1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool> DisableI2pP2iOpt(
49     "disable-i2p-p2i-opt", cl::init(false),
50     cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51 
52 //===----------------------------------------------------------------------===//
53 //                            AllocaInst Class
54 //===----------------------------------------------------------------------===//
55 
56 Optional<TypeSize>
57 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
58   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59   if (isArrayAllocation()) {
60     auto *C = dyn_cast<ConstantInt>(getArraySize());
61     if (!C)
62       return None;
63     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
64     Size *= C->getZExtValue();
65   }
66   return Size;
67 }
68 
69 //===----------------------------------------------------------------------===//
70 //                              SelectInst Class
71 //===----------------------------------------------------------------------===//
72 
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76   if (Op1->getType() != Op2->getType())
77     return "both values to select must have same type";
78 
79   if (Op1->getType()->isTokenTy())
80     return "select values cannot have token type";
81 
82   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83     // Vector select.
84     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85       return "vector select condition element type must be i1";
86     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87     if (!ET)
88       return "selected values for vector select must be vectors";
89     if (ET->getElementCount() != VT->getElementCount())
90       return "vector select requires selected vectors to have "
91                    "the same vector length as select condition";
92   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93     return "select condition must be i1 or <n x i1>";
94   }
95   return nullptr;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 //                               PHINode Class
100 //===----------------------------------------------------------------------===//
101 
102 PHINode::PHINode(const PHINode &PN)
103     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104       ReservedSpace(PN.getNumOperands()) {
105   allocHungoffUses(PN.getNumOperands());
106   std::copy(PN.op_begin(), PN.op_end(), op_begin());
107   std::copy(PN.block_begin(), PN.block_end(), block_begin());
108   SubclassOptionalData = PN.SubclassOptionalData;
109 }
110 
111 // removeIncomingValue - Remove an incoming value.  This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114   Value *Removed = getIncomingValue(Idx);
115 
116   // Move everything after this operand down.
117   //
118   // FIXME: we could just swap with the end of the list, then erase.  However,
119   // clients might not expect this to happen.  The code as it is thrashes the
120   // use/def lists, which is kinda lame.
121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123 
124   // Nuke the last value.
125   Op<-1>().set(nullptr);
126   setNumHungOffUseOperands(getNumOperands() - 1);
127 
128   // If the PHI node is dead, because it has zero entries, nuke it now.
129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130     // If anyone is using this PHI, make them use a dummy value instead...
131     replaceAllUsesWith(UndefValue::get(getType()));
132     eraseFromParent();
133   }
134   return Removed;
135 }
136 
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation.  This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142   unsigned e = getNumOperands();
143   unsigned NumOps = e + e / 2;
144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
145 
146   ReservedSpace = NumOps;
147   growHungoffUses(ReservedSpace, /* IsPhi */ true);
148 }
149 
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
152 Value *PHINode::hasConstantValue() const {
153   // Exploit the fact that phi nodes always have at least one entry.
154   Value *ConstantValue = getIncomingValue(0);
155   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157       if (ConstantValue != this)
158         return nullptr; // Incoming values not all the same.
159        // The case where the first value is this PHI.
160       ConstantValue = getIncomingValue(i);
161     }
162   if (ConstantValue == this)
163     return UndefValue::get(getType());
164   return ConstantValue;
165 }
166 
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
169 /// non-undefs.
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
172 bool PHINode::hasConstantOrUndefValue() const {
173   Value *ConstantValue = nullptr;
174   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175     Value *Incoming = getIncomingValue(i);
176     if (Incoming != this && !isa<UndefValue>(Incoming)) {
177       if (ConstantValue && ConstantValue != Incoming)
178         return false;
179       ConstantValue = Incoming;
180     }
181   }
182   return true;
183 }
184 
185 //===----------------------------------------------------------------------===//
186 //                       LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
188 
189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190                                const Twine &NameStr, Instruction *InsertBefore)
191     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192   init(NumReservedValues, NameStr);
193 }
194 
195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196                                const Twine &NameStr, BasicBlock *InsertAtEnd)
197     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198   init(NumReservedValues, NameStr);
199 }
200 
201 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203                   LP.getNumOperands()),
204       ReservedSpace(LP.getNumOperands()) {
205   allocHungoffUses(LP.getNumOperands());
206   Use *OL = getOperandList();
207   const Use *InOL = LP.getOperandList();
208   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209     OL[I] = InOL[I];
210 
211   setCleanup(LP.isCleanup());
212 }
213 
214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215                                        const Twine &NameStr,
216                                        Instruction *InsertBefore) {
217   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218 }
219 
220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221                                        const Twine &NameStr,
222                                        BasicBlock *InsertAtEnd) {
223   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224 }
225 
226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227   ReservedSpace = NumReservedValues;
228   setNumHungOffUseOperands(0);
229   allocHungoffUses(ReservedSpace);
230   setName(NameStr);
231   setCleanup(false);
232 }
233 
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size) {
237   unsigned e = getNumOperands();
238   if (ReservedSpace >= e + Size) return;
239   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240   growHungoffUses(ReservedSpace);
241 }
242 
243 void LandingPadInst::addClause(Constant *Val) {
244   unsigned OpNo = getNumOperands();
245   growOperands(1);
246   assert(OpNo < ReservedSpace && "Growing didn't work!");
247   setNumHungOffUseOperands(getNumOperands() + 1);
248   getOperandList()[OpNo] = Val;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                        CallBase Implementation
253 //===----------------------------------------------------------------------===//
254 
255 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
256                            Instruction *InsertPt) {
257   switch (CB->getOpcode()) {
258   case Instruction::Call:
259     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260   case Instruction::Invoke:
261     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262   case Instruction::CallBr:
263     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264   default:
265     llvm_unreachable("Unknown CallBase sub-class!");
266   }
267 }
268 
269 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
270                            Instruction *InsertPt) {
271   SmallVector<OperandBundleDef, 2> OpDefs;
272   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273     auto ChildOB = CI->getOperandBundleAt(i);
274     if (ChildOB.getTagName() != OpB.getTag())
275       OpDefs.emplace_back(ChildOB);
276   }
277   OpDefs.emplace_back(OpB);
278   return CallBase::Create(CI, OpDefs, InsertPt);
279 }
280 
281 
282 Function *CallBase::getCaller() { return getParent()->getParent(); }
283 
284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
286   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287 }
288 
289 bool CallBase::isIndirectCall() const {
290   const Value *V = getCalledOperand();
291   if (isa<Function>(V) || isa<Constant>(V))
292     return false;
293   return !isInlineAsm();
294 }
295 
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
298 bool CallBase::isMustTailCall() const {
299   if (auto *CI = dyn_cast<CallInst>(this))
300     return CI->isMustTailCall();
301   return false;
302 }
303 
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306   if (auto *CI = dyn_cast<CallInst>(this))
307     return CI->isTailCall();
308   return false;
309 }
310 
311 Intrinsic::ID CallBase::getIntrinsicID() const {
312   if (auto *F = getCalledFunction())
313     return F->getIntrinsicID();
314   return Intrinsic::not_intrinsic;
315 }
316 
317 bool CallBase::isReturnNonNull() const {
318   if (hasRetAttr(Attribute::NonNull))
319     return true;
320 
321   if (getRetDereferenceableBytes() > 0 &&
322       !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
323     return true;
324 
325   return false;
326 }
327 
328 Value *CallBase::getReturnedArgOperand() const {
329   unsigned Index;
330 
331   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index))
332     return getArgOperand(Index - AttributeList::FirstArgIndex);
333   if (const Function *F = getCalledFunction())
334     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index))
335       return getArgOperand(Index - AttributeList::FirstArgIndex);
336 
337   return nullptr;
338 }
339 
340 /// Determine whether the argument or parameter has the given attribute.
341 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
342   assert(ArgNo < arg_size() && "Param index out of bounds!");
343 
344   if (Attrs.hasParamAttr(ArgNo, Kind))
345     return true;
346   if (const Function *F = getCalledFunction())
347     return F->getAttributes().hasParamAttr(ArgNo, Kind);
348   return false;
349 }
350 
351 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
352   Value *V = getCalledOperand();
353   if (auto *CE = dyn_cast<ConstantExpr>(V))
354     if (CE->getOpcode() == BitCast)
355       V = CE->getOperand(0);
356 
357   if (auto *F = dyn_cast<Function>(V))
358     return F->getAttributes().hasFnAttr(Kind);
359 
360   return false;
361 }
362 
363 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
364   Value *V = getCalledOperand();
365   if (auto *CE = dyn_cast<ConstantExpr>(V))
366     if (CE->getOpcode() == BitCast)
367       V = CE->getOperand(0);
368 
369   if (auto *F = dyn_cast<Function>(V))
370     return F->getAttributes().hasFnAttr(Kind);
371 
372   return false;
373 }
374 
375 void CallBase::getOperandBundlesAsDefs(
376     SmallVectorImpl<OperandBundleDef> &Defs) const {
377   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
378     Defs.emplace_back(getOperandBundleAt(i));
379 }
380 
381 CallBase::op_iterator
382 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
383                                      const unsigned BeginIndex) {
384   auto It = op_begin() + BeginIndex;
385   for (auto &B : Bundles)
386     It = std::copy(B.input_begin(), B.input_end(), It);
387 
388   auto *ContextImpl = getContext().pImpl;
389   auto BI = Bundles.begin();
390   unsigned CurrentIndex = BeginIndex;
391 
392   for (auto &BOI : bundle_op_infos()) {
393     assert(BI != Bundles.end() && "Incorrect allocation?");
394 
395     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
396     BOI.Begin = CurrentIndex;
397     BOI.End = CurrentIndex + BI->input_size();
398     CurrentIndex = BOI.End;
399     BI++;
400   }
401 
402   assert(BI == Bundles.end() && "Incorrect allocation?");
403 
404   return It;
405 }
406 
407 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
408   /// When there isn't many bundles, we do a simple linear search.
409   /// Else fallback to a binary-search that use the fact that bundles usually
410   /// have similar number of argument to get faster convergence.
411   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
412     for (auto &BOI : bundle_op_infos())
413       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
414         return BOI;
415 
416     llvm_unreachable("Did not find operand bundle for operand!");
417   }
418 
419   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
420   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
421          OpIdx < std::prev(bundle_op_info_end())->End &&
422          "The Idx isn't in the operand bundle");
423 
424   /// We need a decimal number below and to prevent using floating point numbers
425   /// we use an intergal value multiplied by this constant.
426   constexpr unsigned NumberScaling = 1024;
427 
428   bundle_op_iterator Begin = bundle_op_info_begin();
429   bundle_op_iterator End = bundle_op_info_end();
430   bundle_op_iterator Current = Begin;
431 
432   while (Begin != End) {
433     unsigned ScaledOperandPerBundle =
434         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
435     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
436                        ScaledOperandPerBundle);
437     if (Current >= End)
438       Current = std::prev(End);
439     assert(Current < End && Current >= Begin &&
440            "the operand bundle doesn't cover every value in the range");
441     if (OpIdx >= Current->Begin && OpIdx < Current->End)
442       break;
443     if (OpIdx >= Current->End)
444       Begin = Current + 1;
445     else
446       End = Current;
447   }
448 
449   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
450          "the operand bundle doesn't cover every value in the range");
451   return *Current;
452 }
453 
454 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
455                                      OperandBundleDef OB,
456                                      Instruction *InsertPt) {
457   if (CB->getOperandBundle(ID))
458     return CB;
459 
460   SmallVector<OperandBundleDef, 1> Bundles;
461   CB->getOperandBundlesAsDefs(Bundles);
462   Bundles.push_back(OB);
463   return Create(CB, Bundles, InsertPt);
464 }
465 
466 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
467                                         Instruction *InsertPt) {
468   SmallVector<OperandBundleDef, 1> Bundles;
469   bool CreateNew = false;
470 
471   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
472     auto Bundle = CB->getOperandBundleAt(I);
473     if (Bundle.getTagID() == ID) {
474       CreateNew = true;
475       continue;
476     }
477     Bundles.emplace_back(Bundle);
478   }
479 
480   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
481 }
482 
483 bool CallBase::hasReadingOperandBundles() const {
484   // Implementation note: this is a conservative implementation of operand
485   // bundle semantics, where *any* non-assume operand bundle forces a callsite
486   // to be at least readonly.
487   return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //                        CallInst Implementation
492 //===----------------------------------------------------------------------===//
493 
494 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
495                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
496   this->FTy = FTy;
497   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
498          "NumOperands not set up?");
499 
500 #ifndef NDEBUG
501   assert((Args.size() == FTy->getNumParams() ||
502           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
503          "Calling a function with bad signature!");
504 
505   for (unsigned i = 0; i != Args.size(); ++i)
506     assert((i >= FTy->getNumParams() ||
507             FTy->getParamType(i) == Args[i]->getType()) &&
508            "Calling a function with a bad signature!");
509 #endif
510 
511   // Set operands in order of their index to match use-list-order
512   // prediction.
513   llvm::copy(Args, op_begin());
514   setCalledOperand(Func);
515 
516   auto It = populateBundleOperandInfos(Bundles, Args.size());
517   (void)It;
518   assert(It + 1 == op_end() && "Should add up!");
519 
520   setName(NameStr);
521 }
522 
523 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
524   this->FTy = FTy;
525   assert(getNumOperands() == 1 && "NumOperands not set up?");
526   setCalledOperand(Func);
527 
528   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
529 
530   setName(NameStr);
531 }
532 
533 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
534                    Instruction *InsertBefore)
535     : CallBase(Ty->getReturnType(), Instruction::Call,
536                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
537   init(Ty, Func, Name);
538 }
539 
540 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
541                    BasicBlock *InsertAtEnd)
542     : CallBase(Ty->getReturnType(), Instruction::Call,
543                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
544   init(Ty, Func, Name);
545 }
546 
547 CallInst::CallInst(const CallInst &CI)
548     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
549                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
550                CI.getNumOperands()) {
551   setTailCallKind(CI.getTailCallKind());
552   setCallingConv(CI.getCallingConv());
553 
554   std::copy(CI.op_begin(), CI.op_end(), op_begin());
555   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
556             bundle_op_info_begin());
557   SubclassOptionalData = CI.SubclassOptionalData;
558 }
559 
560 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
561                            Instruction *InsertPt) {
562   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
563 
564   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
565                                  Args, OpB, CI->getName(), InsertPt);
566   NewCI->setTailCallKind(CI->getTailCallKind());
567   NewCI->setCallingConv(CI->getCallingConv());
568   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
569   NewCI->setAttributes(CI->getAttributes());
570   NewCI->setDebugLoc(CI->getDebugLoc());
571   return NewCI;
572 }
573 
574 // Update profile weight for call instruction by scaling it using the ratio
575 // of S/T. The meaning of "branch_weights" meta data for call instruction is
576 // transfered to represent call count.
577 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
578   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
579   if (ProfileData == nullptr)
580     return;
581 
582   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
583   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
584                         !ProfDataName->getString().equals("VP")))
585     return;
586 
587   if (T == 0) {
588     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
589                          "div by 0. Ignoring. Likely the function "
590                       << getParent()->getParent()->getName()
591                       << " has 0 entry count, and contains call instructions "
592                          "with non-zero prof info.");
593     return;
594   }
595 
596   MDBuilder MDB(getContext());
597   SmallVector<Metadata *, 3> Vals;
598   Vals.push_back(ProfileData->getOperand(0));
599   APInt APS(128, S), APT(128, T);
600   if (ProfDataName->getString().equals("branch_weights") &&
601       ProfileData->getNumOperands() > 0) {
602     // Using APInt::div may be expensive, but most cases should fit 64 bits.
603     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
604                        ->getValue()
605                        .getZExtValue());
606     Val *= APS;
607     Vals.push_back(MDB.createConstant(
608         ConstantInt::get(Type::getInt32Ty(getContext()),
609                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
610   } else if (ProfDataName->getString().equals("VP"))
611     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
612       // The first value is the key of the value profile, which will not change.
613       Vals.push_back(ProfileData->getOperand(i));
614       uint64_t Count =
615           mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
616               ->getValue()
617               .getZExtValue();
618       // Don't scale the magic number.
619       if (Count == NOMORE_ICP_MAGICNUM) {
620         Vals.push_back(ProfileData->getOperand(i + 1));
621         continue;
622       }
623       // Using APInt::div may be expensive, but most cases should fit 64 bits.
624       APInt Val(128, Count);
625       Val *= APS;
626       Vals.push_back(MDB.createConstant(
627           ConstantInt::get(Type::getInt64Ty(getContext()),
628                            Val.udiv(APT).getLimitedValue())));
629     }
630   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
631 }
632 
633 /// IsConstantOne - Return true only if val is constant int 1
634 static bool IsConstantOne(Value *val) {
635   assert(val && "IsConstantOne does not work with nullptr val");
636   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
637   return CVal && CVal->isOne();
638 }
639 
640 static Instruction *createMalloc(Instruction *InsertBefore,
641                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
642                                  Type *AllocTy, Value *AllocSize,
643                                  Value *ArraySize,
644                                  ArrayRef<OperandBundleDef> OpB,
645                                  Function *MallocF, const Twine &Name) {
646   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
647          "createMalloc needs either InsertBefore or InsertAtEnd");
648 
649   // malloc(type) becomes:
650   //       bitcast (i8* malloc(typeSize)) to type*
651   // malloc(type, arraySize) becomes:
652   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
653   if (!ArraySize)
654     ArraySize = ConstantInt::get(IntPtrTy, 1);
655   else if (ArraySize->getType() != IntPtrTy) {
656     if (InsertBefore)
657       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
658                                               "", InsertBefore);
659     else
660       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
661                                               "", InsertAtEnd);
662   }
663 
664   if (!IsConstantOne(ArraySize)) {
665     if (IsConstantOne(AllocSize)) {
666       AllocSize = ArraySize;         // Operand * 1 = Operand
667     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
668       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
669                                                      false /*ZExt*/);
670       // Malloc arg is constant product of type size and array size
671       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
672     } else {
673       // Multiply type size by the array size...
