1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 //===----------------------------------------------------------------------===//
49 //                            AllocaInst Class
50 //===----------------------------------------------------------------------===//
51 
52 Optional<TypeSize>
53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55   if (isArrayAllocation()) {
56     auto *C = dyn_cast<ConstantInt>(getArraySize());
57     if (!C)
58       return None;
59     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
60     Size *= C->getZExtValue();
61   }
62   return Size;
63 }
64 
65 //===----------------------------------------------------------------------===//
66 //                              SelectInst Class
67 //===----------------------------------------------------------------------===//
68 
69 /// areInvalidOperands - Return a string if the specified operands are invalid
70 /// for a select operation, otherwise return null.
71 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
72   if (Op1->getType() != Op2->getType())
73     return "both values to select must have same type";
74 
75   if (Op1->getType()->isTokenTy())
76     return "select values cannot have token type";
77 
78   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
79     // Vector select.
80     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
81       return "vector select condition element type must be i1";
82     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
83     if (!ET)
84       return "selected values for vector select must be vectors";
85     if (ET->getElementCount() != VT->getElementCount())
86       return "vector select requires selected vectors to have "
87                    "the same vector length as select condition";
88   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
89     return "select condition must be i1 or <n x i1>";
90   }
91   return nullptr;
92 }
93 
94 //===----------------------------------------------------------------------===//
95 //                               PHINode Class
96 //===----------------------------------------------------------------------===//
97 
98 PHINode::PHINode(const PHINode &PN)
99     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
100       ReservedSpace(PN.getNumOperands()) {
101   allocHungoffUses(PN.getNumOperands());
102   std::copy(PN.op_begin(), PN.op_end(), op_begin());
103   std::copy(PN.block_begin(), PN.block_end(), block_begin());
104   SubclassOptionalData = PN.SubclassOptionalData;
105 }
106 
107 // removeIncomingValue - Remove an incoming value.  This is useful if a
108 // predecessor basic block is deleted.
109 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
110   Value *Removed = getIncomingValue(Idx);
111 
112   // Move everything after this operand down.
113   //
114   // FIXME: we could just swap with the end of the list, then erase.  However,
115   // clients might not expect this to happen.  The code as it is thrashes the
116   // use/def lists, which is kinda lame.
117   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
118   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
119 
120   // Nuke the last value.
121   Op<-1>().set(nullptr);
122   setNumHungOffUseOperands(getNumOperands() - 1);
123 
124   // If the PHI node is dead, because it has zero entries, nuke it now.
125   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
126     // If anyone is using this PHI, make them use a dummy value instead...
127     replaceAllUsesWith(UndefValue::get(getType()));
128     eraseFromParent();
129   }
130   return Removed;
131 }
132 
133 /// growOperands - grow operands - This grows the operand list in response
134 /// to a push_back style of operation.  This grows the number of ops by 1.5
135 /// times.
136 ///
137 void PHINode::growOperands() {
138   unsigned e = getNumOperands();
139   unsigned NumOps = e + e / 2;
140   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
141 
142   ReservedSpace = NumOps;
143   growHungoffUses(ReservedSpace, /* IsPhi */ true);
144 }
145 
146 /// hasConstantValue - If the specified PHI node always merges together the same
147 /// value, return the value, otherwise return null.
148 Value *PHINode::hasConstantValue() const {
149   // Exploit the fact that phi nodes always have at least one entry.
150   Value *ConstantValue = getIncomingValue(0);
151   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
152     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
153       if (ConstantValue != this)
154         return nullptr; // Incoming values not all the same.
155        // The case where the first value is this PHI.
156       ConstantValue = getIncomingValue(i);
157     }
158   if (ConstantValue == this)
159     return UndefValue::get(getType());
160   return ConstantValue;
161 }
162 
163 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
164 /// together the same value, assuming that undefs result in the same value as
165 /// non-undefs.
166 /// Unlike \ref hasConstantValue, this does not return a value because the
167 /// unique non-undef incoming value need not dominate the PHI node.
168 bool PHINode::hasConstantOrUndefValue() const {
169   Value *ConstantValue = nullptr;
170   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
171     Value *Incoming = getIncomingValue(i);
172     if (Incoming != this && !isa<UndefValue>(Incoming)) {
173       if (ConstantValue && ConstantValue != Incoming)
174         return false;
175       ConstantValue = Incoming;
176     }
177   }
178   return true;
179 }
180 
181 //===----------------------------------------------------------------------===//
182 //                       LandingPadInst Implementation
183 //===----------------------------------------------------------------------===//
184 
185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
186                                const Twine &NameStr, Instruction *InsertBefore)
187     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
188   init(NumReservedValues, NameStr);
189 }
190 
191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
192                                const Twine &NameStr, BasicBlock *InsertAtEnd)
193     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
194   init(NumReservedValues, NameStr);
195 }
196 
197 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
198     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
199                   LP.getNumOperands()),
200       ReservedSpace(LP.getNumOperands()) {
201   allocHungoffUses(LP.getNumOperands());
202   Use *OL = getOperandList();
203   const Use *InOL = LP.getOperandList();
204   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
205     OL[I] = InOL[I];
206 
207   setCleanup(LP.isCleanup());
208 }
209 
210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
211                                        const Twine &NameStr,
212                                        Instruction *InsertBefore) {
213   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
214 }
215 
216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
217                                        const Twine &NameStr,
218                                        BasicBlock *InsertAtEnd) {
219   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
220 }
221 
222 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
223   ReservedSpace = NumReservedValues;
224   setNumHungOffUseOperands(0);
225   allocHungoffUses(ReservedSpace);
226   setName(NameStr);
227   setCleanup(false);
228 }
229 
230 /// growOperands - grow operands - This grows the operand list in response to a
231 /// push_back style of operation. This grows the number of ops by 2 times.
232 void LandingPadInst::growOperands(unsigned Size) {
233   unsigned e = getNumOperands();
234   if (ReservedSpace >= e + Size) return;
235   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
236   growHungoffUses(ReservedSpace);
237 }
238 
239 void LandingPadInst::addClause(Constant *Val) {
240   unsigned OpNo = getNumOperands();
241   growOperands(1);
242   assert(OpNo < ReservedSpace && "Growing didn't work!");
243   setNumHungOffUseOperands(getNumOperands() + 1);
244   getOperandList()[OpNo] = Val;
245 }
246 
247 //===----------------------------------------------------------------------===//
248 //                        CallBase Implementation
249 //===----------------------------------------------------------------------===//
250 
251 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
252                            Instruction *InsertPt) {
253   switch (CB->getOpcode()) {
254   case Instruction::Call:
255     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
256   case Instruction::Invoke:
257     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
258   case Instruction::CallBr:
259     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
260   default:
261     llvm_unreachable("Unknown CallBase sub-class!");
262   }
263 }
264 
265 Function *CallBase::getCaller() { return getParent()->getParent(); }
266 
267 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
268   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
269   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
270 }
271 
272 bool CallBase::isIndirectCall() const {
273   const Value *V = getCalledOperand();
274   if (isa<Function>(V) || isa<Constant>(V))
275     return false;
276   return !isInlineAsm();
277 }
278 
279 /// Tests if this call site must be tail call optimized. Only a CallInst can
280 /// be tail call optimized.
281 bool CallBase::isMustTailCall() const {
282   if (auto *CI = dyn_cast<CallInst>(this))
283     return CI->isMustTailCall();
284   return false;
285 }
286 
287 /// Tests if this call site is marked as a tail call.
288 bool CallBase::isTailCall() const {
289   if (auto *CI = dyn_cast<CallInst>(this))
290     return CI->isTailCall();
291   return false;
292 }
293 
294 Intrinsic::ID CallBase::getIntrinsicID() const {
295   if (auto *F = getCalledFunction())
296     return F->getIntrinsicID();
297   return Intrinsic::not_intrinsic;
298 }
299 
300 bool CallBase::isReturnNonNull() const {
301   if (hasRetAttr(Attribute::NonNull))
302     return true;
303 
304   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
305            !NullPointerIsDefined(getCaller(),
306                                  getType()->getPointerAddressSpace()))
307     return true;
308 
309   return false;
310 }
311 
312 Value *CallBase::getReturnedArgOperand() const {
313   unsigned Index;
314 
315   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
316     return getArgOperand(Index - AttributeList::FirstArgIndex);
317   if (const Function *F = getCalledFunction())
318     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
319         Index)
320       return getArgOperand(Index - AttributeList::FirstArgIndex);
321 
322   return nullptr;
323 }
324 
325 /// Determine whether the argument or parameter has the given attribute.
326 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
327   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
328 
329   if (Attrs.hasParamAttribute(ArgNo, Kind))
330     return true;
331   if (const Function *F = getCalledFunction())
332     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
333   return false;
334 }
335 
336 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
337   if (const Function *F = getCalledFunction())
338     return F->getAttributes().hasFnAttribute(Kind);
339   return false;
340 }
341 
342 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
343   if (const Function *F = getCalledFunction())
344     return F->getAttributes().hasFnAttribute(Kind);
345   return false;
346 }
347 
348 void CallBase::getOperandBundlesAsDefs(
349     SmallVectorImpl<OperandBundleDef> &Defs) const {
350   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
351     Defs.emplace_back(getOperandBundleAt(i));
352 }
353 
354 CallBase::op_iterator
355 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
356                                      const unsigned BeginIndex) {
357   auto It = op_begin() + BeginIndex;
358   for (auto &B : Bundles)
359     It = std::copy(B.input_begin(), B.input_end(), It);
360 
361   auto *ContextImpl = getContext().pImpl;
362   auto BI = Bundles.begin();
363   unsigned CurrentIndex = BeginIndex;
364 
365   for (auto &BOI : bundle_op_infos()) {
366     assert(BI != Bundles.end() && "Incorrect allocation?");
367 
368     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
369     BOI.Begin = CurrentIndex;
370     BOI.End = CurrentIndex + BI->input_size();
371     CurrentIndex = BOI.End;
372     BI++;
373   }
374 
375   assert(BI == Bundles.end() && "Incorrect allocation?");
376 
377   return It;
378 }
379 
380 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
381   /// When there isn't many bundles, we do a simple linear search.
382   /// Else fallback to a binary-search that use the fact that bundles usually
383   /// have similar number of argument to get faster convergence.
384   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
385     for (auto &BOI : bundle_op_infos())
386       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
387         return BOI;
388 
389     llvm_unreachable("Did not find operand bundle for operand!");
390   }
391 
392   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
393   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
394          OpIdx < std::prev(bundle_op_info_end())->End &&
395          "The Idx isn't in the operand bundle");
396 
397   /// We need a decimal number below and to prevent using floating point numbers
398   /// we use an intergal value multiplied by this constant.
399   constexpr unsigned NumberScaling = 1024;
400 
401   bundle_op_iterator Begin = bundle_op_info_begin();
402   bundle_op_iterator End = bundle_op_info_end();
403   bundle_op_iterator Current = Begin;
404 
405   while (Begin != End) {
406     unsigned ScaledOperandPerBundle =
407         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
408     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
409                        ScaledOperandPerBundle);
410     if (Current >= End)
411       Current = std::prev(End);
412     assert(Current < End && Current >= Begin &&
413            "the operand bundle doesn't cover every value in the range");
414     if (OpIdx >= Current->Begin && OpIdx < Current->End)
415       break;
416     if (OpIdx >= Current->End)
417       Begin = Current + 1;
418     else
419       End = Current;
420   }
421 
422   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
423          "the operand bundle doesn't cover every value in the range");
424   return *Current;
425 }
426 
427 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
428                                      OperandBundleDef OB,
429                                      Instruction *InsertPt) {
430   if (CB->getOperandBundle(ID))
431     return CB;
432 
433   SmallVector<OperandBundleDef, 1> Bundles;
434   CB->getOperandBundlesAsDefs(Bundles);
435   Bundles.push_back(OB);
436   return Create(CB, Bundles, InsertPt);
437 }
438 
439 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
440                                         Instruction *InsertPt) {
441   SmallVector<OperandBundleDef, 1> Bundles;
442   bool CreateNew = false;
443 
444   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
445     auto Bundle = CB->getOperandBundleAt(I);
446     if (Bundle.getTagID() == ID) {
447       CreateNew = true;
448       continue;
449     }
450     Bundles.emplace_back(Bundle);
451   }
452 
453   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
454 }
455 
456 //===----------------------------------------------------------------------===//
457 //                        CallInst Implementation
458 //===----------------------------------------------------------------------===//
459 
460 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
461                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
462   this->FTy = FTy;
463   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
464          "NumOperands not set up?");
465   setCalledOperand(Func);
466 
467 #ifndef NDEBUG
468   assert((Args.size() == FTy->getNumParams() ||
469           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
470          "Calling a function with bad signature!");
471 
472   for (unsigned i = 0; i != Args.size(); ++i)
473     assert((i >= FTy->getNumParams() ||
474             FTy->getParamType(i) == Args[i]->getType()) &&
475            "Calling a function with a bad signature!");
476 #endif
477 
478   llvm::copy(Args, op_begin());
479 
480   auto It = populateBundleOperandInfos(Bundles, Args.size());
481   (void)It;
482   assert(It + 1 == op_end() && "Should add up!");
483 
484   setName(NameStr);
485 }
486 
487 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
488   this->FTy = FTy;
489   assert(getNumOperands() == 1 && "NumOperands not set up?");
490   setCalledOperand(Func);
491 
492   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
493 
494   setName(NameStr);
495 }
496 
497 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
498                    Instruction *InsertBefore)
499     : CallBase(Ty->getReturnType(), Instruction::Call,
500                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
501   init(Ty, Func, Name);
502 }
503 
504 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
505                    BasicBlock *InsertAtEnd)
506     : CallBase(Ty->getReturnType(), Instruction::Call,
507                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
508   init(Ty, Func, Name);
509 }
510 
511 CallInst::CallInst(const CallInst &CI)
512     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
513                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
514                CI.getNumOperands()) {
515   setTailCallKind(CI.getTailCallKind());
516   setCallingConv(CI.getCallingConv());
517 
518   std::copy(CI.op_begin(), CI.op_end(), op_begin());
519   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
520             bundle_op_info_begin());
521   SubclassOptionalData = CI.SubclassOptionalData;
522 }
523 
524 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
525                            Instruction *InsertPt) {
526   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
527 
528   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
529                                  Args, OpB, CI->getName(), InsertPt);
530   NewCI->setTailCallKind(CI->getTailCallKind());
531   NewCI->setCallingConv(CI->getCallingConv());
532   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
533   NewCI->setAttributes(CI->getAttributes());
534   NewCI->setDebugLoc(CI->getDebugLoc());
535   return NewCI;
536 }
537 
538 CallInst *CallInst::CreateWithReplacedBundle(CallInst *CI, OperandBundleDef OpB,
539                                              Instruction *InsertPt) {
540   SmallVector<OperandBundleDef, 2> OpDefs;
541   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
542     auto ChildOB = CI->getOperandBundleAt(i);
543     if (ChildOB.getTagName() != OpB.getTag())
544       OpDefs.emplace_back(ChildOB);
545   }
546   OpDefs.emplace_back(OpB);
547   return CallInst::Create(CI, OpDefs, InsertPt);
548 }
549 
550 // Update profile weight for call instruction by scaling it using the ratio
551 // of S/T. The meaning of "branch_weights" meta data for call instruction is
552 // transfered to represent call count.
553 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
554   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
555   if (ProfileData == nullptr)
556     return;
557 
558   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
559   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
560                         !ProfDataName->getString().equals("VP")))
561     return;
562 
563   if (T == 0) {
564     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
565                          "div by 0. Ignoring. Likely the function "
566                       << getParent()->getParent()->getName()
567                       << " has 0 entry count, and contains call instructions "
568                          "with non-zero prof info.");
569     return;
570   }
571 
572   MDBuilder MDB(getContext());
573   SmallVector<Metadata *, 3> Vals;
574   Vals.push_back(ProfileData->getOperand(0));
575   APInt APS(128, S), APT(128, T);
576   if (ProfDataName->getString().equals("branch_weights") &&
577       ProfileData->getNumOperands() > 0) {
578     // Using APInt::div may be expensive, but most cases should fit 64 bits.
579     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
580                        ->getValue()
581                        .getZExtValue());
582     Val *= APS;
583     Vals.push_back(MDB.createConstant(
584         ConstantInt::get(Type::getInt32Ty(getContext()),
585                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
586   } else if (ProfDataName->getString().equals("VP"))
587     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
588       // The first value is the key of the value profile, which will not change.
589       Vals.push_back(ProfileData->getOperand(i));
590       // Using APInt::div may be expensive, but most cases should fit 64 bits.
