1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstdint>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 //===----------------------------------------------------------------------===//
48 //                            AllocaInst Class
49 //===----------------------------------------------------------------------===//
50 
51 Optional<uint64_t>
52 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
53   uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
54   if (isArrayAllocation()) {
55     auto C = dyn_cast<ConstantInt>(getArraySize());
56     if (!C)
57       return None;
58     Size *= C->getZExtValue();
59   }
60   return Size;
61 }
62 
63 //===----------------------------------------------------------------------===//
64 //                            CallSite Class
65 //===----------------------------------------------------------------------===//
66 
67 User::op_iterator CallSite::getCallee() const {
68   return cast<CallBase>(getInstruction())->op_end() - 1;
69 }
70 
71 //===----------------------------------------------------------------------===//
72 //                              SelectInst Class
73 //===----------------------------------------------------------------------===//
74 
75 /// areInvalidOperands - Return a string if the specified operands are invalid
76 /// for a select operation, otherwise return null.
77 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
78   if (Op1->getType() != Op2->getType())
79     return "both values to select must have same type";
80 
81   if (Op1->getType()->isTokenTy())
82     return "select values cannot have token type";
83 
84   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
85     // Vector select.
86     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
87       return "vector select condition element type must be i1";
88     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
89     if (!ET)
90       return "selected values for vector select must be vectors";
91     if (ET->getNumElements() != VT->getNumElements())
92       return "vector select requires selected vectors to have "
93                    "the same vector length as select condition";
94   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
95     return "select condition must be i1 or <n x i1>";
96   }
97   return nullptr;
98 }
99 
100 //===----------------------------------------------------------------------===//
101 //                               PHINode Class
102 //===----------------------------------------------------------------------===//
103 
104 PHINode::PHINode(const PHINode &PN)
105     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
106       ReservedSpace(PN.getNumOperands()) {
107   allocHungoffUses(PN.getNumOperands());
108   std::copy(PN.op_begin(), PN.op_end(), op_begin());
109   std::copy(PN.block_begin(), PN.block_end(), block_begin());
110   SubclassOptionalData = PN.SubclassOptionalData;
111 }
112 
113 // removeIncomingValue - Remove an incoming value.  This is useful if a
114 // predecessor basic block is deleted.
115 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
116   Value *Removed = getIncomingValue(Idx);
117 
118   // Move everything after this operand down.
119   //
120   // FIXME: we could just swap with the end of the list, then erase.  However,
121   // clients might not expect this to happen.  The code as it is thrashes the
122   // use/def lists, which is kinda lame.
123   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
124   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
125 
126   // Nuke the last value.
127   Op<-1>().set(nullptr);
128   setNumHungOffUseOperands(getNumOperands() - 1);
129 
130   // If the PHI node is dead, because it has zero entries, nuke it now.
131   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
132     // If anyone is using this PHI, make them use a dummy value instead...
133     replaceAllUsesWith(UndefValue::get(getType()));
134     eraseFromParent();
135   }
136   return Removed;
137 }
138 
139 /// growOperands - grow operands - This grows the operand list in response
140 /// to a push_back style of operation.  This grows the number of ops by 1.5
141 /// times.
142 ///
143 void PHINode::growOperands() {
144   unsigned e = getNumOperands();
145   unsigned NumOps = e + e / 2;
146   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
147 
148   ReservedSpace = NumOps;
149   growHungoffUses(ReservedSpace, /* IsPhi */ true);
150 }
151 
152 /// hasConstantValue - If the specified PHI node always merges together the same
153 /// value, return the value, otherwise return null.
154 Value *PHINode::hasConstantValue() const {
155   // Exploit the fact that phi nodes always have at least one entry.
156   Value *ConstantValue = getIncomingValue(0);
157   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
158     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
159       if (ConstantValue != this)
160         return nullptr; // Incoming values not all the same.
161        // The case where the first value is this PHI.
162       ConstantValue = getIncomingValue(i);
163     }
164   if (ConstantValue == this)
165     return UndefValue::get(getType());
166   return ConstantValue;
167 }
168 
169 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
170 /// together the same value, assuming that undefs result in the same value as
171 /// non-undefs.
172 /// Unlike \ref hasConstantValue, this does not return a value because the
173 /// unique non-undef incoming value need not dominate the PHI node.
174 bool PHINode::hasConstantOrUndefValue() const {
175   Value *ConstantValue = nullptr;
176   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
177     Value *Incoming = getIncomingValue(i);
178     if (Incoming != this && !isa<UndefValue>(Incoming)) {
179       if (ConstantValue && ConstantValue != Incoming)
180         return false;
181       ConstantValue = Incoming;
182     }
183   }
184   return true;
185 }
186 
187 //===----------------------------------------------------------------------===//
188 //                       LandingPadInst Implementation
189 //===----------------------------------------------------------------------===//
190 
191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
192                                const Twine &NameStr, Instruction *InsertBefore)
193     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
194   init(NumReservedValues, NameStr);
195 }
196 
197 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
198                                const Twine &NameStr, BasicBlock *InsertAtEnd)
199     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
200   init(NumReservedValues, NameStr);
201 }
202 
203 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
204     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
205                   LP.getNumOperands()),
206       ReservedSpace(LP.getNumOperands()) {
207   allocHungoffUses(LP.getNumOperands());
208   Use *OL = getOperandList();
209   const Use *InOL = LP.getOperandList();
210   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
211     OL[I] = InOL[I];
212 
213   setCleanup(LP.isCleanup());
214 }
215 
216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
217                                        const Twine &NameStr,
218                                        Instruction *InsertBefore) {
219   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
220 }
221 
222 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
223                                        const Twine &NameStr,
224                                        BasicBlock *InsertAtEnd) {
225   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
226 }
227 
228 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
229   ReservedSpace = NumReservedValues;
230   setNumHungOffUseOperands(0);
231   allocHungoffUses(ReservedSpace);
232   setName(NameStr);
233   setCleanup(false);
234 }
235 
236 /// growOperands - grow operands - This grows the operand list in response to a
237 /// push_back style of operation. This grows the number of ops by 2 times.
238 void LandingPadInst::growOperands(unsigned Size) {
239   unsigned e = getNumOperands();
240   if (ReservedSpace >= e + Size) return;
241   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
242   growHungoffUses(ReservedSpace);
243 }
244 
245 void LandingPadInst::addClause(Constant *Val) {
246   unsigned OpNo = getNumOperands();
247   growOperands(1);
248   assert(OpNo < ReservedSpace && "Growing didn't work!");
249   setNumHungOffUseOperands(getNumOperands() + 1);
250   getOperandList()[OpNo] = Val;
251 }
252 
253 //===----------------------------------------------------------------------===//
254 //                        CallBase Implementation
255 //===----------------------------------------------------------------------===//
256 
257 Value *CallBase::getReturnedArgOperand() const {
258   unsigned Index;
259 
260   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
261     return getArgOperand(Index - AttributeList::FirstArgIndex);
262   if (const Function *F = getCalledFunction())
263     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
264         Index)
265       return getArgOperand(Index - AttributeList::FirstArgIndex);
266 
267   return nullptr;
268 }
269 
270 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
271   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
272     return true;
273 
274   // Look at the callee, if available.
275   if (const Function *F = getCalledFunction())
276     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
277   return false;
278 }
279 
280 /// Determine whether the argument or parameter has the given attribute.
281 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
282   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
283 
284   if (Attrs.hasParamAttribute(ArgNo, Kind))
285     return true;
286   if (const Function *F = getCalledFunction())
287     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
288   return false;
289 }
290 
291 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
292   if (const Function *F = getCalledFunction())
293     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
294   return false;
295 }
296 
297 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
298   if (const Function *F = getCalledFunction())
299     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
300   return false;
301 }
302 
303 CallBase::op_iterator
304 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
305                                      const unsigned BeginIndex) {
306   auto It = op_begin() + BeginIndex;
307   for (auto &B : Bundles)
308     It = std::copy(B.input_begin(), B.input_end(), It);
309 
310   auto *ContextImpl = getContext().pImpl;
311   auto BI = Bundles.begin();
312   unsigned CurrentIndex = BeginIndex;
313 
314   for (auto &BOI : bundle_op_infos()) {
315     assert(BI != Bundles.end() && "Incorrect allocation?");
316 
317     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
318     BOI.Begin = CurrentIndex;
319     BOI.End = CurrentIndex + BI->input_size();
320     CurrentIndex = BOI.End;
321     BI++;
322   }
323 
324   assert(BI == Bundles.end() && "Incorrect allocation?");
325 
326   return It;
327 }
328 
329 //===----------------------------------------------------------------------===//
330 //                        CallInst Implementation
331 //===----------------------------------------------------------------------===//
332 
333 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
334                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
335   this->FTy = FTy;
336   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
337          "NumOperands not set up?");
338   setCalledOperand(Func);
339 
340 #ifndef NDEBUG
341   assert((Args.size() == FTy->getNumParams() ||
342           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
343          "Calling a function with bad signature!");
344 
345   for (unsigned i = 0; i != Args.size(); ++i)
346     assert((i >= FTy->getNumParams() ||
347             FTy->getParamType(i) == Args[i]->getType()) &&
348            "Calling a function with a bad signature!");
349 #endif
350 
351   llvm::copy(Args, op_begin());
352 
353   auto It = populateBundleOperandInfos(Bundles, Args.size());
354   (void)It;
355   assert(It + 1 == op_end() && "Should add up!");
356 
357   setName(NameStr);
358 }
359 
360 void CallInst::init(Value *Func, const Twine &NameStr) {
361   FTy =
362       cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
363   assert(getNumOperands() == 1 && "NumOperands not set up?");
364   setCalledOperand(Func);
365 
366   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
367 
368   setName(NameStr);
369 }
370 
371 CallInst::CallInst(Value *Func, const Twine &Name, Instruction *InsertBefore)
372     : CallBase(cast<FunctionType>(
373                    cast<PointerType>(Func->getType())->getElementType())
374                    ->getReturnType(),
375                Instruction::Call, OperandTraits<CallBase>::op_end(this) - 1, 1,
376                InsertBefore) {
377   init(Func, Name);
378 }
379 
380 CallInst::CallInst(Value *Func, const Twine &Name, BasicBlock *InsertAtEnd)
381     : CallBase(cast<FunctionType>(
382                    cast<PointerType>(Func->getType())->getElementType())
383                    ->getReturnType(),
384                Instruction::Call, OperandTraits<CallBase>::op_end(this) - 1, 1,
385                InsertAtEnd) {
386   init(Func, Name);
387 }
388 
389 CallInst::CallInst(const CallInst &CI)
390     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
391                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
392                CI.getNumOperands()) {
393   setTailCallKind(CI.getTailCallKind());
394   setCallingConv(CI.getCallingConv());
395 
396   std::copy(CI.op_begin(), CI.op_end(), op_begin());
397   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
398             bundle_op_info_begin());
399   SubclassOptionalData = CI.SubclassOptionalData;
400 }
401 
402 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
403                            Instruction *InsertPt) {
404   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
405 
406   auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
407                                  InsertPt);
408   NewCI->setTailCallKind(CI->getTailCallKind());
409   NewCI->setCallingConv(CI->getCallingConv());
410   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
411   NewCI->setAttributes(CI->getAttributes());
412   NewCI->setDebugLoc(CI->getDebugLoc());
413   return NewCI;
414 }
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 /// IsConstantOne - Return true only if val is constant int 1
426 static bool IsConstantOne(Value *val) {
427   assert(val && "IsConstantOne does not work with nullptr val");
428   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
429   return CVal && CVal->isOne();
430 }
431 
432 static Instruction *createMalloc(Instruction *InsertBefore,
433                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
434                                  Type *AllocTy, Value *AllocSize,
435                                  Value *ArraySize,
436                                  ArrayRef<OperandBundleDef> OpB,
437                                  Function *MallocF, const Twine &Name) {
438   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
439          "createMalloc needs either InsertBefore or InsertAtEnd");
440 
441   // malloc(type) becomes:
442   //       bitcast (i8* malloc(typeSize)) to type*
443   // malloc(type, arraySize) becomes:
444   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
445   if (!ArraySize)
446     ArraySize = ConstantInt::get(IntPtrTy, 1);
447   else if (ArraySize->getType() != IntPtrTy) {
448     if (InsertBefore)
449       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
450                                               "", InsertBefore);
451     else
452       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
453                                               "", InsertAtEnd);
454   }
455 
456   if (!IsConstantOne(ArraySize)) {
457     if (IsConstantOne(AllocSize)) {
458       AllocSize = ArraySize;         // Operand * 1 = Operand
459     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
460       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
461                                                      false /*ZExt*/);
462       // Malloc arg is constant product of type size and array size
463       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
464     } else {
465       // Multiply type size by the array size...
466       if (InsertBefore)
467         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
468                                               "mallocsize", InsertBefore);
469       else
470         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
471                                               "mallocsize", InsertAtEnd);
472     }
473   }
474 
475   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
476   // Create the call to Malloc.
477   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
478   Module *M = BB->getParent()->getParent();
479   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
480   Value *MallocFunc = MallocF;
481   if (!MallocFunc)
482     // prototype malloc as "void *malloc(size_t)"
483     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
484   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
485   CallInst *MCall = nullptr;
486   Instruction *Result = nullptr;
487   if (InsertBefore) {
488     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
489                              InsertBefore);
490     Result = MCall;
491     if (Result->getType() != AllocPtrType)
492       // Create a cast instruction to convert to the right type...
493       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
494   } else {
495     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
496     Result = MCall;
497     if (Result->getType() != AllocPtrType) {
498       InsertAtEnd->getInstList().push_back(MCall);
499       // Create a cast instruction to convert to the right type...
500       Result = new BitCastInst(MCall, AllocPtrType, Name);
501     }
502   }
503   MCall->setTailCall();
504   if (Function *F = dyn_cast<Function>(MallocFunc)) {
505     MCall->setCallingConv(F->getCallingConv());
506     if (!F->returnDoesNotAlias())
507       F->setReturnDoesNotAlias();
508   }
509   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
510 
511   return Result;
512 }
513 
514 /// CreateMalloc - Generate the IR for a call to malloc:
515 /// 1. Compute the malloc call's argument as the specified type's size,
516 ///    possibly multiplied by the array size if the array size is not
517 ///    constant 1.
518 /// 2. Call malloc with that argument.
519 /// 3. Bitcast the result of the malloc call to the specified type.
520 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
521                                     Type *IntPtrTy, Type *AllocTy,
522                                     Value *AllocSize, Value *ArraySize,
523                                     Function *MallocF,
524                                     const Twine &Name) {
525   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
526                       ArraySize, None, MallocF, Name);
527 }
528 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
529                                     Type *IntPtrTy, Type *AllocTy,
530                                     Value *AllocSize, Value *ArraySize,
531                                     ArrayRef<OperandBundleDef> OpB,
532                                     Function *MallocF,
533                                     const Twine &Name) {
534   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
535                       ArraySize, OpB, MallocF, Name);
536 }
537 
538 /// CreateMalloc - Generate the IR for a call to malloc:
539 /// 1. Compute the malloc call's argument as the specified type's size,
540 ///    possibly multiplied by the array size if the array size is not
541 ///    constant 1.
542 /// 2. Call malloc with that argument.