674       if (InsertBefore)
675         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
676                                               "mallocsize", InsertBefore);
677       else
678         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
679                                               "mallocsize", InsertAtEnd);
680     }
681   }
682 
683   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
684   // Create the call to Malloc.
685   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
686   Module *M = BB->getParent()->getParent();
687   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
688   FunctionCallee MallocFunc = MallocF;
689   if (!MallocFunc)
690     // prototype malloc as "void *malloc(size_t)"
691     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
692   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
693   CallInst *MCall = nullptr;
694   Instruction *Result = nullptr;
695   if (InsertBefore) {
696     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
697                              InsertBefore);
698     Result = MCall;
699     if (Result->getType() != AllocPtrType)
700       // Create a cast instruction to convert to the right type...
701       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
702   } else {
703     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
704     Result = MCall;
705     if (Result->getType() != AllocPtrType) {
706       InsertAtEnd->getInstList().push_back(MCall);
707       // Create a cast instruction to convert to the right type...
708       Result = new BitCastInst(MCall, AllocPtrType, Name);
709     }
710   }
711   MCall->setTailCall();
712   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
713     MCall->setCallingConv(F->getCallingConv());
714     if (!F->returnDoesNotAlias())
715       F->setReturnDoesNotAlias();
716   }
717   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
718 
719   return Result;
720 }
721 
722 /// CreateMalloc - Generate the IR for a call to malloc:
723 /// 1. Compute the malloc call's argument as the specified type's size,
724 ///    possibly multiplied by the array size if the array size is not
725 ///    constant 1.
726 /// 2. Call malloc with that argument.
727 /// 3. Bitcast the result of the malloc call to the specified type.
728 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
729                                     Type *IntPtrTy, Type *AllocTy,
730                                     Value *AllocSize, Value *ArraySize,
731                                     Function *MallocF,
732                                     const Twine &Name) {
733   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
734                       ArraySize, None, MallocF, Name);
735 }
736 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
737                                     Type *IntPtrTy, Type *AllocTy,
738                                     Value *AllocSize, Value *ArraySize,
739                                     ArrayRef<OperandBundleDef> OpB,
740                                     Function *MallocF,
741                                     const Twine &Name) {
742   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
743                       ArraySize, OpB, MallocF, Name);
744 }
745 
746 /// CreateMalloc - Generate the IR for a call to malloc:
747 /// 1. Compute the malloc call's argument as the specified type's size,
748 ///    possibly multiplied by the array size if the array size is not
749 ///    constant 1.
750 /// 2. Call malloc with that argument.
751 /// 3. Bitcast the result of the malloc call to the specified type.
752 /// Note: This function does not add the bitcast to the basic block, that is the
753 /// responsibility of the caller.
754 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
755                                     Type *IntPtrTy, Type *AllocTy,
756                                     Value *AllocSize, Value *ArraySize,
757                                     Function *MallocF, const Twine &Name) {
758   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
759                       ArraySize, None, MallocF, Name);
760 }
761 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
762                                     Type *IntPtrTy, Type *AllocTy,
763                                     Value *AllocSize, Value *ArraySize,
764                                     ArrayRef<OperandBundleDef> OpB,
765                                     Function *MallocF, const Twine &Name) {
766   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
767                       ArraySize, OpB, MallocF, Name);
768 }
769 
770 static Instruction *createFree(Value *Source,
771                                ArrayRef<OperandBundleDef> Bundles,
772                                Instruction *InsertBefore,
773                                BasicBlock *InsertAtEnd) {
774   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
775          "createFree needs either InsertBefore or InsertAtEnd");
776   assert(Source->getType()->isPointerTy() &&
777          "Can not free something of nonpointer type!");
778 
779   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
780   Module *M = BB->getParent()->getParent();
781 
782   Type *VoidTy = Type::getVoidTy(M->getContext());
783   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
784   // prototype free as "void free(void*)"
785   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
786   CallInst *Result = nullptr;
787   Value *PtrCast = Source;
788   if (InsertBefore) {
789     if (Source->getType() != IntPtrTy)
790       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
791     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
792   } else {
793     if (Source->getType() != IntPtrTy)
794       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
795     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
796   }
797   Result->setTailCall();
798   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
799     Result->setCallingConv(F->getCallingConv());
800 
801   return Result;
802 }
803 
804 /// CreateFree - Generate the IR for a call to the builtin free function.
805 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
806   return createFree(Source, None, InsertBefore, nullptr);
807 }
808 Instruction *CallInst::CreateFree(Value *Source,
809                                   ArrayRef<OperandBundleDef> Bundles,
810                                   Instruction *InsertBefore) {
811   return createFree(Source, Bundles, InsertBefore, nullptr);
812 }
813 
814 /// CreateFree - Generate the IR for a call to the builtin free function.
815 /// Note: This function does not add the call to the basic block, that is the
816 /// responsibility of the caller.
817 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
818   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
819   assert(FreeCall && "CreateFree did not create a CallInst");
820   return FreeCall;
821 }
822 Instruction *CallInst::CreateFree(Value *Source,
823                                   ArrayRef<OperandBundleDef> Bundles,
824                                   BasicBlock *InsertAtEnd) {
825   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
826   assert(FreeCall && "CreateFree did not create a CallInst");
827   return FreeCall;
828 }
829 
830 //===----------------------------------------------------------------------===//
831 //                        InvokeInst Implementation
832 //===----------------------------------------------------------------------===//
833 
834 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
835                       BasicBlock *IfException, ArrayRef<Value *> Args,
836                       ArrayRef<OperandBundleDef> Bundles,
837                       const Twine &NameStr) {
838   this->FTy = FTy;
839 
840   assert((int)getNumOperands() ==
841              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
842          "NumOperands not set up?");
843 
844 #ifndef NDEBUG
845   assert(((Args.size() == FTy->getNumParams()) ||
846           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
847          "Invoking a function with bad signature");
848 
849   for (unsigned i = 0, e = Args.size(); i != e; i++)
850     assert((i >= FTy->getNumParams() ||
851             FTy->getParamType(i) == Args[i]->getType()) &&
852            "Invoking a function with a bad signature!");
853 #endif
854 
855   // Set operands in order of their index to match use-list-order
856   // prediction.
857   llvm::copy(Args, op_begin());
858   setNormalDest(IfNormal);
859   setUnwindDest(IfException);
860   setCalledOperand(Fn);
861 
862   auto It = populateBundleOperandInfos(Bundles, Args.size());
863   (void)It;
864   assert(It + 3 == op_end() && "Should add up!");
865 
866   setName(NameStr);
867 }
868 
869 InvokeInst::InvokeInst(const InvokeInst &II)
870     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
871                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
872                II.getNumOperands()) {
873   setCallingConv(II.getCallingConv());
874   std::copy(II.op_begin(), II.op_end(), op_begin());
875   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
876             bundle_op_info_begin());
877   SubclassOptionalData = II.SubclassOptionalData;
878 }
879 
880 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
881                                Instruction *InsertPt) {
882   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
883 
884   auto *NewII = InvokeInst::Create(
885       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
886       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
887   NewII->setCallingConv(II->getCallingConv());
888   NewII->SubclassOptionalData = II->SubclassOptionalData;
889   NewII->setAttributes(II->getAttributes());
890   NewII->setDebugLoc(II->getDebugLoc());
891   return NewII;
892 }
893 
894 LandingPadInst *InvokeInst::getLandingPadInst() const {
895   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //                        CallBrInst Implementation
900 //===----------------------------------------------------------------------===//
901 
902 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
903                       ArrayRef<BasicBlock *> IndirectDests,
904                       ArrayRef<Value *> Args,
905                       ArrayRef<OperandBundleDef> Bundles,
906                       const Twine &NameStr) {
907   this->FTy = FTy;
908 
909   assert((int)getNumOperands() ==
910              ComputeNumOperands(Args.size(), IndirectDests.size(),
911                                 CountBundleInputs(Bundles)) &&
912          "NumOperands not set up?");
913 
914 #ifndef NDEBUG
915   assert(((Args.size() == FTy->getNumParams()) ||
916           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
917          "Calling a function with bad signature");
918 
919   for (unsigned i = 0, e = Args.size(); i != e; i++)
920     assert((i >= FTy->getNumParams() ||
921             FTy->getParamType(i) == Args[i]->getType()) &&
922            "Calling a function with a bad signature!");
923 #endif
924 
925   // Set operands in order of their index to match use-list-order
926   // prediction.
927   std::copy(Args.begin(), Args.end(), op_begin());
928   NumIndirectDests = IndirectDests.size();
929   setDefaultDest(Fallthrough);
930   for (unsigned i = 0; i != NumIndirectDests; ++i)
931     setIndirectDest(i, IndirectDests[i]);
932   setCalledOperand(Fn);
933 
934   auto It = populateBundleOperandInfos(Bundles, Args.size());
935   (void)It;
936   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
937 
938   setName(NameStr);
939 }
940 
941 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
942   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
943   if (BasicBlock *OldBB = getIndirectDest(i)) {
944     BlockAddress *Old = BlockAddress::get(OldBB);
945     BlockAddress *New = BlockAddress::get(B);
946     for (unsigned ArgNo = 0, e = arg_size(); ArgNo != e; ++ArgNo)
947       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
948         setArgOperand(ArgNo, New);
949   }
950 }
951 
952 CallBrInst::CallBrInst(const CallBrInst &CBI)
953     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
954                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
955                CBI.getNumOperands()) {
956   setCallingConv(CBI.getCallingConv());
957   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
958   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
959             bundle_op_info_begin());
960   SubclassOptionalData = CBI.SubclassOptionalData;
961   NumIndirectDests = CBI.NumIndirectDests;
962 }
963 
964 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
965                                Instruction *InsertPt) {
966   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
967 
968   auto *NewCBI = CallBrInst::Create(
969       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
970       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
971   NewCBI->setCallingConv(CBI->getCallingConv());
972   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
973   NewCBI->setAttributes(CBI->getAttributes());
974   NewCBI->setDebugLoc(CBI->getDebugLoc());
975   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
976   return NewCBI;
977 }
978 
979 //===----------------------------------------------------------------------===//
980 //                        ReturnInst Implementation
981 //===----------------------------------------------------------------------===//
982 
983 ReturnInst::ReturnInst(const ReturnInst &RI)
984     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
985                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
986                   RI.getNumOperands()) {
987   if (RI.getNumOperands())
988     Op<0>() = RI.Op<0>();
989   SubclassOptionalData = RI.SubclassOptionalData;
990 }
991 
992 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
993     : Instruction(Type::getVoidTy(C), Instruction::Ret,
994                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
995                   InsertBefore) {
996   if (retVal)
997     Op<0>() = retVal;
998 }
999 
1000 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
1001     : Instruction(Type::getVoidTy(C), Instruction::Ret,
1002                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1003                   InsertAtEnd) {
1004   if (retVal)
1005     Op<0>() = retVal;
1006 }
1007 
1008 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1009     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1010                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1011 
1012 //===----------------------------------------------------------------------===//
1013 //                        ResumeInst Implementation
1014 //===----------------------------------------------------------------------===//
1015 
1016 ResumeInst::ResumeInst(const ResumeInst &RI)
1017     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1018                   OperandTraits<ResumeInst>::op_begin(this), 1) {
1019   Op<0>() = RI.Op<0>();
1020 }
1021 
1022 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1023     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1024                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1025   Op<0>() = Exn;
1026 }
1027 
1028 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1029     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1030                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1031   Op<0>() = Exn;
1032 }
1033 
1034 //===----------------------------------------------------------------------===//
1035 //                        CleanupReturnInst Implementation
1036 //===----------------------------------------------------------------------===//
1037 
1038 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1039     : Instruction(CRI.getType(), Instruction::CleanupRet,
1040                   OperandTraits<CleanupReturnInst>::op_end(this) -
1041                       CRI.getNumOperands(),
1042                   CRI.getNumOperands()) {
1043   setSubclassData<Instruction::OpaqueField>(
1044       CRI.getSubclassData<Instruction::OpaqueField>());
1045   Op<0>() = CRI.Op<0>();
1046   if (CRI.hasUnwindDest())
1047     Op<1>() = CRI.Op<1>();
1048 }
1049 
1050 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1051   if (UnwindBB)
1052     setSubclassData<UnwindDestField>(true);
1053 
1054   Op<0>() = CleanupPad;
1055   if (UnwindBB)
1056     Op<1>() = UnwindBB;
1057 }
1058 
1059 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1060                                      unsigned Values, Instruction *InsertBefore)
1061     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1062                   Instruction::CleanupRet,
1063                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1064                   Values, InsertBefore) {
1065   init(CleanupPad, UnwindBB);
1066 }
1067 
1068 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1069                                      unsigned Values, BasicBlock *InsertAtEnd)
1070     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1071                   Instruction::CleanupRet,
1072                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1073                   Values, InsertAtEnd) {
1074   init(CleanupPad, UnwindBB);
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 //                        CatchReturnInst Implementation
1079 //===----------------------------------------------------------------------===//
1080 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1081   Op<0>() = CatchPad;
1082   Op<1>() = BB;
1083 }
1084 
1085 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1086     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1087                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1088   Op<0>() = CRI.Op<0>();
1089   Op<1>() = CRI.Op<1>();
1090 }
1091 
1092 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1093                                  Instruction *InsertBefore)
1094     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1095                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1096                   InsertBefore) {
1097   init(CatchPad, BB);
1098 }
1099 
1100 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1101                                  BasicBlock *InsertAtEnd)
1102     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1103                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1104                   InsertAtEnd) {
1105   init(CatchPad, BB);
1106 }
1107 
1108 //===----------------------------------------------------------------------===//
1109 //                       CatchSwitchInst Implementation
1110 //===----------------------------------------------------------------------===//
1111 
1112 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1113                                  unsigned NumReservedValues,
1114                                  const Twine &NameStr,
1115                                  Instruction *InsertBefore)
1116     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1117                   InsertBefore) {
1118   if (UnwindDest)
1119     ++NumReservedValues;
1120   init(ParentPad, UnwindDest, NumReservedValues + 1);
1121   setName(NameStr);
1122 }
1123 
1124 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1125                                  unsigned NumReservedValues,
1126                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1127     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1128                   InsertAtEnd) {
1129   if (UnwindDest)
1130     ++NumReservedValues;
1131   init(ParentPad, UnwindDest, NumReservedValues + 1);
1132   setName(NameStr);
1133 }
1134 
1135 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1136     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1137                   CSI.getNumOperands()) {
1138   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1139   setNumHungOffUseOperands(ReservedSpace);
1140   Use *OL = getOperandList();
1141   const Use *InOL = CSI.getOperandList();
1142   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1143     OL[I] = InOL[I];
1144 }
1145 
1146 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1147                            unsigned NumReservedValues) {
1148   assert(ParentPad && NumReservedValues);
1149 
1150   ReservedSpace = NumReservedValues;
1151   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1152   allocHungoffUses(ReservedSpace);
1153 
1154   Op<0>() = ParentPad;
1155   if (UnwindDest) {
1156     setSubclassData<UnwindDestField>(true);
1157     setUnwindDest(UnwindDest);
1158   }
1159 }
1160 
1161 /// growOperands - grow operands - This grows the operand list in response to a
1162 /// push_back style of operation. This grows the number of ops by 2 times.
1163 void CatchSwitchInst::growOperands(unsigned Size) {
1164   unsigned NumOperands = getNumOperands();
1165   assert(NumOperands >= 1);
1166   if (ReservedSpace >= NumOperands + Size)
1167     return;
1168   ReservedSpace = (NumOperands + Size / 2) * 2;
1169   growHungoffUses(ReservedSpace);
1170 }
1171 
1172 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1173   unsigned OpNo = getNumOperands();
1174   growOperands(1);
1175   assert(OpNo < ReservedSpace && "Growing didn't work!");
1176   setNumHungOffUseOperands(getNumOperands() + 1);
1177   getOperandList()[OpNo] = Handler;
1178 }
1179 
1180 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1181   // Move all subsequent handlers up one.
1182   Use *EndDst = op_end() - 1;
1183   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1184     *CurDst = *(CurDst + 1);
1185   // Null out the last handler use.
