1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 //===----------------------------------------------------------------------===//
49 //                            AllocaInst Class
50 //===----------------------------------------------------------------------===//
51 
52 Optional<uint64_t>
53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54   uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55   if (isArrayAllocation()) {
56     auto C = dyn_cast<ConstantInt>(getArraySize());
57     if (!C)
58       return None;
59     Size *= C->getZExtValue();
60   }
61   return Size;
62 }
63 
64 //===----------------------------------------------------------------------===//
65 //                            CallSite Class
66 //===----------------------------------------------------------------------===//
67 
68 User::op_iterator CallSite::getCallee() const {
69   return cast<CallBase>(getInstruction())->op_end() - 1;
70 }
71 
72 //===----------------------------------------------------------------------===//
73 //                              SelectInst Class
74 //===----------------------------------------------------------------------===//
75 
76 /// areInvalidOperands - Return a string if the specified operands are invalid
77 /// for a select operation, otherwise return null.
78 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
79   if (Op1->getType() != Op2->getType())
80     return "both values to select must have same type";
81 
82   if (Op1->getType()->isTokenTy())
83     return "select values cannot have token type";
84 
85   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
86     // Vector select.
87     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
88       return "vector select condition element type must be i1";
89     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
90     if (!ET)
91       return "selected values for vector select must be vectors";
92     if (ET->getNumElements() != VT->getNumElements())
93       return "vector select requires selected vectors to have "
94                    "the same vector length as select condition";
95   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
96     return "select condition must be i1 or <n x i1>";
97   }
98   return nullptr;
99 }
100 
101 //===----------------------------------------------------------------------===//
102 //                               PHINode Class
103 //===----------------------------------------------------------------------===//
104 
105 PHINode::PHINode(const PHINode &PN)
106     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
107       ReservedSpace(PN.getNumOperands()) {
108   allocHungoffUses(PN.getNumOperands());
109   std::copy(PN.op_begin(), PN.op_end(), op_begin());
110   std::copy(PN.block_begin(), PN.block_end(), block_begin());
111   SubclassOptionalData = PN.SubclassOptionalData;
112 }
113 
114 // removeIncomingValue - Remove an incoming value.  This is useful if a
115 // predecessor basic block is deleted.
116 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
117   Value *Removed = getIncomingValue(Idx);
118 
119   // Move everything after this operand down.
120   //
121   // FIXME: we could just swap with the end of the list, then erase.  However,
122   // clients might not expect this to happen.  The code as it is thrashes the
123   // use/def lists, which is kinda lame.
124   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
125   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
126 
127   // Nuke the last value.
128   Op<-1>().set(nullptr);
129   setNumHungOffUseOperands(getNumOperands() - 1);
130 
131   // If the PHI node is dead, because it has zero entries, nuke it now.
132   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
133     // If anyone is using this PHI, make them use a dummy value instead...
134     replaceAllUsesWith(UndefValue::get(getType()));
135     eraseFromParent();
136   }
137   return Removed;
138 }
139 
140 /// growOperands - grow operands - This grows the operand list in response
141 /// to a push_back style of operation.  This grows the number of ops by 1.5
142 /// times.
143 ///
144 void PHINode::growOperands() {
145   unsigned e = getNumOperands();
146   unsigned NumOps = e + e / 2;
147   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
148 
149   ReservedSpace = NumOps;
150   growHungoffUses(ReservedSpace, /* IsPhi */ true);
151 }
152 
153 /// hasConstantValue - If the specified PHI node always merges together the same
154 /// value, return the value, otherwise return null.
155 Value *PHINode::hasConstantValue() const {
156   // Exploit the fact that phi nodes always have at least one entry.
157   Value *ConstantValue = getIncomingValue(0);
158   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
159     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
160       if (ConstantValue != this)
161         return nullptr; // Incoming values not all the same.
162        // The case where the first value is this PHI.
163       ConstantValue = getIncomingValue(i);
164     }
165   if (ConstantValue == this)
166     return UndefValue::get(getType());
167   return ConstantValue;
168 }
169 
170 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
171 /// together the same value, assuming that undefs result in the same value as
172 /// non-undefs.
173 /// Unlike \ref hasConstantValue, this does not return a value because the
174 /// unique non-undef incoming value need not dominate the PHI node.
175 bool PHINode::hasConstantOrUndefValue() const {
176   Value *ConstantValue = nullptr;
177   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
178     Value *Incoming = getIncomingValue(i);
179     if (Incoming != this && !isa<UndefValue>(Incoming)) {
180       if (ConstantValue && ConstantValue != Incoming)
181         return false;
182       ConstantValue = Incoming;
183     }
184   }
185   return true;
186 }
187 
188 //===----------------------------------------------------------------------===//
189 //                       LandingPadInst Implementation
190 //===----------------------------------------------------------------------===//
191 
192 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
193                                const Twine &NameStr, Instruction *InsertBefore)
194     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
195   init(NumReservedValues, NameStr);
196 }
197 
198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
199                                const Twine &NameStr, BasicBlock *InsertAtEnd)
200     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
201   init(NumReservedValues, NameStr);
202 }
203 
204 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
205     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
206                   LP.getNumOperands()),
207       ReservedSpace(LP.getNumOperands()) {
208   allocHungoffUses(LP.getNumOperands());
209   Use *OL = getOperandList();
210   const Use *InOL = LP.getOperandList();
211   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
212     OL[I] = InOL[I];
213 
214   setCleanup(LP.isCleanup());
215 }
216 
217 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
218                                        const Twine &NameStr,
219                                        Instruction *InsertBefore) {
220   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
221 }
222 
223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
224                                        const Twine &NameStr,
225                                        BasicBlock *InsertAtEnd) {
226   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
227 }
228 
229 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
230   ReservedSpace = NumReservedValues;
231   setNumHungOffUseOperands(0);
232   allocHungoffUses(ReservedSpace);
233   setName(NameStr);
234   setCleanup(false);
235 }
236 
237 /// growOperands - grow operands - This grows the operand list in response to a
238 /// push_back style of operation. This grows the number of ops by 2 times.
239 void LandingPadInst::growOperands(unsigned Size) {
240   unsigned e = getNumOperands();
241   if (ReservedSpace >= e + Size) return;
242   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
243   growHungoffUses(ReservedSpace);
244 }
245 
246 void LandingPadInst::addClause(Constant *Val) {
247   unsigned OpNo = getNumOperands();
248   growOperands(1);
249   assert(OpNo < ReservedSpace && "Growing didn't work!");
250   setNumHungOffUseOperands(getNumOperands() + 1);
251   getOperandList()[OpNo] = Val;
252 }
253 
254 //===----------------------------------------------------------------------===//
255 //                        CallBase Implementation
256 //===----------------------------------------------------------------------===//
257 
258 Function *CallBase::getCaller() { return getParent()->getParent(); }
259 
260 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
261   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
262   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
263 }
264 
265 bool CallBase::isIndirectCall() const {
266   const Value *V = getCalledValue();
267   if (isa<Function>(V) || isa<Constant>(V))
268     return false;
269   if (const CallInst *CI = dyn_cast<CallInst>(this))
270     if (CI->isInlineAsm())
271       return false;
272   return true;
273 }
274 
275 /// Tests if this call site must be tail call optimized. Only a CallInst can
276 /// be tail call optimized.
277 bool CallBase::isMustTailCall() const {
278   if (auto *CI = dyn_cast<CallInst>(this))
279     return CI->isMustTailCall();
280   return false;
281 }
282 
283 /// Tests if this call site is marked as a tail call.
284 bool CallBase::isTailCall() const {
285   if (auto *CI = dyn_cast<CallInst>(this))
286     return CI->isTailCall();
287   return false;
288 }
289 
290 Intrinsic::ID CallBase::getIntrinsicID() const {
291   if (auto *F = getCalledFunction())
292     return F->getIntrinsicID();
293   return Intrinsic::not_intrinsic;
294 }
295 
296 bool CallBase::isReturnNonNull() const {
297   if (hasRetAttr(Attribute::NonNull))
298     return true;
299 
300   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
301            !NullPointerIsDefined(getCaller(),
302                                  getType()->getPointerAddressSpace()))
303     return true;
304 
305   return false;
306 }
307 
308 Value *CallBase::getReturnedArgOperand() const {
309   unsigned Index;
310 
311   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
312     return getArgOperand(Index - AttributeList::FirstArgIndex);
313   if (const Function *F = getCalledFunction())
314     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
315         Index)
316       return getArgOperand(Index - AttributeList::FirstArgIndex);
317 
318   return nullptr;
319 }
320 
321 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
322   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
323     return true;
324 
325   // Look at the callee, if available.
326   if (const Function *F = getCalledFunction())
327     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
328   return false;
329 }
330 
331 /// Determine whether the argument or parameter has the given attribute.
332 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
333   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
334 
335   if (Attrs.hasParamAttribute(ArgNo, Kind))
336     return true;
337   if (const Function *F = getCalledFunction())
338     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
339   return false;
340 }
341 
342 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
343   if (const Function *F = getCalledFunction())
344     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
345   return false;
346 }
347 
348 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
349   if (const Function *F = getCalledFunction())
350     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
351   return false;
352 }
353 
354 CallBase::op_iterator
355 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
356                                      const unsigned BeginIndex) {
357   auto It = op_begin() + BeginIndex;
358   for (auto &B : Bundles)
359     It = std::copy(B.input_begin(), B.input_end(), It);
360 
361   auto *ContextImpl = getContext().pImpl;
362   auto BI = Bundles.begin();
363   unsigned CurrentIndex = BeginIndex;
364 
365   for (auto &BOI : bundle_op_infos()) {
366     assert(BI != Bundles.end() && "Incorrect allocation?");
367 
368     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
369     BOI.Begin = CurrentIndex;
370     BOI.End = CurrentIndex + BI->input_size();
371     CurrentIndex = BOI.End;
372     BI++;
373   }
374 
375   assert(BI == Bundles.end() && "Incorrect allocation?");
376 
377   return It;
378 }
379 
380 //===----------------------------------------------------------------------===//
381 //                        CallInst Implementation
382 //===----------------------------------------------------------------------===//
383 
384 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
385                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
386   this->FTy = FTy;
387   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
388          "NumOperands not set up?");
389   setCalledOperand(Func);
390 
391 #ifndef NDEBUG
392   assert((Args.size() == FTy->getNumParams() ||
393           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
394          "Calling a function with bad signature!");
395 
396   for (unsigned i = 0; i != Args.size(); ++i)
397     assert((i >= FTy->getNumParams() ||
398             FTy->getParamType(i) == Args[i]->getType()) &&
399            "Calling a function with a bad signature!");
400 #endif
401 
402   llvm::copy(Args, op_begin());
403 
404   auto It = populateBundleOperandInfos(Bundles, Args.size());
405   (void)It;
406   assert(It + 1 == op_end() && "Should add up!");
407 
408   setName(NameStr);
409 }
410 
411 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
412   this->FTy = FTy;
413   assert(getNumOperands() == 1 && "NumOperands not set up?");
414   setCalledOperand(Func);
415 
416   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
417 
418   setName(NameStr);
419 }
420 
421 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
422                    Instruction *InsertBefore)
423     : CallBase(Ty->getReturnType(), Instruction::Call,
424                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
425   init(Ty, Func, Name);
426 }
427 
428 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
429                    BasicBlock *InsertAtEnd)
430     : CallBase(Ty->getReturnType(), Instruction::Call,
431                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
432   init(Ty, Func, Name);
433 }
434 
435 CallInst::CallInst(const CallInst &CI)
436     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
437                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
438                CI.getNumOperands()) {
439   setTailCallKind(CI.getTailCallKind());
440   setCallingConv(CI.getCallingConv());
441 
442   std::copy(CI.op_begin(), CI.op_end(), op_begin());
443   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
444             bundle_op_info_begin());
445   SubclassOptionalData = CI.SubclassOptionalData;
446 }
447 
448 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
449                            Instruction *InsertPt) {
450   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
451 
452   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
453                                  Args, OpB, CI->getName(), InsertPt);
454   NewCI->setTailCallKind(CI->getTailCallKind());
455   NewCI->setCallingConv(CI->getCallingConv());
456   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
457   NewCI->setAttributes(CI->getAttributes());
458   NewCI->setDebugLoc(CI->getDebugLoc());
459   return NewCI;
460 }
461 
462 // Update profile weight for call instruction by scaling it using the ratio
463 // of S/T. The meaning of "branch_weights" meta data for call instruction is
464 // transfered to represent call count.
465 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
466   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
467   if (ProfileData == nullptr)
468     return;
469 
470   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
471   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
472                         !ProfDataName->getString().equals("VP")))
473     return;
474 
475   MDBuilder MDB(getContext());
476   SmallVector<Metadata *, 3> Vals;
477   Vals.push_back(ProfileData->getOperand(0));
478   APInt APS(128, S), APT(128, T);
479   if (ProfDataName->getString().equals("branch_weights") &&
480       ProfileData->getNumOperands() > 0) {
481     // Using APInt::div may be expensive, but most cases should fit 64 bits.
482     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
483                        ->getValue()
484                        .getZExtValue());
485     Val *= APS;
486     Vals.push_back(MDB.createConstant(ConstantInt::get(
487         Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
488   } else if (ProfDataName->getString().equals("VP"))
489     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
490       // The first value is the key of the value profile, which will not change.
491       Vals.push_back(ProfileData->getOperand(i));
492       // Using APInt::div may be expensive, but most cases should fit 64 bits.
493       APInt Val(128,
494                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
495                     ->getValue()
496                     .getZExtValue());
497       Val *= APS;
498       Vals.push_back(MDB.createConstant(
499           ConstantInt::get(Type::getInt64Ty(getContext()),
500                            Val.udiv(APT).getLimitedValue())));
501     }
502   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
503 }
504 
505 /// IsConstantOne - Return true only if val is constant int 1
506 static bool IsConstantOne(Value *val) {
507   assert(val && "IsConstantOne does not work with nullptr val");
508   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
509   return CVal && CVal->isOne();
510 }
511 
512 static Instruction *createMalloc(Instruction *InsertBefore,
513                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
514                                  Type *AllocTy, Value *AllocSize,
515                                  Value *ArraySize,
516                                  ArrayRef<OperandBundleDef> OpB,
517                                  Function *MallocF, const Twine &Name) {
518   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
519          "createMalloc needs either InsertBefore or InsertAtEnd");
520 
521   // malloc(type) becomes:
522   //       bitcast (i8* malloc(typeSize)) to type*
523   // malloc(type, arraySize) becomes:
524   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
525   if (!ArraySize)
526     ArraySize = ConstantInt::get(IntPtrTy, 1);
527   else if (ArraySize->getType() != IntPtrTy) {
528     if (InsertBefore)
529       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
530                                               "", InsertBefore);
531     else
532       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
533                                               "", InsertAtEnd);
534   }
535 
536   if (!IsConstantOne(ArraySize)) {
537     if (IsConstantOne(AllocSize)) {
538       AllocSize = ArraySize;         // Operand * 1 = Operand
539     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
540       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
541                                                      false /*ZExt*/);
542       // Malloc arg is constant product of type size and array size
543       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
544     } else {
545       // Multiply type size by the array size...
546       if (InsertBefore)
547         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
548                                               "mallocsize", InsertBefore);
549       else
550         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
551                                               "mallocsize", InsertAtEnd);
552     }
553   }
554 
555   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
556   // Create the call to Malloc.
557   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
558   Module *M = BB->getParent()->getParent();
559   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
560   FunctionCallee MallocFunc = MallocF;
561   if (!MallocFunc)
562     // prototype malloc as "void *malloc(size_t)"
563     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
564   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
565   CallInst *MCall = nullptr;
566   Instruction *Result = nullptr;
567   if (InsertBefore) {
568     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
569                              InsertBefore);
570     Result = MCall;
571     if (Result->getType() != AllocPtrType)
572       // Create a cast instruction to convert to the right type...
