1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements all of the non-inline methods for the LLVM instruction 10 // classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Instructions.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/IR/Attributes.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/TypeSize.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <vector> 45 46 using namespace llvm; 47 48 static cl::opt<bool> DisableI2pP2iOpt( 49 "disable-i2p-p2i-opt", cl::init(false), 50 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization")); 51 52 //===----------------------------------------------------------------------===// 53 // AllocaInst Class 54 //===----------------------------------------------------------------------===// 55 56 Optional<TypeSize> 57 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { 58 TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType()); 59 if (isArrayAllocation()) { 60 auto *C = dyn_cast<ConstantInt>(getArraySize()); 61 if (!C) 62 return None; 63 assert(!Size.isScalable() && "Array elements cannot have a scalable size"); 64 Size *= C->getZExtValue(); 65 } 66 return Size; 67 } 68 69 //===----------------------------------------------------------------------===// 70 // SelectInst Class 71 //===----------------------------------------------------------------------===// 72 73 /// areInvalidOperands - Return a string if the specified operands are invalid 74 /// for a select operation, otherwise return null. 75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 76 if (Op1->getType() != Op2->getType()) 77 return "both values to select must have same type"; 78 79 if (Op1->getType()->isTokenTy()) 80 return "select values cannot have token type"; 81 82 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 83 // Vector select. 84 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 85 return "vector select condition element type must be i1"; 86 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 87 if (!ET) 88 return "selected values for vector select must be vectors"; 89 if (ET->getElementCount() != VT->getElementCount()) 90 return "vector select requires selected vectors to have " 91 "the same vector length as select condition"; 92 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 93 return "select condition must be i1 or <n x i1>"; 94 } 95 return nullptr; 96 } 97 98 //===----------------------------------------------------------------------===// 99 // PHINode Class 100 //===----------------------------------------------------------------------===// 101 102 PHINode::PHINode(const PHINode &PN) 103 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 104 ReservedSpace(PN.getNumOperands()) { 105 allocHungoffUses(PN.getNumOperands()); 106 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 107 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 108 SubclassOptionalData = PN.SubclassOptionalData; 109 } 110 111 // removeIncomingValue - Remove an incoming value. This is useful if a 112 // predecessor basic block is deleted. 113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 114 Value *Removed = getIncomingValue(Idx); 115 116 // Move everything after this operand down. 117 // 118 // FIXME: we could just swap with the end of the list, then erase. However, 119 // clients might not expect this to happen. The code as it is thrashes the 120 // use/def lists, which is kinda lame. 121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 123 124 // Nuke the last value. 125 Op<-1>().set(nullptr); 126 setNumHungOffUseOperands(getNumOperands() - 1); 127 128 // If the PHI node is dead, because it has zero entries, nuke it now. 129 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 130 // If anyone is using this PHI, make them use a dummy value instead... 131 replaceAllUsesWith(UndefValue::get(getType())); 132 eraseFromParent(); 133 } 134 return Removed; 135 } 136 137 /// growOperands - grow operands - This grows the operand list in response 138 /// to a push_back style of operation. This grows the number of ops by 1.5 139 /// times. 140 /// 141 void PHINode::growOperands() { 142 unsigned e = getNumOperands(); 143 unsigned NumOps = e + e / 2; 144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 145 146 ReservedSpace = NumOps; 147 growHungoffUses(ReservedSpace, /* IsPhi */ true); 148 } 149 150 /// hasConstantValue - If the specified PHI node always merges together the same 151 /// value, return the value, otherwise return null. 152 Value *PHINode::hasConstantValue() const { 153 // Exploit the fact that phi nodes always have at least one entry. 154 Value *ConstantValue = getIncomingValue(0); 155 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 156 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 157 if (ConstantValue != this) 158 return nullptr; // Incoming values not all the same. 159 // The case where the first value is this PHI. 160 ConstantValue = getIncomingValue(i); 161 } 162 if (ConstantValue == this) 163 return UndefValue::get(getType()); 164 return ConstantValue; 165 } 166 167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 168 /// together the same value, assuming that undefs result in the same value as 169 /// non-undefs. 170 /// Unlike \ref hasConstantValue, this does not return a value because the 171 /// unique non-undef incoming value need not dominate the PHI node. 172 bool PHINode::hasConstantOrUndefValue() const { 173 Value *ConstantValue = nullptr; 174 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 175 Value *Incoming = getIncomingValue(i); 176 if (Incoming != this && !isa<UndefValue>(Incoming)) { 177 if (ConstantValue && ConstantValue != Incoming) 178 return false; 179 ConstantValue = Incoming; 180 } 181 } 182 return true; 183 } 184 185 //===----------------------------------------------------------------------===// 186 // LandingPadInst Implementation 187 //===----------------------------------------------------------------------===// 188 189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 190 const Twine &NameStr, Instruction *InsertBefore) 191 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 192 init(NumReservedValues, NameStr); 193 } 194 195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 196 const Twine &NameStr, BasicBlock *InsertAtEnd) 197 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 198 init(NumReservedValues, NameStr); 199 } 200 201 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 202 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 203 LP.getNumOperands()), 204 ReservedSpace(LP.getNumOperands()) { 205 allocHungoffUses(LP.getNumOperands()); 206 Use *OL = getOperandList(); 207 const Use *InOL = LP.getOperandList(); 208 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 209 OL[I] = InOL[I]; 210 211 setCleanup(LP.isCleanup()); 212 } 213 214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 215 const Twine &NameStr, 216 Instruction *InsertBefore) { 217 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 218 } 219 220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 221 const Twine &NameStr, 222 BasicBlock *InsertAtEnd) { 223 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 224 } 225 226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 227 ReservedSpace = NumReservedValues; 228 setNumHungOffUseOperands(0); 229 allocHungoffUses(ReservedSpace); 230 setName(NameStr); 231 setCleanup(false); 232 } 233 234 /// growOperands - grow operands - This grows the operand list in response to a 235 /// push_back style of operation. This grows the number of ops by 2 times. 236 void LandingPadInst::growOperands(unsigned Size) { 237 unsigned e = getNumOperands(); 238 if (ReservedSpace >= e + Size) return; 239 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 240 growHungoffUses(ReservedSpace); 241 } 242 243 void LandingPadInst::addClause(Constant *Val) { 244 unsigned OpNo = getNumOperands(); 245 growOperands(1); 246 assert(OpNo < ReservedSpace && "Growing didn't work!"); 247 setNumHungOffUseOperands(getNumOperands() + 1); 248 getOperandList()[OpNo] = Val; 249 } 250 251 //===----------------------------------------------------------------------===// 252 // CallBase Implementation 253 //===----------------------------------------------------------------------===// 254 255 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles, 256 Instruction *InsertPt) { 257 switch (CB->getOpcode()) { 258 case Instruction::Call: 259 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt); 260 case Instruction::Invoke: 261 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt); 262 case Instruction::CallBr: 263 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt); 264 default: 265 llvm_unreachable("Unknown CallBase sub-class!"); 266 } 267 } 268 269 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB, 270 Instruction *InsertPt) { 271 SmallVector<OperandBundleDef, 2> OpDefs; 272 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) { 273 auto ChildOB = CI->getOperandBundleAt(i); 274 if (ChildOB.getTagName() != OpB.getTag()) 275 OpDefs.emplace_back(ChildOB); 276 } 277 OpDefs.emplace_back(OpB); 278 return CallBase::Create(CI, OpDefs, InsertPt); 279 } 280 281 282 Function *CallBase::getCaller() { return getParent()->getParent(); } 283 284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { 285 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!"); 286 return cast<CallBrInst>(this)->getNumIndirectDests() + 1; 287 } 288 289 bool CallBase::isIndirectCall() const { 290 const Value *V = getCalledOperand(); 291 if (isa<Function>(V) || isa<Constant>(V)) 292 return false; 293 return !isInlineAsm(); 294 } 295 296 /// Tests if this call site must be tail call optimized. Only a CallInst can 297 /// be tail call optimized. 298 bool CallBase::isMustTailCall() const { 299 if (auto *CI = dyn_cast<CallInst>(this)) 300 return CI->isMustTailCall(); 301 return false; 302 } 303 304 /// Tests if this call site is marked as a tail call. 305 bool CallBase::isTailCall() const { 306 if (auto *CI = dyn_cast<CallInst>(this)) 307 return CI->isTailCall(); 308 return false; 309 } 310 311 Intrinsic::ID CallBase::getIntrinsicID() const { 312 if (auto *F = getCalledFunction()) 313 return F->getIntrinsicID(); 314 return Intrinsic::not_intrinsic; 315 } 316 317 bool CallBase::isReturnNonNull() const { 318 if (hasRetAttr(Attribute::NonNull)) 319 return true; 320 321 if (getRetDereferenceableBytes() > 0 && 322 !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace())) 323 return true; 324 325 return false; 326 } 327 328 Value *CallBase::getReturnedArgOperand() const { 329 unsigned Index; 330 331 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index)) 332 return getArgOperand(Index - AttributeList::FirstArgIndex); 333 if (const Function *F = getCalledFunction()) 334 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index)) 335 return getArgOperand(Index - AttributeList::FirstArgIndex); 336 337 return nullptr; 338 } 339 340 /// Determine whether the argument or parameter has the given attribute. 341 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { 342 assert(ArgNo < arg_size() && "Param index out of bounds!"); 343 344 if (Attrs.hasParamAttr(ArgNo, Kind)) 345 return true; 346 if (const Function *F = getCalledFunction()) 347 return F->getAttributes().hasParamAttr(ArgNo, Kind); 348 return false; 349 } 350 351 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { 352 Value *V = getCalledOperand(); 353 if (auto *CE = dyn_cast<ConstantExpr>(V)) 354 if (CE->getOpcode() == BitCast) 355 V = CE->getOperand(0); 356 357 if (auto *F = dyn_cast<Function>(V)) 358 return F->getAttributes().hasFnAttr(Kind); 359 360 return false; 361 } 362 363 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { 364 Value *V = getCalledOperand(); 365 if (auto *CE = dyn_cast<ConstantExpr>(V)) 366 if (CE->getOpcode() == BitCast) 367 V = CE->getOperand(0); 368 369 if (auto *F = dyn_cast<Function>(V)) 370 return F->getAttributes().hasFnAttr(Kind); 371 372 return false; 373 } 374 375 void CallBase::getOperandBundlesAsDefs( 376 SmallVectorImpl<OperandBundleDef> &Defs) const { 377 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) 378 Defs.emplace_back(getOperandBundleAt(i)); 379 } 380 381 CallBase::op_iterator 382 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, 383 const unsigned BeginIndex) { 384 auto It = op_begin() + BeginIndex; 385 for (auto &B : Bundles) 386 It = std::copy(B.input_begin(), B.input_end(), It); 387 388 auto *ContextImpl = getContext().pImpl; 389 auto BI = Bundles.begin(); 390 unsigned CurrentIndex = BeginIndex; 391 392 for (auto &BOI : bundle_op_infos()) { 393 assert(BI != Bundles.end() && "Incorrect allocation?"); 394 395 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); 396 BOI.Begin = CurrentIndex; 397 BOI.End = CurrentIndex + BI->input_size(); 398 CurrentIndex = BOI.End; 399 BI++; 400 } 401 402 assert(BI == Bundles.end() && "Incorrect allocation?"); 403 404 return It; 405 } 406 407 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) { 408 /// When there isn't many bundles, we do a simple linear search. 