1186   *EndDst = nullptr;
1187 
1188   setNumHungOffUseOperands(getNumOperands() - 1);
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 //                        FuncletPadInst Implementation
1193 //===----------------------------------------------------------------------===//
1194 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1195                           const Twine &NameStr) {
1196   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1197   llvm::copy(Args, op_begin());
1198   setParentPad(ParentPad);
1199   setName(NameStr);
1200 }
1201 
1202 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1203     : Instruction(FPI.getType(), FPI.getOpcode(),
1204                   OperandTraits<FuncletPadInst>::op_end(this) -
1205                       FPI.getNumOperands(),
1206                   FPI.getNumOperands()) {
1207   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1208   setParentPad(FPI.getParentPad());
1209 }
1210 
1211 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1212                                ArrayRef<Value *> Args, unsigned Values,
1213                                const Twine &NameStr, Instruction *InsertBefore)
1214     : Instruction(ParentPad->getType(), Op,
1215                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1216                   InsertBefore) {
1217   init(ParentPad, Args, NameStr);
1218 }
1219 
1220 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1221                                ArrayRef<Value *> Args, unsigned Values,
1222                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1223     : Instruction(ParentPad->getType(), Op,
1224                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1225                   InsertAtEnd) {
1226   init(ParentPad, Args, NameStr);
1227 }
1228 
1229 //===----------------------------------------------------------------------===//
1230 //                      UnreachableInst Implementation
1231 //===----------------------------------------------------------------------===//
1232 
1233 UnreachableInst::UnreachableInst(LLVMContext &Context,
1234                                  Instruction *InsertBefore)
1235     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1236                   0, InsertBefore) {}
1237 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1238     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1239                   0, InsertAtEnd) {}
1240 
1241 //===----------------------------------------------------------------------===//
1242 //                        BranchInst Implementation
1243 //===----------------------------------------------------------------------===//
1244 
1245 void BranchInst::AssertOK() {
1246   if (isConditional())
1247     assert(getCondition()->getType()->isIntegerTy(1) &&
1248            "May only branch on boolean predicates!");
1249 }
1250 
1251 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1252     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1253                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1254                   InsertBefore) {
1255   assert(IfTrue && "Branch destination may not be null!");
1256   Op<-1>() = IfTrue;
1257 }
1258 
1259 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1260                        Instruction *InsertBefore)
1261     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1262                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1263                   InsertBefore) {
1264   // Assign in order of operand index to make use-list order predictable.
1265   Op<-3>() = Cond;
1266   Op<-2>() = IfFalse;
1267   Op<-1>() = IfTrue;
1268 #ifndef NDEBUG
1269   AssertOK();
1270 #endif
1271 }
1272 
1273 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1274     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1275                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1276   assert(IfTrue && "Branch destination may not be null!");
1277   Op<-1>() = IfTrue;
1278 }
1279 
1280 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1281                        BasicBlock *InsertAtEnd)
1282     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1283                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1284   // Assign in order of operand index to make use-list order predictable.
1285   Op<-3>() = Cond;
1286   Op<-2>() = IfFalse;
1287   Op<-1>() = IfTrue;
1288 #ifndef NDEBUG
1289   AssertOK();
1290 #endif
1291 }
1292 
1293 BranchInst::BranchInst(const BranchInst &BI)
1294     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1295                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1296                   BI.getNumOperands()) {
1297   // Assign in order of operand index to make use-list order predictable.
1298   if (BI.getNumOperands() != 1) {
1299     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1300     Op<-3>() = BI.Op<-3>();
1301     Op<-2>() = BI.Op<-2>();
1302   }
1303   Op<-1>() = BI.Op<-1>();
1304   SubclassOptionalData = BI.SubclassOptionalData;
1305 }
1306 
1307 void BranchInst::swapSuccessors() {
1308   assert(isConditional() &&
1309          "Cannot swap successors of an unconditional branch");
1310   Op<-1>().swap(Op<-2>());
1311 
1312   // Update profile metadata if present and it matches our structural
1313   // expectations.
1314   swapProfMetadata();
1315 }
1316 
1317 //===----------------------------------------------------------------------===//
1318 //                        AllocaInst Implementation
1319 //===----------------------------------------------------------------------===//
1320 
1321 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1322   if (!Amt)
1323     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1324   else {
1325     assert(!isa<BasicBlock>(Amt) &&
1326            "Passed basic block into allocation size parameter! Use other ctor");
1327     assert(Amt->getType()->isIntegerTy() &&
1328            "Allocation array size is not an integer!");
1329   }
1330   return Amt;
1331 }
1332 
1333 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1334   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1335   assert(BB->getParent() &&
1336          "BB must be in a Function when alignment not provided!");
1337   const DataLayout &DL = BB->getModule()->getDataLayout();
1338   return DL.getPrefTypeAlign(Ty);
1339 }
1340 
1341 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1342   assert(I && "Insertion position cannot be null when alignment not provided!");
1343   return computeAllocaDefaultAlign(Ty, I->getParent());
1344 }
1345 
1346 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1347                        Instruction *InsertBefore)
1348   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1349 
1350 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1351                        BasicBlock *InsertAtEnd)
1352   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1353 
1354 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1355                        const Twine &Name, Instruction *InsertBefore)
1356     : AllocaInst(Ty, AddrSpace, ArraySize,
1357                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1358                  InsertBefore) {}
1359 
1360 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1361                        const Twine &Name, BasicBlock *InsertAtEnd)
1362     : AllocaInst(Ty, AddrSpace, ArraySize,
1363                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1364                  InsertAtEnd) {}
1365 
1366 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1367                        Align Align, const Twine &Name,
1368                        Instruction *InsertBefore)
1369     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1370                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1371       AllocatedType(Ty) {
1372   setAlignment(Align);
1373   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1374   setName(Name);
1375 }
1376 
1377 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1378                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1379     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1380                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1381       AllocatedType(Ty) {
1382   setAlignment(Align);
1383   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1384   setName(Name);
1385 }
1386 
1387 
1388 bool AllocaInst::isArrayAllocation() const {
1389   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1390     return !CI->isOne();
1391   return true;
1392 }
1393 
1394 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1395 /// function and is a constant size.  If so, the code generator will fold it
1396 /// into the prolog/epilog code, so it is basically free.
1397 bool AllocaInst::isStaticAlloca() const {
1398   // Must be constant size.
1399   if (!isa<ConstantInt>(getArraySize())) return false;
1400 
1401   // Must be in the entry block.
1402   const BasicBlock *Parent = getParent();
1403   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1404 }
1405 
1406 //===----------------------------------------------------------------------===//
1407 //                           LoadInst Implementation
1408 //===----------------------------------------------------------------------===//
1409 
1410 void LoadInst::AssertOK() {
1411   assert(getOperand(0)->getType()->isPointerTy() &&
1412          "Ptr must have pointer type.");
1413   assert(!(isAtomic() && getAlignment() == 0) &&
1414          "Alignment required for atomic load");
1415 }
1416 
1417 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1418   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1419   assert(BB->getParent() &&
1420          "BB must be in a Function when alignment not provided!");
1421   const DataLayout &DL = BB->getModule()->getDataLayout();
1422   return DL.getABITypeAlign(Ty);
1423 }
1424 
1425 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1426   assert(I && "Insertion position cannot be null when alignment not provided!");
1427   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1428 }
1429 
1430 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1431                    Instruction *InsertBef)
1432     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1433 
1434 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1435                    BasicBlock *InsertAE)
1436     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1437 
1438 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1439                    Instruction *InsertBef)
1440     : LoadInst(Ty, Ptr, Name, isVolatile,
1441                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1442 
1443 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1444                    BasicBlock *InsertAE)
1445     : LoadInst(Ty, Ptr, Name, isVolatile,
1446                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1447 
1448 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1449                    Align Align, Instruction *InsertBef)
1450     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1451                SyncScope::System, InsertBef) {}
1452 
1453 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1454                    Align Align, BasicBlock *InsertAE)
1455     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1456                SyncScope::System, InsertAE) {}
1457 
1458 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1459                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1460                    Instruction *InsertBef)
1461     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1462   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1463   setVolatile(isVolatile);
1464   setAlignment(Align);
1465   setAtomic(Order, SSID);
1466   AssertOK();
1467   setName(Name);
1468 }
1469 
1470 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1471                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1472                    BasicBlock *InsertAE)
1473     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1474   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1475   setVolatile(isVolatile);
1476   setAlignment(Align);
1477   setAtomic(Order, SSID);
1478   AssertOK();
1479   setName(Name);
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 //                           StoreInst Implementation
1484 //===----------------------------------------------------------------------===//
1485 
1486 void StoreInst::AssertOK() {
1487   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1488   assert(getOperand(1)->getType()->isPointerTy() &&
1489          "Ptr must have pointer type!");
1490   assert(cast<PointerType>(getOperand(1)->getType())
1491              ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1492          "Ptr must be a pointer to Val type!");
1493   assert(!(isAtomic() && getAlignment() == 0) &&
1494          "Alignment required for atomic store");
1495 }
1496 
1497 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1498     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1499 
1500 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1501     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1502 
1503 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1504                      Instruction *InsertBefore)
1505     : StoreInst(val, addr, isVolatile,
1506                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1507                 InsertBefore) {}
1508 
1509 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1510                      BasicBlock *InsertAtEnd)
1511     : StoreInst(val, addr, isVolatile,
1512                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1513                 InsertAtEnd) {}
1514 
1515 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1516                      Instruction *InsertBefore)
1517     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1518                 SyncScope::System, InsertBefore) {}
1519 
1520 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1521                      BasicBlock *InsertAtEnd)
1522     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1523                 SyncScope::System, InsertAtEnd) {}
1524 
1525 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1526                      AtomicOrdering Order, SyncScope::ID SSID,
1527                      Instruction *InsertBefore)
1528     : Instruction(Type::getVoidTy(val->getContext()), Store,
1529                   OperandTraits<StoreInst>::op_begin(this),
1530                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1531   Op<0>() = val;
1532   Op<1>() = addr;
1533   setVolatile(isVolatile);
1534   setAlignment(Align);
1535   setAtomic(Order, SSID);
1536   AssertOK();
1537 }
1538 
1539 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1540                      AtomicOrdering Order, SyncScope::ID SSID,
1541                      BasicBlock *InsertAtEnd)
1542     : Instruction(Type::getVoidTy(val->getContext()), Store,
1543                   OperandTraits<StoreInst>::op_begin(this),
1544                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1545   Op<0>() = val;
1546   Op<1>() = addr;
1547   setVolatile(isVolatile);
1548   setAlignment(Align);
1549   setAtomic(Order, SSID);
1550   AssertOK();
1551 }
1552 
1553 
1554 //===----------------------------------------------------------------------===//
1555 //                       AtomicCmpXchgInst Implementation
1556 //===----------------------------------------------------------------------===//
1557 
1558 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1559                              Align Alignment, AtomicOrdering SuccessOrdering,
1560                              AtomicOrdering FailureOrdering,
1561                              SyncScope::ID SSID) {
1562   Op<0>() = Ptr;
1563   Op<1>() = Cmp;
1564   Op<2>() = NewVal;
1565   setSuccessOrdering(SuccessOrdering);
1566   setFailureOrdering(FailureOrdering);
1567   setSyncScopeID(SSID);
1568   setAlignment(Alignment);
1569 
1570   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1571          "All operands must be non-null!");
1572   assert(getOperand(0)->getType()->isPointerTy() &&
1573          "Ptr must have pointer type!");
1574   assert(cast<PointerType>(getOperand(0)->getType())
1575              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1576          "Ptr must be a pointer to Cmp type!");
1577   assert(cast<PointerType>(getOperand(0)->getType())
1578              ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1579          "Ptr must be a pointer to NewVal type!");
1580   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1581          "Cmp type and NewVal type must be same!");
1582 }
1583 
1584 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1585                                      Align Alignment,
1586                                      AtomicOrdering SuccessOrdering,
1587                                      AtomicOrdering FailureOrdering,
1588                                      SyncScope::ID SSID,
1589                                      Instruction *InsertBefore)
1590     : Instruction(
1591           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1592           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1593           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1594   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1595 }
1596 
1597 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1598                                      Align Alignment,
1599                                      AtomicOrdering SuccessOrdering,
1600                                      AtomicOrdering FailureOrdering,
1601                                      SyncScope::ID SSID,
1602                                      BasicBlock *InsertAtEnd)
1603     : Instruction(
1604           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1605           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1606           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1607   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1608 }
1609 
1610 //===----------------------------------------------------------------------===//
1611 //                       AtomicRMWInst Implementation
1612 //===----------------------------------------------------------------------===//
1613 
1614 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1615                          Align Alignment, AtomicOrdering Ordering,
1616                          SyncScope::ID SSID) {
1617   Op<0>() = Ptr;
1618   Op<1>() = Val;
1619   setOperation(Operation);
1620   setOrdering(Ordering);
1621   setSyncScopeID(SSID);
1622   setAlignment(Alignment);
1623 
1624   assert(getOperand(0) && getOperand(1) &&
1625          "All operands must be non-null!");
1626   assert(getOperand(0)->getType()->isPointerTy() &&
1627          "Ptr must have pointer type!");
1628   assert(cast<PointerType>(getOperand(0)->getType())
1629              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1630          "Ptr must be a pointer to Val type!");
1631   assert(Ordering != AtomicOrdering::NotAtomic &&
1632          "AtomicRMW instructions must be atomic!");
1633 }
1634 
1635 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1636                              Align Alignment, AtomicOrdering Ordering,
1637                              SyncScope::ID SSID, Instruction *InsertBefore)
1638     : Instruction(Val->getType(), AtomicRMW,
1639                   OperandTraits<AtomicRMWInst>::op_begin(this),
1640                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1641   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1642 }
1643 
1644 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1645                              Align Alignment, AtomicOrdering Ordering,
1646                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1647     : Instruction(Val->getType(), AtomicRMW,
1648                   OperandTraits<AtomicRMWInst>::op_begin(this),
1649                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1650   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1651 }
1652 
1653 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1654   switch (Op) {
1655   case AtomicRMWInst::Xchg:
1656     return "xchg";
1657   case AtomicRMWInst::Add:
1658     return "add";
1659   case AtomicRMWInst::Sub:
1660     return "sub";
1661   case AtomicRMWInst::And:
1662     return "and";
1663   case AtomicRMWInst::Nand:
1664     return "nand";
1665   case AtomicRMWInst::Or:
1666     return "or";
1667   case AtomicRMWInst::Xor:
1668     return "xor";
1669   case AtomicRMWInst::Max:
1670     return "max";
1671   case AtomicRMWInst::Min:
1672     return "min";
1673   case AtomicRMWInst::UMax:
1674     return "umax";
1675   case AtomicRMWInst::UMin:
1676     return "umin";
1677   case AtomicRMWInst::FAdd:
1678     return "fadd";
1679   case AtomicRMWInst::FSub:
1680     return "fsub";
1681   case AtomicRMWInst::BAD_BINOP:
1682     return "<invalid operation>";
1683   }
1684 
1685   llvm_unreachable("invalid atomicrmw operation");
1686 }
1687 
1688 //===----------------------------------------------------------------------===//
1689 //                       FenceInst Implementation
1690 //===----------------------------------------------------------------------===//
1691 
1692 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1693                      SyncScope::ID SSID,
1694                      Instruction *InsertBefore)
1695   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1696   setOrdering(Ordering);
1697   setSyncScopeID(SSID);
1698 }
1699 
1700 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1701                      SyncScope::ID SSID,
1702                      BasicBlock *InsertAtEnd)
1703   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1704   setOrdering(Ordering);
1705   setSyncScopeID(SSID);
1706 }
1707 
1708 //===----------------------------------------------------------------------===//
1709 //                       GetElementPtrInst Implementation
1710 //===----------------------------------------------------------------------===//
1711 
1712 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1713                              const Twine &Name) {
1714   assert(getNumOperands() == 1 + IdxList.size() &&
1715          "NumOperands not initialized?");
1716   Op<0>() = Ptr;
1717   llvm::copy(IdxList, op_begin() + 1);
1718   setName(Name);
1719 }
1720 
1721 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1722     : Instruction(GEPI.getType(), GetElementPtr,
1723                   OperandTraits<GetElementPtrInst>::op_end(this) -
1724                       GEPI.getNumOperands(),
1725                   GEPI.getNumOperands()),
1726       SourceElementType(GEPI.SourceElementType),
1727       ResultElementType(GEPI.ResultElementType) {
1728   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1729   SubclassOptionalData = GEPI.SubclassOptionalData;
1730 }
1731 
1732 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1733   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1734     if (!Struct->indexValid(Idx))
1735       return nullptr;
1736     return Struct->getTypeAtIndex(Idx);
1737   }
1738   if (!Idx->getType()->isIntOrIntVectorTy())
1739     return nullptr;
1740   if (auto *Array = dyn_cast<ArrayType>(Ty))
1741     return Array->getElementType();
1742   if (auto *Vector = dyn_cast<VectorType>(Ty))
1743     return Vector->getElementType();
1744   return nullptr;
1745 }
1746 
1747 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1748   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1749     if (Idx >= Struct->getNumElements())
1750       return nullptr;
1751     return Struct->getElementType(Idx);
1752   }
1753   if (auto *Array = dyn_cast<ArrayType>(Ty))
1754     return Array->getElementType();
1755   if (auto *Vector = dyn_cast<VectorType>(Ty))
1756     return Vector->getElementType();
1757   return nullptr;
1758 }
1759 
1760 template <typename IndexTy>
1761 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1762   if (IdxList.empty())
1763     return Ty;
1764   for (IndexTy V : IdxList.slice(1)) {
1765     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1766     if (!Ty)
1767       return Ty;
1768   }
1769   return Ty;
1770 }
1771 
1772 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1773   return getIndexedTypeInternal(Ty, IdxList);
1774 }
1775 
1776 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1777                                         ArrayRef<Constant *> IdxList) {
1778   return getIndexedTypeInternal(Ty, IdxList);
1779 }
1780 
1781 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1782   return getIndexedTypeInternal(Ty, IdxList);
1783 }
1784 
1785 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1786 /// zeros.  If so, the result pointer and the first operand have the same
1787 /// value, just potentially different types.