573       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
574   } else {
575     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
576     Result = MCall;
577     if (Result->getType() != AllocPtrType) {
578       InsertAtEnd->getInstList().push_back(MCall);
579       // Create a cast instruction to convert to the right type...
580       Result = new BitCastInst(MCall, AllocPtrType, Name);
581     }
582   }
583   MCall->setTailCall();
584   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
585     MCall->setCallingConv(F->getCallingConv());
586     if (!F->returnDoesNotAlias())
587       F->setReturnDoesNotAlias();
588   }
589   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
590 
591   return Result;
592 }
593 
594 /// CreateMalloc - Generate the IR for a call to malloc:
595 /// 1. Compute the malloc call's argument as the specified type's size,
596 ///    possibly multiplied by the array size if the array size is not
597 ///    constant 1.
598 /// 2. Call malloc with that argument.
599 /// 3. Bitcast the result of the malloc call to the specified type.
600 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
601                                     Type *IntPtrTy, Type *AllocTy,
602                                     Value *AllocSize, Value *ArraySize,
603                                     Function *MallocF,
604                                     const Twine &Name) {
605   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
606                       ArraySize, None, MallocF, Name);
607 }
608 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
609                                     Type *IntPtrTy, Type *AllocTy,
610                                     Value *AllocSize, Value *ArraySize,
611                                     ArrayRef<OperandBundleDef> OpB,
612                                     Function *MallocF,
613                                     const Twine &Name) {
614   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
615                       ArraySize, OpB, MallocF, Name);
616 }
617 
618 /// CreateMalloc - Generate the IR for a call to malloc:
619 /// 1. Compute the malloc call's argument as the specified type's size,
620 ///    possibly multiplied by the array size if the array size is not
621 ///    constant 1.
622 /// 2. Call malloc with that argument.
623 /// 3. Bitcast the result of the malloc call to the specified type.
624 /// Note: This function does not add the bitcast to the basic block, that is the
625 /// responsibility of the caller.
626 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
627                                     Type *IntPtrTy, Type *AllocTy,
628                                     Value *AllocSize, Value *ArraySize,
629                                     Function *MallocF, const Twine &Name) {
630   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
631                       ArraySize, None, MallocF, Name);
632 }
633 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
634                                     Type *IntPtrTy, Type *AllocTy,
635                                     Value *AllocSize, Value *ArraySize,
636                                     ArrayRef<OperandBundleDef> OpB,
637                                     Function *MallocF, const Twine &Name) {
638   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
639                       ArraySize, OpB, MallocF, Name);
640 }
641 
642 static Instruction *createFree(Value *Source,
643                                ArrayRef<OperandBundleDef> Bundles,
644                                Instruction *InsertBefore,
645                                BasicBlock *InsertAtEnd) {
646   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
647          "createFree needs either InsertBefore or InsertAtEnd");
648   assert(Source->getType()->isPointerTy() &&
649          "Can not free something of nonpointer type!");
650 
651   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
652   Module *M = BB->getParent()->getParent();
653 
654   Type *VoidTy = Type::getVoidTy(M->getContext());
655   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
656   // prototype free as "void free(void*)"
657   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
658   CallInst *Result = nullptr;
659   Value *PtrCast = Source;
660   if (InsertBefore) {
661     if (Source->getType() != IntPtrTy)
662       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
663     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
664   } else {
665     if (Source->getType() != IntPtrTy)
666       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
667     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
668   }
669   Result->setTailCall();
670   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
671     Result->setCallingConv(F->getCallingConv());
672 
673   return Result;
674 }
675 
676 /// CreateFree - Generate the IR for a call to the builtin free function.
677 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
678   return createFree(Source, None, InsertBefore, nullptr);
679 }
680 Instruction *CallInst::CreateFree(Value *Source,
681                                   ArrayRef<OperandBundleDef> Bundles,
682                                   Instruction *InsertBefore) {
683   return createFree(Source, Bundles, InsertBefore, nullptr);
684 }
685 
686 /// CreateFree - Generate the IR for a call to the builtin free function.
687 /// Note: This function does not add the call to the basic block, that is the
688 /// responsibility of the caller.
689 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
690   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
691   assert(FreeCall && "CreateFree did not create a CallInst");
692   return FreeCall;
693 }
694 Instruction *CallInst::CreateFree(Value *Source,
695                                   ArrayRef<OperandBundleDef> Bundles,
696                                   BasicBlock *InsertAtEnd) {
697   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
698   assert(FreeCall && "CreateFree did not create a CallInst");
699   return FreeCall;
700 }
701 
702 //===----------------------------------------------------------------------===//
703 //                        InvokeInst Implementation
704 //===----------------------------------------------------------------------===//
705 
706 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
707                       BasicBlock *IfException, ArrayRef<Value *> Args,
708                       ArrayRef<OperandBundleDef> Bundles,
709                       const Twine &NameStr) {
710   this->FTy = FTy;
711 
712   assert((int)getNumOperands() ==
713              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
714          "NumOperands not set up?");
715   setNormalDest(IfNormal);
716   setUnwindDest(IfException);
717   setCalledOperand(Fn);
718 
719 #ifndef NDEBUG
720   assert(((Args.size() == FTy->getNumParams()) ||
721           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
722          "Invoking a function with bad signature");
723 
724   for (unsigned i = 0, e = Args.size(); i != e; i++)
725     assert((i >= FTy->getNumParams() ||
726             FTy->getParamType(i) == Args[i]->getType()) &&
727            "Invoking a function with a bad signature!");
728 #endif
729 
730   llvm::copy(Args, op_begin());
731 
732   auto It = populateBundleOperandInfos(Bundles, Args.size());
733   (void)It;
734   assert(It + 3 == op_end() && "Should add up!");
735 
736   setName(NameStr);
737 }
738 
739 InvokeInst::InvokeInst(const InvokeInst &II)
740     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
741                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
742                II.getNumOperands()) {
743   setCallingConv(II.getCallingConv());
744   std::copy(II.op_begin(), II.op_end(), op_begin());
745   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
746             bundle_op_info_begin());
747   SubclassOptionalData = II.SubclassOptionalData;
748 }
749 
750 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
751                                Instruction *InsertPt) {
752   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
753 
754   auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
755                                    II->getNormalDest(), II->getUnwindDest(),
756                                    Args, OpB, II->getName(), InsertPt);
757   NewII->setCallingConv(II->getCallingConv());
758   NewII->SubclassOptionalData = II->SubclassOptionalData;
759   NewII->setAttributes(II->getAttributes());
760   NewII->setDebugLoc(II->getDebugLoc());
761   return NewII;
762 }
763 
764 
765 LandingPadInst *InvokeInst::getLandingPadInst() const {
766   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
767 }
768 
769 //===----------------------------------------------------------------------===//
770 //                        CallBrInst Implementation
771 //===----------------------------------------------------------------------===//
772 
773 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
774                       ArrayRef<BasicBlock *> IndirectDests,
775                       ArrayRef<Value *> Args,
776                       ArrayRef<OperandBundleDef> Bundles,
777                       const Twine &NameStr) {
778   this->FTy = FTy;
779 
780   assert((int)getNumOperands() ==
781              ComputeNumOperands(Args.size(), IndirectDests.size(),
782                                 CountBundleInputs(Bundles)) &&
783          "NumOperands not set up?");
784   NumIndirectDests = IndirectDests.size();
785   setDefaultDest(Fallthrough);
786   for (unsigned i = 0; i != NumIndirectDests; ++i)
787     setIndirectDest(i, IndirectDests[i]);
788   setCalledOperand(Fn);
789 
790 #ifndef NDEBUG
791   assert(((Args.size() == FTy->getNumParams()) ||
792           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
793          "Calling a function with bad signature");
794 
795   for (unsigned i = 0, e = Args.size(); i != e; i++)
796     assert((i >= FTy->getNumParams() ||
797             FTy->getParamType(i) == Args[i]->getType()) &&
798            "Calling a function with a bad signature!");
799 #endif
800 
801   std::copy(Args.begin(), Args.end(), op_begin());
802 
803   auto It = populateBundleOperandInfos(Bundles, Args.size());
804   (void)It;
805   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
806 
807   setName(NameStr);
808 }
809 
810 CallBrInst::CallBrInst(const CallBrInst &CBI)
811     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
812                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
813                CBI.getNumOperands()) {
814   setCallingConv(CBI.getCallingConv());
815   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
816   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
817             bundle_op_info_begin());
818   SubclassOptionalData = CBI.SubclassOptionalData;
819   NumIndirectDests = CBI.NumIndirectDests;
820 }
821 
822 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
823                                Instruction *InsertPt) {
824   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
825 
826   auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
827                                     CBI->getCalledValue(),
828                                     CBI->getDefaultDest(),
829                                     CBI->getIndirectDests(),
830                                     Args, OpB, CBI->getName(), InsertPt);
831   NewCBI->setCallingConv(CBI->getCallingConv());
832   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
833   NewCBI->setAttributes(CBI->getAttributes());
834   NewCBI->setDebugLoc(CBI->getDebugLoc());
835   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
836   return NewCBI;
837 }
838 
839 //===----------------------------------------------------------------------===//
840 //                        ReturnInst Implementation
841 //===----------------------------------------------------------------------===//
842 
843 ReturnInst::ReturnInst(const ReturnInst &RI)
844     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
845                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
846                   RI.getNumOperands()) {
847   if (RI.getNumOperands())
848     Op<0>() = RI.Op<0>();
849   SubclassOptionalData = RI.SubclassOptionalData;
850 }
851 
852 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
853     : Instruction(Type::getVoidTy(C), Instruction::Ret,
854                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
855                   InsertBefore) {
856   if (retVal)
857     Op<0>() = retVal;
858 }
859 
860 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
861     : Instruction(Type::getVoidTy(C), Instruction::Ret,
862                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
863                   InsertAtEnd) {
864   if (retVal)
865     Op<0>() = retVal;
866 }
867 
868 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
869     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
870                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
871 
872 //===----------------------------------------------------------------------===//
873 //                        ResumeInst Implementation
874 //===----------------------------------------------------------------------===//
875 
876 ResumeInst::ResumeInst(const ResumeInst &RI)
877     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
878                   OperandTraits<ResumeInst>::op_begin(this), 1) {
879   Op<0>() = RI.Op<0>();
880 }
881 
882 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
883     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
884                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
885   Op<0>() = Exn;
886 }
887 
888 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
889     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
890                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
891   Op<0>() = Exn;
892 }
893 
894 //===----------------------------------------------------------------------===//
895 //                        CleanupReturnInst Implementation
896 //===----------------------------------------------------------------------===//
897 
898 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
899     : Instruction(CRI.getType(), Instruction::CleanupRet,
900                   OperandTraits<CleanupReturnInst>::op_end(this) -
901                       CRI.getNumOperands(),
902                   CRI.getNumOperands()) {
903   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
904   Op<0>() = CRI.Op<0>();
905   if (CRI.hasUnwindDest())
906     Op<1>() = CRI.Op<1>();
907 }
908 
909 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
910   if (UnwindBB)
911     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
912 
913   Op<0>() = CleanupPad;
914   if (UnwindBB)
915     Op<1>() = UnwindBB;
916 }
917 
918 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
919                                      unsigned Values, Instruction *InsertBefore)
920     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
921                   Instruction::CleanupRet,
922                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
923                   Values, InsertBefore) {
924   init(CleanupPad, UnwindBB);
925 }
926 
927 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
928                                      unsigned Values, BasicBlock *InsertAtEnd)
929     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
930                   Instruction::CleanupRet,
931                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
932                   Values, InsertAtEnd) {
933   init(CleanupPad, UnwindBB);
934 }
935 
936 //===----------------------------------------------------------------------===//
937 //                        CatchReturnInst Implementation
938 //===----------------------------------------------------------------------===//
939 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
940   Op<0>() = CatchPad;
941   Op<1>() = BB;
942 }
943 
944 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
945     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
946                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
947   Op<0>() = CRI.Op<0>();
948   Op<1>() = CRI.Op<1>();
949 }
950 
951 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
952                                  Instruction *InsertBefore)
953     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
954                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
955                   InsertBefore) {
956   init(CatchPad, BB);
957 }
958 
959 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
960                                  BasicBlock *InsertAtEnd)
961     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
962                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
963                   InsertAtEnd) {
964   init(CatchPad, BB);
965 }
966 
967 //===----------------------------------------------------------------------===//
968 //                       CatchSwitchInst Implementation
969 //===----------------------------------------------------------------------===//
970 
971 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
972                                  unsigned NumReservedValues,
973                                  const Twine &NameStr,
974                                  Instruction *InsertBefore)
975     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
976                   InsertBefore) {
977   if (UnwindDest)
978     ++NumReservedValues;
979   init(ParentPad, UnwindDest, NumReservedValues + 1);
980   setName(NameStr);
981 }
982 
983 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
984                                  unsigned NumReservedValues,
985                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
986     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
987                   InsertAtEnd) {
988   if (UnwindDest)
989     ++NumReservedValues;
990   init(ParentPad, UnwindDest, NumReservedValues + 1);
991   setName(NameStr);
992 }
993 
994 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
995     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
996                   CSI.getNumOperands()) {
997   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
998   setNumHungOffUseOperands(ReservedSpace);
999   Use *OL = getOperandList();
1000   const Use *InOL = CSI.getOperandList();
1001   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1002     OL[I] = InOL[I];
1003 }
1004 
1005 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1006                            unsigned NumReservedValues) {
1007   assert(ParentPad && NumReservedValues);
1008 
1009   ReservedSpace = NumReservedValues;
1010   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1011   allocHungoffUses(ReservedSpace);
1012 
1013   Op<0>() = ParentPad;
1014   if (UnwindDest) {
1015     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1016     setUnwindDest(UnwindDest);
1017   }
1018 }
1019 
1020 /// growOperands - grow operands - This grows the operand list in response to a
1021 /// push_back style of operation. This grows the number of ops by 2 times.
1022 void CatchSwitchInst::growOperands(unsigned Size) {
1023   unsigned NumOperands = getNumOperands();
1024   assert(NumOperands >= 1);
1025   if (ReservedSpace >= NumOperands + Size)
1026     return;
1027   ReservedSpace = (NumOperands + Size / 2) * 2;
1028   growHungoffUses(ReservedSpace);
1029 }
1030 
1031 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1032   unsigned OpNo = getNumOperands();
1033   growOperands(1);
1034   assert(OpNo < ReservedSpace && "Growing didn't work!");
1035   setNumHungOffUseOperands(getNumOperands() + 1);
1036   getOperandList()[OpNo] = Handler;
1037 }
1038 
1039 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1040   // Move all subsequent handlers up one.
1041   Use *EndDst = op_end() - 1;
1042   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1043     *CurDst = *(CurDst + 1);
1044   // Null out the last handler use.
