1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements all of the non-inline methods for the LLVM instruction 10 // classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Instructions.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/IR/Attributes.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/AtomicOrdering.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <vector> 45 46 using namespace llvm; 47 48 //===----------------------------------------------------------------------===// 49 // AllocaInst Class 50 //===----------------------------------------------------------------------===// 51 52 Optional<uint64_t> 53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { 54 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType()); 55 if (isArrayAllocation()) { 56 auto C = dyn_cast<ConstantInt>(getArraySize()); 57 if (!C) 58 return None; 59 Size *= C->getZExtValue(); 60 } 61 return Size; 62 } 63 64 //===----------------------------------------------------------------------===// 65 // CallSite Class 66 //===----------------------------------------------------------------------===// 67 68 User::op_iterator CallSite::getCallee() const { 69 return cast<CallBase>(getInstruction())->op_end() - 1; 70 } 71 72 //===----------------------------------------------------------------------===// 73 // SelectInst Class 74 //===----------------------------------------------------------------------===// 75 76 /// areInvalidOperands - Return a string if the specified operands are invalid 77 /// for a select operation, otherwise return null. 78 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 79 if (Op1->getType() != Op2->getType()) 80 return "both values to select must have same type"; 81 82 if (Op1->getType()->isTokenTy()) 83 return "select values cannot have token type"; 84 85 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 86 // Vector select. 87 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 88 return "vector select condition element type must be i1"; 89 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 90 if (!ET) 91 return "selected values for vector select must be vectors"; 92 if (ET->getNumElements() != VT->getNumElements()) 93 return "vector select requires selected vectors to have " 94 "the same vector length as select condition"; 95 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 96 return "select condition must be i1 or <n x i1>"; 97 } 98 return nullptr; 99 } 100 101 //===----------------------------------------------------------------------===// 102 // PHINode Class 103 //===----------------------------------------------------------------------===// 104 105 PHINode::PHINode(const PHINode &PN) 106 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 107 ReservedSpace(PN.getNumOperands()) { 108 allocHungoffUses(PN.getNumOperands()); 109 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 110 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 111 SubclassOptionalData = PN.SubclassOptionalData; 112 } 113 114 // removeIncomingValue - Remove an incoming value. This is useful if a 115 // predecessor basic block is deleted. 116 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 117 Value *Removed = getIncomingValue(Idx); 118 119 // Move everything after this operand down. 120 // 121 // FIXME: we could just swap with the end of the list, then erase. However, 122 // clients might not expect this to happen. The code as it is thrashes the 123 // use/def lists, which is kinda lame. 124 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 125 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 126 127 // Nuke the last value. 128 Op<-1>().set(nullptr); 129 setNumHungOffUseOperands(getNumOperands() - 1); 130 131 // If the PHI node is dead, because it has zero entries, nuke it now. 132 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 133 // If anyone is using this PHI, make them use a dummy value instead... 134 replaceAllUsesWith(UndefValue::get(getType())); 135 eraseFromParent(); 136 } 137 return Removed; 138 } 139 140 /// growOperands - grow operands - This grows the operand list in response 141 /// to a push_back style of operation. This grows the number of ops by 1.5 142 /// times. 143 /// 144 void PHINode::growOperands() { 145 unsigned e = getNumOperands(); 146 unsigned NumOps = e + e / 2; 147 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 148 149 ReservedSpace = NumOps; 150 growHungoffUses(ReservedSpace, /* IsPhi */ true); 151 } 152 153 /// hasConstantValue - If the specified PHI node always merges together the same 154 /// value, return the value, otherwise return null. 155 Value *PHINode::hasConstantValue() const { 156 // Exploit the fact that phi nodes always have at least one entry. 157 Value *ConstantValue = getIncomingValue(0); 158 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 159 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 160 if (ConstantValue != this) 161 return nullptr; // Incoming values not all the same. 162 // The case where the first value is this PHI. 163 ConstantValue = getIncomingValue(i); 164 } 165 if (ConstantValue == this) 166 return UndefValue::get(getType()); 167 return ConstantValue; 168 } 169 170 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 171 /// together the same value, assuming that undefs result in the same value as 172 /// non-undefs. 173 /// Unlike \ref hasConstantValue, this does not return a value because the 174 /// unique non-undef incoming value need not dominate the PHI node. 175 bool PHINode::hasConstantOrUndefValue() const { 176 Value *ConstantValue = nullptr; 177 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 178 Value *Incoming = getIncomingValue(i); 179 if (Incoming != this && !isa<UndefValue>(Incoming)) { 180 if (ConstantValue && ConstantValue != Incoming) 181 return false; 182 ConstantValue = Incoming; 183 } 184 } 185 return true; 186 } 187 188 //===----------------------------------------------------------------------===// 189 // LandingPadInst Implementation 190 //===----------------------------------------------------------------------===// 191 192 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 193 const Twine &NameStr, Instruction *InsertBefore) 194 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 195 init(NumReservedValues, NameStr); 196 } 197 198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 199 const Twine &NameStr, BasicBlock *InsertAtEnd) 200 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 201 init(NumReservedValues, NameStr); 202 } 203 204 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 205 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 206 LP.getNumOperands()), 207 ReservedSpace(LP.getNumOperands()) { 208 allocHungoffUses(LP.getNumOperands()); 209 Use *OL = getOperandList(); 210 const Use *InOL = LP.getOperandList(); 211 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 212 OL[I] = InOL[I]; 213 214 setCleanup(LP.isCleanup()); 215 } 216 217 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 218 const Twine &NameStr, 219 Instruction *InsertBefore) { 220 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 221 } 222 223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 224 const Twine &NameStr, 225 BasicBlock *InsertAtEnd) { 226 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 227 } 228 229 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 230 ReservedSpace = NumReservedValues; 231 setNumHungOffUseOperands(0); 232 allocHungoffUses(ReservedSpace); 233 setName(NameStr); 234 setCleanup(false); 235 } 236 237 /// growOperands - grow operands - This grows the operand list in response to a 238 /// push_back style of operation. This grows the number of ops by 2 times. 239 void LandingPadInst::growOperands(unsigned Size) { 240 unsigned e = getNumOperands(); 241 if (ReservedSpace >= e + Size) return; 242 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 243 growHungoffUses(ReservedSpace); 244 } 245 246 void LandingPadInst::addClause(Constant *Val) { 247 unsigned OpNo = getNumOperands(); 248 growOperands(1); 249 assert(OpNo < ReservedSpace && "Growing didn't work!"); 250 setNumHungOffUseOperands(getNumOperands() + 1); 251 getOperandList()[OpNo] = Val; 252 } 253 254 //===----------------------------------------------------------------------===// 255 // CallBase Implementation 256 //===----------------------------------------------------------------------===// 257 258 Function *CallBase::getCaller() { return getParent()->getParent(); } 259 260 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { 261 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!"); 262 return cast<CallBrInst>(this)->getNumIndirectDests() + 1; 263 } 264 265 bool CallBase::isIndirectCall() const { 266 const Value *V = getCalledValue(); 267 if (isa<Function>(V) || isa<Constant>(V)) 268 return false; 269 if (const CallInst *CI = dyn_cast<CallInst>(this)) 270 if (CI->isInlineAsm()) 271 return false; 272 return true; 273 } 274 275 /// Tests if this call site must be tail call optimized. Only a CallInst can 276 /// be tail call optimized. 277 bool CallBase::isMustTailCall() const { 278 if (auto *CI = dyn_cast<CallInst>(this)) 279 return CI->isMustTailCall(); 280 return false; 281 } 282 283 /// Tests if this call site is marked as a tail call. 284 bool CallBase::isTailCall() const { 285 if (auto *CI = dyn_cast<CallInst>(this)) 286 return CI->isTailCall(); 287 return false; 288 } 289 290 Intrinsic::ID CallBase::getIntrinsicID() const { 291 if (auto *F = getCalledFunction()) 292 return F->getIntrinsicID(); 293 return Intrinsic::not_intrinsic; 294 } 295 296 bool CallBase::isReturnNonNull() const { 297 if (hasRetAttr(Attribute::NonNull)) 298 return true; 299 300 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 && 301 !NullPointerIsDefined(getCaller(), 302 getType()->getPointerAddressSpace())) 303 return true; 304 305 return false; 306 } 307 308 Value *CallBase::getReturnedArgOperand() const { 309 unsigned Index; 310 311 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 312 return getArgOperand(Index - AttributeList::FirstArgIndex); 313 if (const Function *F = getCalledFunction()) 314 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 315 Index) 316 return getArgOperand(Index - AttributeList::FirstArgIndex); 317 318 return nullptr; 319 } 320 321 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const { 322 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind)) 323 return true; 324 325 // Look at the callee, if available. 326 if (const Function *F = getCalledFunction()) 327 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind); 328 return false; 329 } 330 331 /// Determine whether the argument or parameter has the given attribute. 332 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { 333 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!"); 334 335 if (Attrs.hasParamAttribute(ArgNo, Kind)) 336 return true; 337 if (const Function *F = getCalledFunction()) 338 return F->getAttributes().hasParamAttribute(ArgNo, Kind); 339 return false; 340 } 341 342 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { 343 if (const Function *F = getCalledFunction()) 344 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); 345 return false; 346 } 347 348 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { 349 if (const Function *F = getCalledFunction()) 350 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); 351 return false; 352 } 353 354 CallBase::op_iterator 355 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, 356 const unsigned BeginIndex) { 357 auto It = op_begin() + BeginIndex; 358 for (auto &B : Bundles) 359 It = std::copy(B.input_begin(), B.input_end(), It); 360 361 auto *ContextImpl = getContext().pImpl; 362 auto BI = Bundles.begin(); 363 unsigned CurrentIndex = BeginIndex; 364 365 for (auto &BOI : bundle_op_infos()) { 366 assert(BI != Bundles.end() && "Incorrect allocation?"); 367 368 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); 369 BOI.Begin = CurrentIndex; 370 BOI.End = CurrentIndex + BI->input_size(); 371 CurrentIndex = BOI.End; 372 BI++; 373 } 374 375 assert(BI == Bundles.end() && "Incorrect allocation?"); 376 377 return It; 378 } 379 380 //===----------------------------------------------------------------------===// 381 // CallInst Implementation 382 //===----------------------------------------------------------------------===// 383 384 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 385 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 386 this->FTy = FTy; 387 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 388 "NumOperands not set up?"); 389 setCalledOperand(Func); 390 391 #ifndef NDEBUG 392 assert((Args.size() == FTy->getNumParams() || 393 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 394 "Calling a function with bad signature!"); 395 396 for (unsigned i = 0; i != Args.size(); ++i) 397 assert((i >= FTy->getNumParams() || 398 FTy->getParamType(i) == Args[i]->getType()) && 399 "Calling a function with a bad signature!"); 400 #endif 401 402 llvm::copy(Args, op_begin()); 403 404 auto It = populateBundleOperandInfos(Bundles, Args.size()); 405 (void)It; 406 assert(It + 1 == op_end() && "Should add up!"); 407 408 setName(NameStr); 409 } 410 411 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { 412 this->FTy = FTy; 413 assert(getNumOperands() == 1 && "NumOperands not set up?"); 414 setCalledOperand(Func); 415 416 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 417 418 setName(NameStr); 419 } 420 421 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 422 Instruction *InsertBefore) 423 : CallBase(Ty->getReturnType(), Instruction::Call, 424 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { 425 init(Ty, Func, Name); 426 } 427 428 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 429 BasicBlock *InsertAtEnd) 430 : CallBase(Ty->getReturnType(), Instruction::Call, 431 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) { 432 init(Ty, Func, Name); 433 } 434 435 CallInst::CallInst(const CallInst &CI) 436 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, 437 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), 438 CI.getNumOperands()) { 439 setTailCallKind(CI.getTailCallKind()); 440 setCallingConv(CI.getCallingConv()); 441 442 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 443 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 444 bundle_op_info_begin()); 445 SubclassOptionalData = CI.SubclassOptionalData; 446 } 447 448 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 449 Instruction *InsertPt) { 450 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 451 452 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(), 453 Args, OpB, CI->getName(), InsertPt); 454 NewCI->setTailCallKind(CI->getTailCallKind()); 455 NewCI->setCallingConv(CI->getCallingConv()); 456 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 457 NewCI->setAttributes(CI->getAttributes()); 458 NewCI->setDebugLoc(CI->getDebugLoc()); 459 return NewCI; 460 } 461 462 // Update profile weight for call instruction by scaling it using the ratio 463 // of S/T. The meaning of "branch_weights" meta data for call instruction is 464 // transfered to represent call count. 465 void CallInst::updateProfWeight(uint64_t S, uint64_t T) { 466 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 467 if (ProfileData == nullptr) 468 return; 469 470 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 471 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") && 472 !ProfDataName->getString().equals("VP"))) 473 return; 474 475 if (T == 0) { 476 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " 477 "div by 0. Ignoring. Likely the function " 478 << getParent()->getParent()->getName() 479 << " has 0 entry count, and contains call instructions " 480 "with non-zero prof info."); 481 return; 482 } 483 484 MDBuilder MDB(getContext()); 485 SmallVector<Metadata *, 3> Vals; 486 Vals.push_back(ProfileData->getOperand(0)); 487 APInt APS(128, S), APT(128, T); 488 if (ProfDataName->getString().equals("branch_weights") && 489 ProfileData->getNumOperands() > 0) { 490 // Using APInt::div may be expensive, but most cases should fit 64 bits. 491 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)) 492 ->getValue() 493 .getZExtValue()); 494 Val *= APS; 495 Vals.push_back(MDB.createConstant(ConstantInt::get( 496 Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue()))); 497 } else if (ProfDataName->getString().equals("VP")) 498 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) { 499 // The first value is the key of the value profile, which will not change. 500 Vals.push_back(ProfileData->getOperand(i)); 501 // Using APInt::div may be expensive, but most cases should fit 64 bits. 502 APInt Val(128, 503 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1)) 504 ->getValue() 505 .getZExtValue()); 506 Val *= APS; 507 Vals.push_back(MDB.createConstant( 508 ConstantInt::get(Type::getInt64Ty(getContext()), 509 Val.udiv(APT).getLimitedValue()))); 510 } 511 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals)); 512 } 513 514 /// IsConstantOne - Return true only if val is constant int 1 515 static bool IsConstantOne(Value *val) { 516 assert(val && "IsConstantOne does not work with nullptr val"); 517 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 518 return CVal && CVal->isOne(); 519 } 520 521 static Instruction *createMalloc(Instruction *InsertBefore, 522 BasicBlock *InsertAtEnd, Type *IntPtrTy, 523 Type *AllocTy, Value *AllocSize, 524 Value *ArraySize, 525 ArrayRef<OperandBundleDef> OpB, 526 Function *MallocF, const Twine &Name) { 527 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 528 "createMalloc needs either InsertBefore or InsertAtEnd"); 529 530 // malloc(type) becomes: 531 // bitcast (i8* malloc(typeSize)) to type* 532 // malloc(type, arraySize) becomes: 533 // bitcast (i8* malloc(typeSize*arraySize)) to type* 534 if (!ArraySize) 535 ArraySize = ConstantInt::get(IntPtrTy, 1); 536 else if (ArraySize->getType() != IntPtrTy) { 537 if (InsertBefore) 538 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 539 "", InsertBefore); 540 else 541 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 542 "", InsertAtEnd); 543 } 544 545 if (!IsConstantOne(ArraySize)) { 546 if (IsConstantOne(AllocSize)) { 547 AllocSize = ArraySize; // Operand * 1 = Operand 548 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 549 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 550 false /*ZExt*/); 551 // Malloc arg is constant product of type size and array size 552 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 553 } else { 554 // Multiply type size by the array size... 555 if (InsertBefore) 556 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 557 "mallocsize", InsertBefore); 558 else 559 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 560 "mallocsize", InsertAtEnd); 561 } 562 } 563 564 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 565 // Create the call to Malloc. 