1788 bool GetElementPtrInst::hasAllZeroIndices() const {
1789   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1790     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1791       if (!CI->isZero()) return false;
1792     } else {
1793       return false;
1794     }
1795   }
1796   return true;
1797 }
1798 
1799 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1800 /// constant integers.  If so, the result pointer and the first operand have
1801 /// a constant offset between them.
1802 bool GetElementPtrInst::hasAllConstantIndices() const {
1803   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1804     if (!isa<ConstantInt>(getOperand(i)))
1805       return false;
1806   }
1807   return true;
1808 }
1809 
1810 void GetElementPtrInst::setIsInBounds(bool B) {
1811   cast<GEPOperator>(this)->setIsInBounds(B);
1812 }
1813 
1814 bool GetElementPtrInst::isInBounds() const {
1815   return cast<GEPOperator>(this)->isInBounds();
1816 }
1817 
1818 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1819                                                  APInt &Offset) const {
1820   // Delegate to the generic GEPOperator implementation.
1821   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1822 }
1823 
1824 bool GetElementPtrInst::collectOffset(
1825     const DataLayout &DL, unsigned BitWidth,
1826     MapVector<Value *, APInt> &VariableOffsets,
1827     APInt &ConstantOffset) const {
1828   // Delegate to the generic GEPOperator implementation.
1829   return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1830                                                 ConstantOffset);
1831 }
1832 
1833 //===----------------------------------------------------------------------===//
1834 //                           ExtractElementInst Implementation
1835 //===----------------------------------------------------------------------===//
1836 
1837 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1838                                        const Twine &Name,
1839                                        Instruction *InsertBef)
1840   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1841                 ExtractElement,
1842                 OperandTraits<ExtractElementInst>::op_begin(this),
1843                 2, InsertBef) {
1844   assert(isValidOperands(Val, Index) &&
1845          "Invalid extractelement instruction operands!");
1846   Op<0>() = Val;
1847   Op<1>() = Index;
1848   setName(Name);
1849 }
1850 
1851 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1852                                        const Twine &Name,
1853                                        BasicBlock *InsertAE)
1854   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1855                 ExtractElement,
1856                 OperandTraits<ExtractElementInst>::op_begin(this),
1857                 2, InsertAE) {
1858   assert(isValidOperands(Val, Index) &&
1859          "Invalid extractelement instruction operands!");
1860 
1861   Op<0>() = Val;
1862   Op<1>() = Index;
1863   setName(Name);
1864 }
1865 
1866 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1867   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1868     return false;
1869   return true;
1870 }
1871 
1872 //===----------------------------------------------------------------------===//
1873 //                           InsertElementInst Implementation
1874 //===----------------------------------------------------------------------===//
1875 
1876 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1877                                      const Twine &Name,
1878                                      Instruction *InsertBef)
1879   : Instruction(Vec->getType(), InsertElement,
1880                 OperandTraits<InsertElementInst>::op_begin(this),
1881                 3, InsertBef) {
1882   assert(isValidOperands(Vec, Elt, Index) &&
1883          "Invalid insertelement instruction operands!");
1884   Op<0>() = Vec;
1885   Op<1>() = Elt;
1886   Op<2>() = Index;
1887   setName(Name);
1888 }
1889 
1890 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1891                                      const Twine &Name,
1892                                      BasicBlock *InsertAE)
1893   : Instruction(Vec->getType(), InsertElement,
1894                 OperandTraits<InsertElementInst>::op_begin(this),
1895                 3, InsertAE) {
1896   assert(isValidOperands(Vec, Elt, Index) &&
1897          "Invalid insertelement instruction operands!");
1898 
1899   Op<0>() = Vec;
1900   Op<1>() = Elt;
1901   Op<2>() = Index;
1902   setName(Name);
1903 }
1904 
1905 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1906                                         const Value *Index) {
1907   if (!Vec->getType()->isVectorTy())
1908     return false;   // First operand of insertelement must be vector type.
1909 
1910   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1911     return false;// Second operand of insertelement must be vector element type.
1912 
1913   if (!Index->getType()->isIntegerTy())
1914     return false;  // Third operand of insertelement must be i32.
1915   return true;
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 //                      ShuffleVectorInst Implementation
1920 //===----------------------------------------------------------------------===//
1921 
1922 static Value *createPlaceholderForShuffleVector(Value *V) {
1923   assert(V && "Cannot create placeholder of nullptr V");
1924   return PoisonValue::get(V->getType());
1925 }
1926 
1927 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1928                                      Instruction *InsertBefore)
1929     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1930                         InsertBefore) {}
1931 
1932 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1933                                      BasicBlock *InsertAtEnd)
1934     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1935                         InsertAtEnd) {}
1936 
1937 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1938                                      const Twine &Name,
1939                                      Instruction *InsertBefore)
1940     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1941                         InsertBefore) {}
1942 
1943 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1944                                      const Twine &Name, BasicBlock *InsertAtEnd)
1945     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1946                         InsertAtEnd) {}
1947 
1948 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1949                                      const Twine &Name,
1950                                      Instruction *InsertBefore)
1951     : Instruction(
1952           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1953                           cast<VectorType>(Mask->getType())->getElementCount()),
1954           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1955           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1956   assert(isValidOperands(V1, V2, Mask) &&
1957          "Invalid shuffle vector instruction operands!");
1958 
1959   Op<0>() = V1;
1960   Op<1>() = V2;
1961   SmallVector<int, 16> MaskArr;
1962   getShuffleMask(cast<Constant>(Mask), MaskArr);
1963   setShuffleMask(MaskArr);
1964   setName(Name);
1965 }
1966 
1967 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1968                                      const Twine &Name, BasicBlock *InsertAtEnd)
1969     : Instruction(
1970           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1971                           cast<VectorType>(Mask->getType())->getElementCount()),
1972           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1973           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1974   assert(isValidOperands(V1, V2, Mask) &&
1975          "Invalid shuffle vector instruction operands!");
1976 
1977   Op<0>() = V1;
1978   Op<1>() = V2;
1979   SmallVector<int, 16> MaskArr;
1980   getShuffleMask(cast<Constant>(Mask), MaskArr);
1981   setShuffleMask(MaskArr);
1982   setName(Name);
1983 }
1984 
1985 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1986                                      const Twine &Name,
1987                                      Instruction *InsertBefore)
1988     : Instruction(
1989           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1990                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1991           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1992           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1993   assert(isValidOperands(V1, V2, Mask) &&
1994          "Invalid shuffle vector instruction operands!");
1995   Op<0>() = V1;
1996   Op<1>() = V2;
1997   setShuffleMask(Mask);
1998   setName(Name);
1999 }
2000 
2001 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2002                                      const Twine &Name, BasicBlock *InsertAtEnd)
2003     : Instruction(
2004           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2005                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
2006           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2007           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
2008   assert(isValidOperands(V1, V2, Mask) &&
2009          "Invalid shuffle vector instruction operands!");
2010 
2011   Op<0>() = V1;
2012   Op<1>() = V2;
2013   setShuffleMask(Mask);
2014   setName(Name);
2015 }
2016 
2017 void ShuffleVectorInst::commute() {
2018   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2019   int NumMaskElts = ShuffleMask.size();
2020   SmallVector<int, 16> NewMask(NumMaskElts);
2021   for (int i = 0; i != NumMaskElts; ++i) {
2022     int MaskElt = getMaskValue(i);
2023     if (MaskElt == UndefMaskElem) {
2024       NewMask[i] = UndefMaskElem;
2025       continue;
2026     }
2027     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
2028     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
2029     NewMask[i] = MaskElt;
2030   }
2031   setShuffleMask(NewMask);
2032   Op<0>().swap(Op<1>());
2033 }
2034 
2035 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2036                                         ArrayRef<int> Mask) {
2037   // V1 and V2 must be vectors of the same type.
2038   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2039     return false;
2040 
2041   // Make sure the mask elements make sense.
2042   int V1Size =
2043       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2044   for (int Elem : Mask)
2045     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2046       return false;
2047 
2048   if (isa<ScalableVectorType>(V1->getType()))
2049     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2050       return false;
2051 
2052   return true;
2053 }
2054 
2055 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2056                                         const Value *Mask) {
2057   // V1 and V2 must be vectors of the same type.
2058   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2059     return false;
2060 
2061   // Mask must be vector of i32, and must be the same kind of vector as the
2062   // input vectors
2063   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2064   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2065       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2066     return false;
2067 
2068   // Check to see if Mask is valid.
2069   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2070     return true;
2071 
2072   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2073     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2074     for (Value *Op : MV->operands()) {
2075       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2076         if (CI->uge(V1Size*2))
2077           return false;
2078       } else if (!isa<UndefValue>(Op)) {
2079         return false;
2080       }
2081     }
2082     return true;
2083   }
2084 
2085   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2086     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2087     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2088          i != e; ++i)
2089       if (CDS->getElementAsInteger(i) >= V1Size*2)
2090         return false;
2091     return true;
2092   }
2093 
2094   return false;
2095 }
2096 
2097 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2098                                        SmallVectorImpl<int> &Result) {
2099   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2100 
2101   if (isa<ConstantAggregateZero>(Mask)) {
2102     Result.resize(EC.getKnownMinValue(), 0);
2103     return;
2104   }
2105 
2106   Result.reserve(EC.getKnownMinValue());
2107 
2108   if (EC.isScalable()) {
2109     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2110            "Scalable vector shuffle mask must be undef or zeroinitializer");
2111     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2112     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2113       Result.emplace_back(MaskVal);
2114     return;
2115   }
2116 
2117   unsigned NumElts = EC.getKnownMinValue();
2118 
2119   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2120     for (unsigned i = 0; i != NumElts; ++i)
2121       Result.push_back(CDS->getElementAsInteger(i));
2122     return;
2123   }
2124   for (unsigned i = 0; i != NumElts; ++i) {
2125     Constant *C = Mask->getAggregateElement(i);
2126     Result.push_back(isa<UndefValue>(C) ? -1 :
2127                      cast<ConstantInt>(C)->getZExtValue());
2128   }
2129 }
2130 
2131 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2132   ShuffleMask.assign(Mask.begin(), Mask.end());
2133   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2134 }
2135 
2136 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2137                                                           Type *ResultTy) {
2138   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2139   if (isa<ScalableVectorType>(ResultTy)) {
2140     assert(is_splat(Mask) && "Unexpected shuffle");
2141     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2142     if (Mask[0] == 0)
2143       return Constant::getNullValue(VecTy);
2144     return UndefValue::get(VecTy);
2145   }
2146   SmallVector<Constant *, 16> MaskConst;
2147   for (int Elem : Mask) {
2148     if (Elem == UndefMaskElem)
2149       MaskConst.push_back(UndefValue::get(Int32Ty));
2150     else
2151       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2152   }
2153   return ConstantVector::get(MaskConst);
2154 }
2155 
2156 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2157   assert(!Mask.empty() && "Shuffle mask must contain elements");
2158   bool UsesLHS = false;
2159   bool UsesRHS = false;
2160   for (int I : Mask) {
2161     if (I == -1)
2162       continue;
2163     assert(I >= 0 && I < (NumOpElts * 2) &&
2164            "Out-of-bounds shuffle mask element");
2165     UsesLHS |= (I < NumOpElts);
2166     UsesRHS |= (I >= NumOpElts);
2167     if (UsesLHS && UsesRHS)
2168       return false;
2169   }
2170   // Allow for degenerate case: completely undef mask means neither source is used.
2171   return UsesLHS || UsesRHS;
2172 }
2173 
2174 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2175   // We don't have vector operand size information, so assume operands are the
2176   // same size as the mask.
2177   return isSingleSourceMaskImpl(Mask, Mask.size());
2178 }
2179 
2180 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2181   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2182     return false;
2183   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2184     if (Mask[i] == -1)
2185       continue;
2186     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2187       return false;
2188   }
2189   return true;
2190 }
2191 
2192 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2193   // We don't have vector operand size information, so assume operands are the
2194   // same size as the mask.
2195   return isIdentityMaskImpl(Mask, Mask.size());
2196 }
2197 
2198 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2199   if (!isSingleSourceMask(Mask))
2200     return false;
2201   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2202     if (Mask[i] == -1)
2203       continue;
2204     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2205       return false;
2206   }
2207   return true;
2208 }
2209 
2210 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2211   if (!isSingleSourceMask(Mask))
2212     return false;
2213   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2214     if (Mask[i] == -1)
2215       continue;
2216     if (Mask[i] != 0 && Mask[i] != NumElts)
2217       return false;
2218   }
2219   return true;
2220 }
2221 
2222 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2223   // Select is differentiated from identity. It requires using both sources.
2224   if (isSingleSourceMask(Mask))
2225     return false;
2226   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2227     if (Mask[i] == -1)
2228       continue;
2229     if (Mask[i] != i && Mask[i] != (NumElts + i))
2230       return false;
2231   }
2232   return true;
2233 }
2234 
2235 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2236   // Example masks that will return true:
2237   // v1 = <a, b, c, d>
2238   // v2 = <e, f, g, h>
2239   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2240   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2241 
2242   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2243   int NumElts = Mask.size();
2244   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2245     return false;
2246 
2247   // 2. The first element of the mask must be either a 0 or a 1.
2248   if (Mask[0] != 0 && Mask[0] != 1)
2249     return false;
2250 
2251   // 3. The difference between the first 2 elements must be equal to the
2252   // number of elements in the mask.
2253   if ((Mask[1] - Mask[0]) != NumElts)
2254     return false;
2255 
2256   // 4. The difference between consecutive even-numbered and odd-numbered
2257   // elements must be equal to 2.
2258   for (int i = 2; i < NumElts; ++i) {
2259     int MaskEltVal = Mask[i];
2260     if (MaskEltVal == -1)
2261       return false;
2262     int MaskEltPrevVal = Mask[i - 2];
2263     if (MaskEltVal - MaskEltPrevVal != 2)
2264       return false;
2265   }
2266   return true;
2267 }
2268 
2269 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2270                                                int NumSrcElts, int &Index) {
2271   // Must extract from a single source.
2272   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2273     return false;
2274 
2275   // Must be smaller (else this is an Identity shuffle).
2276   if (NumSrcElts <= (int)Mask.size())
2277     return false;
2278 
2279   // Find start of extraction, accounting that we may start with an UNDEF.
2280   int SubIndex = -1;
2281   for (int i = 0, e = Mask.size(); i != e; ++i) {
2282     int M = Mask[i];
2283     if (M < 0)
2284       continue;
2285     int Offset = (M % NumSrcElts) - i;
2286     if (0 <= SubIndex && SubIndex != Offset)
2287       return false;
2288     SubIndex = Offset;
2289   }
2290 
2291   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2292     Index = SubIndex;
2293     return true;
2294   }
2295   return false;
2296 }
2297 
2298 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2299                                               int NumSrcElts, int &NumSubElts,
2300                                               int &Index) {
2301   int NumMaskElts = Mask.size();
2302 
2303   // Don't try to match if we're shuffling to a smaller size.
2304   if (NumMaskElts < NumSrcElts)
2305     return false;
2306 
2307   // TODO: We don't recognize self-insertion/widening.
2308   if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2309     return false;
2310 
2311   // Determine which mask elements are attributed to which source.
2312   APInt UndefElts = APInt::getZero(NumMaskElts);
2313   APInt Src0Elts = APInt::getZero(NumMaskElts);
2314   APInt Src1Elts = APInt::getZero(NumMaskElts);
2315   bool Src0Identity = true;
2316   bool Src1Identity = true;
2317 
2318   for (int i = 0; i != NumMaskElts; ++i) {
2319     int M = Mask[i];
2320     if (M < 0) {
2321       UndefElts.setBit(i);
2322       continue;
2323     }
2324     if (M < NumSrcElts) {
2325       Src0Elts.setBit(i);
2326       Src0Identity &= (M == i);
2327       continue;
2328     }
2329     Src1Elts.setBit(i);
2330     Src1Identity &= (M == (i + NumSrcElts));
2331     continue;
2332   }
2333   assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2334          "unknown shuffle elements");
2335   assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2336          "2-source shuffle not found");
2337 
2338   // Determine lo/hi span ranges.
2339   // TODO: How should we handle undefs at the start of subvector insertions?
2340   int Src0Lo = Src0Elts.countTrailingZeros();
2341   int Src1Lo = Src1Elts.countTrailingZeros();
2342   int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2343   int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2344 
2345   // If src0 is in place, see if the src1 elements is inplace within its own
2346   // span.
2347   if (Src0Identity) {
2348     int NumSub1Elts = Src1Hi - Src1Lo;
2349     ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2350     if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2351       NumSubElts = NumSub1Elts;
2352       Index = Src1Lo;
2353       return true;
2354     }
2355   }
2356 
2357   // If src1 is in place, see if the src0 elements is inplace within its own
2358   // span.
2359   if (Src1Identity) {
2360     int NumSub0Elts = Src0Hi - Src0Lo;
2361     ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2362     if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2363       NumSubElts = NumSub0Elts;
2364       Index = Src0Lo;
2365       return true;
2366     }
2367   }
2368 
2369   return false;
2370 }
2371 
2372 bool ShuffleVectorInst::isIdentityWithPadding() const {
2373   if (isa<UndefValue>(Op<2>()))
2374     return false;
2375 
2376   // FIXME: Not currently possible to express a shuffle mask for a scalable
2377   // vector for this case.