1045   *EndDst = nullptr;
1046 
1047   setNumHungOffUseOperands(getNumOperands() - 1);
1048 }
1049 
1050 //===----------------------------------------------------------------------===//
1051 //                        FuncletPadInst Implementation
1052 //===----------------------------------------------------------------------===//
1053 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1054                           const Twine &NameStr) {
1055   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1056   llvm::copy(Args, op_begin());
1057   setParentPad(ParentPad);
1058   setName(NameStr);
1059 }
1060 
1061 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1062     : Instruction(FPI.getType(), FPI.getOpcode(),
1063                   OperandTraits<FuncletPadInst>::op_end(this) -
1064                       FPI.getNumOperands(),
1065                   FPI.getNumOperands()) {
1066   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1067   setParentPad(FPI.getParentPad());
1068 }
1069 
1070 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1071                                ArrayRef<Value *> Args, unsigned Values,
1072                                const Twine &NameStr, Instruction *InsertBefore)
1073     : Instruction(ParentPad->getType(), Op,
1074                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1075                   InsertBefore) {
1076   init(ParentPad, Args, NameStr);
1077 }
1078 
1079 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1080                                ArrayRef<Value *> Args, unsigned Values,
1081                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1082     : Instruction(ParentPad->getType(), Op,
1083                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1084                   InsertAtEnd) {
1085   init(ParentPad, Args, NameStr);
1086 }
1087 
1088 //===----------------------------------------------------------------------===//
1089 //                      UnreachableInst Implementation
1090 //===----------------------------------------------------------------------===//
1091 
1092 UnreachableInst::UnreachableInst(LLVMContext &Context,
1093                                  Instruction *InsertBefore)
1094     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1095                   0, InsertBefore) {}
1096 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1097     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1098                   0, InsertAtEnd) {}
1099 
1100 //===----------------------------------------------------------------------===//
1101 //                        BranchInst Implementation
1102 //===----------------------------------------------------------------------===//
1103 
1104 void BranchInst::AssertOK() {
1105   if (isConditional())
1106     assert(getCondition()->getType()->isIntegerTy(1) &&
1107            "May only branch on boolean predicates!");
1108 }
1109 
1110 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1111     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1112                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1113                   InsertBefore) {
1114   assert(IfTrue && "Branch destination may not be null!");
1115   Op<-1>() = IfTrue;
1116 }
1117 
1118 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1119                        Instruction *InsertBefore)
1120     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1121                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1122                   InsertBefore) {
1123   Op<-1>() = IfTrue;
1124   Op<-2>() = IfFalse;
1125   Op<-3>() = Cond;
1126 #ifndef NDEBUG
1127   AssertOK();
1128 #endif
1129 }
1130 
1131 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1132     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1133                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1134   assert(IfTrue && "Branch destination may not be null!");
1135   Op<-1>() = IfTrue;
1136 }
1137 
1138 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1139                        BasicBlock *InsertAtEnd)
1140     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1141                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1142   Op<-1>() = IfTrue;
1143   Op<-2>() = IfFalse;
1144   Op<-3>() = Cond;
1145 #ifndef NDEBUG
1146   AssertOK();
1147 #endif
1148 }
1149 
1150 BranchInst::BranchInst(const BranchInst &BI)
1151     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1152                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1153                   BI.getNumOperands()) {
1154   Op<-1>() = BI.Op<-1>();
1155   if (BI.getNumOperands() != 1) {
1156     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1157     Op<-3>() = BI.Op<-3>();
1158     Op<-2>() = BI.Op<-2>();
1159   }
1160   SubclassOptionalData = BI.SubclassOptionalData;
1161 }
1162 
1163 void BranchInst::swapSuccessors() {
1164   assert(isConditional() &&
1165          "Cannot swap successors of an unconditional branch");
1166   Op<-1>().swap(Op<-2>());
1167 
1168   // Update profile metadata if present and it matches our structural
1169   // expectations.
1170   swapProfMetadata();
1171 }
1172 
1173 //===----------------------------------------------------------------------===//
1174 //                        AllocaInst Implementation
1175 //===----------------------------------------------------------------------===//
1176 
1177 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1178   if (!Amt)
1179     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1180   else {
1181     assert(!isa<BasicBlock>(Amt) &&
1182            "Passed basic block into allocation size parameter! Use other ctor");
1183     assert(Amt->getType()->isIntegerTy() &&
1184            "Allocation array size is not an integer!");
1185   }
1186   return Amt;
1187 }
1188 
1189 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1190                        Instruction *InsertBefore)
1191   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1192 
1193 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1194                        BasicBlock *InsertAtEnd)
1195   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1196 
1197 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1198                        const Twine &Name, Instruction *InsertBefore)
1199   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1200 
1201 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1202                        const Twine &Name, BasicBlock *InsertAtEnd)
1203   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1204 
1205 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1206                        unsigned Align, const Twine &Name,
1207                        Instruction *InsertBefore)
1208   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1209                      getAISize(Ty->getContext(), ArraySize), InsertBefore),
1210     AllocatedType(Ty) {
1211   setAlignment(Align);
1212   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1213   setName(Name);
1214 }
1215 
1216 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1217                        unsigned Align, const Twine &Name,
1218                        BasicBlock *InsertAtEnd)
1219   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1220                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1221       AllocatedType(Ty) {
1222   setAlignment(Align);
1223   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1224   setName(Name);
1225 }
1226 
1227 void AllocaInst::setAlignment(unsigned Align) {
1228   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1229   assert(Align <= MaximumAlignment &&
1230          "Alignment is greater than MaximumAlignment!");
1231   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1232                              (Log2_32(Align) + 1));
1233   assert(getAlignment() == Align && "Alignment representation error!");
1234 }
1235 
1236 bool AllocaInst::isArrayAllocation() const {
1237   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1238     return !CI->isOne();
1239   return true;
1240 }
1241 
1242 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1243 /// function and is a constant size.  If so, the code generator will fold it
1244 /// into the prolog/epilog code, so it is basically free.
1245 bool AllocaInst::isStaticAlloca() const {
1246   // Must be constant size.
1247   if (!isa<ConstantInt>(getArraySize())) return false;
1248 
1249   // Must be in the entry block.
1250   const BasicBlock *Parent = getParent();
1251   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1252 }
1253 
1254 //===----------------------------------------------------------------------===//
1255 //                           LoadInst Implementation
1256 //===----------------------------------------------------------------------===//
1257 
1258 void LoadInst::AssertOK() {
1259   assert(getOperand(0)->getType()->isPointerTy() &&
1260          "Ptr must have pointer type.");
1261   assert(!(isAtomic() && getAlignment() == 0) &&
1262          "Alignment required for atomic load");
1263 }
1264 
1265 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1266                    Instruction *InsertBef)
1267     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1268 
1269 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1270                    BasicBlock *InsertAE)
1271     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1272 
1273 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1274                    Instruction *InsertBef)
1275     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1276 
1277 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1278                    BasicBlock *InsertAE)
1279     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1280 
1281 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1282                    unsigned Align, Instruction *InsertBef)
1283     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1284                SyncScope::System, InsertBef) {}
1285 
1286 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1287                    unsigned Align, BasicBlock *InsertAE)
1288     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1289                SyncScope::System, InsertAE) {}
1290 
1291 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1292                    unsigned Align, AtomicOrdering Order,
1293                    SyncScope::ID SSID, Instruction *InsertBef)
1294     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1295   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1296   setVolatile(isVolatile);
1297   setAlignment(Align);
1298   setAtomic(Order, SSID);
1299   AssertOK();
1300   setName(Name);
1301 }
1302 
1303 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1304                    unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1305                    BasicBlock *InsertAE)
1306     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1307   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1308   setVolatile(isVolatile);
1309   setAlignment(Align);
1310   setAtomic(Order, SSID);
1311   AssertOK();
1312   setName(Name);
1313 }
1314 
1315 void LoadInst::setAlignment(unsigned Align) {
1316   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1317   assert(Align <= MaximumAlignment &&
1318          "Alignment is greater than MaximumAlignment!");
1319   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1320                              ((Log2_32(Align)+1)<<1));
1321   assert(getAlignment() == Align && "Alignment representation error!");
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 //                           StoreInst Implementation
1326 //===----------------------------------------------------------------------===//
1327 
1328 void StoreInst::AssertOK() {
1329   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1330   assert(getOperand(1)->getType()->isPointerTy() &&
1331          "Ptr must have pointer type!");
1332   assert(getOperand(0)->getType() ==
1333                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1334          && "Ptr must be a pointer to Val type!");
1335   assert(!(isAtomic() && getAlignment() == 0) &&
1336          "Alignment required for atomic store");
1337 }
1338 
1339 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1340     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1341 
1342 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1343     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1344 
1345 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1346                      Instruction *InsertBefore)
1347     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1348 
1349 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1350                      BasicBlock *InsertAtEnd)
1351     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1352 
1353 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1354                      Instruction *InsertBefore)
1355     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1356                 SyncScope::System, InsertBefore) {}
1357 
1358 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1359                      BasicBlock *InsertAtEnd)
1360     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1361                 SyncScope::System, InsertAtEnd) {}
1362 
1363 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1364                      unsigned Align, AtomicOrdering Order,
1365                      SyncScope::ID SSID,
1366                      Instruction *InsertBefore)
1367   : Instruction(Type::getVoidTy(val->getContext()), Store,
1368                 OperandTraits<StoreInst>::op_begin(this),
1369                 OperandTraits<StoreInst>::operands(this),
1370                 InsertBefore) {
1371   Op<0>() = val;
1372   Op<1>() = addr;
1373   setVolatile(isVolatile);
1374   setAlignment(Align);
1375   setAtomic(Order, SSID);
1376   AssertOK();
1377 }
1378 
1379 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1380                      unsigned Align, AtomicOrdering Order,
1381                      SyncScope::ID SSID,
1382                      BasicBlock *InsertAtEnd)
1383   : Instruction(Type::getVoidTy(val->getContext()), Store,
1384                 OperandTraits<StoreInst>::op_begin(this),
1385                 OperandTraits<StoreInst>::operands(this),
1386                 InsertAtEnd) {
1387   Op<0>() = val;
1388   Op<1>() = addr;
1389   setVolatile(isVolatile);
1390   setAlignment(Align);
1391   setAtomic(Order, SSID);
1392   AssertOK();
1393 }
1394 
1395 void StoreInst::setAlignment(unsigned Align) {
1396   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1397   assert(Align <= MaximumAlignment &&
1398          "Alignment is greater than MaximumAlignment!");
1399   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1400                              ((Log2_32(Align)+1) << 1));
1401   assert(getAlignment() == Align && "Alignment representation error!");
1402 }
1403 
1404 //===----------------------------------------------------------------------===//
1405 //                       AtomicCmpXchgInst Implementation
1406 //===----------------------------------------------------------------------===//
1407 
1408 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1409                              AtomicOrdering SuccessOrdering,
1410                              AtomicOrdering FailureOrdering,
1411                              SyncScope::ID SSID) {
1412   Op<0>() = Ptr;
1413   Op<1>() = Cmp;
1414   Op<2>() = NewVal;
1415   setSuccessOrdering(SuccessOrdering);
1416   setFailureOrdering(FailureOrdering);
1417   setSyncScopeID(SSID);
1418 
1419   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1420          "All operands must be non-null!");
1421   assert(getOperand(0)->getType()->isPointerTy() &&
1422          "Ptr must have pointer type!");
1423   assert(getOperand(1)->getType() ==
1424                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1425          && "Ptr must be a pointer to Cmp type!");
1426   assert(getOperand(2)->getType() ==
1427                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1428          && "Ptr must be a pointer to NewVal type!");
1429   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1430          "AtomicCmpXchg instructions must be atomic!");
1431   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1432          "AtomicCmpXchg instructions must be atomic!");
1433   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1434          "AtomicCmpXchg failure argument shall be no stronger than the success "
1435          "argument");
1436   assert(FailureOrdering != AtomicOrdering::Release &&
1437          FailureOrdering != AtomicOrdering::AcquireRelease &&
1438          "AtomicCmpXchg failure ordering cannot include release semantics");
1439 }
1440 
1441 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1442                                      AtomicOrdering SuccessOrdering,
1443                                      AtomicOrdering FailureOrdering,
1444                                      SyncScope::ID SSID,
1445                                      Instruction *InsertBefore)
1446     : Instruction(
1447           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1448           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1449           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1450   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1451 }
1452 
1453 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1454                                      AtomicOrdering SuccessOrdering,
1455                                      AtomicOrdering FailureOrdering,
1456                                      SyncScope::ID SSID,
1457                                      BasicBlock *InsertAtEnd)
1458     : Instruction(
1459           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1460           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1461           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1462   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1463 }
1464 
1465 //===----------------------------------------------------------------------===//
1466 //                       AtomicRMWInst Implementation
1467 //===----------------------------------------------------------------------===//
1468 
1469 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1470                          AtomicOrdering Ordering,
1471                          SyncScope::ID SSID) {
1472   Op<0>() = Ptr;
1473   Op<1>() = Val;
1474   setOperation(Operation);
1475   setOrdering(Ordering);
1476   setSyncScopeID(SSID);
1477 
1478   assert(getOperand(0) && getOperand(1) &&
1479          "All operands must be non-null!");
1480   assert(getOperand(0)->getType()->isPointerTy() &&
1481          "Ptr must have pointer type!");
1482   assert(getOperand(1)->getType() ==
1483          cast<PointerType>(getOperand(0)->getType())->getElementType()
1484          && "Ptr must be a pointer to Val type!");
1485   assert(Ordering != AtomicOrdering::NotAtomic &&
1486          "AtomicRMW instructions must be atomic!");
1487 }
1488 
1489 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1490                              AtomicOrdering Ordering,
1491                              SyncScope::ID SSID,
1492                              Instruction *InsertBefore)
1493   : Instruction(Val->getType(), AtomicRMW,
1494                 OperandTraits<AtomicRMWInst>::op_begin(this),
1495                 OperandTraits<AtomicRMWInst>::operands(this),
1496                 InsertBefore) {
1497   Init(Operation, Ptr, Val, Ordering, SSID);
1498 }
1499 
1500 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1501                              AtomicOrdering Ordering,
1502                              SyncScope::ID SSID,
1503                              BasicBlock *InsertAtEnd)
1504   : Instruction(Val->getType(), AtomicRMW,
1505                 OperandTraits<AtomicRMWInst>::op_begin(this),
1506                 OperandTraits<AtomicRMWInst>::operands(this),
1507                 InsertAtEnd) {
1508   Init(Operation, Ptr, Val, Ordering, SSID);
1509 }
1510 
1511 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1512   switch (Op) {
1513   case AtomicRMWInst::Xchg:
1514     return "xchg";
1515   case AtomicRMWInst::Add:
1516     return "add";
1517   case AtomicRMWInst::Sub:
1518     return "sub";
1519   case AtomicRMWInst::And:
1520     return "and";
1521   case AtomicRMWInst::Nand:
1522     return "nand";
1523   case AtomicRMWInst::Or:
1524     return "or";
1525   case AtomicRMWInst::Xor:
1526     return "xor";
1527   case AtomicRMWInst::Max:
1528     return "max";
1529   case AtomicRMWInst::Min:
1530     return "min";
1531   case AtomicRMWInst::UMax:
1532     return "umax";
1533   case AtomicRMWInst::UMin:
1534     return "umin";
1535   case AtomicRMWInst::FAdd:
1536     return "fadd";
1537   case AtomicRMWInst::FSub:
1538     return "fsub";
1539   case AtomicRMWInst::BAD_BINOP:
1540     return "<invalid operation>";
1541   }
1542 
1543   llvm_unreachable("invalid atomicrmw operation");
1544 }
1545 
1546 //===----------------------------------------------------------------------===//
1547 //                       FenceInst Implementation
1548 //===----------------------------------------------------------------------===//
1549 
1550 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1551                      SyncScope::ID SSID,
1552                      Instruction *InsertBefore)
1553   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1554   setOrdering(Ordering);
1555   setSyncScopeID(SSID);
1556 }
1557 
1558 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1559                      SyncScope::ID SSID,
1560                      BasicBlock *InsertAtEnd)
1561   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1562   setOrdering(Ordering);
1563   setSyncScopeID(SSID);
1564 }
1565 
1566 //===----------------------------------------------------------------------===//
1567 //                       GetElementPtrInst Implementation
1568 //===----------------------------------------------------------------------===//
1569 
1570 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1571                              const Twine &Name) {
1572   assert(getNumOperands() == 1 + IdxList.size() &&
1573          "NumOperands not initialized?");
1574   Op<0>() = Ptr;
1575   llvm::copy(IdxList, op_begin() + 1);
1576   setName(Name);
1577 }
1578 
1579 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1580     : Instruction(GEPI.getType(), GetElementPtr,
1581                   OperandTraits<GetElementPtrInst>::op_end(this) -
1582                       GEPI.getNumOperands(),
1583                   GEPI.getNumOperands()),
1584       SourceElementType(GEPI.SourceElementType),
1585       ResultElementType(GEPI.ResultElementType) {
1586   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1587   SubclassOptionalData = GEPI.SubclassOptionalData;
1588 }
1589 
1590 /// getIndexedType - Returns the type of the element that would be accessed with
1591 /// a gep instruction with the specified parameters.