591       APInt Val(128,
592                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
593                     ->getValue()
594                     .getZExtValue());
595       Val *= APS;
596       Vals.push_back(MDB.createConstant(
597           ConstantInt::get(Type::getInt64Ty(getContext()),
598                            Val.udiv(APT).getLimitedValue())));
599     }
600   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
601 }
602 
603 /// IsConstantOne - Return true only if val is constant int 1
604 static bool IsConstantOne(Value *val) {
605   assert(val && "IsConstantOne does not work with nullptr val");
606   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
607   return CVal && CVal->isOne();
608 }
609 
610 static Instruction *createMalloc(Instruction *InsertBefore,
611                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
612                                  Type *AllocTy, Value *AllocSize,
613                                  Value *ArraySize,
614                                  ArrayRef<OperandBundleDef> OpB,
615                                  Function *MallocF, const Twine &Name) {
616   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
617          "createMalloc needs either InsertBefore or InsertAtEnd");
618 
619   // malloc(type) becomes:
620   //       bitcast (i8* malloc(typeSize)) to type*
621   // malloc(type, arraySize) becomes:
622   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
623   if (!ArraySize)
624     ArraySize = ConstantInt::get(IntPtrTy, 1);
625   else if (ArraySize->getType() != IntPtrTy) {
626     if (InsertBefore)
627       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
628                                               "", InsertBefore);
629     else
630       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
631                                               "", InsertAtEnd);
632   }
633 
634   if (!IsConstantOne(ArraySize)) {
635     if (IsConstantOne(AllocSize)) {
636       AllocSize = ArraySize;         // Operand * 1 = Operand
637     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
638       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
639                                                      false /*ZExt*/);
640       // Malloc arg is constant product of type size and array size
641       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
642     } else {
643       // Multiply type size by the array size...
644       if (InsertBefore)
645         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
646                                               "mallocsize", InsertBefore);
647       else
648         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
649                                               "mallocsize", InsertAtEnd);
650     }
651   }
652 
653   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
654   // Create the call to Malloc.
655   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
656   Module *M = BB->getParent()->getParent();
657   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
658   FunctionCallee MallocFunc = MallocF;
659   if (!MallocFunc)
660     // prototype malloc as "void *malloc(size_t)"
661     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
662   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
663   CallInst *MCall = nullptr;
664   Instruction *Result = nullptr;
665   if (InsertBefore) {
666     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
667                              InsertBefore);
668     Result = MCall;
669     if (Result->getType() != AllocPtrType)
670       // Create a cast instruction to convert to the right type...
671       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
672   } else {
673     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
674     Result = MCall;
675     if (Result->getType() != AllocPtrType) {
676       InsertAtEnd->getInstList().push_back(MCall);
677       // Create a cast instruction to convert to the right type...
678       Result = new BitCastInst(MCall, AllocPtrType, Name);
679     }
680   }
681   MCall->setTailCall();
682   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
683     MCall->setCallingConv(F->getCallingConv());
684     if (!F->returnDoesNotAlias())
685       F->setReturnDoesNotAlias();
686   }
687   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
688 
689   return Result;
690 }
691 
692 /// CreateMalloc - Generate the IR for a call to malloc:
693 /// 1. Compute the malloc call's argument as the specified type's size,
694 ///    possibly multiplied by the array size if the array size is not
695 ///    constant 1.
696 /// 2. Call malloc with that argument.
697 /// 3. Bitcast the result of the malloc call to the specified type.
698 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
699                                     Type *IntPtrTy, Type *AllocTy,
700                                     Value *AllocSize, Value *ArraySize,
701                                     Function *MallocF,
702                                     const Twine &Name) {
703   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
704                       ArraySize, None, MallocF, Name);
705 }
706 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
707                                     Type *IntPtrTy, Type *AllocTy,
708                                     Value *AllocSize, Value *ArraySize,
709                                     ArrayRef<OperandBundleDef> OpB,
710                                     Function *MallocF,
711                                     const Twine &Name) {
712   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
713                       ArraySize, OpB, MallocF, Name);
714 }
715 
716 /// CreateMalloc - Generate the IR for a call to malloc:
717 /// 1. Compute the malloc call's argument as the specified type's size,
718 ///    possibly multiplied by the array size if the array size is not
719 ///    constant 1.
720 /// 2. Call malloc with that argument.
721 /// 3. Bitcast the result of the malloc call to the specified type.
722 /// Note: This function does not add the bitcast to the basic block, that is the
723 /// responsibility of the caller.
724 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
725                                     Type *IntPtrTy, Type *AllocTy,
726                                     Value *AllocSize, Value *ArraySize,
727                                     Function *MallocF, const Twine &Name) {
728   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
729                       ArraySize, None, MallocF, Name);
730 }
731 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
732                                     Type *IntPtrTy, Type *AllocTy,
733                                     Value *AllocSize, Value *ArraySize,
734                                     ArrayRef<OperandBundleDef> OpB,
735                                     Function *MallocF, const Twine &Name) {
736   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
737                       ArraySize, OpB, MallocF, Name);
738 }
739 
740 static Instruction *createFree(Value *Source,
741                                ArrayRef<OperandBundleDef> Bundles,
742                                Instruction *InsertBefore,
743                                BasicBlock *InsertAtEnd) {
744   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
745          "createFree needs either InsertBefore or InsertAtEnd");
746   assert(Source->getType()->isPointerTy() &&
747          "Can not free something of nonpointer type!");
748 
749   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
750   Module *M = BB->getParent()->getParent();
751 
752   Type *VoidTy = Type::getVoidTy(M->getContext());
753   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
754   // prototype free as "void free(void*)"
755   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
756   CallInst *Result = nullptr;
757   Value *PtrCast = Source;
758   if (InsertBefore) {
759     if (Source->getType() != IntPtrTy)
760       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
761     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
762   } else {
763     if (Source->getType() != IntPtrTy)
764       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
765     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
766   }
767   Result->setTailCall();
768   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
769     Result->setCallingConv(F->getCallingConv());
770 
771   return Result;
772 }
773 
774 /// CreateFree - Generate the IR for a call to the builtin free function.
775 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
776   return createFree(Source, None, InsertBefore, nullptr);
777 }
778 Instruction *CallInst::CreateFree(Value *Source,
779                                   ArrayRef<OperandBundleDef> Bundles,
780                                   Instruction *InsertBefore) {
781   return createFree(Source, Bundles, InsertBefore, nullptr);
782 }
783 
784 /// CreateFree - Generate the IR for a call to the builtin free function.
785 /// Note: This function does not add the call to the basic block, that is the
786 /// responsibility of the caller.
787 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
788   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
789   assert(FreeCall && "CreateFree did not create a CallInst");
790   return FreeCall;
791 }
792 Instruction *CallInst::CreateFree(Value *Source,
793                                   ArrayRef<OperandBundleDef> Bundles,
794                                   BasicBlock *InsertAtEnd) {
795   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
796   assert(FreeCall && "CreateFree did not create a CallInst");
797   return FreeCall;
798 }
799 
800 //===----------------------------------------------------------------------===//
801 //                        InvokeInst Implementation
802 //===----------------------------------------------------------------------===//
803 
804 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
805                       BasicBlock *IfException, ArrayRef<Value *> Args,
806                       ArrayRef<OperandBundleDef> Bundles,
807                       const Twine &NameStr) {
808   this->FTy = FTy;
809 
810   assert((int)getNumOperands() ==
811              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
812          "NumOperands not set up?");
813   setNormalDest(IfNormal);
814   setUnwindDest(IfException);
815   setCalledOperand(Fn);
816 
817 #ifndef NDEBUG
818   assert(((Args.size() == FTy->getNumParams()) ||
819           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
820          "Invoking a function with bad signature");
821 
822   for (unsigned i = 0, e = Args.size(); i != e; i++)
823     assert((i >= FTy->getNumParams() ||
824             FTy->getParamType(i) == Args[i]->getType()) &&
825            "Invoking a function with a bad signature!");
826 #endif
827 
828   llvm::copy(Args, op_begin());
829 
830   auto It = populateBundleOperandInfos(Bundles, Args.size());
831   (void)It;
832   assert(It + 3 == op_end() && "Should add up!");
833 
834   setName(NameStr);
835 }
836 
837 InvokeInst::InvokeInst(const InvokeInst &II)
838     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
839                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
840                II.getNumOperands()) {
841   setCallingConv(II.getCallingConv());
842   std::copy(II.op_begin(), II.op_end(), op_begin());
843   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
844             bundle_op_info_begin());
845   SubclassOptionalData = II.SubclassOptionalData;
846 }
847 
848 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
849                                Instruction *InsertPt) {
850   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
851 
852   auto *NewII = InvokeInst::Create(
853       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
854       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
855   NewII->setCallingConv(II->getCallingConv());
856   NewII->SubclassOptionalData = II->SubclassOptionalData;
857   NewII->setAttributes(II->getAttributes());
858   NewII->setDebugLoc(II->getDebugLoc());
859   return NewII;
860 }
861 
862 InvokeInst *InvokeInst::CreateWithReplacedBundle(InvokeInst *II,
863                                                  OperandBundleDef OpB,
864                                                  Instruction *InsertPt) {
865   SmallVector<OperandBundleDef, 2> OpDefs;
866   for (unsigned i = 0, e = II->getNumOperandBundles(); i < e; ++i) {
867     auto ChildOB = II->getOperandBundleAt(i);
868     if (ChildOB.getTagName() != OpB.getTag())
869       OpDefs.emplace_back(ChildOB);
870   }
871   OpDefs.emplace_back(OpB);
872   return InvokeInst::Create(II, OpDefs, InsertPt);
873 }
874 
875 LandingPadInst *InvokeInst::getLandingPadInst() const {
876   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
877 }
878 
879 //===----------------------------------------------------------------------===//
880 //                        CallBrInst Implementation
881 //===----------------------------------------------------------------------===//
882 
883 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
884                       ArrayRef<BasicBlock *> IndirectDests,
885                       ArrayRef<Value *> Args,
886                       ArrayRef<OperandBundleDef> Bundles,
887                       const Twine &NameStr) {
888   this->FTy = FTy;
889 
890   assert((int)getNumOperands() ==
891              ComputeNumOperands(Args.size(), IndirectDests.size(),
892                                 CountBundleInputs(Bundles)) &&
893          "NumOperands not set up?");
894   NumIndirectDests = IndirectDests.size();
895   setDefaultDest(Fallthrough);
896   for (unsigned i = 0; i != NumIndirectDests; ++i)
897     setIndirectDest(i, IndirectDests[i]);
898   setCalledOperand(Fn);
899 
900 #ifndef NDEBUG
901   assert(((Args.size() == FTy->getNumParams()) ||
902           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
903          "Calling a function with bad signature");
904 
905   for (unsigned i = 0, e = Args.size(); i != e; i++)
906     assert((i >= FTy->getNumParams() ||
907             FTy->getParamType(i) == Args[i]->getType()) &&
908            "Calling a function with a bad signature!");
909 #endif
910 
911   std::copy(Args.begin(), Args.end(), op_begin());
912 
913   auto It = populateBundleOperandInfos(Bundles, Args.size());
914   (void)It;
915   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
916 
917   setName(NameStr);
918 }
919 
920 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
921   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
922   if (BasicBlock *OldBB = getIndirectDest(i)) {
923     BlockAddress *Old = BlockAddress::get(OldBB);
924     BlockAddress *New = BlockAddress::get(B);
925     for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
926       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
927         setArgOperand(ArgNo, New);
928   }
929 }
930 
931 CallBrInst::CallBrInst(const CallBrInst &CBI)
932     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
933                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
934                CBI.getNumOperands()) {
935   setCallingConv(CBI.getCallingConv());
936   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
937   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
938             bundle_op_info_begin());
939   SubclassOptionalData = CBI.SubclassOptionalData;
940   NumIndirectDests = CBI.NumIndirectDests;
941 }
942 
943 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
944                                Instruction *InsertPt) {
945   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
946 
947   auto *NewCBI = CallBrInst::Create(
948       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
949       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
950   NewCBI->setCallingConv(CBI->getCallingConv());
951   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
952   NewCBI->setAttributes(CBI->getAttributes());
953   NewCBI->setDebugLoc(CBI->getDebugLoc());
954   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
955   return NewCBI;
956 }
957 
958 //===----------------------------------------------------------------------===//
959 //                        ReturnInst Implementation
960 //===----------------------------------------------------------------------===//
961 
962 ReturnInst::ReturnInst(const ReturnInst &RI)
963     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
964                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
965                   RI.getNumOperands()) {
966   if (RI.getNumOperands())
967     Op<0>() = RI.Op<0>();
968   SubclassOptionalData = RI.SubclassOptionalData;
969 }
970 
971 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
972     : Instruction(Type::getVoidTy(C), Instruction::Ret,
973                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
974                   InsertBefore) {
975   if (retVal)
976     Op<0>() = retVal;
977 }
978 
979 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
980     : Instruction(Type::getVoidTy(C), Instruction::Ret,
981                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
982                   InsertAtEnd) {
983   if (retVal)
984     Op<0>() = retVal;
985 }
986 
987 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
988     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
989                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
990 
991 //===----------------------------------------------------------------------===//
992 //                        ResumeInst Implementation
993 //===----------------------------------------------------------------------===//
994 
995 ResumeInst::ResumeInst(const ResumeInst &RI)
996     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
997                   OperandTraits<ResumeInst>::op_begin(this), 1) {
998   Op<0>() = RI.Op<0>();
999 }
1000 
1001 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1002     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1003                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1004   Op<0>() = Exn;
1005 }
1006 
1007 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1008     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1009                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1010   Op<0>() = Exn;
1011 }
1012 
1013 //===----------------------------------------------------------------------===//
1014 //                        CleanupReturnInst Implementation
1015 //===----------------------------------------------------------------------===//
1016 
1017 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1018     : Instruction(CRI.getType(), Instruction::CleanupRet,
1019                   OperandTraits<CleanupReturnInst>::op_end(this) -
1020                       CRI.getNumOperands(),
1021                   CRI.getNumOperands()) {
1022   setSubclassData<Instruction::OpaqueField>(
1023       CRI.getSubclassData<Instruction::OpaqueField>());
1024   Op<0>() = CRI.Op<0>();
1025   if (CRI.hasUnwindDest())
1026     Op<1>() = CRI.Op<1>();
1027 }
1028 
1029 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1030   if (UnwindBB)
1031     setSubclassData<UnwindDestField>(true);
1032 
1033   Op<0>() = CleanupPad;
1034   if (UnwindBB)
1035     Op<1>() = UnwindBB;
1036 }
1037 
1038 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1039                                      unsigned Values, Instruction *InsertBefore)
1040     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1041                   Instruction::CleanupRet,
1042                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1043                   Values, InsertBefore) {
1044   init(CleanupPad, UnwindBB);
1045 }
1046 
1047 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1048                                      unsigned Values, BasicBlock *InsertAtEnd)
1049     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1050                   Instruction::CleanupRet,
1051                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1052                   Values, InsertAtEnd) {
1053   init(CleanupPad, UnwindBB);
1054 }
1055 
1056 //===----------------------------------------------------------------------===//
1057 //                        CatchReturnInst Implementation
1058 //===----------------------------------------------------------------------===//
1059 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1060   Op<0>() = CatchPad;
1061   Op<1>() = BB;
1062 }
1063 
1064 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1065     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1066                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1067   Op<0>() = CRI.Op<0>();
1068   Op<1>() = CRI.Op<1>();
1069 }
1070 
1071 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1072                                  Instruction *InsertBefore)
1073     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1074                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1075                   InsertBefore) {
1076   init(CatchPad, BB);
1077 }
1078 
1079 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1080                                  BasicBlock *InsertAtEnd)
1081     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1082                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1083                   InsertAtEnd) {
1084   init(CatchPad, BB);
1085 }
1086 
1087 //===----------------------------------------------------------------------===//
1088 //                       CatchSwitchInst Implementation
1089 //===----------------------------------------------------------------------===//
1090 
1091 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1092                                  unsigned NumReservedValues,
1093                                  const Twine &NameStr,
1094                                  Instruction *InsertBefore)
1095     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1096                   InsertBefore) {
1097   if (UnwindDest)
1098     ++NumReservedValues;
1099   init(ParentPad, UnwindDest, NumReservedValues + 1);
1100   setName(NameStr);
1101 }
1102 
1103 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1104                                  unsigned NumReservedValues,
1105                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1106     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1107                   InsertAtEnd) {
1108   if (UnwindDest)
1109     ++NumReservedValues;
1110   init(ParentPad, UnwindDest, NumReservedValues + 1);
1111   setName(NameStr);
1112 }
1113 
1114 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1115     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1116                   CSI.getNumOperands()) {
1117   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1118   setNumHungOffUseOperands(ReservedSpace);
1119   Use *OL = getOperandList();
1120   const Use *InOL = CSI.getOperandList();
1121   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1122     OL[I] = InOL[I];
1123 }
1124 
1125 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1126                            unsigned NumReservedValues) {
1127   assert(ParentPad && NumReservedValues);
1128 
1129   ReservedSpace = NumReservedValues;
1130   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1131   allocHungoffUses(ReservedSpace);
1132 
1133   Op<0>() = ParentPad;
1134   if (UnwindDest) {
1135     setSubclassData<UnwindDestField>(true);
1136     setUnwindDest(UnwindDest);
1137   }
1138 }
1139 
1140 /// growOperands - grow operands - This grows the operand list in response to a
1141 /// push_back style of operation. This grows the number of ops by 2 times.