2378   if (isa<ScalableVectorType>(getType()))
2379     return false;
2380 
2381   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2382   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2383   if (NumMaskElts <= NumOpElts)
2384     return false;
2385 
2386   // The first part of the mask must choose elements from exactly 1 source op.
2387   ArrayRef<int> Mask = getShuffleMask();
2388   if (!isIdentityMaskImpl(Mask, NumOpElts))
2389     return false;
2390 
2391   // All extending must be with undef elements.
2392   for (int i = NumOpElts; i < NumMaskElts; ++i)
2393     if (Mask[i] != -1)
2394       return false;
2395 
2396   return true;
2397 }
2398 
2399 bool ShuffleVectorInst::isIdentityWithExtract() const {
2400   if (isa<UndefValue>(Op<2>()))
2401     return false;
2402 
2403   // FIXME: Not currently possible to express a shuffle mask for a scalable
2404   // vector for this case.
2405   if (isa<ScalableVectorType>(getType()))
2406     return false;
2407 
2408   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2409   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2410   if (NumMaskElts >= NumOpElts)
2411     return false;
2412 
2413   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2414 }
2415 
2416 bool ShuffleVectorInst::isConcat() const {
2417   // Vector concatenation is differentiated from identity with padding.
2418   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2419       isa<UndefValue>(Op<2>()))
2420     return false;
2421 
2422   // FIXME: Not currently possible to express a shuffle mask for a scalable
2423   // vector for this case.
2424   if (isa<ScalableVectorType>(getType()))
2425     return false;
2426 
2427   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2428   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2429   if (NumMaskElts != NumOpElts * 2)
2430     return false;
2431 
2432   // Use the mask length rather than the operands' vector lengths here. We
2433   // already know that the shuffle returns a vector twice as long as the inputs,
2434   // and neither of the inputs are undef vectors. If the mask picks consecutive
2435   // elements from both inputs, then this is a concatenation of the inputs.
2436   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2437 }
2438 
2439 //===----------------------------------------------------------------------===//
2440 //                             InsertValueInst Class
2441 //===----------------------------------------------------------------------===//
2442 
2443 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2444                            const Twine &Name) {
2445   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2446 
2447   // There's no fundamental reason why we require at least one index
2448   // (other than weirdness with &*IdxBegin being invalid; see
2449   // getelementptr's init routine for example). But there's no
2450   // present need to support it.
2451   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2452 
2453   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2454          Val->getType() && "Inserted value must match indexed type!");
2455   Op<0>() = Agg;
2456   Op<1>() = Val;
2457 
2458   Indices.append(Idxs.begin(), Idxs.end());
2459   setName(Name);
2460 }
2461 
2462 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2463   : Instruction(IVI.getType(), InsertValue,
2464                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2465     Indices(IVI.Indices) {
2466   Op<0>() = IVI.getOperand(0);
2467   Op<1>() = IVI.getOperand(1);
2468   SubclassOptionalData = IVI.SubclassOptionalData;
2469 }
2470 
2471 //===----------------------------------------------------------------------===//
2472 //                             ExtractValueInst Class
2473 //===----------------------------------------------------------------------===//
2474 
2475 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2476   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2477 
2478   // There's no fundamental reason why we require at least one index.
2479   // But there's no present need to support it.
2480   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2481 
2482   Indices.append(Idxs.begin(), Idxs.end());
2483   setName(Name);
2484 }
2485 
2486 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2487   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2488     Indices(EVI.Indices) {
2489   SubclassOptionalData = EVI.SubclassOptionalData;
2490 }
2491 
2492 // getIndexedType - Returns the type of the element that would be extracted
2493 // with an extractvalue instruction with the specified parameters.
2494 //
2495 // A null type is returned if the indices are invalid for the specified
2496 // pointer type.
2497 //
2498 Type *ExtractValueInst::getIndexedType(Type *Agg,
2499                                        ArrayRef<unsigned> Idxs) {
2500   for (unsigned Index : Idxs) {
2501     // We can't use CompositeType::indexValid(Index) here.
2502     // indexValid() always returns true for arrays because getelementptr allows
2503     // out-of-bounds indices. Since we don't allow those for extractvalue and
2504     // insertvalue we need to check array indexing manually.
2505     // Since the only other types we can index into are struct types it's just
2506     // as easy to check those manually as well.
2507     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2508       if (Index >= AT->getNumElements())
2509         return nullptr;
2510       Agg = AT->getElementType();
2511     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2512       if (Index >= ST->getNumElements())
2513         return nullptr;
2514       Agg = ST->getElementType(Index);
2515     } else {
2516       // Not a valid type to index into.
2517       return nullptr;
2518     }
2519   }
2520   return const_cast<Type*>(Agg);
2521 }
2522 
2523 //===----------------------------------------------------------------------===//
2524 //                             UnaryOperator Class
2525 //===----------------------------------------------------------------------===//
2526 
2527 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2528                              Type *Ty, const Twine &Name,
2529                              Instruction *InsertBefore)
2530   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2531   Op<0>() = S;
2532   setName(Name);
2533   AssertOK();
2534 }
2535 
2536 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2537                              Type *Ty, const Twine &Name,
2538                              BasicBlock *InsertAtEnd)
2539   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2540   Op<0>() = S;
2541   setName(Name);
2542   AssertOK();
2543 }
2544 
2545 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2546                                      const Twine &Name,
2547                                      Instruction *InsertBefore) {
2548   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2549 }
2550 
2551 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2552                                      const Twine &Name,
2553                                      BasicBlock *InsertAtEnd) {
2554   UnaryOperator *Res = Create(Op, S, Name);
2555   InsertAtEnd->getInstList().push_back(Res);
2556   return Res;
2557 }
2558 
2559 void UnaryOperator::AssertOK() {
2560   Value *LHS = getOperand(0);
2561   (void)LHS; // Silence warnings.
2562 #ifndef NDEBUG
2563   switch (getOpcode()) {
2564   case FNeg:
2565     assert(getType() == LHS->getType() &&
2566            "Unary operation should return same type as operand!");
2567     assert(getType()->isFPOrFPVectorTy() &&
2568            "Tried to create a floating-point operation on a "
2569            "non-floating-point type!");
2570     break;
2571   default: llvm_unreachable("Invalid opcode provided");
2572   }
2573 #endif
2574 }
2575 
2576 //===----------------------------------------------------------------------===//
2577 //                             BinaryOperator Class
2578 //===----------------------------------------------------------------------===//
2579 
2580 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2581                                Type *Ty, const Twine &Name,
2582                                Instruction *InsertBefore)
2583   : Instruction(Ty, iType,
2584                 OperandTraits<BinaryOperator>::op_begin(this),
2585                 OperandTraits<BinaryOperator>::operands(this),
2586                 InsertBefore) {
2587   Op<0>() = S1;
2588   Op<1>() = S2;
2589   setName(Name);
2590   AssertOK();
2591 }
2592 
2593 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2594                                Type *Ty, const Twine &Name,
2595                                BasicBlock *InsertAtEnd)
2596   : Instruction(Ty, iType,
2597                 OperandTraits<BinaryOperator>::op_begin(this),
2598                 OperandTraits<BinaryOperator>::operands(this),
2599                 InsertAtEnd) {
2600   Op<0>() = S1;
2601   Op<1>() = S2;
2602   setName(Name);
2603   AssertOK();
2604 }
2605 
2606 void BinaryOperator::AssertOK() {
2607   Value *LHS = getOperand(0), *RHS = getOperand(1);
2608   (void)LHS; (void)RHS; // Silence warnings.
2609   assert(LHS->getType() == RHS->getType() &&
2610          "Binary operator operand types must match!");
2611 #ifndef NDEBUG
2612   switch (getOpcode()) {
2613   case Add: case Sub:
2614   case Mul:
2615     assert(getType() == LHS->getType() &&
2616            "Arithmetic operation should return same type as operands!");
2617     assert(getType()->isIntOrIntVectorTy() &&
2618            "Tried to create an integer operation on a non-integer type!");
2619     break;
2620   case FAdd: case FSub:
2621   case FMul:
2622     assert(getType() == LHS->getType() &&
2623            "Arithmetic operation should return same type as operands!");
2624     assert(getType()->isFPOrFPVectorTy() &&
2625            "Tried to create a floating-point operation on a "
2626            "non-floating-point type!");
2627     break;
2628   case UDiv:
2629   case SDiv:
2630     assert(getType() == LHS->getType() &&
2631            "Arithmetic operation should return same type as operands!");
2632     assert(getType()->isIntOrIntVectorTy() &&
2633            "Incorrect operand type (not integer) for S/UDIV");
2634     break;
2635   case FDiv:
2636     assert(getType() == LHS->getType() &&
2637            "Arithmetic operation should return same type as operands!");
2638     assert(getType()->isFPOrFPVectorTy() &&
2639            "Incorrect operand type (not floating point) for FDIV");
2640     break;
2641   case URem:
2642   case SRem:
2643     assert(getType() == LHS->getType() &&
2644            "Arithmetic operation should return same type as operands!");
2645     assert(getType()->isIntOrIntVectorTy() &&
2646            "Incorrect operand type (not integer) for S/UREM");
2647     break;
2648   case FRem:
2649     assert(getType() == LHS->getType() &&
2650            "Arithmetic operation should return same type as operands!");
2651     assert(getType()->isFPOrFPVectorTy() &&
2652            "Incorrect operand type (not floating point) for FREM");
2653     break;
2654   case Shl:
2655   case LShr:
2656   case AShr:
2657     assert(getType() == LHS->getType() &&
2658            "Shift operation should return same type as operands!");
2659     assert(getType()->isIntOrIntVectorTy() &&
2660            "Tried to create a shift operation on a non-integral type!");
2661     break;
2662   case And: case Or:
2663   case Xor:
2664     assert(getType() == LHS->getType() &&
2665            "Logical operation should return same type as operands!");
2666     assert(getType()->isIntOrIntVectorTy() &&
2667            "Tried to create a logical operation on a non-integral type!");
2668     break;
2669   default: llvm_unreachable("Invalid opcode provided");
2670   }
2671 #endif
2672 }
2673 
2674 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2675                                        const Twine &Name,
2676                                        Instruction *InsertBefore) {
2677   assert(S1->getType() == S2->getType() &&
2678          "Cannot create binary operator with two operands of differing type!");
2679   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2680 }
2681 
2682 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2683                                        const Twine &Name,
2684                                        BasicBlock *InsertAtEnd) {
2685   BinaryOperator *Res = Create(Op, S1, S2, Name);
2686   InsertAtEnd->getInstList().push_back(Res);
2687   return Res;
2688 }
2689 
2690 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2691                                           Instruction *InsertBefore) {
2692   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2693   return new BinaryOperator(Instruction::Sub,
2694                             zero, Op,
2695                             Op->getType(), Name, InsertBefore);
2696 }
2697 
2698 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2699                                           BasicBlock *InsertAtEnd) {
2700   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2701   return new BinaryOperator(Instruction::Sub,
2702                             zero, Op,
2703                             Op->getType(), Name, InsertAtEnd);
2704 }
2705 
2706 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2707                                              Instruction *InsertBefore) {
2708   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2709   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2710 }
2711 
2712 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2713                                              BasicBlock *InsertAtEnd) {
2714   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2715   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2716 }
2717 
2718 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2719                                              Instruction *InsertBefore) {
2720   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2721   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2722 }
2723 
2724 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2725                                              BasicBlock *InsertAtEnd) {
2726   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2727   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2728 }
2729 
2730 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2731                                           Instruction *InsertBefore) {
2732   Constant *C = Constant::getAllOnesValue(Op->getType());
2733   return new BinaryOperator(Instruction::Xor, Op, C,
2734                             Op->getType(), Name, InsertBefore);
2735 }
2736 
2737 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2738                                           BasicBlock *InsertAtEnd) {
2739   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2740   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2741                             Op->getType(), Name, InsertAtEnd);
2742 }
2743 
2744 // Exchange the two operands to this instruction. This instruction is safe to
2745 // use on any binary instruction and does not modify the semantics of the
2746 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2747 // is changed.
2748 bool BinaryOperator::swapOperands() {
2749   if (!isCommutative())
2750     return true; // Can't commute operands
2751   Op<0>().swap(Op<1>());
2752   return false;
2753 }
2754 
2755 //===----------------------------------------------------------------------===//
2756 //                             FPMathOperator Class
2757 //===----------------------------------------------------------------------===//
2758 
2759 float FPMathOperator::getFPAccuracy() const {
2760   const MDNode *MD =
2761       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2762   if (!MD)
2763     return 0.0;
2764   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2765   return Accuracy->getValueAPF().convertToFloat();
2766 }
2767 
2768 //===----------------------------------------------------------------------===//
2769 //                                CastInst Class
2770 //===----------------------------------------------------------------------===//
2771 
2772 // Just determine if this cast only deals with integral->integral conversion.
2773 bool CastInst::isIntegerCast() const {
2774   switch (getOpcode()) {
2775     default: return false;
2776     case Instruction::ZExt:
2777     case Instruction::SExt:
2778     case Instruction::Trunc:
2779       return true;
2780     case Instruction::BitCast:
2781       return getOperand(0)->getType()->isIntegerTy() &&
2782         getType()->isIntegerTy();
2783   }
2784 }
2785 
2786 bool CastInst::isLosslessCast() const {
2787   // Only BitCast can be lossless, exit fast if we're not BitCast
2788   if (getOpcode() != Instruction::BitCast)
2789     return false;
2790 
2791   // Identity cast is always lossless
2792   Type *SrcTy = getOperand(0)->getType();
2793   Type *DstTy = getType();
2794   if (SrcTy == DstTy)
2795     return true;
2796 
2797   // Pointer to pointer is always lossless.
2798   if (SrcTy->isPointerTy())
2799     return DstTy->isPointerTy();
2800   return false;  // Other types have no identity values
2801 }
2802 
2803 /// This function determines if the CastInst does not require any bits to be
2804 /// changed in order to effect the cast. Essentially, it identifies cases where
2805 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2806 /// example, the following are all no-op casts:
2807 /// # bitcast i32* %x to i8*
2808 /// # bitcast <2 x i32> %x to <4 x i16>
2809 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2810 /// Determine if the described cast is a no-op.
2811 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2812                           Type *SrcTy,
2813                           Type *DestTy,
2814                           const DataLayout &DL) {
2815   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2816   switch (Opcode) {
2817     default: llvm_unreachable("Invalid CastOp");
2818     case Instruction::Trunc:
2819     case Instruction::ZExt:
2820     case Instruction::SExt:
2821     case Instruction::FPTrunc:
2822     case Instruction::FPExt:
2823     case Instruction::UIToFP:
2824     case Instruction::SIToFP:
2825     case Instruction::FPToUI:
2826     case Instruction::FPToSI:
2827     case Instruction::AddrSpaceCast:
2828       // TODO: Target informations may give a more accurate answer here.
2829       return false;
2830     case Instruction::BitCast:
2831       return true;  // BitCast never modifies bits.
2832     case Instruction::PtrToInt:
2833       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2834              DestTy->getScalarSizeInBits();
2835     case Instruction::IntToPtr:
2836       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2837              SrcTy->getScalarSizeInBits();
2838   }
2839 }
2840 
2841 bool CastInst::isNoopCast(const DataLayout &DL) const {
2842   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2843 }
2844 
2845 /// This function determines if a pair of casts can be eliminated and what
2846 /// opcode should be used in the elimination. This assumes that there are two
2847 /// instructions like this:
2848 /// *  %F = firstOpcode SrcTy %x to MidTy
2849 /// *  %S = secondOpcode MidTy %F to DstTy
2850 /// The function returns a resultOpcode so these two casts can be replaced with:
2851 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2852 /// If no such cast is permitted, the function returns 0.
2853 unsigned CastInst::isEliminableCastPair(
2854   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2855   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2856   Type *DstIntPtrTy) {
2857   // Define the 144 possibilities for these two cast instructions. The values
2858   // in this matrix determine what to do in a given situation and select the
2859   // case in the switch below.  The rows correspond to firstOp, the columns
2860   // correspond to secondOp.  In looking at the table below, keep in mind
2861   // the following cast properties:
2862   //
2863   //          Size Compare       Source               Destination
2864   // Operator  Src ? Size   Type       Sign         Type       Sign
2865   // -------- ------------ -------------------   ---------------------
2866   // TRUNC         >       Integer      Any        Integral     Any
2867   // ZEXT          <       Integral   Unsigned     Integer      Any
2868   // SEXT          <       Integral    Signed      Integer      Any
2869   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2870   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2871   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2872   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2873   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2874   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2875   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2876   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2877   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2878   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2879   //
2880   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2881   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2882   // into "fptoui double to i64", but this loses information about the range
2883   // of the produced value (we no longer know the top-part is all zeros).
2884   // Further this conversion is often much more expensive for typical hardware,
2885   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2886   // same reason.
2887   const unsigned numCastOps =
2888     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2889   static const uint8_t CastResults[numCastOps][numCastOps] = {
2890     // T        F  F  U  S  F  F  P  I  B  A  -+
2891     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2892     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2893     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2894     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2895     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2896     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2897     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2898     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2899     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2900     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2901     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2902     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2903     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2904     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2905     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2906     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2907     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2908   };
2909 
2910   // TODO: This logic could be encoded into the table above and handled in the
2911   // switch below.
2912   // If either of the casts are a bitcast from scalar to vector, disallow the
2913   // merging. However, any pair of bitcasts are allowed.