409 /// Else fallback to a binary-search that use the fact that bundles usually 410 /// have similar number of argument to get faster convergence. 411 if (bundle_op_info_end() - bundle_op_info_begin() < 8) { 412 for (auto &BOI : bundle_op_infos()) 413 if (BOI.Begin <= OpIdx && OpIdx < BOI.End) 414 return BOI; 415 416 llvm_unreachable("Did not find operand bundle for operand!"); 417 } 418 419 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles"); 420 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 && 421 OpIdx < std::prev(bundle_op_info_end())->End && 422 "The Idx isn't in the operand bundle"); 423 424 /// We need a decimal number below and to prevent using floating point numbers 425 /// we use an intergal value multiplied by this constant. 426 constexpr unsigned NumberScaling = 1024; 427 428 bundle_op_iterator Begin = bundle_op_info_begin(); 429 bundle_op_iterator End = bundle_op_info_end(); 430 bundle_op_iterator Current = Begin; 431 432 while (Begin != End) { 433 unsigned ScaledOperandPerBundle = 434 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin); 435 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) / 436 ScaledOperandPerBundle); 437 if (Current >= End) 438 Current = std::prev(End); 439 assert(Current < End && Current >= Begin && 440 "the operand bundle doesn't cover every value in the range"); 441 if (OpIdx >= Current->Begin && OpIdx < Current->End) 442 break; 443 if (OpIdx >= Current->End) 444 Begin = Current + 1; 445 else 446 End = Current; 447 } 448 449 assert(OpIdx >= Current->Begin && OpIdx < Current->End && 450 "the operand bundle doesn't cover every value in the range"); 451 return *Current; 452 } 453 454 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID, 455 OperandBundleDef OB, 456 Instruction *InsertPt) { 457 if (CB->getOperandBundle(ID)) 458 return CB; 459 460 SmallVector<OperandBundleDef, 1> Bundles; 461 CB->getOperandBundlesAsDefs(Bundles); 462 Bundles.push_back(OB); 463 return Create(CB, Bundles, InsertPt); 464 } 465 466 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID, 467 Instruction *InsertPt) { 468 SmallVector<OperandBundleDef, 1> Bundles; 469 bool CreateNew = false; 470 471 for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) { 472 auto Bundle = CB->getOperandBundleAt(I); 473 if (Bundle.getTagID() == ID) { 474 CreateNew = true; 475 continue; 476 } 477 Bundles.emplace_back(Bundle); 478 } 479 480 return CreateNew ? Create(CB, Bundles, InsertPt) : CB; 481 } 482 483 bool CallBase::hasReadingOperandBundles() const { 484 // Implementation note: this is a conservative implementation of operand 485 // bundle semantics, where *any* non-assume operand bundle forces a callsite 486 // to be at least readonly. 487 return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // CallInst Implementation 492 //===----------------------------------------------------------------------===// 493 494 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 495 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 496 this->FTy = FTy; 497 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 498 "NumOperands not set up?"); 499 500 #ifndef NDEBUG 501 assert((Args.size() == FTy->getNumParams() || 502 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 503 "Calling a function with bad signature!"); 504 505 for (unsigned i = 0; i != Args.size(); ++i) 506 assert((i >= FTy->getNumParams() || 507 FTy->getParamType(i) == Args[i]->getType()) && 508 "Calling a function with a bad signature!"); 509 #endif 510 511 // Set operands in order of their index to match use-list-order 512 // prediction. 513 llvm::copy(Args, op_begin()); 514 setCalledOperand(Func); 515 516 auto It = populateBundleOperandInfos(Bundles, Args.size()); 517 (void)It; 518 assert(It + 1 == op_end() && "Should add up!"); 519 520 setName(NameStr); 521 } 522 523 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { 524 this->FTy = FTy; 525 assert(getNumOperands() == 1 && "NumOperands not set up?"); 526 setCalledOperand(Func); 527 528 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 529 530 setName(NameStr); 531 } 532 533 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 534 Instruction *InsertBefore) 535 : CallBase(Ty->getReturnType(), Instruction::Call, 536 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { 537 init(Ty, Func, Name); 538 } 539 540 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 541 BasicBlock *InsertAtEnd) 542 : CallBase(Ty->getReturnType(), Instruction::Call, 543 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) { 544 init(Ty, Func, Name); 545 } 546 547 CallInst::CallInst(const CallInst &CI) 548 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, 549 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), 550 CI.getNumOperands()) { 551 setTailCallKind(CI.getTailCallKind()); 552 setCallingConv(CI.getCallingConv()); 553 554 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 555 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 556 bundle_op_info_begin()); 557 SubclassOptionalData = CI.SubclassOptionalData; 558 } 559 560 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 561 Instruction *InsertPt) { 562 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 563 564 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(), 565 Args, OpB, CI->getName(), InsertPt); 566 NewCI->setTailCallKind(CI->getTailCallKind()); 567 NewCI->setCallingConv(CI->getCallingConv()); 568 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 569 NewCI->setAttributes(CI->getAttributes()); 570 NewCI->setDebugLoc(CI->getDebugLoc()); 571 return NewCI; 572 } 573 574 // Update profile weight for call instruction by scaling it using the ratio 575 // of S/T. The meaning of "branch_weights" meta data for call instruction is 576 // transfered to represent call count. 577 void CallInst::updateProfWeight(uint64_t S, uint64_t T) { 578 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 579 if (ProfileData == nullptr) 580 return; 581 582 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 583 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") && 584 !ProfDataName->getString().equals("VP"))) 585 return; 586 587 if (T == 0) { 588 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " 589 "div by 0. Ignoring. Likely the function " 590 << getParent()->getParent()->getName() 591 << " has 0 entry count, and contains call instructions " 592 "with non-zero prof info."); 593 return; 594 } 595 596 MDBuilder MDB(getContext()); 597 SmallVector<Metadata *, 3> Vals; 598 Vals.push_back(ProfileData->getOperand(0)); 599 APInt APS(128, S), APT(128, T); 600 if (ProfDataName->getString().equals("branch_weights") && 601 ProfileData->getNumOperands() > 0) { 602 // Using APInt::div may be expensive, but most cases should fit 64 bits. 603 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)) 604 ->getValue() 605 .getZExtValue()); 606 Val *= APS; 607 Vals.push_back(MDB.createConstant( 608 ConstantInt::get(Type::getInt32Ty(getContext()), 609 Val.udiv(APT).getLimitedValue(UINT32_MAX)))); 610 } else if (ProfDataName->getString().equals("VP")) 611 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) { 612 // The first value is the key of the value profile, which will not change. 613 Vals.push_back(ProfileData->getOperand(i)); 614 uint64_t Count = 615 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1)) 616 ->getValue() 617 .getZExtValue(); 618 // Don't scale the magic number. 619 if (Count == NOMORE_ICP_MAGICNUM) { 620 Vals.push_back(ProfileData->getOperand(i + 1)); 621 continue; 622 } 623 // Using APInt::div may be expensive, but most cases should fit 64 bits. 624 APInt Val(128, Count); 625 Val *= APS; 626 Vals.push_back(MDB.createConstant( 627 ConstantInt::get(Type::getInt64Ty(getContext()), 628 Val.udiv(APT).getLimitedValue()))); 629 } 630 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals)); 631 } 632 633 /// IsConstantOne - Return true only if val is constant int 1 634 static bool IsConstantOne(Value *val) { 635 assert(val && "IsConstantOne does not work with nullptr val"); 636 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 637 return CVal && CVal->isOne(); 638 } 639 640 static Instruction *createMalloc(Instruction *InsertBefore, 641 BasicBlock *InsertAtEnd, Type *IntPtrTy, 642 Type *AllocTy, Value *AllocSize, 643 Value *ArraySize, 644 ArrayRef<OperandBundleDef> OpB, 645 Function *MallocF, const Twine &Name) { 646 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 647 "createMalloc needs either InsertBefore or InsertAtEnd"); 648 649 // malloc(type) becomes: 650 // bitcast (i8* malloc(typeSize)) to type* 651 // malloc(type, arraySize) becomes: 652 // bitcast (i8* malloc(typeSize*arraySize)) to type* 653 if (!ArraySize) 654 ArraySize = ConstantInt::get(IntPtrTy, 1); 655 else if (ArraySize->getType() != IntPtrTy) { 656 if (InsertBefore) 657 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 658 "", InsertBefore); 659 else 660 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 661 "", InsertAtEnd); 662 } 663 664 if (!IsConstantOne(ArraySize)) { 665 if (IsConstantOne(AllocSize)) { 666 AllocSize = ArraySize; // Operand * 1 = Operand 667 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 668 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 669 false /*ZExt*/); 670 // Malloc arg is constant product of type size and array size 671 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 672 } else { 673 // Multiply type size by the array size... 674 if (InsertBefore) 675 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 676 "mallocsize", InsertBefore); 677 else 678 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 679 "mallocsize", InsertAtEnd); 680 } 681 } 682 683 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 684 // Create the call to Malloc. 685 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 686 Module *M = BB->getParent()->getParent(); 687 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 688 FunctionCallee MallocFunc = MallocF; 689 if (!MallocFunc) 690 // prototype malloc as "void *malloc(size_t)" 691 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); 692 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 693 CallInst *MCall = nullptr; 694 Instruction *Result = nullptr; 695 if (InsertBefore) { 696 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 697 InsertBefore); 698 Result = MCall; 699 if (Result->getType() != AllocPtrType) 700 // Create a cast instruction to convert to the right type... 701 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 702 } else { 703 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 704 Result = MCall; 705 if (Result->getType() != AllocPtrType) { 706 InsertAtEnd->getInstList().push_back(MCall); 707 // Create a cast instruction to convert to the right type... 708 Result = new BitCastInst(MCall, AllocPtrType, Name); 709 } 710 } 711 MCall->setTailCall(); 712 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { 713 MCall->setCallingConv(F->getCallingConv()); 714 if (!F->returnDoesNotAlias()) 715 F->setReturnDoesNotAlias(); 716 } 717 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 718 719 return Result; 720 } 721 722 /// CreateMalloc - Generate the IR for a call to malloc: 723 /// 1. Compute the malloc call's argument as the specified type's size, 724 /// possibly multiplied by the array size if the array size is not 725 /// constant 1. 726 /// 2. Call malloc with that argument. 727 /// 3. Bitcast the result of the malloc call to the specified type. 728 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 729 Type *IntPtrTy, Type *AllocTy, 730 Value *AllocSize, Value *ArraySize, 731 Function *MallocF, 732 const Twine &Name) { 733 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 734 ArraySize, None, MallocF, Name); 735 } 736 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 737 Type *IntPtrTy, Type *AllocTy, 738 Value *AllocSize, Value *ArraySize, 739 ArrayRef<OperandBundleDef> OpB, 740 Function *MallocF, 741 const Twine &Name) { 742 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 743 ArraySize, OpB, MallocF, Name); 744 } 745 746 /// CreateMalloc - Generate the IR for a call to malloc: 747 /// 1. Compute the malloc call's argument as the specified type's size, 748 /// possibly multiplied by the array size if the array size is not 749 /// constant 1. 