1142 void CatchSwitchInst::growOperands(unsigned Size) {
1143   unsigned NumOperands = getNumOperands();
1144   assert(NumOperands >= 1);
1145   if (ReservedSpace >= NumOperands + Size)
1146     return;
1147   ReservedSpace = (NumOperands + Size / 2) * 2;
1148   growHungoffUses(ReservedSpace);
1149 }
1150 
1151 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1152   unsigned OpNo = getNumOperands();
1153   growOperands(1);
1154   assert(OpNo < ReservedSpace && "Growing didn't work!");
1155   setNumHungOffUseOperands(getNumOperands() + 1);
1156   getOperandList()[OpNo] = Handler;
1157 }
1158 
1159 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1160   // Move all subsequent handlers up one.
1161   Use *EndDst = op_end() - 1;
1162   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1163     *CurDst = *(CurDst + 1);
1164   // Null out the last handler use.
1165   *EndDst = nullptr;
1166 
1167   setNumHungOffUseOperands(getNumOperands() - 1);
1168 }
1169 
1170 //===----------------------------------------------------------------------===//
1171 //                        FuncletPadInst Implementation
1172 //===----------------------------------------------------------------------===//
1173 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1174                           const Twine &NameStr) {
1175   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1176   llvm::copy(Args, op_begin());
1177   setParentPad(ParentPad);
1178   setName(NameStr);
1179 }
1180 
1181 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1182     : Instruction(FPI.getType(), FPI.getOpcode(),
1183                   OperandTraits<FuncletPadInst>::op_end(this) -
1184                       FPI.getNumOperands(),
1185                   FPI.getNumOperands()) {
1186   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1187   setParentPad(FPI.getParentPad());
1188 }
1189 
1190 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1191                                ArrayRef<Value *> Args, unsigned Values,
1192                                const Twine &NameStr, Instruction *InsertBefore)
1193     : Instruction(ParentPad->getType(), Op,
1194                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1195                   InsertBefore) {
1196   init(ParentPad, Args, NameStr);
1197 }
1198 
1199 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1200                                ArrayRef<Value *> Args, unsigned Values,
1201                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1202     : Instruction(ParentPad->getType(), Op,
1203                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1204                   InsertAtEnd) {
1205   init(ParentPad, Args, NameStr);
1206 }
1207 
1208 //===----------------------------------------------------------------------===//
1209 //                      UnreachableInst Implementation
1210 //===----------------------------------------------------------------------===//
1211 
1212 UnreachableInst::UnreachableInst(LLVMContext &Context,
1213                                  Instruction *InsertBefore)
1214     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1215                   0, InsertBefore) {}
1216 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1217     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1218                   0, InsertAtEnd) {}
1219 
1220 //===----------------------------------------------------------------------===//
1221 //                        BranchInst Implementation
1222 //===----------------------------------------------------------------------===//
1223 
1224 void BranchInst::AssertOK() {
1225   if (isConditional())
1226     assert(getCondition()->getType()->isIntegerTy(1) &&
1227            "May only branch on boolean predicates!");
1228 }
1229 
1230 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1231     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1232                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1233                   InsertBefore) {
1234   assert(IfTrue && "Branch destination may not be null!");
1235   Op<-1>() = IfTrue;
1236 }
1237 
1238 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1239                        Instruction *InsertBefore)
1240     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1241                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1242                   InsertBefore) {
1243   Op<-1>() = IfTrue;
1244   Op<-2>() = IfFalse;
1245   Op<-3>() = Cond;
1246 #ifndef NDEBUG
1247   AssertOK();
1248 #endif
1249 }
1250 
1251 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1252     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1253                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1254   assert(IfTrue && "Branch destination may not be null!");
1255   Op<-1>() = IfTrue;
1256 }
1257 
1258 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1259                        BasicBlock *InsertAtEnd)
1260     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1261                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1262   Op<-1>() = IfTrue;
1263   Op<-2>() = IfFalse;
1264   Op<-3>() = Cond;
1265 #ifndef NDEBUG
1266   AssertOK();
1267 #endif
1268 }
1269 
1270 BranchInst::BranchInst(const BranchInst &BI)
1271     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1272                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1273                   BI.getNumOperands()) {
1274   Op<-1>() = BI.Op<-1>();
1275   if (BI.getNumOperands() != 1) {
1276     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1277     Op<-3>() = BI.Op<-3>();
1278     Op<-2>() = BI.Op<-2>();
1279   }
1280   SubclassOptionalData = BI.SubclassOptionalData;
1281 }
1282 
1283 void BranchInst::swapSuccessors() {
1284   assert(isConditional() &&
1285          "Cannot swap successors of an unconditional branch");
1286   Op<-1>().swap(Op<-2>());
1287 
1288   // Update profile metadata if present and it matches our structural
1289   // expectations.
1290   swapProfMetadata();
1291 }
1292 
1293 //===----------------------------------------------------------------------===//
1294 //                        AllocaInst Implementation
1295 //===----------------------------------------------------------------------===//
1296 
1297 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1298   if (!Amt)
1299     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1300   else {
1301     assert(!isa<BasicBlock>(Amt) &&
1302            "Passed basic block into allocation size parameter! Use other ctor");
1303     assert(Amt->getType()->isIntegerTy() &&
1304            "Allocation array size is not an integer!");
1305   }
1306   return Amt;
1307 }
1308 
1309 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1310   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1311   assert(BB->getParent() &&
1312          "BB must be in a Function when alignment not provided!");
1313   const DataLayout &DL = BB->getModule()->getDataLayout();
1314   return DL.getPrefTypeAlign(Ty);
1315 }
1316 
1317 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1318   assert(I && "Insertion position cannot be null when alignment not provided!");
1319   return computeAllocaDefaultAlign(Ty, I->getParent());
1320 }
1321 
1322 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1323                        Instruction *InsertBefore)
1324   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1325 
1326 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1327                        BasicBlock *InsertAtEnd)
1328   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1329 
1330 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1331                        const Twine &Name, Instruction *InsertBefore)
1332     : AllocaInst(Ty, AddrSpace, ArraySize,
1333                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1334                  InsertBefore) {}
1335 
1336 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1337                        const Twine &Name, BasicBlock *InsertAtEnd)
1338     : AllocaInst(Ty, AddrSpace, ArraySize,
1339                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1340                  InsertAtEnd) {}
1341 
1342 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1343                        Align Align, const Twine &Name,
1344                        Instruction *InsertBefore)
1345     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1346                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1347       AllocatedType(Ty) {
1348   setAlignment(Align);
1349   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1350   setName(Name);
1351 }
1352 
1353 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1354                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1355     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1356                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1357       AllocatedType(Ty) {
1358   setAlignment(Align);
1359   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1360   setName(Name);
1361 }
1362 
1363 
1364 bool AllocaInst::isArrayAllocation() const {
1365   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1366     return !CI->isOne();
1367   return true;
1368 }
1369 
1370 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1371 /// function and is a constant size.  If so, the code generator will fold it
1372 /// into the prolog/epilog code, so it is basically free.
1373 bool AllocaInst::isStaticAlloca() const {
1374   // Must be constant size.
1375   if (!isa<ConstantInt>(getArraySize())) return false;
1376 
1377   // Must be in the entry block.
1378   const BasicBlock *Parent = getParent();
1379   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1380 }
1381 
1382 //===----------------------------------------------------------------------===//
1383 //                           LoadInst Implementation
1384 //===----------------------------------------------------------------------===//
1385 
1386 void LoadInst::AssertOK() {
1387   assert(getOperand(0)->getType()->isPointerTy() &&
1388          "Ptr must have pointer type.");
1389   assert(!(isAtomic() && getAlignment() == 0) &&
1390          "Alignment required for atomic load");
1391 }
1392 
1393 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1394   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1395   assert(BB->getParent() &&
1396          "BB must be in a Function when alignment not provided!");
1397   const DataLayout &DL = BB->getModule()->getDataLayout();
1398   return DL.getABITypeAlign(Ty);
1399 }
1400 
1401 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1402   assert(I && "Insertion position cannot be null when alignment not provided!");
1403   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1404 }
1405 
1406 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1407                    Instruction *InsertBef)
1408     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1409 
1410 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1411                    BasicBlock *InsertAE)
1412     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1413 
1414 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1415                    Instruction *InsertBef)
1416     : LoadInst(Ty, Ptr, Name, isVolatile,
1417                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1418 
1419 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1420                    BasicBlock *InsertAE)
1421     : LoadInst(Ty, Ptr, Name, isVolatile,
1422                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1423 
1424 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1425                    Align Align, Instruction *InsertBef)
1426     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1427                SyncScope::System, InsertBef) {}
1428 
1429 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1430                    Align Align, BasicBlock *InsertAE)
1431     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1432                SyncScope::System, InsertAE) {}
1433 
1434 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1435                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1436                    Instruction *InsertBef)
1437     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1438   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1439   setVolatile(isVolatile);
1440   setAlignment(Align);
1441   setAtomic(Order, SSID);
1442   AssertOK();
1443   setName(Name);
1444 }
1445 
1446 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1447                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1448                    BasicBlock *InsertAE)
1449     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1450   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1451   setVolatile(isVolatile);
1452   setAlignment(Align);
1453   setAtomic(Order, SSID);
1454   AssertOK();
1455   setName(Name);
1456 }
1457 
1458 //===----------------------------------------------------------------------===//
1459 //                           StoreInst Implementation
1460 //===----------------------------------------------------------------------===//
1461 
1462 void StoreInst::AssertOK() {
1463   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1464   assert(getOperand(1)->getType()->isPointerTy() &&
1465          "Ptr must have pointer type!");
1466   assert(getOperand(0)->getType() ==
1467                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1468          && "Ptr must be a pointer to Val type!");
1469   assert(!(isAtomic() && getAlignment() == 0) &&
1470          "Alignment required for atomic store");
1471 }
1472 
1473 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1474     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1475 
1476 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1477     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1478 
1479 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1480                      Instruction *InsertBefore)
1481     : StoreInst(val, addr, isVolatile,
1482                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1483                 InsertBefore) {}
1484 
1485 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1486                      BasicBlock *InsertAtEnd)
1487     : StoreInst(val, addr, isVolatile,
1488                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1489                 InsertAtEnd) {}
1490 
1491 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1492                      Instruction *InsertBefore)
1493     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1494                 SyncScope::System, InsertBefore) {}
1495 
1496 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1497                      BasicBlock *InsertAtEnd)
1498     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1499                 SyncScope::System, InsertAtEnd) {}
1500 
1501 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1502                      AtomicOrdering Order, SyncScope::ID SSID,
1503                      Instruction *InsertBefore)
1504     : Instruction(Type::getVoidTy(val->getContext()), Store,
1505                   OperandTraits<StoreInst>::op_begin(this),
1506                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1507   Op<0>() = val;
1508   Op<1>() = addr;
1509   setVolatile(isVolatile);
1510   setAlignment(Align);
1511   setAtomic(Order, SSID);
1512   AssertOK();
1513 }
1514 
1515 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1516                      AtomicOrdering Order, SyncScope::ID SSID,
1517                      BasicBlock *InsertAtEnd)
1518     : Instruction(Type::getVoidTy(val->getContext()), Store,
1519                   OperandTraits<StoreInst>::op_begin(this),
1520                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1521   Op<0>() = val;
1522   Op<1>() = addr;
1523   setVolatile(isVolatile);
1524   setAlignment(Align);
1525   setAtomic(Order, SSID);
1526   AssertOK();
1527 }
1528 
1529 
1530 //===----------------------------------------------------------------------===//
1531 //                       AtomicCmpXchgInst Implementation
1532 //===----------------------------------------------------------------------===//
1533 
1534 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1535                              Align Alignment, AtomicOrdering SuccessOrdering,
1536                              AtomicOrdering FailureOrdering,
1537                              SyncScope::ID SSID) {
1538   Op<0>() = Ptr;
1539   Op<1>() = Cmp;
1540   Op<2>() = NewVal;
1541   setSuccessOrdering(SuccessOrdering);
1542   setFailureOrdering(FailureOrdering);
1543   setSyncScopeID(SSID);
1544   setAlignment(Alignment);
1545 
1546   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1547          "All operands must be non-null!");
1548   assert(getOperand(0)->getType()->isPointerTy() &&
1549          "Ptr must have pointer type!");
1550   assert(getOperand(1)->getType() ==
1551                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1552          && "Ptr must be a pointer to Cmp type!");
1553   assert(getOperand(2)->getType() ==
1554                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1555          && "Ptr must be a pointer to NewVal type!");
1556   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1557          "AtomicCmpXchg instructions must be atomic!");
1558   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1559          "AtomicCmpXchg instructions must be atomic!");
1560   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1561          "AtomicCmpXchg failure argument shall be no stronger than the success "
1562          "argument");
1563   assert(FailureOrdering != AtomicOrdering::Release &&
1564          FailureOrdering != AtomicOrdering::AcquireRelease &&
1565          "AtomicCmpXchg failure ordering cannot include release semantics");
1566 }
1567 
1568 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1569                                      Align Alignment,
1570                                      AtomicOrdering SuccessOrdering,
1571                                      AtomicOrdering FailureOrdering,
1572                                      SyncScope::ID SSID,
1573                                      Instruction *InsertBefore)
1574     : Instruction(
1575           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1576           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1577           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1578   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1579 }
1580 
1581 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1582                                      Align Alignment,
1583                                      AtomicOrdering SuccessOrdering,
1584                                      AtomicOrdering FailureOrdering,
1585                                      SyncScope::ID SSID,
1586                                      BasicBlock *InsertAtEnd)
1587     : Instruction(
1588           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1589           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1590           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1591   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1592 }
1593 
1594 //===----------------------------------------------------------------------===//
1595 //                       AtomicRMWInst Implementation
1596 //===----------------------------------------------------------------------===//
1597 
1598 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1599                          Align Alignment, AtomicOrdering Ordering,
1600                          SyncScope::ID SSID) {
1601   Op<0>() = Ptr;
1602   Op<1>() = Val;
1603   setOperation(Operation);
1604   setOrdering(Ordering);
1605   setSyncScopeID(SSID);
1606   setAlignment(Alignment);
1607 
1608   assert(getOperand(0) && getOperand(1) &&
1609          "All operands must be non-null!");
1610   assert(getOperand(0)->getType()->isPointerTy() &&
1611          "Ptr must have pointer type!");
1612   assert(getOperand(1)->getType() ==
1613          cast<PointerType>(getOperand(0)->getType())->getElementType()
1614          && "Ptr must be a pointer to Val type!");
1615   assert(Ordering != AtomicOrdering::NotAtomic &&
1616          "AtomicRMW instructions must be atomic!");
1617 }
1618 
1619 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1620                              Align Alignment, AtomicOrdering Ordering,
1621                              SyncScope::ID SSID, Instruction *InsertBefore)
1622     : Instruction(Val->getType(), AtomicRMW,
1623                   OperandTraits<AtomicRMWInst>::op_begin(this),
1624                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1625   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1626 }
1627 
1628 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1629                              Align Alignment, AtomicOrdering Ordering,
1630                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1631     : Instruction(Val->getType(), AtomicRMW,
1632                   OperandTraits<AtomicRMWInst>::op_begin(this),
1633                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1634   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1635 }
1636 
1637 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1638   switch (Op) {
1639   case AtomicRMWInst::Xchg:
1640     return "xchg";
1641   case AtomicRMWInst::Add:
1642     return "add";
1643   case AtomicRMWInst::Sub:
1644     return "sub";
1645   case AtomicRMWInst::And:
1646     return "and";
1647   case AtomicRMWInst::Nand:
1648     return "nand";
1649   case AtomicRMWInst::Or:
1650     return "or";
1651   case AtomicRMWInst::Xor:
1652     return "xor";
1653   case AtomicRMWInst::Max:
1654     return "max";
1655   case AtomicRMWInst::Min:
1656     return "min";
1657   case AtomicRMWInst::UMax:
1658     return "umax";
1659   case AtomicRMWInst::UMin:
1660     return "umin";
1661   case AtomicRMWInst::FAdd:
1662     return "fadd";
1663   case AtomicRMWInst::FSub:
1664     return "fsub";
1665   case AtomicRMWInst::BAD_BINOP:
1666     return "<invalid operation>";
1667   }
1668 
1669   llvm_unreachable("invalid atomicrmw operation");
1670 }
1671 
1672 //===----------------------------------------------------------------------===//
1673 //                       FenceInst Implementation
1674 //===----------------------------------------------------------------------===//
1675 
1676 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1677                      SyncScope::ID SSID,
1678                      Instruction *InsertBefore)
1679   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1680   setOrdering(Ordering);
1681   setSyncScopeID(SSID);
1682 }
1683 
1684 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1685                      SyncScope::ID SSID,
1686                      BasicBlock *InsertAtEnd)
1687   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1688   setOrdering(Ordering);
1689   setSyncScopeID(SSID);
1690 }
1691 
1692 //===----------------------------------------------------------------------===//
1693 //                       GetElementPtrInst Implementation
1694 //===----------------------------------------------------------------------===//
1695 
1696 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1697                              const Twine &Name) {
1698   assert(getNumOperands() == 1 + IdxList.size() &&
1699          "NumOperands not initialized?");
1700   Op<0>() = Ptr;
1701   llvm::copy(IdxList, op_begin() + 1);
1702   setName(Name);
1703 }
1704 
1705 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1706     : Instruction(GEPI.getType(), GetElementPtr,
1707                   OperandTraits<GetElementPtrInst>::op_end(this) -
1708                       GEPI.getNumOperands(),
1709                   GEPI.getNumOperands()),
1710       SourceElementType(GEPI.SourceElementType),
1711       ResultElementType(GEPI.ResultElementType) {
1712   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1713   SubclassOptionalData = GEPI.SubclassOptionalData;
1714 }
1715 
1716 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1717   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1718     if (!Struct->indexValid(Idx))
1719       return nullptr;
1720     return Struct->getTypeAtIndex(Idx);
1721   }
1722   if (!Idx->getType()->isIntOrIntVectorTy())
1723     return nullptr;
1724   if (auto *Array = dyn_cast<ArrayType>(Ty))
1725     return Array->getElementType();
1726   if (auto *Vector = dyn_cast<VectorType>(Ty))
1727     return Vector->getElementType();
1728   return nullptr;
1729 }
1730 
1731 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1732   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1733     if (Idx >= Struct->getNumElements())
1734       return nullptr;
1735     return Struct->getElementType(Idx);
1736   }
1737   if (auto *Array = dyn_cast<ArrayType>(Ty))
1738     return Array->getElementType();
1739   if (auto *Vector = dyn_cast<VectorType>(Ty))
1740     return Vector->getElementType();
1741   return nullptr;
1742 }
1743 
1744 template <typename IndexTy>
1745 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1746   if (IdxList.empty())
1747     return Ty;
1748   for (IndexTy V : IdxList.slice(1)) {
1749     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1750     if (!Ty)
1751       return Ty;
1752   }
1753   return Ty;
1754 }
1755 
1756 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1757   return getIndexedTypeInternal(Ty, IdxList);
1758 }
1759 
1760 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1761                                         ArrayRef<Constant *> IdxList) {
1762   return getIndexedTypeInternal(Ty, IdxList);
1763 }
1764 
1765 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1766   return getIndexedTypeInternal(Ty, IdxList);
1767 }
1768 
1769 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1770 /// zeros.  If so, the result pointer and the first operand have the same
1771 /// value, just potentially different types.