2914   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2915   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2916   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2917 
2918   // Check if any of the casts convert scalars <-> vectors.
2919   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2920       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2921     if (!AreBothBitcasts)
2922       return 0;
2923 
2924   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2925                             [secondOp-Instruction::CastOpsBegin];
2926   switch (ElimCase) {
2927     case 0:
2928       // Categorically disallowed.
2929       return 0;
2930     case 1:
2931       // Allowed, use first cast's opcode.
2932       return firstOp;
2933     case 2:
2934       // Allowed, use second cast's opcode.
2935       return secondOp;
2936     case 3:
2937       // No-op cast in second op implies firstOp as long as the DestTy
2938       // is integer and we are not converting between a vector and a
2939       // non-vector type.
2940       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2941         return firstOp;
2942       return 0;
2943     case 4:
2944       // No-op cast in second op implies firstOp as long as the DestTy
2945       // is floating point.
2946       if (DstTy->isFloatingPointTy())
2947         return firstOp;
2948       return 0;
2949     case 5:
2950       // No-op cast in first op implies secondOp as long as the SrcTy
2951       // is an integer.
2952       if (SrcTy->isIntegerTy())
2953         return secondOp;
2954       return 0;
2955     case 6:
2956       // No-op cast in first op implies secondOp as long as the SrcTy
2957       // is a floating point.
2958       if (SrcTy->isFloatingPointTy())
2959         return secondOp;
2960       return 0;
2961     case 7: {
2962       // Disable inttoptr/ptrtoint optimization if enabled.
2963       if (DisableI2pP2iOpt)
2964         return 0;
2965 
2966       // Cannot simplify if address spaces are different!
2967       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2968         return 0;
2969 
2970       unsigned MidSize = MidTy->getScalarSizeInBits();
2971       // We can still fold this without knowing the actual sizes as long we
2972       // know that the intermediate pointer is the largest possible
2973       // pointer size.
2974       // FIXME: Is this always true?
2975       if (MidSize == 64)
2976         return Instruction::BitCast;
2977 
2978       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2979       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2980         return 0;
2981       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2982       if (MidSize >= PtrSize)
2983         return Instruction::BitCast;
2984       return 0;
2985     }
2986     case 8: {
2987       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2988       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2989       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2990       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2991       unsigned DstSize = DstTy->getScalarSizeInBits();
2992       if (SrcSize == DstSize)
2993         return Instruction::BitCast;
2994       else if (SrcSize < DstSize)
2995         return firstOp;
2996       return secondOp;
2997     }
2998     case 9:
2999       // zext, sext -> zext, because sext can't sign extend after zext
3000       return Instruction::ZExt;
3001     case 11: {
3002       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
3003       if (!MidIntPtrTy)
3004         return 0;
3005       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
3006       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3007       unsigned DstSize = DstTy->getScalarSizeInBits();
3008       if (SrcSize <= PtrSize && SrcSize == DstSize)
3009         return Instruction::BitCast;
3010       return 0;
3011     }
3012     case 12:
3013       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
3014       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
3015       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3016         return Instruction::AddrSpaceCast;
3017       return Instruction::BitCast;
3018     case 13:
3019       // FIXME: this state can be merged with (1), but the following assert
3020       // is useful to check the correcteness of the sequence due to semantic
3021       // change of bitcast.
3022       assert(
3023         SrcTy->isPtrOrPtrVectorTy() &&
3024         MidTy->isPtrOrPtrVectorTy() &&
3025         DstTy->isPtrOrPtrVectorTy() &&
3026         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
3027         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3028         "Illegal addrspacecast, bitcast sequence!");
3029       // Allowed, use first cast's opcode
3030       return firstOp;
3031     case 14: {
3032       // bitcast, addrspacecast -> addrspacecast if the element type of
3033       // bitcast's source is the same as that of addrspacecast's destination.
3034       PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
3035       PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
3036       if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3037         return Instruction::AddrSpaceCast;
3038       return 0;
3039     }
3040     case 15:
3041       // FIXME: this state can be merged with (1), but the following assert
3042       // is useful to check the correcteness of the sequence due to semantic
3043       // change of bitcast.
3044       assert(
3045         SrcTy->isIntOrIntVectorTy() &&
3046         MidTy->isPtrOrPtrVectorTy() &&
3047         DstTy->isPtrOrPtrVectorTy() &&
3048         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3049         "Illegal inttoptr, bitcast sequence!");
3050       // Allowed, use first cast's opcode
3051       return firstOp;
3052     case 16:
3053       // FIXME: this state can be merged with (2), but the following assert
3054       // is useful to check the correcteness of the sequence due to semantic
3055       // change of bitcast.
3056       assert(
3057         SrcTy->isPtrOrPtrVectorTy() &&
3058         MidTy->isPtrOrPtrVectorTy() &&
3059         DstTy->isIntOrIntVectorTy() &&
3060         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3061         "Illegal bitcast, ptrtoint sequence!");
3062       // Allowed, use second cast's opcode
3063       return secondOp;
3064     case 17:
3065       // (sitofp (zext x)) -> (uitofp x)
3066       return Instruction::UIToFP;
3067     case 99:
3068       // Cast combination can't happen (error in input). This is for all cases
3069       // where the MidTy is not the same for the two cast instructions.
3070       llvm_unreachable("Invalid Cast Combination");
3071     default:
3072       llvm_unreachable("Error in CastResults table!!!");
3073   }
3074 }
3075 
3076 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3077   const Twine &Name, Instruction *InsertBefore) {
3078   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3079   // Construct and return the appropriate CastInst subclass
3080   switch (op) {
3081   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
3082   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
3083   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
3084   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
3085   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
3086   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
3087   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
3088   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
3089   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
3090   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
3091   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
3092   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
3093   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3094   default: llvm_unreachable("Invalid opcode provided");
3095   }
3096 }
3097 
3098 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3099   const Twine &Name, BasicBlock *InsertAtEnd) {
3100   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3101   // Construct and return the appropriate CastInst subclass
3102   switch (op) {
3103   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
3104   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
3105   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
3106   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
3107   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
3108   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
3109   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
3110   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
3111   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
3112   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
3113   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
3114   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
3115   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3116   default: llvm_unreachable("Invalid opcode provided");
3117   }
3118 }
3119 
3120 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3121                                         const Twine &Name,
3122                                         Instruction *InsertBefore) {
3123   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3124     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3125   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3126 }
3127 
3128 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3129                                         const Twine &Name,
3130                                         BasicBlock *InsertAtEnd) {
3131   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3132     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3133   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3134 }
3135 
3136 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3137                                         const Twine &Name,
3138                                         Instruction *InsertBefore) {
3139   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3140     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3141   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3142 }
3143 
3144 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3145                                         const Twine &Name,
3146                                         BasicBlock *InsertAtEnd) {
3147   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3148     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3149   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3150 }
3151 
3152 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3153                                          const Twine &Name,
3154                                          Instruction *InsertBefore) {
3155   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3156     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3157   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3158 }
3159 
3160 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3161                                          const Twine &Name,
3162                                          BasicBlock *InsertAtEnd) {
3163   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3164     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3165   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3166 }
3167 
3168 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3169                                       const Twine &Name,
3170                                       BasicBlock *InsertAtEnd) {
3171   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3172   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3173          "Invalid cast");
3174   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3175   assert((!Ty->isVectorTy() ||
3176           cast<VectorType>(Ty)->getElementCount() ==
3177               cast<VectorType>(S->getType())->getElementCount()) &&
3178          "Invalid cast");
3179 
3180   if (Ty->isIntOrIntVectorTy())
3181     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3182 
3183   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3184 }
3185 
3186 /// Create a BitCast or a PtrToInt cast instruction
3187 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3188                                       const Twine &Name,
3189                                       Instruction *InsertBefore) {
3190   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3191   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3192          "Invalid cast");
3193   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3194   assert((!Ty->isVectorTy() ||
3195           cast<VectorType>(Ty)->getElementCount() ==
3196               cast<VectorType>(S->getType())->getElementCount()) &&
3197          "Invalid cast");
3198 
3199   if (Ty->isIntOrIntVectorTy())
3200     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3201 
3202   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3203 }
3204 
3205 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3206   Value *S, Type *Ty,
3207   const Twine &Name,
3208   BasicBlock *InsertAtEnd) {
3209   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3210   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3211 
3212   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3213     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3214 
3215   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3216 }
3217 
3218 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3219   Value *S, Type *Ty,
3220   const Twine &Name,
3221   Instruction *InsertBefore) {
3222   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3223   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3224 
3225   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3226     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3227 
3228   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3229 }
3230 
3231 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3232                                            const Twine &Name,
3233                                            Instruction *InsertBefore) {
3234   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3235     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3236   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3237     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3238 
3239   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3240 }
3241 
3242 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3243                                       bool isSigned, const Twine &Name,
3244                                       Instruction *InsertBefore) {
3245   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3246          "Invalid integer cast");
3247   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3248   unsigned DstBits = Ty->getScalarSizeInBits();
3249   Instruction::CastOps opcode =
3250     (SrcBits == DstBits ? Instruction::BitCast :
3251      (SrcBits > DstBits ? Instruction::Trunc :
3252       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3253   return Create(opcode, C, Ty, Name, InsertBefore);
3254 }
3255 
3256 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3257                                       bool isSigned, const Twine &Name,
3258                                       BasicBlock *InsertAtEnd) {
3259   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3260          "Invalid cast");
3261   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3262   unsigned DstBits = Ty->getScalarSizeInBits();
3263   Instruction::CastOps opcode =
3264     (SrcBits == DstBits ? Instruction::BitCast :
3265      (SrcBits > DstBits ? Instruction::Trunc :
3266       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3267   return Create(opcode, C, Ty, Name, InsertAtEnd);
3268 }
3269 
3270 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3271                                  const Twine &Name,
3272                                  Instruction *InsertBefore) {
3273   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3274          "Invalid cast");
3275   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3276   unsigned DstBits = Ty->getScalarSizeInBits();
3277   Instruction::CastOps opcode =
3278     (SrcBits == DstBits ? Instruction::BitCast :
3279      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3280   return Create(opcode, C, Ty, Name, InsertBefore);
3281 }
3282 
3283 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3284                                  const Twine &Name,
3285                                  BasicBlock *InsertAtEnd) {
3286   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3287          "Invalid cast");
3288   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3289   unsigned DstBits = Ty->getScalarSizeInBits();
3290   Instruction::CastOps opcode =
3291     (SrcBits == DstBits ? Instruction::BitCast :
3292      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3293   return Create(opcode, C, Ty, Name, InsertAtEnd);
3294 }
3295 
3296 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3297   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3298     return false;
3299 
3300   if (SrcTy == DestTy)
3301     return true;
3302 
3303   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3304     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3305       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3306         // An element by element cast. Valid if casting the elements is valid.
3307         SrcTy = SrcVecTy->getElementType();
3308         DestTy = DestVecTy->getElementType();
3309       }
3310     }
3311   }
3312 
3313   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3314     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3315       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3316     }
3317   }
3318 
3319   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3320   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3321 
3322   // Could still have vectors of pointers if the number of elements doesn't
3323   // match
3324   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3325     return false;
3326 
3327   if (SrcBits != DestBits)
3328     return false;
3329 
3330   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3331     return false;
3332 
3333   return true;
3334 }
3335 
3336 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3337                                           const DataLayout &DL) {
3338   // ptrtoint and inttoptr are not allowed on non-integral pointers
3339   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3340     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3341       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3342               !DL.isNonIntegralPointerType(PtrTy));
3343   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3344     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3345       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3346               !DL.isNonIntegralPointerType(PtrTy));
3347 
3348   return isBitCastable(SrcTy, DestTy);
3349 }
3350 
3351 // Provide a way to get a "cast" where the cast opcode is inferred from the
3352 // types and size of the operand. This, basically, is a parallel of the
3353 // logic in the castIsValid function below.  This axiom should hold:
3354 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3355 // should not assert in castIsValid. In other words, this produces a "correct"
3356 // casting opcode for the arguments passed to it.
3357 Instruction::CastOps
3358 CastInst::getCastOpcode(
3359   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3360   Type *SrcTy = Src->getType();
3361 
3362   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3363          "Only first class types are castable!");
3364 
3365   if (SrcTy == DestTy)
3366     return BitCast;
3367 
3368   // FIXME: Check address space sizes here
3369   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3370     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3371       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3372         // An element by element cast.  Find the appropriate opcode based on the
3373         // element types.
3374         SrcTy = SrcVecTy->getElementType();
3375         DestTy = DestVecTy->getElementType();
3376       }
3377 
3378   // Get the bit sizes, we'll need these
3379   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3380   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3381 
3382   // Run through the possibilities ...
3383   if (DestTy->isIntegerTy()) {                      // Casting to integral
3384     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3385       if (DestBits < SrcBits)
3386         return Trunc;                               // int -> smaller int
3387       else if (DestBits > SrcBits) {                // its an extension
3388         if (SrcIsSigned)
3389           return SExt;                              // signed -> SEXT
3390         else
3391           return ZExt;                              // unsigned -> ZEXT
3392       } else {
3393         return BitCast;                             // Same size, No-op cast
3394       }
3395     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3396       if (DestIsSigned)
3397         return FPToSI;                              // FP -> sint
3398       else
3399         return FPToUI;                              // FP -> uint
3400     } else if (SrcTy->isVectorTy()) {
3401       assert(DestBits == SrcBits &&
3402              "Casting vector to integer of different width");
3403       return BitCast;                             // Same size, no-op cast
3404     } else {
3405       assert(SrcTy->isPointerTy() &&
3406              "Casting from a value that is not first-class type");
3407       return PtrToInt;                              // ptr -> int
3408     }
3409   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3410     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3411       if (SrcIsSigned)
3412         return SIToFP;                              // sint -> FP
3413       else
3414         return UIToFP;                              // uint -> FP
3415     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3416       if (DestBits < SrcBits) {
3417         return FPTrunc;                             // FP -> smaller FP
3418       } else if (DestBits > SrcBits) {
3419         return FPExt;                               // FP -> larger FP
3420       } else  {
3421         return BitCast;                             // same size, no-op cast
3422       }
3423     } else if (SrcTy->isVectorTy()) {
3424       assert(DestBits == SrcBits &&
3425              "Casting vector to floating point of different width");
3426       return BitCast;                             // same size, no-op cast
3427     }
3428     llvm_unreachable("Casting pointer or non-first class to float");
3429   } else if (DestTy->isVectorTy()) {
3430     assert(DestBits == SrcBits &&
3431            "Illegal cast to vector (wrong type or size)");
3432     return BitCast;
3433   } else if (DestTy->isPointerTy()) {
3434     if (SrcTy->isPointerTy()) {
3435       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3436         return AddrSpaceCast;
3437       return BitCast;                               // ptr -> ptr
3438     } else if (SrcTy->isIntegerTy()) {
3439       return IntToPtr;                              // int -> ptr
3440     }
3441     llvm_unreachable("Casting pointer to other than pointer or int");
3442   } else if (DestTy->isX86_MMXTy()) {
3443     if (SrcTy->isVectorTy()) {
3444       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3445       return BitCast;                               // 64-bit vector to MMX
3446     }
3447     llvm_unreachable("Illegal cast to X86_MMX");
3448   }
3449   llvm_unreachable("Casting to type that is not first-class");
3450 }
3451 
3452 //===----------------------------------------------------------------------===//
3453 //                    CastInst SubClass Constructors
3454 //===----------------------------------------------------------------------===//
3455 
3456 /// Check that the construction parameters for a CastInst are correct. This
3457 /// could be broken out into the separate constructors but it is useful to have
3458 /// it in one place and to eliminate the redundant code for getting the sizes
3459 /// of the types involved.
3460 bool
3461 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3462   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3463       SrcTy->isAggregateType() || DstTy->isAggregateType())
3464     return false;
3465 
3466   // Get the size of the types in bits, and whether we are dealing
3467   // with vector types, we'll need this later.
3468   bool SrcIsVec = isa<VectorType>(SrcTy);
3469   bool DstIsVec = isa<VectorType>(DstTy);
3470   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3471   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3472 
3473   // If these are vector types, get the lengths of the vectors (using zero for
3474   // scalar types means that checking that vector lengths match also checks that
3475   // scalars are not being converted to vectors or vectors to scalars).
3476   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3477                                 : ElementCount::getFixed(0);
3478   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3479                                 : ElementCount::getFixed(0);
3480 
3481   // Switch on the opcode provided
3482   switch (op) {
3483   default: return false; // This is an input error
3484   case Instruction::Trunc:
3485     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3486            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3487   case Instruction::ZExt:
3488     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3489            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3490   case Instruction::SExt:
3491     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3492            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3493   case Instruction::FPTrunc:
3494     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3495            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3496   case Instruction::FPExt:
3497     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3498            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3499   case Instruction::UIToFP:
3500   case Instruction::SIToFP:
3501     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3502            SrcEC == DstEC;
3503   case Instruction::FPToUI:
3504   case Instruction::FPToSI:
3505     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3506            SrcEC == DstEC;
3507   case Instruction::PtrToInt:
3508     if (SrcEC != DstEC)
3509       return false;
3510     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3511   case Instruction::IntToPtr:
3512     if (SrcEC != DstEC)
3513       return false;
3514     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3515   case Instruction::BitCast: {
3516     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3517     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3518 
3519     // BitCast implies a no-op cast of type only. No bits change.
3520     // However, you can't cast pointers to anything but pointers.