750 /// 2. Call malloc with that argument. 751 /// 3. Bitcast the result of the malloc call to the specified type. 752 /// Note: This function does not add the bitcast to the basic block, that is the 753 /// responsibility of the caller. 754 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 755 Type *IntPtrTy, Type *AllocTy, 756 Value *AllocSize, Value *ArraySize, 757 Function *MallocF, const Twine &Name) { 758 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 759 ArraySize, None, MallocF, Name); 760 } 761 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 762 Type *IntPtrTy, Type *AllocTy, 763 Value *AllocSize, Value *ArraySize, 764 ArrayRef<OperandBundleDef> OpB, 765 Function *MallocF, const Twine &Name) { 766 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 767 ArraySize, OpB, MallocF, Name); 768 } 769 770 static Instruction *createFree(Value *Source, 771 ArrayRef<OperandBundleDef> Bundles, 772 Instruction *InsertBefore, 773 BasicBlock *InsertAtEnd) { 774 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 775 "createFree needs either InsertBefore or InsertAtEnd"); 776 assert(Source->getType()->isPointerTy() && 777 "Can not free something of nonpointer type!"); 778 779 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 780 Module *M = BB->getParent()->getParent(); 781 782 Type *VoidTy = Type::getVoidTy(M->getContext()); 783 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 784 // prototype free as "void free(void*)" 785 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); 786 CallInst *Result = nullptr; 787 Value *PtrCast = Source; 788 if (InsertBefore) { 789 if (Source->getType() != IntPtrTy) 790 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 791 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 792 } else { 793 if (Source->getType() != IntPtrTy) 794 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 795 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 796 } 797 Result->setTailCall(); 798 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) 799 Result->setCallingConv(F->getCallingConv()); 800 801 return Result; 802 } 803 804 /// CreateFree - Generate the IR for a call to the builtin free function. 805 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 806 return createFree(Source, None, InsertBefore, nullptr); 807 } 808 Instruction *CallInst::CreateFree(Value *Source, 809 ArrayRef<OperandBundleDef> Bundles, 810 Instruction *InsertBefore) { 811 return createFree(Source, Bundles, InsertBefore, nullptr); 812 } 813 814 /// CreateFree - Generate the IR for a call to the builtin free function. 815 /// Note: This function does not add the call to the basic block, that is the 816 /// responsibility of the caller. 817 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 818 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 819 assert(FreeCall && "CreateFree did not create a CallInst"); 820 return FreeCall; 821 } 822 Instruction *CallInst::CreateFree(Value *Source, 823 ArrayRef<OperandBundleDef> Bundles, 824 BasicBlock *InsertAtEnd) { 825 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 826 assert(FreeCall && "CreateFree did not create a CallInst"); 827 return FreeCall; 828 } 829 830 //===----------------------------------------------------------------------===// 831 // InvokeInst Implementation 832 //===----------------------------------------------------------------------===// 833 834 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 835 BasicBlock *IfException, ArrayRef<Value *> Args, 836 ArrayRef<OperandBundleDef> Bundles, 837 const Twine &NameStr) { 838 this->FTy = FTy; 839 840 assert((int)getNumOperands() == 841 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && 842 "NumOperands not set up?"); 843 844 #ifndef NDEBUG 845 assert(((Args.size() == FTy->getNumParams()) || 846 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 847 "Invoking a function with bad signature"); 848 849 for (unsigned i = 0, e = Args.size(); i != e; i++) 850 assert((i >= FTy->getNumParams() || 851 FTy->getParamType(i) == Args[i]->getType()) && 852 "Invoking a function with a bad signature!"); 853 #endif 854 855 // Set operands in order of their index to match use-list-order 856 // prediction. 857 llvm::copy(Args, op_begin()); 858 setNormalDest(IfNormal); 859 setUnwindDest(IfException); 860 setCalledOperand(Fn); 861 862 auto It = populateBundleOperandInfos(Bundles, Args.size()); 863 (void)It; 864 assert(It + 3 == op_end() && "Should add up!"); 865 866 setName(NameStr); 867 } 868 869 InvokeInst::InvokeInst(const InvokeInst &II) 870 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, 871 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), 872 II.getNumOperands()) { 873 setCallingConv(II.getCallingConv()); 874 std::copy(II.op_begin(), II.op_end(), op_begin()); 875 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 876 bundle_op_info_begin()); 877 SubclassOptionalData = II.SubclassOptionalData; 878 } 879 880 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 881 Instruction *InsertPt) { 882 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 883 884 auto *NewII = InvokeInst::Create( 885 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(), 886 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt); 887 NewII->setCallingConv(II->getCallingConv()); 888 NewII->SubclassOptionalData = II->SubclassOptionalData; 889 NewII->setAttributes(II->getAttributes()); 890 NewII->setDebugLoc(II->getDebugLoc()); 891 return NewII; 892 } 893 894 LandingPadInst *InvokeInst::getLandingPadInst() const { 895 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // CallBrInst Implementation 900 //===----------------------------------------------------------------------===// 901 902 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, 903 ArrayRef<BasicBlock *> IndirectDests, 904 ArrayRef<Value *> Args, 905 ArrayRef<OperandBundleDef> Bundles, 906 const Twine &NameStr) { 907 this->FTy = FTy; 908 909 assert((int)getNumOperands() == 910 ComputeNumOperands(Args.size(), IndirectDests.size(), 911 CountBundleInputs(Bundles)) && 912 "NumOperands not set up?"); 913 914 #ifndef NDEBUG 915 assert(((Args.size() == FTy->getNumParams()) || 916 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 917 "Calling a function with bad signature"); 918 919 for (unsigned i = 0, e = Args.size(); i != e; i++) 920 assert((i >= FTy->getNumParams() || 921 FTy->getParamType(i) == Args[i]->getType()) && 922 "Calling a function with a bad signature!"); 923 #endif 924 925 // Set operands in order of their index to match use-list-order 926 // prediction. 927 std::copy(Args.begin(), Args.end(), op_begin()); 928 NumIndirectDests = IndirectDests.size(); 929 setDefaultDest(Fallthrough); 930 for (unsigned i = 0; i != NumIndirectDests; ++i) 931 setIndirectDest(i, IndirectDests[i]); 932 setCalledOperand(Fn); 933 934 auto It = populateBundleOperandInfos(Bundles, Args.size()); 935 (void)It; 936 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!"); 937 938 setName(NameStr); 939 } 940 941 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) { 942 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr"); 943 if (BasicBlock *OldBB = getIndirectDest(i)) { 944 BlockAddress *Old = BlockAddress::get(OldBB); 945 BlockAddress *New = BlockAddress::get(B); 946 for (unsigned ArgNo = 0, e = arg_size(); ArgNo != e; ++ArgNo) 947 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old) 948 setArgOperand(ArgNo, New); 949 } 950 } 951 952 CallBrInst::CallBrInst(const CallBrInst &CBI) 953 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, 954 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(), 955 CBI.getNumOperands()) { 956 setCallingConv(CBI.getCallingConv()); 957 std::copy(CBI.op_begin(), CBI.op_end(), op_begin()); 958 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(), 959 bundle_op_info_begin()); 960 SubclassOptionalData = CBI.SubclassOptionalData; 961 NumIndirectDests = CBI.NumIndirectDests; 962 } 963 964 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, 965 Instruction *InsertPt) { 966 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); 967 968 auto *NewCBI = CallBrInst::Create( 969 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(), 970 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt); 971 NewCBI->setCallingConv(CBI->getCallingConv()); 972 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; 973 NewCBI->setAttributes(CBI->getAttributes()); 974 NewCBI->setDebugLoc(CBI->getDebugLoc()); 975 NewCBI->NumIndirectDests = CBI->NumIndirectDests; 976 return NewCBI; 977 } 978 979 //===----------------------------------------------------------------------===// 980 // ReturnInst Implementation 981 //===----------------------------------------------------------------------===// 982 983 ReturnInst::ReturnInst(const ReturnInst &RI) 984 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, 985 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), 986 RI.getNumOperands()) { 987 if (RI.getNumOperands()) 988 Op<0>() = RI.Op<0>(); 989 SubclassOptionalData = RI.SubclassOptionalData; 990 } 991 992 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 993 : Instruction(Type::getVoidTy(C), Instruction::Ret, 994 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 995 InsertBefore) { 996 if (retVal) 997 Op<0>() = retVal; 998 } 999 1000 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 1001 : Instruction(Type::getVoidTy(C), Instruction::Ret, 1002 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 1003 InsertAtEnd) { 1004 if (retVal) 1005 Op<0>() = retVal; 1006 } 1007 1008 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1009 : Instruction(Type::getVoidTy(Context), Instruction::Ret, 1010 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {} 1011 1012 //===----------------------------------------------------------------------===// 1013 // ResumeInst Implementation 1014 //===----------------------------------------------------------------------===// 1015 1016 ResumeInst::ResumeInst(const ResumeInst &RI) 1017 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, 1018 OperandTraits<ResumeInst>::op_begin(this), 1) { 1019 Op<0>() = RI.Op<0>(); 1020 } 1021 1022 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 1023 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 1024 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 1025 Op<0>() = Exn; 1026 } 1027 1028 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 1029 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 1030 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 1031 Op<0>() = Exn; 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // CleanupReturnInst Implementation 1036 //===----------------------------------------------------------------------===// 1037 1038 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 1039 : Instruction(CRI.getType(), Instruction::CleanupRet, 1040 OperandTraits<CleanupReturnInst>::op_end(this) - 1041 CRI.getNumOperands(), 1042 CRI.getNumOperands()) { 1043 setSubclassData<Instruction::OpaqueField>( 1044 CRI.getSubclassData<Instruction::OpaqueField>()); 1045 Op<0>() = CRI.Op<0>(); 1046 if (CRI.hasUnwindDest()) 1047 Op<1>() = CRI.Op<1>(); 1048 } 1049 1050 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 1051 if (UnwindBB) 1052 setSubclassData<UnwindDestField>(true); 1053 1054 Op<0>() = CleanupPad; 1055 if (UnwindBB) 1056 Op<1>() = UnwindBB; 1057 } 1058 1059 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 1060 unsigned Values, Instruction *InsertBefore) 1061 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 1062 Instruction::CleanupRet, 1063 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 1064 Values, InsertBefore) { 1065 init(CleanupPad, UnwindBB); 1066 } 1067 1068 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 1069 unsigned Values, BasicBlock *InsertAtEnd) 1070 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 1071 Instruction::CleanupRet, 1072 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 1073 Values, InsertAtEnd) { 1074 init(CleanupPad, UnwindBB); 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // CatchReturnInst Implementation 1079 //===----------------------------------------------------------------------===// 1080 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 1081 Op<0>() = CatchPad; 1082 Op<1>() = BB; 1083 } 1084 1085 