1592 ///
1593 /// The Idxs pointer should point to a continuous piece of memory containing the
1594 /// indices, either as Value* or uint64_t.
1595 ///
1596 /// A null type is returned if the indices are invalid for the specified
1597 /// pointer type.
1598 ///
1599 template <typename IndexTy>
1600 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1601   // Handle the special case of the empty set index set, which is always valid.
1602   if (IdxList.empty())
1603     return Agg;
1604 
1605   // If there is at least one index, the top level type must be sized, otherwise
1606   // it cannot be 'stepped over'.
1607   if (!Agg->isSized())
1608     return nullptr;
1609 
1610   unsigned CurIdx = 1;
1611   for (; CurIdx != IdxList.size(); ++CurIdx) {
1612     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1613     if (!CT || CT->isPointerTy()) return nullptr;
1614     IndexTy Index = IdxList[CurIdx];
1615     if (!CT->indexValid(Index)) return nullptr;
1616     Agg = CT->getTypeAtIndex(Index);
1617   }
1618   return CurIdx == IdxList.size() ? Agg : nullptr;
1619 }
1620 
1621 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1622   return getIndexedTypeInternal(Ty, IdxList);
1623 }
1624 
1625 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1626                                         ArrayRef<Constant *> IdxList) {
1627   return getIndexedTypeInternal(Ty, IdxList);
1628 }
1629 
1630 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1631   return getIndexedTypeInternal(Ty, IdxList);
1632 }
1633 
1634 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1635 /// zeros.  If so, the result pointer and the first operand have the same
1636 /// value, just potentially different types.
1637 bool GetElementPtrInst::hasAllZeroIndices() const {
1638   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1639     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1640       if (!CI->isZero()) return false;
1641     } else {
1642       return false;
1643     }
1644   }
1645   return true;
1646 }
1647 
1648 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1649 /// constant integers.  If so, the result pointer and the first operand have
1650 /// a constant offset between them.
1651 bool GetElementPtrInst::hasAllConstantIndices() const {
1652   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1653     if (!isa<ConstantInt>(getOperand(i)))
1654       return false;
1655   }
1656   return true;
1657 }
1658 
1659 void GetElementPtrInst::setIsInBounds(bool B) {
1660   cast<GEPOperator>(this)->setIsInBounds(B);
1661 }
1662 
1663 bool GetElementPtrInst::isInBounds() const {
1664   return cast<GEPOperator>(this)->isInBounds();
1665 }
1666 
1667 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1668                                                  APInt &Offset) const {
1669   // Delegate to the generic GEPOperator implementation.
1670   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1671 }
1672 
1673 //===----------------------------------------------------------------------===//
1674 //                           ExtractElementInst Implementation
1675 //===----------------------------------------------------------------------===//
1676 
1677 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1678                                        const Twine &Name,
1679                                        Instruction *InsertBef)
1680   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1681                 ExtractElement,
1682                 OperandTraits<ExtractElementInst>::op_begin(this),
1683                 2, InsertBef) {
1684   assert(isValidOperands(Val, Index) &&
1685          "Invalid extractelement instruction operands!");
1686   Op<0>() = Val;
1687   Op<1>() = Index;
1688   setName(Name);
1689 }
1690 
1691 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1692                                        const Twine &Name,
1693                                        BasicBlock *InsertAE)
1694   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1695                 ExtractElement,
1696                 OperandTraits<ExtractElementInst>::op_begin(this),
1697                 2, InsertAE) {
1698   assert(isValidOperands(Val, Index) &&
1699          "Invalid extractelement instruction operands!");
1700 
1701   Op<0>() = Val;
1702   Op<1>() = Index;
1703   setName(Name);
1704 }
1705 
1706 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1707   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1708     return false;
1709   return true;
1710 }
1711 
1712 //===----------------------------------------------------------------------===//
1713 //                           InsertElementInst Implementation
1714 //===----------------------------------------------------------------------===//
1715 
1716 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1717                                      const Twine &Name,
1718                                      Instruction *InsertBef)
1719   : Instruction(Vec->getType(), InsertElement,
1720                 OperandTraits<InsertElementInst>::op_begin(this),
1721                 3, InsertBef) {
1722   assert(isValidOperands(Vec, Elt, Index) &&
1723          "Invalid insertelement instruction operands!");
1724   Op<0>() = Vec;
1725   Op<1>() = Elt;
1726   Op<2>() = Index;
1727   setName(Name);
1728 }
1729 
1730 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1731                                      const Twine &Name,
1732                                      BasicBlock *InsertAE)
1733   : Instruction(Vec->getType(), InsertElement,
1734                 OperandTraits<InsertElementInst>::op_begin(this),
1735                 3, InsertAE) {
1736   assert(isValidOperands(Vec, Elt, Index) &&
1737          "Invalid insertelement instruction operands!");
1738 
1739   Op<0>() = Vec;
1740   Op<1>() = Elt;
1741   Op<2>() = Index;
1742   setName(Name);
1743 }
1744 
1745 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1746                                         const Value *Index) {
1747   if (!Vec->getType()->isVectorTy())
1748     return false;   // First operand of insertelement must be vector type.
1749 
1750   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1751     return false;// Second operand of insertelement must be vector element type.
1752 
1753   if (!Index->getType()->isIntegerTy())
1754     return false;  // Third operand of insertelement must be i32.
1755   return true;
1756 }
1757 
1758 //===----------------------------------------------------------------------===//
1759 //                      ShuffleVectorInst Implementation
1760 //===----------------------------------------------------------------------===//
1761 
1762 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1763                                      const Twine &Name,
1764                                      Instruction *InsertBefore)
1765 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1766                 cast<VectorType>(Mask->getType())->getNumElements()),
1767               ShuffleVector,
1768               OperandTraits<ShuffleVectorInst>::op_begin(this),
1769               OperandTraits<ShuffleVectorInst>::operands(this),
1770               InsertBefore) {
1771   assert(isValidOperands(V1, V2, Mask) &&
1772          "Invalid shuffle vector instruction operands!");
1773   Op<0>() = V1;
1774   Op<1>() = V2;
1775   Op<2>() = Mask;
1776   setName(Name);
1777 }
1778 
1779 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1780                                      const Twine &Name,
1781                                      BasicBlock *InsertAtEnd)
1782 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1783                 cast<VectorType>(Mask->getType())->getNumElements()),
1784               ShuffleVector,
1785               OperandTraits<ShuffleVectorInst>::op_begin(this),
1786               OperandTraits<ShuffleVectorInst>::operands(this),
1787               InsertAtEnd) {
1788   assert(isValidOperands(V1, V2, Mask) &&
1789          "Invalid shuffle vector instruction operands!");
1790 
1791   Op<0>() = V1;
1792   Op<1>() = V2;
1793   Op<2>() = Mask;
1794   setName(Name);
1795 }
1796 
1797 void ShuffleVectorInst::commute() {
1798   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1799   int NumMaskElts = getMask()->getType()->getVectorNumElements();
1800   SmallVector<Constant*, 16> NewMask(NumMaskElts);
1801   Type *Int32Ty = Type::getInt32Ty(getContext());
1802   for (int i = 0; i != NumMaskElts; ++i) {
1803     int MaskElt = getMaskValue(i);
1804     if (MaskElt == -1) {
1805       NewMask[i] = UndefValue::get(Int32Ty);
1806       continue;
1807     }
1808     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1809     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1810     NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1811   }
1812   Op<2>() = ConstantVector::get(NewMask);
1813   Op<0>().swap(Op<1>());
1814 }
1815 
1816 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1817                                         const Value *Mask) {
1818   // V1 and V2 must be vectors of the same type.
1819   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1820     return false;
1821 
1822   // Mask must be vector of i32.
1823   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1824   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1825     return false;
1826 
1827   // Check to see if Mask is valid.
1828   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1829     return true;
1830 
1831   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1832     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1833     for (Value *Op : MV->operands()) {
1834       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1835         if (CI->uge(V1Size*2))
1836           return false;
1837       } else if (!isa<UndefValue>(Op)) {
1838         return false;
1839       }
1840     }
1841     return true;
1842   }
1843 
1844   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1845     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1846     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1847       if (CDS->getElementAsInteger(i) >= V1Size*2)
1848         return false;
1849     return true;
1850   }
1851 
1852   // The bitcode reader can create a place holder for a forward reference
1853   // used as the shuffle mask. When this occurs, the shuffle mask will
1854   // fall into this case and fail. To avoid this error, do this bit of
1855   // ugliness to allow such a mask pass.
1856   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1857     if (CE->getOpcode() == Instruction::UserOp1)
1858       return true;
1859 
1860   return false;
1861 }
1862 
1863 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1864   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1865   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1866     return CDS->getElementAsInteger(i);
1867   Constant *C = Mask->getAggregateElement(i);
1868   if (isa<UndefValue>(C))
1869     return -1;
1870   return cast<ConstantInt>(C)->getZExtValue();
1871 }
1872 
1873 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1874                                        SmallVectorImpl<int> &Result) {
1875   unsigned NumElts = Mask->getType()->getVectorNumElements();
1876 
1877   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1878     for (unsigned i = 0; i != NumElts; ++i)
1879       Result.push_back(CDS->getElementAsInteger(i));
1880     return;
1881   }
1882   for (unsigned i = 0; i != NumElts; ++i) {
1883     Constant *C = Mask->getAggregateElement(i);
1884     Result.push_back(isa<UndefValue>(C) ? -1 :
1885                      cast<ConstantInt>(C)->getZExtValue());
1886   }
1887 }
1888 
1889 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1890   assert(!Mask.empty() && "Shuffle mask must contain elements");
1891   bool UsesLHS = false;
1892   bool UsesRHS = false;
1893   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1894     if (Mask[i] == -1)
1895       continue;
1896     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1897            "Out-of-bounds shuffle mask element");
1898     UsesLHS |= (Mask[i] < NumOpElts);
1899     UsesRHS |= (Mask[i] >= NumOpElts);
1900     if (UsesLHS && UsesRHS)
1901       return false;
1902   }
1903   assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1904   return true;
1905 }
1906 
1907 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1908   // We don't have vector operand size information, so assume operands are the
1909   // same size as the mask.
1910   return isSingleSourceMaskImpl(Mask, Mask.size());
1911 }
1912 
1913 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1914   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1915     return false;
1916   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1917     if (Mask[i] == -1)
1918       continue;
1919     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1920       return false;
1921   }
1922   return true;
1923 }
1924 
1925 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1926   // We don't have vector operand size information, so assume operands are the
1927   // same size as the mask.
1928   return isIdentityMaskImpl(Mask, Mask.size());
1929 }
1930 
1931 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1932   if (!isSingleSourceMask(Mask))
1933     return false;
1934   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1935     if (Mask[i] == -1)
1936       continue;
1937     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1938       return false;
1939   }
1940   return true;
1941 }
1942 
1943 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1944   if (!isSingleSourceMask(Mask))
1945     return false;
1946   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1947     if (Mask[i] == -1)
1948       continue;
1949     if (Mask[i] != 0 && Mask[i] != NumElts)
1950       return false;
1951   }
1952   return true;
1953 }
1954 
1955 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1956   // Select is differentiated from identity. It requires using both sources.
1957   if (isSingleSourceMask(Mask))
1958     return false;
1959   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1960     if (Mask[i] == -1)
1961       continue;
1962     if (Mask[i] != i && Mask[i] != (NumElts + i))
1963       return false;
1964   }
1965   return true;
1966 }
1967 
1968 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1969   // Example masks that will return true:
1970   // v1 = <a, b, c, d>
1971   // v2 = <e, f, g, h>
1972   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1973   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1974 
1975   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1976   int NumElts = Mask.size();
1977   if (NumElts < 2 || !isPowerOf2_32(NumElts))
1978     return false;
1979 
1980   // 2. The first element of the mask must be either a 0 or a 1.
1981   if (Mask[0] != 0 && Mask[0] != 1)
1982     return false;
1983 
1984   // 3. The difference between the first 2 elements must be equal to the
1985   // number of elements in the mask.
1986   if ((Mask[1] - Mask[0]) != NumElts)
1987     return false;
1988 
1989   // 4. The difference between consecutive even-numbered and odd-numbered
1990   // elements must be equal to 2.
1991   for (int i = 2; i < NumElts; ++i) {
1992     int MaskEltVal = Mask[i];
1993     if (MaskEltVal == -1)
1994       return false;
1995     int MaskEltPrevVal = Mask[i - 2];
1996     if (MaskEltVal - MaskEltPrevVal != 2)
1997       return false;
1998   }
1999   return true;
2000 }
2001 
2002 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2003                                                int NumSrcElts, int &Index) {
2004   // Must extract from a single source.
2005   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2006     return false;
2007 
2008   // Must be smaller (else this is an Identity shuffle).
2009   if (NumSrcElts <= (int)Mask.size())
2010     return false;
2011 
2012   // Find start of extraction, accounting that we may start with an UNDEF.
2013   int SubIndex = -1;
2014   for (int i = 0, e = Mask.size(); i != e; ++i) {
2015     int M = Mask[i];
2016     if (M < 0)
2017       continue;
2018     int Offset = (M % NumSrcElts) - i;
2019     if (0 <= SubIndex && SubIndex != Offset)
2020       return false;
2021     SubIndex = Offset;
2022   }
2023 
2024   if (0 <= SubIndex) {
2025     Index = SubIndex;
2026     return true;
2027   }
2028   return false;
2029 }
2030 
2031 bool ShuffleVectorInst::isIdentityWithPadding() const {
2032   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2033   int NumMaskElts = getType()->getVectorNumElements();
2034   if (NumMaskElts <= NumOpElts)
2035     return false;
2036 
2037   // The first part of the mask must choose elements from exactly 1 source op.
2038   SmallVector<int, 16> Mask = getShuffleMask();
2039   if (!isIdentityMaskImpl(Mask, NumOpElts))
2040     return false;
2041 
2042   // All extending must be with undef elements.
2043   for (int i = NumOpElts; i < NumMaskElts; ++i)
2044     if (Mask[i] != -1)
2045       return false;
2046 
2047   return true;
2048 }
2049 
2050 bool ShuffleVectorInst::isIdentityWithExtract() const {
2051   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2052   int NumMaskElts = getType()->getVectorNumElements();
2053   if (NumMaskElts >= NumOpElts)
2054     return false;
2055 
2056   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2057 }
2058 
2059 bool ShuffleVectorInst::isConcat() const {
2060   // Vector concatenation is differentiated from identity with padding.
2061   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2062     return false;
2063 
2064   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2065   int NumMaskElts = getType()->getVectorNumElements();
2066   if (NumMaskElts != NumOpElts * 2)
2067     return false;
2068 
2069   // Use the mask length rather than the operands' vector lengths here. We
2070   // already know that the shuffle returns a vector twice as long as the inputs,
2071   // and neither of the inputs are undef vectors. If the mask picks consecutive
2072   // elements from both inputs, then this is a concatenation of the inputs.
2073   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2074 }
2075 
2076 //===----------------------------------------------------------------------===//
2077 //                             InsertValueInst Class
2078 //===----------------------------------------------------------------------===//
2079 
2080 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2081                            const Twine &Name) {
2082   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2083 
2084   // There's no fundamental reason why we require at least one index
2085   // (other than weirdness with &*IdxBegin being invalid; see
2086   // getelementptr's init routine for example). But there's no
2087   // present need to support it.