3521     if (!SrcPtrTy != !DstPtrTy)
3522       return false;
3523 
3524     // For non-pointer cases, the cast is okay if the source and destination bit
3525     // widths are identical.
3526     if (!SrcPtrTy)
3527       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3528 
3529     // If both are pointers then the address spaces must match.
3530     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3531       return false;
3532 
3533     // A vector of pointers must have the same number of elements.
3534     if (SrcIsVec && DstIsVec)
3535       return SrcEC == DstEC;
3536     if (SrcIsVec)
3537       return SrcEC == ElementCount::getFixed(1);
3538     if (DstIsVec)
3539       return DstEC == ElementCount::getFixed(1);
3540 
3541     return true;
3542   }
3543   case Instruction::AddrSpaceCast: {
3544     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3545     if (!SrcPtrTy)
3546       return false;
3547 
3548     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3549     if (!DstPtrTy)
3550       return false;
3551 
3552     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3553       return false;
3554 
3555     return SrcEC == DstEC;
3556   }
3557   }
3558 }
3559 
3560 TruncInst::TruncInst(
3561   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3562 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3563   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3564 }
3565 
3566 TruncInst::TruncInst(
3567   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3568 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3569   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3570 }
3571 
3572 ZExtInst::ZExtInst(
3573   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3574 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3575   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3576 }
3577 
3578 ZExtInst::ZExtInst(
3579   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3580 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3581   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3582 }
3583 SExtInst::SExtInst(
3584   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3585 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3586   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3587 }
3588 
3589 SExtInst::SExtInst(
3590   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3591 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3592   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3593 }
3594 
3595 FPTruncInst::FPTruncInst(
3596   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3597 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3598   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3599 }
3600 
3601 FPTruncInst::FPTruncInst(
3602   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3603 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3604   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3605 }
3606 
3607 FPExtInst::FPExtInst(
3608   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3609 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3610   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3611 }
3612 
3613 FPExtInst::FPExtInst(
3614   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3615 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3616   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3617 }
3618 
3619 UIToFPInst::UIToFPInst(
3620   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3621 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3622   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3623 }
3624 
3625 UIToFPInst::UIToFPInst(
3626   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3627 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3628   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3629 }
3630 
3631 SIToFPInst::SIToFPInst(
3632   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3633 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3634   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3635 }
3636 
3637 SIToFPInst::SIToFPInst(
3638   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3639 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3640   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3641 }
3642 
3643 FPToUIInst::FPToUIInst(
3644   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3645 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3646   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3647 }
3648 
3649 FPToUIInst::FPToUIInst(
3650   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3651 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3652   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3653 }
3654 
3655 FPToSIInst::FPToSIInst(
3656   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3657 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3658   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3659 }
3660 
3661 FPToSIInst::FPToSIInst(
3662   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3663 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3664   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3665 }
3666 
3667 PtrToIntInst::PtrToIntInst(
3668   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3669 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3670   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3671 }
3672 
3673 PtrToIntInst::PtrToIntInst(
3674   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3675 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3676   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3677 }
3678 
3679 IntToPtrInst::IntToPtrInst(
3680   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3681 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3682   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3683 }
3684 
3685 IntToPtrInst::IntToPtrInst(
3686   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3687 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3688   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3689 }
3690 
3691 BitCastInst::BitCastInst(
3692   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3693 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3694   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3695 }
3696 
3697 BitCastInst::BitCastInst(
3698   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3699 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3700   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3701 }
3702 
3703 AddrSpaceCastInst::AddrSpaceCastInst(
3704   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3705 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3706   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3707 }
3708 
3709 AddrSpaceCastInst::AddrSpaceCastInst(
3710   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3711 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3712   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3713 }
3714 
3715 //===----------------------------------------------------------------------===//
3716 //                               CmpInst Classes
3717 //===----------------------------------------------------------------------===//
3718 
3719 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3720                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3721                  Instruction *FlagsSource)
3722   : Instruction(ty, op,
3723                 OperandTraits<CmpInst>::op_begin(this),
3724                 OperandTraits<CmpInst>::operands(this),
3725                 InsertBefore) {
3726   Op<0>() = LHS;
3727   Op<1>() = RHS;
3728   setPredicate((Predicate)predicate);
3729   setName(Name);
3730   if (FlagsSource)
3731     copyIRFlags(FlagsSource);
3732 }
3733 
3734 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3735                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3736   : Instruction(ty, op,
3737                 OperandTraits<CmpInst>::op_begin(this),
3738                 OperandTraits<CmpInst>::operands(this),
3739                 InsertAtEnd) {
3740   Op<0>() = LHS;
3741   Op<1>() = RHS;
3742   setPredicate((Predicate)predicate);
3743   setName(Name);
3744 }
3745 
3746 CmpInst *
3747 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3748                 const Twine &Name, Instruction *InsertBefore) {
3749   if (Op == Instruction::ICmp) {
3750     if (InsertBefore)
3751       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3752                           S1, S2, Name);
3753     else
3754       return new ICmpInst(CmpInst::Predicate(predicate),
3755                           S1, S2, Name);
3756   }
3757 
3758   if (InsertBefore)
3759     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3760                         S1, S2, Name);
3761   else
3762     return new FCmpInst(CmpInst::Predicate(predicate),
3763                         S1, S2, Name);
3764 }
3765 
3766 CmpInst *
3767 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3768                 const Twine &Name, BasicBlock *InsertAtEnd) {
3769   if (Op == Instruction::ICmp) {
3770     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3771                         S1, S2, Name);
3772   }
3773   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3774                       S1, S2, Name);
3775 }
3776 
3777 void CmpInst::swapOperands() {
3778   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3779     IC->swapOperands();
3780   else
3781     cast<FCmpInst>(this)->swapOperands();
3782 }
3783 
3784 bool CmpInst::isCommutative() const {
3785   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3786     return IC->isCommutative();
3787   return cast<FCmpInst>(this)->isCommutative();
3788 }
3789 
3790 bool CmpInst::isEquality(Predicate P) {
3791   if (ICmpInst::isIntPredicate(P))
3792     return ICmpInst::isEquality(P);
3793   if (FCmpInst::isFPPredicate(P))
3794     return FCmpInst::isEquality(P);
3795   llvm_unreachable("Unsupported predicate kind");
3796 }
3797 
3798 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3799   switch (pred) {
3800     default: llvm_unreachable("Unknown cmp predicate!");
3801     case ICMP_EQ: return ICMP_NE;
3802     case ICMP_NE: return ICMP_EQ;
3803     case ICMP_UGT: return ICMP_ULE;
3804     case ICMP_ULT: return ICMP_UGE;
3805     case ICMP_UGE: return ICMP_ULT;
3806     case ICMP_ULE: return ICMP_UGT;
3807     case ICMP_SGT: return ICMP_SLE;
3808     case ICMP_SLT: return ICMP_SGE;
3809     case ICMP_SGE: return ICMP_SLT;
3810     case ICMP_SLE: return ICMP_SGT;
3811 
3812     case FCMP_OEQ: return FCMP_UNE;
3813     case FCMP_ONE: return FCMP_UEQ;
3814     case FCMP_OGT: return FCMP_ULE;
3815     case FCMP_OLT: return FCMP_UGE;
3816     case FCMP_OGE: return FCMP_ULT;
3817     case FCMP_OLE: return FCMP_UGT;
3818     case FCMP_UEQ: return FCMP_ONE;
3819     case FCMP_UNE: return FCMP_OEQ;
3820     case FCMP_UGT: return FCMP_OLE;
3821     case FCMP_ULT: return FCMP_OGE;
3822     case FCMP_UGE: return FCMP_OLT;
3823     case FCMP_ULE: return FCMP_OGT;
3824     case FCMP_ORD: return FCMP_UNO;
3825     case FCMP_UNO: return FCMP_ORD;
3826     case FCMP_TRUE: return FCMP_FALSE;
3827     case FCMP_FALSE: return FCMP_TRUE;
3828   }
3829 }
3830 
3831 StringRef CmpInst::getPredicateName(Predicate Pred) {
3832   switch (Pred) {
3833   default:                   return "unknown";
3834   case FCmpInst::FCMP_FALSE: return "false";
3835   case FCmpInst::FCMP_OEQ:   return "oeq";
3836   case FCmpInst::FCMP_OGT:   return "ogt";
3837   case FCmpInst::FCMP_OGE:   return "oge";
3838   case FCmpInst::FCMP_OLT:   return "olt";
3839   case FCmpInst::FCMP_OLE:   return "ole";
3840   case FCmpInst::FCMP_ONE:   return "one";
3841   case FCmpInst::FCMP_ORD:   return "ord";
3842   case FCmpInst::FCMP_UNO:   return "uno";
3843   case FCmpInst::FCMP_UEQ:   return "ueq";
3844   case FCmpInst::FCMP_UGT:   return "ugt";
3845   case FCmpInst::FCMP_UGE:   return "uge";
3846   case FCmpInst::FCMP_ULT:   return "ult";
3847   case FCmpInst::FCMP_ULE:   return "ule";
3848   case FCmpInst::FCMP_UNE:   return "une";
3849   case FCmpInst::FCMP_TRUE:  return "true";
3850   case ICmpInst::ICMP_EQ:    return "eq";
3851   case ICmpInst::ICMP_NE:    return "ne";
3852   case ICmpInst::ICMP_SGT:   return "sgt";
3853   case ICmpInst::ICMP_SGE:   return "sge";
3854   case ICmpInst::ICMP_SLT:   return "slt";
3855   case ICmpInst::ICMP_SLE:   return "sle";
3856   case ICmpInst::ICMP_UGT:   return "ugt";
3857   case ICmpInst::ICMP_UGE:   return "uge";
3858   case ICmpInst::ICMP_ULT:   return "ult";
3859   case ICmpInst::ICMP_ULE:   return "ule";
3860   }
3861 }
3862 
3863 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3864   switch (pred) {
3865     default: llvm_unreachable("Unknown icmp predicate!");
3866     case ICMP_EQ: case ICMP_NE:
3867     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3868        return pred;
3869     case ICMP_UGT: return ICMP_SGT;
3870     case ICMP_ULT: return ICMP_SLT;
3871     case ICMP_UGE: return ICMP_SGE;
3872     case ICMP_ULE: return ICMP_SLE;
3873   }
3874 }
3875 
3876 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3877   switch (pred) {
3878     default: llvm_unreachable("Unknown icmp predicate!");
3879     case ICMP_EQ: case ICMP_NE:
3880     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3881        return pred;
3882     case ICMP_SGT: return ICMP_UGT;
3883     case ICMP_SLT: return ICMP_ULT;
3884     case ICMP_SGE: return ICMP_UGE;
3885     case ICMP_SLE: return ICMP_ULE;
3886   }
3887 }
3888 
3889 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3890   switch (pred) {
3891     default: llvm_unreachable("Unknown cmp predicate!");
3892     case ICMP_EQ: case ICMP_NE:
3893       return pred;
3894     case ICMP_SGT: return ICMP_SLT;
3895     case ICMP_SLT: return ICMP_SGT;
3896     case ICMP_SGE: return ICMP_SLE;
3897     case ICMP_SLE: return ICMP_SGE;
3898     case ICMP_UGT: return ICMP_ULT;
3899     case ICMP_ULT: return ICMP_UGT;
3900     case ICMP_UGE: return ICMP_ULE;
3901     case ICMP_ULE: return ICMP_UGE;
3902 
3903     case FCMP_FALSE: case FCMP_TRUE:
3904     case FCMP_OEQ: case FCMP_ONE:
3905     case FCMP_UEQ: case FCMP_UNE:
3906     case FCMP_ORD: case FCMP_UNO:
3907       return pred;
3908     case FCMP_OGT: return FCMP_OLT;
3909     case FCMP_OLT: return FCMP_OGT;
3910     case FCMP_OGE: return FCMP_OLE;
3911     case FCMP_OLE: return FCMP_OGE;
3912     case FCMP_UGT: return FCMP_ULT;
3913     case FCMP_ULT: return FCMP_UGT;
3914     case FCMP_UGE: return FCMP_ULE;
3915     case FCMP_ULE: return FCMP_UGE;
3916   }
3917 }
3918 
3919 bool CmpInst::isNonStrictPredicate(Predicate pred) {
3920   switch (pred) {
3921   case ICMP_SGE:
3922   case ICMP_SLE:
3923   case ICMP_UGE:
3924   case ICMP_ULE:
3925   case FCMP_OGE:
3926   case FCMP_OLE:
3927   case FCMP_UGE:
3928   case FCMP_ULE:
3929     return true;
3930   default:
3931     return false;
3932   }
3933 }
3934 
3935 bool CmpInst::isStrictPredicate(Predicate pred) {
3936   switch (pred) {
3937   case ICMP_SGT:
3938   case ICMP_SLT:
3939   case ICMP_UGT:
3940   case ICMP_ULT:
3941   case FCMP_OGT:
3942   case FCMP_OLT:
3943   case FCMP_UGT:
3944   case FCMP_ULT:
3945     return true;
3946   default:
3947     return false;
3948   }
3949 }
3950 
3951 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3952   switch (pred) {
3953   case ICMP_SGE:
3954     return ICMP_SGT;
3955   case ICMP_SLE:
3956     return ICMP_SLT;
3957   case ICMP_UGE:
3958     return ICMP_UGT;
3959   case ICMP_ULE:
3960     return ICMP_ULT;
3961   case FCMP_OGE:
3962     return FCMP_OGT;
3963   case FCMP_OLE:
3964     return FCMP_OLT;
3965   case FCMP_UGE:
3966     return FCMP_UGT;
3967   case FCMP_ULE:
3968     return FCMP_ULT;
3969   default:
3970     return pred;
3971   }
3972 }
3973 
3974 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3975   switch (pred) {
3976   case ICMP_SGT:
3977     return ICMP_SGE;
3978   case ICMP_SLT:
3979     return ICMP_SLE;
3980   case ICMP_UGT:
3981     return ICMP_UGE;
3982   case ICMP_ULT:
3983     return ICMP_ULE;
3984   case FCMP_OGT:
3985     return FCMP_OGE;
3986   case FCMP_OLT:
3987     return FCMP_OLE;
3988   case FCMP_UGT:
3989     return FCMP_UGE;
3990   case FCMP_ULT:
3991     return FCMP_ULE;
3992   default:
3993     return pred;
3994   }
3995 }
3996 
3997 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3998   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3999 
4000   if (isStrictPredicate(pred))
4001     return getNonStrictPredicate(pred);
4002   if (isNonStrictPredicate(pred))
4003     return getStrictPredicate(pred);
4004 
4005   llvm_unreachable("Unknown predicate!");
4006 }
4007 
4008 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
4009   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
4010 
4011   switch (pred) {
4012   default:
4013     llvm_unreachable("Unknown predicate!");
4014   case CmpInst::ICMP_ULT:
4015     return CmpInst::ICMP_SLT;
4016   case CmpInst::ICMP_ULE:
4017     return CmpInst::ICMP_SLE;
4018   case CmpInst::ICMP_UGT:
4019     return CmpInst::ICMP_SGT;
4020   case CmpInst::ICMP_UGE:
4021     return CmpInst::ICMP_SGE;
4022   }
4023 }
4024 
4025 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
4026   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
4027 
4028   switch (pred) {
4029   default:
4030     llvm_unreachable("Unknown predicate!");
4031   case CmpInst::ICMP_SLT:
4032     return CmpInst::ICMP_ULT;
4033   case CmpInst::ICMP_SLE:
4034     return CmpInst::ICMP_ULE;
4035   case CmpInst::ICMP_SGT:
4036     return CmpInst::ICMP_UGT;
4037   case CmpInst::ICMP_SGE:
4038     return CmpInst::ICMP_UGE;
4039   }
4040 }
4041 
4042 bool CmpInst::isUnsigned(Predicate predicate) {
4043   switch (predicate) {
4044     default: return false;
4045     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
4046     case ICmpInst::ICMP_UGE: return true;
4047   }
4048 }
4049 
4050 bool CmpInst::isSigned(Predicate predicate) {
4051   switch (predicate) {
4052     default: return false;
4053     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
4054     case ICmpInst::ICMP_SGE: return true;
4055   }
4056 }
4057 
4058 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
4059                        ICmpInst::Predicate Pred) {
4060   assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
4061   switch (Pred) {
4062   case ICmpInst::Predicate::ICMP_EQ:
4063     return LHS.eq(RHS);
4064   case ICmpInst::Predicate::ICMP_NE:
4065     return LHS.ne(RHS);
4066   case ICmpInst::Predicate::ICMP_UGT:
4067     return LHS.ugt(RHS);
4068   case ICmpInst::Predicate::ICMP_UGE:
4069     return LHS.uge(RHS);
4070   case ICmpInst::Predicate::ICMP_ULT:
4071     return LHS.ult(RHS);
4072   case ICmpInst::Predicate::ICMP_ULE:
4073     return LHS.ule(RHS);
4074   case ICmpInst::Predicate::ICMP_SGT:
4075     return LHS.sgt(RHS);
4076   case ICmpInst::Predicate::ICMP_SGE:
4077     return LHS.sge(RHS);
4078   case ICmpInst::Predicate::ICMP_SLT:
4079     return LHS.slt(RHS);
4080   case ICmpInst::Predicate::ICMP_SLE:
4081     return LHS.sle(RHS);
4082   default:
4083     llvm_unreachable("Unexpected non-integer predicate.");
4084   };
4085 }
4086 
4087 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
4088   assert(CmpInst::isRelational(pred) &&
4089          "Call only with non-equality predicates!");
4090 
4091   if (isSigned(pred))
4092     return getUnsignedPredicate(pred);
4093   if (isUnsigned(pred))
4094     return getSignedPredicate(pred);
4095 
4096   llvm_unreachable("Unknown predicate!");
4097 }
4098 
4099 bool CmpInst::isOrdered(Predicate predicate) {
4100   switch (predicate) {
4101     default: return false;
4102     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
4103     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
4104     case FCmpInst::FCMP_ORD: return true;
4105   }
4106 }
4107 
4108 bool CmpInst::isUnordered(Predicate predicate) {
4109   switch (predicate) {
4110     default: return false;
4111     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
4112     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
4113     case FCmpInst::FCMP_UNO: return true;
4114   }
4115 }
4116 
4117 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
4118   switch(predicate) {
4119     default: return false;
4120     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4121     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4122   }
4123 }
4124 
4125 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
4126   switch(predicate) {
4127   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4128   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4129   default: return false;
4130   }
4131 }
4132 
4133 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4134   // If the predicates match, then we know the first condition implies the
4135   // second is true.