1772 bool GetElementPtrInst::hasAllZeroIndices() const {
1773   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1774     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1775       if (!CI->isZero()) return false;
1776     } else {
1777       return false;
1778     }
1779   }
1780   return true;
1781 }
1782 
1783 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1784 /// constant integers.  If so, the result pointer and the first operand have
1785 /// a constant offset between them.
1786 bool GetElementPtrInst::hasAllConstantIndices() const {
1787   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1788     if (!isa<ConstantInt>(getOperand(i)))
1789       return false;
1790   }
1791   return true;
1792 }
1793 
1794 void GetElementPtrInst::setIsInBounds(bool B) {
1795   cast<GEPOperator>(this)->setIsInBounds(B);
1796 }
1797 
1798 bool GetElementPtrInst::isInBounds() const {
1799   return cast<GEPOperator>(this)->isInBounds();
1800 }
1801 
1802 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1803                                                  APInt &Offset) const {
1804   // Delegate to the generic GEPOperator implementation.
1805   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1806 }
1807 
1808 //===----------------------------------------------------------------------===//
1809 //                           ExtractElementInst Implementation
1810 //===----------------------------------------------------------------------===//
1811 
1812 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1813                                        const Twine &Name,
1814                                        Instruction *InsertBef)
1815   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1816                 ExtractElement,
1817                 OperandTraits<ExtractElementInst>::op_begin(this),
1818                 2, InsertBef) {
1819   assert(isValidOperands(Val, Index) &&
1820          "Invalid extractelement instruction operands!");
1821   Op<0>() = Val;
1822   Op<1>() = Index;
1823   setName(Name);
1824 }
1825 
1826 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1827                                        const Twine &Name,
1828                                        BasicBlock *InsertAE)
1829   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1830                 ExtractElement,
1831                 OperandTraits<ExtractElementInst>::op_begin(this),
1832                 2, InsertAE) {
1833   assert(isValidOperands(Val, Index) &&
1834          "Invalid extractelement instruction operands!");
1835 
1836   Op<0>() = Val;
1837   Op<1>() = Index;
1838   setName(Name);
1839 }
1840 
1841 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1842   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1843     return false;
1844   return true;
1845 }
1846 
1847 //===----------------------------------------------------------------------===//
1848 //                           InsertElementInst Implementation
1849 //===----------------------------------------------------------------------===//
1850 
1851 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1852                                      const Twine &Name,
1853                                      Instruction *InsertBef)
1854   : Instruction(Vec->getType(), InsertElement,
1855                 OperandTraits<InsertElementInst>::op_begin(this),
1856                 3, InsertBef) {
1857   assert(isValidOperands(Vec, Elt, Index) &&
1858          "Invalid insertelement instruction operands!");
1859   Op<0>() = Vec;
1860   Op<1>() = Elt;
1861   Op<2>() = Index;
1862   setName(Name);
1863 }
1864 
1865 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1866                                      const Twine &Name,
1867                                      BasicBlock *InsertAE)
1868   : Instruction(Vec->getType(), InsertElement,
1869                 OperandTraits<InsertElementInst>::op_begin(this),
1870                 3, InsertAE) {
1871   assert(isValidOperands(Vec, Elt, Index) &&
1872          "Invalid insertelement instruction operands!");
1873 
1874   Op<0>() = Vec;
1875   Op<1>() = Elt;
1876   Op<2>() = Index;
1877   setName(Name);
1878 }
1879 
1880 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1881                                         const Value *Index) {
1882   if (!Vec->getType()->isVectorTy())
1883     return false;   // First operand of insertelement must be vector type.
1884 
1885   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1886     return false;// Second operand of insertelement must be vector element type.
1887 
1888   if (!Index->getType()->isIntegerTy())
1889     return false;  // Third operand of insertelement must be i32.
1890   return true;
1891 }
1892 
1893 //===----------------------------------------------------------------------===//
1894 //                      ShuffleVectorInst Implementation
1895 //===----------------------------------------------------------------------===//
1896 
1897 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1898                                      const Twine &Name,
1899                                      Instruction *InsertBefore)
1900     : Instruction(
1901           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1902                           cast<VectorType>(Mask->getType())->getElementCount()),
1903           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1904           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1905   assert(isValidOperands(V1, V2, Mask) &&
1906          "Invalid shuffle vector instruction operands!");
1907 
1908   Op<0>() = V1;
1909   Op<1>() = V2;
1910   SmallVector<int, 16> MaskArr;
1911   getShuffleMask(cast<Constant>(Mask), MaskArr);
1912   setShuffleMask(MaskArr);
1913   setName(Name);
1914 }
1915 
1916 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1917                                      const Twine &Name, BasicBlock *InsertAtEnd)
1918     : Instruction(
1919           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1920                           cast<VectorType>(Mask->getType())->getElementCount()),
1921           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1922           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1923   assert(isValidOperands(V1, V2, Mask) &&
1924          "Invalid shuffle vector instruction operands!");
1925 
1926   Op<0>() = V1;
1927   Op<1>() = V2;
1928   SmallVector<int, 16> MaskArr;
1929   getShuffleMask(cast<Constant>(Mask), MaskArr);
1930   setShuffleMask(MaskArr);
1931   setName(Name);
1932 }
1933 
1934 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1935                                      const Twine &Name,
1936                                      Instruction *InsertBefore)
1937     : Instruction(
1938           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1939                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1940           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1941           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1942   assert(isValidOperands(V1, V2, Mask) &&
1943          "Invalid shuffle vector instruction operands!");
1944   Op<0>() = V1;
1945   Op<1>() = V2;
1946   setShuffleMask(Mask);
1947   setName(Name);
1948 }
1949 
1950 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1951                                      const Twine &Name, BasicBlock *InsertAtEnd)
1952     : Instruction(
1953           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1954                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1955           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1956           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1957   assert(isValidOperands(V1, V2, Mask) &&
1958          "Invalid shuffle vector instruction operands!");
1959 
1960   Op<0>() = V1;
1961   Op<1>() = V2;
1962   setShuffleMask(Mask);
1963   setName(Name);
1964 }
1965 
1966 void ShuffleVectorInst::commute() {
1967   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1968   int NumMaskElts = ShuffleMask.size();
1969   SmallVector<int, 16> NewMask(NumMaskElts);
1970   for (int i = 0; i != NumMaskElts; ++i) {
1971     int MaskElt = getMaskValue(i);
1972     if (MaskElt == UndefMaskElem) {
1973       NewMask[i] = UndefMaskElem;
1974       continue;
1975     }
1976     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1977     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1978     NewMask[i] = MaskElt;
1979   }
1980   setShuffleMask(NewMask);
1981   Op<0>().swap(Op<1>());
1982 }
1983 
1984 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1985                                         ArrayRef<int> Mask) {
1986   // V1 and V2 must be vectors of the same type.
1987   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1988     return false;
1989 
1990   // Make sure the mask elements make sense.
1991   int V1Size =
1992       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
1993   for (int Elem : Mask)
1994     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
1995       return false;
1996 
1997   if (isa<ScalableVectorType>(V1->getType()))
1998     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
1999       return false;
2000 
2001   return true;
2002 }
2003 
2004 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2005                                         const Value *Mask) {
2006   // V1 and V2 must be vectors of the same type.
2007   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2008     return false;
2009 
2010   // Mask must be vector of i32, and must be the same kind of vector as the
2011   // input vectors
2012   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2013   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2014       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2015     return false;
2016 
2017   // Check to see if Mask is valid.
2018   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2019     return true;
2020 
2021   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2022     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2023     for (Value *Op : MV->operands()) {
2024       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2025         if (CI->uge(V1Size*2))
2026           return false;
2027       } else if (!isa<UndefValue>(Op)) {
2028         return false;
2029       }
2030     }
2031     return true;
2032   }
2033 
2034   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2035     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2036     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2037          i != e; ++i)
2038       if (CDS->getElementAsInteger(i) >= V1Size*2)
2039         return false;
2040     return true;
2041   }
2042 
2043   return false;
2044 }
2045 
2046 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2047                                        SmallVectorImpl<int> &Result) {
2048   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2049 
2050   if (isa<ConstantAggregateZero>(Mask)) {
2051     Result.resize(EC.getKnownMinValue(), 0);
2052     return;
2053   }
2054 
2055   Result.reserve(EC.getKnownMinValue());
2056 
2057   if (EC.isScalable()) {
2058     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2059            "Scalable vector shuffle mask must be undef or zeroinitializer");
2060     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2061     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2062       Result.emplace_back(MaskVal);
2063     return;
2064   }
2065 
2066   unsigned NumElts = EC.getKnownMinValue();
2067 
2068   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2069     for (unsigned i = 0; i != NumElts; ++i)
2070       Result.push_back(CDS->getElementAsInteger(i));
2071     return;
2072   }
2073   for (unsigned i = 0; i != NumElts; ++i) {
2074     Constant *C = Mask->getAggregateElement(i);
2075     Result.push_back(isa<UndefValue>(C) ? -1 :
2076                      cast<ConstantInt>(C)->getZExtValue());
2077   }
2078 }
2079 
2080 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2081   ShuffleMask.assign(Mask.begin(), Mask.end());
2082   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2083 }
2084 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2085                                                           Type *ResultTy) {
2086   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2087   if (isa<ScalableVectorType>(ResultTy)) {
2088     assert(is_splat(Mask) && "Unexpected shuffle");
2089     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2090     if (Mask[0] == 0)
2091       return Constant::getNullValue(VecTy);
2092     return UndefValue::get(VecTy);
2093   }
2094   SmallVector<Constant *, 16> MaskConst;
2095   for (int Elem : Mask) {
2096     if (Elem == UndefMaskElem)
2097       MaskConst.push_back(UndefValue::get(Int32Ty));
2098     else
2099       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2100   }
2101   return ConstantVector::get(MaskConst);
2102 }
2103 
2104 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2105   assert(!Mask.empty() && "Shuffle mask must contain elements");
2106   bool UsesLHS = false;
2107   bool UsesRHS = false;
2108   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2109     if (Mask[i] == -1)
2110       continue;
2111     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
2112            "Out-of-bounds shuffle mask element");
2113     UsesLHS |= (Mask[i] < NumOpElts);
2114     UsesRHS |= (Mask[i] >= NumOpElts);
2115     if (UsesLHS && UsesRHS)
2116       return false;
2117   }
2118   // Allow for degenerate case: completely undef mask means neither source is used.
2119   return UsesLHS || UsesRHS;
2120 }
2121 
2122 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2123   // We don't have vector operand size information, so assume operands are the
2124   // same size as the mask.
2125   return isSingleSourceMaskImpl(Mask, Mask.size());
2126 }
2127 
2128 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2129   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2130     return false;
2131   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2132     if (Mask[i] == -1)
2133       continue;
2134     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2135       return false;
2136   }
2137   return true;
2138 }
2139 
2140 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2141   // We don't have vector operand size information, so assume operands are the
2142   // same size as the mask.
2143   return isIdentityMaskImpl(Mask, Mask.size());
2144 }
2145 
2146 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2147   if (!isSingleSourceMask(Mask))
2148     return false;
2149   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2150     if (Mask[i] == -1)
2151       continue;
2152     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2153       return false;
2154   }
2155   return true;
2156 }
2157 
2158 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2159   if (!isSingleSourceMask(Mask))
2160     return false;
2161   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2162     if (Mask[i] == -1)
2163       continue;
2164     if (Mask[i] != 0 && Mask[i] != NumElts)
2165       return false;
2166   }
2167   return true;
2168 }
2169 
2170 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2171   // Select is differentiated from identity. It requires using both sources.
2172   if (isSingleSourceMask(Mask))
2173     return false;
2174   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2175     if (Mask[i] == -1)
2176       continue;
2177     if (Mask[i] != i && Mask[i] != (NumElts + i))
2178       return false;
2179   }
2180   return true;
2181 }
2182 
2183 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2184   // Example masks that will return true:
2185   // v1 = <a, b, c, d>
2186   // v2 = <e, f, g, h>
2187   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2188   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2189 
2190   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2191   int NumElts = Mask.size();
2192   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2193     return false;
2194 
2195   // 2. The first element of the mask must be either a 0 or a 1.
2196   if (Mask[0] != 0 && Mask[0] != 1)
2197     return false;
2198 
2199   // 3. The difference between the first 2 elements must be equal to the
2200   // number of elements in the mask.
2201   if ((Mask[1] - Mask[0]) != NumElts)
2202     return false;
2203 
2204   // 4. The difference between consecutive even-numbered and odd-numbered
2205   // elements must be equal to 2.
2206   for (int i = 2; i < NumElts; ++i) {
2207     int MaskEltVal = Mask[i];
2208     if (MaskEltVal == -1)
2209       return false;
2210     int MaskEltPrevVal = Mask[i - 2];
2211     if (MaskEltVal - MaskEltPrevVal != 2)
2212       return false;
2213   }
2214   return true;
2215 }
2216 
2217 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2218                                                int NumSrcElts, int &Index) {
2219   // Must extract from a single source.
2220   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2221     return false;
2222 
2223   // Must be smaller (else this is an Identity shuffle).
2224   if (NumSrcElts <= (int)Mask.size())
2225     return false;
2226 
2227   // Find start of extraction, accounting that we may start with an UNDEF.
2228   int SubIndex = -1;
2229   for (int i = 0, e = Mask.size(); i != e; ++i) {
2230     int M = Mask[i];
2231     if (M < 0)
2232       continue;
2233     int Offset = (M % NumSrcElts) - i;
2234     if (0 <= SubIndex && SubIndex != Offset)
2235       return false;
2236     SubIndex = Offset;
2237   }
2238 
2239   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2240     Index = SubIndex;
2241     return true;
2242   }
2243   return false;
2244 }
2245 
2246 bool ShuffleVectorInst::isIdentityWithPadding() const {
2247   if (isa<UndefValue>(Op<2>()))
2248     return false;
2249 
2250   // FIXME: Not currently possible to express a shuffle mask for a scalable
2251   // vector for this case.
2252   if (isa<ScalableVectorType>(getType()))
2253     return false;
2254 
2255   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2256   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2257   if (NumMaskElts <= NumOpElts)
2258     return false;
2259 
2260   // The first part of the mask must choose elements from exactly 1 source op.
2261   ArrayRef<int> Mask = getShuffleMask();
2262   if (!isIdentityMaskImpl(Mask, NumOpElts))
2263     return false;
2264 
2265   // All extending must be with undef elements.