566 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 567 Module *M = BB->getParent()->getParent(); 568 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 569 FunctionCallee MallocFunc = MallocF; 570 if (!MallocFunc) 571 // prototype malloc as "void *malloc(size_t)" 572 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); 573 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 574 CallInst *MCall = nullptr; 575 Instruction *Result = nullptr; 576 if (InsertBefore) { 577 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 578 InsertBefore); 579 Result = MCall; 580 if (Result->getType() != AllocPtrType) 581 // Create a cast instruction to convert to the right type... 582 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 583 } else { 584 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 585 Result = MCall; 586 if (Result->getType() != AllocPtrType) { 587 InsertAtEnd->getInstList().push_back(MCall); 588 // Create a cast instruction to convert to the right type... 589 Result = new BitCastInst(MCall, AllocPtrType, Name); 590 } 591 } 592 MCall->setTailCall(); 593 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { 594 MCall->setCallingConv(F->getCallingConv()); 595 if (!F->returnDoesNotAlias()) 596 F->setReturnDoesNotAlias(); 597 } 598 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 599 600 return Result; 601 } 602 603 /// CreateMalloc - Generate the IR for a call to malloc: 604 /// 1. Compute the malloc call's argument as the specified type's size, 605 /// possibly multiplied by the array size if the array size is not 606 /// constant 1. 607 /// 2. Call malloc with that argument. 608 /// 3. Bitcast the result of the malloc call to the specified type. 609 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 610 Type *IntPtrTy, Type *AllocTy, 611 Value *AllocSize, Value *ArraySize, 612 Function *MallocF, 613 const Twine &Name) { 614 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 615 ArraySize, None, MallocF, Name); 616 } 617 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 618 Type *IntPtrTy, Type *AllocTy, 619 Value *AllocSize, Value *ArraySize, 620 ArrayRef<OperandBundleDef> OpB, 621 Function *MallocF, 622 const Twine &Name) { 623 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 624 ArraySize, OpB, MallocF, Name); 625 } 626 627 /// CreateMalloc - Generate the IR for a call to malloc: 628 /// 1. Compute the malloc call's argument as the specified type's size, 629 /// possibly multiplied by the array size if the array size is not 630 /// constant 1. 631 /// 2. Call malloc with that argument. 632 /// 3. Bitcast the result of the malloc call to the specified type. 633 /// Note: This function does not add the bitcast to the basic block, that is the 634 /// responsibility of the caller. 635 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 636 Type *IntPtrTy, Type *AllocTy, 637 Value *AllocSize, Value *ArraySize, 638 Function *MallocF, const Twine &Name) { 639 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 640 ArraySize, None, MallocF, Name); 641 } 642 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 643 Type *IntPtrTy, Type *AllocTy, 644 Value *AllocSize, Value *ArraySize, 645 ArrayRef<OperandBundleDef> OpB, 646 Function *MallocF, const Twine &Name) { 647 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 648 ArraySize, OpB, MallocF, Name); 649 } 650 651 static Instruction *createFree(Value *Source, 652 ArrayRef<OperandBundleDef> Bundles, 653 Instruction *InsertBefore, 654 BasicBlock *InsertAtEnd) { 655 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 656 "createFree needs either InsertBefore or InsertAtEnd"); 657 assert(Source->getType()->isPointerTy() && 658 "Can not free something of nonpointer type!"); 659 660 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 661 Module *M = BB->getParent()->getParent(); 662 663 Type *VoidTy = Type::getVoidTy(M->getContext()); 664 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 665 // prototype free as "void free(void*)" 666 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); 667 CallInst *Result = nullptr; 668 Value *PtrCast = Source; 669 if (InsertBefore) { 670 if (Source->getType() != IntPtrTy) 671 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 672 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 673 } else { 674 if (Source->getType() != IntPtrTy) 675 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 676 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 677 } 678 Result->setTailCall(); 679 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) 680 Result->setCallingConv(F->getCallingConv()); 681 682 return Result; 683 } 684 685 /// CreateFree - Generate the IR for a call to the builtin free function. 686 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 687 return createFree(Source, None, InsertBefore, nullptr); 688 } 689 Instruction *CallInst::CreateFree(Value *Source, 690 ArrayRef<OperandBundleDef> Bundles, 691 Instruction *InsertBefore) { 692 return createFree(Source, Bundles, InsertBefore, nullptr); 693 } 694 695 /// CreateFree - Generate the IR for a call to the builtin free function. 696 /// Note: This function does not add the call to the basic block, that is the 697 /// responsibility of the caller. 698 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 699 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 700 assert(FreeCall && "CreateFree did not create a CallInst"); 701 return FreeCall; 702 } 703 Instruction *CallInst::CreateFree(Value *Source, 704 ArrayRef<OperandBundleDef> Bundles, 705 BasicBlock *InsertAtEnd) { 706 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 707 assert(FreeCall && "CreateFree did not create a CallInst"); 708 return FreeCall; 709 } 710 711 //===----------------------------------------------------------------------===// 712 // InvokeInst Implementation 713 //===----------------------------------------------------------------------===// 714 715 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 716 BasicBlock *IfException, ArrayRef<Value *> Args, 717 ArrayRef<OperandBundleDef> Bundles, 718 const Twine &NameStr) { 719 this->FTy = FTy; 720 721 assert((int)getNumOperands() == 722 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && 723 "NumOperands not set up?"); 724 setNormalDest(IfNormal); 725 setUnwindDest(IfException); 726 setCalledOperand(Fn); 727 728 #ifndef NDEBUG 729 assert(((Args.size() == FTy->getNumParams()) || 730 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 731 "Invoking a function with bad signature"); 732 733 for (unsigned i = 0, e = Args.size(); i != e; i++) 734 assert((i >= FTy->getNumParams() || 735 FTy->getParamType(i) == Args[i]->getType()) && 736 "Invoking a function with a bad signature!"); 737 #endif 738 739 llvm::copy(Args, op_begin()); 740 741 auto It = populateBundleOperandInfos(Bundles, Args.size()); 742 (void)It; 743 assert(It + 3 == op_end() && "Should add up!"); 744 745 setName(NameStr); 746 } 747 748 InvokeInst::InvokeInst(const InvokeInst &II) 749 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, 750 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), 751 II.getNumOperands()) { 752 setCallingConv(II.getCallingConv()); 753 std::copy(II.op_begin(), II.op_end(), op_begin()); 754 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 755 bundle_op_info_begin()); 756 SubclassOptionalData = II.SubclassOptionalData; 757 } 758 759 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 760 Instruction *InsertPt) { 761 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 762 763 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(), 764 II->getNormalDest(), II->getUnwindDest(), 765 Args, OpB, II->getName(), InsertPt); 766 NewII->setCallingConv(II->getCallingConv()); 767 NewII->SubclassOptionalData = II->SubclassOptionalData; 768 NewII->setAttributes(II->getAttributes()); 769 NewII->setDebugLoc(II->getDebugLoc()); 770 return NewII; 771 } 772 773 774 LandingPadInst *InvokeInst::getLandingPadInst() const { 775 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 776 } 777 778 //===----------------------------------------------------------------------===// 779 // CallBrInst Implementation 780 //===----------------------------------------------------------------------===// 781 782 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, 783 ArrayRef<BasicBlock *> IndirectDests, 784 ArrayRef<Value *> Args, 785 ArrayRef<OperandBundleDef> Bundles, 786 const Twine &NameStr) { 787 this->FTy = FTy; 788 789 assert((int)getNumOperands() == 790 ComputeNumOperands(Args.size(), IndirectDests.size(), 791 CountBundleInputs(Bundles)) && 792 "NumOperands not set up?"); 793 NumIndirectDests = IndirectDests.size(); 794 setDefaultDest(Fallthrough); 795 for (unsigned i = 0; i != NumIndirectDests; ++i) 796 setIndirectDest(i, IndirectDests[i]); 797 setCalledOperand(Fn); 798 799 #ifndef NDEBUG 800 assert(((Args.size() == FTy->getNumParams()) || 801 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 802 "Calling a function with bad signature"); 803 804 for (unsigned i = 0, e = Args.size(); i != e; i++) 805 assert((i >= FTy->getNumParams() || 806 FTy->getParamType(i) == Args[i]->getType()) && 807 "Calling a function with a bad signature!"); 808 #endif 809 810 std::copy(Args.begin(), Args.end(), op_begin()); 811 812 auto It = populateBundleOperandInfos(Bundles, Args.size()); 813 (void)It; 814 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!"); 815 816 setName(NameStr); 817 } 818 819 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) { 820 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr"); 821 if (BasicBlock *OldBB = getIndirectDest(i)) { 822 BlockAddress *Old = BlockAddress::get(OldBB); 823 BlockAddress *New = BlockAddress::get(B); 824 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo) 825 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old) 826 setArgOperand(ArgNo, New); 827 } 828 } 829 830 CallBrInst::CallBrInst(const CallBrInst &CBI) 831 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, 832 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(), 833 CBI.getNumOperands()) { 834 setCallingConv(CBI.getCallingConv()); 835 std::copy(CBI.op_begin(), CBI.op_end(), op_begin()); 836 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(), 837 bundle_op_info_begin()); 838 SubclassOptionalData = CBI.SubclassOptionalData; 839 NumIndirectDests = CBI.NumIndirectDests; 840 } 841 842 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, 843 Instruction *InsertPt) { 844 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); 845 846 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(), 847 CBI->getCalledValue(), 848 CBI->getDefaultDest(), 849 CBI->getIndirectDests(), 850 Args, OpB, CBI->getName(), InsertPt); 851 NewCBI->setCallingConv(CBI->getCallingConv()); 852 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; 853 NewCBI->setAttributes(CBI->getAttributes()); 854 NewCBI->setDebugLoc(CBI->getDebugLoc()); 855 NewCBI->NumIndirectDests = CBI->NumIndirectDests; 856 return NewCBI; 857 } 858 859 //===----------------------------------------------------------------------===// 860 // ReturnInst Implementation 861 //===----------------------------------------------------------------------===// 862 863 ReturnInst::ReturnInst(const ReturnInst &RI) 864 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, 865 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), 866 RI.getNumOperands()) { 867 if (RI.getNumOperands()) 868 Op<0>() = RI.Op<0>(); 869 SubclassOptionalData = RI.SubclassOptionalData; 870 } 871 872 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 873 : Instruction(Type::getVoidTy(C), Instruction::Ret, 874 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 875 InsertBefore) { 876 if (retVal) 877 Op<0>() = retVal; 878 } 879 880 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 881 : Instruction(Type::getVoidTy(C), Instruction::Ret, 882 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 883 InsertAtEnd) { 884 if (retVal) 885 Op<0>() = retVal; 886 } 887 888 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 889 : Instruction(Type::getVoidTy(Context), Instruction::Ret, 890 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {} 891 892 //===----------------------------------------------------------------------===// 893 // ResumeInst Implementation 894 //===----------------------------------------------------------------------===// 895 896 ResumeInst::ResumeInst(const ResumeInst &RI) 897 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, 898 OperandTraits<ResumeInst>::op_begin(this), 1) { 899 Op<0>() = RI.Op<0>(); 900 } 901 902 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 903 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 904 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 905 Op<0>() = Exn; 906 } 907 908 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 909 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 910 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 911 Op<0>() = Exn; 912 } 913 914 //===----------------------------------------------------------------------===// 915 // CleanupReturnInst Implementation 916 //===----------------------------------------------------------------------===// 917 918 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 919 : Instruction(CRI.getType(), Instruction::CleanupRet, 920 OperandTraits<CleanupReturnInst>::op_end(this) - 921 CRI.getNumOperands(), 922 CRI.getNumOperands()) { 923 setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); 924 Op<0>() = CRI.Op<0>(); 925 if (CRI.hasUnwindDest()) 926 Op<1>() = CRI.Op<1>(); 927 } 928 929 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 930 if (UnwindBB) 931 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 932 933 Op<0>() = CleanupPad; 934 if (UnwindBB) 935 Op<1>() = UnwindBB; 936 } 937 938 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 939 unsigned Values, Instruction *InsertBefore) 940 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 941 Instruction::CleanupRet, 942 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 943 Values, InsertBefore) { 944 init(CleanupPad, UnwindBB); 945 } 946 947 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 948 unsigned Values, BasicBlock *InsertAtEnd) 949 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 950 Instruction::CleanupRet, 951 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 952 Values, InsertAtEnd) { 953 init(CleanupPad, UnwindBB); 954 } 955 956 //===----------------------------------------------------------------------===// 957 // CatchReturnInst Implementation 958 //===----------------------------------------------------------------------===// 959 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 960 Op<0>() = CatchPad; 961 Op<1>() = BB; 962 } 963 964 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 965 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 966 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 967 Op<0>() = CRI.Op<0>(); 968 Op<1>() = CRI.Op<1>(); 969 } 970 971 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 972 Instruction *InsertBefore) 973 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 974 OperandTraits<CatchReturnInst>::op_begin(this), 2, 975 InsertBefore) { 976 init(CatchPad, BB); 977 } 978 979 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 980 BasicBlock *InsertAtEnd) 981 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 982 OperandTraits<CatchReturnInst>::op_begin(this), 2, 983 InsertAtEnd) { 984 init(CatchPad, BB); 985 } 986 987 //===----------------------------------------------------------------------===// 988 // CatchSwitchInst Implementation 989 //===----------------------------------------------------------------------===// 990 991 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 992 unsigned NumReservedValues, 993 const Twine &NameStr, 994 Instruction *InsertBefore) 995 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 996 InsertBefore) { 997 if (UnwindDest) 998 ++NumReservedValues; 999 init(ParentPad, UnwindDest, NumReservedValues + 1); 1000 setName(NameStr); 1001 } 1002 1003 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1004 unsigned NumReservedValues, 1005 const Twine &NameStr, BasicBlock *InsertAtEnd) 1006 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1007 InsertAtEnd) { 1008 if (UnwindDest) 1009 ++NumReservedValues; 1010 init(ParentPad, UnwindDest, NumReservedValues + 1); 1011 setName(NameStr); 1012 } 1013 1014 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 1015 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, 1016 CSI.getNumOperands()) { 1017 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 1018 setNumHungOffUseOperands(ReservedSpace); 1019 Use *OL = getOperandList(); 1020 const Use *InOL = CSI.getOperandList(); 1021 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 1022 OL[I] = InOL[I]; 1023 } 1024 1025 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 1026 unsigned NumReservedValues) { 1027 assert(ParentPad && NumReservedValues); 1028 1029 ReservedSpace = NumReservedValues; 1030 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 1031 allocHungoffUses(ReservedSpace); 1032 1033 Op<0>() = ParentPad; 1034 if (UnwindDest) { 1035 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 1036 setUnwindDest(UnwindDest); 1037 } 1038 } 1039 1040 /// growOperands - grow operands - This grows the operand list in response to a 1041 /// push_back style of operation. This grows the number of ops by 2 times. 