543 /// 3. Bitcast the result of the malloc call to the specified type.
544 /// Note: This function does not add the bitcast to the basic block, that is the
545 /// responsibility of the caller.
546 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
547                                     Type *IntPtrTy, Type *AllocTy,
548                                     Value *AllocSize, Value *ArraySize,
549                                     Function *MallocF, const Twine &Name) {
550   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
551                       ArraySize, None, MallocF, Name);
552 }
553 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
554                                     Type *IntPtrTy, Type *AllocTy,
555                                     Value *AllocSize, Value *ArraySize,
556                                     ArrayRef<OperandBundleDef> OpB,
557                                     Function *MallocF, const Twine &Name) {
558   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
559                       ArraySize, OpB, MallocF, Name);
560 }
561 
562 static Instruction *createFree(Value *Source,
563                                ArrayRef<OperandBundleDef> Bundles,
564                                Instruction *InsertBefore,
565                                BasicBlock *InsertAtEnd) {
566   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
567          "createFree needs either InsertBefore or InsertAtEnd");
568   assert(Source->getType()->isPointerTy() &&
569          "Can not free something of nonpointer type!");
570 
571   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
572   Module *M = BB->getParent()->getParent();
573 
574   Type *VoidTy = Type::getVoidTy(M->getContext());
575   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
576   // prototype free as "void free(void*)"
577   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
578   CallInst *Result = nullptr;
579   Value *PtrCast = Source;
580   if (InsertBefore) {
581     if (Source->getType() != IntPtrTy)
582       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
583     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
584   } else {
585     if (Source->getType() != IntPtrTy)
586       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
587     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
588   }
589   Result->setTailCall();
590   if (Function *F = dyn_cast<Function>(FreeFunc))
591     Result->setCallingConv(F->getCallingConv());
592 
593   return Result;
594 }
595 
596 /// CreateFree - Generate the IR for a call to the builtin free function.
597 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
598   return createFree(Source, None, InsertBefore, nullptr);
599 }
600 Instruction *CallInst::CreateFree(Value *Source,
601                                   ArrayRef<OperandBundleDef> Bundles,
602                                   Instruction *InsertBefore) {
603   return createFree(Source, Bundles, InsertBefore, nullptr);
604 }
605 
606 /// CreateFree - Generate the IR for a call to the builtin free function.
607 /// Note: This function does not add the call to the basic block, that is the
608 /// responsibility of the caller.
609 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
610   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
611   assert(FreeCall && "CreateFree did not create a CallInst");
612   return FreeCall;
613 }
614 Instruction *CallInst::CreateFree(Value *Source,
615                                   ArrayRef<OperandBundleDef> Bundles,
616                                   BasicBlock *InsertAtEnd) {
617   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
618   assert(FreeCall && "CreateFree did not create a CallInst");
619   return FreeCall;
620 }
621 
622 //===----------------------------------------------------------------------===//
623 //                        InvokeInst Implementation
624 //===----------------------------------------------------------------------===//
625 
626 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
627                       BasicBlock *IfException, ArrayRef<Value *> Args,
628                       ArrayRef<OperandBundleDef> Bundles,
629                       const Twine &NameStr) {
630   this->FTy = FTy;
631 
632   assert((int)getNumOperands() ==
633              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
634          "NumOperands not set up?");
635   setNormalDest(IfNormal);
636   setUnwindDest(IfException);
637   setCalledOperand(Fn);
638 
639 #ifndef NDEBUG
640   assert(((Args.size() == FTy->getNumParams()) ||
641           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
642          "Invoking a function with bad signature");
643 
644   for (unsigned i = 0, e = Args.size(); i != e; i++)
645     assert((i >= FTy->getNumParams() ||
646             FTy->getParamType(i) == Args[i]->getType()) &&
647            "Invoking a function with a bad signature!");
648 #endif
649 
650   llvm::copy(Args, op_begin());
651 
652   auto It = populateBundleOperandInfos(Bundles, Args.size());
653   (void)It;
654   assert(It + 3 == op_end() && "Should add up!");
655 
656   setName(NameStr);
657 }
658 
659 InvokeInst::InvokeInst(const InvokeInst &II)
660     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
661                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
662                II.getNumOperands()) {
663   setCallingConv(II.getCallingConv());
664   std::copy(II.op_begin(), II.op_end(), op_begin());
665   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
666             bundle_op_info_begin());
667   SubclassOptionalData = II.SubclassOptionalData;
668 }
669 
670 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
671                                Instruction *InsertPt) {
672   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
673 
674   auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
675                                    II->getUnwindDest(), Args, OpB,
676                                    II->getName(), InsertPt);
677   NewII->setCallingConv(II->getCallingConv());
678   NewII->SubclassOptionalData = II->SubclassOptionalData;
679   NewII->setAttributes(II->getAttributes());
680   NewII->setDebugLoc(II->getDebugLoc());
681   return NewII;
682 }
683 
684 
685 LandingPadInst *InvokeInst::getLandingPadInst() const {
686   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
687 }
688 
689 //===----------------------------------------------------------------------===//
690 //                        ReturnInst Implementation
691 //===----------------------------------------------------------------------===//
692 
693 ReturnInst::ReturnInst(const ReturnInst &RI)
694     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
695                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
696                   RI.getNumOperands()) {
697   if (RI.getNumOperands())
698     Op<0>() = RI.Op<0>();
699   SubclassOptionalData = RI.SubclassOptionalData;
700 }
701 
702 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
703     : Instruction(Type::getVoidTy(C), Instruction::Ret,
704                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
705                   InsertBefore) {
706   if (retVal)
707     Op<0>() = retVal;
708 }
709 
710 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
711     : Instruction(Type::getVoidTy(C), Instruction::Ret,
712                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
713                   InsertAtEnd) {
714   if (retVal)
715     Op<0>() = retVal;
716 }
717 
718 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
719     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
720                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
721 
722 //===----------------------------------------------------------------------===//
723 //                        ResumeInst Implementation
724 //===----------------------------------------------------------------------===//
725 
726 ResumeInst::ResumeInst(const ResumeInst &RI)
727     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
728                   OperandTraits<ResumeInst>::op_begin(this), 1) {
729   Op<0>() = RI.Op<0>();
730 }
731 
732 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
733     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
734                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
735   Op<0>() = Exn;
736 }
737 
738 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
739     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
740                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
741   Op<0>() = Exn;
742 }
743 
744 //===----------------------------------------------------------------------===//
745 //                        CleanupReturnInst Implementation
746 //===----------------------------------------------------------------------===//
747 
748 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
749     : Instruction(CRI.getType(), Instruction::CleanupRet,
750                   OperandTraits<CleanupReturnInst>::op_end(this) -
751                       CRI.getNumOperands(),
752                   CRI.getNumOperands()) {
753   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
754   Op<0>() = CRI.Op<0>();
755   if (CRI.hasUnwindDest())
756     Op<1>() = CRI.Op<1>();
757 }
758 
759 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
760   if (UnwindBB)
761     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
762 
763   Op<0>() = CleanupPad;
764   if (UnwindBB)
765     Op<1>() = UnwindBB;
766 }
767 
768 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
769                                      unsigned Values, Instruction *InsertBefore)
770     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
771                   Instruction::CleanupRet,
772                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
773                   Values, InsertBefore) {
774   init(CleanupPad, UnwindBB);
775 }
776 
777 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
778                                      unsigned Values, BasicBlock *InsertAtEnd)
779     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
780                   Instruction::CleanupRet,
781                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
782                   Values, InsertAtEnd) {
783   init(CleanupPad, UnwindBB);
784 }
785 
786 //===----------------------------------------------------------------------===//
787 //                        CatchReturnInst Implementation
788 //===----------------------------------------------------------------------===//
789 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
790   Op<0>() = CatchPad;
791   Op<1>() = BB;
792 }
793 
794 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
795     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
796                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
797   Op<0>() = CRI.Op<0>();
798   Op<1>() = CRI.Op<1>();
799 }
800 
801 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
802                                  Instruction *InsertBefore)
803     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
804                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
805                   InsertBefore) {
806   init(CatchPad, BB);
807 }
808 
809 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
810                                  BasicBlock *InsertAtEnd)
811     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
812                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
813                   InsertAtEnd) {
814   init(CatchPad, BB);
815 }
816 
817 //===----------------------------------------------------------------------===//
818 //                       CatchSwitchInst Implementation
819 //===----------------------------------------------------------------------===//
820 
821 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
822                                  unsigned NumReservedValues,
823                                  const Twine &NameStr,
824                                  Instruction *InsertBefore)
825     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
826                   InsertBefore) {
827   if (UnwindDest)
828     ++NumReservedValues;
829   init(ParentPad, UnwindDest, NumReservedValues + 1);
830   setName(NameStr);
831 }
832 
833 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
834                                  unsigned NumReservedValues,
835                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
836     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
837                   InsertAtEnd) {
838   if (UnwindDest)
839     ++NumReservedValues;
840   init(ParentPad, UnwindDest, NumReservedValues + 1);
841   setName(NameStr);
842 }
843 
844 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
845     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
846                   CSI.getNumOperands()) {
847   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
848   setNumHungOffUseOperands(ReservedSpace);
849   Use *OL = getOperandList();
850   const Use *InOL = CSI.getOperandList();
851   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
852     OL[I] = InOL[I];
853 }
854 
855 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
856                            unsigned NumReservedValues) {
857   assert(ParentPad && NumReservedValues);
858 
859   ReservedSpace = NumReservedValues;
860   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
861   allocHungoffUses(ReservedSpace);
862 
863   Op<0>() = ParentPad;
864   if (UnwindDest) {
865     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
866     setUnwindDest(UnwindDest);
867   }
868 }
869 
870 /// growOperands - grow operands - This grows the operand list in response to a
871 /// push_back style of operation. This grows the number of ops by 2 times.
872 void CatchSwitchInst::growOperands(unsigned Size) {
873   unsigned NumOperands = getNumOperands();
874   assert(NumOperands >= 1);
875   if (ReservedSpace >= NumOperands + Size)
876     return;
877   ReservedSpace = (NumOperands + Size / 2) * 2;
878   growHungoffUses(ReservedSpace);
879 }
880 
881 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
882   unsigned OpNo = getNumOperands();
883   growOperands(1);
884   assert(OpNo < ReservedSpace && "Growing didn't work!");
885   setNumHungOffUseOperands(getNumOperands() + 1);
886   getOperandList()[OpNo] = Handler;
887 }
888 
889 void CatchSwitchInst::removeHandler(handler_iterator HI) {
890   // Move all subsequent handlers up one.
891   Use *EndDst = op_end() - 1;
892   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
893     *CurDst = *(CurDst + 1);
894   // Null out the last handler use.
895   *EndDst = nullptr;
896 
897   setNumHungOffUseOperands(getNumOperands() - 1);
898 }
899 
900 //===----------------------------------------------------------------------===//
901 //                        FuncletPadInst Implementation
902 //===----------------------------------------------------------------------===//
903 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
904                           const Twine &NameStr) {
905   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
906   llvm::copy(Args, op_begin());
907   setParentPad(ParentPad);
908   setName(NameStr);
909 }
910 
911 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
912     : Instruction(FPI.getType(), FPI.getOpcode(),
913                   OperandTraits<FuncletPadInst>::op_end(this) -
914                       FPI.getNumOperands(),
915                   FPI.getNumOperands()) {
916   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
917   setParentPad(FPI.getParentPad());
918 }
919 
920 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
921                                ArrayRef<Value *> Args, unsigned Values,
922                                const Twine &NameStr, Instruction *InsertBefore)
923     : Instruction(ParentPad->getType(), Op,
924                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
925                   InsertBefore) {
926   init(ParentPad, Args, NameStr);
927 }
928 
929 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
930                                ArrayRef<Value *> Args, unsigned Values,
931                                const Twine &NameStr, BasicBlock *InsertAtEnd)
932     : Instruction(ParentPad->getType(), Op,
933                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
934                   InsertAtEnd) {
935   init(ParentPad, Args, NameStr);
936 }
937 
938 //===----------------------------------------------------------------------===//
939 //                      UnreachableInst Implementation
940 //===----------------------------------------------------------------------===//
941 
942 UnreachableInst::UnreachableInst(LLVMContext &Context,
943                                  Instruction *InsertBefore)
944     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
945                   0, InsertBefore) {}
946 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
947     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
948                   0, InsertAtEnd) {}
949 
950 //===----------------------------------------------------------------------===//
951 //                        BranchInst Implementation
952 //===----------------------------------------------------------------------===//
953 
954 void BranchInst::AssertOK() {
955   if (isConditional())
956     assert(getCondition()->getType()->isIntegerTy(1) &&
957            "May only branch on boolean predicates!");
958 }
959 
960 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
961     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
962                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
963                   InsertBefore) {
964   assert(IfTrue && "Branch destination may not be null!");
965   Op<-1>() = IfTrue;
966 }
967 
968 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
969                        Instruction *InsertBefore)
970     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
971                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
972                   InsertBefore) {
973   Op<-1>() = IfTrue;
974   Op<-2>() = IfFalse;
975   Op<-3>() = Cond;
976 #ifndef NDEBUG
977   AssertOK();
978 #endif
979 }
980 
981 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
982     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
983                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
984   assert(IfTrue && "Branch destination may not be null!");
985   Op<-1>() = IfTrue;
986 }
987 
988 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
989                        BasicBlock *InsertAtEnd)
990     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
991                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
992   Op<-1>() = IfTrue;
993   Op<-2>() = IfFalse;
994   Op<-3>() = Cond;
995 #ifndef NDEBUG
996   AssertOK();
997 #endif
998 }
999 
1000 BranchInst::BranchInst(const BranchInst &BI)
1001     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1002                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1003                   BI.getNumOperands()) {
1004   Op<-1>() = BI.Op<-1>();
1005   if (BI.getNumOperands() != 1) {
1006     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1007     Op<-3>() = BI.Op<-3>();
1008     Op<-2>() = BI.Op<-2>();
1009   }
1010   SubclassOptionalData = BI.SubclassOptionalData;
1011 }
1012 
1013 void BranchInst::swapSuccessors() {
1014   assert(isConditional() &&
1015          "Cannot swap successors of an unconditional branch");
1016   Op<-1>().swap(Op<-2>());
1017 
1018   // Update profile metadata if present and it matches our structural
1019   // expectations.