2266   for (int i = NumOpElts; i < NumMaskElts; ++i)
2267     if (Mask[i] != -1)
2268       return false;
2269 
2270   return true;
2271 }
2272 
2273 bool ShuffleVectorInst::isIdentityWithExtract() const {
2274   if (isa<UndefValue>(Op<2>()))
2275     return false;
2276 
2277   // FIXME: Not currently possible to express a shuffle mask for a scalable
2278   // vector for this case.
2279   if (isa<ScalableVectorType>(getType()))
2280     return false;
2281 
2282   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2283   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2284   if (NumMaskElts >= NumOpElts)
2285     return false;
2286 
2287   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2288 }
2289 
2290 bool ShuffleVectorInst::isConcat() const {
2291   // Vector concatenation is differentiated from identity with padding.
2292   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2293       isa<UndefValue>(Op<2>()))
2294     return false;
2295 
2296   // FIXME: Not currently possible to express a shuffle mask for a scalable
2297   // vector for this case.
2298   if (isa<ScalableVectorType>(getType()))
2299     return false;
2300 
2301   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2302   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2303   if (NumMaskElts != NumOpElts * 2)
2304     return false;
2305 
2306   // Use the mask length rather than the operands' vector lengths here. We
2307   // already know that the shuffle returns a vector twice as long as the inputs,
2308   // and neither of the inputs are undef vectors. If the mask picks consecutive
2309   // elements from both inputs, then this is a concatenation of the inputs.
2310   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2311 }
2312 
2313 //===----------------------------------------------------------------------===//
2314 //                             InsertValueInst Class
2315 //===----------------------------------------------------------------------===//
2316 
2317 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2318                            const Twine &Name) {
2319   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2320 
2321   // There's no fundamental reason why we require at least one index
2322   // (other than weirdness with &*IdxBegin being invalid; see
2323   // getelementptr's init routine for example). But there's no
2324   // present need to support it.
2325   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2326 
2327   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2328          Val->getType() && "Inserted value must match indexed type!");
2329   Op<0>() = Agg;
2330   Op<1>() = Val;
2331 
2332   Indices.append(Idxs.begin(), Idxs.end());
2333   setName(Name);
2334 }
2335 
2336 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2337   : Instruction(IVI.getType(), InsertValue,
2338                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2339     Indices(IVI.Indices) {
2340   Op<0>() = IVI.getOperand(0);
2341   Op<1>() = IVI.getOperand(1);
2342   SubclassOptionalData = IVI.SubclassOptionalData;
2343 }
2344 
2345 //===----------------------------------------------------------------------===//
2346 //                             ExtractValueInst Class
2347 //===----------------------------------------------------------------------===//
2348 
2349 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2350   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2351 
2352   // There's no fundamental reason why we require at least one index.
2353   // But there's no present need to support it.
2354   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2355 
2356   Indices.append(Idxs.begin(), Idxs.end());
2357   setName(Name);
2358 }
2359 
2360 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2361   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2362     Indices(EVI.Indices) {
2363   SubclassOptionalData = EVI.SubclassOptionalData;
2364 }
2365 
2366 // getIndexedType - Returns the type of the element that would be extracted
2367 // with an extractvalue instruction with the specified parameters.
2368 //
2369 // A null type is returned if the indices are invalid for the specified
2370 // pointer type.
2371 //
2372 Type *ExtractValueInst::getIndexedType(Type *Agg,
2373                                        ArrayRef<unsigned> Idxs) {
2374   for (unsigned Index : Idxs) {
2375     // We can't use CompositeType::indexValid(Index) here.
2376     // indexValid() always returns true for arrays because getelementptr allows
2377     // out-of-bounds indices. Since we don't allow those for extractvalue and
2378     // insertvalue we need to check array indexing manually.
2379     // Since the only other types we can index into are struct types it's just
2380     // as easy to check those manually as well.
2381     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2382       if (Index >= AT->getNumElements())
2383         return nullptr;
2384       Agg = AT->getElementType();
2385     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2386       if (Index >= ST->getNumElements())
2387         return nullptr;
2388       Agg = ST->getElementType(Index);
2389     } else {
2390       // Not a valid type to index into.
2391       return nullptr;
2392     }
2393   }
2394   return const_cast<Type*>(Agg);
2395 }
2396 
2397 //===----------------------------------------------------------------------===//
2398 //                             UnaryOperator Class
2399 //===----------------------------------------------------------------------===//
2400 
2401 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2402                              Type *Ty, const Twine &Name,
2403                              Instruction *InsertBefore)
2404   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2405   Op<0>() = S;
2406   setName(Name);
2407   AssertOK();
2408 }
2409 
2410 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2411                              Type *Ty, const Twine &Name,
2412                              BasicBlock *InsertAtEnd)
2413   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2414   Op<0>() = S;
2415   setName(Name);
2416   AssertOK();
2417 }
2418 
2419 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2420                                      const Twine &Name,
2421                                      Instruction *InsertBefore) {
2422   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2423 }
2424 
2425 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2426                                      const Twine &Name,
2427                                      BasicBlock *InsertAtEnd) {
2428   UnaryOperator *Res = Create(Op, S, Name);
2429   InsertAtEnd->getInstList().push_back(Res);
2430   return Res;
2431 }
2432 
2433 void UnaryOperator::AssertOK() {
2434   Value *LHS = getOperand(0);
2435   (void)LHS; // Silence warnings.
2436 #ifndef NDEBUG
2437   switch (getOpcode()) {
2438   case FNeg:
2439     assert(getType() == LHS->getType() &&
2440            "Unary operation should return same type as operand!");
2441     assert(getType()->isFPOrFPVectorTy() &&
2442            "Tried to create a floating-point operation on a "
2443            "non-floating-point type!");
2444     break;
2445   default: llvm_unreachable("Invalid opcode provided");
2446   }
2447 #endif
2448 }
2449 
2450 //===----------------------------------------------------------------------===//
2451 //                             BinaryOperator Class
2452 //===----------------------------------------------------------------------===//
2453 
2454 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2455                                Type *Ty, const Twine &Name,
2456                                Instruction *InsertBefore)
2457   : Instruction(Ty, iType,
2458                 OperandTraits<BinaryOperator>::op_begin(this),
2459                 OperandTraits<BinaryOperator>::operands(this),
2460                 InsertBefore) {
2461   Op<0>() = S1;
2462   Op<1>() = S2;
2463   setName(Name);
2464   AssertOK();
2465 }
2466 
2467 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2468                                Type *Ty, const Twine &Name,
2469                                BasicBlock *InsertAtEnd)
2470   : Instruction(Ty, iType,
2471                 OperandTraits<BinaryOperator>::op_begin(this),
2472                 OperandTraits<BinaryOperator>::operands(this),
2473                 InsertAtEnd) {
2474   Op<0>() = S1;
2475   Op<1>() = S2;
2476   setName(Name);
2477   AssertOK();
2478 }
2479 
2480 void BinaryOperator::AssertOK() {
2481   Value *LHS = getOperand(0), *RHS = getOperand(1);
2482   (void)LHS; (void)RHS; // Silence warnings.
2483   assert(LHS->getType() == RHS->getType() &&
2484          "Binary operator operand types must match!");
2485 #ifndef NDEBUG
2486   switch (getOpcode()) {
2487   case Add: case Sub:
2488   case Mul:
2489     assert(getType() == LHS->getType() &&
2490            "Arithmetic operation should return same type as operands!");
2491     assert(getType()->isIntOrIntVectorTy() &&
2492            "Tried to create an integer operation on a non-integer type!");
2493     break;
2494   case FAdd: case FSub:
2495   case FMul:
2496     assert(getType() == LHS->getType() &&
2497            "Arithmetic operation should return same type as operands!");
2498     assert(getType()->isFPOrFPVectorTy() &&
2499            "Tried to create a floating-point operation on a "
2500            "non-floating-point type!");
2501     break;
2502   case UDiv:
2503   case SDiv:
2504     assert(getType() == LHS->getType() &&
2505            "Arithmetic operation should return same type as operands!");
2506     assert(getType()->isIntOrIntVectorTy() &&
2507            "Incorrect operand type (not integer) for S/UDIV");
2508     break;
2509   case FDiv:
2510     assert(getType() == LHS->getType() &&
2511            "Arithmetic operation should return same type as operands!");
2512     assert(getType()->isFPOrFPVectorTy() &&
2513            "Incorrect operand type (not floating point) for FDIV");
2514     break;
2515   case URem:
2516   case SRem:
2517     assert(getType() == LHS->getType() &&
2518            "Arithmetic operation should return same type as operands!");
2519     assert(getType()->isIntOrIntVectorTy() &&
2520            "Incorrect operand type (not integer) for S/UREM");
2521     break;
2522   case FRem:
2523     assert(getType() == LHS->getType() &&
2524            "Arithmetic operation should return same type as operands!");
2525     assert(getType()->isFPOrFPVectorTy() &&
2526            "Incorrect operand type (not floating point) for FREM");
2527     break;
2528   case Shl:
2529   case LShr:
2530   case AShr:
2531     assert(getType() == LHS->getType() &&
2532            "Shift operation should return same type as operands!");
2533     assert(getType()->isIntOrIntVectorTy() &&
2534            "Tried to create a shift operation on a non-integral type!");
2535     break;
2536   case And: case Or:
2537   case Xor:
2538     assert(getType() == LHS->getType() &&
2539            "Logical operation should return same type as operands!");
2540     assert(getType()->isIntOrIntVectorTy() &&
2541            "Tried to create a logical operation on a non-integral type!");
2542     break;
2543   default: llvm_unreachable("Invalid opcode provided");
2544   }
2545 #endif
2546 }
2547 
2548 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2549                                        const Twine &Name,
2550                                        Instruction *InsertBefore) {
2551   assert(S1->getType() == S2->getType() &&
2552          "Cannot create binary operator with two operands of differing type!");
2553   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2554 }
2555 
2556 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2557                                        const Twine &Name,
2558                                        BasicBlock *InsertAtEnd) {
2559   BinaryOperator *Res = Create(Op, S1, S2, Name);
2560   InsertAtEnd->getInstList().push_back(Res);
2561   return Res;
2562 }
2563 
2564 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2565                                           Instruction *InsertBefore) {
2566   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2567   return new BinaryOperator(Instruction::Sub,
2568                             zero, Op,
2569                             Op->getType(), Name, InsertBefore);
2570 }
2571 
2572 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2573                                           BasicBlock *InsertAtEnd) {
2574   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2575   return new BinaryOperator(Instruction::Sub,
2576                             zero, Op,
2577                             Op->getType(), Name, InsertAtEnd);
2578 }
2579 
2580 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2581                                              Instruction *InsertBefore) {
2582   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2583   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2584 }
2585 
2586 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2587                                              BasicBlock *InsertAtEnd) {
2588   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2589   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2590 }
2591 
2592 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2593                                              Instruction *InsertBefore) {
2594   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2595   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2596 }
2597 
2598 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2599                                              BasicBlock *InsertAtEnd) {
2600   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2601   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2602 }
2603 
2604 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2605                                           Instruction *InsertBefore) {
2606   Constant *C = Constant::getAllOnesValue(Op->getType());
2607   return new BinaryOperator(Instruction::Xor, Op, C,
2608                             Op->getType(), Name, InsertBefore);
2609 }
2610 
2611 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2612                                           BasicBlock *InsertAtEnd) {
2613   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2614   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2615                             Op->getType(), Name, InsertAtEnd);
2616 }
2617 
2618 // Exchange the two operands to this instruction. This instruction is safe to
2619 // use on any binary instruction and does not modify the semantics of the
2620 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2621 // is changed.
2622 bool BinaryOperator::swapOperands() {
2623   if (!isCommutative())
2624     return true; // Can't commute operands
2625   Op<0>().swap(Op<1>());
2626   return false;
2627 }
2628 
2629 //===----------------------------------------------------------------------===//
2630 //                             FPMathOperator Class
2631 //===----------------------------------------------------------------------===//
2632 
2633 float FPMathOperator::getFPAccuracy() const {
2634   const MDNode *MD =
2635       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2636   if (!MD)
2637     return 0.0;
2638   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2639   return Accuracy->getValueAPF().convertToFloat();
2640 }
2641 
2642 //===----------------------------------------------------------------------===//
2643 //                                CastInst Class
2644 //===----------------------------------------------------------------------===//
2645 
2646 // Just determine if this cast only deals with integral->integral conversion.
2647 bool CastInst::isIntegerCast() const {
2648   switch (getOpcode()) {
2649     default: return false;
2650     case Instruction::ZExt:
2651     case Instruction::SExt:
2652     case Instruction::Trunc:
2653       return true;
2654     case Instruction::BitCast:
2655       return getOperand(0)->getType()->isIntegerTy() &&
2656         getType()->isIntegerTy();
2657   }
2658 }
2659 
2660 bool CastInst::isLosslessCast() const {
2661   // Only BitCast can be lossless, exit fast if we're not BitCast
2662   if (getOpcode() != Instruction::BitCast)
2663     return false;
2664 
2665   // Identity cast is always lossless
2666   Type *SrcTy = getOperand(0)->getType();
2667   Type *DstTy = getType();
2668   if (SrcTy == DstTy)
2669     return true;
2670 
2671   // Pointer to pointer is always lossless.
2672   if (SrcTy->isPointerTy())
2673     return DstTy->isPointerTy();
2674   return false;  // Other types have no identity values
2675 }
2676 
2677 /// This function determines if the CastInst does not require any bits to be
2678 /// changed in order to effect the cast. Essentially, it identifies cases where
2679 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2680 /// example, the following are all no-op casts:
2681 /// # bitcast i32* %x to i8*
2682 /// # bitcast <2 x i32> %x to <4 x i16>
2683 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2684 /// Determine if the described cast is a no-op.
2685 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2686                           Type *SrcTy,
2687                           Type *DestTy,
2688                           const DataLayout &DL) {
2689   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2690   switch (Opcode) {
2691     default: llvm_unreachable("Invalid CastOp");
2692     case Instruction::Trunc:
2693     case Instruction::ZExt:
2694     case Instruction::SExt:
2695     case Instruction::FPTrunc:
2696     case Instruction::FPExt:
2697     case Instruction::UIToFP:
2698     case Instruction::SIToFP:
2699     case Instruction::FPToUI:
2700     case Instruction::FPToSI:
2701     case Instruction::AddrSpaceCast:
2702       // TODO: Target informations may give a more accurate answer here.
2703       return false;
2704     case Instruction::BitCast:
2705       return true;  // BitCast never modifies bits.
2706     case Instruction::PtrToInt:
2707       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2708              DestTy->getScalarSizeInBits();
2709     case Instruction::IntToPtr:
2710       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2711              SrcTy->getScalarSizeInBits();
2712   }
2713 }
2714 
2715 bool CastInst::isNoopCast(const DataLayout &DL) const {
2716   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2717 }
2718 
2719 /// This function determines if a pair of casts can be eliminated and what
2720 /// opcode should be used in the elimination. This assumes that there are two
2721 /// instructions like this:
2722 /// *  %F = firstOpcode SrcTy %x to MidTy
2723 /// *  %S = secondOpcode MidTy %F to DstTy
2724 /// The function returns a resultOpcode so these two casts can be replaced with:
2725 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2726 /// If no such cast is permitted, the function returns 0.
2727 unsigned CastInst::isEliminableCastPair(
2728   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2729   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2730   Type *DstIntPtrTy) {
2731   // Define the 144 possibilities for these two cast instructions. The values
2732   // in this matrix determine what to do in a given situation and select the
2733   // case in the switch below.  The rows correspond to firstOp, the columns
2734   // correspond to secondOp.  In looking at the table below, keep in mind
2735   // the following cast properties:
2736   //
2737   //          Size Compare       Source               Destination
2738   // Operator  Src ? Size   Type       Sign         Type       Sign
2739   // -------- ------------ -------------------   ---------------------
2740   // TRUNC         >       Integer      Any        Integral     Any
2741   // ZEXT          <       Integral   Unsigned     Integer      Any
2742   // SEXT          <       Integral    Signed      Integer      Any
2743   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2744   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2745   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2746   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2747   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2748   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2749   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2750   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2751   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2752   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2753   //
2754   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2755   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2756   // into "fptoui double to i64", but this loses information about the range
2757   // of the produced value (we no longer know the top-part is all zeros).
2758   // Further this conversion is often much more expensive for typical hardware,
2759   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2760   // same reason.
2761   const unsigned numCastOps =
2762     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2763   static const uint8_t CastResults[numCastOps][numCastOps] = {
2764     // T        F  F  U  S  F  F  P  I  B  A  -+
2765     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2766     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2767     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2768     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2769     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2770     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2771     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2772     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2773     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2774     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2775     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2776     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2777     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2778     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2779     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2780     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2781     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2782   };
2783 
2784   // TODO: This logic could be encoded into the table above and handled in the
2785   // switch below.
2786   // If either of the casts are a bitcast from scalar to vector, disallow the
2787   // merging. However, any pair of bitcasts are allowed.