1042 void CatchSwitchInst::growOperands(unsigned Size) { 1043 unsigned NumOperands = getNumOperands(); 1044 assert(NumOperands >= 1); 1045 if (ReservedSpace >= NumOperands + Size) 1046 return; 1047 ReservedSpace = (NumOperands + Size / 2) * 2; 1048 growHungoffUses(ReservedSpace); 1049 } 1050 1051 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 1052 unsigned OpNo = getNumOperands(); 1053 growOperands(1); 1054 assert(OpNo < ReservedSpace && "Growing didn't work!"); 1055 setNumHungOffUseOperands(getNumOperands() + 1); 1056 getOperandList()[OpNo] = Handler; 1057 } 1058 1059 void CatchSwitchInst::removeHandler(handler_iterator HI) { 1060 // Move all subsequent handlers up one. 1061 Use *EndDst = op_end() - 1; 1062 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 1063 *CurDst = *(CurDst + 1); 1064 // Null out the last handler use. 1065 *EndDst = nullptr; 1066 1067 setNumHungOffUseOperands(getNumOperands() - 1); 1068 } 1069 1070 //===----------------------------------------------------------------------===// 1071 // FuncletPadInst Implementation 1072 //===----------------------------------------------------------------------===// 1073 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1074 const Twine &NameStr) { 1075 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1076 llvm::copy(Args, op_begin()); 1077 setParentPad(ParentPad); 1078 setName(NameStr); 1079 } 1080 1081 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1082 : Instruction(FPI.getType(), FPI.getOpcode(), 1083 OperandTraits<FuncletPadInst>::op_end(this) - 1084 FPI.getNumOperands(), 1085 FPI.getNumOperands()) { 1086 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1087 setParentPad(FPI.getParentPad()); 1088 } 1089 1090 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1091 ArrayRef<Value *> Args, unsigned Values, 1092 const Twine &NameStr, Instruction *InsertBefore) 1093 : Instruction(ParentPad->getType(), Op, 1094 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1095 InsertBefore) { 1096 init(ParentPad, Args, NameStr); 1097 } 1098 1099 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1100 ArrayRef<Value *> Args, unsigned Values, 1101 const Twine &NameStr, BasicBlock *InsertAtEnd) 1102 : Instruction(ParentPad->getType(), Op, 1103 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1104 InsertAtEnd) { 1105 init(ParentPad, Args, NameStr); 1106 } 1107 1108 //===----------------------------------------------------------------------===// 1109 // UnreachableInst Implementation 1110 //===----------------------------------------------------------------------===// 1111 1112 UnreachableInst::UnreachableInst(LLVMContext &Context, 1113 Instruction *InsertBefore) 1114 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1115 0, InsertBefore) {} 1116 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1117 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1118 0, InsertAtEnd) {} 1119 1120 //===----------------------------------------------------------------------===// 1121 // BranchInst Implementation 1122 //===----------------------------------------------------------------------===// 1123 1124 void BranchInst::AssertOK() { 1125 if (isConditional()) 1126 assert(getCondition()->getType()->isIntegerTy(1) && 1127 "May only branch on boolean predicates!"); 1128 } 1129 1130 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1131 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1132 OperandTraits<BranchInst>::op_end(this) - 1, 1, 1133 InsertBefore) { 1134 assert(IfTrue && "Branch destination may not be null!"); 1135 Op<-1>() = IfTrue; 1136 } 1137 1138 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1139 Instruction *InsertBefore) 1140 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1141 OperandTraits<BranchInst>::op_end(this) - 3, 3, 1142 InsertBefore) { 1143 Op<-1>() = IfTrue; 1144 Op<-2>() = IfFalse; 1145 Op<-3>() = Cond; 1146 #ifndef NDEBUG 1147 AssertOK(); 1148 #endif 1149 } 1150 1151 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1152 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1153 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { 1154 assert(IfTrue && "Branch destination may not be null!"); 1155 Op<-1>() = IfTrue; 1156 } 1157 1158 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1159 BasicBlock *InsertAtEnd) 1160 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1161 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { 1162 Op<-1>() = IfTrue; 1163 Op<-2>() = IfFalse; 1164 Op<-3>() = Cond; 1165 #ifndef NDEBUG 1166 AssertOK(); 1167 #endif 1168 } 1169 1170 BranchInst::BranchInst(const BranchInst &BI) 1171 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, 1172 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1173 BI.getNumOperands()) { 1174 Op<-1>() = BI.Op<-1>(); 1175 if (BI.getNumOperands() != 1) { 1176 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1177 Op<-3>() = BI.Op<-3>(); 1178 Op<-2>() = BI.Op<-2>(); 1179 } 1180 SubclassOptionalData = BI.SubclassOptionalData; 1181 } 1182 1183 void BranchInst::swapSuccessors() { 1184 assert(isConditional() && 1185 "Cannot swap successors of an unconditional branch"); 1186 Op<-1>().swap(Op<-2>()); 1187 1188 // Update profile metadata if present and it matches our structural 1189 // expectations. 1190 swapProfMetadata(); 1191 } 1192 1193 //===----------------------------------------------------------------------===// 1194 // AllocaInst Implementation 1195 //===----------------------------------------------------------------------===// 1196 1197 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1198 if (!Amt) 1199 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1200 else { 1201 assert(!isa<BasicBlock>(Amt) && 1202 "Passed basic block into allocation size parameter! Use other ctor"); 1203 assert(Amt->getType()->isIntegerTy() && 1204 "Allocation array size is not an integer!"); 1205 } 1206 return Amt; 1207 } 1208 1209 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1210 Instruction *InsertBefore) 1211 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1212 1213 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1214 BasicBlock *InsertAtEnd) 1215 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1216 1217 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1218 const Twine &Name, Instruction *InsertBefore) 1219 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {} 1220 1221 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1222 const Twine &Name, BasicBlock *InsertAtEnd) 1223 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} 1224 1225 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1226 unsigned Align, const Twine &Name, 1227 Instruction *InsertBefore) 1228 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1229 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1230 AllocatedType(Ty) { 1231 setAlignment(Align); 1232 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1233 setName(Name); 1234 } 1235 1236 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1237 unsigned Align, const Twine &Name, 1238 BasicBlock *InsertAtEnd) 1239 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1240 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1241 AllocatedType(Ty) { 1242 setAlignment(Align); 1243 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1244 setName(Name); 1245 } 1246 1247 void AllocaInst::setAlignment(unsigned Align) { 1248 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1249 assert(Align <= MaximumAlignment && 1250 "Alignment is greater than MaximumAlignment!"); 1251 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | 1252 (Log2_32(Align) + 1)); 1253 assert(getAlignment() == Align && "Alignment representation error!"); 1254 } 1255 1256 bool AllocaInst::isArrayAllocation() const { 1257 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1258 return !CI->isOne(); 1259 return true; 1260 } 1261 1262 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1263 /// function and is a constant size. If so, the code generator will fold it 1264 /// into the prolog/epilog code, so it is basically free. 1265 bool AllocaInst::isStaticAlloca() const { 1266 // Must be constant size. 1267 if (!isa<ConstantInt>(getArraySize())) return false; 1268 1269 // Must be in the entry block. 1270 const BasicBlock *Parent = getParent(); 1271 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1272 } 1273 1274 //===----------------------------------------------------------------------===// 1275 // LoadInst Implementation 1276 //===----------------------------------------------------------------------===// 1277 1278 void LoadInst::AssertOK() { 1279 assert(getOperand(0)->getType()->isPointerTy() && 1280 "Ptr must have pointer type."); 1281 assert(!(isAtomic() && getAlignment() == 0) && 1282 "Alignment required for atomic load"); 1283 } 1284 1285 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1286 Instruction *InsertBef) 1287 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1288 1289 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1290 BasicBlock *InsertAE) 1291 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1292 1293 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1294 Instruction *InsertBef) 1295 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} 1296 1297 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1298 BasicBlock *InsertAE) 1299 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} 1300 1301 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1302 unsigned Align, Instruction *InsertBef) 1303 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1304 SyncScope::System, InsertBef) {} 1305 1306 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1307 unsigned Align, BasicBlock *InsertAE) 1308 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1309 SyncScope::System, InsertAE) {} 1310 1311 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1312 unsigned Align, AtomicOrdering Order, 1313 SyncScope::ID SSID, Instruction *InsertBef) 1314 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1315 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1316 setVolatile(isVolatile); 1317 setAlignment(Align); 1318 setAtomic(Order, SSID); 1319 AssertOK(); 1320 setName(Name); 1321 } 1322 1323 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1324 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID, 1325 BasicBlock *InsertAE) 1326 : UnaryInstruction(Ty, Load, Ptr, InsertAE) { 1327 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1328 setVolatile(isVolatile); 1329 setAlignment(Align); 1330 setAtomic(Order, SSID); 1331 AssertOK(); 1332 setName(Name); 1333 } 1334 1335 void LoadInst::setAlignment(unsigned Align) { 1336 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1337 assert(Align <= MaximumAlignment && 1338 "Alignment is greater than MaximumAlignment!"); 1339 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1340 ((Log2_32(Align)+1)<<1)); 1341 assert(getAlignment() == Align && "Alignment representation error!"); 1342 } 1343 1344 //===----------------------------------------------------------------------===// 1345 // StoreInst Implementation 1346 //===----------------------------------------------------------------------===// 1347 1348 void StoreInst::AssertOK() { 1349 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1350 assert(getOperand(1)->getType()->isPointerTy() && 1351 "Ptr must have pointer type!"); 1352 assert(getOperand(0)->getType() == 1353 cast<PointerType>(getOperand(1)->getType())->getElementType() 1354 && "Ptr must be a pointer to Val type!"); 1355 assert(!(isAtomic() && getAlignment() == 0) && 1356 "Alignment required for atomic store"); 1357 } 1358 1359 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1360 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1361 1362 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1363 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1364 1365 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1366 Instruction *InsertBefore) 1367 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} 1368 1369 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1370 BasicBlock *InsertAtEnd) 1371 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} 1372 1373 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1374 Instruction *InsertBefore) 1375 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1376 SyncScope::System, InsertBefore) {} 1377 1378 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1379 BasicBlock *InsertAtEnd) 1380 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1381 SyncScope::System, InsertAtEnd) {} 1382 1383 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1384 unsigned Align, AtomicOrdering Order, 1385 SyncScope::ID SSID, 1386 Instruction *InsertBefore) 1387 : Instruction(Type::getVoidTy(val->getContext()), Store, 1388 OperandTraits<StoreInst>::op_begin(this), 1389 OperandTraits<StoreInst>::operands(this), 1390 InsertBefore) { 1391 Op<0>() = val; 1392 Op<1>() = addr; 1393 setVolatile(isVolatile); 1394 setAlignment(Align); 1395 setAtomic(Order, SSID); 1396 AssertOK(); 1397 } 1398 1399 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1400 unsigned Align, AtomicOrdering Order, 1401 SyncScope::ID SSID, 1402 BasicBlock *InsertAtEnd) 1403 : Instruction(Type::getVoidTy(val->getContext()), Store, 1404 OperandTraits<StoreInst>::op_begin(this), 1405 OperandTraits<StoreInst>::operands(this), 1406 InsertAtEnd) { 1407 Op<0>() = val; 1408 Op<1>() = addr; 1409 setVolatile(isVolatile); 1410 setAlignment(Align); 1411 setAtomic(Order, SSID); 1412 AssertOK(); 1413 } 1414 1415 void StoreInst::setAlignment(unsigned Align) { 1416 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1417 assert(Align <= MaximumAlignment && 1418 "Alignment is greater than MaximumAlignment!"); 1419 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1420 ((Log2_32(Align)+1) << 1)); 1421 assert(getAlignment() == Align && "Alignment representation error!"); 1422 } 1423 1424 //===----------------------------------------------------------------------===// 1425 // AtomicCmpXchgInst Implementation 1426 //===----------------------------------------------------------------------===// 1427 1428 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1429 AtomicOrdering SuccessOrdering, 1430 AtomicOrdering FailureOrdering, 1431 SyncScope::ID SSID) { 1432 Op<0>() = Ptr; 1433 Op<1>() = Cmp; 1434 Op<2>() = NewVal; 1435 setSuccessOrdering(SuccessOrdering); 1436 setFailureOrdering(FailureOrdering); 1437 setSyncScopeID(SSID); 1438 1439 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1440 "All operands must be non-null!"); 1441 assert(getOperand(0)->getType()->isPointerTy() && 1442 "Ptr must have pointer type!"); 1443 assert(getOperand(1)->getType() == 1444 cast<PointerType>(getOperand(0)->getType())->getElementType() 1445 && "Ptr must be a pointer to Cmp type!"); 1446 assert(getOperand(2)->getType() == 1447 cast<PointerType>(getOperand(0)->getType())->getElementType() 1448 && "Ptr must be a pointer to NewVal type!"); 1449 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 1450 "AtomicCmpXchg instructions must be atomic!"); 1451 assert(FailureOrdering != AtomicOrdering::NotAtomic && 1452 "AtomicCmpXchg instructions must be atomic!"); 1453 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && 1454 "AtomicCmpXchg failure argument shall be no stronger than the success " 1455 "argument"); 1456 assert(FailureOrdering != AtomicOrdering::Release && 1457 FailureOrdering != AtomicOrdering::AcquireRelease && 1458 "AtomicCmpXchg failure ordering cannot include release semantics"); 1459 } 1460 1461 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1462 AtomicOrdering SuccessOrdering, 1463 AtomicOrdering FailureOrdering, 1464 SyncScope::ID SSID, 1465 Instruction *InsertBefore) 1466 : Instruction( 1467 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1468 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1469 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1470 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); 1471 } 1472 1473 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1474 AtomicOrdering SuccessOrdering, 1475 AtomicOrdering FailureOrdering, 1476 SyncScope::ID SSID, 1477 BasicBlock *InsertAtEnd) 1478 : Instruction( 1479 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1480 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1481 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1482 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); 1483 } 1484 1485 //===----------------------------------------------------------------------===// 1486 // AtomicRMWInst Implementation 1487 //===----------------------------------------------------------------------===// 1488 1489 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1490 AtomicOrdering Ordering, 1491 SyncScope::ID SSID) { 1492 Op<0>() = Ptr; 1493 Op<1>() = Val; 1494 setOperation(Operation); 1495 setOrdering(Ordering); 1496 setSyncScopeID(SSID); 1497 1498 assert(getOperand(0) && getOperand(1) && 1499 "All operands must be non-null!"); 1500 assert(getOperand(0)->getType()->isPointerTy() && 1501 "Ptr must have pointer type!"); 1502 assert(getOperand(1)->getType() == 1503 cast<PointerType>(getOperand(0)->getType())->getElementType() 1504 && "Ptr must be a pointer to Val type!"); 1505 assert(Ordering != AtomicOrdering::NotAtomic && 1506 "AtomicRMW instructions must be atomic!"); 1507 } 1508 1509 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1510 AtomicOrdering Ordering, 1511 SyncScope::ID SSID, 1512 Instruction *InsertBefore) 1513 : Instruction(Val->getType(), AtomicRMW, 1514 OperandTraits<AtomicRMWInst>::op_begin(this), 1515 OperandTraits<AtomicRMWInst>::operands(this), 1516 InsertBefore) { 1517 Init(Operation, Ptr, Val, Ordering, SSID); 1518 } 1519 1520 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1521 AtomicOrdering Ordering, 1522 SyncScope::ID SSID, 1523 BasicBlock *InsertAtEnd) 1524 : Instruction(Val->getType(), AtomicRMW, 1525 OperandTraits<AtomicRMWInst>::op_begin(this), 1526 OperandTraits<AtomicRMWInst>::operands(this), 1527 InsertAtEnd) { 1528 Init(Operation, Ptr, Val, Ordering, SSID); 1529 } 1530 1531 StringRef AtomicRMWInst::getOperationName(BinOp Op) { 1532 switch (Op) { 1533 case AtomicRMWInst::Xchg: 1534 return "xchg"; 1535 case AtomicRMWInst::Add: 1536 return "add"; 1537 case AtomicRMWInst::Sub: 1538 return "sub"; 1539 case AtomicRMWInst::And: 1540 return "and"; 1541 case AtomicRMWInst::Nand: 1542 return "nand"; 1543 case AtomicRMWInst::Or: 1544 return "or"; 1545 case AtomicRMWInst::Xor: 1546 return "xor"; 1547 case AtomicRMWInst::Max: 1548 return "max"; 1549 case AtomicRMWInst::Min: 1550 return "min"; 1551 case AtomicRMWInst::UMax: 1552 return "umax"; 1553 case AtomicRMWInst::UMin: 1554 return "umin"; 1555 case AtomicRMWInst::FAdd: 1556 return "fadd"; 1557 case AtomicRMWInst::FSub: 1558 return "fsub"; 1559 case AtomicRMWInst::BAD_BINOP: 1560 return "<invalid operation>"; 1561 } 1562 1563 llvm_unreachable("invalid atomicrmw operation"); 1564 } 1565 1566 //===----------------------------------------------------------------------===// 1567 // FenceInst Implementation 1568 //===----------------------------------------------------------------------===// 1569 1570 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1571 SyncScope::ID SSID, 1572 Instruction *InsertBefore) 1573 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1574 setOrdering(Ordering); 1575 setSyncScopeID(SSID); 1576 } 1577 1578 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1579 SyncScope::ID SSID, 1580 BasicBlock *InsertAtEnd) 1581 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1582 setOrdering(Ordering); 1583 setSyncScopeID(SSID); 1584 } 1585 1586 //===----------------------------------------------------------------------===// 1587 // GetElementPtrInst Implementation 1588 //===----------------------------------------------------------------------===// 1589 1590 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1591 const Twine &Name) { 1592 assert(getNumOperands() == 1 + IdxList.size() && 1593 "NumOperands not initialized?"); 1594 Op<0>() = Ptr; 1595 llvm::copy(IdxList, op_begin() + 1); 1596 setName(Name); 1597 } 1598 1599 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1600 : Instruction(GEPI.getType(), GetElementPtr, 1601 OperandTraits<GetElementPtrInst>::op_end(this) - 1602 GEPI.getNumOperands(), 1603 GEPI.getNumOperands()), 1604 SourceElementType(GEPI.SourceElementType), 1605 ResultElementType(GEPI.ResultElementType) { 1606 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1607 SubclassOptionalData = GEPI.SubclassOptionalData; 1608 } 1609 1610 /// getIndexedType - Returns the type of the element that would be accessed with 1611 /// a gep instruction with the specified parameters. 