1020   swapProfMetadata();
1021 }
1022 
1023 //===----------------------------------------------------------------------===//
1024 //                        AllocaInst Implementation
1025 //===----------------------------------------------------------------------===//
1026 
1027 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1028   if (!Amt)
1029     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1030   else {
1031     assert(!isa<BasicBlock>(Amt) &&
1032            "Passed basic block into allocation size parameter! Use other ctor");
1033     assert(Amt->getType()->isIntegerTy() &&
1034            "Allocation array size is not an integer!");
1035   }
1036   return Amt;
1037 }
1038 
1039 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1040                        Instruction *InsertBefore)
1041   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1042 
1043 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1044                        BasicBlock *InsertAtEnd)
1045   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1046 
1047 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1048                        const Twine &Name, Instruction *InsertBefore)
1049   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1050 
1051 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1052                        const Twine &Name, BasicBlock *InsertAtEnd)
1053   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1054 
1055 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1056                        unsigned Align, const Twine &Name,
1057                        Instruction *InsertBefore)
1058   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1059                      getAISize(Ty->getContext(), ArraySize), InsertBefore),
1060     AllocatedType(Ty) {
1061   setAlignment(Align);
1062   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1063   setName(Name);
1064 }
1065 
1066 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1067                        unsigned Align, const Twine &Name,
1068                        BasicBlock *InsertAtEnd)
1069   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1070                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1071       AllocatedType(Ty) {
1072   setAlignment(Align);
1073   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1074   setName(Name);
1075 }
1076 
1077 void AllocaInst::setAlignment(unsigned Align) {
1078   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1079   assert(Align <= MaximumAlignment &&
1080          "Alignment is greater than MaximumAlignment!");
1081   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1082                              (Log2_32(Align) + 1));
1083   assert(getAlignment() == Align && "Alignment representation error!");
1084 }
1085 
1086 bool AllocaInst::isArrayAllocation() const {
1087   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1088     return !CI->isOne();
1089   return true;
1090 }
1091 
1092 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1093 /// function and is a constant size.  If so, the code generator will fold it
1094 /// into the prolog/epilog code, so it is basically free.
1095 bool AllocaInst::isStaticAlloca() const {
1096   // Must be constant size.
1097   if (!isa<ConstantInt>(getArraySize())) return false;
1098 
1099   // Must be in the entry block.
1100   const BasicBlock *Parent = getParent();
1101   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1102 }
1103 
1104 //===----------------------------------------------------------------------===//
1105 //                           LoadInst Implementation
1106 //===----------------------------------------------------------------------===//
1107 
1108 void LoadInst::AssertOK() {
1109   assert(getOperand(0)->getType()->isPointerTy() &&
1110          "Ptr must have pointer type.");
1111   assert(!(isAtomic() && getAlignment() == 0) &&
1112          "Alignment required for atomic load");
1113 }
1114 
1115 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1116     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1117 
1118 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1119     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1120 
1121 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1122                    Instruction *InsertBef)
1123     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1124 
1125 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1126                    BasicBlock *InsertAE)
1127     : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1128 
1129 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1130                    unsigned Align, Instruction *InsertBef)
1131     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1132                SyncScope::System, InsertBef) {}
1133 
1134 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1135                    unsigned Align, BasicBlock *InsertAE)
1136     : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1137                SyncScope::System, InsertAE) {}
1138 
1139 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1140                    unsigned Align, AtomicOrdering Order,
1141                    SyncScope::ID SSID, Instruction *InsertBef)
1142     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1143   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1144   setVolatile(isVolatile);
1145   setAlignment(Align);
1146   setAtomic(Order, SSID);
1147   AssertOK();
1148   setName(Name);
1149 }
1150 
1151 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1152                    unsigned Align, AtomicOrdering Order,
1153                    SyncScope::ID SSID,
1154                    BasicBlock *InsertAE)
1155   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1156                      Load, Ptr, InsertAE) {
1157   setVolatile(isVolatile);
1158   setAlignment(Align);
1159   setAtomic(Order, SSID);
1160   AssertOK();
1161   setName(Name);
1162 }
1163 
1164 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1165   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1166                      Load, Ptr, InsertBef) {
1167   setVolatile(false);
1168   setAlignment(0);
1169   setAtomic(AtomicOrdering::NotAtomic);
1170   AssertOK();
1171   if (Name && Name[0]) setName(Name);
1172 }
1173 
1174 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1175   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1176                      Load, Ptr, InsertAE) {
1177   setVolatile(false);
1178   setAlignment(0);
1179   setAtomic(AtomicOrdering::NotAtomic);
1180   AssertOK();
1181   if (Name && Name[0]) setName(Name);
1182 }
1183 
1184 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1185                    Instruction *InsertBef)
1186     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1187   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1188   setVolatile(isVolatile);
1189   setAlignment(0);
1190   setAtomic(AtomicOrdering::NotAtomic);
1191   AssertOK();
1192   if (Name && Name[0]) setName(Name);
1193 }
1194 
1195 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1196                    BasicBlock *InsertAE)
1197   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1198                      Load, Ptr, InsertAE) {
1199   setVolatile(isVolatile);
1200   setAlignment(0);
1201   setAtomic(AtomicOrdering::NotAtomic);
1202   AssertOK();
1203   if (Name && Name[0]) setName(Name);
1204 }
1205 
1206 void LoadInst::setAlignment(unsigned Align) {
1207   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1208   assert(Align <= MaximumAlignment &&
1209          "Alignment is greater than MaximumAlignment!");
1210   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1211                              ((Log2_32(Align)+1)<<1));
1212   assert(getAlignment() == Align && "Alignment representation error!");
1213 }
1214 
1215 //===----------------------------------------------------------------------===//
1216 //                           StoreInst Implementation
1217 //===----------------------------------------------------------------------===//
1218 
1219 void StoreInst::AssertOK() {
1220   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1221   assert(getOperand(1)->getType()->isPointerTy() &&
1222          "Ptr must have pointer type!");
1223   assert(getOperand(0)->getType() ==
1224                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1225          && "Ptr must be a pointer to Val type!");
1226   assert(!(isAtomic() && getAlignment() == 0) &&
1227          "Alignment required for atomic store");
1228 }
1229 
1230 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1231     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1232 
1233 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1234     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1235 
1236 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1237                      Instruction *InsertBefore)
1238     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1239 
1240 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1241                      BasicBlock *InsertAtEnd)
1242     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1243 
1244 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1245                      Instruction *InsertBefore)
1246     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1247                 SyncScope::System, InsertBefore) {}
1248 
1249 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1250                      BasicBlock *InsertAtEnd)
1251     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1252                 SyncScope::System, InsertAtEnd) {}
1253 
1254 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1255                      unsigned Align, AtomicOrdering Order,
1256                      SyncScope::ID SSID,
1257                      Instruction *InsertBefore)
1258   : Instruction(Type::getVoidTy(val->getContext()), Store,
1259                 OperandTraits<StoreInst>::op_begin(this),
1260                 OperandTraits<StoreInst>::operands(this),
1261                 InsertBefore) {
1262   Op<0>() = val;
1263   Op<1>() = addr;
1264   setVolatile(isVolatile);
1265   setAlignment(Align);
1266   setAtomic(Order, SSID);
1267   AssertOK();
1268 }
1269 
1270 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1271                      unsigned Align, AtomicOrdering Order,
1272                      SyncScope::ID SSID,
1273                      BasicBlock *InsertAtEnd)
1274   : Instruction(Type::getVoidTy(val->getContext()), Store,
1275                 OperandTraits<StoreInst>::op_begin(this),
1276                 OperandTraits<StoreInst>::operands(this),
1277                 InsertAtEnd) {
1278   Op<0>() = val;
1279   Op<1>() = addr;
1280   setVolatile(isVolatile);
1281   setAlignment(Align);
1282   setAtomic(Order, SSID);
1283   AssertOK();
1284 }
1285 
1286 void StoreInst::setAlignment(unsigned Align) {
1287   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1288   assert(Align <= MaximumAlignment &&
1289          "Alignment is greater than MaximumAlignment!");
1290   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1291                              ((Log2_32(Align)+1) << 1));
1292   assert(getAlignment() == Align && "Alignment representation error!");
1293 }
1294 
1295 //===----------------------------------------------------------------------===//
1296 //                       AtomicCmpXchgInst Implementation
1297 //===----------------------------------------------------------------------===//
1298 
1299 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1300                              AtomicOrdering SuccessOrdering,
1301                              AtomicOrdering FailureOrdering,
1302                              SyncScope::ID SSID) {
1303   Op<0>() = Ptr;
1304   Op<1>() = Cmp;
1305   Op<2>() = NewVal;
1306   setSuccessOrdering(SuccessOrdering);
1307   setFailureOrdering(FailureOrdering);
1308   setSyncScopeID(SSID);
1309 
1310   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1311          "All operands must be non-null!");
1312   assert(getOperand(0)->getType()->isPointerTy() &&
1313          "Ptr must have pointer type!");
1314   assert(getOperand(1)->getType() ==
1315                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1316          && "Ptr must be a pointer to Cmp type!");
1317   assert(getOperand(2)->getType() ==
1318                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1319          && "Ptr must be a pointer to NewVal type!");
1320   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1321          "AtomicCmpXchg instructions must be atomic!");
1322   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1323          "AtomicCmpXchg instructions must be atomic!");
1324   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1325          "AtomicCmpXchg failure argument shall be no stronger than the success "
1326          "argument");
1327   assert(FailureOrdering != AtomicOrdering::Release &&
1328          FailureOrdering != AtomicOrdering::AcquireRelease &&
1329          "AtomicCmpXchg failure ordering cannot include release semantics");
1330 }
1331 
1332 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1333                                      AtomicOrdering SuccessOrdering,
1334                                      AtomicOrdering FailureOrdering,
1335                                      SyncScope::ID SSID,
1336                                      Instruction *InsertBefore)
1337     : Instruction(
1338           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1339           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1340           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1341   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1342 }
1343 
1344 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1345                                      AtomicOrdering SuccessOrdering,
1346                                      AtomicOrdering FailureOrdering,
1347                                      SyncScope::ID SSID,
1348                                      BasicBlock *InsertAtEnd)
1349     : Instruction(
1350           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1351           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1352           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1353   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1354 }
1355 
1356 //===----------------------------------------------------------------------===//
1357 //                       AtomicRMWInst Implementation
1358 //===----------------------------------------------------------------------===//
1359 
1360 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1361                          AtomicOrdering Ordering,
1362                          SyncScope::ID SSID) {
1363   Op<0>() = Ptr;
1364   Op<1>() = Val;
1365   setOperation(Operation);
1366   setOrdering(Ordering);
1367   setSyncScopeID(SSID);
1368 
1369   assert(getOperand(0) && getOperand(1) &&
1370          "All operands must be non-null!");
1371   assert(getOperand(0)->getType()->isPointerTy() &&
1372          "Ptr must have pointer type!");
1373   assert(getOperand(1)->getType() ==
1374          cast<PointerType>(getOperand(0)->getType())->getElementType()
1375          && "Ptr must be a pointer to Val type!");
1376   assert(Ordering != AtomicOrdering::NotAtomic &&
1377          "AtomicRMW instructions must be atomic!");
1378 }
1379 
1380 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1381                              AtomicOrdering Ordering,
1382                              SyncScope::ID SSID,
1383                              Instruction *InsertBefore)
1384   : Instruction(Val->getType(), AtomicRMW,
1385                 OperandTraits<AtomicRMWInst>::op_begin(this),
1386                 OperandTraits<AtomicRMWInst>::operands(this),
1387                 InsertBefore) {
1388   Init(Operation, Ptr, Val, Ordering, SSID);
1389 }
1390 
1391 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1392                              AtomicOrdering Ordering,
1393                              SyncScope::ID SSID,
1394                              BasicBlock *InsertAtEnd)
1395   : Instruction(Val->getType(), AtomicRMW,
1396                 OperandTraits<AtomicRMWInst>::op_begin(this),
1397                 OperandTraits<AtomicRMWInst>::operands(this),
1398                 InsertAtEnd) {
1399   Init(Operation, Ptr, Val, Ordering, SSID);
1400 }
1401 
1402 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1403   switch (Op) {
1404   case AtomicRMWInst::Xchg:
1405     return "xchg";
1406   case AtomicRMWInst::Add:
1407     return "add";
1408   case AtomicRMWInst::Sub:
1409     return "sub";
1410   case AtomicRMWInst::And:
1411     return "and";
1412   case AtomicRMWInst::Nand:
1413     return "nand";
1414   case AtomicRMWInst::Or:
1415     return "or";
1416   case AtomicRMWInst::Xor:
1417     return "xor";
1418   case AtomicRMWInst::Max:
1419     return "max";
1420   case AtomicRMWInst::Min:
1421     return "min";
1422   case AtomicRMWInst::UMax:
1423     return "umax";
1424   case AtomicRMWInst::UMin:
1425     return "umin";
1426   case AtomicRMWInst::BAD_BINOP:
1427     return "<invalid operation>";
1428   }
1429 
1430   llvm_unreachable("invalid atomicrmw operation");
1431 }
1432 
1433 //===----------------------------------------------------------------------===//
1434 //                       FenceInst Implementation
1435 //===----------------------------------------------------------------------===//
1436 
1437 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1438                      SyncScope::ID SSID,
1439                      Instruction *InsertBefore)
1440   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1441   setOrdering(Ordering);
1442   setSyncScopeID(SSID);
1443 }
1444 
1445 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1446                      SyncScope::ID SSID,
1447                      BasicBlock *InsertAtEnd)
1448   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1449   setOrdering(Ordering);
1450   setSyncScopeID(SSID);
1451 }
1452 
1453 //===----------------------------------------------------------------------===//
1454 //                       GetElementPtrInst Implementation
1455 //===----------------------------------------------------------------------===//
1456 
1457 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1458                              const Twine &Name) {
1459   assert(getNumOperands() == 1 + IdxList.size() &&
1460          "NumOperands not initialized?");
1461   Op<0>() = Ptr;
1462   llvm::copy(IdxList, op_begin() + 1);
1463   setName(Name);
1464 }
1465 
1466 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1467     : Instruction(GEPI.getType(), GetElementPtr,
1468                   OperandTraits<GetElementPtrInst>::op_end(this) -
1469                       GEPI.getNumOperands(),
1470                   GEPI.getNumOperands()),
1471       SourceElementType(GEPI.SourceElementType),
1472       ResultElementType(GEPI.ResultElementType) {
1473   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1474   SubclassOptionalData = GEPI.SubclassOptionalData;
1475 }
1476 
1477 /// getIndexedType - Returns the type of the element that would be accessed with
1478 /// a gep instruction with the specified parameters.
1479 ///
1480 /// The Idxs pointer should point to a continuous piece of memory containing the
1481 /// indices, either as Value* or uint64_t.
1482 ///
1483 /// A null type is returned if the indices are invalid for the specified
1484 /// pointer type.
1485 ///
1486 template <typename IndexTy>
1487 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1488   // Handle the special case of the empty set index set, which is always valid.
1489   if (IdxList.empty())
1490     return Agg;
1491 
1492   // If there is at least one index, the top level type must be sized, otherwise
1493   // it cannot be 'stepped over'.
1494   if (!Agg->isSized())
1495     return nullptr;
1496 
1497   unsigned CurIdx = 1;
1498   for (; CurIdx != IdxList.size(); ++CurIdx) {
1499     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1500     if (!CT || CT->isPointerTy()) return nullptr;
1501     IndexTy Index = IdxList[CurIdx];
1502     if (!CT->indexValid(Index)) return nullptr;
1503     Agg = CT->getTypeAtIndex(Index);
1504   }
1505   return CurIdx == IdxList.size() ? Agg : nullptr;
1506 }
1507 
1508 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1509   return getIndexedTypeInternal(Ty, IdxList);
1510 }
1511 
1512 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1513                                         ArrayRef<Constant *> IdxList) {
1514   return getIndexedTypeInternal(Ty, IdxList);
1515 }
1516 
1517 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1518   return getIndexedTypeInternal(Ty, IdxList);
1519 }
1520 
1521 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1522 /// zeros.  If so, the result pointer and the first operand have the same
1523 /// value, just potentially different types.