2788   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2789   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2790   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2791 
2792   // Check if any of the casts convert scalars <-> vectors.
2793   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2794       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2795     if (!AreBothBitcasts)
2796       return 0;
2797 
2798   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2799                             [secondOp-Instruction::CastOpsBegin];
2800   switch (ElimCase) {
2801     case 0:
2802       // Categorically disallowed.
2803       return 0;
2804     case 1:
2805       // Allowed, use first cast's opcode.
2806       return firstOp;
2807     case 2:
2808       // Allowed, use second cast's opcode.
2809       return secondOp;
2810     case 3:
2811       // No-op cast in second op implies firstOp as long as the DestTy
2812       // is integer and we are not converting between a vector and a
2813       // non-vector type.
2814       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2815         return firstOp;
2816       return 0;
2817     case 4:
2818       // No-op cast in second op implies firstOp as long as the DestTy
2819       // is floating point.
2820       if (DstTy->isFloatingPointTy())
2821         return firstOp;
2822       return 0;
2823     case 5:
2824       // No-op cast in first op implies secondOp as long as the SrcTy
2825       // is an integer.
2826       if (SrcTy->isIntegerTy())
2827         return secondOp;
2828       return 0;
2829     case 6:
2830       // No-op cast in first op implies secondOp as long as the SrcTy
2831       // is a floating point.
2832       if (SrcTy->isFloatingPointTy())
2833         return secondOp;
2834       return 0;
2835     case 7: {
2836       // Cannot simplify if address spaces are different!
2837       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2838         return 0;
2839 
2840       unsigned MidSize = MidTy->getScalarSizeInBits();
2841       // We can still fold this without knowing the actual sizes as long we
2842       // know that the intermediate pointer is the largest possible
2843       // pointer size.
2844       // FIXME: Is this always true?
2845       if (MidSize == 64)
2846         return Instruction::BitCast;
2847 
2848       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2849       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2850         return 0;
2851       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2852       if (MidSize >= PtrSize)
2853         return Instruction::BitCast;
2854       return 0;
2855     }
2856     case 8: {
2857       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2858       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2859       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2860       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2861       unsigned DstSize = DstTy->getScalarSizeInBits();
2862       if (SrcSize == DstSize)
2863         return Instruction::BitCast;
2864       else if (SrcSize < DstSize)
2865         return firstOp;
2866       return secondOp;
2867     }
2868     case 9:
2869       // zext, sext -> zext, because sext can't sign extend after zext
2870       return Instruction::ZExt;
2871     case 11: {
2872       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2873       if (!MidIntPtrTy)
2874         return 0;
2875       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2876       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2877       unsigned DstSize = DstTy->getScalarSizeInBits();
2878       if (SrcSize <= PtrSize && SrcSize == DstSize)
2879         return Instruction::BitCast;
2880       return 0;
2881     }
2882     case 12:
2883       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2884       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2885       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2886         return Instruction::AddrSpaceCast;
2887       return Instruction::BitCast;
2888     case 13:
2889       // FIXME: this state can be merged with (1), but the following assert
2890       // is useful to check the correcteness of the sequence due to semantic
2891       // change of bitcast.
2892       assert(
2893         SrcTy->isPtrOrPtrVectorTy() &&
2894         MidTy->isPtrOrPtrVectorTy() &&
2895         DstTy->isPtrOrPtrVectorTy() &&
2896         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2897         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2898         "Illegal addrspacecast, bitcast sequence!");
2899       // Allowed, use first cast's opcode
2900       return firstOp;
2901     case 14:
2902       // bitcast, addrspacecast -> addrspacecast if the element type of
2903       // bitcast's source is the same as that of addrspacecast's destination.
2904       if (SrcTy->getScalarType()->getPointerElementType() ==
2905           DstTy->getScalarType()->getPointerElementType())
2906         return Instruction::AddrSpaceCast;
2907       return 0;
2908     case 15:
2909       // FIXME: this state can be merged with (1), but the following assert
2910       // is useful to check the correcteness of the sequence due to semantic
2911       // change of bitcast.
2912       assert(
2913         SrcTy->isIntOrIntVectorTy() &&
2914         MidTy->isPtrOrPtrVectorTy() &&
2915         DstTy->isPtrOrPtrVectorTy() &&
2916         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2917         "Illegal inttoptr, bitcast sequence!");
2918       // Allowed, use first cast's opcode
2919       return firstOp;
2920     case 16:
2921       // FIXME: this state can be merged with (2), but the following assert
2922       // is useful to check the correcteness of the sequence due to semantic
2923       // change of bitcast.
2924       assert(
2925         SrcTy->isPtrOrPtrVectorTy() &&
2926         MidTy->isPtrOrPtrVectorTy() &&
2927         DstTy->isIntOrIntVectorTy() &&
2928         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2929         "Illegal bitcast, ptrtoint sequence!");
2930       // Allowed, use second cast's opcode
2931       return secondOp;
2932     case 17:
2933       // (sitofp (zext x)) -> (uitofp x)
2934       return Instruction::UIToFP;
2935     case 99:
2936       // Cast combination can't happen (error in input). This is for all cases
2937       // where the MidTy is not the same for the two cast instructions.
2938       llvm_unreachable("Invalid Cast Combination");
2939     default:
2940       llvm_unreachable("Error in CastResults table!!!");
2941   }
2942 }
2943 
2944 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2945   const Twine &Name, Instruction *InsertBefore) {
2946   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2947   // Construct and return the appropriate CastInst subclass
2948   switch (op) {
2949   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2950   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2951   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2952   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2953   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2954   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2955   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2956   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2957   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2958   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2959   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2960   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2961   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2962   default: llvm_unreachable("Invalid opcode provided");
2963   }
2964 }
2965 
2966 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2967   const Twine &Name, BasicBlock *InsertAtEnd) {
2968   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2969   // Construct and return the appropriate CastInst subclass
2970   switch (op) {
2971   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2972   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2973   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2974   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2975   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2976   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2977   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2978   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2979   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2980   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2981   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2982   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2983   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2984   default: llvm_unreachable("Invalid opcode provided");
2985   }
2986 }
2987 
2988 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2989                                         const Twine &Name,
2990                                         Instruction *InsertBefore) {
2991   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2992     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2993   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2994 }
2995 
2996 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2997                                         const Twine &Name,
2998                                         BasicBlock *InsertAtEnd) {
2999   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3000     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3001   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3002 }
3003 
3004 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3005                                         const Twine &Name,
3006                                         Instruction *InsertBefore) {
3007   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3008     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3009   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3010 }
3011 
3012 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3013                                         const Twine &Name,
3014                                         BasicBlock *InsertAtEnd) {
3015   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3016     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3017   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3018 }
3019 
3020 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3021                                          const Twine &Name,
3022                                          Instruction *InsertBefore) {
3023   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3024     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3025   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3026 }
3027 
3028 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3029                                          const Twine &Name,
3030                                          BasicBlock *InsertAtEnd) {
3031   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3032     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3033   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3034 }
3035 
3036 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3037                                       const Twine &Name,
3038                                       BasicBlock *InsertAtEnd) {
3039   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3040   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3041          "Invalid cast");
3042   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3043   assert((!Ty->isVectorTy() ||
3044           cast<VectorType>(Ty)->getElementCount() ==
3045               cast<VectorType>(S->getType())->getElementCount()) &&
3046          "Invalid cast");
3047 
3048   if (Ty->isIntOrIntVectorTy())
3049     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3050 
3051   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3052 }
3053 
3054 /// Create a BitCast or a PtrToInt cast instruction
3055 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3056                                       const Twine &Name,
3057                                       Instruction *InsertBefore) {
3058   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3059   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3060          "Invalid cast");
3061   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3062   assert((!Ty->isVectorTy() ||
3063           cast<VectorType>(Ty)->getElementCount() ==
3064               cast<VectorType>(S->getType())->getElementCount()) &&
3065          "Invalid cast");
3066 
3067   if (Ty->isIntOrIntVectorTy())
3068     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3069 
3070   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3071 }
3072 
3073 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3074   Value *S, Type *Ty,
3075   const Twine &Name,
3076   BasicBlock *InsertAtEnd) {
3077   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3078   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3079 
3080   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3081     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3082 
3083   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3084 }
3085 
3086 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3087   Value *S, Type *Ty,
3088   const Twine &Name,
3089   Instruction *InsertBefore) {
3090   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3091   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3092 
3093   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3094     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3095 
3096   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3097 }
3098 
3099 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3100                                            const Twine &Name,
3101                                            Instruction *InsertBefore) {
3102   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3103     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3104   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3105     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3106 
3107   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3108 }
3109 
3110 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3111                                       bool isSigned, const Twine &Name,
3112                                       Instruction *InsertBefore) {
3113   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3114          "Invalid integer cast");
3115   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3116   unsigned DstBits = Ty->getScalarSizeInBits();
3117   Instruction::CastOps opcode =
3118     (SrcBits == DstBits ? Instruction::BitCast :
3119      (SrcBits > DstBits ? Instruction::Trunc :
3120       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3121   return Create(opcode, C, Ty, Name, InsertBefore);
3122 }
3123 
3124 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3125                                       bool isSigned, const Twine &Name,
3126                                       BasicBlock *InsertAtEnd) {
3127   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3128          "Invalid cast");
3129   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3130   unsigned DstBits = Ty->getScalarSizeInBits();
3131   Instruction::CastOps opcode =
3132     (SrcBits == DstBits ? Instruction::BitCast :
3133      (SrcBits > DstBits ? Instruction::Trunc :
3134       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3135   return Create(opcode, C, Ty, Name, InsertAtEnd);
3136 }
3137 
3138 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3139                                  const Twine &Name,
3140                                  Instruction *InsertBefore) {
3141   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3142          "Invalid cast");
3143   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3144   unsigned DstBits = Ty->getScalarSizeInBits();
3145   Instruction::CastOps opcode =
3146     (SrcBits == DstBits ? Instruction::BitCast :
3147      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3148   return Create(opcode, C, Ty, Name, InsertBefore);
3149 }
3150 
3151 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3152                                  const Twine &Name,
3153                                  BasicBlock *InsertAtEnd) {
3154   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3155          "Invalid cast");
3156   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3157   unsigned DstBits = Ty->getScalarSizeInBits();
3158   Instruction::CastOps opcode =
3159     (SrcBits == DstBits ? Instruction::BitCast :
3160      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3161   return Create(opcode, C, Ty, Name, InsertAtEnd);
3162 }
3163 
3164 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3165   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3166     return false;
3167 
3168   if (SrcTy == DestTy)
3169     return true;
3170 
3171   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3172     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3173       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3174         // An element by element cast. Valid if casting the elements is valid.
3175         SrcTy = SrcVecTy->getElementType();
3176         DestTy = DestVecTy->getElementType();
3177       }
3178     }
3179   }
3180 
3181   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3182     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3183       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3184     }
3185   }
3186 
3187   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3188   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3189 
3190   // Could still have vectors of pointers if the number of elements doesn't
3191   // match
3192   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3193     return false;
3194 
3195   if (SrcBits != DestBits)
3196     return false;
3197 
3198   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3199     return false;
3200 
3201   return true;
3202 }
3203 
3204 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3205                                           const DataLayout &DL) {
3206   // ptrtoint and inttoptr are not allowed on non-integral pointers
3207   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3208     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3209       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3210               !DL.isNonIntegralPointerType(PtrTy));
3211   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3212     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3213       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3214               !DL.isNonIntegralPointerType(PtrTy));
3215 
3216   return isBitCastable(SrcTy, DestTy);
3217 }
3218 
3219 // Provide a way to get a "cast" where the cast opcode is inferred from the
3220 // types and size of the operand. This, basically, is a parallel of the
3221 // logic in the castIsValid function below.  This axiom should hold:
3222 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3223 // should not assert in castIsValid. In other words, this produces a "correct"
3224 // casting opcode for the arguments passed to it.
3225 Instruction::CastOps
3226 CastInst::getCastOpcode(
3227   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3228   Type *SrcTy = Src->getType();
3229 
3230   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3231          "Only first class types are castable!");
3232 
3233   if (SrcTy == DestTy)
3234     return BitCast;
3235 
3236   // FIXME: Check address space sizes here
3237   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3238     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3239       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3240         // An element by element cast.  Find the appropriate opcode based on the
3241         // element types.
3242         SrcTy = SrcVecTy->getElementType();
3243         DestTy = DestVecTy->getElementType();
3244       }
3245 
3246   // Get the bit sizes, we'll need these
3247   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3248   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3249 
3250   // Run through the possibilities ...
3251   if (DestTy->isIntegerTy()) {                      // Casting to integral
3252     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3253       if (DestBits < SrcBits)
3254         return Trunc;                               // int -> smaller int
3255       else if (DestBits > SrcBits) {                // its an extension
3256         if (SrcIsSigned)
3257           return SExt;                              // signed -> SEXT
3258         else
3259           return ZExt;                              // unsigned -> ZEXT
3260       } else {
3261         return BitCast;                             // Same size, No-op cast
3262       }
3263     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3264       if (DestIsSigned)
3265         return FPToSI;                              // FP -> sint
3266       else
3267         return FPToUI;                              // FP -> uint
3268     } else if (SrcTy->isVectorTy()) {
3269       assert(DestBits == SrcBits &&
3270              "Casting vector to integer of different width");
3271       return BitCast;                             // Same size, no-op cast
3272     } else {
3273       assert(SrcTy->isPointerTy() &&
3274              "Casting from a value that is not first-class type");
3275       return PtrToInt;                              // ptr -> int
3276     }
3277   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3278     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3279       if (SrcIsSigned)
3280         return SIToFP;                              // sint -> FP
3281       else
3282         return UIToFP;                              // uint -> FP
3283     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3284       if (DestBits < SrcBits) {
3285         return FPTrunc;                             // FP -> smaller FP
3286       } else if (DestBits > SrcBits) {
3287         return FPExt;                               // FP -> larger FP
3288       } else  {
3289         return BitCast;                             // same size, no-op cast
3290       }
3291     } else if (SrcTy->isVectorTy()) {
3292       assert(DestBits == SrcBits &&
3293              "Casting vector to floating point of different width");
3294       return BitCast;                             // same size, no-op cast
3295     }
3296     llvm_unreachable("Casting pointer or non-first class to float");
3297   } else if (DestTy->isVectorTy()) {
3298     assert(DestBits == SrcBits &&
3299            "Illegal cast to vector (wrong type or size)");
3300     return BitCast;
3301   } else if (DestTy->isPointerTy()) {
3302     if (SrcTy->isPointerTy()) {
3303       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3304         return AddrSpaceCast;
3305       return BitCast;                               // ptr -> ptr
3306     } else if (SrcTy->isIntegerTy()) {
3307       return IntToPtr;                              // int -> ptr
3308     }
3309     llvm_unreachable("Casting pointer to other than pointer or int");
3310   } else if (DestTy->isX86_MMXTy()) {
3311     if (SrcTy->isVectorTy()) {
3312       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3313       return BitCast;                               // 64-bit vector to MMX
3314     }
3315     llvm_unreachable("Illegal cast to X86_MMX");
3316   }
3317   llvm_unreachable("Casting to type that is not first-class");
3318 }
3319 
3320 //===----------------------------------------------------------------------===//
3321 //                    CastInst SubClass Constructors
3322 //===----------------------------------------------------------------------===//
3323 
3324 /// Check that the construction parameters for a CastInst are correct. This
3325 /// could be broken out into the separate constructors but it is useful to have
3326 /// it in one place and to eliminate the redundant code for getting the sizes
3327 /// of the types involved.
3328 bool
3329 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3330   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3331       SrcTy->isAggregateType() || DstTy->isAggregateType())
3332     return false;
3333 
3334   // Get the size of the types in bits, and whether we are dealing
3335   // with vector types, we'll need this later.
3336   bool SrcIsVec = isa<VectorType>(SrcTy);
3337   bool DstIsVec = isa<VectorType>(DstTy);
3338   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3339   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3340 
3341   // If these are vector types, get the lengths of the vectors (using zero for
3342   // scalar types means that checking that vector lengths match also checks that
3343   // scalars are not being converted to vectors or vectors to scalars).
3344   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3345                                 : ElementCount::getFixed(0);
3346   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3347                                 : ElementCount::getFixed(0);
3348 
3349   // Switch on the opcode provided
3350   switch (op) {
3351   default: return false; // This is an input error
3352   case Instruction::Trunc:
3353     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3354            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3355   case Instruction::ZExt:
3356     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3357            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3358   case Instruction::SExt:
3359     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3360            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3361   case Instruction::FPTrunc:
3362     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3363            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3364   case Instruction::FPExt:
3365     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3366            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3367   case Instruction::UIToFP:
3368   case Instruction::SIToFP:
3369     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3370            SrcEC == DstEC;
3371   case Instruction::FPToUI:
3372   case Instruction::FPToSI:
3373     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3374            SrcEC == DstEC;
3375   case Instruction::PtrToInt:
3376     if (SrcEC != DstEC)
3377       return false;
3378     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3379   case Instruction::IntToPtr:
3380     if (SrcEC != DstEC)
3381       return false;
3382     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3383   case Instruction::BitCast: {
3384     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3385     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3386 
3387     // BitCast implies a no-op cast of type only. No bits change.