2088   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2089 
2090   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2091          Val->getType() && "Inserted value must match indexed type!");
2092   Op<0>() = Agg;
2093   Op<1>() = Val;
2094 
2095   Indices.append(Idxs.begin(), Idxs.end());
2096   setName(Name);
2097 }
2098 
2099 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2100   : Instruction(IVI.getType(), InsertValue,
2101                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2102     Indices(IVI.Indices) {
2103   Op<0>() = IVI.getOperand(0);
2104   Op<1>() = IVI.getOperand(1);
2105   SubclassOptionalData = IVI.SubclassOptionalData;
2106 }
2107 
2108 //===----------------------------------------------------------------------===//
2109 //                             ExtractValueInst Class
2110 //===----------------------------------------------------------------------===//
2111 
2112 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2113   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2114 
2115   // There's no fundamental reason why we require at least one index.
2116   // But there's no present need to support it.
2117   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2118 
2119   Indices.append(Idxs.begin(), Idxs.end());
2120   setName(Name);
2121 }
2122 
2123 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2124   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2125     Indices(EVI.Indices) {
2126   SubclassOptionalData = EVI.SubclassOptionalData;
2127 }
2128 
2129 // getIndexedType - Returns the type of the element that would be extracted
2130 // with an extractvalue instruction with the specified parameters.
2131 //
2132 // A null type is returned if the indices are invalid for the specified
2133 // pointer type.
2134 //
2135 Type *ExtractValueInst::getIndexedType(Type *Agg,
2136                                        ArrayRef<unsigned> Idxs) {
2137   for (unsigned Index : Idxs) {
2138     // We can't use CompositeType::indexValid(Index) here.
2139     // indexValid() always returns true for arrays because getelementptr allows
2140     // out-of-bounds indices. Since we don't allow those for extractvalue and
2141     // insertvalue we need to check array indexing manually.
2142     // Since the only other types we can index into are struct types it's just
2143     // as easy to check those manually as well.
2144     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2145       if (Index >= AT->getNumElements())
2146         return nullptr;
2147     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2148       if (Index >= ST->getNumElements())
2149         return nullptr;
2150     } else {
2151       // Not a valid type to index into.
2152       return nullptr;
2153     }
2154 
2155     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2156   }
2157   return const_cast<Type*>(Agg);
2158 }
2159 
2160 //===----------------------------------------------------------------------===//
2161 //                             UnaryOperator Class
2162 //===----------------------------------------------------------------------===//
2163 
2164 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2165                              Type *Ty, const Twine &Name,
2166                              Instruction *InsertBefore)
2167   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2168   Op<0>() = S;
2169   setName(Name);
2170   AssertOK();
2171 }
2172 
2173 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2174                              Type *Ty, const Twine &Name,
2175                              BasicBlock *InsertAtEnd)
2176   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2177   Op<0>() = S;
2178   setName(Name);
2179   AssertOK();
2180 }
2181 
2182 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2183                                      const Twine &Name,
2184                                      Instruction *InsertBefore) {
2185   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2186 }
2187 
2188 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2189                                      const Twine &Name,
2190                                      BasicBlock *InsertAtEnd) {
2191   UnaryOperator *Res = Create(Op, S, Name);
2192   InsertAtEnd->getInstList().push_back(Res);
2193   return Res;
2194 }
2195 
2196 void UnaryOperator::AssertOK() {
2197   Value *LHS = getOperand(0);
2198   (void)LHS; // Silence warnings.
2199 #ifndef NDEBUG
2200   switch (getOpcode()) {
2201   case FNeg:
2202     assert(getType() == LHS->getType() &&
2203            "Unary operation should return same type as operand!");
2204     assert(getType()->isFPOrFPVectorTy() &&
2205            "Tried to create a floating-point operation on a "
2206            "non-floating-point type!");
2207     break;
2208   default: llvm_unreachable("Invalid opcode provided");
2209   }
2210 #endif
2211 }
2212 
2213 //===----------------------------------------------------------------------===//
2214 //                             BinaryOperator Class
2215 //===----------------------------------------------------------------------===//
2216 
2217 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2218                                Type *Ty, const Twine &Name,
2219                                Instruction *InsertBefore)
2220   : Instruction(Ty, iType,
2221                 OperandTraits<BinaryOperator>::op_begin(this),
2222                 OperandTraits<BinaryOperator>::operands(this),
2223                 InsertBefore) {
2224   Op<0>() = S1;
2225   Op<1>() = S2;
2226   setName(Name);
2227   AssertOK();
2228 }
2229 
2230 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2231                                Type *Ty, const Twine &Name,
2232                                BasicBlock *InsertAtEnd)
2233   : Instruction(Ty, iType,
2234                 OperandTraits<BinaryOperator>::op_begin(this),
2235                 OperandTraits<BinaryOperator>::operands(this),
2236                 InsertAtEnd) {
2237   Op<0>() = S1;
2238   Op<1>() = S2;
2239   setName(Name);
2240   AssertOK();
2241 }
2242 
2243 void BinaryOperator::AssertOK() {
2244   Value *LHS = getOperand(0), *RHS = getOperand(1);
2245   (void)LHS; (void)RHS; // Silence warnings.
2246   assert(LHS->getType() == RHS->getType() &&
2247          "Binary operator operand types must match!");
2248 #ifndef NDEBUG
2249   switch (getOpcode()) {
2250   case Add: case Sub:
2251   case Mul:
2252     assert(getType() == LHS->getType() &&
2253            "Arithmetic operation should return same type as operands!");
2254     assert(getType()->isIntOrIntVectorTy() &&
2255            "Tried to create an integer operation on a non-integer type!");
2256     break;
2257   case FAdd: case FSub:
2258   case FMul:
2259     assert(getType() == LHS->getType() &&
2260            "Arithmetic operation should return same type as operands!");
2261     assert(getType()->isFPOrFPVectorTy() &&
2262            "Tried to create a floating-point operation on a "
2263            "non-floating-point type!");
2264     break;
2265   case UDiv:
2266   case SDiv:
2267     assert(getType() == LHS->getType() &&
2268            "Arithmetic operation should return same type as operands!");
2269     assert(getType()->isIntOrIntVectorTy() &&
2270            "Incorrect operand type (not integer) for S/UDIV");
2271     break;
2272   case FDiv:
2273     assert(getType() == LHS->getType() &&
2274            "Arithmetic operation should return same type as operands!");
2275     assert(getType()->isFPOrFPVectorTy() &&
2276            "Incorrect operand type (not floating point) for FDIV");
2277     break;
2278   case URem:
2279   case SRem:
2280     assert(getType() == LHS->getType() &&
2281            "Arithmetic operation should return same type as operands!");
2282     assert(getType()->isIntOrIntVectorTy() &&
2283            "Incorrect operand type (not integer) for S/UREM");
2284     break;
2285   case FRem:
2286     assert(getType() == LHS->getType() &&
2287            "Arithmetic operation should return same type as operands!");
2288     assert(getType()->isFPOrFPVectorTy() &&
2289            "Incorrect operand type (not floating point) for FREM");
2290     break;
2291   case Shl:
2292   case LShr:
2293   case AShr:
2294     assert(getType() == LHS->getType() &&
2295            "Shift operation should return same type as operands!");
2296     assert(getType()->isIntOrIntVectorTy() &&
2297            "Tried to create a shift operation on a non-integral type!");
2298     break;
2299   case And: case Or:
2300   case Xor:
2301     assert(getType() == LHS->getType() &&
2302            "Logical operation should return same type as operands!");
2303     assert(getType()->isIntOrIntVectorTy() &&
2304            "Tried to create a logical operation on a non-integral type!");
2305     break;
2306   default: llvm_unreachable("Invalid opcode provided");
2307   }
2308 #endif
2309 }
2310 
2311 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2312                                        const Twine &Name,
2313                                        Instruction *InsertBefore) {
2314   assert(S1->getType() == S2->getType() &&
2315          "Cannot create binary operator with two operands of differing type!");
2316   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2317 }
2318 
2319 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2320                                        const Twine &Name,
2321                                        BasicBlock *InsertAtEnd) {
2322   BinaryOperator *Res = Create(Op, S1, S2, Name);
2323   InsertAtEnd->getInstList().push_back(Res);
2324   return Res;
2325 }
2326 
2327 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2328                                           Instruction *InsertBefore) {
2329   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2330   return new BinaryOperator(Instruction::Sub,
2331                             zero, Op,
2332                             Op->getType(), Name, InsertBefore);
2333 }
2334 
2335 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2336                                           BasicBlock *InsertAtEnd) {
2337   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2338   return new BinaryOperator(Instruction::Sub,
2339                             zero, Op,
2340                             Op->getType(), Name, InsertAtEnd);
2341 }
2342 
2343 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2344                                              Instruction *InsertBefore) {
2345   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2346   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2347 }
2348 
2349 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2350                                              BasicBlock *InsertAtEnd) {
2351   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2352   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2353 }
2354 
2355 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2356                                              Instruction *InsertBefore) {
2357   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2358   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2359 }
2360 
2361 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2362                                              BasicBlock *InsertAtEnd) {
2363   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2364   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2365 }
2366 
2367 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2368                                            Instruction *InsertBefore) {
2369   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2370   return new BinaryOperator(Instruction::FSub, zero, Op,
2371                             Op->getType(), Name, InsertBefore);
2372 }
2373 
2374 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2375                                            BasicBlock *InsertAtEnd) {
2376   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2377   return new BinaryOperator(Instruction::FSub, zero, Op,
2378                             Op->getType(), Name, InsertAtEnd);
2379 }
2380 
2381 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2382                                           Instruction *InsertBefore) {
2383   Constant *C = Constant::getAllOnesValue(Op->getType());
2384   return new BinaryOperator(Instruction::Xor, Op, C,
2385                             Op->getType(), Name, InsertBefore);
2386 }
2387 
2388 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2389                                           BasicBlock *InsertAtEnd) {
2390   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2391   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2392                             Op->getType(), Name, InsertAtEnd);
2393 }
2394 
2395 // Exchange the two operands to this instruction. This instruction is safe to
2396 // use on any binary instruction and does not modify the semantics of the
2397 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2398 // is changed.
2399 bool BinaryOperator::swapOperands() {
2400   if (!isCommutative())
2401     return true; // Can't commute operands
2402   Op<0>().swap(Op<1>());
2403   return false;
2404 }
2405 
2406 //===----------------------------------------------------------------------===//
2407 //                             FPMathOperator Class
2408 //===----------------------------------------------------------------------===//
2409 
2410 float FPMathOperator::getFPAccuracy() const {
2411   const MDNode *MD =
2412       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2413   if (!MD)
2414     return 0.0;
2415   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2416   return Accuracy->getValueAPF().convertToFloat();
2417 }
2418 
2419 //===----------------------------------------------------------------------===//
2420 //                                CastInst Class
2421 //===----------------------------------------------------------------------===//
2422 
2423 // Just determine if this cast only deals with integral->integral conversion.
2424 bool CastInst::isIntegerCast() const {
2425   switch (getOpcode()) {
2426     default: return false;
2427     case Instruction::ZExt:
2428     case Instruction::SExt:
2429     case Instruction::Trunc:
2430       return true;
2431     case Instruction::BitCast:
2432       return getOperand(0)->getType()->isIntegerTy() &&
2433         getType()->isIntegerTy();
2434   }
2435 }
2436 
2437 bool CastInst::isLosslessCast() const {
2438   // Only BitCast can be lossless, exit fast if we're not BitCast
2439   if (getOpcode() != Instruction::BitCast)
2440     return false;
2441 
2442   // Identity cast is always lossless
2443   Type *SrcTy = getOperand(0)->getType();
2444   Type *DstTy = getType();
2445   if (SrcTy == DstTy)
2446     return true;
2447 
2448   // Pointer to pointer is always lossless.
2449   if (SrcTy->isPointerTy())
2450     return DstTy->isPointerTy();
2451   return false;  // Other types have no identity values
2452 }
2453 
2454 /// This function determines if the CastInst does not require any bits to be
2455 /// changed in order to effect the cast. Essentially, it identifies cases where
2456 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2457 /// example, the following are all no-op casts:
2458 /// # bitcast i32* %x to i8*
2459 /// # bitcast <2 x i32> %x to <4 x i16>
2460 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2461 /// Determine if the described cast is a no-op.
2462 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2463                           Type *SrcTy,
2464                           Type *DestTy,
2465                           const DataLayout &DL) {
2466   switch (Opcode) {
2467     default: llvm_unreachable("Invalid CastOp");
2468     case Instruction::Trunc:
2469     case Instruction::ZExt:
2470     case Instruction::SExt:
2471     case Instruction::FPTrunc:
2472     case Instruction::FPExt:
2473     case Instruction::UIToFP:
2474     case Instruction::SIToFP:
2475     case Instruction::FPToUI:
2476     case Instruction::FPToSI:
2477     case Instruction::AddrSpaceCast:
2478       // TODO: Target informations may give a more accurate answer here.
2479       return false;
2480     case Instruction::BitCast:
2481       return true;  // BitCast never modifies bits.
2482     case Instruction::PtrToInt:
2483       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2484              DestTy->getScalarSizeInBits();
2485     case Instruction::IntToPtr:
2486       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2487              SrcTy->getScalarSizeInBits();
2488   }
2489 }
2490 
2491 bool CastInst::isNoopCast(const DataLayout &DL) const {
2492   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2493 }
2494 
2495 /// This function determines if a pair of casts can be eliminated and what
2496 /// opcode should be used in the elimination. This assumes that there are two
2497 /// instructions like this:
2498 /// *  %F = firstOpcode SrcTy %x to MidTy
2499 /// *  %S = secondOpcode MidTy %F to DstTy
2500 /// The function returns a resultOpcode so these two casts can be replaced with:
2501 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2502 /// If no such cast is permitted, the function returns 0.
2503 unsigned CastInst::isEliminableCastPair(
2504   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2505   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2506   Type *DstIntPtrTy) {
2507   // Define the 144 possibilities for these two cast instructions. The values
2508   // in this matrix determine what to do in a given situation and select the
2509   // case in the switch below.  The rows correspond to firstOp, the columns
2510   // correspond to secondOp.  In looking at the table below, keep in mind
2511   // the following cast properties:
2512   //
2513   //          Size Compare       Source               Destination
2514   // Operator  Src ? Size   Type       Sign         Type       Sign
2515   // -------- ------------ -------------------   ---------------------
2516   // TRUNC         >       Integer      Any        Integral     Any
2517   // ZEXT          <       Integral   Unsigned     Integer      Any
2518   // SEXT          <       Integral    Signed      Integer      Any
2519   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2520   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2521   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2522   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2523   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2524   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2525   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2526   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2527   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2528   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2529   //
2530   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2531   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2532   // into "fptoui double to i64", but this loses information about the range
2533   // of the produced value (we no longer know the top-part is all zeros).
2534   // Further this conversion is often much more expensive for typical hardware,
2535   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2536   // same reason.
2537   const unsigned numCastOps =
2538     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2539   static const uint8_t CastResults[numCastOps][numCastOps] = {
2540     // T        F  F  U  S  F  F  P  I  B  A  -+
2541     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2542     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2543     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2544     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2545     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2546     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2547     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2548     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2549     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2550     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2551     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2552     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2553     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2554     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2555     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2556     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2557     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2558   };
2559 
2560   // TODO: This logic could be encoded into the table above and handled in the
2561   // switch below.
2562   // If either of the casts are a bitcast from scalar to vector, disallow the
2563   // merging. However, any pair of bitcasts are allowed.
2564   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2565   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2566   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2567 
2568   // Check if any of the casts convert scalars <-> vectors.