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 1086 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 1087 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 1088 Op<0>() = CRI.Op<0>(); 1089 Op<1>() = CRI.Op<1>(); 1090 } 1091 1092 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1093 Instruction *InsertBefore) 1094 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1095 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1096 InsertBefore) { 1097 init(CatchPad, BB); 1098 } 1099 1100 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1101 BasicBlock *InsertAtEnd) 1102 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1103 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1104 InsertAtEnd) { 1105 init(CatchPad, BB); 1106 } 1107 1108 //===----------------------------------------------------------------------===// 1109 // CatchSwitchInst Implementation 1110 //===----------------------------------------------------------------------===// 1111 1112 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1113 unsigned NumReservedValues, 1114 const Twine &NameStr, 1115 Instruction *InsertBefore) 1116 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1117 InsertBefore) { 1118 if (UnwindDest) 1119 ++NumReservedValues; 1120 init(ParentPad, UnwindDest, NumReservedValues + 1); 1121 setName(NameStr); 1122 } 1123 1124 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1125 unsigned NumReservedValues, 1126 const Twine &NameStr, BasicBlock *InsertAtEnd) 1127 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1128 InsertAtEnd) { 1129 if (UnwindDest) 1130 ++NumReservedValues; 1131 init(ParentPad, UnwindDest, NumReservedValues + 1); 1132 setName(NameStr); 1133 } 1134 1135 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 1136 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, 1137 CSI.getNumOperands()) { 1138 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 1139 setNumHungOffUseOperands(ReservedSpace); 1140 Use *OL = getOperandList(); 1141 const Use *InOL = CSI.getOperandList(); 1142 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 1143 OL[I] = InOL[I]; 1144 } 1145 1146 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 1147 unsigned NumReservedValues) { 1148 assert(ParentPad && NumReservedValues); 1149 1150 ReservedSpace = NumReservedValues; 1151 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 1152 allocHungoffUses(ReservedSpace); 1153 1154 Op<0>() = ParentPad; 1155 if (UnwindDest) { 1156 setSubclassData<UnwindDestField>(true); 1157 setUnwindDest(UnwindDest); 1158 } 1159 } 1160 1161 /// growOperands - grow operands - This grows the operand list in response to a 1162 /// push_back style of operation. This grows the number of ops by 2 times. 1163 void CatchSwitchInst::growOperands(unsigned Size) { 1164 unsigned NumOperands = getNumOperands(); 1165 assert(NumOperands >= 1); 1166 if (ReservedSpace >= NumOperands + Size) 1167 return; 1168 ReservedSpace = (NumOperands + Size / 2) * 2; 1169 growHungoffUses(ReservedSpace); 1170 } 1171 1172 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 1173 unsigned OpNo = getNumOperands(); 1174 growOperands(1); 1175 assert(OpNo < ReservedSpace && "Growing didn't work!"); 1176 setNumHungOffUseOperands(getNumOperands() + 1); 1177 getOperandList()[OpNo] = Handler; 1178 } 1179 1180 void CatchSwitchInst::removeHandler(handler_iterator HI) { 1181 // Move all subsequent handlers up one. 1182 Use *EndDst = op_end() - 1; 1183 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 1184 *CurDst = *(CurDst + 1); 1185 // Null out the last handler use. 1186 *EndDst = nullptr; 1187 1188 setNumHungOffUseOperands(getNumOperands() - 1); 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // FuncletPadInst Implementation 1193 //===----------------------------------------------------------------------===// 1194 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1195 const Twine &NameStr) { 1196 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1197 llvm::copy(Args, op_begin()); 1198 setParentPad(ParentPad); 1199 setName(NameStr); 1200 } 1201 1202 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1203 : Instruction(FPI.getType(), FPI.getOpcode(), 1204 OperandTraits<FuncletPadInst>::op_end(this) - 1205 FPI.getNumOperands(), 1206 FPI.getNumOperands()) { 1207 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1208 setParentPad(FPI.getParentPad()); 1209 } 1210 1211 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1212 ArrayRef<Value *> Args, unsigned Values, 1213 const Twine &NameStr, Instruction *InsertBefore) 1214 : Instruction(ParentPad->getType(), Op, 1215 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1216 InsertBefore) { 1217 init(ParentPad, Args, NameStr); 1218 } 1219 1220 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1221 ArrayRef<Value *> Args, unsigned Values, 1222 const Twine &NameStr, BasicBlock *InsertAtEnd) 1223 : Instruction(ParentPad->getType(), Op, 1224 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1225 InsertAtEnd) { 1226 init(ParentPad, Args, NameStr); 1227 } 1228 1229 //===----------------------------------------------------------------------===// 1230 // UnreachableInst Implementation 1231 //===----------------------------------------------------------------------===// 1232 1233 UnreachableInst::UnreachableInst(LLVMContext &Context, 1234 Instruction *InsertBefore) 1235 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1236 0, InsertBefore) {} 1237 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1238 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1239 0, InsertAtEnd) {} 1240 1241 //===----------------------------------------------------------------------===// 1242 // BranchInst Implementation 1243 //===----------------------------------------------------------------------===// 1244 1245 void BranchInst::AssertOK() { 1246 if (isConditional()) 1247 assert(getCondition()->getType()->isIntegerTy(1) && 1248 "May only branch on boolean predicates!"); 1249 } 1250 1251 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1252 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1253 OperandTraits<BranchInst>::op_end(this) - 1, 1, 1254 InsertBefore) { 1255 assert(IfTrue && "Branch destination may not be null!"); 1256 Op<-1>() = IfTrue; 1257 } 1258 1259 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1260 Instruction *InsertBefore) 1261 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1262 OperandTraits<BranchInst>::op_end(this) - 3, 3, 1263 InsertBefore) { 1264 // Assign in order of operand index to make use-list order predictable. 1265 Op<-3>() = Cond; 1266 Op<-2>() = IfFalse; 1267 Op<-1>() = IfTrue; 1268 #ifndef NDEBUG 1269 AssertOK(); 1270 #endif 1271 } 1272 1273 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1274 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1275 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { 1276 assert(IfTrue && "Branch destination may not be null!"); 1277 Op<-1>() = IfTrue; 1278 } 1279 1280 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1281 BasicBlock *InsertAtEnd) 1282 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1283 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { 1284 // Assign in order of operand index to make use-list order predictable. 1285 Op<-3>() = Cond; 1286 Op<-2>() = IfFalse; 1287 Op<-1>() = IfTrue; 1288 #ifndef NDEBUG 1289 AssertOK(); 1290 #endif 1291 } 1292 1293 BranchInst::BranchInst(const BranchInst &BI) 1294 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, 1295 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1296 BI.getNumOperands()) { 1297 // Assign in order of operand index to make use-list order predictable. 1298 if (BI.getNumOperands() != 1) { 1299 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1300 Op<-3>() = BI.Op<-3>(); 1301 Op<-2>() = BI.Op<-2>(); 1302 } 1303 Op<-1>() = BI.Op<-1>(); 1304 SubclassOptionalData = BI.SubclassOptionalData; 1305 } 1306 1307 void BranchInst::swapSuccessors() { 1308 assert(isConditional() && 1309 "Cannot swap successors of an unconditional branch"); 1310 Op<-1>().swap(Op<-2>()); 1311 1312 // Update profile metadata if present and it matches our structural 1313 // expectations. 1314 swapProfMetadata(); 1315 } 1316 1317 //===----------------------------------------------------------------------===// 1318 // AllocaInst Implementation 1319 //===----------------------------------------------------------------------===// 1320 1321 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1322 if (!Amt) 1323 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1324 else { 1325 assert(!isa<BasicBlock>(Amt) && 1326 "Passed basic block into allocation size parameter! Use other ctor"); 1327 assert(Amt->getType()->isIntegerTy() && 1328 "Allocation array size is not an integer!"); 1329 } 1330 return Amt; 1331 } 1332 1333 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) { 1334 assert(BB && "Insertion BB cannot be null when alignment not provided!"); 1335 assert(BB->getParent() && 1336 "BB must be in a Function when alignment not provided!"); 1337 const DataLayout &DL = BB->getModule()->getDataLayout(); 1338 return DL.getPrefTypeAlign(Ty); 1339 } 1340 1341 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) { 1342 assert(I && "Insertion position cannot be null when alignment not provided!"); 1343 return computeAllocaDefaultAlign(Ty, I->getParent()); 1344 } 1345 1346 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1347 Instruction *InsertBefore) 1348 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1349 1350 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1351 BasicBlock *InsertAtEnd) 1352 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1353 1354 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1355 const Twine &Name, Instruction *InsertBefore) 1356 : AllocaInst(Ty, AddrSpace, ArraySize, 1357 computeAllocaDefaultAlign(Ty, InsertBefore), Name, 1358 InsertBefore) {} 1359 1360 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1361 const Twine &Name, BasicBlock *InsertAtEnd) 1362 : AllocaInst(Ty, AddrSpace, ArraySize, 1363 computeAllocaDefaultAlign(Ty, InsertAtEnd), Name, 1364 InsertAtEnd) {} 1365 1366 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1367 Align Align, const Twine &Name, 1368 Instruction *InsertBefore) 1369 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1370 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1371 AllocatedType(Ty) { 1372 setAlignment(Align); 1373 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1374 setName(Name); 1375 } 1376 1377 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1378 Align Align, const Twine &Name, BasicBlock *InsertAtEnd) 1379 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1380 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1381 AllocatedType(Ty) { 1382 setAlignment(Align); 1383 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1384 setName(Name); 1385 } 1386 1387 1388 bool AllocaInst::isArrayAllocation() const { 1389 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1390 return !CI->isOne(); 1391 return true; 1392 } 1393 1394 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1395 /// function and is a constant size. If so, the code generator will fold it 1396 /// into the prolog/epilog code, so it is basically free. 1397 bool AllocaInst::isStaticAlloca() const { 1398 // Must be constant size. 1399 if (!isa<ConstantInt>(getArraySize())) return false; 1400 1401 // Must be in the entry block. 1402 const BasicBlock *Parent = getParent(); 1403 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1404 } 1405 1406 //===----------------------------------------------------------------------===// 1407 // LoadInst Implementation 1408 //===----------------------------------------------------------------------===// 1409 1410 void LoadInst::AssertOK() { 1411 assert(getOperand(0)->getType()->isPointerTy() && 1412 "Ptr must have pointer type."); 1413 assert(!