1524 bool GetElementPtrInst::hasAllZeroIndices() const {
1525   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1526     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1527       if (!CI->isZero()) return false;
1528     } else {
1529       return false;
1530     }
1531   }
1532   return true;
1533 }
1534 
1535 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1536 /// constant integers.  If so, the result pointer and the first operand have
1537 /// a constant offset between them.
1538 bool GetElementPtrInst::hasAllConstantIndices() const {
1539   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1540     if (!isa<ConstantInt>(getOperand(i)))
1541       return false;
1542   }
1543   return true;
1544 }
1545 
1546 void GetElementPtrInst::setIsInBounds(bool B) {
1547   cast<GEPOperator>(this)->setIsInBounds(B);
1548 }
1549 
1550 bool GetElementPtrInst::isInBounds() const {
1551   return cast<GEPOperator>(this)->isInBounds();
1552 }
1553 
1554 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1555                                                  APInt &Offset) const {
1556   // Delegate to the generic GEPOperator implementation.
1557   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1558 }
1559 
1560 //===----------------------------------------------------------------------===//
1561 //                           ExtractElementInst Implementation
1562 //===----------------------------------------------------------------------===//
1563 
1564 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1565                                        const Twine &Name,
1566                                        Instruction *InsertBef)
1567   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1568                 ExtractElement,
1569                 OperandTraits<ExtractElementInst>::op_begin(this),
1570                 2, InsertBef) {
1571   assert(isValidOperands(Val, Index) &&
1572          "Invalid extractelement instruction operands!");
1573   Op<0>() = Val;
1574   Op<1>() = Index;
1575   setName(Name);
1576 }
1577 
1578 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1579                                        const Twine &Name,
1580                                        BasicBlock *InsertAE)
1581   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1582                 ExtractElement,
1583                 OperandTraits<ExtractElementInst>::op_begin(this),
1584                 2, InsertAE) {
1585   assert(isValidOperands(Val, Index) &&
1586          "Invalid extractelement instruction operands!");
1587 
1588   Op<0>() = Val;
1589   Op<1>() = Index;
1590   setName(Name);
1591 }
1592 
1593 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1594   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1595     return false;
1596   return true;
1597 }
1598 
1599 //===----------------------------------------------------------------------===//
1600 //                           InsertElementInst Implementation
1601 //===----------------------------------------------------------------------===//
1602 
1603 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1604                                      const Twine &Name,
1605                                      Instruction *InsertBef)
1606   : Instruction(Vec->getType(), InsertElement,
1607                 OperandTraits<InsertElementInst>::op_begin(this),
1608                 3, InsertBef) {
1609   assert(isValidOperands(Vec, Elt, Index) &&
1610          "Invalid insertelement instruction operands!");
1611   Op<0>() = Vec;
1612   Op<1>() = Elt;
1613   Op<2>() = Index;
1614   setName(Name);
1615 }
1616 
1617 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1618                                      const Twine &Name,
1619                                      BasicBlock *InsertAE)
1620   : Instruction(Vec->getType(), InsertElement,
1621                 OperandTraits<InsertElementInst>::op_begin(this),
1622                 3, InsertAE) {
1623   assert(isValidOperands(Vec, Elt, Index) &&
1624          "Invalid insertelement instruction operands!");
1625 
1626   Op<0>() = Vec;
1627   Op<1>() = Elt;
1628   Op<2>() = Index;
1629   setName(Name);
1630 }
1631 
1632 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1633                                         const Value *Index) {
1634   if (!Vec->getType()->isVectorTy())
1635     return false;   // First operand of insertelement must be vector type.
1636 
1637   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1638     return false;// Second operand of insertelement must be vector element type.
1639 
1640   if (!Index->getType()->isIntegerTy())
1641     return false;  // Third operand of insertelement must be i32.
1642   return true;
1643 }
1644 
1645 //===----------------------------------------------------------------------===//
1646 //                      ShuffleVectorInst Implementation
1647 //===----------------------------------------------------------------------===//
1648 
1649 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1650                                      const Twine &Name,
1651                                      Instruction *InsertBefore)
1652 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1653                 cast<VectorType>(Mask->getType())->getNumElements()),
1654               ShuffleVector,
1655               OperandTraits<ShuffleVectorInst>::op_begin(this),
1656               OperandTraits<ShuffleVectorInst>::operands(this),
1657               InsertBefore) {
1658   assert(isValidOperands(V1, V2, Mask) &&
1659          "Invalid shuffle vector instruction operands!");
1660   Op<0>() = V1;
1661   Op<1>() = V2;
1662   Op<2>() = Mask;
1663   setName(Name);
1664 }
1665 
1666 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1667                                      const Twine &Name,
1668                                      BasicBlock *InsertAtEnd)
1669 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1670                 cast<VectorType>(Mask->getType())->getNumElements()),
1671               ShuffleVector,
1672               OperandTraits<ShuffleVectorInst>::op_begin(this),
1673               OperandTraits<ShuffleVectorInst>::operands(this),
1674               InsertAtEnd) {
1675   assert(isValidOperands(V1, V2, Mask) &&
1676          "Invalid shuffle vector instruction operands!");
1677 
1678   Op<0>() = V1;
1679   Op<1>() = V2;
1680   Op<2>() = Mask;
1681   setName(Name);
1682 }
1683 
1684 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1685                                         const Value *Mask) {
1686   // V1 and V2 must be vectors of the same type.
1687   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1688     return false;
1689 
1690   // Mask must be vector of i32.
1691   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1692   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1693     return false;
1694 
1695   // Check to see if Mask is valid.
1696   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1697     return true;
1698 
1699   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1700     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1701     for (Value *Op : MV->operands()) {
1702       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1703         if (CI->uge(V1Size*2))
1704           return false;
1705       } else if (!isa<UndefValue>(Op)) {
1706         return false;
1707       }
1708     }
1709     return true;
1710   }
1711 
1712   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1713     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1714     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1715       if (CDS->getElementAsInteger(i) >= V1Size*2)
1716         return false;
1717     return true;
1718   }
1719 
1720   // The bitcode reader can create a place holder for a forward reference
1721   // used as the shuffle mask. When this occurs, the shuffle mask will
1722   // fall into this case and fail. To avoid this error, do this bit of
1723   // ugliness to allow such a mask pass.
1724   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1725     if (CE->getOpcode() == Instruction::UserOp1)
1726       return true;
1727 
1728   return false;
1729 }
1730 
1731 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1732   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1733   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1734     return CDS->getElementAsInteger(i);
1735   Constant *C = Mask->getAggregateElement(i);
1736   if (isa<UndefValue>(C))
1737     return -1;
1738   return cast<ConstantInt>(C)->getZExtValue();
1739 }
1740 
1741 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1742                                        SmallVectorImpl<int> &Result) {
1743   unsigned NumElts = Mask->getType()->getVectorNumElements();
1744 
1745   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1746     for (unsigned i = 0; i != NumElts; ++i)
1747       Result.push_back(CDS->getElementAsInteger(i));
1748     return;
1749   }
1750   for (unsigned i = 0; i != NumElts; ++i) {
1751     Constant *C = Mask->getAggregateElement(i);
1752     Result.push_back(isa<UndefValue>(C) ? -1 :
1753                      cast<ConstantInt>(C)->getZExtValue());
1754   }
1755 }
1756 
1757 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1758   assert(!Mask.empty() && "Shuffle mask must contain elements");
1759   bool UsesLHS = false;
1760   bool UsesRHS = false;
1761   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1762     if (Mask[i] == -1)
1763       continue;
1764     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1765            "Out-of-bounds shuffle mask element");
1766     UsesLHS |= (Mask[i] < NumOpElts);
1767     UsesRHS |= (Mask[i] >= NumOpElts);
1768     if (UsesLHS && UsesRHS)
1769       return false;
1770   }
1771   assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1772   return true;
1773 }
1774 
1775 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1776   // We don't have vector operand size information, so assume operands are the
1777   // same size as the mask.
1778   return isSingleSourceMaskImpl(Mask, Mask.size());
1779 }
1780 
1781 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1782   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1783     return false;
1784   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1785     if (Mask[i] == -1)
1786       continue;
1787     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1788       return false;
1789   }
1790   return true;
1791 }
1792 
1793 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1794   // We don't have vector operand size information, so assume operands are the
1795   // same size as the mask.
1796   return isIdentityMaskImpl(Mask, Mask.size());
1797 }
1798 
1799 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1800   if (!isSingleSourceMask(Mask))
1801     return false;
1802   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1803     if (Mask[i] == -1)
1804       continue;
1805     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1806       return false;
1807   }
1808   return true;
1809 }
1810 
1811 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1812   if (!isSingleSourceMask(Mask))
1813     return false;
1814   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1815     if (Mask[i] == -1)
1816       continue;
1817     if (Mask[i] != 0 && Mask[i] != NumElts)
1818       return false;
1819   }
1820   return true;
1821 }
1822 
1823 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1824   // Select is differentiated from identity. It requires using both sources.
1825   if (isSingleSourceMask(Mask))
1826     return false;
1827   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1828     if (Mask[i] == -1)
1829       continue;
1830     if (Mask[i] != i && Mask[i] != (NumElts + i))
1831       return false;
1832   }
1833   return true;
1834 }
1835 
1836 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1837   // Example masks that will return true:
1838   // v1 = <a, b, c, d>
1839   // v2 = <e, f, g, h>
1840   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1841   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1842 
1843   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1844   int NumElts = Mask.size();
1845   if (NumElts < 2 || !isPowerOf2_32(NumElts))
1846     return false;
1847 
1848   // 2. The first element of the mask must be either a 0 or a 1.
1849   if (Mask[0] != 0 && Mask[0] != 1)
1850     return false;
1851 
1852   // 3. The difference between the first 2 elements must be equal to the
1853   // number of elements in the mask.
1854   if ((Mask[1] - Mask[0]) != NumElts)
1855     return false;
1856 
1857   // 4. The difference between consecutive even-numbered and odd-numbered
1858   // elements must be equal to 2.
1859   for (int i = 2; i < NumElts; ++i) {
1860     int MaskEltVal = Mask[i];
1861     if (MaskEltVal == -1)
1862       return false;
1863     int MaskEltPrevVal = Mask[i - 2];
1864     if (MaskEltVal - MaskEltPrevVal != 2)
1865       return false;
1866   }
1867   return true;
1868 }
1869 
1870 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
1871                                                int NumSrcElts, int &Index) {
1872   // Must extract from a single source.
1873   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
1874     return false;
1875 
1876   // Must be smaller (else this is an Identity shuffle).
1877   if (NumSrcElts <= (int)Mask.size())
1878     return false;
1879 
1880   // Find start of extraction, accounting that we may start with an UNDEF.
1881   int SubIndex = -1;
1882   for (int i = 0, e = Mask.size(); i != e; ++i) {
1883     int M = Mask[i];
1884     if (M < 0)
1885       continue;
1886     int Offset = (M % NumSrcElts) - i;
1887     if (0 <= SubIndex && SubIndex != Offset)
1888       return false;
1889     SubIndex = Offset;
1890   }
1891 
1892   if (0 <= SubIndex) {
1893     Index = SubIndex;
1894     return true;
1895   }
1896   return false;
1897 }
1898 
1899 bool ShuffleVectorInst::isIdentityWithPadding() const {
1900   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1901   int NumMaskElts = getType()->getVectorNumElements();
1902   if (NumMaskElts <= NumOpElts)
1903     return false;
1904 
1905   // The first part of the mask must choose elements from exactly 1 source op.
1906   SmallVector<int, 16> Mask = getShuffleMask();
1907   if (!isIdentityMaskImpl(Mask, NumOpElts))
1908     return false;
1909 
1910   // All extending must be with undef elements.
1911   for (int i = NumOpElts; i < NumMaskElts; ++i)
1912     if (Mask[i] != -1)
1913       return false;
1914 
1915   return true;
1916 }
1917 
1918 bool ShuffleVectorInst::isIdentityWithExtract() const {
1919   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1920   int NumMaskElts = getType()->getVectorNumElements();
1921   if (NumMaskElts >= NumOpElts)
1922     return false;
1923 
1924   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
1925 }
1926 
1927 bool ShuffleVectorInst::isConcat() const {
1928   // Vector concatenation is differentiated from identity with padding.
1929   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
1930     return false;
1931 
1932   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1933   int NumMaskElts = getType()->getVectorNumElements();
1934   if (NumMaskElts != NumOpElts * 2)
1935     return false;
1936 
1937   // Use the mask length rather than the operands' vector lengths here. We
1938   // already know that the shuffle returns a vector twice as long as the inputs,
1939   // and neither of the inputs are undef vectors. If the mask picks consecutive
1940   // elements from both inputs, then this is a concatenation of the inputs.
1941   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
1942 }
1943 
1944 //===----------------------------------------------------------------------===//
1945 //                             InsertValueInst Class
1946 //===----------------------------------------------------------------------===//
1947 
1948 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1949                            const Twine &Name) {
1950   assert(getNumOperands() == 2 && "NumOperands not initialized?");
1951 
1952   // There's no fundamental reason why we require at least one index
1953   // (other than weirdness with &*IdxBegin being invalid; see
1954   // getelementptr's init routine for example). But there's no
1955   // present need to support it.
1956   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
1957 
1958   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1959          Val->getType() && "Inserted value must match indexed type!");
1960   Op<0>() = Agg;
1961   Op<1>() = Val;
1962 
1963   Indices.append(Idxs.begin(), Idxs.end());
1964   setName(Name);
1965 }
1966 
1967 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1968   : Instruction(IVI.getType(), InsertValue,
1969                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1970     Indices(IVI.Indices) {
1971   Op<0>() = IVI.getOperand(0);
1972   Op<1>() = IVI.getOperand(1);
1973   SubclassOptionalData = IVI.SubclassOptionalData;
1974 }
1975 
1976 //===----------------------------------------------------------------------===//
1977 //                             ExtractValueInst Class
1978 //===----------------------------------------------------------------------===//
1979 
1980 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1981   assert(getNumOperands() == 1 && "NumOperands not initialized?");
1982 
1983   // There's no fundamental reason why we require at least one index.
1984   // But there's no present need to support it.
1985   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
1986 
1987   Indices.append(Idxs.begin(), Idxs.end());
1988   setName(Name);
1989 }
1990 
1991 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1992   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1993     Indices(EVI.Indices) {
1994   SubclassOptionalData = EVI.SubclassOptionalData;
1995 }
1996 
1997 // getIndexedType - Returns the type of the element that would be extracted
1998 // with an extractvalue instruction with the specified parameters.
1999 //
2000 // A null type is returned if the indices are invalid for the specified
2001 // pointer type.
2002 //
2003 Type *ExtractValueInst::getIndexedType(Type *Agg,
2004                                        ArrayRef<unsigned> Idxs) {
2005   for (unsigned Index : Idxs) {
2006     // We can't use CompositeType::indexValid(Index) here.
2007     // indexValid() always returns true for arrays because getelementptr allows
2008     // out-of-bounds indices. Since we don't allow those for extractvalue and
2009     // insertvalue we need to check array indexing manually.
2010     // Since the only other types we can index into are struct types it's just
2011     // as easy to check those manually as well.