4136   if (Pred1 == Pred2)
4137     return true;
4138 
4139   switch (Pred1) {
4140   default:
4141     break;
4142   case ICMP_EQ:
4143     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4144     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4145            Pred2 == ICMP_SLE;
4146   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4147     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4148   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4149     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4150   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4151     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4152   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4153     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4154   }
4155   return false;
4156 }
4157 
4158 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4159   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4160 }
4161 
4162 //===----------------------------------------------------------------------===//
4163 //                        SwitchInst Implementation
4164 //===----------------------------------------------------------------------===//
4165 
4166 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4167   assert(Value && Default && NumReserved);
4168   ReservedSpace = NumReserved;
4169   setNumHungOffUseOperands(2);
4170   allocHungoffUses(ReservedSpace);
4171 
4172   Op<0>() = Value;
4173   Op<1>() = Default;
4174 }
4175 
4176 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4177 /// switch on and a default destination.  The number of additional cases can
4178 /// be specified here to make memory allocation more efficient.  This
4179 /// constructor can also autoinsert before another instruction.
4180 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4181                        Instruction *InsertBefore)
4182     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4183                   nullptr, 0, InsertBefore) {
4184   init(Value, Default, 2+NumCases*2);
4185 }
4186 
4187 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4188 /// switch on and a default destination.  The number of additional cases can
4189 /// be specified here to make memory allocation more efficient.  This
4190 /// constructor also autoinserts at the end of the specified BasicBlock.
4191 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4192                        BasicBlock *InsertAtEnd)
4193     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4194                   nullptr, 0, InsertAtEnd) {
4195   init(Value, Default, 2+NumCases*2);
4196 }
4197 
4198 SwitchInst::SwitchInst(const SwitchInst &SI)
4199     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4200   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4201   setNumHungOffUseOperands(SI.getNumOperands());
4202   Use *OL = getOperandList();
4203   const Use *InOL = SI.getOperandList();
4204   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4205     OL[i] = InOL[i];
4206     OL[i+1] = InOL[i+1];
4207   }
4208   SubclassOptionalData = SI.SubclassOptionalData;
4209 }
4210 
4211 /// addCase - Add an entry to the switch instruction...
4212 ///
4213 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4214   unsigned NewCaseIdx = getNumCases();
4215   unsigned OpNo = getNumOperands();
4216   if (OpNo+2 > ReservedSpace)
4217     growOperands();  // Get more space!
4218   // Initialize some new operands.
4219   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4220   setNumHungOffUseOperands(OpNo+2);
4221   CaseHandle Case(this, NewCaseIdx);
4222   Case.setValue(OnVal);
4223   Case.setSuccessor(Dest);
4224 }
4225 
4226 /// removeCase - This method removes the specified case and its successor
4227 /// from the switch instruction.
4228 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4229   unsigned idx = I->getCaseIndex();
4230 
4231   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4232 
4233   unsigned NumOps = getNumOperands();
4234   Use *OL = getOperandList();
4235 
4236   // Overwrite this case with the end of the list.
4237   if (2 + (idx + 1) * 2 != NumOps) {
4238     OL[2 + idx * 2] = OL[NumOps - 2];
4239     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4240   }
4241 
4242   // Nuke the last value.
4243   OL[NumOps-2].set(nullptr);
4244   OL[NumOps-2+1].set(nullptr);
4245   setNumHungOffUseOperands(NumOps-2);
4246 
4247   return CaseIt(this, idx);
4248 }
4249 
4250 /// growOperands - grow operands - This grows the operand list in response
4251 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4252 ///
4253 void SwitchInst::growOperands() {
4254   unsigned e = getNumOperands();
4255   unsigned NumOps = e*3;
4256 
4257   ReservedSpace = NumOps;
4258   growHungoffUses(ReservedSpace);
4259 }
4260 
4261 MDNode *
4262 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4263   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4264     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4265       if (MDName->getString() == "branch_weights")
4266         return ProfileData;
4267   return nullptr;
4268 }
4269 
4270 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4271   assert(Changed && "called only if metadata has changed");
4272 
4273   if (!Weights)
4274     return nullptr;
4275 
4276   assert(SI.getNumSuccessors() == Weights->size() &&
4277          "num of prof branch_weights must accord with num of successors");
4278 
4279   bool AllZeroes =
4280       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4281 
4282   if (AllZeroes || Weights.getValue().size() < 2)
4283     return nullptr;
4284 
4285   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4286 }
4287 
4288 void SwitchInstProfUpdateWrapper::init() {
4289   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4290   if (!ProfileData)
4291     return;
4292 
4293   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4294     llvm_unreachable("number of prof branch_weights metadata operands does "
4295                      "not correspond to number of succesors");
4296   }
4297 
4298   SmallVector<uint32_t, 8> Weights;
4299   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4300     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4301     uint32_t CW = C->getValue().getZExtValue();
4302     Weights.push_back(CW);
4303   }
4304   this->Weights = std::move(Weights);
4305 }
4306 
4307 SwitchInst::CaseIt
4308 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4309   if (Weights) {
4310     assert(SI.getNumSuccessors() == Weights->size() &&
4311            "num of prof branch_weights must accord with num of successors");
4312     Changed = true;
4313     // Copy the last case to the place of the removed one and shrink.
4314     // This is tightly coupled with the way SwitchInst::removeCase() removes
4315     // the cases in SwitchInst::removeCase(CaseIt).
4316     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4317     Weights.getValue().pop_back();
4318   }
4319   return SI.removeCase(I);
4320 }
4321 
4322 void SwitchInstProfUpdateWrapper::addCase(
4323     ConstantInt *OnVal, BasicBlock *Dest,
4324     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4325   SI.addCase(OnVal, Dest);
4326 
4327   if (!Weights && W && *W) {
4328     Changed = true;
4329     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4330     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4331   } else if (Weights) {
4332     Changed = true;
4333     Weights.getValue().push_back(W ? *W : 0);
4334   }
4335   if (Weights)
4336     assert(SI.getNumSuccessors() == Weights->size() &&
4337            "num of prof branch_weights must accord with num of successors");
4338 }
4339 
4340 SymbolTableList<Instruction>::iterator
4341 SwitchInstProfUpdateWrapper::eraseFromParent() {
4342   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4343   Changed = false;
4344   if (Weights)
4345     Weights->resize(0);
4346   return SI.eraseFromParent();
4347 }
4348 
4349 SwitchInstProfUpdateWrapper::CaseWeightOpt
4350 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4351   if (!Weights)
4352     return None;
4353   return Weights.getValue()[idx];
4354 }
4355 
4356 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4357     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4358   if (!W)
4359     return;
4360 
4361   if (!Weights && *W)
4362     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4363 
4364   if (Weights) {
4365     auto &OldW = Weights.getValue()[idx];
4366     if (*W != OldW) {
4367       Changed = true;
4368       OldW = *W;
4369     }
4370   }
4371 }
4372 
4373 SwitchInstProfUpdateWrapper::CaseWeightOpt
4374 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4375                                                 unsigned idx) {
4376   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4377     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4378       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4379           ->getValue()
4380           .getZExtValue();
4381 
4382   return None;
4383 }
4384 
4385 //===----------------------------------------------------------------------===//
4386 //                        IndirectBrInst Implementation
4387 //===----------------------------------------------------------------------===//
4388 
4389 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4390   assert(Address && Address->getType()->isPointerTy() &&
4391          "Address of indirectbr must be a pointer");
4392   ReservedSpace = 1+NumDests;
4393   setNumHungOffUseOperands(1);
4394   allocHungoffUses(ReservedSpace);
4395 
4396   Op<0>() = Address;
4397 }
4398 
4399 
4400 /// growOperands - grow operands - This grows the operand list in response
4401 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4402 ///
4403 void IndirectBrInst::growOperands() {
4404   unsigned e = getNumOperands();
4405   unsigned NumOps = e*2;
4406 
4407   ReservedSpace = NumOps;
4408   growHungoffUses(ReservedSpace);
4409 }
4410 
4411 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4412                                Instruction *InsertBefore)
4413     : Instruction(Type::getVoidTy(Address->getContext()),
4414                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4415   init(Address, NumCases);
4416 }
4417 
4418 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4419                                BasicBlock *InsertAtEnd)
4420     : Instruction(Type::getVoidTy(Address->getContext()),
4421                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4422   init(Address, NumCases);
4423 }
4424 
4425 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4426     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4427                   nullptr, IBI.getNumOperands()) {
4428   allocHungoffUses(IBI.getNumOperands());
4429   Use *OL = getOperandList();
4430   const Use *InOL = IBI.getOperandList();
4431   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4432     OL[i] = InOL[i];
4433   SubclassOptionalData = IBI.SubclassOptionalData;
4434 }
4435 
4436 /// addDestination - Add a destination.
4437 ///
4438 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4439   unsigned OpNo = getNumOperands();
4440   if (OpNo+1 > ReservedSpace)
4441     growOperands();  // Get more space!
4442   // Initialize some new operands.
4443   assert(OpNo < ReservedSpace && "Growing didn't work!");
4444   setNumHungOffUseOperands(OpNo+1);
4445   getOperandList()[OpNo] = DestBB;
4446 }
4447 
4448 /// removeDestination - This method removes the specified successor from the
4449 /// indirectbr instruction.
4450 void IndirectBrInst::removeDestination(unsigned idx) {
4451   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4452 
4453   unsigned NumOps = getNumOperands();
4454   Use *OL = getOperandList();
4455 
4456   // Replace this value with the last one.
4457   OL[idx+1] = OL[NumOps-1];
4458 
4459   // Nuke the last value.
4460   OL[NumOps-1].set(nullptr);
4461   setNumHungOffUseOperands(NumOps-1);
4462 }
4463 
4464 //===----------------------------------------------------------------------===//
4465 //                            FreezeInst Implementation
4466 //===----------------------------------------------------------------------===//
4467 
4468 FreezeInst::FreezeInst(Value *S,
4469                        const Twine &Name, Instruction *InsertBefore)
4470     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4471   setName(Name);
4472 }
4473 
4474 FreezeInst::FreezeInst(Value *S,
4475                        const Twine &Name, BasicBlock *InsertAtEnd)
4476     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4477   setName(Name);
4478 }
4479 
4480 //===----------------------------------------------------------------------===//
4481 //                           cloneImpl() implementations
4482 //===----------------------------------------------------------------------===//
4483 
4484 // Define these methods here so vtables don't get emitted into every translation
4485 // unit that uses these classes.
4486 
4487 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4488   return new (getNumOperands()) GetElementPtrInst(*this);
4489 }
4490 
4491 UnaryOperator *UnaryOperator::cloneImpl() const {
4492   return Create(getOpcode(), Op<0>());
4493 }
4494 
4495 BinaryOperator *BinaryOperator::cloneImpl() const {
4496   return Create(getOpcode(), Op<0>(), Op<1>());
4497 }
4498 
4499 FCmpInst *FCmpInst::cloneImpl() const {
4500   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4501 }
4502 
4503 ICmpInst *ICmpInst::cloneImpl() const {
4504   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4505 }
4506 
4507 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4508   return new ExtractValueInst(*this);
4509 }
4510 
4511 InsertValueInst *InsertValueInst::cloneImpl() const {
4512   return new InsertValueInst(*this);
4513 }
4514 
4515 AllocaInst *AllocaInst::cloneImpl() const {
4516   AllocaInst *Result =
4517       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4518                      getOperand(0), getAlign());
4519   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4520   Result->setSwiftError(isSwiftError());
4521   return Result;
4522 }
4523 
4524 LoadInst *LoadInst::cloneImpl() const {
4525   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4526                       getAlign(), getOrdering(), getSyncScopeID());
4527 }
4528 
4529 StoreInst *StoreInst::cloneImpl() const {
4530   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4531                        getOrdering(), getSyncScopeID());
4532 }
4533 
4534 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4535   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4536       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4537       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4538   Result->setVolatile(isVolatile());
4539   Result->setWeak(isWeak());
4540   return Result;
4541 }
4542 
4543 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4544   AtomicRMWInst *Result =
4545       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4546                         getAlign(), getOrdering(), getSyncScopeID());
4547   Result->setVolatile(isVolatile());
4548   return Result;
4549 }
4550 
4551 FenceInst *FenceInst::cloneImpl() const {
4552   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4553 }
4554 
4555 TruncInst *TruncInst::cloneImpl() const {
4556   return new TruncInst(getOperand(0), getType());
4557 }
4558 
4559 ZExtInst *ZExtInst::cloneImpl() const {
4560   return new ZExtInst(getOperand(0), getType());
4561 }
4562 
4563 SExtInst *SExtInst::cloneImpl() const {
4564   return new SExtInst(getOperand(0), getType());
4565 }
4566 
4567 FPTruncInst *FPTruncInst::cloneImpl() const {
4568   return new FPTruncInst(getOperand(0), getType());
4569 }
4570 
4571 FPExtInst *FPExtInst::cloneImpl() const {
4572   return new FPExtInst(getOperand(0), getType());
4573 }
4574 
4575 UIToFPInst *UIToFPInst::cloneImpl() const {
4576   return new UIToFPInst(getOperand(0), getType());
4577 }
4578 
4579 SIToFPInst *SIToFPInst::cloneImpl() const {
4580   return new SIToFPInst(getOperand(0), getType());
4581 }
4582 
4583 FPToUIInst *FPToUIInst::cloneImpl() const {
4584   return new FPToUIInst(getOperand(0), getType());
4585 }
4586 
4587 FPToSIInst *FPToSIInst::cloneImpl() const {
4588   return new FPToSIInst(getOperand(0), getType());
4589 }
4590 
4591 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4592   return new PtrToIntInst(getOperand(0), getType());
4593 }
4594 
4595 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4596   return new IntToPtrInst(getOperand(0), getType());
4597 }
4598 
4599 BitCastInst *BitCastInst::cloneImpl() const {
4600   return new BitCastInst(getOperand(0), getType());
4601 }
4602 
4603 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4604   return new AddrSpaceCastInst(getOperand(0), getType());
4605 }
4606 
4607 CallInst *CallInst::cloneImpl() const {
4608   if (hasOperandBundles()) {
4609     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4610     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4611   }
4612   return  new(getNumOperands()) CallInst(*this);
4613 }
4614 
4615 SelectInst *SelectInst::cloneImpl() const {
4616   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4617 }
4618 
4619 VAArgInst *VAArgInst::cloneImpl() const {
4620   return new VAArgInst(getOperand(0), getType());
4621 }
4622 
4623 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4624   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4625 }
4626 
4627 InsertElementInst *InsertElementInst::cloneImpl() const {
4628   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4629 }
4630 
4631 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4632   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4633 }
4634 
4635 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4636 
4637 LandingPadInst *LandingPadInst::cloneImpl() const {
4638   return new LandingPadInst(*this);
4639 }
4640 
4641 ReturnInst *ReturnInst::cloneImpl() const {
4642   return new(getNumOperands()) ReturnInst(*this);
4643 }
4644 
4645 BranchInst *BranchInst::cloneImpl() const {
4646   return new(getNumOperands()) BranchInst(*this);
4647 }
4648 
4649 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4650 
4651 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4652   return new IndirectBrInst(*this);
4653 }
4654 
4655 InvokeInst *InvokeInst::cloneImpl() const {
4656   if (hasOperandBundles()) {
4657     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4658     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4659   }
4660   return new(getNumOperands()) InvokeInst(*this);
4661 }
4662 
4663 CallBrInst *CallBrInst::cloneImpl() const {
4664   if (hasOperandBundles()) {
4665     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4666     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4667   }
4668   return new (getNumOperands()) CallBrInst(*this);
4669 }
4670 
4671 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4672 
4673 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4674   return new (getNumOperands()) CleanupReturnInst(*this);
4675 }
4676 
4677 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4678   return new (getNumOperands()) CatchReturnInst(*this);
4679 }
4680 
4681 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4682   return new CatchSwitchInst(*this);
4683 }
4684 
4685 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4686   return new (getNumOperands()) FuncletPadInst(*this);
4687 }
4688 
4689 UnreachableInst *UnreachableInst::cloneImpl() const {
4690   LLVMContext &Context = getContext();
4691   return new UnreachableInst(Context);
4692 }
4693 
4694 FreezeInst *FreezeInst::cloneImpl() const {
4695   return new FreezeInst(getOperand(0));
4696 }
4697