1612 /// 1613 /// The Idxs pointer should point to a continuous piece of memory containing the 1614 /// indices, either as Value* or uint64_t. 1615 /// 1616 /// A null type is returned if the indices are invalid for the specified 1617 /// pointer type. 1618 /// 1619 template <typename IndexTy> 1620 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { 1621 // Handle the special case of the empty set index set, which is always valid. 1622 if (IdxList.empty()) 1623 return Agg; 1624 1625 // If there is at least one index, the top level type must be sized, otherwise 1626 // it cannot be 'stepped over'. 1627 if (!Agg->isSized()) 1628 return nullptr; 1629 1630 unsigned CurIdx = 1; 1631 for (; CurIdx != IdxList.size(); ++CurIdx) { 1632 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1633 if (!CT || CT->isPointerTy()) return nullptr; 1634 IndexTy Index = IdxList[CurIdx]; 1635 if (!CT->indexValid(Index)) return nullptr; 1636 Agg = CT->getTypeAtIndex(Index); 1637 } 1638 return CurIdx == IdxList.size() ? Agg : nullptr; 1639 } 1640 1641 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1642 return getIndexedTypeInternal(Ty, IdxList); 1643 } 1644 1645 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1646 ArrayRef<Constant *> IdxList) { 1647 return getIndexedTypeInternal(Ty, IdxList); 1648 } 1649 1650 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1651 return getIndexedTypeInternal(Ty, IdxList); 1652 } 1653 1654 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1655 /// zeros. If so, the result pointer and the first operand have the same 1656 /// value, just potentially different types. 1657 bool GetElementPtrInst::hasAllZeroIndices() const { 1658 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1659 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1660 if (!CI->isZero()) return false; 1661 } else { 1662 return false; 1663 } 1664 } 1665 return true; 1666 } 1667 1668 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1669 /// constant integers. If so, the result pointer and the first operand have 1670 /// a constant offset between them. 1671 bool GetElementPtrInst::hasAllConstantIndices() const { 1672 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1673 if (!isa<ConstantInt>(getOperand(i))) 1674 return false; 1675 } 1676 return true; 1677 } 1678 1679 void GetElementPtrInst::setIsInBounds(bool B) { 1680 cast<GEPOperator>(this)->setIsInBounds(B); 1681 } 1682 1683 bool GetElementPtrInst::isInBounds() const { 1684 return cast<GEPOperator>(this)->isInBounds(); 1685 } 1686 1687 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1688 APInt &Offset) const { 1689 // Delegate to the generic GEPOperator implementation. 1690 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1691 } 1692 1693 //===----------------------------------------------------------------------===// 1694 // ExtractElementInst Implementation 1695 //===----------------------------------------------------------------------===// 1696 1697 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1698 const Twine &Name, 1699 Instruction *InsertBef) 1700 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1701 ExtractElement, 1702 OperandTraits<ExtractElementInst>::op_begin(this), 1703 2, InsertBef) { 1704 assert(isValidOperands(Val, Index) && 1705 "Invalid extractelement instruction operands!"); 1706 Op<0>() = Val; 1707 Op<1>() = Index; 1708 setName(Name); 1709 } 1710 1711 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1712 const Twine &Name, 1713 BasicBlock *InsertAE) 1714 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1715 ExtractElement, 1716 OperandTraits<ExtractElementInst>::op_begin(this), 1717 2, InsertAE) { 1718 assert(isValidOperands(Val, Index) && 1719 "Invalid extractelement instruction operands!"); 1720 1721 Op<0>() = Val; 1722 Op<1>() = Index; 1723 setName(Name); 1724 } 1725 1726 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1727 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1728 return false; 1729 return true; 1730 } 1731 1732 //===----------------------------------------------------------------------===// 1733 // InsertElementInst Implementation 1734 //===----------------------------------------------------------------------===// 1735 1736 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1737 const Twine &Name, 1738 Instruction *InsertBef) 1739 : Instruction(Vec->getType(), InsertElement, 1740 OperandTraits<InsertElementInst>::op_begin(this), 1741 3, InsertBef) { 1742 assert(isValidOperands(Vec, Elt, Index) && 1743 "Invalid insertelement instruction operands!"); 1744 Op<0>() = Vec; 1745 Op<1>() = Elt; 1746 Op<2>() = Index; 1747 setName(Name); 1748 } 1749 1750 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1751 const Twine &Name, 1752 BasicBlock *InsertAE) 1753 : Instruction(Vec->getType(), InsertElement, 1754 OperandTraits<InsertElementInst>::op_begin(this), 1755 3, InsertAE) { 1756 assert(isValidOperands(Vec, Elt, Index) && 1757 "Invalid insertelement instruction operands!"); 1758 1759 Op<0>() = Vec; 1760 Op<1>() = Elt; 1761 Op<2>() = Index; 1762 setName(Name); 1763 } 1764 1765 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1766 const Value *Index) { 1767 if (!Vec->getType()->isVectorTy()) 1768 return false; // First operand of insertelement must be vector type. 1769 1770 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1771 return false;// Second operand of insertelement must be vector element type. 1772 1773 if (!Index->getType()->isIntegerTy()) 1774 return false; // Third operand of insertelement must be i32. 1775 return true; 1776 } 1777 1778 //===----------------------------------------------------------------------===// 1779 // ShuffleVectorInst Implementation 1780 //===----------------------------------------------------------------------===// 1781 1782 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1783 const Twine &Name, 1784 Instruction *InsertBefore) 1785 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1786 cast<VectorType>(Mask->getType())->getNumElements()), 1787 ShuffleVector, 1788 OperandTraits<ShuffleVectorInst>::op_begin(this), 1789 OperandTraits<ShuffleVectorInst>::operands(this), 1790 InsertBefore) { 1791 assert(isValidOperands(V1, V2, Mask) && 1792 "Invalid shuffle vector instruction operands!"); 1793 Op<0>() = V1; 1794 Op<1>() = V2; 1795 Op<2>() = Mask; 1796 setName(Name); 1797 } 1798 1799 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1800 const Twine &Name, 1801 BasicBlock *InsertAtEnd) 1802 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1803 cast<VectorType>(Mask->getType())->getNumElements()), 1804 ShuffleVector, 1805 OperandTraits<ShuffleVectorInst>::op_begin(this), 1806 OperandTraits<ShuffleVectorInst>::operands(this), 1807 InsertAtEnd) { 1808 assert(isValidOperands(V1, V2, Mask) && 1809 "Invalid shuffle vector instruction operands!"); 1810 1811 Op<0>() = V1; 1812 Op<1>() = V2; 1813 Op<2>() = Mask; 1814 setName(Name); 1815 } 1816 1817 void ShuffleVectorInst::commute() { 1818 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 1819 int NumMaskElts = getMask()->getType()->getVectorNumElements(); 1820 SmallVector<Constant*, 16> NewMask(NumMaskElts); 1821 Type *Int32Ty = Type::getInt32Ty(getContext()); 1822 for (int i = 0; i != NumMaskElts; ++i) { 1823 int MaskElt = getMaskValue(i); 1824 if (MaskElt == -1) { 1825 NewMask[i] = UndefValue::get(Int32Ty); 1826 continue; 1827 } 1828 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask"); 1829 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts; 1830 NewMask[i] = ConstantInt::get(Int32Ty, MaskElt); 1831 } 1832 Op<2>() = ConstantVector::get(NewMask); 1833 Op<0>().swap(Op<1>()); 1834 } 1835 1836 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1837 const Value *Mask) { 1838 // V1 and V2 must be vectors of the same type. 1839 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1840 return false; 1841 1842 // Mask must be vector of i32. 1843 auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1844 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) 1845 return false; 1846 1847 // Check to see if Mask is valid. 1848 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1849 return true; 1850 1851 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { 1852 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1853 for (Value *Op : MV->operands()) { 1854 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1855 if (CI->uge(V1Size*2)) 1856 return false; 1857 } else if (!isa<UndefValue>(Op)) { 1858 return false; 1859 } 1860 } 1861 return true; 1862 } 1863 1864 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 1865 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1866 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1867 if (CDS->getElementAsInteger(i) >= V1Size*2) 1868 return false; 1869 return true; 1870 } 1871 1872 // The bitcode reader can create a place holder for a forward reference 1873 // used as the shuffle mask. When this occurs, the shuffle mask will 1874 // fall into this case and fail. To avoid this error, do this bit of 1875 // ugliness to allow such a mask pass. 1876 if (const auto *CE = dyn_cast<ConstantExpr>(Mask)) 1877 if (CE->getOpcode() == Instruction::UserOp1) 1878 return true; 1879 1880 return false; 1881 } 1882 1883 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) { 1884 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1885 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) 1886 return CDS->getElementAsInteger(i); 1887 Constant *C = Mask->getAggregateElement(i); 1888 if (isa<UndefValue>(C)) 1889 return -1; 1890 return cast<ConstantInt>(C)->getZExtValue(); 1891 } 1892 1893 void ShuffleVectorInst::getShuffleMask(const Constant *Mask, 1894 SmallVectorImpl<int> &Result) { 1895 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1896 1897 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 1898 for (unsigned i = 0; i != NumElts; ++i) 1899 Result.push_back(CDS->getElementAsInteger(i)); 1900 return; 1901 } 1902 for (unsigned i = 0; i != NumElts; ++i) { 1903 Constant *C = Mask->getAggregateElement(i); 1904 Result.push_back(isa<UndefValue>(C) ? -1 : 1905 cast<ConstantInt>(C)->getZExtValue()); 1906 } 1907 } 1908 1909 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 1910 assert(!Mask.empty() && "Shuffle mask must contain elements"); 1911 bool UsesLHS = false; 1912 bool UsesRHS = false; 1913 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 1914 if (Mask[i] == -1) 1915 continue; 1916 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) && 1917 "Out-of-bounds shuffle mask element"); 1918 UsesLHS |= (Mask[i] < NumOpElts); 1919 UsesRHS |= (Mask[i] >= NumOpElts); 1920 if (UsesLHS && UsesRHS) 1921 return false; 1922 } 1923 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source"); 1924 return true; 1925 } 1926 1927 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { 1928 // We don't have vector operand size information, so assume operands are the 1929 // same size as the mask. 1930 return isSingleSourceMaskImpl(Mask, Mask.size()); 1931 } 1932 1933 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 1934 if (!isSingleSourceMaskImpl(Mask, NumOpElts)) 1935 return false; 1936 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 1937 if (Mask[i] == -1) 1938 continue; 1939 if (Mask[i] != i && Mask[i] != (NumOpElts + i)) 1940 return false; 1941 } 1942 return true; 1943 } 1944 1945 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { 1946 // We don't have vector operand size information, so assume operands are the 1947 // same size as the mask. 1948 return isIdentityMaskImpl(Mask, Mask.size()); 1949 } 1950 1951 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { 1952 if (!isSingleSourceMask(Mask)) 1953 return false; 1954 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1955 if (Mask[i] == -1) 1956 continue; 1957 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) 1958 return false; 1959 } 1960 return true; 1961 } 1962 1963 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { 1964 if (!isSingleSourceMask(Mask)) 1965 return false; 1966 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1967 if (Mask[i] == -1) 1968 continue; 1969 if (Mask[i] != 0 && Mask[i] != NumElts) 1970 return false; 1971 } 1972 return true; 1973 } 1974 1975 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { 1976 // Select is differentiated from identity. It requires using both sources. 1977 if (isSingleSourceMask(Mask)) 1978 return false; 1979 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1980 if (Mask[i] == -1) 1981 continue; 1982 if (Mask[i] != i && Mask[i] != (NumElts + i)) 1983 return false; 1984 } 1985 return true; 1986 } 1987 1988 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { 1989 // Example masks that will return true: 1990 // v1 = <a, b, c, d> 1991 // v2 = <e, f, g, h> 1992 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> 1993 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> 1994 1995 // 1. The number of elements in the mask must be a power-of-2 and at least 2. 1996 int NumElts = Mask.size(); 1997 if (NumElts < 2 || !isPowerOf2_32(NumElts)) 1998 return false; 1999 2000 // 2. The first element of the mask must be either a 0 or a 1. 2001 if (Mask[0] != 0 && Mask[0] != 1) 2002 return false; 2003 2004 // 3. The difference between the first 2 elements must be equal to the 2005 // number of elements in the mask. 2006 if ((Mask[1] - Mask[0]) != NumElts) 2007 return false; 2008 2009 // 4. The difference between consecutive even-numbered and odd-numbered 2010 // elements must be equal to 2. 2011 for (int i = 2; i < NumElts; ++i) { 2012 int MaskEltVal = Mask[i]; 2013 if (MaskEltVal == -1) 2014 return false; 2015 int MaskEltPrevVal = Mask[i - 2]; 2016 if (MaskEltVal - MaskEltPrevVal != 2) 2017 return false; 2018 } 2019 return true; 2020 } 2021 2022 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, 2023 int NumSrcElts, int &Index) { 2024 // Must extract from a single source. 2025 if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) 2026 return false; 2027 2028 // Must be smaller (else this is an Identity shuffle). 2029 if (NumSrcElts <= (int)Mask.size()) 2030 return false; 2031 2032 // Find start of extraction, accounting that we may start with an UNDEF. 2033 int SubIndex = -1; 2034 for (int i = 0, e = Mask.size(); i != e; ++i) { 2035 int M = Mask[i]; 2036 if (M < 0) 2037 continue; 2038 int Offset = (M % NumSrcElts) - i; 2039 if (0 <= SubIndex && SubIndex != Offset) 2040 return false; 2041 SubIndex = Offset; 2042 } 2043 2044 if (0 <= SubIndex) { 2045 Index = SubIndex; 2046 return true; 2047 } 2048 return false; 2049 } 2050 2051 bool ShuffleVectorInst::isIdentityWithPadding() const { 2052 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 2053 int NumMaskElts = getType()->getVectorNumElements(); 2054 if (NumMaskElts <= NumOpElts) 2055 return false; 2056 2057 // The first part of the mask must choose elements from exactly 1 source op. 2058 SmallVector<int, 16> Mask = getShuffleMask(); 2059 if (!isIdentityMaskImpl(Mask, NumOpElts)) 2060 return false; 2061 2062 // All extending must be with undef elements. 2063 for (int i = NumOpElts; i < NumMaskElts; ++i) 2064 if (Mask[i] != -1) 2065 return false; 2066 2067 return true; 2068 } 2069 2070 bool ShuffleVectorInst::isIdentityWithExtract() const { 2071 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 2072 int NumMaskElts = getType()->getVectorNumElements(); 2073 if (NumMaskElts >= NumOpElts) 2074 return false; 2075 2076 return isIdentityMaskImpl(getShuffleMask(), NumOpElts); 2077 } 2078 2079 bool ShuffleVectorInst::isConcat() const { 2080 // Vector concatenation is differentiated from identity with padding. 2081 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>())) 2082 return false; 2083 2084 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 2085 int NumMaskElts = getType()->getVectorNumElements(); 2086 if (NumMaskElts != NumOpElts * 2) 2087 return false; 2088 2089 // Use the mask length rather than the operands' vector lengths here. We 2090 // already know that the shuffle returns a vector twice as long as the inputs, 2091 // and neither of the inputs are undef vectors. If the mask picks consecutive 2092 // elements from both inputs, then this is a concatenation of the inputs. 2093 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); 2094 } 2095 2096 //===----------------------------------------------------------------------===// 2097 // InsertValueInst Class 2098 //===----------------------------------------------------------------------===// 2099 2100 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2101 const Twine &Name) { 2102 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 2103 2104 // There's no fundamental reason why we require at least one index 2105 // (other than weirdness with &*IdxBegin being invalid; see 2106 // getelementptr's init routine for example). But there's no 2107 // present need to support it. 2108 assert(!Idxs.empty() && "InsertValueInst must have at least one index"); 2109 2110 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 2111 Val->getType() && "Inserted value must match indexed type!"); 2112 Op<0>() = Agg; 2113 Op<1>() = Val; 2114 2115 Indices.append(Idxs.begin(), Idxs.end()); 2116 setName(Name); 2117 } 2118 2119 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 2120 : Instruction(IVI.getType(), InsertValue, 2121 OperandTraits<InsertValueInst>::op_begin(this), 2), 2122 Indices(IVI.Indices) { 2123 Op<0>() = IVI.getOperand(0); 2124 Op<1>() = IVI.getOperand(1); 2125 SubclassOptionalData = IVI.SubclassOptionalData; 2126 } 2127 2128 //===----------------------------------------------------------------------===// 2129 // ExtractValueInst Class 2130 //===----------------------------------------------------------------------===// 2131 2132 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 2133 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 2134 2135 // There's no fundamental reason why we require at least one index. 2136 // But there's no present need to support it. 2137 assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); 2138 2139 Indices.append(Idxs.begin(), Idxs.end()); 2140 setName(Name); 2141 } 2142 2143 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 2144 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 2145 Indices(EVI.Indices) { 2146 SubclassOptionalData = EVI.SubclassOptionalData; 2147 } 2148 2149 // getIndexedType - Returns the type of the element that would be extracted 2150 // with an extractvalue instruction with the specified parameters. 2151 // 2152 // A null type is returned if the indices are invalid for the specified 2153 // pointer type. 2154 // 2155 Type *ExtractValueInst::getIndexedType(Type *Agg, 2156 ArrayRef<unsigned> Idxs) { 2157 for (unsigned Index : Idxs) { 2158 // We can't use CompositeType::indexValid(Index) here. 2159 // indexValid() always returns true for arrays because getelementptr allows 2160 // out-of-bounds indices. Since we don't allow those for extractvalue and 2161 // insertvalue we need to check array indexing manually. 