(isAtomic() && getAlignment() == 0) && 1414 "Alignment required for atomic load"); 1415 } 1416 1417 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) { 1418 assert(BB && "Insertion BB cannot be null when alignment not provided!"); 1419 assert(BB->getParent() && 1420 "BB must be in a Function when alignment not provided!"); 1421 const DataLayout &DL = BB->getModule()->getDataLayout(); 1422 return DL.getABITypeAlign(Ty); 1423 } 1424 1425 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) { 1426 assert(I && "Insertion position cannot be null when alignment not provided!"); 1427 return computeLoadStoreDefaultAlign(Ty, I->getParent()); 1428 } 1429 1430 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1431 Instruction *InsertBef) 1432 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1433 1434 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1435 BasicBlock *InsertAE) 1436 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1437 1438 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1439 Instruction *InsertBef) 1440 : LoadInst(Ty, Ptr, Name, isVolatile, 1441 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {} 1442 1443 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1444 BasicBlock *InsertAE) 1445 : LoadInst(Ty, Ptr, Name, isVolatile, 1446 computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {} 1447 1448 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1449 Align Align, Instruction *InsertBef) 1450 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1451 SyncScope::System, InsertBef) {} 1452 1453 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1454 Align Align, BasicBlock *InsertAE) 1455 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1456 SyncScope::System, InsertAE) {} 1457 1458 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1459 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1460 Instruction *InsertBef) 1461 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1462 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty)); 1463 setVolatile(isVolatile); 1464 setAlignment(Align); 1465 setAtomic(Order, SSID); 1466 AssertOK(); 1467 setName(Name); 1468 } 1469 1470 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1471 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1472 BasicBlock *InsertAE) 1473 : UnaryInstruction(Ty, Load, Ptr, InsertAE) { 1474 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty)); 1475 setVolatile(isVolatile); 1476 setAlignment(Align); 1477 setAtomic(Order, SSID); 1478 AssertOK(); 1479 setName(Name); 1480 } 1481 1482 //===----------------------------------------------------------------------===// 1483 // StoreInst Implementation 1484 //===----------------------------------------------------------------------===// 1485 1486 void StoreInst::AssertOK() { 1487 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1488 assert(getOperand(1)->getType()->isPointerTy() && 1489 "Ptr must have pointer type!"); 1490 assert(cast<PointerType>(getOperand(1)->getType()) 1491 ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) && 1492 "Ptr must be a pointer to Val type!"); 1493 assert(!(isAtomic() && getAlignment() == 0) && 1494 "Alignment required for atomic store"); 1495 } 1496 1497 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1498 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1499 1500 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1501 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1502 1503 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1504 Instruction *InsertBefore) 1505 : StoreInst(val, addr, isVolatile, 1506 computeLoadStoreDefaultAlign(val->getType(), InsertBefore), 1507 InsertBefore) {} 1508 1509 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1510 BasicBlock *InsertAtEnd) 1511 : StoreInst(val, addr, isVolatile, 1512 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd), 1513 InsertAtEnd) {} 1514 1515 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1516 Instruction *InsertBefore) 1517 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1518 SyncScope::System, InsertBefore) {} 1519 1520 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1521 BasicBlock *InsertAtEnd) 1522 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1523 SyncScope::System, InsertAtEnd) {} 1524 1525 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1526 AtomicOrdering Order, SyncScope::ID SSID, 1527 Instruction *InsertBefore) 1528 : Instruction(Type::getVoidTy(val->getContext()), Store, 1529 OperandTraits<StoreInst>::op_begin(this), 1530 OperandTraits<StoreInst>::operands(this), InsertBefore) { 1531 Op<0>() = val; 1532 Op<1>() = addr; 1533 setVolatile(isVolatile); 1534 setAlignment(Align); 1535 setAtomic(Order, SSID); 1536 AssertOK(); 1537 } 1538 1539 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1540 AtomicOrdering Order, SyncScope::ID SSID, 1541 BasicBlock *InsertAtEnd) 1542 : Instruction(Type::getVoidTy(val->getContext()), Store, 1543 OperandTraits<StoreInst>::op_begin(this), 1544 OperandTraits<StoreInst>::operands(this), InsertAtEnd) { 1545 Op<0>() = val; 1546 Op<1>() = addr; 1547 setVolatile(isVolatile); 1548 setAlignment(Align); 1549 setAtomic(Order, SSID); 1550 AssertOK(); 1551 } 1552 1553 1554 //===----------------------------------------------------------------------===// 1555 // AtomicCmpXchgInst Implementation 1556 //===----------------------------------------------------------------------===// 1557 1558 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1559 Align Alignment, AtomicOrdering SuccessOrdering, 1560 AtomicOrdering FailureOrdering, 1561 SyncScope::ID SSID) { 1562 Op<0>() = Ptr; 1563 Op<1>() = Cmp; 1564 Op<2>() = NewVal; 1565 setSuccessOrdering(SuccessOrdering); 1566 setFailureOrdering(FailureOrdering); 1567 setSyncScopeID(SSID); 1568 setAlignment(Alignment); 1569 1570 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1571 "All operands must be non-null!"); 1572 assert(getOperand(0)->getType()->isPointerTy() && 1573 "Ptr must have pointer type!"); 1574 assert(cast<PointerType>(getOperand(0)->getType()) 1575 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) && 1576 "Ptr must be a pointer to Cmp type!"); 1577 assert(cast<PointerType>(getOperand(0)->getType()) 1578 ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) && 1579 "Ptr must be a pointer to NewVal type!"); 1580 assert(getOperand(1)->getType() == getOperand(2)->getType() && 1581 "Cmp type and NewVal type must be same!"); 1582 } 1583 1584 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1585 Align Alignment, 1586 AtomicOrdering SuccessOrdering, 1587 AtomicOrdering FailureOrdering, 1588 SyncScope::ID SSID, 1589 Instruction *InsertBefore) 1590 : Instruction( 1591 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1592 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1593 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1594 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1595 } 1596 1597 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1598 Align Alignment, 1599 AtomicOrdering SuccessOrdering, 1600 AtomicOrdering FailureOrdering, 1601 SyncScope::ID SSID, 1602 BasicBlock *InsertAtEnd) 1603 : Instruction( 1604 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1605 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1606 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1607 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1608 } 1609 1610 //===----------------------------------------------------------------------===// 1611 // AtomicRMWInst Implementation 1612 //===----------------------------------------------------------------------===// 1613 1614 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1615 Align Alignment, AtomicOrdering Ordering, 1616 SyncScope::ID SSID) { 1617 Op<0>() = Ptr; 1618 Op<1>() = Val; 1619 setOperation(Operation); 1620 setOrdering(Ordering); 1621 setSyncScopeID(SSID); 1622 setAlignment(Alignment); 1623 1624 assert(getOperand(0) && getOperand(1) && 1625 "All operands must be non-null!"); 1626 assert(getOperand(0)->getType()->isPointerTy() && 1627 "Ptr must have pointer type!"); 1628 assert(cast<PointerType>(getOperand(0)->getType()) 1629 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) && 1630 "Ptr must be a pointer to Val type!"); 1631 assert(Ordering != AtomicOrdering::NotAtomic && 1632 "AtomicRMW instructions must be atomic!"); 1633 } 1634 1635 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1636 Align Alignment, AtomicOrdering Ordering, 1637 SyncScope::ID SSID, Instruction *InsertBefore) 1638 : Instruction(Val->getType(), AtomicRMW, 1639 OperandTraits<AtomicRMWInst>::op_begin(this), 1640 OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) { 1641 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1642 } 1643 1644 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1645 Align Alignment, AtomicOrdering Ordering, 1646 SyncScope::ID SSID, BasicBlock *InsertAtEnd) 1647 : Instruction(Val->getType(), AtomicRMW, 1648 OperandTraits<AtomicRMWInst>::op_begin(this), 1649 OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) { 1650 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1651 } 1652 1653 StringRef AtomicRMWInst::getOperationName(BinOp Op) { 1654 switch (Op) { 1655 case AtomicRMWInst::Xchg: 1656 return "xchg"; 1657 case AtomicRMWInst::Add: 1658 return "add"; 1659 case AtomicRMWInst::Sub: 1660 return "sub"; 1661 case AtomicRMWInst::And: 1662 return "and"; 1663 case AtomicRMWInst::Nand: 1664 return "nand"; 1665 case AtomicRMWInst::Or: 1666 return "or"; 1667 case AtomicRMWInst::Xor: 1668 return "xor"; 1669 case AtomicRMWInst::Max: 1670 return "max"; 1671 case AtomicRMWInst::Min: 1672 return "min"; 1673 case AtomicRMWInst::UMax: 1674 return "umax"; 1675 case AtomicRMWInst::UMin: 1676 return "umin"; 1677 case AtomicRMWInst::FAdd: 1678 return "fadd"; 1679 case AtomicRMWInst::FSub: 1680 return "fsub"; 1681 case AtomicRMWInst::BAD_BINOP: 1682 return "<invalid operation>"; 1683 } 1684 1685 llvm_unreachable("invalid atomicrmw operation"); 1686 } 1687 1688 //===----------------------------------------------------------------------===// 1689 // FenceInst Implementation 1690 //===----------------------------------------------------------------------===// 1691 1692 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1693 SyncScope::ID SSID, 1694 Instruction *InsertBefore) 1695 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1696 setOrdering(Ordering); 1697 setSyncScopeID(SSID); 1698 } 1699 1700 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1701 SyncScope::ID SSID, 1702 BasicBlock *InsertAtEnd) 1703 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1704 setOrdering(Ordering); 1705 setSyncScopeID(SSID); 1706 } 1707 1708 //===----------------------------------------------------------------------===// 1709 // GetElementPtrInst Implementation 1710 //===----------------------------------------------------------------------===// 1711 1712 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1713 const Twine &Name) { 1714 assert(getNumOperands() == 1 + IdxList.size() && 1715 "NumOperands not initialized?"); 1716 Op<0>() = Ptr; 1717 llvm::copy(IdxList, op_begin() + 1); 1718 setName(Name); 1719 } 1720 1721 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1722 : Instruction(GEPI.getType(), GetElementPtr, 1723 OperandTraits<GetElementPtrInst>::op_end(this) - 1724 GEPI.getNumOperands(), 1725 GEPI.getNumOperands()), 1726 SourceElementType(GEPI.SourceElementType), 1727 ResultElementType(GEPI.ResultElementType) { 1728 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1729 SubclassOptionalData = GEPI.SubclassOptionalData; 1730 } 1731 1732 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) { 1733 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1734 if (!Struct->indexValid(Idx)) 1735 return nullptr; 1736 return Struct->getTypeAtIndex(Idx); 1737 } 1738 if (!Idx->getType()->isIntOrIntVectorTy()) 1739 return nullptr; 1740 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1741 return Array->getElementType(); 1742 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1743 return Vector->getElementType(); 1744 return nullptr; 1745 } 1746 1747 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) { 1748 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1749 if (Idx >= Struct->getNumElements()) 1750 return nullptr; 1751 return Struct->getElementType(Idx); 1752 } 1753 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1754 return Array->getElementType(); 1755 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1756 return Vector->getElementType(); 1757 return nullptr; 1758 } 1759 1760 template <typename IndexTy> 1761 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) { 1762 if (IdxList.empty()) 1763 return Ty; 1764 for (IndexTy V : IdxList.slice(1)) { 1765 Ty = GetElementPtrInst::getTypeAtIndex(Ty, V); 1766 if (!Ty) 1767 return Ty; 1768 } 1769 return Ty; 1770 } 1771 1772 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1773 return getIndexedTypeInternal(Ty, IdxList); 1774 } 1775 1776 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1777 ArrayRef<Constant *> IdxList) { 1778 return getIndexedTypeInternal(Ty, IdxList); 1779 } 1780 1781 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1782 return getIndexedTypeInternal(Ty, IdxList); 1783 } 1784 1785 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1786 /// zeros. If so, the result pointer and the first operand have the same 1787 /// value, just potentially different types. 