2012     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2013       if (Index >= AT->getNumElements())
2014         return nullptr;
2015     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2016       if (Index >= ST->getNumElements())
2017         return nullptr;
2018     } else {
2019       // Not a valid type to index into.
2020       return nullptr;
2021     }
2022 
2023     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2024   }
2025   return const_cast<Type*>(Agg);
2026 }
2027 
2028 //===----------------------------------------------------------------------===//
2029 //                             UnaryOperator Class
2030 //===----------------------------------------------------------------------===//
2031 
2032 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2033                              Type *Ty, const Twine &Name,
2034                              Instruction *InsertBefore)
2035   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2036   Op<0>() = S;
2037   setName(Name);
2038   AssertOK();
2039 }
2040 
2041 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2042                              Type *Ty, const Twine &Name,
2043                              BasicBlock *InsertAtEnd)
2044   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2045   Op<0>() = S;
2046   setName(Name);
2047   AssertOK();
2048 }
2049 
2050 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2051                                      const Twine &Name,
2052                                      Instruction *InsertBefore) {
2053   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2054 }
2055 
2056 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2057                                      const Twine &Name,
2058                                      BasicBlock *InsertAtEnd) {
2059   UnaryOperator *Res = Create(Op, S, Name);
2060   InsertAtEnd->getInstList().push_back(Res);
2061   return Res;
2062 }
2063 
2064 void UnaryOperator::AssertOK() {
2065   Value *LHS = getOperand(0);
2066   (void)LHS; // Silence warnings.
2067 #ifndef NDEBUG
2068   switch (getOpcode()) {
2069   case FNeg:
2070     assert(getType() == LHS->getType() &&
2071            "Unary operation should return same type as operand!");
2072     assert(getType()->isFPOrFPVectorTy() &&
2073            "Tried to create a floating-point operation on a "
2074            "non-floating-point type!");
2075     break;
2076   default: llvm_unreachable("Invalid opcode provided");
2077   }
2078 #endif
2079 }
2080 
2081 //===----------------------------------------------------------------------===//
2082 //                             BinaryOperator Class
2083 //===----------------------------------------------------------------------===//
2084 
2085 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2086                                Type *Ty, const Twine &Name,
2087                                Instruction *InsertBefore)
2088   : Instruction(Ty, iType,
2089                 OperandTraits<BinaryOperator>::op_begin(this),
2090                 OperandTraits<BinaryOperator>::operands(this),
2091                 InsertBefore) {
2092   Op<0>() = S1;
2093   Op<1>() = S2;
2094   setName(Name);
2095   AssertOK();
2096 }
2097 
2098 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2099                                Type *Ty, const Twine &Name,
2100                                BasicBlock *InsertAtEnd)
2101   : Instruction(Ty, iType,
2102                 OperandTraits<BinaryOperator>::op_begin(this),
2103                 OperandTraits<BinaryOperator>::operands(this),
2104                 InsertAtEnd) {
2105   Op<0>() = S1;
2106   Op<1>() = S2;
2107   setName(Name);
2108   AssertOK();
2109 }
2110 
2111 void BinaryOperator::AssertOK() {
2112   Value *LHS = getOperand(0), *RHS = getOperand(1);
2113   (void)LHS; (void)RHS; // Silence warnings.
2114   assert(LHS->getType() == RHS->getType() &&
2115          "Binary operator operand types must match!");
2116 #ifndef NDEBUG
2117   switch (getOpcode()) {
2118   case Add: case Sub:
2119   case Mul:
2120     assert(getType() == LHS->getType() &&
2121            "Arithmetic operation should return same type as operands!");
2122     assert(getType()->isIntOrIntVectorTy() &&
2123            "Tried to create an integer operation on a non-integer type!");
2124     break;
2125   case FAdd: case FSub:
2126   case FMul:
2127     assert(getType() == LHS->getType() &&
2128            "Arithmetic operation should return same type as operands!");
2129     assert(getType()->isFPOrFPVectorTy() &&
2130            "Tried to create a floating-point operation on a "
2131            "non-floating-point type!");
2132     break;
2133   case UDiv:
2134   case SDiv:
2135     assert(getType() == LHS->getType() &&
2136            "Arithmetic operation should return same type as operands!");
2137     assert(getType()->isIntOrIntVectorTy() &&
2138            "Incorrect operand type (not integer) for S/UDIV");
2139     break;
2140   case FDiv:
2141     assert(getType() == LHS->getType() &&
2142            "Arithmetic operation should return same type as operands!");
2143     assert(getType()->isFPOrFPVectorTy() &&
2144            "Incorrect operand type (not floating point) for FDIV");
2145     break;
2146   case URem:
2147   case SRem:
2148     assert(getType() == LHS->getType() &&
2149            "Arithmetic operation should return same type as operands!");
2150     assert(getType()->isIntOrIntVectorTy() &&
2151            "Incorrect operand type (not integer) for S/UREM");
2152     break;
2153   case FRem:
2154     assert(getType() == LHS->getType() &&
2155            "Arithmetic operation should return same type as operands!");
2156     assert(getType()->isFPOrFPVectorTy() &&
2157            "Incorrect operand type (not floating point) for FREM");
2158     break;
2159   case Shl:
2160   case LShr:
2161   case AShr:
2162     assert(getType() == LHS->getType() &&
2163            "Shift operation should return same type as operands!");
2164     assert(getType()->isIntOrIntVectorTy() &&
2165            "Tried to create a shift operation on a non-integral type!");
2166     break;
2167   case And: case Or:
2168   case Xor:
2169     assert(getType() == LHS->getType() &&
2170            "Logical operation should return same type as operands!");
2171     assert(getType()->isIntOrIntVectorTy() &&
2172            "Tried to create a logical operation on a non-integral type!");
2173     break;
2174   default: llvm_unreachable("Invalid opcode provided");
2175   }
2176 #endif
2177 }
2178 
2179 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2180                                        const Twine &Name,
2181                                        Instruction *InsertBefore) {
2182   assert(S1->getType() == S2->getType() &&
2183          "Cannot create binary operator with two operands of differing type!");
2184   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2185 }
2186 
2187 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2188                                        const Twine &Name,
2189                                        BasicBlock *InsertAtEnd) {
2190   BinaryOperator *Res = Create(Op, S1, S2, Name);
2191   InsertAtEnd->getInstList().push_back(Res);
2192   return Res;
2193 }
2194 
2195 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2196                                           Instruction *InsertBefore) {
2197   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2198   return new BinaryOperator(Instruction::Sub,
2199                             zero, Op,
2200                             Op->getType(), Name, InsertBefore);
2201 }
2202 
2203 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2204                                           BasicBlock *InsertAtEnd) {
2205   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2206   return new BinaryOperator(Instruction::Sub,
2207                             zero, Op,
2208                             Op->getType(), Name, InsertAtEnd);
2209 }
2210 
2211 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2212                                              Instruction *InsertBefore) {
2213   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2214   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2215 }
2216 
2217 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2218                                              BasicBlock *InsertAtEnd) {
2219   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2220   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2221 }
2222 
2223 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2224                                              Instruction *InsertBefore) {
2225   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2226   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2227 }
2228 
2229 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2230                                              BasicBlock *InsertAtEnd) {
2231   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2232   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2233 }
2234 
2235 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2236                                            Instruction *InsertBefore) {
2237   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2238   return new BinaryOperator(Instruction::FSub, zero, Op,
2239                             Op->getType(), Name, InsertBefore);
2240 }
2241 
2242 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2243                                            BasicBlock *InsertAtEnd) {
2244   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2245   return new BinaryOperator(Instruction::FSub, zero, Op,
2246                             Op->getType(), Name, InsertAtEnd);
2247 }
2248 
2249 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2250                                           Instruction *InsertBefore) {
2251   Constant *C = Constant::getAllOnesValue(Op->getType());
2252   return new BinaryOperator(Instruction::Xor, Op, C,
2253                             Op->getType(), Name, InsertBefore);
2254 }
2255 
2256 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2257                                           BasicBlock *InsertAtEnd) {
2258   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2259   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2260                             Op->getType(), Name, InsertAtEnd);
2261 }
2262 
2263 // Exchange the two operands to this instruction. This instruction is safe to
2264 // use on any binary instruction and does not modify the semantics of the
2265 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2266 // is changed.
2267 bool BinaryOperator::swapOperands() {
2268   if (!isCommutative())
2269     return true; // Can't commute operands
2270   Op<0>().swap(Op<1>());
2271   return false;
2272 }
2273 
2274 //===----------------------------------------------------------------------===//
2275 //                             FPMathOperator Class
2276 //===----------------------------------------------------------------------===//
2277 
2278 float FPMathOperator::getFPAccuracy() const {
2279   const MDNode *MD =
2280       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2281   if (!MD)
2282     return 0.0;
2283   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2284   return Accuracy->getValueAPF().convertToFloat();
2285 }
2286 
2287 //===----------------------------------------------------------------------===//
2288 //                                CastInst Class
2289 //===----------------------------------------------------------------------===//
2290 
2291 // Just determine if this cast only deals with integral->integral conversion.
2292 bool CastInst::isIntegerCast() const {
2293   switch (getOpcode()) {
2294     default: return false;
2295     case Instruction::ZExt:
2296     case Instruction::SExt:
2297     case Instruction::Trunc:
2298       return true;
2299     case Instruction::BitCast:
2300       return getOperand(0)->getType()->isIntegerTy() &&
2301         getType()->isIntegerTy();
2302   }
2303 }
2304 
2305 bool CastInst::isLosslessCast() const {
2306   // Only BitCast can be lossless, exit fast if we're not BitCast
2307   if (getOpcode() != Instruction::BitCast)
2308     return false;
2309 
2310   // Identity cast is always lossless
2311   Type *SrcTy = getOperand(0)->getType();
2312   Type *DstTy = getType();
2313   if (SrcTy == DstTy)
2314     return true;
2315 
2316   // Pointer to pointer is always lossless.
2317   if (SrcTy->isPointerTy())
2318     return DstTy->isPointerTy();
2319   return false;  // Other types have no identity values
2320 }
2321 
2322 /// This function determines if the CastInst does not require any bits to be
2323 /// changed in order to effect the cast. Essentially, it identifies cases where
2324 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2325 /// example, the following are all no-op casts:
2326 /// # bitcast i32* %x to i8*
2327 /// # bitcast <2 x i32> %x to <4 x i16>
2328 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2329 /// Determine if the described cast is a no-op.
2330 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2331                           Type *SrcTy,
2332                           Type *DestTy,
2333                           const DataLayout &DL) {
2334   switch (Opcode) {
2335     default: llvm_unreachable("Invalid CastOp");
2336     case Instruction::Trunc:
2337     case Instruction::ZExt:
2338     case Instruction::SExt:
2339     case Instruction::FPTrunc:
2340     case Instruction::FPExt:
2341     case Instruction::UIToFP:
2342     case Instruction::SIToFP:
2343     case Instruction::FPToUI:
2344     case Instruction::FPToSI:
2345     case Instruction::AddrSpaceCast:
2346       // TODO: Target informations may give a more accurate answer here.
2347       return false;
2348     case Instruction::BitCast:
2349       return true;  // BitCast never modifies bits.
2350     case Instruction::PtrToInt:
2351       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2352              DestTy->getScalarSizeInBits();
2353     case Instruction::IntToPtr:
2354       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2355              SrcTy->getScalarSizeInBits();
2356   }
2357 }
2358 
2359 bool CastInst::isNoopCast(const DataLayout &DL) const {
2360   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2361 }
2362 
2363 /// This function determines if a pair of casts can be eliminated and what
2364 /// opcode should be used in the elimination. This assumes that there are two
2365 /// instructions like this:
2366 /// *  %F = firstOpcode SrcTy %x to MidTy
2367 /// *  %S = secondOpcode MidTy %F to DstTy
2368 /// The function returns a resultOpcode so these two casts can be replaced with:
2369 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2370 /// If no such cast is permitted, the function returns 0.
2371 unsigned CastInst::isEliminableCastPair(
2372   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2373   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2374   Type *DstIntPtrTy) {
2375   // Define the 144 possibilities for these two cast instructions. The values
2376   // in this matrix determine what to do in a given situation and select the
2377   // case in the switch below.  The rows correspond to firstOp, the columns
2378   // correspond to secondOp.  In looking at the table below, keep in mind
2379   // the following cast properties:
2380   //
2381   //          Size Compare       Source               Destination
2382   // Operator  Src ? Size   Type       Sign         Type       Sign
2383   // -------- ------------ -------------------   ---------------------
2384   // TRUNC         >       Integer      Any        Integral     Any
2385   // ZEXT          <       Integral   Unsigned     Integer      Any
2386   // SEXT          <       Integral    Signed      Integer      Any
2387   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2388   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2389   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2390   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2391   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2392   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2393   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2394   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2395   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2396   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2397   //
2398   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2399   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2400   // into "fptoui double to i64", but this loses information about the range
2401   // of the produced value (we no longer know the top-part is all zeros).
2402   // Further this conversion is often much more expensive for typical hardware,
2403   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2404   // same reason.
2405   const unsigned numCastOps =
2406     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2407   static const uint8_t CastResults[numCastOps][numCastOps] = {
2408     // T        F  F  U  S  F  F  P  I  B  A  -+
2409     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2410     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2411     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2412     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2413     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2414     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2415     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2416     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2417     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2418     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2419     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2420     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2421     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2422     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2423     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2424     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2425     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2426   };
2427 
2428   // TODO: This logic could be encoded into the table above and handled in the
2429   // switch below.
2430   // If either of the casts are a bitcast from scalar to vector, disallow the
2431   // merging. However, any pair of bitcasts are allowed.
2432   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2433   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2434   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2435 
2436   // Check if any of the casts convert scalars <-> vectors.
2437   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2438       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2439     if (!AreBothBitcasts)
2440       return 0;
2441 
2442   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2443                             [secondOp-Instruction::CastOpsBegin];
2444   switch (ElimCase) {
2445     case 0:
2446       // Categorically disallowed.
2447       return 0;
2448     case 1:
2449       // Allowed, use first cast's opcode.
2450       return firstOp;
2451     case 2:
2452       // Allowed, use second cast's opcode.
2453       return secondOp;
2454     case 3:
2455       // No-op cast in second op implies firstOp as long as the DestTy
2456       // is integer and we are not converting between a vector and a
2457       // non-vector type.
2458       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2459         return firstOp;
2460       return 0;
2461     case 4:
2462       // No-op cast in second op implies firstOp as long as the DestTy
2463       // is floating point.
2464       if (DstTy->isFloatingPointTy())
2465         return firstOp;
2466       return 0;
2467     case 5:
2468       // No-op cast in first op implies secondOp as long as the SrcTy
2469       // is an integer.
2470       if (SrcTy->isIntegerTy())
2471         return secondOp;
2472       return 0;
2473     case 6:
2474       // No-op cast in first op implies secondOp as long as the SrcTy
2475       // is a floating point.
2476       if (SrcTy->isFloatingPointTy())
2477         return secondOp;
2478       return 0;
2479     case 7: {
2480       // Cannot simplify if address spaces are different!
2481       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2482         return 0;
2483 
2484       unsigned MidSize = MidTy->getScalarSizeInBits();
2485       // We can still fold this without knowing the actual sizes as long we
2486       // know that the intermediate pointer is the largest possible
2487       // pointer size.