2162 // Since the only other types we can index into are struct types it's just 2163 // as easy to check those manually as well. 2164 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 2165 if (Index >= AT->getNumElements()) 2166 return nullptr; 2167 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2168 if (Index >= ST->getNumElements()) 2169 return nullptr; 2170 } else { 2171 // Not a valid type to index into. 2172 return nullptr; 2173 } 2174 2175 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 2176 } 2177 return const_cast<Type*>(Agg); 2178 } 2179 2180 //===----------------------------------------------------------------------===// 2181 // UnaryOperator Class 2182 //===----------------------------------------------------------------------===// 2183 2184 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2185 Type *Ty, const Twine &Name, 2186 Instruction *InsertBefore) 2187 : UnaryInstruction(Ty, iType, S, InsertBefore) { 2188 Op<0>() = S; 2189 setName(Name); 2190 AssertOK(); 2191 } 2192 2193 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2194 Type *Ty, const Twine &Name, 2195 BasicBlock *InsertAtEnd) 2196 : UnaryInstruction(Ty, iType, S, InsertAtEnd) { 2197 Op<0>() = S; 2198 setName(Name); 2199 AssertOK(); 2200 } 2201 2202 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2203 const Twine &Name, 2204 Instruction *InsertBefore) { 2205 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); 2206 } 2207 2208 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2209 const Twine &Name, 2210 BasicBlock *InsertAtEnd) { 2211 UnaryOperator *Res = Create(Op, S, Name); 2212 InsertAtEnd->getInstList().push_back(Res); 2213 return Res; 2214 } 2215 2216 void UnaryOperator::AssertOK() { 2217 Value *LHS = getOperand(0); 2218 (void)LHS; // Silence warnings. 2219 #ifndef NDEBUG 2220 switch (getOpcode()) { 2221 case FNeg: 2222 assert(getType() == LHS->getType() && 2223 "Unary operation should return same type as operand!"); 2224 assert(getType()->isFPOrFPVectorTy() && 2225 "Tried to create a floating-point operation on a " 2226 "non-floating-point type!"); 2227 break; 2228 default: llvm_unreachable("Invalid opcode provided"); 2229 } 2230 #endif 2231 } 2232 2233 //===----------------------------------------------------------------------===// 2234 // BinaryOperator Class 2235 //===----------------------------------------------------------------------===// 2236 2237 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2238 Type *Ty, const Twine &Name, 2239 Instruction *InsertBefore) 2240 : Instruction(Ty, iType, 2241 OperandTraits<BinaryOperator>::op_begin(this), 2242 OperandTraits<BinaryOperator>::operands(this), 2243 InsertBefore) { 2244 Op<0>() = S1; 2245 Op<1>() = S2; 2246 setName(Name); 2247 AssertOK(); 2248 } 2249 2250 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2251 Type *Ty, const Twine &Name, 2252 BasicBlock *InsertAtEnd) 2253 : Instruction(Ty, iType, 2254 OperandTraits<BinaryOperator>::op_begin(this), 2255 OperandTraits<BinaryOperator>::operands(this), 2256 InsertAtEnd) { 2257 Op<0>() = S1; 2258 Op<1>() = S2; 2259 setName(Name); 2260 AssertOK(); 2261 } 2262 2263 void BinaryOperator::AssertOK() { 2264 Value *LHS = getOperand(0), *RHS = getOperand(1); 2265 (void)LHS; (void)RHS; // Silence warnings. 2266 assert(LHS->getType() == RHS->getType() && 2267 "Binary operator operand types must match!"); 2268 #ifndef NDEBUG 2269 switch (getOpcode()) { 2270 case Add: case Sub: 2271 case Mul: 2272 assert(getType() == LHS->getType() && 2273 "Arithmetic operation should return same type as operands!"); 2274 assert(getType()->isIntOrIntVectorTy() && 2275 "Tried to create an integer operation on a non-integer type!"); 2276 break; 2277 case FAdd: case FSub: 2278 case FMul: 2279 assert(getType() == LHS->getType() && 2280 "Arithmetic operation should return same type as operands!"); 2281 assert(getType()->isFPOrFPVectorTy() && 2282 "Tried to create a floating-point operation on a " 2283 "non-floating-point type!"); 2284 break; 2285 case UDiv: 2286 case SDiv: 2287 assert(getType() == LHS->getType() && 2288 "Arithmetic operation should return same type as operands!"); 2289 assert(getType()->isIntOrIntVectorTy() && 2290 "Incorrect operand type (not integer) for S/UDIV"); 2291 break; 2292 case FDiv: 2293 assert(getType() == LHS->getType() && 2294 "Arithmetic operation should return same type as operands!"); 2295 assert(getType()->isFPOrFPVectorTy() && 2296 "Incorrect operand type (not floating point) for FDIV"); 2297 break; 2298 case URem: 2299 case SRem: 2300 assert(getType() == LHS->getType() && 2301 "Arithmetic operation should return same type as operands!"); 2302 assert(getType()->isIntOrIntVectorTy() && 2303 "Incorrect operand type (not integer) for S/UREM"); 2304 break; 2305 case FRem: 2306 assert(getType() == LHS->getType() && 2307 "Arithmetic operation should return same type as operands!"); 2308 assert(getType()->isFPOrFPVectorTy() && 2309 "Incorrect operand type (not floating point) for FREM"); 2310 break; 2311 case Shl: 2312 case LShr: 2313 case AShr: 2314 assert(getType() == LHS->getType() && 2315 "Shift operation should return same type as operands!"); 2316 assert(getType()->isIntOrIntVectorTy() && 2317 "Tried to create a shift operation on a non-integral type!"); 2318 break; 2319 case And: case Or: 2320 case Xor: 2321 assert(getType() == LHS->getType() && 2322 "Logical operation should return same type as operands!"); 2323 assert(getType()->isIntOrIntVectorTy() && 2324 "Tried to create a logical operation on a non-integral type!"); 2325 break; 2326 default: llvm_unreachable("Invalid opcode provided"); 2327 } 2328 #endif 2329 } 2330 2331 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2332 const Twine &Name, 2333 Instruction *InsertBefore) { 2334 assert(S1->getType() == S2->getType() && 2335 "Cannot create binary operator with two operands of differing type!"); 2336 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2337 } 2338 2339 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2340 const Twine &Name, 2341 BasicBlock *InsertAtEnd) { 2342 BinaryOperator *Res = Create(Op, S1, S2, Name); 2343 InsertAtEnd->getInstList().push_back(Res); 2344 return Res; 2345 } 2346 2347 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2348 Instruction *InsertBefore) { 2349 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2350 return new BinaryOperator(Instruction::Sub, 2351 zero, Op, 2352 Op->getType(), Name, InsertBefore); 2353 } 2354 2355 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2356 BasicBlock *InsertAtEnd) { 2357 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2358 return new BinaryOperator(Instruction::Sub, 2359 zero, Op, 2360 Op->getType(), Name, InsertAtEnd); 2361 } 2362 2363 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2364 Instruction *InsertBefore) { 2365 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2366 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2367 } 2368 2369 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2370 BasicBlock *InsertAtEnd) { 2371 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2372 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2373 } 2374 2375 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2376 Instruction *InsertBefore) { 2377 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2378 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2379 } 2380 2381 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2382 BasicBlock *InsertAtEnd) { 2383 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2384 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2385 } 2386 2387 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2388 Instruction *InsertBefore) { 2389 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2390 return new BinaryOperator(Instruction::FSub, zero, Op, 2391 Op->getType(), Name, InsertBefore); 2392 } 2393 2394 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2395 BasicBlock *InsertAtEnd) { 2396 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2397 return new BinaryOperator(Instruction::FSub, zero, Op, 2398 Op->getType(), Name, InsertAtEnd); 2399 } 2400 2401 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2402 Instruction *InsertBefore) { 2403 Constant *C = Constant::getAllOnesValue(Op->getType()); 2404 return new BinaryOperator(Instruction::Xor, Op, C, 2405 Op->getType(), Name, InsertBefore); 2406 } 2407 2408 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2409 BasicBlock *InsertAtEnd) { 2410 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2411 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2412 Op->getType(), Name, InsertAtEnd); 2413 } 2414 2415 // Exchange the two operands to this instruction. This instruction is safe to 2416 // use on any binary instruction and does not modify the semantics of the 2417 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode 2418 // is changed. 2419 bool BinaryOperator::swapOperands() { 2420 if (!isCommutative()) 2421 return true; // Can't commute operands 2422 Op<0>().swap(Op<1>()); 2423 return false; 2424 } 2425 2426 //===----------------------------------------------------------------------===// 2427 // FPMathOperator Class 2428 //===----------------------------------------------------------------------===// 2429 2430 float FPMathOperator::getFPAccuracy() const { 2431 const MDNode *MD = 2432 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2433 if (!MD) 2434 return 0.0; 2435 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2436 return Accuracy->getValueAPF().convertToFloat(); 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // CastInst Class 2441 //===----------------------------------------------------------------------===// 2442 2443 // Just determine if this cast only deals with integral->integral conversion. 2444 bool CastInst::isIntegerCast() const { 2445 switch (getOpcode()) { 2446 default: return false; 2447 case Instruction::ZExt: 2448 case Instruction::SExt: 2449 case Instruction::Trunc: 2450 return true; 2451 case Instruction::BitCast: 2452 return getOperand(0)->getType()->isIntegerTy() && 2453 getType()->isIntegerTy(); 2454 } 2455 } 2456 2457 bool CastInst::isLosslessCast() const { 2458 // Only BitCast can be lossless, exit fast if we're not BitCast 2459 if (getOpcode() != Instruction::BitCast) 2460 return false; 2461 2462 // Identity cast is always lossless 2463 Type *SrcTy = getOperand(0)->getType(); 2464 Type *DstTy = getType(); 2465 if (SrcTy == DstTy) 2466 return true; 2467 2468 // Pointer to pointer is always lossless. 2469 if (SrcTy->isPointerTy()) 2470 return DstTy->isPointerTy(); 2471 return false; // Other types have no identity values 2472 } 2473 2474 /// This function determines if the CastInst does not require any bits to be 2475 /// changed in order to effect the cast. Essentially, it identifies cases where 2476 /// no code gen is necessary for the cast, hence the name no-op cast. For 2477 /// example, the following are all no-op casts: 2478 /// # bitcast i32* %x to i8* 2479 /// # bitcast <2 x i32> %x to <4 x i16> 2480 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2481 /// Determine if the described cast is a no-op. 2482 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2483 Type *SrcTy, 2484 Type *DestTy, 2485 const DataLayout &DL) { 2486 switch (Opcode) { 2487 default: llvm_unreachable("Invalid CastOp"); 2488 case Instruction::Trunc: 2489 case Instruction::ZExt: 2490 case Instruction::SExt: 2491 case Instruction::FPTrunc: 2492 case Instruction::FPExt: 2493 case Instruction::UIToFP: 2494 case Instruction::SIToFP: 2495 case Instruction::FPToUI: 2496 case Instruction::FPToSI: 2497 case Instruction::AddrSpaceCast: 2498 // TODO: Target informations may give a more accurate answer here. 2499 return false; 2500 case Instruction::BitCast: 2501 return true; // BitCast never modifies bits. 2502 case Instruction::PtrToInt: 2503 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == 2504 DestTy->getScalarSizeInBits(); 2505 case Instruction::IntToPtr: 2506 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == 2507 SrcTy->getScalarSizeInBits(); 2508 } 2509 } 2510 2511 bool CastInst::isNoopCast(const DataLayout &DL) const { 2512 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); 2513 } 2514 2515 /// This function determines if a pair of casts can be eliminated and what 2516 /// opcode should be used in the elimination. This assumes that there are two 2517 /// instructions like this: 2518 /// * %F = firstOpcode SrcTy %x to MidTy 2519 /// * %S = secondOpcode MidTy %F to DstTy 2520 /// The function returns a resultOpcode so these two casts can be replaced with: 2521 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2522 /// If no such cast is permitted, the function returns 0. 2523 unsigned CastInst::isEliminableCastPair( 2524 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2525 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2526 Type *DstIntPtrTy) { 2527 // Define the 144 possibilities for these two cast instructions. The values 2528 // in this matrix determine what to do in a given situation and select the 2529 // case in the switch below. The rows correspond to firstOp, the columns 2530 // correspond to secondOp. In looking at the table below, keep in mind 2531 // the following cast properties: 2532 // 2533 // Size Compare Source Destination 2534 // Operator Src ? Size Type Sign Type Sign 2535 // -------- ------------ ------------------- --------------------- 2536 // TRUNC > Integer Any Integral Any 2537 // ZEXT < Integral Unsigned Integer Any 2538 // SEXT < Integral Signed Integer Any 2539 // FPTOUI n/a FloatPt n/a Integral Unsigned 2540 // FPTOSI n/a FloatPt n/a Integral Signed 2541 // UITOFP n/a Integral Unsigned FloatPt n/a 2542 // SITOFP n/a Integral Signed FloatPt n/a 2543 // FPTRUNC > FloatPt n/a FloatPt n/a 2544 // FPEXT < FloatPt n/a FloatPt n/a 2545 // PTRTOINT n/a Pointer n/a Integral Unsigned 2546 // INTTOPTR n/a Integral Unsigned Pointer n/a 2547 // BITCAST = FirstClass n/a FirstClass n/a 2548 // ADDRSPCST n/a Pointer n/a Pointer n/a 2549 // 2550 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2551 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2552 // into "fptoui double to i64", but this loses information about the range 2553 // of the produced value (we no longer know the top-part is all zeros). 2554 // Further this conversion is often much more expensive for typical hardware, 2555 // and causes issues when building libgcc. We disallow fptosi+sext for the 2556 // same reason. 2557 const unsigned numCastOps = 2558 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2559 static const uint8_t CastResults[numCastOps][numCastOps] = { 2560 // T F F U S F F P I B A -+ 2561 // R Z S P P I I T P 2 N T S | 2562 // U E E 2 2 2 2 R E I T C C +- secondOp 2563 // N X X U S F F N X N 2 V V | 2564 // C T T I I P P C T T P T T -+ 2565 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2566 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2567 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2568 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2569 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2570 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2571 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2572 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2573 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | 2574 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2575 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2576 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2577 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2578 }; 2579 2580 // TODO: This logic could be encoded into the table above and handled in the 2581 // switch below. 2582 // If either of the casts are a bitcast from scalar to vector, disallow the 2583 // merging. However, any pair of bitcasts are allowed. 2584 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2585 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2586 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2587 2588 // Check if any of the casts convert scalars <-> vectors. 2589 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2590 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2591 if (!AreBothBitcasts) 2592 return 0; 2593 2594 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2595 [secondOp-Instruction::CastOpsBegin]; 2596 switch (ElimCase) { 2597 case 0: 2598 // Categorically disallowed. 2599 return 0; 2600 case 1: 2601 // Allowed, use first cast's opcode. 2602 return firstOp; 2603 case 2: 2604 // Allowed, use second cast's opcode. 2605 return secondOp; 2606 case 3: 2607 // No-op cast in second op implies firstOp as long as the DestTy 2608 // is integer and we are not converting between a vector and a 2609 // non-vector type. 2610 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2611 return firstOp; 2612 return 0; 2613 case 4: 2614 // No-op cast in second op implies firstOp as long as the DestTy 2615 // is floating point. 2616 if (DstTy->isFloatingPointTy()) 2617 return firstOp; 2618 return 0; 2619 case 5: 2620 // No-op cast in first op implies secondOp as long as the SrcTy 2621 // is an integer. 2622 if (SrcTy->isIntegerTy()) 2623 return secondOp; 2624 return 0; 2625 case 6: 2626 // No-op cast in first op implies secondOp as long as the SrcTy 2627 // is a floating point. 2628 if (SrcTy->isFloatingPointTy()) 2629 return secondOp; 2630 return 0; 2631 case 7: { 2632 // Cannot simplify if address spaces are different! 2633 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2634 return 0; 2635 2636 unsigned MidSize = MidTy->getScalarSizeInBits(); 2637 // We can still fold this without knowing the actual sizes as long we 2638 // know that the intermediate pointer is the largest possible 2639 // pointer size. 2640 // FIXME: Is this always true? 2641 if (MidSize == 64) 2642 return Instruction::BitCast; 2643 2644 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2645 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2646 return 0; 2647 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2648 if (MidSize >= PtrSize) 2649 return Instruction::BitCast; 2650 return 0; 2651 } 2652 case 8: { 2653 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2654 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2655 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2656 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2657 unsigned DstSize = DstTy->getScalarSizeInBits(); 2658 if (SrcSize == DstSize) 2659 return Instruction::BitCast; 2660 else if (SrcSize < DstSize) 2661 return firstOp; 2662 return secondOp; 2663 } 2664 case 9: 2665 // zext, sext -> zext, because sext can't sign extend after zext 2666 return Instruction::ZExt; 2667 case 11: { 2668 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2669 if (!MidIntPtrTy) 2670 return 0; 2671 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2672 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2673 unsigned DstSize = DstTy->getScalarSizeInBits(); 2674 if (SrcSize <= PtrSize && SrcSize == DstSize) 2675 return Instruction::BitCast; 2676 return 0; 2677 } 2678 case 12: 2679 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2680 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2681 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2682 return Instruction::AddrSpaceCast; 2683 return Instruction::BitCast; 2684 case 13: 2685 // FIXME: this state can be merged with (1), but the following assert 2686 // is useful to check the correcteness of the sequence due to semantic 2687 // change of bitcast. 