2569   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2570       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2571     if (!AreBothBitcasts)
2572       return 0;
2573 
2574   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2575                             [secondOp-Instruction::CastOpsBegin];
2576   switch (ElimCase) {
2577     case 0:
2578       // Categorically disallowed.
2579       return 0;
2580     case 1:
2581       // Allowed, use first cast's opcode.
2582       return firstOp;
2583     case 2:
2584       // Allowed, use second cast's opcode.
2585       return secondOp;
2586     case 3:
2587       // No-op cast in second op implies firstOp as long as the DestTy
2588       // is integer and we are not converting between a vector and a
2589       // non-vector type.
2590       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2591         return firstOp;
2592       return 0;
2593     case 4:
2594       // No-op cast in second op implies firstOp as long as the DestTy
2595       // is floating point.
2596       if (DstTy->isFloatingPointTy())
2597         return firstOp;
2598       return 0;
2599     case 5:
2600       // No-op cast in first op implies secondOp as long as the SrcTy
2601       // is an integer.
2602       if (SrcTy->isIntegerTy())
2603         return secondOp;
2604       return 0;
2605     case 6:
2606       // No-op cast in first op implies secondOp as long as the SrcTy
2607       // is a floating point.
2608       if (SrcTy->isFloatingPointTy())
2609         return secondOp;
2610       return 0;
2611     case 7: {
2612       // Cannot simplify if address spaces are different!
2613       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2614         return 0;
2615 
2616       unsigned MidSize = MidTy->getScalarSizeInBits();
2617       // We can still fold this without knowing the actual sizes as long we
2618       // know that the intermediate pointer is the largest possible
2619       // pointer size.
2620       // FIXME: Is this always true?
2621       if (MidSize == 64)
2622         return Instruction::BitCast;
2623 
2624       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2625       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2626         return 0;
2627       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2628       if (MidSize >= PtrSize)
2629         return Instruction::BitCast;
2630       return 0;
2631     }
2632     case 8: {
2633       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2634       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2635       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2636       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2637       unsigned DstSize = DstTy->getScalarSizeInBits();
2638       if (SrcSize == DstSize)
2639         return Instruction::BitCast;
2640       else if (SrcSize < DstSize)
2641         return firstOp;
2642       return secondOp;
2643     }
2644     case 9:
2645       // zext, sext -> zext, because sext can't sign extend after zext
2646       return Instruction::ZExt;
2647     case 11: {
2648       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2649       if (!MidIntPtrTy)
2650         return 0;
2651       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2652       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2653       unsigned DstSize = DstTy->getScalarSizeInBits();
2654       if (SrcSize <= PtrSize && SrcSize == DstSize)
2655         return Instruction::BitCast;
2656       return 0;
2657     }
2658     case 12:
2659       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2660       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2661       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2662         return Instruction::AddrSpaceCast;
2663       return Instruction::BitCast;
2664     case 13:
2665       // FIXME: this state can be merged with (1), but the following assert
2666       // is useful to check the correcteness of the sequence due to semantic
2667       // change of bitcast.
2668       assert(
2669         SrcTy->isPtrOrPtrVectorTy() &&
2670         MidTy->isPtrOrPtrVectorTy() &&
2671         DstTy->isPtrOrPtrVectorTy() &&
2672         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2673         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2674         "Illegal addrspacecast, bitcast sequence!");
2675       // Allowed, use first cast's opcode
2676       return firstOp;
2677     case 14:
2678       // bitcast, addrspacecast -> addrspacecast if the element type of
2679       // bitcast's source is the same as that of addrspacecast's destination.
2680       if (SrcTy->getScalarType()->getPointerElementType() ==
2681           DstTy->getScalarType()->getPointerElementType())
2682         return Instruction::AddrSpaceCast;
2683       return 0;
2684     case 15:
2685       // FIXME: this state can be merged with (1), but the following assert
2686       // is useful to check the correcteness of the sequence due to semantic
2687       // change of bitcast.
2688       assert(
2689         SrcTy->isIntOrIntVectorTy() &&
2690         MidTy->isPtrOrPtrVectorTy() &&
2691         DstTy->isPtrOrPtrVectorTy() &&
2692         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2693         "Illegal inttoptr, bitcast sequence!");
2694       // Allowed, use first cast's opcode
2695       return firstOp;
2696     case 16:
2697       // FIXME: this state can be merged with (2), but the following assert
2698       // is useful to check the correcteness of the sequence due to semantic
2699       // change of bitcast.
2700       assert(
2701         SrcTy->isPtrOrPtrVectorTy() &&
2702         MidTy->isPtrOrPtrVectorTy() &&
2703         DstTy->isIntOrIntVectorTy() &&
2704         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2705         "Illegal bitcast, ptrtoint sequence!");
2706       // Allowed, use second cast's opcode
2707       return secondOp;
2708     case 17:
2709       // (sitofp (zext x)) -> (uitofp x)
2710       return Instruction::UIToFP;
2711     case 99:
2712       // Cast combination can't happen (error in input). This is for all cases
2713       // where the MidTy is not the same for the two cast instructions.
2714       llvm_unreachable("Invalid Cast Combination");
2715     default:
2716       llvm_unreachable("Error in CastResults table!!!");
2717   }
2718 }
2719 
2720 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2721   const Twine &Name, Instruction *InsertBefore) {
2722   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2723   // Construct and return the appropriate CastInst subclass
2724   switch (op) {
2725   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2726   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2727   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2728   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2729   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2730   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2731   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2732   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2733   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2734   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2735   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2736   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2737   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2738   default: llvm_unreachable("Invalid opcode provided");
2739   }
2740 }
2741 
2742 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2743   const Twine &Name, BasicBlock *InsertAtEnd) {
2744   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2745   // Construct and return the appropriate CastInst subclass
2746   switch (op) {
2747   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2748   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2749   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2750   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2751   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2752   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2753   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2754   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2755   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2756   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2757   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2758   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2759   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2760   default: llvm_unreachable("Invalid opcode provided");
2761   }
2762 }
2763 
2764 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2765                                         const Twine &Name,
2766                                         Instruction *InsertBefore) {
2767   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2768     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2769   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2770 }
2771 
2772 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2773                                         const Twine &Name,
2774                                         BasicBlock *InsertAtEnd) {
2775   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2776     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2777   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2778 }
2779 
2780 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2781                                         const Twine &Name,
2782                                         Instruction *InsertBefore) {
2783   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2784     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2785   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2786 }
2787 
2788 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2789                                         const Twine &Name,
2790                                         BasicBlock *InsertAtEnd) {
2791   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2792     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2793   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2794 }
2795 
2796 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2797                                          const Twine &Name,
2798                                          Instruction *InsertBefore) {
2799   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2800     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2801   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2802 }
2803 
2804 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2805                                          const Twine &Name,
2806                                          BasicBlock *InsertAtEnd) {
2807   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2808     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2809   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2810 }
2811 
2812 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2813                                       const Twine &Name,
2814                                       BasicBlock *InsertAtEnd) {
2815   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2816   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2817          "Invalid cast");
2818   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2819   assert((!Ty->isVectorTy() ||
2820           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2821          "Invalid cast");
2822 
2823   if (Ty->isIntOrIntVectorTy())
2824     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2825 
2826   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2827 }
2828 
2829 /// Create a BitCast or a PtrToInt cast instruction
2830 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2831                                       const Twine &Name,
2832                                       Instruction *InsertBefore) {
2833   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2834   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2835          "Invalid cast");
2836   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2837   assert((!Ty->isVectorTy() ||
2838           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2839          "Invalid cast");
2840 
2841   if (Ty->isIntOrIntVectorTy())
2842     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2843 
2844   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2845 }
2846 
2847 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2848   Value *S, Type *Ty,
2849   const Twine &Name,
2850   BasicBlock *InsertAtEnd) {
2851   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2852   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2853 
2854   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2855     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2856 
2857   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2858 }
2859 
2860 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2861   Value *S, Type *Ty,
2862   const Twine &Name,
2863   Instruction *InsertBefore) {
2864   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2865   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2866 
2867   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2868     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2869 
2870   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2871 }
2872 
2873 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2874                                            const Twine &Name,
2875                                            Instruction *InsertBefore) {
2876   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2877     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2878   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2879     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2880 
2881   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2882 }
2883 
2884 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2885                                       bool isSigned, const Twine &Name,
2886                                       Instruction *InsertBefore) {
2887   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2888          "Invalid integer cast");
2889   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2890   unsigned DstBits = Ty->getScalarSizeInBits();
2891   Instruction::CastOps opcode =
2892     (SrcBits == DstBits ? Instruction::BitCast :
2893      (SrcBits > DstBits ? Instruction::Trunc :
2894       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2895   return Create(opcode, C, Ty, Name, InsertBefore);
2896 }
2897 
2898 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2899                                       bool isSigned, const Twine &Name,
2900                                       BasicBlock *InsertAtEnd) {
2901   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2902          "Invalid cast");
2903   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2904   unsigned DstBits = Ty->getScalarSizeInBits();
2905   Instruction::CastOps opcode =
2906     (SrcBits == DstBits ? Instruction::BitCast :
2907      (SrcBits > DstBits ? Instruction::Trunc :
2908       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2909   return Create(opcode, C, Ty, Name, InsertAtEnd);
2910 }
2911 
2912 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2913                                  const Twine &Name,
2914                                  Instruction *InsertBefore) {
2915   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2916          "Invalid cast");
2917   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2918   unsigned DstBits = Ty->getScalarSizeInBits();
2919   Instruction::CastOps opcode =
2920     (SrcBits == DstBits ? Instruction::BitCast :
2921      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2922   return Create(opcode, C, Ty, Name, InsertBefore);
2923 }
2924 
2925 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2926                                  const Twine &Name,
2927                                  BasicBlock *InsertAtEnd) {
2928   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2929          "Invalid cast");
2930   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2931   unsigned DstBits = Ty->getScalarSizeInBits();
2932   Instruction::CastOps opcode =
2933     (SrcBits == DstBits ? Instruction::BitCast :
2934      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2935   return Create(opcode, C, Ty, Name, InsertAtEnd);
2936 }
2937 
2938 // Check whether it is valid to call getCastOpcode for these types.
2939 // This routine must be kept in sync with getCastOpcode.
2940 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2941   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2942     return false;
2943 
2944   if (SrcTy == DestTy)
2945     return true;
2946 
2947   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2948     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2949       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2950         // An element by element cast.  Valid if casting the elements is valid.
2951         SrcTy = SrcVecTy->getElementType();
2952         DestTy = DestVecTy->getElementType();
2953       }
2954 
2955   // Get the bit sizes, we'll need these
2956   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2957   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2958 
2959   // Run through the possibilities ...
2960   if (DestTy->isIntegerTy()) {               // Casting to integral
2961     if (SrcTy->isIntegerTy())                // Casting from integral
2962         return true;
2963     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2964       return true;
2965     if (SrcTy->isVectorTy())          // Casting from vector
2966       return DestBits == SrcBits;
2967                                       // Casting from something else
2968     return SrcTy->isPointerTy();
2969   }
2970   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2971     if (SrcTy->isIntegerTy())                // Casting from integral
2972       return true;
2973     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2974       return true;
2975     if (SrcTy->isVectorTy())          // Casting from vector
2976       return DestBits == SrcBits;
2977                                     // Casting from something else
2978     return false;
2979   }
2980   if (DestTy->isVectorTy())         // Casting to vector
2981     return DestBits == SrcBits;
2982   if (DestTy->isPointerTy()) {        // Casting to pointer
2983     if (SrcTy->isPointerTy())                // Casting from pointer
2984       return true;
2985     return SrcTy->isIntegerTy();             // Casting from integral
2986   }
2987   if (DestTy->isX86_MMXTy()) {
2988     if (SrcTy->isVectorTy())
2989       return DestBits == SrcBits;       // 64-bit vector to MMX
2990     return false;
2991   }                                    // Casting to something else
2992   return false;
2993 }
2994 
2995 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2996   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2997     return false;
2998 
2999   if (SrcTy == DestTy)
3000     return true;
3001 
3002   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3003     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3004       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3005         // An element by element cast. Valid if casting the elements is valid.
3006         SrcTy = SrcVecTy->getElementType();
3007         DestTy = DestVecTy->getElementType();
3008       }
3009     }
3010   }
3011 
3012   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3013     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3014       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3015     }
3016   }
3017 
3018   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3019   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3020 
3021   // Could still have vectors of pointers if the number of elements doesn't
3022   // match
3023   if (SrcBits == 0 || DestBits == 0)
3024     return false;
3025 
3026   if (SrcBits != DestBits)
3027     return false;
3028 
3029   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3030     return false;
3031 
3032   return true;
3033 }
3034 
3035 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3036                                           const DataLayout &DL) {
3037   // ptrtoint and inttoptr are not allowed on non-integral pointers
3038   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3039     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3040       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3041               !DL.isNonIntegralPointerType(PtrTy));
3042   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3043     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3044       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3045               !DL.isNonIntegralPointerType(PtrTy));
3046 
3047   return isBitCastable(SrcTy, DestTy);
3048 }
3049 
3050 // Provide a way to get a "cast" where the cast opcode is inferred from the
3051 // types and size of the operand. This, basically, is a parallel of the
3052 // logic in the castIsValid function below.  This axiom should hold:
3053 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3054 // should not assert in castIsValid. In other words, this produces a "correct"
3055 // casting opcode for the arguments passed to it.
3056 // This routine must be kept in sync with isCastable.
3057 Instruction::CastOps
3058 CastInst::getCastOpcode(
3059   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3060   Type *SrcTy = Src->getType();
3061 
3062   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3063          "Only first class types are castable!");
3064 
3065   if (SrcTy == DestTy)
3066     return BitCast;
3067 
3068   // FIXME: Check address space sizes here
3069   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3070     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3071       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3072         // An element by element cast.  Find the appropriate opcode based on the
3073         // element types.
3074         SrcTy = SrcVecTy->getElementType();
3075         DestTy = DestVecTy->getElementType();
3076       }
3077 
3078   // Get the bit sizes, we'll need these
3079   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3080   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3081 
3082   // Run through the possibilities ...
3083   if (DestTy->isIntegerTy()) {                      // Casting to integral
3084     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3085       if (DestBits < SrcBits)
3086         return Trunc;                               // int -> smaller int
3087       else if (DestBits > SrcBits) {                // its an extension
3088         if (SrcIsSigned)
3089           return SExt;                              // signed -> SEXT
3090         else
3091           return ZExt;                              // unsigned -> ZEXT
3092       } else {
3093         return BitCast;                             // Same size, No-op cast
3094       }
3095     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3096       if (DestIsSigned)
3097         return FPToSI;                              // FP -> sint
3098       else
3099         return FPToUI;                              // FP -> uint
3100     } else if (SrcTy->isVectorTy()) {
3101       assert(DestBits == SrcBits &&
3102              "Casting vector to integer of different width");
3103       return BitCast;                             // Same size, no-op cast
3104     } else {
3105       assert(SrcTy->isPointerTy() &&
3106              "Casting from a value that is not first-class type");
3107       return PtrToInt;                              // ptr -> int
3108     }
3109   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3110     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3111       if (SrcIsSigned)
3112         return SIToFP;                              // sint -> FP
3113       else
3114         return UIToFP;                              // uint -> FP
3115     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3116       if (DestBits < SrcBits) {
3117         return FPTrunc;                             // FP -> smaller FP
3118       } else if (DestBits > SrcBits) {
3119         return FPExt;                               // FP -> larger FP
3120       } else  {
3121         return BitCast;                             // same size, no-op cast
3122       }
3123     } else if (SrcTy->isVectorTy()) {
3124       assert(DestBits == SrcBits &&
3125              "Casting vector to floating point of different width");
3126       return BitCast;                             // same size, no-op cast
3127     }
3128     llvm_unreachable("Casting pointer or non-first class to float");
3129   } else if (DestTy->isVectorTy()) {
3130     assert(DestBits == SrcBits &&
3131            "Illegal cast to vector (wrong type or size)");
3132     return BitCast;
3133   } else if (DestTy->isPointerTy()) {
3134     if (SrcTy->isPointerTy()) {
3135       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3136         return AddrSpaceCast;
3137       return BitCast;                               // ptr -> ptr
3138     } else if (SrcTy->isIntegerTy()) {
3139       return IntToPtr;                              // int -> ptr
3140     }
3141     llvm_unreachable("Casting pointer to other than pointer or int");
3142   } else if (DestTy->isX86_MMXTy()) {
3143     if (SrcTy->isVectorTy()) {
3144       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3145       return BitCast;                               // 64-bit vector to MMX
3146     }
3147     llvm_unreachable("Illegal cast to X86_MMX");
3148   }
3149   llvm_unreachable("Casting to type that is not first-class");
3150 }
3151 
3152 //===----------------------------------------------------------------------===//
3153 //                    CastInst SubClass Constructors
3154 //===----------------------------------------------------------------------===//
3155 
3156 /// Check that the construction parameters for a CastInst are correct. This
3157 /// could be broken out into the separate constructors but it is useful to have
3158 /// it in one place and to eliminate the redundant code for getting the sizes
3159 /// of the types involved.