1788 bool GetElementPtrInst::hasAllZeroIndices() const { 1789 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1790 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1791 if (!CI->isZero()) return false; 1792 } else { 1793 return false; 1794 } 1795 } 1796 return true; 1797 } 1798 1799 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1800 /// constant integers. If so, the result pointer and the first operand have 1801 /// a constant offset between them. 1802 bool GetElementPtrInst::hasAllConstantIndices() const { 1803 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1804 if (!isa<ConstantInt>(getOperand(i))) 1805 return false; 1806 } 1807 return true; 1808 } 1809 1810 void GetElementPtrInst::setIsInBounds(bool B) { 1811 cast<GEPOperator>(this)->setIsInBounds(B); 1812 } 1813 1814 bool GetElementPtrInst::isInBounds() const { 1815 return cast<GEPOperator>(this)->isInBounds(); 1816 } 1817 1818 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1819 APInt &Offset) const { 1820 // Delegate to the generic GEPOperator implementation. 1821 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1822 } 1823 1824 bool GetElementPtrInst::collectOffset( 1825 const DataLayout &DL, unsigned BitWidth, 1826 MapVector<Value *, APInt> &VariableOffsets, 1827 APInt &ConstantOffset) const { 1828 // Delegate to the generic GEPOperator implementation. 1829 return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets, 1830 ConstantOffset); 1831 } 1832 1833 //===----------------------------------------------------------------------===// 1834 // ExtractElementInst Implementation 1835 //===----------------------------------------------------------------------===// 1836 1837 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1838 const Twine &Name, 1839 Instruction *InsertBef) 1840 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1841 ExtractElement, 1842 OperandTraits<ExtractElementInst>::op_begin(this), 1843 2, InsertBef) { 1844 assert(isValidOperands(Val, Index) && 1845 "Invalid extractelement instruction operands!"); 1846 Op<0>() = Val; 1847 Op<1>() = Index; 1848 setName(Name); 1849 } 1850 1851 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1852 const Twine &Name, 1853 BasicBlock *InsertAE) 1854 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1855 ExtractElement, 1856 OperandTraits<ExtractElementInst>::op_begin(this), 1857 2, InsertAE) { 1858 assert(isValidOperands(Val, Index) && 1859 "Invalid extractelement instruction operands!"); 1860 1861 Op<0>() = Val; 1862 Op<1>() = Index; 1863 setName(Name); 1864 } 1865 1866 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1867 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1868 return false; 1869 return true; 1870 } 1871 1872 //===----------------------------------------------------------------------===// 1873 // InsertElementInst Implementation 1874 //===----------------------------------------------------------------------===// 1875 1876 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1877 const Twine &Name, 1878 Instruction *InsertBef) 1879 : Instruction(Vec->getType(), InsertElement, 1880 OperandTraits<InsertElementInst>::op_begin(this), 1881 3, InsertBef) { 1882 assert(isValidOperands(Vec, Elt, Index) && 1883 "Invalid insertelement instruction operands!"); 1884 Op<0>() = Vec; 1885 Op<1>() = Elt; 1886 Op<2>() = Index; 1887 setName(Name); 1888 } 1889 1890 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1891 const Twine &Name, 1892 BasicBlock *InsertAE) 1893 : Instruction(Vec->getType(), InsertElement, 1894 OperandTraits<InsertElementInst>::op_begin(this), 1895 3, InsertAE) { 1896 assert(isValidOperands(Vec, Elt, Index) && 1897 "Invalid insertelement instruction operands!"); 1898 1899 Op<0>() = Vec; 1900 Op<1>() = Elt; 1901 Op<2>() = Index; 1902 setName(Name); 1903 } 1904 1905 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1906 const Value *Index) { 1907 if (!Vec->getType()->isVectorTy()) 1908 return false; // First operand of insertelement must be vector type. 1909 1910 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1911 return false;// Second operand of insertelement must be vector element type. 1912 1913 if (!Index->getType()->isIntegerTy()) 1914 return false; // Third operand of insertelement must be i32. 1915 return true; 1916 } 1917 1918 //===----------------------------------------------------------------------===// 1919 // ShuffleVectorInst Implementation 1920 //===----------------------------------------------------------------------===// 1921 1922 static Value *createPlaceholderForShuffleVector(Value *V) { 1923 assert(V && "Cannot create placeholder of nullptr V"); 1924 return PoisonValue::get(V->getType()); 1925 } 1926 1927 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name, 1928 Instruction *InsertBefore) 1929 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1930 InsertBefore) {} 1931 1932 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name, 1933 BasicBlock *InsertAtEnd) 1934 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1935 InsertAtEnd) {} 1936 1937 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, 1938 const Twine &Name, 1939 Instruction *InsertBefore) 1940 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1941 InsertBefore) {} 1942 1943 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, 1944 const Twine &Name, BasicBlock *InsertAtEnd) 1945 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1946 InsertAtEnd) {} 1947 1948 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1949 const Twine &Name, 1950 Instruction *InsertBefore) 1951 : Instruction( 1952 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1953 cast<VectorType>(Mask->getType())->getElementCount()), 1954 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1955 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1956 assert(isValidOperands(V1, V2, Mask) && 1957 "Invalid shuffle vector instruction operands!"); 1958 1959 Op<0>() = V1; 1960 Op<1>() = V2; 1961 SmallVector<int, 16> MaskArr; 1962 getShuffleMask(cast<Constant>(Mask), MaskArr); 1963 setShuffleMask(MaskArr); 1964 setName(Name); 1965 } 1966 1967 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1968 const Twine &Name, BasicBlock *InsertAtEnd) 1969 : Instruction( 1970 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1971 cast<VectorType>(Mask->getType())->getElementCount()), 1972 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1973 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { 1974 assert(isValidOperands(V1, V2, Mask) && 1975 "Invalid shuffle vector instruction operands!"); 1976 1977 Op<0>() = V1; 1978 Op<1>() = V2; 1979 SmallVector<int, 16> MaskArr; 1980 getShuffleMask(cast<Constant>(Mask), MaskArr); 1981 setShuffleMask(MaskArr); 1982 setName(Name); 1983 } 1984 1985 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 1986 const Twine &Name, 1987 Instruction *InsertBefore) 1988 : Instruction( 1989 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1990 Mask.size(), isa<ScalableVectorType>(V1->getType())), 1991 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1992 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1993 assert(isValidOperands(V1, V2, Mask) && 1994 "Invalid shuffle vector instruction operands!"); 1995 Op<0>() = V1; 1996 Op<1>() = V2; 1997 setShuffleMask(Mask); 1998 setName(Name); 1999 } 2000 2001 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 2002 const Twine &Name, BasicBlock *InsertAtEnd) 2003 : Instruction( 2004 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 2005 Mask.size(), isa<ScalableVectorType>(V1->getType())), 2006 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 2007 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { 2008 assert(isValidOperands(V1, V2, Mask) && 2009 "Invalid shuffle vector instruction operands!"); 2010 2011 Op<0>() = V1; 2012 Op<1>() = V2; 2013 setShuffleMask(Mask); 2014 setName(Name); 2015 } 2016 2017 void ShuffleVectorInst::commute() { 2018 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2019 int NumMaskElts = ShuffleMask.size(); 2020 SmallVector<int, 16> NewMask(NumMaskElts); 2021 for (int i = 0; i != NumMaskElts; ++i) { 2022 int MaskElt = getMaskValue(i); 2023 if (MaskElt == UndefMaskElem) { 2024 NewMask[i] = UndefMaskElem; 2025 continue; 2026 } 2027 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask"); 2028 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts; 2029 NewMask[i] = MaskElt; 2030 } 2031 setShuffleMask(NewMask); 2032 Op<0>().swap(Op<1>()); 2033 } 2034 2035 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 2036 ArrayRef<int> Mask) { 2037 // V1 and V2 must be vectors of the same type. 2038 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType()) 2039 return false; 2040 2041 // Make sure the mask elements make sense. 2042 int V1Size = 2043 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 2044 for (int Elem : Mask) 2045 if (Elem != UndefMaskElem && Elem >= V1Size * 2) 2046 return false; 2047 2048 if (isa<ScalableVectorType>(V1->getType())) 2049 if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask)) 2050 return false; 2051 2052 return true; 2053 } 2054 2055 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 2056 const Value *Mask) { 2057 // V1 and V2 must be vectors of the same type. 2058 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 2059 return false; 2060 2061 // Mask must be vector of i32, and must be the same kind of vector as the 2062 // input vectors 2063 auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); 2064 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) || 2065 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType())) 2066 return false; 2067 2068 // Check to see if Mask is valid. 2069 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 2070 return true; 2071 2072 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { 2073 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 2074 for (Value *Op : MV->operands()) { 2075 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 2076 if (CI->uge(V1Size*2)) 2077 return false; 2078 } else if (!isa<UndefValue>(Op)) { 2079 return false; 2080 } 2081 } 2082 return true; 2083 } 2084 2085 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 2086 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 2087 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements(); 2088 i != e; ++i) 2089 if (CDS->getElementAsInteger(i) >= V1Size*2) 2090 return false; 2091 return true; 2092 } 2093 2094 return false; 2095 } 2096 2097 void ShuffleVectorInst::getShuffleMask(const Constant *Mask, 2098 SmallVectorImpl<int> &Result) { 2099 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount(); 2100 2101 if (isa<ConstantAggregateZero>(Mask)) { 2102 Result.resize(EC.getKnownMinValue(), 0); 2103 return; 2104 } 2105 2106 Result.reserve(EC.getKnownMinValue()); 2107 2108 if (EC.isScalable()) { 2109 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) && 2110 "Scalable vector shuffle mask must be undef or zeroinitializer"); 2111 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0; 2112 for (unsigned I = 0; I < EC.getKnownMinValue(); ++I) 2113 Result.emplace_back(MaskVal); 2114 return; 2115 } 2116 2117 unsigned NumElts = EC.getKnownMinValue(); 2118 2119 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 2120 for (unsigned i = 0; i != NumElts; ++i) 2121 Result.push_back(CDS->getElementAsInteger(i)); 2122 return; 2123 } 2124 for (unsigned i = 0; i != NumElts; ++i) { 2125 Constant *C = Mask->getAggregateElement(i); 2126 Result.push_back(isa<UndefValue>(C) ? -1 : 2127 cast<ConstantInt>(C)->getZExtValue()); 2128 } 2129 } 2130 2131 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) { 2132 ShuffleMask.assign(Mask.begin(), Mask.end()); 2133 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType()); 2134 } 2135 2136 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask, 2137 Type *ResultTy) { 2138 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext()); 2139 if (isa<ScalableVectorType>(ResultTy)) { 2140 assert(is_splat(Mask) && "Unexpected shuffle"); 2141 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true); 2142 if (Mask[0] == 0) 2143 return Constant::getNullValue(VecTy); 2144 return UndefValue::get(VecTy); 2145 } 2146 SmallVector<Constant *, 16> MaskConst; 2147 for (int Elem : Mask) { 2148 if (Elem == UndefMaskElem) 2149 