2688 assert( 2689 SrcTy->isPtrOrPtrVectorTy() && 2690 MidTy->isPtrOrPtrVectorTy() && 2691 DstTy->isPtrOrPtrVectorTy() && 2692 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2693 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2694 "Illegal addrspacecast, bitcast sequence!"); 2695 // Allowed, use first cast's opcode 2696 return firstOp; 2697 case 14: 2698 // bitcast, addrspacecast -> addrspacecast if the element type of 2699 // bitcast's source is the same as that of addrspacecast's destination. 2700 if (SrcTy->getScalarType()->getPointerElementType() == 2701 DstTy->getScalarType()->getPointerElementType()) 2702 return Instruction::AddrSpaceCast; 2703 return 0; 2704 case 15: 2705 // FIXME: this state can be merged with (1), but the following assert 2706 // is useful to check the correcteness of the sequence due to semantic 2707 // change of bitcast. 2708 assert( 2709 SrcTy->isIntOrIntVectorTy() && 2710 MidTy->isPtrOrPtrVectorTy() && 2711 DstTy->isPtrOrPtrVectorTy() && 2712 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2713 "Illegal inttoptr, bitcast sequence!"); 2714 // Allowed, use first cast's opcode 2715 return firstOp; 2716 case 16: 2717 // FIXME: this state can be merged with (2), but the following assert 2718 // is useful to check the correcteness of the sequence due to semantic 2719 // change of bitcast. 2720 assert( 2721 SrcTy->isPtrOrPtrVectorTy() && 2722 MidTy->isPtrOrPtrVectorTy() && 2723 DstTy->isIntOrIntVectorTy() && 2724 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2725 "Illegal bitcast, ptrtoint sequence!"); 2726 // Allowed, use second cast's opcode 2727 return secondOp; 2728 case 17: 2729 // (sitofp (zext x)) -> (uitofp x) 2730 return Instruction::UIToFP; 2731 case 99: 2732 // Cast combination can't happen (error in input). This is for all cases 2733 // where the MidTy is not the same for the two cast instructions. 2734 llvm_unreachable("Invalid Cast Combination"); 2735 default: 2736 llvm_unreachable("Error in CastResults table!!!"); 2737 } 2738 } 2739 2740 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2741 const Twine &Name, Instruction *InsertBefore) { 2742 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2743 // Construct and return the appropriate CastInst subclass 2744 switch (op) { 2745 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2746 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2747 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2748 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2749 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2750 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2751 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2752 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2753 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2754 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2755 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2756 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2757 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2758 default: llvm_unreachable("Invalid opcode provided"); 2759 } 2760 } 2761 2762 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2763 const Twine &Name, BasicBlock *InsertAtEnd) { 2764 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2765 // Construct and return the appropriate CastInst subclass 2766 switch (op) { 2767 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2768 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2769 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2770 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2771 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2772 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2773 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2774 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2775 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2776 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2777 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2778 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2779 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2780 default: llvm_unreachable("Invalid opcode provided"); 2781 } 2782 } 2783 2784 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2785 const Twine &Name, 2786 Instruction *InsertBefore) { 2787 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2788 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2789 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2790 } 2791 2792 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2793 const Twine &Name, 2794 BasicBlock *InsertAtEnd) { 2795 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2796 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2797 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2798 } 2799 2800 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2801 const Twine &Name, 2802 Instruction *InsertBefore) { 2803 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2804 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2805 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2806 } 2807 2808 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2809 const Twine &Name, 2810 BasicBlock *InsertAtEnd) { 2811 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2812 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2813 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2814 } 2815 2816 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2817 const Twine &Name, 2818 Instruction *InsertBefore) { 2819 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2820 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2821 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2822 } 2823 2824 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2825 const Twine &Name, 2826 BasicBlock *InsertAtEnd) { 2827 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2828 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2829 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2830 } 2831 2832 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2833 const Twine &Name, 2834 BasicBlock *InsertAtEnd) { 2835 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2836 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2837 "Invalid cast"); 2838 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2839 assert((!Ty->isVectorTy() || 2840 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2841 "Invalid cast"); 2842 2843 if (Ty->isIntOrIntVectorTy()) 2844 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2845 2846 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 2847 } 2848 2849 /// Create a BitCast or a PtrToInt cast instruction 2850 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2851 const Twine &Name, 2852 Instruction *InsertBefore) { 2853 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2854 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2855 "Invalid cast"); 2856 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2857 assert((!Ty->isVectorTy() || 2858 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2859 "Invalid cast"); 2860 2861 if (Ty->isIntOrIntVectorTy()) 2862 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2863 2864 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 2865 } 2866 2867 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2868 Value *S, Type *Ty, 2869 const Twine &Name, 2870 BasicBlock *InsertAtEnd) { 2871 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2872 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2873 2874 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2875 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 2876 2877 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2878 } 2879 2880 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2881 Value *S, Type *Ty, 2882 const Twine &Name, 2883 Instruction *InsertBefore) { 2884 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2885 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2886 2887 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2888 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 2889 2890 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2891 } 2892 2893 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 2894 const Twine &Name, 2895 Instruction *InsertBefore) { 2896 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 2897 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2898 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 2899 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 2900 2901 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2902 } 2903 2904 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2905 bool isSigned, const Twine &Name, 2906 Instruction *InsertBefore) { 2907 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2908 "Invalid integer cast"); 2909 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2910 unsigned DstBits = Ty->getScalarSizeInBits(); 2911 Instruction::CastOps opcode = 2912 (SrcBits == DstBits ? Instruction::BitCast : 2913 (SrcBits > DstBits ? Instruction::Trunc : 2914 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2915 return Create(opcode, C, Ty, Name, InsertBefore); 2916 } 2917 2918 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2919 bool isSigned, const Twine &Name, 2920 BasicBlock *InsertAtEnd) { 2921 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2922 "Invalid cast"); 2923 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2924 unsigned DstBits = Ty->getScalarSizeInBits(); 2925 Instruction::CastOps opcode = 2926 (SrcBits == DstBits ? Instruction::BitCast : 2927 (SrcBits > DstBits ? Instruction::Trunc : 2928 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2929 return Create(opcode, C, Ty, Name, InsertAtEnd); 2930 } 2931 2932 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2933 const Twine &Name, 2934 Instruction *InsertBefore) { 2935 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2936 "Invalid cast"); 2937 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2938 unsigned DstBits = Ty->getScalarSizeInBits(); 2939 Instruction::CastOps opcode = 2940 (SrcBits == DstBits ? Instruction::BitCast : 2941 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2942 return Create(opcode, C, Ty, Name, InsertBefore); 2943 } 2944 2945 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2946 const Twine &Name, 2947 BasicBlock *InsertAtEnd) { 2948 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2949 "Invalid cast"); 2950 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2951 unsigned DstBits = Ty->getScalarSizeInBits(); 2952 Instruction::CastOps opcode = 2953 (SrcBits == DstBits ? Instruction::BitCast : 2954 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2955 return Create(opcode, C, Ty, Name, InsertAtEnd); 2956 } 2957 2958 // Check whether it is valid to call getCastOpcode for these types. 2959 // This routine must be kept in sync with getCastOpcode. 2960 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2961 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2962 return false; 2963 2964 if (SrcTy == DestTy) 2965 return true; 2966 2967 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2968 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2969 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2970 // An element by element cast. Valid if casting the elements is valid. 2971 SrcTy = SrcVecTy->getElementType(); 2972 DestTy = DestVecTy->getElementType(); 2973 } 2974 2975 // Get the bit sizes, we'll need these 2976 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2977 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2978 2979 // Run through the possibilities ... 2980 if (DestTy->isIntegerTy()) { // Casting to integral 2981 if (SrcTy->isIntegerTy()) // Casting from integral 2982 return true; 2983 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2984 return true; 2985 if (SrcTy->isVectorTy()) // Casting from vector 2986 return DestBits == SrcBits; 2987 // Casting from something else 2988 return SrcTy->isPointerTy(); 2989 } 2990 if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2991 if (SrcTy->isIntegerTy()) // Casting from integral 2992 return true; 2993 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2994 return true; 2995 if (SrcTy->isVectorTy()) // Casting from vector 2996 return DestBits == SrcBits; 2997 // Casting from something else 2998 return false; 2999 } 3000 if (DestTy->isVectorTy()) // Casting to vector 3001 return DestBits == SrcBits; 3002 if (DestTy->isPointerTy()) { // Casting to pointer 3003 if (SrcTy->isPointerTy()) // Casting from pointer 3004 return true; 3005 return SrcTy->isIntegerTy(); // Casting from integral 3006 } 3007 if (DestTy->isX86_MMXTy()) { 3008 if (SrcTy->isVectorTy()) 3009 return DestBits == SrcBits; // 64-bit vector to MMX 3010 return false; 3011 } // Casting to something else 3012 return false; 3013 } 3014 3015 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 3016 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 3017 return false; 3018 3019 if (SrcTy == DestTy) 3020 return true; 3021 3022 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3023 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 3024 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 3025 // An element by element cast. Valid if casting the elements is valid. 3026 SrcTy = SrcVecTy->getElementType(); 3027 DestTy = DestVecTy->getElementType(); 3028 } 3029 } 3030 } 3031 3032 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 3033 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 3034 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 3035 } 3036 } 3037 3038 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3039 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3040 3041 // Could still have vectors of pointers if the number of elements doesn't 3042 // match 3043 if (SrcBits == 0 || DestBits == 0) 3044 return false; 3045 3046 if (SrcBits != DestBits) 3047 return false; 3048 3049 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 3050 return false; 3051 3052 return true; 3053 } 3054 3055 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 3056 const DataLayout &DL) { 3057 // ptrtoint and inttoptr are not allowed on non-integral pointers 3058 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 3059 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 3060 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3061 !DL.isNonIntegralPointerType(PtrTy)); 3062 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 3063 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 3064 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3065 !DL.isNonIntegralPointerType(PtrTy)); 3066 3067 return isBitCastable(SrcTy, DestTy); 3068 } 3069 3070 // Provide a way to get a "cast" where the cast opcode is inferred from the 3071 // types and size of the operand. This, basically, is a parallel of the 3072 // logic in the castIsValid function below. This axiom should hold: 3073 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 3074 // should not assert in castIsValid. In other words, this produces a "correct" 3075 // casting opcode for the arguments passed to it. 3076 // This routine must be kept in sync with isCastable. 3077 Instruction::CastOps 3078 CastInst::getCastOpcode( 3079 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 3080 Type *SrcTy = Src->getType(); 3081 3082 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 3083 "Only first class types are castable!"); 3084 3085 if (SrcTy == DestTy) 3086 return BitCast; 3087 3088 // FIXME: Check address space sizes here 3089 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 3090 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 3091 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 3092 // An element by element cast. Find the appropriate opcode based on the 3093 // element types. 3094 SrcTy = SrcVecTy->getElementType(); 3095 DestTy = DestVecTy->getElementType(); 3096 } 3097 3098 // Get the bit sizes, we'll need these 3099 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3100 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3101 3102 // Run through the possibilities ... 3103 if (DestTy->isIntegerTy()) { // Casting to integral 3104 if (SrcTy->isIntegerTy()) { // Casting from integral 3105 if (DestBits < SrcBits) 3106 return Trunc; // int -> smaller int 3107 else if (DestBits > SrcBits) { // its an extension 3108 if (SrcIsSigned) 3109 return SExt; // signed -> SEXT 3110 else 3111 return ZExt; // unsigned -> ZEXT 3112 } else { 3113 return BitCast; // Same size, No-op cast 3114 } 3115 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3116 if (DestIsSigned) 3117 return FPToSI; // FP -> sint 3118 else 3119 return FPToUI; // FP -> uint 3120 } else if (SrcTy->isVectorTy()) { 3121 assert(DestBits == SrcBits && 3122 "Casting vector to integer of different width"); 3123 return BitCast; // Same size, no-op cast 3124 } else { 3125 assert(SrcTy->isPointerTy() && 3126 "Casting from a value that is not first-class type"); 3127 return PtrToInt; // ptr -> int 3128 } 3129 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3130 if (SrcTy->isIntegerTy()) { // Casting from integral 3131 if (SrcIsSigned) 3132 return SIToFP; // sint -> FP 3133 else 3134 return UIToFP; // uint -> FP 3135 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3136 if (DestBits < SrcBits) { 3137 return FPTrunc; // FP -> smaller FP 3138 } else if (DestBits > SrcBits) { 3139 return FPExt; // FP -> larger FP 3140 } else { 3141 return BitCast; // same size, no-op cast 3142 } 3143 } else if (SrcTy->isVectorTy()) { 3144 assert(DestBits == SrcBits && 3145 "Casting vector to floating point of different width"); 3146 return BitCast; // same size, no-op cast 3147 } 3148 llvm_unreachable("Casting pointer or non-first class to float"); 3149 } else if (DestTy->isVectorTy()) { 3150 assert(DestBits == SrcBits && 3151 "Illegal cast to vector (wrong type or size)"); 3152 return BitCast; 3153 } else if (DestTy->isPointerTy()) { 3154 if (SrcTy->isPointerTy()) { 3155 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3156 return AddrSpaceCast; 3157 return BitCast; // ptr -> ptr 3158 } else if (SrcTy->isIntegerTy()) { 3159 return IntToPtr; // int -> ptr 3160 } 3161 llvm_unreachable("Casting pointer to other than pointer or int"); 3162 } else if (DestTy->isX86_MMXTy()) { 3163 if (SrcTy->isVectorTy()) { 3164 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3165 return BitCast; // 64-bit vector to MMX 3166 } 3167 llvm_unreachable("Illegal cast to X86_MMX"); 3168 } 3169 llvm_unreachable("Casting to type that is not first-class"); 3170 } 3171 3172 //===----------------------------------------------------------------------===// 3173 // CastInst SubClass Constructors 3174 //===----------------------------------------------------------------------===// 3175 3176 /// Check that the construction parameters for a CastInst are correct. This 3177 /// could be broken out into the separate constructors but it is useful to have 3178 /// it in one place and to eliminate the redundant code for getting the sizes 3179 /// of the types involved. 