2488       // FIXME: Is this always true?
2489       if (MidSize == 64)
2490         return Instruction::BitCast;
2491 
2492       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2493       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2494         return 0;
2495       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2496       if (MidSize >= PtrSize)
2497         return Instruction::BitCast;
2498       return 0;
2499     }
2500     case 8: {
2501       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2502       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2503       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2504       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2505       unsigned DstSize = DstTy->getScalarSizeInBits();
2506       if (SrcSize == DstSize)
2507         return Instruction::BitCast;
2508       else if (SrcSize < DstSize)
2509         return firstOp;
2510       return secondOp;
2511     }
2512     case 9:
2513       // zext, sext -> zext, because sext can't sign extend after zext
2514       return Instruction::ZExt;
2515     case 11: {
2516       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2517       if (!MidIntPtrTy)
2518         return 0;
2519       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2520       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2521       unsigned DstSize = DstTy->getScalarSizeInBits();
2522       if (SrcSize <= PtrSize && SrcSize == DstSize)
2523         return Instruction::BitCast;
2524       return 0;
2525     }
2526     case 12:
2527       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2528       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2529       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2530         return Instruction::AddrSpaceCast;
2531       return Instruction::BitCast;
2532     case 13:
2533       // FIXME: this state can be merged with (1), but the following assert
2534       // is useful to check the correcteness of the sequence due to semantic
2535       // change of bitcast.
2536       assert(
2537         SrcTy->isPtrOrPtrVectorTy() &&
2538         MidTy->isPtrOrPtrVectorTy() &&
2539         DstTy->isPtrOrPtrVectorTy() &&
2540         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2541         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2542         "Illegal addrspacecast, bitcast sequence!");
2543       // Allowed, use first cast's opcode
2544       return firstOp;
2545     case 14:
2546       // bitcast, addrspacecast -> addrspacecast if the element type of
2547       // bitcast's source is the same as that of addrspacecast's destination.
2548       if (SrcTy->getScalarType()->getPointerElementType() ==
2549           DstTy->getScalarType()->getPointerElementType())
2550         return Instruction::AddrSpaceCast;
2551       return 0;
2552     case 15:
2553       // FIXME: this state can be merged with (1), but the following assert
2554       // is useful to check the correcteness of the sequence due to semantic
2555       // change of bitcast.
2556       assert(
2557         SrcTy->isIntOrIntVectorTy() &&
2558         MidTy->isPtrOrPtrVectorTy() &&
2559         DstTy->isPtrOrPtrVectorTy() &&
2560         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2561         "Illegal inttoptr, bitcast sequence!");
2562       // Allowed, use first cast's opcode
2563       return firstOp;
2564     case 16:
2565       // FIXME: this state can be merged with (2), but the following assert
2566       // is useful to check the correcteness of the sequence due to semantic
2567       // change of bitcast.
2568       assert(
2569         SrcTy->isPtrOrPtrVectorTy() &&
2570         MidTy->isPtrOrPtrVectorTy() &&
2571         DstTy->isIntOrIntVectorTy() &&
2572         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2573         "Illegal bitcast, ptrtoint sequence!");
2574       // Allowed, use second cast's opcode
2575       return secondOp;
2576     case 17:
2577       // (sitofp (zext x)) -> (uitofp x)
2578       return Instruction::UIToFP;
2579     case 99:
2580       // Cast combination can't happen (error in input). This is for all cases
2581       // where the MidTy is not the same for the two cast instructions.
2582       llvm_unreachable("Invalid Cast Combination");
2583     default:
2584       llvm_unreachable("Error in CastResults table!!!");
2585   }
2586 }
2587 
2588 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2589   const Twine &Name, Instruction *InsertBefore) {
2590   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2591   // Construct and return the appropriate CastInst subclass
2592   switch (op) {
2593   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2594   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2595   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2596   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2597   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2598   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2599   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2600   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2601   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2602   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2603   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2604   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2605   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2606   default: llvm_unreachable("Invalid opcode provided");
2607   }
2608 }
2609 
2610 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2611   const Twine &Name, BasicBlock *InsertAtEnd) {
2612   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2613   // Construct and return the appropriate CastInst subclass
2614   switch (op) {
2615   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2616   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2617   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2618   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2619   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2620   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2621   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2622   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2623   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2624   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2625   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2626   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2627   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2628   default: llvm_unreachable("Invalid opcode provided");
2629   }
2630 }
2631 
2632 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2633                                         const Twine &Name,
2634                                         Instruction *InsertBefore) {
2635   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2636     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2637   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2638 }
2639 
2640 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2641                                         const Twine &Name,
2642                                         BasicBlock *InsertAtEnd) {
2643   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2644     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2645   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2646 }
2647 
2648 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2649                                         const Twine &Name,
2650                                         Instruction *InsertBefore) {
2651   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2652     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2653   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2654 }
2655 
2656 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2657                                         const Twine &Name,
2658                                         BasicBlock *InsertAtEnd) {
2659   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2660     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2661   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2662 }
2663 
2664 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2665                                          const Twine &Name,
2666                                          Instruction *InsertBefore) {
2667   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2668     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2669   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2670 }
2671 
2672 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2673                                          const Twine &Name,
2674                                          BasicBlock *InsertAtEnd) {
2675   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2676     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2677   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2678 }
2679 
2680 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2681                                       const Twine &Name,
2682                                       BasicBlock *InsertAtEnd) {
2683   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2684   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2685          "Invalid cast");
2686   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2687   assert((!Ty->isVectorTy() ||
2688           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2689          "Invalid cast");
2690 
2691   if (Ty->isIntOrIntVectorTy())
2692     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2693 
2694   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2695 }
2696 
2697 /// Create a BitCast or a PtrToInt cast instruction
2698 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2699                                       const Twine &Name,
2700                                       Instruction *InsertBefore) {
2701   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2702   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2703          "Invalid cast");
2704   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2705   assert((!Ty->isVectorTy() ||
2706           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2707          "Invalid cast");
2708 
2709   if (Ty->isIntOrIntVectorTy())
2710     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2711 
2712   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2713 }
2714 
2715 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2716   Value *S, Type *Ty,
2717   const Twine &Name,
2718   BasicBlock *InsertAtEnd) {
2719   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2720   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2721 
2722   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2723     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2724 
2725   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2726 }
2727 
2728 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2729   Value *S, Type *Ty,
2730   const Twine &Name,
2731   Instruction *InsertBefore) {
2732   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2733   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2734 
2735   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2736     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2737 
2738   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2739 }
2740 
2741 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2742                                            const Twine &Name,
2743                                            Instruction *InsertBefore) {
2744   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2745     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2746   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2747     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2748 
2749   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2750 }
2751 
2752 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2753                                       bool isSigned, const Twine &Name,
2754                                       Instruction *InsertBefore) {
2755   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2756          "Invalid integer cast");
2757   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2758   unsigned DstBits = Ty->getScalarSizeInBits();
2759   Instruction::CastOps opcode =
2760     (SrcBits == DstBits ? Instruction::BitCast :
2761      (SrcBits > DstBits ? Instruction::Trunc :
2762       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2763   return Create(opcode, C, Ty, Name, InsertBefore);
2764 }
2765 
2766 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2767                                       bool isSigned, const Twine &Name,
2768                                       BasicBlock *InsertAtEnd) {
2769   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2770          "Invalid cast");
2771   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2772   unsigned DstBits = Ty->getScalarSizeInBits();
2773   Instruction::CastOps opcode =
2774     (SrcBits == DstBits ? Instruction::BitCast :
2775      (SrcBits > DstBits ? Instruction::Trunc :
2776       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2777   return Create(opcode, C, Ty, Name, InsertAtEnd);
2778 }
2779 
2780 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2781                                  const Twine &Name,
2782                                  Instruction *InsertBefore) {
2783   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2784          "Invalid cast");
2785   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2786   unsigned DstBits = Ty->getScalarSizeInBits();
2787   Instruction::CastOps opcode =
2788     (SrcBits == DstBits ? Instruction::BitCast :
2789      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2790   return Create(opcode, C, Ty, Name, InsertBefore);
2791 }
2792 
2793 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2794                                  const Twine &Name,
2795                                  BasicBlock *InsertAtEnd) {
2796   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2797          "Invalid cast");
2798   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2799   unsigned DstBits = Ty->getScalarSizeInBits();
2800   Instruction::CastOps opcode =
2801     (SrcBits == DstBits ? Instruction::BitCast :
2802      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2803   return Create(opcode, C, Ty, Name, InsertAtEnd);
2804 }
2805 
2806 // Check whether it is valid to call getCastOpcode for these types.
2807 // This routine must be kept in sync with getCastOpcode.
2808 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2809   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2810     return false;
2811 
2812   if (SrcTy == DestTy)
2813     return true;
2814 
2815   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2816     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2817       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2818         // An element by element cast.  Valid if casting the elements is valid.
2819         SrcTy = SrcVecTy->getElementType();
2820         DestTy = DestVecTy->getElementType();
2821       }
2822 
2823   // Get the bit sizes, we'll need these
2824   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2825   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2826 
2827   // Run through the possibilities ...
2828   if (DestTy->isIntegerTy()) {               // Casting to integral
2829     if (SrcTy->isIntegerTy())                // Casting from integral
2830         return true;
2831     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2832       return true;
2833     if (SrcTy->isVectorTy())          // Casting from vector
2834       return DestBits == SrcBits;
2835                                       // Casting from something else
2836     return SrcTy->isPointerTy();
2837   }
2838   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2839     if (SrcTy->isIntegerTy())                // Casting from integral
2840       return true;
2841     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2842       return true;
2843     if (SrcTy->isVectorTy())          // Casting from vector
2844       return DestBits == SrcBits;
2845                                     // Casting from something else
2846     return false;
2847   }
2848   if (DestTy->isVectorTy())         // Casting to vector
2849     return DestBits == SrcBits;
2850   if (DestTy->isPointerTy()) {        // Casting to pointer
2851     if (SrcTy->isPointerTy())                // Casting from pointer
2852       return true;
2853     return SrcTy->isIntegerTy();             // Casting from integral
2854   }
2855   if (DestTy->isX86_MMXTy()) {
2856     if (SrcTy->isVectorTy())
2857       return DestBits == SrcBits;       // 64-bit vector to MMX
2858     return false;
2859   }                                    // Casting to something else
2860   return false;
2861 }
2862 
2863 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2864   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2865     return false;
2866 
2867   if (SrcTy == DestTy)
2868     return true;
2869 
2870   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2871     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2872       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2873         // An element by element cast. Valid if casting the elements is valid.
2874         SrcTy = SrcVecTy->getElementType();
2875         DestTy = DestVecTy->getElementType();
2876       }
2877     }
2878   }
2879 
2880   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2881     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2882       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2883     }
2884   }
2885 
2886   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2887   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2888 
2889   // Could still have vectors of pointers if the number of elements doesn't
2890   // match
2891   if (SrcBits == 0 || DestBits == 0)
2892     return false;
2893 
2894   if (SrcBits != DestBits)
2895     return false;
2896 
2897   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2898     return false;
2899 
2900   return true;
2901 }
2902 
2903 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2904                                           const DataLayout &DL) {
2905   // ptrtoint and inttoptr are not allowed on non-integral pointers
2906   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2907     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2908       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2909               !DL.isNonIntegralPointerType(PtrTy));
2910   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2911     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2912       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2913               !DL.isNonIntegralPointerType(PtrTy));
2914 
2915   return isBitCastable(SrcTy, DestTy);
2916 }
2917 
2918 // Provide a way to get a "cast" where the cast opcode is inferred from the
2919 // types and size of the operand. This, basically, is a parallel of the
2920 // logic in the castIsValid function below.  This axiom should hold:
2921 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2922 // should not assert in castIsValid. In other words, this produces a "correct"
2923 // casting opcode for the arguments passed to it.
2924 // This routine must be kept in sync with isCastable.
2925 Instruction::CastOps
2926 CastInst::getCastOpcode(
2927   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2928   Type *SrcTy = Src->getType();
2929 
2930   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2931          "Only first class types are castable!");
2932 
2933   if (SrcTy == DestTy)
2934     return BitCast;
2935 
2936   // FIXME: Check address space sizes here
2937   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2938     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2939       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2940         // An element by element cast.  Find the appropriate opcode based on the
2941         // element types.
2942         SrcTy = SrcVecTy->getElementType();
2943         DestTy = DestVecTy->getElementType();
2944       }
2945 
2946   // Get the bit sizes, we'll need these
2947   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2948   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2949 
2950   // Run through the possibilities ...
2951   if (DestTy->isIntegerTy()) {                      // Casting to integral
2952     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2953       if (DestBits < SrcBits)
2954         return Trunc;                               // int -> smaller int
2955       else if (DestBits > SrcBits) {                // its an extension
2956         if (SrcIsSigned)
2957           return SExt;                              // signed -> SEXT
2958         else
2959           return ZExt;                              // unsigned -> ZEXT
2960       } else {
2961         return BitCast;                             // Same size, No-op cast
2962       }
2963     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2964       if (DestIsSigned)
2965         return FPToSI;                              // FP -> sint
2966       else
2967         return FPToUI;                              // FP -> uint
2968     } else if (SrcTy->isVectorTy()) {
2969       assert(DestBits == SrcBits &&
2970              "Casting vector to integer of different width");
2971       return BitCast;                             // Same size, no-op cast
2972     } else {
2973       assert(SrcTy->isPointerTy() &&
2974              "Casting from a value that is not first-class type");
2975       return PtrToInt;                              // ptr -> int
2976     }
2977   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2978     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2979       if (SrcIsSigned)
2980         return SIToFP;                              // sint -> FP
2981       else
2982         return UIToFP;                              // uint -> FP
2983     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2984       if (DestBits < SrcBits) {
2985         return FPTrunc;                             // FP -> smaller FP
2986       } else if (DestBits > SrcBits) {
2987         return FPExt;                               // FP -> larger FP
2988       } else  {
2989         return BitCast;                             // same size, no-op cast
2990       }
2991     } else if (SrcTy->isVectorTy()) {
2992       assert(DestBits == SrcBits &&
2993              "Casting vector to floating point of different width");
2994       return BitCast;                             // same size, no-op cast
2995     }
2996     llvm_unreachable("Casting pointer or non-first class to float");
2997   } else if (DestTy->isVectorTy()) {
2998     assert(DestBits == SrcBits &&
2999            "Illegal cast to vector (wrong type or size)");
3000     return BitCast;
3001   } else if (DestTy->isPointerTy()) {
3002     if (SrcTy->isPointerTy()) {
3003       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3004         return AddrSpaceCast;
3005       return BitCast;                               // ptr -> ptr
3006     } else if (SrcTy->isIntegerTy()) {
3007       return IntToPtr;                              // int -> ptr
3008     }
3009     llvm_unreachable("Casting pointer to other than pointer or int");
3010   } else if (DestTy->isX86_MMXTy()) {
3011     if (SrcTy->isVectorTy()) {
3012       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3013       return BitCast;                               // 64-bit vector to MMX
3014     }
3015     llvm_unreachable("Illegal cast to X86_MMX");
3016   }
3017   llvm_unreachable("Casting to type that is not first-class");
3018 }
3019 
3020 //===----------------------------------------------------------------------===//
3021 //                    CastInst SubClass Constructors
3022 //===----------------------------------------------------------------------===//
3023 
3024 /// Check that the construction parameters for a CastInst are correct. This
3025 /// could be broken out into the separate constructors but it is useful to have
3026 /// it in one place and to eliminate the redundant code for getting the sizes
3027 /// of the types involved.