3160 bool
3161 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3162   // Check for type sanity on the arguments
3163   Type *SrcTy = S->getType();
3164 
3165   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3166       SrcTy->isAggregateType() || DstTy->isAggregateType())
3167     return false;
3168 
3169   // Get the size of the types in bits, we'll need this later
3170   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3171   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3172 
3173   // If these are vector types, get the lengths of the vectors (using zero for
3174   // scalar types means that checking that vector lengths match also checks that
3175   // scalars are not being converted to vectors or vectors to scalars).
3176   unsigned SrcLength = SrcTy->isVectorTy() ?
3177     cast<VectorType>(SrcTy)->getNumElements() : 0;
3178   unsigned DstLength = DstTy->isVectorTy() ?
3179     cast<VectorType>(DstTy)->getNumElements() : 0;
3180 
3181   // Switch on the opcode provided
3182   switch (op) {
3183   default: return false; // This is an input error
3184   case Instruction::Trunc:
3185     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3186       SrcLength == DstLength && SrcBitSize > DstBitSize;
3187   case Instruction::ZExt:
3188     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3189       SrcLength == DstLength && SrcBitSize < DstBitSize;
3190   case Instruction::SExt:
3191     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3192       SrcLength == DstLength && SrcBitSize < DstBitSize;
3193   case Instruction::FPTrunc:
3194     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3195       SrcLength == DstLength && SrcBitSize > DstBitSize;
3196   case Instruction::FPExt:
3197     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3198       SrcLength == DstLength && SrcBitSize < DstBitSize;
3199   case Instruction::UIToFP:
3200   case Instruction::SIToFP:
3201     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3202       SrcLength == DstLength;
3203   case Instruction::FPToUI:
3204   case Instruction::FPToSI:
3205     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3206       SrcLength == DstLength;
3207   case Instruction::PtrToInt:
3208     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3209       return false;
3210     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3211       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3212         return false;
3213     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3214   case Instruction::IntToPtr:
3215     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3216       return false;
3217     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3218       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3219         return false;
3220     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3221   case Instruction::BitCast: {
3222     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3223     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3224 
3225     // BitCast implies a no-op cast of type only. No bits change.
3226     // However, you can't cast pointers to anything but pointers.
3227     if (!SrcPtrTy != !DstPtrTy)
3228       return false;
3229 
3230     // For non-pointer cases, the cast is okay if the source and destination bit
3231     // widths are identical.
3232     if (!SrcPtrTy)
3233       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3234 
3235     // If both are pointers then the address spaces must match.
3236     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3237       return false;
3238 
3239     // A vector of pointers must have the same number of elements.
3240     VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3241     VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3242     if (SrcVecTy && DstVecTy)
3243       return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3244     if (SrcVecTy)
3245       return SrcVecTy->getNumElements() == 1;
3246     if (DstVecTy)
3247       return DstVecTy->getNumElements() == 1;
3248 
3249     return true;
3250   }
3251   case Instruction::AddrSpaceCast: {
3252     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3253     if (!SrcPtrTy)
3254       return false;
3255 
3256     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3257     if (!DstPtrTy)
3258       return false;
3259 
3260     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3261       return false;
3262 
3263     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3264       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3265         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3266 
3267       return false;
3268     }
3269 
3270     return true;
3271   }
3272   }
3273 }
3274 
3275 TruncInst::TruncInst(
3276   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3277 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3278   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3279 }
3280 
3281 TruncInst::TruncInst(
3282   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3283 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3284   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3285 }
3286 
3287 ZExtInst::ZExtInst(
3288   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3289 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3290   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3291 }
3292 
3293 ZExtInst::ZExtInst(
3294   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3295 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3296   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3297 }
3298 SExtInst::SExtInst(
3299   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3300 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3301   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3302 }
3303 
3304 SExtInst::SExtInst(
3305   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3306 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3307   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3308 }
3309 
3310 FPTruncInst::FPTruncInst(
3311   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3312 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3313   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3314 }
3315 
3316 FPTruncInst::FPTruncInst(
3317   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3318 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3319   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3320 }
3321 
3322 FPExtInst::FPExtInst(
3323   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3324 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3325   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3326 }
3327 
3328 FPExtInst::FPExtInst(
3329   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3330 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3331   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3332 }
3333 
3334 UIToFPInst::UIToFPInst(
3335   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3336 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3337   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3338 }
3339 
3340 UIToFPInst::UIToFPInst(
3341   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3342 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3343   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3344 }
3345 
3346 SIToFPInst::SIToFPInst(
3347   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3348 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3349   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3350 }
3351 
3352 SIToFPInst::SIToFPInst(
3353   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3354 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3355   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3356 }
3357 
3358 FPToUIInst::FPToUIInst(
3359   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3360 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3361   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3362 }
3363 
3364 FPToUIInst::FPToUIInst(
3365   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3366 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3367   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3368 }
3369 
3370 FPToSIInst::FPToSIInst(
3371   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3372 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3373   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3374 }
3375 
3376 FPToSIInst::FPToSIInst(
3377   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3378 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3379   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3380 }
3381 
3382 PtrToIntInst::PtrToIntInst(
3383   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3384 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3385   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3386 }
3387 
3388 PtrToIntInst::PtrToIntInst(
3389   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3390 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3391   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3392 }
3393 
3394 IntToPtrInst::IntToPtrInst(
3395   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3396 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3397   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3398 }
3399 
3400 IntToPtrInst::IntToPtrInst(
3401   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3402 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3403   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3404 }
3405 
3406 BitCastInst::BitCastInst(
3407   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3408 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3409   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3410 }
3411 
3412 BitCastInst::BitCastInst(
3413   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3414 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3415   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3416 }
3417 
3418 AddrSpaceCastInst::AddrSpaceCastInst(
3419   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3420 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3421   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3422 }
3423 
3424 AddrSpaceCastInst::AddrSpaceCastInst(
3425   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3426 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3427   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3428 }
3429 
3430 //===----------------------------------------------------------------------===//
3431 //                               CmpInst Classes
3432 //===----------------------------------------------------------------------===//
3433 
3434 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3435                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3436                  Instruction *FlagsSource)
3437   : Instruction(ty, op,
3438                 OperandTraits<CmpInst>::op_begin(this),
3439                 OperandTraits<CmpInst>::operands(this),
3440                 InsertBefore) {
3441   Op<0>() = LHS;
3442   Op<1>() = RHS;
3443   setPredicate((Predicate)predicate);
3444   setName(Name);
3445   if (FlagsSource)
3446     copyIRFlags(FlagsSource);
3447 }
3448 
3449 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3450                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3451   : Instruction(ty, op,
3452                 OperandTraits<CmpInst>::op_begin(this),
3453                 OperandTraits<CmpInst>::operands(this),
3454                 InsertAtEnd) {
3455   Op<0>() = LHS;
3456   Op<1>() = RHS;
3457   setPredicate((Predicate)predicate);
3458   setName(Name);
3459 }
3460 
3461 CmpInst *
3462 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3463                 const Twine &Name, Instruction *InsertBefore) {
3464   if (Op == Instruction::ICmp) {
3465     if (InsertBefore)
3466       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3467                           S1, S2, Name);
3468     else
3469       return new ICmpInst(CmpInst::Predicate(predicate),
3470                           S1, S2, Name);
3471   }
3472 
3473   if (InsertBefore)
3474     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3475                         S1, S2, Name);
3476   else
3477     return new FCmpInst(CmpInst::Predicate(predicate),
3478                         S1, S2, Name);
3479 }
3480 
3481 CmpInst *
3482 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3483                 const Twine &Name, BasicBlock *InsertAtEnd) {
3484   if (Op == Instruction::ICmp) {
3485     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3486                         S1, S2, Name);
3487   }
3488   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3489                       S1, S2, Name);
3490 }
3491 
3492 void CmpInst::swapOperands() {
3493   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3494     IC->swapOperands();
3495   else
3496     cast<FCmpInst>(this)->swapOperands();
3497 }
3498 
3499 bool CmpInst::isCommutative() const {
3500   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3501     return IC->isCommutative();
3502   return cast<FCmpInst>(this)->isCommutative();
3503 }
3504 
3505 bool CmpInst::isEquality() const {
3506   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3507     return IC->isEquality();
3508   return cast<FCmpInst>(this)->isEquality();
3509 }
3510 
3511 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3512   switch (pred) {
3513     default: llvm_unreachable("Unknown cmp predicate!");
3514     case ICMP_EQ: return ICMP_NE;
3515     case ICMP_NE: return ICMP_EQ;
3516     case ICMP_UGT: return ICMP_ULE;
3517     case ICMP_ULT: return ICMP_UGE;
3518     case ICMP_UGE: return ICMP_ULT;
3519     case ICMP_ULE: return ICMP_UGT;
3520     case ICMP_SGT: return ICMP_SLE;
3521     case ICMP_SLT: return ICMP_SGE;
3522     case ICMP_SGE: return ICMP_SLT;
3523     case ICMP_SLE: return ICMP_SGT;
3524 
3525     case FCMP_OEQ: return FCMP_UNE;
3526     case FCMP_ONE: return FCMP_UEQ;
3527     case FCMP_OGT: return FCMP_ULE;
3528     case FCMP_OLT: return FCMP_UGE;
3529     case FCMP_OGE: return FCMP_ULT;
3530     case FCMP_OLE: return FCMP_UGT;
3531     case FCMP_UEQ: return FCMP_ONE;
3532     case FCMP_UNE: return FCMP_OEQ;
3533     case FCMP_UGT: return FCMP_OLE;
3534     case FCMP_ULT: return FCMP_OGE;
3535     case FCMP_UGE: return FCMP_OLT;
3536     case FCMP_ULE: return FCMP_OGT;
3537     case FCMP_ORD: return FCMP_UNO;
3538     case FCMP_UNO: return FCMP_ORD;
3539     case FCMP_TRUE: return FCMP_FALSE;
3540     case FCMP_FALSE: return FCMP_TRUE;
3541   }
3542 }
3543 
3544 StringRef CmpInst::getPredicateName(Predicate Pred) {
3545   switch (Pred) {
3546   default:                   return "unknown";
3547   case FCmpInst::FCMP_FALSE: return "false";
3548   case FCmpInst::FCMP_OEQ:   return "oeq";
3549   case FCmpInst::FCMP_OGT:   return "ogt";
3550   case FCmpInst::FCMP_OGE:   return "oge";
3551   case FCmpInst::FCMP_OLT:   return "olt";
3552   case FCmpInst::FCMP_OLE:   return "ole";
3553   case FCmpInst::FCMP_ONE:   return "one";
3554   case FCmpInst::FCMP_ORD:   return "ord";
3555   case FCmpInst::FCMP_UNO:   return "uno";
3556   case FCmpInst::FCMP_UEQ:   return "ueq";
3557   case FCmpInst::FCMP_UGT:   return "ugt";
3558   case FCmpInst::FCMP_UGE:   return "uge";
3559   case FCmpInst::FCMP_ULT:   return "ult";
3560   case FCmpInst::FCMP_ULE:   return "ule";
3561   case FCmpInst::FCMP_UNE:   return "une";
3562   case FCmpInst::FCMP_TRUE:  return "true";
3563   case ICmpInst::ICMP_EQ:    return "eq";
3564   case ICmpInst::ICMP_NE:    return "ne";
3565   case ICmpInst::ICMP_SGT:   return "sgt";
3566   case ICmpInst::ICMP_SGE:   return "sge";
3567   case ICmpInst::ICMP_SLT:   return "slt";
3568   case ICmpInst::ICMP_SLE:   return "sle";
3569   case ICmpInst::ICMP_UGT:   return "ugt";
3570   case ICmpInst::ICMP_UGE:   return "uge";
3571   case ICmpInst::ICMP_ULT:   return "ult";
3572   case ICmpInst::ICMP_ULE:   return "ule";
3573   }
3574 }
3575 
3576 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3577   switch (pred) {
3578     default: llvm_unreachable("Unknown icmp predicate!");
3579     case ICMP_EQ: case ICMP_NE:
3580     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3581        return pred;
3582     case ICMP_UGT: return ICMP_SGT;
3583     case ICMP_ULT: return ICMP_SLT;
3584     case ICMP_UGE: return ICMP_SGE;
3585     case ICMP_ULE: return ICMP_SLE;
3586   }
3587 }
3588 
3589 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3590   switch (pred) {
3591     default: llvm_unreachable("Unknown icmp predicate!");
3592     case ICMP_EQ: case ICMP_NE:
3593     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3594        return pred;
3595     case ICMP_SGT: return ICMP_UGT;
3596     case ICMP_SLT: return ICMP_ULT;
3597     case ICMP_SGE: return ICMP_UGE;
3598     case ICMP_SLE: return ICMP_ULE;
3599   }
3600 }
3601 
3602 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3603   switch (pred) {
3604     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3605     case ICMP_SGT: return ICMP_SGE;
3606     case ICMP_SLT: return ICMP_SLE;
3607     case ICMP_SGE: return ICMP_SGT;
3608     case ICMP_SLE: return ICMP_SLT;
3609     case ICMP_UGT: return ICMP_UGE;
3610     case ICMP_ULT: return ICMP_ULE;
3611     case ICMP_UGE: return ICMP_UGT;
3612     case ICMP_ULE: return ICMP_ULT;
3613 
3614     case FCMP_OGT: return FCMP_OGE;
3615     case FCMP_OLT: return FCMP_OLE;
3616     case FCMP_OGE: return FCMP_OGT;
3617     case FCMP_OLE: return FCMP_OLT;
3618     case FCMP_UGT: return FCMP_UGE;
3619     case FCMP_ULT: return FCMP_ULE;
3620     case FCMP_UGE: return FCMP_UGT;
3621     case FCMP_ULE: return FCMP_ULT;
3622   }
3623 }
3624 
3625 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3626   switch (pred) {
3627     default: llvm_unreachable("Unknown cmp predicate!");
3628     case ICMP_EQ: case ICMP_NE:
3629       return pred;
3630     case ICMP_SGT: return ICMP_SLT;
3631     case ICMP_SLT: return ICMP_SGT;
3632     case ICMP_SGE: return ICMP_SLE;
3633     case ICMP_SLE: return ICMP_SGE;
3634     case ICMP_UGT: return ICMP_ULT;
3635     case ICMP_ULT: return ICMP_UGT;
3636     case ICMP_UGE: return ICMP_ULE;
3637     case ICMP_ULE: return ICMP_UGE;
3638 
3639     case FCMP_FALSE: case FCMP_TRUE:
3640     case FCMP_OEQ: case FCMP_ONE:
3641     case FCMP_UEQ: case FCMP_UNE:
3642     case FCMP_ORD: case FCMP_UNO:
3643       return pred;
3644     case FCMP_OGT: return FCMP_OLT;
3645     case FCMP_OLT: return FCMP_OGT;
3646     case FCMP_OGE: return FCMP_OLE;
3647     case FCMP_OLE: return FCMP_OGE;
3648     case FCMP_UGT: return FCMP_ULT;
3649     case FCMP_ULT: return FCMP_UGT;
3650     case FCMP_UGE: return FCMP_ULE;
3651     case FCMP_ULE: return FCMP_UGE;
3652   }
3653 }
3654 
3655 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3656   switch (pred) {
3657   case ICMP_SGT: return ICMP_SGE;
3658   case ICMP_SLT: return ICMP_SLE;
3659   case ICMP_UGT: return ICMP_UGE;
3660   case ICMP_ULT: return ICMP_ULE;
3661   case FCMP_OGT: return FCMP_OGE;
3662   case FCMP_OLT: return FCMP_OLE;
3663   case FCMP_UGT: return FCMP_UGE;
3664   case FCMP_ULT: return FCMP_ULE;
3665   default: return pred;
3666   }
3667 }
3668 
3669 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3670   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3671 
3672   switch (pred) {
3673   default:
3674     llvm_unreachable("Unknown predicate!");
3675   case CmpInst::ICMP_ULT:
3676     return CmpInst::ICMP_SLT;
3677   case CmpInst::ICMP_ULE:
3678     return CmpInst::ICMP_SLE;
3679   case CmpInst::ICMP_UGT:
3680     return CmpInst::ICMP_SGT;
3681   case CmpInst::ICMP_UGE:
3682     return CmpInst::ICMP_SGE;
3683   }
3684 }
3685 
3686 bool CmpInst::isUnsigned(Predicate predicate) {
3687   switch (predicate) {
3688     default: return false;
3689     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3690     case ICmpInst::ICMP_UGE: return true;
3691   }
3692 }
3693 
3694 bool CmpInst::isSigned(Predicate predicate) {
3695   switch (predicate) {
3696     default: return false;
3697     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3698     case ICmpInst::ICMP_SGE: return true;
3699   }
3700 }
3701 
3702 bool CmpInst::isOrdered(Predicate predicate) {
3703   switch (predicate) {
3704     default: return false;
3705     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3706     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3707     case FCmpInst::FCMP_ORD: return true;
3708   }
3709 }
3710 
3711 bool CmpInst::isUnordered(Predicate predicate) {
3712   switch (predicate) {
3713     default: return false;
3714     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3715     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3716     case FCmpInst::FCMP_UNO: return true;
3717   }
3718 }
3719 
3720 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3721   switch(predicate) {
3722     default: return false;
3723     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3724     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3725   }
3726 }
3727 
3728 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3729   switch(predicate) {
3730   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3731   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3732   default: return false;
3733   }
3734 }
3735 
3736 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3737   // If the predicates match, then we know the first condition implies the
3738   // second is true.