3180 bool 3181 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 3182 // Check for type sanity on the arguments 3183 Type *SrcTy = S->getType(); 3184 3185 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3186 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3187 return false; 3188 3189 // Get the size of the types in bits, we'll need this later 3190 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3191 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 3192 3193 // If these are vector types, get the lengths of the vectors (using zero for 3194 // scalar types means that checking that vector lengths match also checks that 3195 // scalars are not being converted to vectors or vectors to scalars). 3196 unsigned SrcLength = SrcTy->isVectorTy() ? 3197 cast<VectorType>(SrcTy)->getNumElements() : 0; 3198 unsigned DstLength = DstTy->isVectorTy() ? 3199 cast<VectorType>(DstTy)->getNumElements() : 0; 3200 3201 // Switch on the opcode provided 3202 switch (op) { 3203 default: return false; // This is an input error 3204 case Instruction::Trunc: 3205 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3206 SrcLength == DstLength && SrcBitSize > DstBitSize; 3207 case Instruction::ZExt: 3208 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3209 SrcLength == DstLength && SrcBitSize < DstBitSize; 3210 case Instruction::SExt: 3211 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3212 SrcLength == DstLength && SrcBitSize < DstBitSize; 3213 case Instruction::FPTrunc: 3214 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3215 SrcLength == DstLength && SrcBitSize > DstBitSize; 3216 case Instruction::FPExt: 3217 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3218 SrcLength == DstLength && SrcBitSize < DstBitSize; 3219 case Instruction::UIToFP: 3220 case Instruction::SIToFP: 3221 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3222 SrcLength == DstLength; 3223 case Instruction::FPToUI: 3224 case Instruction::FPToSI: 3225 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3226 SrcLength == DstLength; 3227 case Instruction::PtrToInt: 3228 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3229 return false; 3230 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3231 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3232 return false; 3233 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); 3234 case Instruction::IntToPtr: 3235 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3236 return false; 3237 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3238 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3239 return false; 3240 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); 3241 case Instruction::BitCast: { 3242 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3243 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3244 3245 // BitCast implies a no-op cast of type only. No bits change. 3246 // However, you can't cast pointers to anything but pointers. 3247 if (!SrcPtrTy != !DstPtrTy) 3248 return false; 3249 3250 // For non-pointer cases, the cast is okay if the source and destination bit 3251 // widths are identical. 3252 if (!SrcPtrTy) 3253 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3254 3255 // If both are pointers then the address spaces must match. 3256 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3257 return false; 3258 3259 // A vector of pointers must have the same number of elements. 3260 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy); 3261 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy); 3262 if (SrcVecTy && DstVecTy) 3263 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3264 if (SrcVecTy) 3265 return SrcVecTy->getNumElements() == 1; 3266 if (DstVecTy) 3267 return DstVecTy->getNumElements() == 1; 3268 3269 return true; 3270 } 3271 case Instruction::AddrSpaceCast: { 3272 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3273 if (!SrcPtrTy) 3274 return false; 3275 3276 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3277 if (!DstPtrTy) 3278 return false; 3279 3280 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3281 return false; 3282 3283 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3284 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3285 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3286 3287 return false; 3288 } 3289 3290 return true; 3291 } 3292 } 3293 } 3294 3295 TruncInst::TruncInst( 3296 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3297 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3298 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3299 } 3300 3301 TruncInst::TruncInst( 3302 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3303 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3304 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3305 } 3306 3307 ZExtInst::ZExtInst( 3308 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3309 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3310 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3311 } 3312 3313 ZExtInst::ZExtInst( 3314 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3315 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3316 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3317 } 3318 SExtInst::SExtInst( 3319 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3320 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3321 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3322 } 3323 3324 SExtInst::SExtInst( 3325 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3326 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3327 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3328 } 3329 3330 FPTruncInst::FPTruncInst( 3331 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3332 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3333 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3334 } 3335 3336 FPTruncInst::FPTruncInst( 3337 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3338 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3339 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3340 } 3341 3342 FPExtInst::FPExtInst( 3343 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3344 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3345 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3346 } 3347 3348 FPExtInst::FPExtInst( 3349 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3350 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3351 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3352 } 3353 3354 UIToFPInst::UIToFPInst( 3355 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3356 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3357 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3358 } 3359 3360 UIToFPInst::UIToFPInst( 3361 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3362 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3363 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3364 } 3365 3366 SIToFPInst::SIToFPInst( 3367 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3368 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3369 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3370 } 3371 3372 SIToFPInst::SIToFPInst( 3373 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3374 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3375 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3376 } 3377 3378 FPToUIInst::FPToUIInst( 3379 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3380 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3381 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3382 } 3383 3384 FPToUIInst::FPToUIInst( 3385 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3386 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3387 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3388 } 3389 3390 FPToSIInst::FPToSIInst( 3391 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3392 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3393 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3394 } 3395 3396 FPToSIInst::FPToSIInst( 3397 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3398 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3399 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3400 } 3401 3402 PtrToIntInst::PtrToIntInst( 3403 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3404 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3405 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3406 } 3407 3408 PtrToIntInst::PtrToIntInst( 3409 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3410 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3411 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3412 } 3413 3414 IntToPtrInst::IntToPtrInst( 3415 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3416 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3417 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3418 } 3419 3420 IntToPtrInst::IntToPtrInst( 3421 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3422 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3423 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3424 } 3425 3426 BitCastInst::BitCastInst( 3427 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3428 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3429 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3430 } 3431 3432 BitCastInst::BitCastInst( 3433 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3434 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3435 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3436 } 3437 3438 AddrSpaceCastInst::AddrSpaceCastInst( 3439 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3440 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3441 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3442 } 3443 3444 AddrSpaceCastInst::AddrSpaceCastInst( 3445 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3446 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3447 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3448 } 3449 3450 //===----------------------------------------------------------------------===// 3451 // CmpInst Classes 3452 //===----------------------------------------------------------------------===// 3453 3454 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3455 Value *RHS, const Twine &Name, Instruction *InsertBefore, 3456 Instruction *FlagsSource) 3457 : Instruction(ty, op, 3458 OperandTraits<CmpInst>::op_begin(this), 3459 OperandTraits<CmpInst>::operands(this), 3460 InsertBefore) { 3461 Op<0>() = LHS; 3462 Op<1>() = RHS; 3463 setPredicate((Predicate)predicate); 3464 setName(Name); 3465 if (FlagsSource) 3466 copyIRFlags(FlagsSource); 3467 } 3468 3469 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3470 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3471 : Instruction(ty, op, 3472 OperandTraits<CmpInst>::op_begin(this), 3473 OperandTraits<CmpInst>::operands(this), 3474 InsertAtEnd) { 3475 Op<0>() = LHS; 3476 Op<1>() = RHS; 3477 setPredicate((Predicate)predicate); 3478 setName(Name); 3479 } 3480 3481 CmpInst * 3482 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3483 const Twine &Name, Instruction *InsertBefore) { 3484 if (Op == Instruction::ICmp) { 3485 if (InsertBefore) 3486 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3487 S1, S2, Name); 3488 else 3489 return new ICmpInst(CmpInst::Predicate(predicate), 3490 S1, S2, Name); 3491 } 3492 3493 if (InsertBefore) 3494 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3495 S1, S2, Name); 3496 else 3497 return new FCmpInst(CmpInst::Predicate(predicate), 3498 S1, S2, Name); 3499 } 3500 3501 CmpInst * 3502 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3503 const Twine &Name, BasicBlock *InsertAtEnd) { 3504 if (Op == Instruction::ICmp) { 3505 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3506 S1, S2, Name); 3507 } 3508 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3509 S1, S2, Name); 3510 } 3511 3512 void CmpInst::swapOperands() { 3513 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3514 IC->swapOperands(); 3515 else 3516 cast<FCmpInst>(this)->swapOperands(); 3517 } 3518 3519 bool CmpInst::isCommutative() const { 3520 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3521 return IC->isCommutative(); 3522 return cast<FCmpInst>(this)->isCommutative(); 3523 } 3524 3525 bool CmpInst::isEquality() const { 3526 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3527 return IC->isEquality(); 3528 return cast<FCmpInst>(this)->isEquality(); 3529 } 3530 3531 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3532 switch (pred) { 3533 default: llvm_unreachable("Unknown cmp predicate!"); 3534 case ICMP_EQ: return ICMP_NE; 3535 case ICMP_NE: return ICMP_EQ; 3536 case ICMP_UGT: return ICMP_ULE; 3537 case ICMP_ULT: return ICMP_UGE; 3538 case ICMP_UGE: return ICMP_ULT; 3539 case ICMP_ULE: return ICMP_UGT; 3540 case ICMP_SGT: return ICMP_SLE; 3541 case ICMP_SLT: return ICMP_SGE; 3542 case ICMP_SGE: return ICMP_SLT; 3543 case ICMP_SLE: return ICMP_SGT; 3544 3545 case FCMP_OEQ: return FCMP_UNE; 3546 case FCMP_ONE: return FCMP_UEQ; 3547 case FCMP_OGT: return FCMP_ULE; 3548 case FCMP_OLT: return FCMP_UGE; 3549 case FCMP_OGE: return FCMP_ULT; 3550 case FCMP_OLE: return FCMP_UGT; 3551 case FCMP_UEQ: return FCMP_ONE; 3552 case FCMP_UNE: return FCMP_OEQ; 3553 case FCMP_UGT: return FCMP_OLE; 3554 case FCMP_ULT: return FCMP_OGE; 3555 case FCMP_UGE: return FCMP_OLT; 3556 case FCMP_ULE: return FCMP_OGT; 3557 case FCMP_ORD: return FCMP_UNO; 3558 case FCMP_UNO: return FCMP_ORD; 3559 case FCMP_TRUE: return FCMP_FALSE; 3560 case FCMP_FALSE: return FCMP_TRUE; 3561 } 3562 } 3563 3564 StringRef CmpInst::getPredicateName(Predicate Pred) { 3565 switch (Pred) { 3566 default: return "unknown"; 3567 case FCmpInst::FCMP_FALSE: return "false"; 3568 case FCmpInst::FCMP_OEQ: return "oeq"; 3569 case FCmpInst::FCMP_OGT: return "ogt"; 3570 case FCmpInst::FCMP_OGE: return "oge"; 3571 case FCmpInst::FCMP_OLT: return "olt"; 3572 case FCmpInst::FCMP_OLE: return "ole"; 3573 case FCmpInst::FCMP_ONE: return "one"; 3574 case FCmpInst::FCMP_ORD: return "ord"; 3575 case FCmpInst::FCMP_UNO: return "uno"; 3576 case FCmpInst::FCMP_UEQ: return "ueq"; 3577 case FCmpInst::FCMP_UGT: return "ugt"; 3578 case FCmpInst::FCMP_UGE: return "uge"; 3579 case FCmpInst::FCMP_ULT: return "ult"; 3580 case FCmpInst::FCMP_ULE: return "ule"; 3581 case FCmpInst::FCMP_UNE: return "une"; 3582 case FCmpInst::FCMP_TRUE: return "true"; 3583 case ICmpInst::ICMP_EQ: return "eq"; 3584 case ICmpInst::ICMP_NE: return "ne"; 3585 case ICmpInst::ICMP_SGT: return "sgt"; 3586 case ICmpInst::ICMP_SGE: return "sge"; 3587 case ICmpInst::ICMP_SLT: return "slt"; 3588 case ICmpInst::ICMP_SLE: return "sle"; 3589 case ICmpInst::ICMP_UGT: return "ugt"; 3590 case ICmpInst::ICMP_UGE: return "uge"; 3591 case ICmpInst::ICMP_ULT: return "ult"; 3592 case ICmpInst::ICMP_ULE: return "ule"; 3593 } 3594 } 3595 3596 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3597 switch (pred) { 3598 default: llvm_unreachable("Unknown icmp predicate!"); 3599 case ICMP_EQ: case ICMP_NE: 3600 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3601 return pred; 3602 case ICMP_UGT: return ICMP_SGT; 3603 case ICMP_ULT: return ICMP_SLT; 3604 case ICMP_UGE: return ICMP_SGE; 3605 case ICMP_ULE: return ICMP_SLE; 3606 } 3607 } 3608 3609 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3610 switch (pred) { 3611 default: llvm_unreachable("Unknown icmp predicate!"); 3612 case ICMP_EQ: case ICMP_NE: 3613 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3614 return pred; 3615 case ICMP_SGT: return ICMP_UGT; 3616 case ICMP_SLT: return ICMP_ULT; 3617 case ICMP_SGE: return ICMP_UGE; 3618 case ICMP_SLE: return ICMP_ULE; 3619 } 3620 } 3621 3622 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { 3623 switch (pred) { 3624 default: llvm_unreachable("Unknown or unsupported cmp predicate!"); 3625 case ICMP_SGT: return ICMP_SGE; 3626 case ICMP_SLT: return ICMP_SLE; 3627 case ICMP_SGE: return ICMP_SGT; 3628 case ICMP_SLE: return ICMP_SLT; 3629 case ICMP_UGT: return ICMP_UGE; 3630 case ICMP_ULT: return ICMP_ULE; 3631 case ICMP_UGE: return ICMP_UGT; 3632 case ICMP_ULE: return ICMP_ULT; 3633 3634 case FCMP_OGT: return FCMP_OGE; 3635 case FCMP_OLT: return FCMP_OLE; 3636 case FCMP_OGE: return FCMP_OGT; 3637 case FCMP_OLE: return FCMP_OLT; 3638 case FCMP_UGT: return FCMP_UGE; 3639 case FCMP_ULT: return FCMP_ULE; 3640 case FCMP_UGE: return FCMP_UGT; 3641 case FCMP_ULE: return FCMP_ULT; 3642 } 3643 } 3644 3645 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3646 switch (pred) { 3647 default: llvm_unreachable("Unknown cmp predicate!"); 3648 case ICMP_EQ: case ICMP_NE: 3649 return pred; 3650 case ICMP_SGT: return ICMP_SLT; 3651 case ICMP_SLT: return ICMP_SGT; 3652 case ICMP_SGE: return ICMP_SLE; 3653 case ICMP_SLE: return ICMP_SGE; 3654 case ICMP_UGT: return ICMP_ULT; 3655 case ICMP_ULT: return ICMP_UGT; 3656 case ICMP_UGE: return ICMP_ULE; 3657 case ICMP_ULE: return ICMP_UGE; 3658 3659 case FCMP_FALSE: case FCMP_TRUE: 3660 case FCMP_OEQ: case FCMP_ONE: 3661 case FCMP_UEQ: case FCMP_UNE: 3662 case FCMP_ORD: case FCMP_UNO: 3663 return pred; 3664 case FCMP_OGT: return FCMP_OLT; 3665 case FCMP_OLT: return FCMP_OGT; 3666 case FCMP_OGE: return FCMP_OLE; 3667 case FCMP_OLE: return FCMP_OGE; 3668 case FCMP_UGT: return FCMP_ULT; 3669 case FCMP_ULT: return FCMP_UGT; 3670 case FCMP_UGE: return FCMP_ULE; 3671 case FCMP_ULE: return FCMP_UGE; 3672 } 3673 } 3674 3675 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { 3676 switch (pred) { 3677 case ICMP_SGT: return ICMP_SGE; 3678 case ICMP_SLT: return ICMP_SLE; 3679 case ICMP_UGT: return ICMP_UGE; 3680 case ICMP_ULT: return ICMP_ULE; 3681 case FCMP_OGT: return FCMP_OGE; 3682 case FCMP_OLT: return FCMP_OLE; 3683 case FCMP_UGT: return FCMP_UGE; 3684 case FCMP_ULT: return FCMP_ULE; 3685 default: return pred; 3686 } 3687 } 3688 3689 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3690 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); 3691 3692 switch (pred) { 3693 default: 3694 llvm_unreachable("Unknown predicate!"); 3695 case CmpInst::ICMP_ULT: 3696 return CmpInst::ICMP_SLT; 3697 case CmpInst::ICMP_ULE: 3698 return CmpInst::ICMP_SLE; 3699 case CmpInst::ICMP_UGT: 3700 return CmpInst::ICMP_SGT; 3701 case CmpInst::ICMP_UGE: 3702 return CmpInst::ICMP_SGE; 3703 } 3704 } 3705 3706 bool CmpInst::isUnsigned(Predicate predicate) { 3707 switch (predicate) { 3708 default: return false; 3709 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3710 case ICmpInst::ICMP_UGE: return true; 3711 } 3712 } 3713 3714 bool CmpInst::isSigned(Predicate predicate) { 3715 switch (predicate) { 3716 default: return false; 3717 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3718 case ICmpInst::ICMP_SGE: return true; 3719 } 3720 } 3721 3722 bool CmpInst::isOrdered(Predicate predicate) { 3723 switch (predicate) { 3724 default: return false; 3725 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3726 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3727 case FCmpInst::FCMP_ORD: return true; 3728 } 3729 } 3730 3731 bool CmpInst::isUnordered(Predicate predicate) { 3732 switch (predicate) { 3733 default: return false; 3734 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3735 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3736 case FCmpInst::FCMP_UNO: return true; 3737 } 3738 } 3739 3740 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3741 switch(predicate) { 3742 default: return false; 3743 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3744 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3745 } 3746 } 3747 3748 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3749 switch(predicate) { 3750 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3751 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3752 default: return false; 3753 } 3754 } 3755 3756 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3757 // If the predicates match, then we know the first condition implies the 3758 // second is true. 3759 if (Pred1 == Pred2) 3760 return true; 3761 3762 switch (Pred1) { 3763 default: 3764 break; 3765 case ICMP_EQ: 3766 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3767 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3768 Pred2 == ICMP_SLE; 3769 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3770 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3771 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3772 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3773 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3774 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3775 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3776 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3777 } 3778 return false; 3779 } 3780 3781 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3782 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3783 } 3784 3785 //===----------------------------------------------------------------------===// 3786 // SwitchInst Implementation 3787 //===----------------------------------------------------------------------===// 3788 3789 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3790 assert(Value && Default && NumReserved); 3791 ReservedSpace = NumReserved; 3792 setNumHungOffUseOperands(2); 3793 allocHungoffUses(ReservedSpace); 3794 3795 Op<0>() = Value; 3796 Op<1>() = Default; 3797 } 3798 3799 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3800 /// switch on and a default destination. The number of additional cases can 3801 /// be specified here to make memory allocation more efficient. This 3802 /// constructor can also autoinsert before another instruction. 