MaskConst.push_back(UndefValue::get(Int32Ty)); 2150 else 2151 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem)); 2152 } 2153 return ConstantVector::get(MaskConst); 2154 } 2155 2156 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 2157 assert(!Mask.empty() && "Shuffle mask must contain elements"); 2158 bool UsesLHS = false; 2159 bool UsesRHS = false; 2160 for (int I : Mask) { 2161 if (I == -1) 2162 continue; 2163 assert(I >= 0 && I < (NumOpElts * 2) && 2164 "Out-of-bounds shuffle mask element"); 2165 UsesLHS |= (I < NumOpElts); 2166 UsesRHS |= (I >= NumOpElts); 2167 if (UsesLHS && UsesRHS) 2168 return false; 2169 } 2170 // Allow for degenerate case: completely undef mask means neither source is used. 2171 return UsesLHS || UsesRHS; 2172 } 2173 2174 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { 2175 // We don't have vector operand size information, so assume operands are the 2176 // same size as the mask. 2177 return isSingleSourceMaskImpl(Mask, Mask.size()); 2178 } 2179 2180 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 2181 if (!isSingleSourceMaskImpl(Mask, NumOpElts)) 2182 return false; 2183 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 2184 if (Mask[i] == -1) 2185 continue; 2186 if (Mask[i] != i && Mask[i] != (NumOpElts + i)) 2187 return false; 2188 } 2189 return true; 2190 } 2191 2192 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { 2193 // We don't have vector operand size information, so assume operands are the 2194 // same size as the mask. 2195 return isIdentityMaskImpl(Mask, Mask.size()); 2196 } 2197 2198 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { 2199 if (!isSingleSourceMask(Mask)) 2200 return false; 2201 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2202 if (Mask[i] == -1) 2203 continue; 2204 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) 2205 return false; 2206 } 2207 return true; 2208 } 2209 2210 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { 2211 if (!isSingleSourceMask(Mask)) 2212 return false; 2213 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2214 if (Mask[i] == -1) 2215 continue; 2216 if (Mask[i] != 0 && Mask[i] != NumElts) 2217 return false; 2218 } 2219 return true; 2220 } 2221 2222 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { 2223 // Select is differentiated from identity. It requires using both sources. 2224 if (isSingleSourceMask(Mask)) 2225 return false; 2226 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2227 if (Mask[i] == -1) 2228 continue; 2229 if (Mask[i] != i && Mask[i] != (NumElts + i)) 2230 return false; 2231 } 2232 return true; 2233 } 2234 2235 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { 2236 // Example masks that will return true: 2237 // v1 = <a, b, c, d> 2238 // v2 = <e, f, g, h> 2239 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> 2240 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> 2241 2242 // 1. The number of elements in the mask must be a power-of-2 and at least 2. 2243 int NumElts = Mask.size(); 2244 if (NumElts < 2 || !isPowerOf2_32(NumElts)) 2245 return false; 2246 2247 // 2. The first element of the mask must be either a 0 or a 1. 2248 if (Mask[0] != 0 && Mask[0] != 1) 2249 return false; 2250 2251 // 3. The difference between the first 2 elements must be equal to the 2252 // number of elements in the mask. 2253 if ((Mask[1] - Mask[0]) != NumElts) 2254 return false; 2255 2256 // 4. The difference between consecutive even-numbered and odd-numbered 2257 // elements must be equal to 2. 2258 for (int i = 2; i < NumElts; ++i) { 2259 int MaskEltVal = Mask[i]; 2260 if (MaskEltVal == -1) 2261 return false; 2262 int MaskEltPrevVal = Mask[i - 2]; 2263 if (MaskEltVal - MaskEltPrevVal != 2) 2264 return false; 2265 } 2266 return true; 2267 } 2268 2269 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, 2270 int NumSrcElts, int &Index) { 2271 // Must extract from a single source. 2272 if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) 2273 return false; 2274 2275 // Must be smaller (else this is an Identity shuffle). 2276 if (NumSrcElts <= (int)Mask.size()) 2277 return false; 2278 2279 // Find start of extraction, accounting that we may start with an UNDEF. 2280 int SubIndex = -1; 2281 for (int i = 0, e = Mask.size(); i != e; ++i) { 2282 int M = Mask[i]; 2283 if (M < 0) 2284 continue; 2285 int Offset = (M % NumSrcElts) - i; 2286 if (0 <= SubIndex && SubIndex != Offset) 2287 return false; 2288 SubIndex = Offset; 2289 } 2290 2291 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) { 2292 Index = SubIndex; 2293 return true; 2294 } 2295 return false; 2296 } 2297 2298 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask, 2299 int NumSrcElts, int &NumSubElts, 2300 int &Index) { 2301 int NumMaskElts = Mask.size(); 2302 2303 // Don't try to match if we're shuffling to a smaller size. 2304 if (NumMaskElts < NumSrcElts) 2305 return false; 2306 2307 // TODO: We don't recognize self-insertion/widening. 2308 if (isSingleSourceMaskImpl(Mask, NumSrcElts)) 2309 return false; 2310 2311 // Determine which mask elements are attributed to which source. 2312 APInt UndefElts = APInt::getZero(NumMaskElts); 2313 APInt Src0Elts = APInt::getZero(NumMaskElts); 2314 APInt Src1Elts = APInt::getZero(NumMaskElts); 2315 bool Src0Identity = true; 2316 bool Src1Identity = true; 2317 2318 for (int i = 0; i != NumMaskElts; ++i) { 2319 int M = Mask[i]; 2320 if (M < 0) { 2321 UndefElts.setBit(i); 2322 continue; 2323 } 2324 if (M < NumSrcElts) { 2325 Src0Elts.setBit(i); 2326 Src0Identity &= (M == i); 2327 continue; 2328 } 2329 Src1Elts.setBit(i); 2330 Src1Identity &= (M == (i + NumSrcElts)); 2331 continue; 2332 } 2333 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() && 2334 "unknown shuffle elements"); 2335 assert(!Src0Elts.isZero() && !Src1Elts.isZero() && 2336 "2-source shuffle not found"); 2337 2338 // Determine lo/hi span ranges. 2339 // TODO: How should we handle undefs at the start of subvector insertions? 2340 int Src0Lo = Src0Elts.countTrailingZeros(); 2341 int Src1Lo = Src1Elts.countTrailingZeros(); 2342 int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros(); 2343 int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros(); 2344 2345 // If src0 is in place, see if the src1 elements is inplace within its own 2346 // span. 2347 if (Src0Identity) { 2348 int NumSub1Elts = Src1Hi - Src1Lo; 2349 ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts); 2350 if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) { 2351 NumSubElts = NumSub1Elts; 2352 Index = Src1Lo; 2353 return true; 2354 } 2355 } 2356 2357 // If src1 is in place, see if the src0 elements is inplace within its own 2358 // span. 2359 if (Src1Identity) { 2360 int NumSub0Elts = Src0Hi - Src0Lo; 2361 ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts); 2362 if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) { 2363 NumSubElts = NumSub0Elts; 2364 Index = Src0Lo; 2365 return true; 2366 } 2367 } 2368 2369 return false; 2370 } 2371 2372 bool ShuffleVectorInst::isIdentityWithPadding() const { 2373 if (isa<UndefValue>(Op<2>())) 2374 return false; 2375 2376 // FIXME: Not currently possible to express a shuffle mask for a scalable 2377 // vector for this case. 2378 if (isa<ScalableVectorType>(getType())) 2379 return false; 2380 2381 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2382 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2383 if (NumMaskElts <= NumOpElts) 2384 return false; 2385 2386 // The first part of the mask must choose elements from exactly 1 source op. 2387 ArrayRef<int> Mask = getShuffleMask(); 2388 if (!isIdentityMaskImpl(Mask, NumOpElts)) 2389 return false; 2390 2391 // All extending must be with undef elements. 2392 for (int i = NumOpElts; i < NumMaskElts; ++i) 2393 if (Mask[i] != -1) 2394 return false; 2395 2396 return true; 2397 } 2398 2399 bool ShuffleVectorInst::isIdentityWithExtract() const { 2400 if (isa<UndefValue>(Op<2>())) 2401 return false; 2402 2403 // FIXME: Not currently possible to express a shuffle mask for a scalable 2404 // vector for this case. 2405 if (isa<ScalableVectorType>(getType())) 2406 return false; 2407 2408 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2409 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2410 if (NumMaskElts >= NumOpElts) 2411 return false; 2412 2413 return isIdentityMaskImpl(getShuffleMask(), NumOpElts); 2414 } 2415 2416 bool ShuffleVectorInst::isConcat() const { 2417 // Vector concatenation is differentiated from identity with padding. 2418 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) || 2419 isa<UndefValue>(Op<2>())) 2420 return false; 2421 2422 // FIXME: Not currently possible to express a shuffle mask for a scalable 2423 // vector for this case. 2424 if (isa<ScalableVectorType>(getType())) 2425 return false; 2426 2427 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2428 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2429 if (NumMaskElts != NumOpElts * 2) 2430 return false; 2431 2432 // Use the mask length rather than the operands' vector lengths here. We 2433 // already know that the shuffle returns a vector twice as long as the inputs, 2434 // and neither of the inputs are undef vectors. If the mask picks consecutive 2435 // elements from both inputs, then this is a concatenation of the inputs. 2436 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // InsertValueInst Class 2441 //===----------------------------------------------------------------------===// 2442 2443 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2444 const Twine &Name) { 2445 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 2446 2447 // There's no fundamental reason why we require at least one index 2448 // (other than weirdness with &*IdxBegin being invalid; see 2449 // getelementptr's init routine for example). But there's no 2450 // present need to support it. 2451 assert(!Idxs.empty() && "InsertValueInst must have at least one index"); 2452 2453 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 2454 Val->getType() && "Inserted value must match indexed type!"); 2455 Op<0>() = Agg; 2456 Op<1>() = Val; 2457 2458 Indices.append(Idxs.begin(), Idxs.end()); 2459 setName(Name); 2460 } 2461 2462 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 2463 : Instruction(IVI.getType(), InsertValue, 2464 OperandTraits<InsertValueInst>::op_begin(this), 2), 2465 Indices(IVI.Indices) { 2466 Op<0>() = IVI.getOperand(0); 2467 Op<1>() = IVI.getOperand(1); 2468 SubclassOptionalData = IVI.SubclassOptionalData; 2469 } 2470 2471 //===----------------------------------------------------------------------===// 2472 // ExtractValueInst Class 2473 //===----------------------------------------------------------------------===// 2474 2475 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 2476 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 2477 2478 // There's no fundamental reason why we require at least one index. 2479 // But there's no present need to support it. 2480 assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); 2481 2482 Indices.append(Idxs.begin(), Idxs.end()); 2483 setName(Name); 2484 } 2485 2486 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 2487 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 2488 Indices(EVI.Indices) { 2489 SubclassOptionalData = EVI.SubclassOptionalData; 2490 } 2491 2492 // getIndexedType - Returns the type of the element that would be extracted 2493 // with an extractvalue instruction with the specified parameters. 2494 // 2495 // A null type is returned if the indices are invalid for the specified 2496 // pointer type. 2497 // 2498 Type *ExtractValueInst::getIndexedType(Type *Agg, 2499 ArrayRef<unsigned> Idxs) { 2500 for (unsigned Index : Idxs) { 2501 // We can't use CompositeType::indexValid(Index) here. 2502 // indexValid() always returns true for arrays because getelementptr allows 2503 // out-of-bounds indices. Since we don't allow those for extractvalue and 2504 // insertvalue we need to check array indexing manually. 