3388     // However, you can't cast pointers to anything but pointers.
3389     if (!SrcPtrTy != !DstPtrTy)
3390       return false;
3391 
3392     // For non-pointer cases, the cast is okay if the source and destination bit
3393     // widths are identical.
3394     if (!SrcPtrTy)
3395       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3396 
3397     // If both are pointers then the address spaces must match.
3398     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3399       return false;
3400 
3401     // A vector of pointers must have the same number of elements.
3402     if (SrcIsVec && DstIsVec)
3403       return SrcEC == DstEC;
3404     if (SrcIsVec)
3405       return SrcEC == ElementCount::getFixed(1);
3406     if (DstIsVec)
3407       return DstEC == ElementCount::getFixed(1);
3408 
3409     return true;
3410   }
3411   case Instruction::AddrSpaceCast: {
3412     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3413     if (!SrcPtrTy)
3414       return false;
3415 
3416     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3417     if (!DstPtrTy)
3418       return false;
3419 
3420     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3421       return false;
3422 
3423     return SrcEC == DstEC;
3424   }
3425   }
3426 }
3427 
3428 TruncInst::TruncInst(
3429   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3430 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3431   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3432 }
3433 
3434 TruncInst::TruncInst(
3435   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3436 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3437   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3438 }
3439 
3440 ZExtInst::ZExtInst(
3441   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3442 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3443   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3444 }
3445 
3446 ZExtInst::ZExtInst(
3447   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3448 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3449   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3450 }
3451 SExtInst::SExtInst(
3452   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3453 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3454   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3455 }
3456 
3457 SExtInst::SExtInst(
3458   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3459 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3460   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3461 }
3462 
3463 FPTruncInst::FPTruncInst(
3464   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3465 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3466   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3467 }
3468 
3469 FPTruncInst::FPTruncInst(
3470   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3471 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3472   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3473 }
3474 
3475 FPExtInst::FPExtInst(
3476   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3477 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3478   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3479 }
3480 
3481 FPExtInst::FPExtInst(
3482   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3483 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3484   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3485 }
3486 
3487 UIToFPInst::UIToFPInst(
3488   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3489 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3490   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3491 }
3492 
3493 UIToFPInst::UIToFPInst(
3494   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3495 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3496   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3497 }
3498 
3499 SIToFPInst::SIToFPInst(
3500   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3501 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3502   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3503 }
3504 
3505 SIToFPInst::SIToFPInst(
3506   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3507 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3508   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3509 }
3510 
3511 FPToUIInst::FPToUIInst(
3512   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3513 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3514   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3515 }
3516 
3517 FPToUIInst::FPToUIInst(
3518   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3519 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3520   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3521 }
3522 
3523 FPToSIInst::FPToSIInst(
3524   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3525 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3526   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3527 }
3528 
3529 FPToSIInst::FPToSIInst(
3530   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3531 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3532   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3533 }
3534 
3535 PtrToIntInst::PtrToIntInst(
3536   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3537 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3538   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3539 }
3540 
3541 PtrToIntInst::PtrToIntInst(
3542   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3543 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3544   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3545 }
3546 
3547 IntToPtrInst::IntToPtrInst(
3548   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3549 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3550   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3551 }
3552 
3553 IntToPtrInst::IntToPtrInst(
3554   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3555 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3556   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3557 }
3558 
3559 BitCastInst::BitCastInst(
3560   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3561 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3562   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3563 }
3564 
3565 BitCastInst::BitCastInst(
3566   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3567 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3568   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3569 }
3570 
3571 AddrSpaceCastInst::AddrSpaceCastInst(
3572   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3573 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3574   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3575 }
3576 
3577 AddrSpaceCastInst::AddrSpaceCastInst(
3578   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3579 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3580   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3581 }
3582 
3583 //===----------------------------------------------------------------------===//
3584 //                               CmpInst Classes
3585 //===----------------------------------------------------------------------===//
3586 
3587 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3588                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3589                  Instruction *FlagsSource)
3590   : Instruction(ty, op,
3591                 OperandTraits<CmpInst>::op_begin(this),
3592                 OperandTraits<CmpInst>::operands(this),
3593                 InsertBefore) {
3594   Op<0>() = LHS;
3595   Op<1>() = RHS;
3596   setPredicate((Predicate)predicate);
3597   setName(Name);
3598   if (FlagsSource)
3599     copyIRFlags(FlagsSource);
3600 }
3601 
3602 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3603                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3604   : Instruction(ty, op,
3605                 OperandTraits<CmpInst>::op_begin(this),
3606                 OperandTraits<CmpInst>::operands(this),
3607                 InsertAtEnd) {
3608   Op<0>() = LHS;
3609   Op<1>() = RHS;
3610   setPredicate((Predicate)predicate);
3611   setName(Name);
3612 }
3613 
3614 CmpInst *
3615 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3616                 const Twine &Name, Instruction *InsertBefore) {
3617   if (Op == Instruction::ICmp) {
3618     if (InsertBefore)
3619       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3620                           S1, S2, Name);
3621     else
3622       return new ICmpInst(CmpInst::Predicate(predicate),
3623                           S1, S2, Name);
3624   }
3625 
3626   if (InsertBefore)
3627     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3628                         S1, S2, Name);
3629   else
3630     return new FCmpInst(CmpInst::Predicate(predicate),
3631                         S1, S2, Name);
3632 }
3633 
3634 CmpInst *
3635 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3636                 const Twine &Name, BasicBlock *InsertAtEnd) {
3637   if (Op == Instruction::ICmp) {
3638     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3639                         S1, S2, Name);
3640   }
3641   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3642                       S1, S2, Name);
3643 }
3644 
3645 void CmpInst::swapOperands() {
3646   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3647     IC->swapOperands();
3648   else
3649     cast<FCmpInst>(this)->swapOperands();
3650 }
3651 
3652 bool CmpInst::isCommutative() const {
3653   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3654     return IC->isCommutative();
3655   return cast<FCmpInst>(this)->isCommutative();
3656 }
3657 
3658 bool CmpInst::isEquality(Predicate P) {
3659   if (ICmpInst::isIntPredicate(P))
3660     return ICmpInst::isEquality(P);
3661   if (FCmpInst::isFPPredicate(P))
3662     return FCmpInst::isEquality(P);
3663   llvm_unreachable("Unsupported predicate kind");
3664 }
3665 
3666 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3667   switch (pred) {
3668     default: llvm_unreachable("Unknown cmp predicate!");
3669     case ICMP_EQ: return ICMP_NE;
3670     case ICMP_NE: return ICMP_EQ;
3671     case ICMP_UGT: return ICMP_ULE;
3672     case ICMP_ULT: return ICMP_UGE;
3673     case ICMP_UGE: return ICMP_ULT;
3674     case ICMP_ULE: return ICMP_UGT;
3675     case ICMP_SGT: return ICMP_SLE;
3676     case ICMP_SLT: return ICMP_SGE;
3677     case ICMP_SGE: return ICMP_SLT;
3678     case ICMP_SLE: return ICMP_SGT;
3679 
3680     case FCMP_OEQ: return FCMP_UNE;
3681     case FCMP_ONE: return FCMP_UEQ;
3682     case FCMP_OGT: return FCMP_ULE;
3683     case FCMP_OLT: return FCMP_UGE;
3684     case FCMP_OGE: return FCMP_ULT;
3685     case FCMP_OLE: return FCMP_UGT;
3686     case FCMP_UEQ: return FCMP_ONE;
3687     case FCMP_UNE: return FCMP_OEQ;
3688     case FCMP_UGT: return FCMP_OLE;
3689     case FCMP_ULT: return FCMP_OGE;
3690     case FCMP_UGE: return FCMP_OLT;
3691     case FCMP_ULE: return FCMP_OGT;
3692     case FCMP_ORD: return FCMP_UNO;
3693     case FCMP_UNO: return FCMP_ORD;
3694     case FCMP_TRUE: return FCMP_FALSE;
3695     case FCMP_FALSE: return FCMP_TRUE;
3696   }
3697 }
3698 
3699 StringRef CmpInst::getPredicateName(Predicate Pred) {
3700   switch (Pred) {
3701   default:                   return "unknown";
3702   case FCmpInst::FCMP_FALSE: return "false";
3703   case FCmpInst::FCMP_OEQ:   return "oeq";
3704   case FCmpInst::FCMP_OGT:   return "ogt";
3705   case FCmpInst::FCMP_OGE:   return "oge";
3706   case FCmpInst::FCMP_OLT:   return "olt";
3707   case FCmpInst::FCMP_OLE:   return "ole";
3708   case FCmpInst::FCMP_ONE:   return "one";
3709   case FCmpInst::FCMP_ORD:   return "ord";
3710   case FCmpInst::FCMP_UNO:   return "uno";
3711   case FCmpInst::FCMP_UEQ:   return "ueq";
3712   case FCmpInst::FCMP_UGT:   return "ugt";
3713   case FCmpInst::FCMP_UGE:   return "uge";
3714   case FCmpInst::FCMP_ULT:   return "ult";
3715   case FCmpInst::FCMP_ULE:   return "ule";
3716   case FCmpInst::FCMP_UNE:   return "une";
3717   case FCmpInst::FCMP_TRUE:  return "true";
3718   case ICmpInst::ICMP_EQ:    return "eq";
3719   case ICmpInst::ICMP_NE:    return "ne";
3720   case ICmpInst::ICMP_SGT:   return "sgt";
3721   case ICmpInst::ICMP_SGE:   return "sge";
3722   case ICmpInst::ICMP_SLT:   return "slt";
3723   case ICmpInst::ICMP_SLE:   return "sle";
3724   case ICmpInst::ICMP_UGT:   return "ugt";
3725   case ICmpInst::ICMP_UGE:   return "uge";
3726   case ICmpInst::ICMP_ULT:   return "ult";
3727   case ICmpInst::ICMP_ULE:   return "ule";
3728   }
3729 }
3730 
3731 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3732   switch (pred) {
3733     default: llvm_unreachable("Unknown icmp predicate!");
3734     case ICMP_EQ: case ICMP_NE:
3735     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3736        return pred;
3737     case ICMP_UGT: return ICMP_SGT;
3738     case ICMP_ULT: return ICMP_SLT;
3739     case ICMP_UGE: return ICMP_SGE;
3740     case ICMP_ULE: return ICMP_SLE;
3741   }
3742 }
3743 
3744 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3745   switch (pred) {
3746     default: llvm_unreachable("Unknown icmp predicate!");
3747     case ICMP_EQ: case ICMP_NE:
3748     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3749        return pred;
3750     case ICMP_SGT: return ICMP_UGT;
3751     case ICMP_SLT: return ICMP_ULT;
3752     case ICMP_SGE: return ICMP_UGE;
3753     case ICMP_SLE: return ICMP_ULE;
3754   }
3755 }
3756 
3757 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3758   switch (pred) {
3759     default: llvm_unreachable("Unknown cmp predicate!");
3760     case ICMP_EQ: case ICMP_NE:
3761       return pred;
3762     case ICMP_SGT: return ICMP_SLT;
3763     case ICMP_SLT: return ICMP_SGT;
3764     case ICMP_SGE: return ICMP_SLE;
3765     case ICMP_SLE: return ICMP_SGE;
3766     case ICMP_UGT: return ICMP_ULT;
3767     case ICMP_ULT: return ICMP_UGT;
3768     case ICMP_UGE: return ICMP_ULE;
3769     case ICMP_ULE: return ICMP_UGE;
3770 
3771     case FCMP_FALSE: case FCMP_TRUE:
3772     case FCMP_OEQ: case FCMP_ONE:
3773     case FCMP_UEQ: case FCMP_UNE:
3774     case FCMP_ORD: case FCMP_UNO:
3775       return pred;
3776     case FCMP_OGT: return FCMP_OLT;
3777     case FCMP_OLT: return FCMP_OGT;
3778     case FCMP_OGE: return FCMP_OLE;
3779     case FCMP_OLE: return FCMP_OGE;
3780     case FCMP_UGT: return FCMP_ULT;
3781     case FCMP_ULT: return FCMP_UGT;
3782     case FCMP_UGE: return FCMP_ULE;
3783     case FCMP_ULE: return FCMP_UGE;
3784   }
3785 }
3786 
3787 bool CmpInst::isNonStrictPredicate(Predicate pred) {
3788   switch (pred) {
3789   case ICMP_SGE:
3790   case ICMP_SLE:
3791   case ICMP_UGE:
3792   case ICMP_ULE:
3793   case FCMP_OGE:
3794   case FCMP_OLE:
3795   case FCMP_UGE:
3796   case FCMP_ULE:
3797     return true;
3798   default:
3799     return false;
3800   }
3801 }
3802 
3803 bool CmpInst::isStrictPredicate(Predicate pred) {
3804   switch (pred) {
3805   case ICMP_SGT:
3806   case ICMP_SLT:
3807   case ICMP_UGT:
3808   case ICMP_ULT:
3809   case FCMP_OGT:
3810   case FCMP_OLT:
3811   case FCMP_UGT:
3812   case FCMP_ULT:
3813     return true;
3814   default:
3815     return false;
3816   }
3817 }
3818 
3819 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3820   switch (pred) {
3821   case ICMP_SGE:
3822     return ICMP_SGT;
3823   case ICMP_SLE:
3824     return ICMP_SLT;
3825   case ICMP_UGE:
3826     return ICMP_UGT;
3827   case ICMP_ULE:
3828     return ICMP_ULT;
3829   case FCMP_OGE:
3830     return FCMP_OGT;
3831   case FCMP_OLE:
3832     return FCMP_OLT;
3833   case FCMP_UGE:
3834     return FCMP_UGT;
3835   case FCMP_ULE:
3836     return FCMP_ULT;
3837   default:
3838     return pred;
3839   }
3840 }
3841 
3842 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3843   switch (pred) {
3844   case ICMP_SGT:
3845     return ICMP_SGE;
3846   case ICMP_SLT:
3847     return ICMP_SLE;
3848   case ICMP_UGT:
3849     return ICMP_UGE;
3850   case ICMP_ULT:
3851     return ICMP_ULE;
3852   case FCMP_OGT:
3853     return FCMP_OGE;
3854   case FCMP_OLT:
3855     return FCMP_OLE;
3856   case FCMP_UGT:
3857     return FCMP_UGE;
3858   case FCMP_ULT:
3859     return FCMP_ULE;
3860   default:
3861     return pred;
3862   }
3863 }
3864 
3865 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3866   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3867 
3868   if (isStrictPredicate(pred))
3869     return getNonStrictPredicate(pred);
3870   if (isNonStrictPredicate(pred))
3871     return getStrictPredicate(pred);
3872 
3873   llvm_unreachable("Unknown predicate!");
3874 }
3875 
3876 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3877   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3878 
3879   switch (pred) {
3880   default:
3881     llvm_unreachable("Unknown predicate!");
3882   case CmpInst::ICMP_ULT:
3883     return CmpInst::ICMP_SLT;
3884   case CmpInst::ICMP_ULE:
3885     return CmpInst::ICMP_SLE;
3886   case CmpInst::ICMP_UGT:
3887     return CmpInst::ICMP_SGT;
3888   case CmpInst::ICMP_UGE:
3889     return CmpInst::ICMP_SGE;
3890   }
3891 }
3892 
3893 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3894   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3895 
3896   switch (pred) {
3897   default:
3898     llvm_unreachable("Unknown predicate!");
3899   case CmpInst::ICMP_SLT:
3900     return CmpInst::ICMP_ULT;
3901   case CmpInst::ICMP_SLE:
3902     return CmpInst::ICMP_ULE;
3903   case CmpInst::ICMP_SGT:
3904     return CmpInst::ICMP_UGT;
3905   case CmpInst::ICMP_SGE:
3906     return CmpInst::ICMP_UGE;
3907   }
3908 }
3909 
3910 bool CmpInst::isUnsigned(Predicate predicate) {
3911   switch (predicate) {
3912     default: return false;
3913     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3914     case ICmpInst::ICMP_UGE: return true;
3915   }
3916 }
3917 
3918 bool CmpInst::isSigned(Predicate predicate) {
3919   switch (predicate) {
3920     default: return false;
3921     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3922     case ICmpInst::ICMP_SGE: return true;
3923   }
3924 }
3925 
3926 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
3927   assert(CmpInst::isRelational(pred) &&
3928          "Call only with non-equality predicates!");
3929 
3930   if (isSigned(pred))
3931     return getUnsignedPredicate(pred);
3932   if (isUnsigned(pred))
3933     return getSignedPredicate(pred);
3934 
3935   llvm_unreachable("Unknown predicate!");
3936 }
3937 
3938 bool CmpInst::isOrdered(Predicate predicate) {
3939   switch (predicate) {
3940     default: return false;
3941     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3942     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3943     case FCmpInst::FCMP_ORD: return true;
3944   }
3945 }
3946 
3947 bool CmpInst::isUnordered(Predicate predicate) {
3948   switch (predicate) {
3949     default: return false;
3950     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3951     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3952     case FCmpInst::FCMP_UNO: return true;
3953   }
3954 }
3955 
3956 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3957   switch(predicate) {
3958     default: return false;
3959     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3960     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3961   }
3962 }
3963 
3964 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3965   switch(predicate) {
3966   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3967   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3968   default: return false;
3969   }
3970 }
3971 
3972 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3973   // If the predicates match, then we know the first condition implies the
3974   // second is true.