3739   if (Pred1 == Pred2)
3740     return true;
3741 
3742   switch (Pred1) {
3743   default:
3744     break;
3745   case ICMP_EQ:
3746     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3747     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3748            Pred2 == ICMP_SLE;
3749   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3750     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3751   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3752     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3753   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3754     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3755   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3756     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3757   }
3758   return false;
3759 }
3760 
3761 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3762   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3763 }
3764 
3765 //===----------------------------------------------------------------------===//
3766 //                        SwitchInst Implementation
3767 //===----------------------------------------------------------------------===//
3768 
3769 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3770   assert(Value && Default && NumReserved);
3771   ReservedSpace = NumReserved;
3772   setNumHungOffUseOperands(2);
3773   allocHungoffUses(ReservedSpace);
3774 
3775   Op<0>() = Value;
3776   Op<1>() = Default;
3777 }
3778 
3779 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3780 /// switch on and a default destination.  The number of additional cases can
3781 /// be specified here to make memory allocation more efficient.  This
3782 /// constructor can also autoinsert before another instruction.
3783 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3784                        Instruction *InsertBefore)
3785     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3786                   nullptr, 0, InsertBefore) {
3787   init(Value, Default, 2+NumCases*2);
3788 }
3789 
3790 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3791 /// switch on and a default destination.  The number of additional cases can
3792 /// be specified here to make memory allocation more efficient.  This
3793 /// constructor also autoinserts at the end of the specified BasicBlock.
3794 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3795                        BasicBlock *InsertAtEnd)
3796     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3797                   nullptr, 0, InsertAtEnd) {
3798   init(Value, Default, 2+NumCases*2);
3799 }
3800 
3801 SwitchInst::SwitchInst(const SwitchInst &SI)
3802     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3803   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3804   setNumHungOffUseOperands(SI.getNumOperands());
3805   Use *OL = getOperandList();
3806   const Use *InOL = SI.getOperandList();
3807   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3808     OL[i] = InOL[i];
3809     OL[i+1] = InOL[i+1];
3810   }
3811   SubclassOptionalData = SI.SubclassOptionalData;
3812 }
3813 
3814 /// addCase - Add an entry to the switch instruction...
3815 ///
3816 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3817   unsigned NewCaseIdx = getNumCases();
3818   unsigned OpNo = getNumOperands();
3819   if (OpNo+2 > ReservedSpace)
3820     growOperands();  // Get more space!
3821   // Initialize some new operands.
3822   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3823   setNumHungOffUseOperands(OpNo+2);
3824   CaseHandle Case(this, NewCaseIdx);
3825   Case.setValue(OnVal);
3826   Case.setSuccessor(Dest);
3827 }
3828 
3829 /// removeCase - This method removes the specified case and its successor
3830 /// from the switch instruction.
3831 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3832   unsigned idx = I->getCaseIndex();
3833 
3834   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3835 
3836   unsigned NumOps = getNumOperands();
3837   Use *OL = getOperandList();
3838 
3839   // Overwrite this case with the end of the list.
3840   if (2 + (idx + 1) * 2 != NumOps) {
3841     OL[2 + idx * 2] = OL[NumOps - 2];
3842     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3843   }
3844 
3845   // Nuke the last value.
3846   OL[NumOps-2].set(nullptr);
3847   OL[NumOps-2+1].set(nullptr);
3848   setNumHungOffUseOperands(NumOps-2);
3849 
3850   return CaseIt(this, idx);
3851 }
3852 
3853 /// growOperands - grow operands - This grows the operand list in response
3854 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3855 ///
3856 void SwitchInst::growOperands() {
3857   unsigned e = getNumOperands();
3858   unsigned NumOps = e*3;
3859 
3860   ReservedSpace = NumOps;
3861   growHungoffUses(ReservedSpace);
3862 }
3863 
3864 //===----------------------------------------------------------------------===//
3865 //                        IndirectBrInst Implementation
3866 //===----------------------------------------------------------------------===//
3867 
3868 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3869   assert(Address && Address->getType()->isPointerTy() &&
3870          "Address of indirectbr must be a pointer");
3871   ReservedSpace = 1+NumDests;
3872   setNumHungOffUseOperands(1);
3873   allocHungoffUses(ReservedSpace);
3874 
3875   Op<0>() = Address;
3876 }
3877 
3878 
3879 /// growOperands - grow operands - This grows the operand list in response
3880 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3881 ///
3882 void IndirectBrInst::growOperands() {
3883   unsigned e = getNumOperands();
3884   unsigned NumOps = e*2;
3885 
3886   ReservedSpace = NumOps;
3887   growHungoffUses(ReservedSpace);
3888 }
3889 
3890 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3891                                Instruction *InsertBefore)
3892     : Instruction(Type::getVoidTy(Address->getContext()),
3893                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
3894   init(Address, NumCases);
3895 }
3896 
3897 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3898                                BasicBlock *InsertAtEnd)
3899     : Instruction(Type::getVoidTy(Address->getContext()),
3900                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
3901   init(Address, NumCases);
3902 }
3903 
3904 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3905     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3906                   nullptr, IBI.getNumOperands()) {
3907   allocHungoffUses(IBI.getNumOperands());
3908   Use *OL = getOperandList();
3909   const Use *InOL = IBI.getOperandList();
3910   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3911     OL[i] = InOL[i];
3912   SubclassOptionalData = IBI.SubclassOptionalData;
3913 }
3914 
3915 /// addDestination - Add a destination.
3916 ///
3917 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3918   unsigned OpNo = getNumOperands();
3919   if (OpNo+1 > ReservedSpace)
3920     growOperands();  // Get more space!
3921   // Initialize some new operands.
3922   assert(OpNo < ReservedSpace && "Growing didn't work!");
3923   setNumHungOffUseOperands(OpNo+1);
3924   getOperandList()[OpNo] = DestBB;
3925 }
3926 
3927 /// removeDestination - This method removes the specified successor from the
3928 /// indirectbr instruction.
3929 void IndirectBrInst::removeDestination(unsigned idx) {
3930   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3931 
3932   unsigned NumOps = getNumOperands();
3933   Use *OL = getOperandList();
3934 
3935   // Replace this value with the last one.
3936   OL[idx+1] = OL[NumOps-1];
3937 
3938   // Nuke the last value.
3939   OL[NumOps-1].set(nullptr);
3940   setNumHungOffUseOperands(NumOps-1);
3941 }
3942 
3943 //===----------------------------------------------------------------------===//
3944 //                           cloneImpl() implementations
3945 //===----------------------------------------------------------------------===//
3946 
3947 // Define these methods here so vtables don't get emitted into every translation
3948 // unit that uses these classes.
3949 
3950 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3951   return new (getNumOperands()) GetElementPtrInst(*this);
3952 }
3953 
3954 UnaryOperator *UnaryOperator::cloneImpl() const {
3955   return Create(getOpcode(), Op<0>());
3956 }
3957 
3958 BinaryOperator *BinaryOperator::cloneImpl() const {
3959   return Create(getOpcode(), Op<0>(), Op<1>());
3960 }
3961 
3962 FCmpInst *FCmpInst::cloneImpl() const {
3963   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3964 }
3965 
3966 ICmpInst *ICmpInst::cloneImpl() const {
3967   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3968 }
3969 
3970 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3971   return new ExtractValueInst(*this);
3972 }
3973 
3974 InsertValueInst *InsertValueInst::cloneImpl() const {
3975   return new InsertValueInst(*this);
3976 }
3977 
3978 AllocaInst *AllocaInst::cloneImpl() const {
3979   AllocaInst *Result = new AllocaInst(getAllocatedType(),
3980                                       getType()->getAddressSpace(),
3981                                       (Value *)getOperand(0), getAlignment());
3982   Result->setUsedWithInAlloca(isUsedWithInAlloca());
3983   Result->setSwiftError(isSwiftError());
3984   return Result;
3985 }
3986 
3987 LoadInst *LoadInst::cloneImpl() const {
3988   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
3989                       getAlignment(), getOrdering(), getSyncScopeID());
3990 }
3991 
3992 StoreInst *StoreInst::cloneImpl() const {
3993   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3994                        getAlignment(), getOrdering(), getSyncScopeID());
3995 
3996 }
3997 
3998 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3999   AtomicCmpXchgInst *Result =
4000     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4001                           getSuccessOrdering(), getFailureOrdering(),
4002                           getSyncScopeID());
4003   Result->setVolatile(isVolatile());
4004   Result->setWeak(isWeak());
4005   return Result;
4006 }
4007 
4008 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4009   AtomicRMWInst *Result =
4010     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4011                       getOrdering(), getSyncScopeID());
4012   Result->setVolatile(isVolatile());
4013   return Result;
4014 }
4015 
4016 FenceInst *FenceInst::cloneImpl() const {
4017   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4018 }
4019 
4020 TruncInst *TruncInst::cloneImpl() const {
4021   return new TruncInst(getOperand(0), getType());
4022 }
4023 
4024 ZExtInst *ZExtInst::cloneImpl() const {
4025   return new ZExtInst(getOperand(0), getType());
4026 }
4027 
4028 SExtInst *SExtInst::cloneImpl() const {
4029   return new SExtInst(getOperand(0), getType());
4030 }
4031 
4032 FPTruncInst *FPTruncInst::cloneImpl() const {
4033   return new FPTruncInst(getOperand(0), getType());
4034 }
4035 
4036 FPExtInst *FPExtInst::cloneImpl() const {
4037   return new FPExtInst(getOperand(0), getType());
4038 }
4039 
4040 UIToFPInst *UIToFPInst::cloneImpl() const {
4041   return new UIToFPInst(getOperand(0), getType());
4042 }
4043 
4044 SIToFPInst *SIToFPInst::cloneImpl() const {
4045   return new SIToFPInst(getOperand(0), getType());
4046 }
4047 
4048 FPToUIInst *FPToUIInst::cloneImpl() const {
4049   return new FPToUIInst(getOperand(0), getType());
4050 }
4051 
4052 FPToSIInst *FPToSIInst::cloneImpl() const {
4053   return new FPToSIInst(getOperand(0), getType());
4054 }
4055 
4056 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4057   return new PtrToIntInst(getOperand(0), getType());
4058 }
4059 
4060 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4061   return new IntToPtrInst(getOperand(0), getType());
4062 }
4063 
4064 BitCastInst *BitCastInst::cloneImpl() const {
4065   return new BitCastInst(getOperand(0), getType());
4066 }
4067 
4068 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4069   return new AddrSpaceCastInst(getOperand(0), getType());
4070 }
4071 
4072 CallInst *CallInst::cloneImpl() const {
4073   if (hasOperandBundles()) {
4074     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4075     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4076   }
4077   return  new(getNumOperands()) CallInst(*this);
4078 }
4079 
4080 SelectInst *SelectInst::cloneImpl() const {
4081   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4082 }
4083 
4084 VAArgInst *VAArgInst::cloneImpl() const {
4085   return new VAArgInst(getOperand(0), getType());
4086 }
4087 
4088 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4089   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4090 }
4091 
4092 InsertElementInst *InsertElementInst::cloneImpl() const {
4093   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4094 }
4095 
4096 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4097   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4098 }
4099 
4100 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4101 
4102 LandingPadInst *LandingPadInst::cloneImpl() const {
4103   return new LandingPadInst(*this);
4104 }
4105 
4106 ReturnInst *ReturnInst::cloneImpl() const {
4107   return new(getNumOperands()) ReturnInst(*this);
4108 }
4109 
4110 BranchInst *BranchInst::cloneImpl() const {
4111   return new(getNumOperands()) BranchInst(*this);
4112 }
4113 
4114 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4115 
4116 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4117   return new IndirectBrInst(*this);
4118 }
4119 
4120 InvokeInst *InvokeInst::cloneImpl() const {
4121   if (hasOperandBundles()) {
4122     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4123     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4124   }
4125   return new(getNumOperands()) InvokeInst(*this);
4126 }
4127 
4128 CallBrInst *CallBrInst::cloneImpl() const {
4129   if (hasOperandBundles()) {
4130     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4131     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4132   }
4133   return new (getNumOperands()) CallBrInst(*this);
4134 }
4135 
4136 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4137 
4138 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4139   return new (getNumOperands()) CleanupReturnInst(*this);
4140 }
4141 
4142 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4143   return new (getNumOperands()) CatchReturnInst(*this);
4144 }
4145 
4146 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4147   return new CatchSwitchInst(*this);
4148 }
4149 
4150 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4151   return new (getNumOperands()) FuncletPadInst(*this);
4152 }
4153 
4154 UnreachableInst *UnreachableInst::cloneImpl() const {
4155   LLVMContext &Context = getContext();
4156   return new UnreachableInst(Context);
4157 }
4158