3028 bool
3029 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3030   // Check for type sanity on the arguments
3031   Type *SrcTy = S->getType();
3032 
3033   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3034       SrcTy->isAggregateType() || DstTy->isAggregateType())
3035     return false;
3036 
3037   // Get the size of the types in bits, we'll need this later
3038   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3039   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3040 
3041   // If these are vector types, get the lengths of the vectors (using zero for
3042   // scalar types means that checking that vector lengths match also checks that
3043   // scalars are not being converted to vectors or vectors to scalars).
3044   unsigned SrcLength = SrcTy->isVectorTy() ?
3045     cast<VectorType>(SrcTy)->getNumElements() : 0;
3046   unsigned DstLength = DstTy->isVectorTy() ?
3047     cast<VectorType>(DstTy)->getNumElements() : 0;
3048 
3049   // Switch on the opcode provided
3050   switch (op) {
3051   default: return false; // This is an input error
3052   case Instruction::Trunc:
3053     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3054       SrcLength == DstLength && SrcBitSize > DstBitSize;
3055   case Instruction::ZExt:
3056     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3057       SrcLength == DstLength && SrcBitSize < DstBitSize;
3058   case Instruction::SExt:
3059     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3060       SrcLength == DstLength && SrcBitSize < DstBitSize;
3061   case Instruction::FPTrunc:
3062     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3063       SrcLength == DstLength && SrcBitSize > DstBitSize;
3064   case Instruction::FPExt:
3065     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3066       SrcLength == DstLength && SrcBitSize < DstBitSize;
3067   case Instruction::UIToFP:
3068   case Instruction::SIToFP:
3069     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3070       SrcLength == DstLength;
3071   case Instruction::FPToUI:
3072   case Instruction::FPToSI:
3073     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3074       SrcLength == DstLength;
3075   case Instruction::PtrToInt:
3076     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3077       return false;
3078     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3079       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3080         return false;
3081     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3082   case Instruction::IntToPtr:
3083     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3084       return false;
3085     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3086       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3087         return false;
3088     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3089   case Instruction::BitCast: {
3090     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3091     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3092 
3093     // BitCast implies a no-op cast of type only. No bits change.
3094     // However, you can't cast pointers to anything but pointers.
3095     if (!SrcPtrTy != !DstPtrTy)
3096       return false;
3097 
3098     // For non-pointer cases, the cast is okay if the source and destination bit
3099     // widths are identical.
3100     if (!SrcPtrTy)
3101       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3102 
3103     // If both are pointers then the address spaces must match.
3104     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3105       return false;
3106 
3107     // A vector of pointers must have the same number of elements.
3108     VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3109     VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3110     if (SrcVecTy && DstVecTy)
3111       return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3112     if (SrcVecTy)
3113       return SrcVecTy->getNumElements() == 1;
3114     if (DstVecTy)
3115       return DstVecTy->getNumElements() == 1;
3116 
3117     return true;
3118   }
3119   case Instruction::AddrSpaceCast: {
3120     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3121     if (!SrcPtrTy)
3122       return false;
3123 
3124     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3125     if (!DstPtrTy)
3126       return false;
3127 
3128     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3129       return false;
3130 
3131     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3132       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3133         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3134 
3135       return false;
3136     }
3137 
3138     return true;
3139   }
3140   }
3141 }
3142 
3143 TruncInst::TruncInst(
3144   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3145 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3146   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3147 }
3148 
3149 TruncInst::TruncInst(
3150   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3151 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3152   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3153 }
3154 
3155 ZExtInst::ZExtInst(
3156   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3157 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3158   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3159 }
3160 
3161 ZExtInst::ZExtInst(
3162   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3163 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3164   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3165 }
3166 SExtInst::SExtInst(
3167   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3168 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3169   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3170 }
3171 
3172 SExtInst::SExtInst(
3173   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3174 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3175   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3176 }
3177 
3178 FPTruncInst::FPTruncInst(
3179   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3180 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3181   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3182 }
3183 
3184 FPTruncInst::FPTruncInst(
3185   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3186 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3187   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3188 }
3189 
3190 FPExtInst::FPExtInst(
3191   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3192 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3193   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3194 }
3195 
3196 FPExtInst::FPExtInst(
3197   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3198 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3199   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3200 }
3201 
3202 UIToFPInst::UIToFPInst(
3203   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3204 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3205   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3206 }
3207 
3208 UIToFPInst::UIToFPInst(
3209   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3210 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3211   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3212 }
3213 
3214 SIToFPInst::SIToFPInst(
3215   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3216 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3217   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3218 }
3219 
3220 SIToFPInst::SIToFPInst(
3221   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3222 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3223   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3224 }
3225 
3226 FPToUIInst::FPToUIInst(
3227   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3228 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3229   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3230 }
3231 
3232 FPToUIInst::FPToUIInst(
3233   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3234 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3235   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3236 }
3237 
3238 FPToSIInst::FPToSIInst(
3239   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3240 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3241   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3242 }
3243 
3244 FPToSIInst::FPToSIInst(
3245   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3246 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3247   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3248 }
3249 
3250 PtrToIntInst::PtrToIntInst(
3251   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3252 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3253   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3254 }
3255 
3256 PtrToIntInst::PtrToIntInst(
3257   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3258 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3259   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3260 }
3261 
3262 IntToPtrInst::IntToPtrInst(
3263   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3264 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3265   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3266 }
3267 
3268 IntToPtrInst::IntToPtrInst(
3269   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3270 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3271   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3272 }
3273 
3274 BitCastInst::BitCastInst(
3275   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3276 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3277   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3278 }
3279 
3280 BitCastInst::BitCastInst(
3281   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3282 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3283   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3284 }
3285 
3286 AddrSpaceCastInst::AddrSpaceCastInst(
3287   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3288 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3289   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3290 }
3291 
3292 AddrSpaceCastInst::AddrSpaceCastInst(
3293   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3294 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3295   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3296 }
3297 
3298 //===----------------------------------------------------------------------===//
3299 //                               CmpInst Classes
3300 //===----------------------------------------------------------------------===//
3301 
3302 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3303                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3304                  Instruction *FlagsSource)
3305   : Instruction(ty, op,
3306                 OperandTraits<CmpInst>::op_begin(this),
3307                 OperandTraits<CmpInst>::operands(this),
3308                 InsertBefore) {
3309   Op<0>() = LHS;
3310   Op<1>() = RHS;
3311   setPredicate((Predicate)predicate);
3312   setName(Name);
3313   if (FlagsSource)
3314     copyIRFlags(FlagsSource);
3315 }
3316 
3317 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3318                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3319   : Instruction(ty, op,
3320                 OperandTraits<CmpInst>::op_begin(this),
3321                 OperandTraits<CmpInst>::operands(this),
3322                 InsertAtEnd) {
3323   Op<0>() = LHS;
3324   Op<1>() = RHS;
3325   setPredicate((Predicate)predicate);
3326   setName(Name);
3327 }
3328 
3329 CmpInst *
3330 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3331                 const Twine &Name, Instruction *InsertBefore) {
3332   if (Op == Instruction::ICmp) {
3333     if (InsertBefore)
3334       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3335                           S1, S2, Name);
3336     else
3337       return new ICmpInst(CmpInst::Predicate(predicate),
3338                           S1, S2, Name);
3339   }
3340 
3341   if (InsertBefore)
3342     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3343                         S1, S2, Name);
3344   else
3345     return new FCmpInst(CmpInst::Predicate(predicate),
3346                         S1, S2, Name);
3347 }
3348 
3349 CmpInst *
3350 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3351                 const Twine &Name, BasicBlock *InsertAtEnd) {
3352   if (Op == Instruction::ICmp) {
3353     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3354                         S1, S2, Name);
3355   }
3356   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3357                       S1, S2, Name);
3358 }
3359 
3360 void CmpInst::swapOperands() {
3361   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3362     IC->swapOperands();
3363   else
3364     cast<FCmpInst>(this)->swapOperands();
3365 }
3366 
3367 bool CmpInst::isCommutative() const {
3368   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3369     return IC->isCommutative();
3370   return cast<FCmpInst>(this)->isCommutative();
3371 }
3372 
3373 bool CmpInst::isEquality() const {
3374   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3375     return IC->isEquality();
3376   return cast<FCmpInst>(this)->isEquality();
3377 }
3378 
3379 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3380   switch (pred) {
3381     default: llvm_unreachable("Unknown cmp predicate!");
3382     case ICMP_EQ: return ICMP_NE;
3383     case ICMP_NE: return ICMP_EQ;
3384     case ICMP_UGT: return ICMP_ULE;
3385     case ICMP_ULT: return ICMP_UGE;
3386     case ICMP_UGE: return ICMP_ULT;
3387     case ICMP_ULE: return ICMP_UGT;
3388     case ICMP_SGT: return ICMP_SLE;
3389     case ICMP_SLT: return ICMP_SGE;
3390     case ICMP_SGE: return ICMP_SLT;
3391     case ICMP_SLE: return ICMP_SGT;
3392 
3393     case FCMP_OEQ: return FCMP_UNE;
3394     case FCMP_ONE: return FCMP_UEQ;
3395     case FCMP_OGT: return FCMP_ULE;
3396     case FCMP_OLT: return FCMP_UGE;
3397     case FCMP_OGE: return FCMP_ULT;
3398     case FCMP_OLE: return FCMP_UGT;
3399     case FCMP_UEQ: return FCMP_ONE;
3400     case FCMP_UNE: return FCMP_OEQ;
3401     case FCMP_UGT: return FCMP_OLE;
3402     case FCMP_ULT: return FCMP_OGE;
3403     case FCMP_UGE: return FCMP_OLT;
3404     case FCMP_ULE: return FCMP_OGT;
3405     case FCMP_ORD: return FCMP_UNO;
3406     case FCMP_UNO: return FCMP_ORD;
3407     case FCMP_TRUE: return FCMP_FALSE;
3408     case FCMP_FALSE: return FCMP_TRUE;
3409   }
3410 }
3411 
3412 StringRef CmpInst::getPredicateName(Predicate Pred) {
3413   switch (Pred) {
3414   default:                   return "unknown";
3415   case FCmpInst::FCMP_FALSE: return "false";
3416   case FCmpInst::FCMP_OEQ:   return "oeq";
3417   case FCmpInst::FCMP_OGT:   return "ogt";
3418   case FCmpInst::FCMP_OGE:   return "oge";
3419   case FCmpInst::FCMP_OLT:   return "olt";
3420   case FCmpInst::FCMP_OLE:   return "ole";
3421   case FCmpInst::FCMP_ONE:   return "one";
3422   case FCmpInst::FCMP_ORD:   return "ord";
3423   case FCmpInst::FCMP_UNO:   return "uno";
3424   case FCmpInst::FCMP_UEQ:   return "ueq";
3425   case FCmpInst::FCMP_UGT:   return "ugt";
3426   case FCmpInst::FCMP_UGE:   return "uge";
3427   case FCmpInst::FCMP_ULT:   return "ult";
3428   case FCmpInst::FCMP_ULE:   return "ule";
3429   case FCmpInst::FCMP_UNE:   return "une";
3430   case FCmpInst::FCMP_TRUE:  return "true";
3431   case ICmpInst::ICMP_EQ:    return "eq";
3432   case ICmpInst::ICMP_NE:    return "ne";
3433   case ICmpInst::ICMP_SGT:   return "sgt";
3434   case ICmpInst::ICMP_SGE:   return "sge";
3435   case ICmpInst::ICMP_SLT:   return "slt";
3436   case ICmpInst::ICMP_SLE:   return "sle";
3437   case ICmpInst::ICMP_UGT:   return "ugt";
3438   case ICmpInst::ICMP_UGE:   return "uge";
3439   case ICmpInst::ICMP_ULT:   return "ult";
3440   case ICmpInst::ICMP_ULE:   return "ule";
3441   }
3442 }
3443 
3444 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3445   switch (pred) {
3446     default: llvm_unreachable("Unknown icmp predicate!");
3447     case ICMP_EQ: case ICMP_NE:
3448     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3449        return pred;
3450     case ICMP_UGT: return ICMP_SGT;
3451     case ICMP_ULT: return ICMP_SLT;
3452     case ICMP_UGE: return ICMP_SGE;
3453     case ICMP_ULE: return ICMP_SLE;
3454   }
3455 }
3456 
3457 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3458   switch (pred) {
3459     default: llvm_unreachable("Unknown icmp predicate!");
3460     case ICMP_EQ: case ICMP_NE:
3461     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3462        return pred;
3463     case ICMP_SGT: return ICMP_UGT;
3464     case ICMP_SLT: return ICMP_ULT;
3465     case ICMP_SGE: return ICMP_UGE;
3466     case ICMP_SLE: return ICMP_ULE;
3467   }
3468 }
3469 
3470 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3471   switch (pred) {
3472     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3473     case ICMP_SGT: return ICMP_SGE;
3474     case ICMP_SLT: return ICMP_SLE;
3475     case ICMP_SGE: return ICMP_SGT;
3476     case ICMP_SLE: return ICMP_SLT;
3477     case ICMP_UGT: return ICMP_UGE;
3478     case ICMP_ULT: return ICMP_ULE;
3479     case ICMP_UGE: return ICMP_UGT;
3480     case ICMP_ULE: return ICMP_ULT;
3481 
3482     case FCMP_OGT: return FCMP_OGE;
3483     case FCMP_OLT: return FCMP_OLE;
3484     case FCMP_OGE: return FCMP_OGT;
3485     case FCMP_OLE: return FCMP_OLT;
3486     case FCMP_UGT: return FCMP_UGE;
3487     case FCMP_ULT: return FCMP_ULE;
3488     case FCMP_UGE: return FCMP_UGT;
3489     case FCMP_ULE: return FCMP_ULT;
3490   }
3491 }
3492 
3493 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3494   switch (pred) {
3495     default: llvm_unreachable("Unknown cmp predicate!");
3496     case ICMP_EQ: case ICMP_NE:
3497       return pred;
3498     case ICMP_SGT: return ICMP_SLT;
3499     case ICMP_SLT: return ICMP_SGT;
3500     case ICMP_SGE: return ICMP_SLE;
3501     case ICMP_SLE: return ICMP_SGE;
3502     case ICMP_UGT: return ICMP_ULT;
3503     case ICMP_ULT: return ICMP_UGT;
3504     case ICMP_UGE: return ICMP_ULE;
3505     case ICMP_ULE: return ICMP_UGE;
3506 
3507     case FCMP_FALSE: case FCMP_TRUE:
3508     case FCMP_OEQ: case FCMP_ONE:
3509     case FCMP_UEQ: case FCMP_UNE:
3510     case FCMP_ORD: case FCMP_UNO:
3511       return pred;
3512     case FCMP_OGT: return FCMP_OLT;
3513     case FCMP_OLT: return FCMP_OGT;
3514     case FCMP_OGE: return FCMP_OLE;
3515     case FCMP_OLE: return FCMP_OGE;
3516     case FCMP_UGT: return FCMP_ULT;
3517     case FCMP_ULT: return FCMP_UGT;
3518     case FCMP_UGE: return FCMP_ULE;
3519     case FCMP_ULE: return FCMP_UGE;
3520   }
3521 }
3522 
3523 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3524   switch (pred) {
3525   case ICMP_SGT: return ICMP_SGE;
3526   case ICMP_SLT: return ICMP_SLE;
3527   case ICMP_UGT: return ICMP_UGE;
3528   case ICMP_ULT: return ICMP_ULE;
3529   case FCMP_OGT: return FCMP_OGE;
3530   case FCMP_OLT: return FCMP_OLE;
3531   case FCMP_UGT: return FCMP_UGE;
3532   case FCMP_ULT: return FCMP_ULE;
3533   default: return pred;
3534   }
3535 }
3536 
3537 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3538   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3539 
3540   switch (pred) {
3541   default:
3542     llvm_unreachable("Unknown predicate!");
3543   case CmpInst::ICMP_ULT:
3544     return CmpInst::ICMP_SLT;
3545   case CmpInst::ICMP_ULE:
3546     return CmpInst::ICMP_SLE;
3547   case CmpInst::ICMP_UGT:
3548     return CmpInst::ICMP_SGT;
3549   case CmpInst::ICMP_UGE:
3550     return CmpInst::ICMP_SGE;
3551   }
3552 }
3553 
3554 bool CmpInst::isUnsigned(Predicate predicate) {
3555   switch (predicate) {
3556     default: return false;
3557     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3558     case ICmpInst::ICMP_UGE: return true;
3559   }
3560 }
3561 
3562 bool CmpInst::isSigned(Predicate predicate) {
3563   switch (predicate) {
3564     default: return false;
3565     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3566     case ICmpInst::ICMP_SGE: return true;
3567   }
3568 }
3569 
3570 bool CmpInst::isOrdered(Predicate predicate) {
3571   switch (predicate) {
3572     default: return false;
3573     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3574     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3575     case FCmpInst::FCMP_ORD: return true;
3576   }
3577 }
3578 
3579 bool CmpInst::isUnordered(Predicate predicate) {
3580   switch (predicate) {
3581     default: return false;
3582     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3583     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3584     case FCmpInst::FCMP_UNO: return true;
3585   }
3586 }
3587 
3588 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3589   switch(predicate) {
3590     default: return false;
3591     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3592     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3593   }
3594 }
3595 
3596 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3597   switch(predicate) {
3598   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3599   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3600   default: return false;
3601   }
3602 }
3603 
3604 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3605   // If the predicates match, then we know the first condition implies the
3606   // second is true.