3975   if (Pred1 == Pred2)
3976     return true;
3977 
3978   switch (Pred1) {
3979   default:
3980     break;
3981   case ICMP_EQ:
3982     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3983     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3984            Pred2 == ICMP_SLE;
3985   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3986     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3987   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3988     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3989   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3990     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3991   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3992     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3993   }
3994   return false;
3995 }
3996 
3997 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3998   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3999 }
4000 
4001 //===----------------------------------------------------------------------===//
4002 //                        SwitchInst Implementation
4003 //===----------------------------------------------------------------------===//
4004 
4005 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4006   assert(Value && Default && NumReserved);
4007   ReservedSpace = NumReserved;
4008   setNumHungOffUseOperands(2);
4009   allocHungoffUses(ReservedSpace);
4010 
4011   Op<0>() = Value;
4012   Op<1>() = Default;
4013 }
4014 
4015 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4016 /// switch on and a default destination.  The number of additional cases can
4017 /// be specified here to make memory allocation more efficient.  This
4018 /// constructor can also autoinsert before another instruction.
4019 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4020                        Instruction *InsertBefore)
4021     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4022                   nullptr, 0, InsertBefore) {
4023   init(Value, Default, 2+NumCases*2);
4024 }
4025 
4026 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4027 /// switch on and a default destination.  The number of additional cases can
4028 /// be specified here to make memory allocation more efficient.  This
4029 /// constructor also autoinserts at the end of the specified BasicBlock.
4030 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4031                        BasicBlock *InsertAtEnd)
4032     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4033                   nullptr, 0, InsertAtEnd) {
4034   init(Value, Default, 2+NumCases*2);
4035 }
4036 
4037 SwitchInst::SwitchInst(const SwitchInst &SI)
4038     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4039   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4040   setNumHungOffUseOperands(SI.getNumOperands());
4041   Use *OL = getOperandList();
4042   const Use *InOL = SI.getOperandList();
4043   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4044     OL[i] = InOL[i];
4045     OL[i+1] = InOL[i+1];
4046   }
4047   SubclassOptionalData = SI.SubclassOptionalData;
4048 }
4049 
4050 /// addCase - Add an entry to the switch instruction...
4051 ///
4052 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4053   unsigned NewCaseIdx = getNumCases();
4054   unsigned OpNo = getNumOperands();
4055   if (OpNo+2 > ReservedSpace)
4056     growOperands();  // Get more space!
4057   // Initialize some new operands.
4058   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4059   setNumHungOffUseOperands(OpNo+2);
4060   CaseHandle Case(this, NewCaseIdx);
4061   Case.setValue(OnVal);
4062   Case.setSuccessor(Dest);
4063 }
4064 
4065 /// removeCase - This method removes the specified case and its successor
4066 /// from the switch instruction.
4067 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4068   unsigned idx = I->getCaseIndex();
4069 
4070   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4071 
4072   unsigned NumOps = getNumOperands();
4073   Use *OL = getOperandList();
4074 
4075   // Overwrite this case with the end of the list.
4076   if (2 + (idx + 1) * 2 != NumOps) {
4077     OL[2 + idx * 2] = OL[NumOps - 2];
4078     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4079   }
4080 
4081   // Nuke the last value.
4082   OL[NumOps-2].set(nullptr);
4083   OL[NumOps-2+1].set(nullptr);
4084   setNumHungOffUseOperands(NumOps-2);
4085 
4086   return CaseIt(this, idx);
4087 }
4088 
4089 /// growOperands - grow operands - This grows the operand list in response
4090 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4091 ///
4092 void SwitchInst::growOperands() {
4093   unsigned e = getNumOperands();
4094   unsigned NumOps = e*3;
4095 
4096   ReservedSpace = NumOps;
4097   growHungoffUses(ReservedSpace);
4098 }
4099 
4100 MDNode *
4101 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4102   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4103     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4104       if (MDName->getString() == "branch_weights")
4105         return ProfileData;
4106   return nullptr;
4107 }
4108 
4109 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4110   assert(Changed && "called only if metadata has changed");
4111 
4112   if (!Weights)
4113     return nullptr;
4114 
4115   assert(SI.getNumSuccessors() == Weights->size() &&
4116          "num of prof branch_weights must accord with num of successors");
4117 
4118   bool AllZeroes =
4119       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4120 
4121   if (AllZeroes || Weights.getValue().size() < 2)
4122     return nullptr;
4123 
4124   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4125 }
4126 
4127 void SwitchInstProfUpdateWrapper::init() {
4128   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4129   if (!ProfileData)
4130     return;
4131 
4132   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4133     llvm_unreachable("number of prof branch_weights metadata operands does "
4134                      "not correspond to number of succesors");
4135   }
4136 
4137   SmallVector<uint32_t, 8> Weights;
4138   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4139     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4140     uint32_t CW = C->getValue().getZExtValue();
4141     Weights.push_back(CW);
4142   }
4143   this->Weights = std::move(Weights);
4144 }
4145 
4146 SwitchInst::CaseIt
4147 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4148   if (Weights) {
4149     assert(SI.getNumSuccessors() == Weights->size() &&
4150            "num of prof branch_weights must accord with num of successors");
4151     Changed = true;
4152     // Copy the last case to the place of the removed one and shrink.
4153     // This is tightly coupled with the way SwitchInst::removeCase() removes
4154     // the cases in SwitchInst::removeCase(CaseIt).
4155     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4156     Weights.getValue().pop_back();
4157   }
4158   return SI.removeCase(I);
4159 }
4160 
4161 void SwitchInstProfUpdateWrapper::addCase(
4162     ConstantInt *OnVal, BasicBlock *Dest,
4163     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4164   SI.addCase(OnVal, Dest);
4165 
4166   if (!Weights && W && *W) {
4167     Changed = true;
4168     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4169     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4170   } else if (Weights) {
4171     Changed = true;
4172     Weights.getValue().push_back(W ? *W : 0);
4173   }
4174   if (Weights)
4175     assert(SI.getNumSuccessors() == Weights->size() &&
4176            "num of prof branch_weights must accord with num of successors");
4177 }
4178 
4179 SymbolTableList<Instruction>::iterator
4180 SwitchInstProfUpdateWrapper::eraseFromParent() {
4181   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4182   Changed = false;
4183   if (Weights)
4184     Weights->resize(0);
4185   return SI.eraseFromParent();
4186 }
4187 
4188 SwitchInstProfUpdateWrapper::CaseWeightOpt
4189 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4190   if (!Weights)
4191     return None;
4192   return Weights.getValue()[idx];
4193 }
4194 
4195 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4196     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4197   if (!W)
4198     return;
4199 
4200   if (!Weights && *W)
4201     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4202 
4203   if (Weights) {
4204     auto &OldW = Weights.getValue()[idx];
4205     if (*W != OldW) {
4206       Changed = true;
4207       OldW = *W;
4208     }
4209   }
4210 }
4211 
4212 SwitchInstProfUpdateWrapper::CaseWeightOpt
4213 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4214                                                 unsigned idx) {
4215   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4216     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4217       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4218           ->getValue()
4219           .getZExtValue();
4220 
4221   return None;
4222 }
4223 
4224 //===----------------------------------------------------------------------===//
4225 //                        IndirectBrInst Implementation
4226 //===----------------------------------------------------------------------===//
4227 
4228 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4229   assert(Address && Address->getType()->isPointerTy() &&
4230          "Address of indirectbr must be a pointer");
4231   ReservedSpace = 1+NumDests;
4232   setNumHungOffUseOperands(1);
4233   allocHungoffUses(ReservedSpace);
4234 
4235   Op<0>() = Address;
4236 }
4237 
4238 
4239 /// growOperands - grow operands - This grows the operand list in response
4240 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4241 ///
4242 void IndirectBrInst::growOperands() {
4243   unsigned e = getNumOperands();
4244   unsigned NumOps = e*2;
4245 
4246   ReservedSpace = NumOps;
4247   growHungoffUses(ReservedSpace);
4248 }
4249 
4250 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4251                                Instruction *InsertBefore)
4252     : Instruction(Type::getVoidTy(Address->getContext()),
4253                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4254   init(Address, NumCases);
4255 }
4256 
4257 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4258                                BasicBlock *InsertAtEnd)
4259     : Instruction(Type::getVoidTy(Address->getContext()),
4260                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4261   init(Address, NumCases);
4262 }
4263 
4264 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4265     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4266                   nullptr, IBI.getNumOperands()) {
4267   allocHungoffUses(IBI.getNumOperands());
4268   Use *OL = getOperandList();
4269   const Use *InOL = IBI.getOperandList();
4270   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4271     OL[i] = InOL[i];
4272   SubclassOptionalData = IBI.SubclassOptionalData;
4273 }
4274 
4275 /// addDestination - Add a destination.
4276 ///
4277 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4278   unsigned OpNo = getNumOperands();
4279   if (OpNo+1 > ReservedSpace)
4280     growOperands();  // Get more space!
4281   // Initialize some new operands.
4282   assert(OpNo < ReservedSpace && "Growing didn't work!");
4283   setNumHungOffUseOperands(OpNo+1);
4284   getOperandList()[OpNo] = DestBB;
4285 }
4286 
4287 /// removeDestination - This method removes the specified successor from the
4288 /// indirectbr instruction.
4289 void IndirectBrInst::removeDestination(unsigned idx) {
4290   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4291 
4292   unsigned NumOps = getNumOperands();
4293   Use *OL = getOperandList();
4294 
4295   // Replace this value with the last one.
4296   OL[idx+1] = OL[NumOps-1];
4297 
4298   // Nuke the last value.
4299   OL[NumOps-1].set(nullptr);
4300   setNumHungOffUseOperands(NumOps-1);
4301 }
4302 
4303 //===----------------------------------------------------------------------===//
4304 //                            FreezeInst Implementation
4305 //===----------------------------------------------------------------------===//
4306 
4307 FreezeInst::FreezeInst(Value *S,
4308                        const Twine &Name, Instruction *InsertBefore)
4309     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4310   setName(Name);
4311 }
4312 
4313 FreezeInst::FreezeInst(Value *S,
4314                        const Twine &Name, BasicBlock *InsertAtEnd)
4315     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4316   setName(Name);
4317 }
4318 
4319 //===----------------------------------------------------------------------===//
4320 //                           cloneImpl() implementations
4321 //===----------------------------------------------------------------------===//
4322 
4323 // Define these methods here so vtables don't get emitted into every translation
4324 // unit that uses these classes.
4325 
4326 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4327   return new (getNumOperands()) GetElementPtrInst(*this);
4328 }
4329 
4330 UnaryOperator *UnaryOperator::cloneImpl() const {
4331   return Create(getOpcode(), Op<0>());
4332 }
4333 
4334 BinaryOperator *BinaryOperator::cloneImpl() const {
4335   return Create(getOpcode(), Op<0>(), Op<1>());
4336 }
4337 
4338 FCmpInst *FCmpInst::cloneImpl() const {
4339   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4340 }
4341 
4342 ICmpInst *ICmpInst::cloneImpl() const {
4343   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4344 }
4345 
4346 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4347   return new ExtractValueInst(*this);
4348 }
4349 
4350 InsertValueInst *InsertValueInst::cloneImpl() const {
4351   return new InsertValueInst(*this);
4352 }
4353 
4354 AllocaInst *AllocaInst::cloneImpl() const {
4355   AllocaInst *Result =
4356       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4357                      getOperand(0), getAlign());
4358   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4359   Result->setSwiftError(isSwiftError());
4360   return Result;
4361 }
4362 
4363 LoadInst *LoadInst::cloneImpl() const {
4364   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4365                       getAlign(), getOrdering(), getSyncScopeID());
4366 }
4367 
4368 StoreInst *StoreInst::cloneImpl() const {
4369   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4370                        getOrdering(), getSyncScopeID());
4371 }
4372 
4373 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4374   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4375       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4376       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4377   Result->setVolatile(isVolatile());
4378   Result->setWeak(isWeak());
4379   return Result;
4380 }
4381 
4382 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4383   AtomicRMWInst *Result =
4384       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4385                         getAlign(), getOrdering(), getSyncScopeID());
4386   Result->setVolatile(isVolatile());
4387   return Result;
4388 }
4389 
4390 FenceInst *FenceInst::cloneImpl() const {
4391   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4392 }
4393 
4394 TruncInst *TruncInst::cloneImpl() const {
4395   return new TruncInst(getOperand(0), getType());
4396 }
4397 
4398 ZExtInst *ZExtInst::cloneImpl() const {
4399   return new ZExtInst(getOperand(0), getType());
4400 }
4401 
4402 SExtInst *SExtInst::cloneImpl() const {
4403   return new SExtInst(getOperand(0), getType());
4404 }
4405 
4406 FPTruncInst *FPTruncInst::cloneImpl() const {
4407   return new FPTruncInst(getOperand(0), getType());
4408 }
4409 
4410 FPExtInst *FPExtInst::cloneImpl() const {
4411   return new FPExtInst(getOperand(0), getType());
4412 }
4413 
4414 UIToFPInst *UIToFPInst::cloneImpl() const {
4415   return new UIToFPInst(getOperand(0), getType());
4416 }
4417 
4418 SIToFPInst *SIToFPInst::cloneImpl() const {
4419   return new SIToFPInst(getOperand(0), getType());
4420 }
4421 
4422 FPToUIInst *FPToUIInst::cloneImpl() const {
4423   return new FPToUIInst(getOperand(0), getType());
4424 }
4425 
4426 FPToSIInst *FPToSIInst::cloneImpl() const {
4427   return new FPToSIInst(getOperand(0), getType());
4428 }
4429 
4430 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4431   return new PtrToIntInst(getOperand(0), getType());
4432 }
4433 
4434 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4435   return new IntToPtrInst(getOperand(0), getType());
4436 }
4437 
4438 BitCastInst *BitCastInst::cloneImpl() const {
4439   return new BitCastInst(getOperand(0), getType());
4440 }
4441 
4442 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4443   return new AddrSpaceCastInst(getOperand(0), getType());
4444 }
4445 
4446 CallInst *CallInst::cloneImpl() const {
4447   if (hasOperandBundles()) {
4448     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4449     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4450   }
4451   return  new(getNumOperands()) CallInst(*this);
4452 }
4453 
4454 SelectInst *SelectInst::cloneImpl() const {
4455   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4456 }
4457 
4458 VAArgInst *VAArgInst::cloneImpl() const {
4459   return new VAArgInst(getOperand(0), getType());
4460 }
4461 
4462 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4463   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4464 }
4465 
4466 InsertElementInst *InsertElementInst::cloneImpl() const {
4467   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4468 }
4469 
4470 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4471   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4472 }
4473 
4474 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4475 
4476 LandingPadInst *LandingPadInst::cloneImpl() const {
4477   return new LandingPadInst(*this);
4478 }
4479 
4480 ReturnInst *ReturnInst::cloneImpl() const {
4481   return new(getNumOperands()) ReturnInst(*this);
4482 }
4483 
4484 BranchInst *BranchInst::cloneImpl() const {
4485   return new(getNumOperands()) BranchInst(*this);
4486 }
4487 
4488 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4489 
4490 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4491   return new IndirectBrInst(*this);
4492 }
4493 
4494 InvokeInst *InvokeInst::cloneImpl() const {
4495   if (hasOperandBundles()) {
4496     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4497     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4498   }
4499   return new(getNumOperands()) InvokeInst(*this);
4500 }
4501 
4502 CallBrInst *CallBrInst::cloneImpl() const {
4503   if (hasOperandBundles()) {
4504     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4505     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4506   }
4507   return new (getNumOperands()) CallBrInst(*this);
4508 }
4509 
4510 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4511 
4512 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4513   return new (getNumOperands()) CleanupReturnInst(*this);
4514 }
4515 
4516 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4517   return new (getNumOperands()) CatchReturnInst(*this);
4518 }
4519 
4520 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4521   return new CatchSwitchInst(*this);
4522 }
4523 
4524 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4525   return new (getNumOperands()) FuncletPadInst(*this);
4526 }
4527 
4528 UnreachableInst *UnreachableInst::cloneImpl() const {
4529   LLVMContext &Context = getContext();
4530   return new UnreachableInst(Context);
4531 }
4532 
4533 FreezeInst *FreezeInst::cloneImpl() const {
4534   return new FreezeInst(getOperand(0));
4535 }
4536