3803 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3804 Instruction *InsertBefore) 3805 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3806 nullptr, 0, InsertBefore) { 3807 init(Value, Default, 2+NumCases*2); 3808 } 3809 3810 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3811 /// switch on and a default destination. The number of additional cases can 3812 /// be specified here to make memory allocation more efficient. This 3813 /// constructor also autoinserts at the end of the specified BasicBlock. 3814 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3815 BasicBlock *InsertAtEnd) 3816 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3817 nullptr, 0, InsertAtEnd) { 3818 init(Value, Default, 2+NumCases*2); 3819 } 3820 3821 SwitchInst::SwitchInst(const SwitchInst &SI) 3822 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { 3823 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3824 setNumHungOffUseOperands(SI.getNumOperands()); 3825 Use *OL = getOperandList(); 3826 const Use *InOL = SI.getOperandList(); 3827 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3828 OL[i] = InOL[i]; 3829 OL[i+1] = InOL[i+1]; 3830 } 3831 SubclassOptionalData = SI.SubclassOptionalData; 3832 } 3833 3834 /// addCase - Add an entry to the switch instruction... 3835 /// 3836 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3837 unsigned NewCaseIdx = getNumCases(); 3838 unsigned OpNo = getNumOperands(); 3839 if (OpNo+2 > ReservedSpace) 3840 growOperands(); // Get more space! 3841 // Initialize some new operands. 3842 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3843 setNumHungOffUseOperands(OpNo+2); 3844 CaseHandle Case(this, NewCaseIdx); 3845 Case.setValue(OnVal); 3846 Case.setSuccessor(Dest); 3847 } 3848 3849 /// removeCase - This method removes the specified case and its successor 3850 /// from the switch instruction. 3851 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { 3852 unsigned idx = I->getCaseIndex(); 3853 3854 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3855 3856 unsigned NumOps = getNumOperands(); 3857 Use *OL = getOperandList(); 3858 3859 // Overwrite this case with the end of the list. 3860 if (2 + (idx + 1) * 2 != NumOps) { 3861 OL[2 + idx * 2] = OL[NumOps - 2]; 3862 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3863 } 3864 3865 // Nuke the last value. 3866 OL[NumOps-2].set(nullptr); 3867 OL[NumOps-2+1].set(nullptr); 3868 setNumHungOffUseOperands(NumOps-2); 3869 3870 return CaseIt(this, idx); 3871 } 3872 3873 /// growOperands - grow operands - This grows the operand list in response 3874 /// to a push_back style of operation. This grows the number of ops by 3 times. 3875 /// 3876 void SwitchInst::growOperands() { 3877 unsigned e = getNumOperands(); 3878 unsigned NumOps = e*3; 3879 3880 ReservedSpace = NumOps; 3881 growHungoffUses(ReservedSpace); 3882 } 3883 3884 MDNode * 3885 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) { 3886 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof)) 3887 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0))) 3888 if (MDName->getString() == "branch_weights") 3889 return ProfileData; 3890 return nullptr; 3891 } 3892 3893 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() { 3894 assert(Changed && "called only if metadata has changed"); 3895 3896 if (!Weights) 3897 return nullptr; 3898 3899 assert(SI.getNumSuccessors() == Weights->size() && 3900 "num of prof branch_weights must accord with num of successors"); 3901 3902 bool AllZeroes = 3903 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; }); 3904 3905 if (AllZeroes || Weights.getValue().size() < 2) 3906 return nullptr; 3907 3908 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights); 3909 } 3910 3911 void SwitchInstProfUpdateWrapper::init() { 3912 MDNode *ProfileData = getProfBranchWeightsMD(SI); 3913 if (!ProfileData) 3914 return; 3915 3916 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) { 3917 llvm_unreachable("number of prof branch_weights metadata operands does " 3918 "not correspond to number of succesors"); 3919 } 3920 3921 SmallVector<uint32_t, 8> Weights; 3922 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) { 3923 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI)); 3924 uint32_t CW = C->getValue().getZExtValue(); 3925 Weights.push_back(CW); 3926 } 3927 this->Weights = std::move(Weights); 3928 } 3929 3930 SwitchInst::CaseIt 3931 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) { 3932 if (Weights) { 3933 assert(SI.getNumSuccessors() == Weights->size() && 3934 "num of prof branch_weights must accord with num of successors"); 3935 Changed = true; 3936 // Copy the last case to the place of the removed one and shrink. 3937 // This is tightly coupled with the way SwitchInst::removeCase() removes 3938 // the cases in SwitchInst::removeCase(CaseIt). 3939 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back(); 3940 Weights.getValue().pop_back(); 3941 } 3942 return SI.removeCase(I); 3943 } 3944 3945 void SwitchInstProfUpdateWrapper::addCase( 3946 ConstantInt *OnVal, BasicBlock *Dest, 3947 SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 3948 SI.addCase(OnVal, Dest); 3949 3950 if (!Weights && W && *W) { 3951 Changed = true; 3952 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 3953 Weights.getValue()[SI.getNumSuccessors() - 1] = *W; 3954 } else if (Weights) { 3955 Changed = true; 3956 Weights.getValue().push_back(W ? *W : 0); 3957 } 3958 if (Weights) 3959 assert(SI.getNumSuccessors() == Weights->size() && 3960 "num of prof branch_weights must accord with num of successors"); 3961 } 3962 3963 SymbolTableList<Instruction>::iterator 3964 SwitchInstProfUpdateWrapper::eraseFromParent() { 3965 // Instruction is erased. Mark as unchanged to not touch it in the destructor. 3966 Changed = false; 3967 if (Weights) 3968 Weights->resize(0); 3969 return SI.eraseFromParent(); 3970 } 3971 3972 SwitchInstProfUpdateWrapper::CaseWeightOpt 3973 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) { 3974 if (!Weights) 3975 return None; 3976 return Weights.getValue()[idx]; 3977 } 3978 3979 void SwitchInstProfUpdateWrapper::setSuccessorWeight( 3980 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 3981 if (!W) 3982 return; 3983 3984 if (!Weights && *W) 3985 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 3986 3987 if (Weights) { 3988 auto &OldW = Weights.getValue()[idx]; 3989 if (*W != OldW) { 3990 Changed = true; 3991 OldW = *W; 3992 } 3993 } 3994 } 3995 3996 SwitchInstProfUpdateWrapper::CaseWeightOpt 3997 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI, 3998 unsigned idx) { 3999 if (MDNode *ProfileData = getProfBranchWeightsMD(SI)) 4000 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1) 4001 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1)) 4002 ->getValue() 4003 .getZExtValue(); 4004 4005 return None; 4006 } 4007 4008 //===----------------------------------------------------------------------===// 4009 // IndirectBrInst Implementation 4010 //===----------------------------------------------------------------------===// 4011 4012 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 4013 assert(Address && Address->getType()->isPointerTy() && 4014 "Address of indirectbr must be a pointer"); 4015 ReservedSpace = 1+NumDests; 4016 setNumHungOffUseOperands(1); 4017 allocHungoffUses(ReservedSpace); 4018 4019 Op<0>() = Address; 4020 } 4021 4022 4023 /// growOperands - grow operands - This grows the operand list in response 4024 /// to a push_back style of operation. This grows the number of ops by 2 times. 4025 /// 4026 void IndirectBrInst::growOperands() { 4027 unsigned e = getNumOperands(); 4028 unsigned NumOps = e*2; 4029 4030 ReservedSpace = NumOps; 4031 growHungoffUses(ReservedSpace); 4032 } 4033 4034 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4035 Instruction *InsertBefore) 4036 : Instruction(Type::getVoidTy(Address->getContext()), 4037 Instruction::IndirectBr, nullptr, 0, InsertBefore) { 4038 init(Address, NumCases); 4039 } 4040 4041 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4042 BasicBlock *InsertAtEnd) 4043 : Instruction(Type::getVoidTy(Address->getContext()), 4044 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) { 4045 init(Address, NumCases); 4046 } 4047 4048 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 4049 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 4050 nullptr, IBI.getNumOperands()) { 4051 allocHungoffUses(IBI.getNumOperands()); 4052 Use *OL = getOperandList(); 4053 const Use *InOL = IBI.getOperandList(); 4054 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 4055 OL[i] = InOL[i]; 4056 SubclassOptionalData = IBI.SubclassOptionalData; 4057 } 4058 4059 /// addDestination - Add a destination. 4060 /// 4061 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 4062 unsigned OpNo = getNumOperands(); 4063 if (OpNo+1 > ReservedSpace) 4064 growOperands(); // Get more space! 4065 // Initialize some new operands. 4066 assert(OpNo < ReservedSpace && "Growing didn't work!"); 4067 setNumHungOffUseOperands(OpNo+1); 4068 getOperandList()[OpNo] = DestBB; 4069 } 4070 4071 /// removeDestination - This method removes the specified successor from the 4072 /// indirectbr instruction. 4073 void IndirectBrInst::removeDestination(unsigned idx) { 4074 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 4075 4076 unsigned NumOps = getNumOperands(); 4077 Use *OL = getOperandList(); 4078 4079 // Replace this value with the last one. 4080 OL[idx+1] = OL[NumOps-1]; 4081 4082 // Nuke the last value. 4083 OL[NumOps-1].set(nullptr); 4084 setNumHungOffUseOperands(NumOps-1); 4085 } 4086 4087 //===----------------------------------------------------------------------===// 4088 // cloneImpl() implementations 4089 //===----------------------------------------------------------------------===// 4090 4091 // Define these methods here so vtables don't get emitted into every translation 4092 // unit that uses these classes. 4093 4094 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 4095 return new (getNumOperands()) GetElementPtrInst(*this); 4096 } 4097 4098 UnaryOperator *UnaryOperator::cloneImpl() const { 4099 return Create(getOpcode(), Op<0>()); 4100 } 4101 4102 BinaryOperator *BinaryOperator::cloneImpl() const { 4103 return Create(getOpcode(), Op<0>(), Op<1>()); 4104 } 4105 4106 FCmpInst *FCmpInst::cloneImpl() const { 4107 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 4108 } 4109 4110 ICmpInst *ICmpInst::cloneImpl() const { 4111 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 4112 } 4113 4114 ExtractValueInst *ExtractValueInst::cloneImpl() const { 4115 return new ExtractValueInst(*this); 4116 } 4117 4118 InsertValueInst *InsertValueInst::cloneImpl() const { 4119 return new InsertValueInst(*this); 4120 } 4121 4122 AllocaInst *AllocaInst::cloneImpl() const { 4123 AllocaInst *Result = new AllocaInst(getAllocatedType(), 4124 getType()->getAddressSpace(), 4125 (Value *)getOperand(0), getAlignment()); 4126 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 4127 Result->setSwiftError(isSwiftError()); 4128 return Result; 4129 } 4130 4131 LoadInst *LoadInst::cloneImpl() const { 4132 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), 4133 getAlignment(), getOrdering(), getSyncScopeID()); 4134 } 4135 4136 StoreInst *StoreInst::cloneImpl() const { 4137 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 4138 getAlignment(), getOrdering(), getSyncScopeID()); 4139 4140 } 4141 4142 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 4143 AtomicCmpXchgInst *Result = 4144 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 4145 getSuccessOrdering(), getFailureOrdering(), 4146 getSyncScopeID()); 4147 Result->setVolatile(isVolatile()); 4148 Result->setWeak(isWeak()); 4149 return Result; 4150 } 4151 4152 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 4153 AtomicRMWInst *Result = 4154 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), 4155 getOrdering(), getSyncScopeID()); 4156 Result->setVolatile(isVolatile()); 4157 return Result; 4158 } 4159 4160 FenceInst *FenceInst::cloneImpl() const { 4161 return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); 4162 } 4163 4164 TruncInst *TruncInst::cloneImpl() const { 4165 return new TruncInst(getOperand(0), getType()); 4166 } 4167 4168 ZExtInst *ZExtInst::cloneImpl() const { 4169 return new ZExtInst(getOperand(0), getType()); 4170 } 4171 4172 SExtInst *SExtInst::cloneImpl() const { 4173 return new SExtInst(getOperand(0), getType()); 4174 } 4175 4176 FPTruncInst *FPTruncInst::cloneImpl() const { 4177 return new FPTruncInst(getOperand(0), getType()); 4178 } 4179 4180 FPExtInst *FPExtInst::cloneImpl() const { 4181 return new FPExtInst(getOperand(0), getType()); 4182 } 4183 4184 UIToFPInst *UIToFPInst::cloneImpl() const { 4185 return new UIToFPInst(getOperand(0), getType()); 4186 } 4187 4188 SIToFPInst *SIToFPInst::cloneImpl() const { 4189 return new SIToFPInst(getOperand(0), getType()); 4190 } 4191 4192 FPToUIInst *FPToUIInst::cloneImpl() const { 4193 return new FPToUIInst(getOperand(0), getType()); 4194 } 4195 4196 FPToSIInst *FPToSIInst::cloneImpl() const { 4197 return new FPToSIInst(getOperand(0), getType()); 4198 } 4199 4200 PtrToIntInst *PtrToIntInst::cloneImpl() const { 4201 return new PtrToIntInst(getOperand(0), getType()); 4202 } 4203 4204 IntToPtrInst *IntToPtrInst::cloneImpl() const { 4205 return new IntToPtrInst(getOperand(0), getType()); 4206 } 4207 4208 BitCastInst *BitCastInst::cloneImpl() const { 4209 return new BitCastInst(getOperand(0), getType()); 4210 } 4211 4212 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 4213 return new AddrSpaceCastInst(getOperand(0), getType()); 4214 } 4215 4216 CallInst *CallInst::cloneImpl() const { 4217 if (hasOperandBundles()) { 4218 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4219 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 4220 } 4221 return new(getNumOperands()) CallInst(*this); 4222 } 4223 4224 SelectInst *SelectInst::cloneImpl() const { 4225 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4226 } 4227 4228 VAArgInst *VAArgInst::cloneImpl() const { 4229 return new VAArgInst(getOperand(0), getType()); 4230 } 4231 4232 ExtractElementInst *ExtractElementInst::cloneImpl() const { 4233 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 4234 } 4235 4236 InsertElementInst *InsertElementInst::cloneImpl() const { 4237 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4238 } 4239 4240 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 4241 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 4242 } 4243 4244 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 4245 4246 LandingPadInst *LandingPadInst::cloneImpl() const { 4247 return new LandingPadInst(*this); 4248 } 4249 4250 ReturnInst *ReturnInst::cloneImpl() const { 4251 return new(getNumOperands()) ReturnInst(*this); 4252 } 4253 4254 BranchInst *BranchInst::cloneImpl() const { 4255 return new(getNumOperands()) BranchInst(*this); 4256 } 4257 4258 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 4259 4260 IndirectBrInst *IndirectBrInst::cloneImpl() const { 4261 return new IndirectBrInst(*this); 4262 } 4263 4264 InvokeInst *InvokeInst::cloneImpl() const { 4265 if (hasOperandBundles()) { 4266 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4267 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 4268 } 4269 return new(getNumOperands()) InvokeInst(*this); 4270 } 4271 4272 CallBrInst *CallBrInst::cloneImpl() const { 4273 if (hasOperandBundles()) { 4274 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4275 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this); 4276 } 4277 return new (getNumOperands()) CallBrInst(*this); 4278 } 4279 4280 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 4281 4282 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4283 return new (getNumOperands()) CleanupReturnInst(*this); 4284 } 4285 4286 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4287 return new (getNumOperands()) CatchReturnInst(*this); 4288 } 4289 4290 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4291 return new CatchSwitchInst(*this); 4292 } 4293 4294 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4295 return new (getNumOperands()) FuncletPadInst(*this); 4296 } 4297 4298 UnreachableInst *UnreachableInst::cloneImpl() const { 4299 LLVMContext &Context = getContext(); 4300 return new UnreachableInst(Context); 4301 } 4302