3607   if (Pred1 == Pred2)
3608     return true;
3609 
3610   switch (Pred1) {
3611   default:
3612     break;
3613   case ICMP_EQ:
3614     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3615     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3616            Pred2 == ICMP_SLE;
3617   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3618     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3619   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3620     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3621   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3622     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3623   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3624     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3625   }
3626   return false;
3627 }
3628 
3629 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3630   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3631 }
3632 
3633 //===----------------------------------------------------------------------===//
3634 //                        SwitchInst Implementation
3635 //===----------------------------------------------------------------------===//
3636 
3637 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3638   assert(Value && Default && NumReserved);
3639   ReservedSpace = NumReserved;
3640   setNumHungOffUseOperands(2);
3641   allocHungoffUses(ReservedSpace);
3642 
3643   Op<0>() = Value;
3644   Op<1>() = Default;
3645 }
3646 
3647 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3648 /// switch on and a default destination.  The number of additional cases can
3649 /// be specified here to make memory allocation more efficient.  This
3650 /// constructor can also autoinsert before another instruction.
3651 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3652                        Instruction *InsertBefore)
3653     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3654                   nullptr, 0, InsertBefore) {
3655   init(Value, Default, 2+NumCases*2);
3656 }
3657 
3658 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3659 /// switch on and a default destination.  The number of additional cases can
3660 /// be specified here to make memory allocation more efficient.  This
3661 /// constructor also autoinserts at the end of the specified BasicBlock.
3662 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3663                        BasicBlock *InsertAtEnd)
3664     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3665                   nullptr, 0, InsertAtEnd) {
3666   init(Value, Default, 2+NumCases*2);
3667 }
3668 
3669 SwitchInst::SwitchInst(const SwitchInst &SI)
3670     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3671   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3672   setNumHungOffUseOperands(SI.getNumOperands());
3673   Use *OL = getOperandList();
3674   const Use *InOL = SI.getOperandList();
3675   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3676     OL[i] = InOL[i];
3677     OL[i+1] = InOL[i+1];
3678   }
3679   SubclassOptionalData = SI.SubclassOptionalData;
3680 }
3681 
3682 /// addCase - Add an entry to the switch instruction...
3683 ///
3684 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3685   unsigned NewCaseIdx = getNumCases();
3686   unsigned OpNo = getNumOperands();
3687   if (OpNo+2 > ReservedSpace)
3688     growOperands();  // Get more space!
3689   // Initialize some new operands.
3690   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3691   setNumHungOffUseOperands(OpNo+2);
3692   CaseHandle Case(this, NewCaseIdx);
3693   Case.setValue(OnVal);
3694   Case.setSuccessor(Dest);
3695 }
3696 
3697 /// removeCase - This method removes the specified case and its successor
3698 /// from the switch instruction.
3699 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3700   unsigned idx = I->getCaseIndex();
3701 
3702   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3703 
3704   unsigned NumOps = getNumOperands();
3705   Use *OL = getOperandList();
3706 
3707   // Overwrite this case with the end of the list.
3708   if (2 + (idx + 1) * 2 != NumOps) {
3709     OL[2 + idx * 2] = OL[NumOps - 2];
3710     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3711   }
3712 
3713   // Nuke the last value.
3714   OL[NumOps-2].set(nullptr);
3715   OL[NumOps-2+1].set(nullptr);
3716   setNumHungOffUseOperands(NumOps-2);
3717 
3718   return CaseIt(this, idx);
3719 }
3720 
3721 /// growOperands - grow operands - This grows the operand list in response
3722 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3723 ///
3724 void SwitchInst::growOperands() {
3725   unsigned e = getNumOperands();
3726   unsigned NumOps = e*3;
3727 
3728   ReservedSpace = NumOps;
3729   growHungoffUses(ReservedSpace);
3730 }
3731 
3732 //===----------------------------------------------------------------------===//
3733 //                        IndirectBrInst Implementation
3734 //===----------------------------------------------------------------------===//
3735 
3736 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3737   assert(Address && Address->getType()->isPointerTy() &&
3738          "Address of indirectbr must be a pointer");
3739   ReservedSpace = 1+NumDests;
3740   setNumHungOffUseOperands(1);
3741   allocHungoffUses(ReservedSpace);
3742 
3743   Op<0>() = Address;
3744 }
3745 
3746 
3747 /// growOperands - grow operands - This grows the operand list in response
3748 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3749 ///
3750 void IndirectBrInst::growOperands() {
3751   unsigned e = getNumOperands();
3752   unsigned NumOps = e*2;
3753 
3754   ReservedSpace = NumOps;
3755   growHungoffUses(ReservedSpace);
3756 }
3757 
3758 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3759                                Instruction *InsertBefore)
3760     : Instruction(Type::getVoidTy(Address->getContext()),
3761                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
3762   init(Address, NumCases);
3763 }
3764 
3765 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3766                                BasicBlock *InsertAtEnd)
3767     : Instruction(Type::getVoidTy(Address->getContext()),
3768                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
3769   init(Address, NumCases);
3770 }
3771 
3772 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3773     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3774                   nullptr, IBI.getNumOperands()) {
3775   allocHungoffUses(IBI.getNumOperands());
3776   Use *OL = getOperandList();
3777   const Use *InOL = IBI.getOperandList();
3778   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3779     OL[i] = InOL[i];
3780   SubclassOptionalData = IBI.SubclassOptionalData;
3781 }
3782 
3783 /// addDestination - Add a destination.
3784 ///
3785 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3786   unsigned OpNo = getNumOperands();
3787   if (OpNo+1 > ReservedSpace)
3788     growOperands();  // Get more space!
3789   // Initialize some new operands.
3790   assert(OpNo < ReservedSpace && "Growing didn't work!");
3791   setNumHungOffUseOperands(OpNo+1);
3792   getOperandList()[OpNo] = DestBB;
3793 }
3794 
3795 /// removeDestination - This method removes the specified successor from the
3796 /// indirectbr instruction.
3797 void IndirectBrInst::removeDestination(unsigned idx) {
3798   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3799 
3800   unsigned NumOps = getNumOperands();
3801   Use *OL = getOperandList();
3802 
3803   // Replace this value with the last one.
3804   OL[idx+1] = OL[NumOps-1];
3805 
3806   // Nuke the last value.
3807   OL[NumOps-1].set(nullptr);
3808   setNumHungOffUseOperands(NumOps-1);
3809 }
3810 
3811 //===----------------------------------------------------------------------===//
3812 //                           cloneImpl() implementations
3813 //===----------------------------------------------------------------------===//
3814 
3815 // Define these methods here so vtables don't get emitted into every translation
3816 // unit that uses these classes.
3817 
3818 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3819   return new (getNumOperands()) GetElementPtrInst(*this);
3820 }
3821 
3822 UnaryOperator *UnaryOperator::cloneImpl() const {
3823   return Create(getOpcode(), Op<0>());
3824 }
3825 
3826 BinaryOperator *BinaryOperator::cloneImpl() const {
3827   return Create(getOpcode(), Op<0>(), Op<1>());
3828 }
3829 
3830 FCmpInst *FCmpInst::cloneImpl() const {
3831   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3832 }
3833 
3834 ICmpInst *ICmpInst::cloneImpl() const {
3835   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3836 }
3837 
3838 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3839   return new ExtractValueInst(*this);
3840 }
3841 
3842 InsertValueInst *InsertValueInst::cloneImpl() const {
3843   return new InsertValueInst(*this);
3844 }
3845 
3846 AllocaInst *AllocaInst::cloneImpl() const {
3847   AllocaInst *Result = new AllocaInst(getAllocatedType(),
3848                                       getType()->getAddressSpace(),
3849                                       (Value *)getOperand(0), getAlignment());
3850   Result->setUsedWithInAlloca(isUsedWithInAlloca());
3851   Result->setSwiftError(isSwiftError());
3852   return Result;
3853 }
3854 
3855 LoadInst *LoadInst::cloneImpl() const {
3856   return new LoadInst(getOperand(0), Twine(), isVolatile(),
3857                       getAlignment(), getOrdering(), getSyncScopeID());
3858 }
3859 
3860 StoreInst *StoreInst::cloneImpl() const {
3861   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3862                        getAlignment(), getOrdering(), getSyncScopeID());
3863 
3864 }
3865 
3866 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3867   AtomicCmpXchgInst *Result =
3868     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3869                           getSuccessOrdering(), getFailureOrdering(),
3870                           getSyncScopeID());
3871   Result->setVolatile(isVolatile());
3872   Result->setWeak(isWeak());
3873   return Result;
3874 }
3875 
3876 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3877   AtomicRMWInst *Result =
3878     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3879                       getOrdering(), getSyncScopeID());
3880   Result->setVolatile(isVolatile());
3881   return Result;
3882 }
3883 
3884 FenceInst *FenceInst::cloneImpl() const {
3885   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3886 }
3887 
3888 TruncInst *TruncInst::cloneImpl() const {
3889   return new TruncInst(getOperand(0), getType());
3890 }
3891 
3892 ZExtInst *ZExtInst::cloneImpl() const {
3893   return new ZExtInst(getOperand(0), getType());
3894 }
3895 
3896 SExtInst *SExtInst::cloneImpl() const {
3897   return new SExtInst(getOperand(0), getType());
3898 }
3899 
3900 FPTruncInst *FPTruncInst::cloneImpl() const {
3901   return new FPTruncInst(getOperand(0), getType());
3902 }
3903 
3904 FPExtInst *FPExtInst::cloneImpl() const {
3905   return new FPExtInst(getOperand(0), getType());
3906 }
3907 
3908 UIToFPInst *UIToFPInst::cloneImpl() const {
3909   return new UIToFPInst(getOperand(0), getType());
3910 }
3911 
3912 SIToFPInst *SIToFPInst::cloneImpl() const {
3913   return new SIToFPInst(getOperand(0), getType());
3914 }
3915 
3916 FPToUIInst *FPToUIInst::cloneImpl() const {
3917   return new FPToUIInst(getOperand(0), getType());
3918 }
3919 
3920 FPToSIInst *FPToSIInst::cloneImpl() const {
3921   return new FPToSIInst(getOperand(0), getType());
3922 }
3923 
3924 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3925   return new PtrToIntInst(getOperand(0), getType());
3926 }
3927 
3928 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3929   return new IntToPtrInst(getOperand(0), getType());
3930 }
3931 
3932 BitCastInst *BitCastInst::cloneImpl() const {
3933   return new BitCastInst(getOperand(0), getType());
3934 }
3935 
3936 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
3937   return new AddrSpaceCastInst(getOperand(0), getType());
3938 }
3939 
3940 CallInst *CallInst::cloneImpl() const {
3941   if (hasOperandBundles()) {
3942     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3943     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
3944   }
3945   return  new(getNumOperands()) CallInst(*this);
3946 }
3947 
3948 SelectInst *SelectInst::cloneImpl() const {
3949   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3950 }
3951 
3952 VAArgInst *VAArgInst::cloneImpl() const {
3953   return new VAArgInst(getOperand(0), getType());
3954 }
3955 
3956 ExtractElementInst *ExtractElementInst::cloneImpl() const {
3957   return ExtractElementInst::Create(getOperand(0), getOperand(1));
3958 }
3959 
3960 InsertElementInst *InsertElementInst::cloneImpl() const {
3961   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3962 }
3963 
3964 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
3965   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3966 }
3967 
3968 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3969 
3970 LandingPadInst *LandingPadInst::cloneImpl() const {
3971   return new LandingPadInst(*this);
3972 }
3973 
3974 ReturnInst *ReturnInst::cloneImpl() const {
3975   return new(getNumOperands()) ReturnInst(*this);
3976 }
3977 
3978 BranchInst *BranchInst::cloneImpl() const {
3979   return new(getNumOperands()) BranchInst(*this);
3980 }
3981 
3982 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3983 
3984 IndirectBrInst *IndirectBrInst::cloneImpl() const {
3985   return new IndirectBrInst(*this);
3986 }
3987 
3988 InvokeInst *InvokeInst::cloneImpl() const {
3989   if (hasOperandBundles()) {
3990     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3991     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
3992   }
3993   return new(getNumOperands()) InvokeInst(*this);
3994 }
3995 
3996 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3997 
3998 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
3999   return new (getNumOperands()) CleanupReturnInst(*this);
4000 }
4001 
4002 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4003   return new (getNumOperands()) CatchReturnInst(*this);
4004 }
4005 
4006 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4007   return new CatchSwitchInst(*this);
4008 }
4009 
4010 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4011   return new (getNumOperands()) FuncletPadInst(*this);
4012 }
4013 
4014 UnreachableInst *UnreachableInst::cloneImpl() const {
4015   LLVMContext &Context = getContext();
4016   return new UnreachableInst(Context);
4017 }
4018