Result =
3947     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3948                       getOrdering(), getSyncScopeID());
3949   Result->setVolatile(isVolatile());
3950   return Result;
3951 }
3952 
3953 FenceInst *FenceInst::cloneImpl() const {
3954   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3955 }
3956 
3957 TruncInst *TruncInst::cloneImpl() const {
3958   return new TruncInst(getOperand(0), getType());
3959 }
3960 
3961 ZExtInst *ZExtInst::cloneImpl() const {
3962   return new ZExtInst(getOperand(0), getType());
3963 }
3964 
3965 SExtInst *SExtInst::cloneImpl() const {
3966   return new SExtInst(getOperand(0), getType());
3967 }
3968 
3969 FPTruncInst *FPTruncInst::cloneImpl() const {
3970   return new FPTruncInst(getOperand(0), getType());
3971 }
3972 
3973 FPExtInst *FPExtInst::cloneImpl() const {
3974   return new FPExtInst(getOperand(0), getType());
3975 }
3976 
3977 UIToFPInst *UIToFPInst::cloneImpl() const {
3978   return new UIToFPInst(getOperand(0), getType());
3979 }
3980 
3981 SIToFPInst *SIToFPInst::cloneImpl() const {
3982   return new SIToFPInst(getOperand(0), getType());
3983 }
3984 
3985 FPToUIInst *FPToUIInst::cloneImpl() const {
3986   return new FPToUIInst(getOperand(0), getType());
3987 }
3988 
3989 FPToSIInst *FPToSIInst::cloneImpl() const {
3990   return new FPToSIInst(getOperand(0), getType());
3991 }
3992 
3993 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3994   return new PtrToIntInst(getOperand(0), getType());
3995 }
3996 
3997 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3998   return new IntToPtrInst(getOperand(0), getType());
3999 }
4000 
4001 BitCastInst *BitCastInst::cloneImpl() const {
4002   return new BitCastInst(getOperand(0), getType());
4003 }
4004 
4005 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4006   return new AddrSpaceCastInst(getOperand(0), getType());
4007 }
4008 
4009 CallInst *CallInst::cloneImpl() const {
4010   if (hasOperandBundles()) {
4011     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4012     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4013   }
4014   return  new(getNumOperands()) CallInst(*this);
4015 }
4016 
4017 SelectInst *SelectInst::cloneImpl() const {
4018   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4019 }
4020 
4021 VAArgInst *VAArgInst::cloneImpl() const {
4022   return new VAArgInst(getOperand(0), getType());
4023 }
4024 
4025 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4026   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4027 }
4028 
4029 InsertElementInst *InsertElementInst::cloneImpl() const {
4030   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4031 }
4032 
4033 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4034   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4035 }
4036 
4037 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4038 
4039 LandingPadInst *LandingPadInst::cloneImpl() const {
4040   return new LandingPadInst(*this);
4041 }
4042 
4043 ReturnInst *ReturnInst::cloneImpl() const {
4044   return new(getNumOperands()) ReturnInst(*this);
4045 }
4046 
4047 BranchInst *BranchInst::cloneImpl() const {
4048   return new(getNumOperands()) BranchInst(*this);
4049 }
4050 
4051 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4052 
4053 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4054   return new IndirectBrInst(*this);
4055 }
4056 
4057 InvokeInst *InvokeInst::cloneImpl() const {
4058   if (hasOperandBundles()) {
4059     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4060     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4061   }
4062   return new(getNumOperands()) InvokeInst(*this);
4063 }
4064 
4065 CallBrInst *CallBrInst::cloneImpl() const {
4066   if (hasOperandBundles()) {
4067     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4068     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4069   }
4070   return new (getNumOperands()) CallBrInst(*this);
4071 }
4072 
4073 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4074 
4075 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4076   return new (getNumOperands()) CleanupReturnInst(*this);
4077 }
4078 
4079 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4080   return new (getNumOperands()) CatchReturnInst(*this);
4081 }
4082 
4083 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4084   return new CatchSwitchInst(*this);
4085 }
4086 
4087 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4088   return new (getNumOperands()) FuncletPadInst(*this);
4089 }
4090 
4091 UnreachableInst *UnreachableInst::cloneImpl() const {
4092   LLVMContext &Context = getContext();
4093   return new UnreachableInst(Context);
4094 }
4095