2505 // Since the only other types we can index into are struct types it's just 2506 // as easy to check those manually as well. 2507 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 2508 if (Index >= AT->getNumElements()) 2509 return nullptr; 2510 Agg = AT->getElementType(); 2511 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2512 if (Index >= ST->getNumElements()) 2513 return nullptr; 2514 Agg = ST->getElementType(Index); 2515 } else { 2516 // Not a valid type to index into. 2517 return nullptr; 2518 } 2519 } 2520 return const_cast<Type*>(Agg); 2521 } 2522 2523 //===----------------------------------------------------------------------===// 2524 // UnaryOperator Class 2525 //===----------------------------------------------------------------------===// 2526 2527 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2528 Type *Ty, const Twine &Name, 2529 Instruction *InsertBefore) 2530 : UnaryInstruction(Ty, iType, S, InsertBefore) { 2531 Op<0>() = S; 2532 setName(Name); 2533 AssertOK(); 2534 } 2535 2536 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2537 Type *Ty, const Twine &Name, 2538 BasicBlock *InsertAtEnd) 2539 : UnaryInstruction(Ty, iType, S, InsertAtEnd) { 2540 Op<0>() = S; 2541 setName(Name); 2542 AssertOK(); 2543 } 2544 2545 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2546 const Twine &Name, 2547 Instruction *InsertBefore) { 2548 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); 2549 } 2550 2551 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2552 const Twine &Name, 2553 BasicBlock *InsertAtEnd) { 2554 UnaryOperator *Res = Create(Op, S, Name); 2555 InsertAtEnd->getInstList().push_back(Res); 2556 return Res; 2557 } 2558 2559 void UnaryOperator::AssertOK() { 2560 Value *LHS = getOperand(0); 2561 (void)LHS; // Silence warnings. 2562 #ifndef NDEBUG 2563 switch (getOpcode()) { 2564 case FNeg: 2565 assert(getType() == LHS->getType() && 2566 "Unary operation should return same type as operand!"); 2567 assert(getType()->isFPOrFPVectorTy() && 2568 "Tried to create a floating-point operation on a " 2569 "non-floating-point type!"); 2570 break; 2571 default: llvm_unreachable("Invalid opcode provided"); 2572 } 2573 #endif 2574 } 2575 2576 //===----------------------------------------------------------------------===// 2577 // BinaryOperator Class 2578 //===----------------------------------------------------------------------===// 2579 2580 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2581 Type *Ty, const Twine &Name, 2582 Instruction *InsertBefore) 2583 : Instruction(Ty, iType, 2584 OperandTraits<BinaryOperator>::op_begin(this), 2585 OperandTraits<BinaryOperator>::operands(this), 2586 InsertBefore) { 2587 Op<0>() = S1; 2588 Op<1>() = S2; 2589 setName(Name); 2590 AssertOK(); 2591 } 2592 2593 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2594 Type *Ty, const Twine &Name, 2595 BasicBlock *InsertAtEnd) 2596 : Instruction(Ty, iType, 2597 OperandTraits<BinaryOperator>::op_begin(this), 2598 OperandTraits<BinaryOperator>::operands(this), 2599 InsertAtEnd) { 2600 Op<0>() = S1; 2601 Op<1>() = S2; 2602 setName(Name); 2603 AssertOK(); 2604 } 2605 2606 void BinaryOperator::AssertOK() { 2607 Value *LHS = getOperand(0), *RHS = getOperand(1); 2608 (void)LHS; (void)RHS; // Silence warnings. 2609 assert(LHS->getType() == RHS->getType() && 2610 "Binary operator operand types must match!"); 2611 #ifndef NDEBUG 2612 switch (getOpcode()) { 2613 case Add: case Sub: 2614 case Mul: 2615 assert(getType() == LHS->getType() && 2616 "Arithmetic operation should return same type as operands!"); 2617 assert(getType()->isIntOrIntVectorTy() && 2618 "Tried to create an integer operation on a non-integer type!"); 2619 break; 2620 case FAdd: case FSub: 2621 case FMul: 2622 assert(getType() == LHS->getType() && 2623 "Arithmetic operation should return same type as operands!"); 2624 assert(getType()->isFPOrFPVectorTy() && 2625 "Tried to create a floating-point operation on a " 2626 "non-floating-point type!"); 2627 break; 2628 case UDiv: 2629 case SDiv: 2630 assert(getType() == LHS->getType() && 2631 "Arithmetic operation should return same type as operands!"); 2632 assert(getType()->isIntOrIntVectorTy() && 2633 "Incorrect operand type (not integer) for S/UDIV"); 2634 break; 2635 case FDiv: 2636 assert(getType() == LHS->getType() && 2637 "Arithmetic operation should return same type as operands!"); 2638 assert(getType()->isFPOrFPVectorTy() && 2639 "Incorrect operand type (not floating point) for FDIV"); 2640 break; 2641 case URem: 2642 case SRem: 2643 assert(getType() == LHS->getType() && 2644 "Arithmetic operation should return same type as operands!"); 2645 assert(getType()->isIntOrIntVectorTy() && 2646 "Incorrect operand type (not integer) for S/UREM"); 2647 break; 2648 case FRem: 2649 assert(getType() == LHS->getType() && 2650 "Arithmetic operation should return same type as operands!"); 2651 assert(getType()->isFPOrFPVectorTy() && 2652 "Incorrect operand type (not floating point) for FREM"); 2653 break; 2654 case Shl: 2655 case LShr: 2656 case AShr: 2657 assert(getType() == LHS->getType() && 2658 "Shift operation should return same type as operands!"); 2659 assert(getType()->isIntOrIntVectorTy() && 2660 "Tried to create a shift operation on a non-integral type!"); 2661 break; 2662 case And: case Or: 2663 case Xor: 2664 assert(getType() == LHS->getType() && 2665 "Logical operation should return same type as operands!"); 2666 assert(getType()->isIntOrIntVectorTy() && 2667 "Tried to create a logical operation on a non-integral type!"); 2668 break; 2669 default: llvm_unreachable("Invalid opcode provided"); 2670 } 2671 #endif 2672 } 2673 2674 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2675 const Twine &Name, 2676 Instruction *InsertBefore) { 2677 assert(S1->getType() == S2->getType() && 2678 "Cannot create binary operator with two operands of differing type!"); 2679 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2680 } 2681 2682 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2683 const Twine &Name, 2684 BasicBlock *InsertAtEnd) { 2685 BinaryOperator *Res = Create(Op, S1, S2, Name); 2686 InsertAtEnd->getInstList().push_back(Res); 2687 return Res; 2688 } 2689 2690 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2691 Instruction *InsertBefore) { 2692 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2693 return new BinaryOperator(Instruction::Sub, 2694 zero, Op, 2695 Op->getType(), Name, InsertBefore); 2696 } 2697 2698 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2699 BasicBlock *InsertAtEnd) { 2700 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2701 return new BinaryOperator(Instruction::Sub, 2702 zero, Op, 2703 Op->getType(), Name, InsertAtEnd); 2704 } 2705 2706 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2707 Instruction *InsertBefore) { 2708 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2709 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2710 } 2711 2712 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2713 BasicBlock *InsertAtEnd) { 2714 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2715 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2716 } 2717 2718 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2719 Instruction *InsertBefore) { 2720 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2721 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2722 } 2723 2724 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2725 BasicBlock *InsertAtEnd) { 2726 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2727 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2728 } 2729 2730 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2731 Instruction *InsertBefore) { 2732 Constant *C = Constant::getAllOnesValue(Op->getType()); 2733 return new BinaryOperator(Instruction::Xor, Op, C, 2734 Op->getType(), Name, InsertBefore); 2735 } 2736 2737 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2738 BasicBlock *InsertAtEnd) { 2739 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2740 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2741 Op->getType(), Name, InsertAtEnd); 2742 } 2743 2744 // Exchange the two operands to this instruction. This instruction is safe to 2745 // use on any binary instruction and does not modify the semantics of the 2746 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode 2747 // is changed. 2748 bool BinaryOperator::swapOperands() { 2749 if (!isCommutative()) 2750 return true; // Can't commute operands 2751 Op<0>().swap(Op<1>()); 2752 return false; 2753 } 2754 2755 //===----------------------------------------------------------------------===// 2756 // FPMathOperator Class 2757 //===----------------------------------------------------------------------===// 2758 2759 float FPMathOperator::getFPAccuracy() const { 2760 const MDNode *MD = 2761 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2762 if (!MD) 2763 return 0.0; 2764 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2765 return Accuracy->getValueAPF().convertToFloat(); 2766 } 2767 2768 //===----------------------------------------------------------------------===// 2769 // CastInst Class 2770 //===----------------------------------------------------------------------===// 2771 2772 // Just determine if this cast only deals with integral->integral conversion. 2773 bool CastInst::isIntegerCast() const { 2774 switch (getOpcode()) { 2775 default: return false; 2776 case Instruction::ZExt: 2777 case Instruction::SExt: 2778 case Instruction::Trunc: 2779 return true; 2780 case Instruction::BitCast: 2781 return getOperand(0)->getType()->isIntegerTy() && 2782 getType()->isIntegerTy(); 2783 } 2784 } 2785 2786 bool CastInst::isLosslessCast() const { 2787 // Only BitCast can be lossless, exit fast if we're not BitCast 2788 if (getOpcode() != Instruction::BitCast) 2789 return false; 2790 2791 // Identity cast is always lossless 2792 Type *SrcTy = getOperand(0)->getType(); 2793 Type *DstTy = getType(); 2794 if (SrcTy == DstTy) 2795 return true; 2796 2797 // Pointer to pointer is always lossless. 2798 if (SrcTy->isPointerTy()) 2799 return DstTy->isPointerTy(); 2800 return false; // Other types have no identity values 2801 } 2802 2803 /// This function determines if the CastInst does not require any bits to be 2804 /// changed in order to effect the cast. Essentially, it identifies cases where 2805 /// no code gen is necessary for the cast, hence the name no-op cast. For 2806 /// example, the following are all no-op casts: 2807 /// # bitcast i32* %x to i8* 2808 /// # bitcast <2 x i32> %x to <4 x i16> 2809 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2810 /// Determine if the described cast is a no-op. 2811 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2812 Type *SrcTy, 2813 Type *DestTy, 2814 const DataLayout &DL) { 2815 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition"); 2816 switch (Opcode) { 2817 default: llvm_unreachable("Invalid CastOp"); 2818 case Instruction::Trunc: 2819 case Instruction::ZExt: 2820 case Instruction::SExt: 2821 case Instruction::FPTrunc: 2822 case Instruction::FPExt: 2823 case Instruction::UIToFP: 2824 case Instruction::SIToFP: 2825 case Instruction::FPToUI: 2826 case Instruction::FPToSI: 2827 case Instruction::AddrSpaceCast: 2828 // TODO: Target informations may give a more accurate answer here. 2829 return false; 2830 case Instruction::BitCast: 2831 return true; // BitCast never modifies bits. 2832 case Instruction::PtrToInt: 2833 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == 2834 DestTy->getScalarSizeInBits(); 2835 case Instruction::IntToPtr: 2836 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == 2837 SrcTy->getScalarSizeInBits(); 2838 } 2839 } 2840 2841 bool CastInst::isNoopCast(const DataLayout &DL) const { 2842 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); 2843 } 2844 2845 /// This function determines if a pair of casts can be eliminated and what 2846 /// opcode should be used in the elimination. This assumes that there are two 2847 /// instructions like this: 2848 /// * %F = firstOpcode SrcTy %x to MidTy 2849 /// * %S = secondOpcode MidTy %F to DstTy 2850 /// The function returns a resultOpcode so these two casts can be replaced with: 2851 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2852 /// If no such cast is permitted, the function returns 0. 2853 unsigned CastInst::isEliminableCastPair( 2854 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2855 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2856 Type *DstIntPtrTy) { 2857 // Define the 144 possibilities for these two cast instructions. The values 2858 // in this matrix determine what to do in a given situation and select the 2859 // case in the switch below. The rows correspond to firstOp, the columns 2860 // correspond to secondOp. In looking at the table below, keep in mind 2861 // the following cast properties: 2862 // 2863 // Size Compare Source Destination 2864 // Operator Src ? Size Type Sign Type Sign 2865 // -------- ------------ ------------------- --------------------- 2866 // TRUNC > Integer Any Integral Any 2867 // ZEXT < Integral Unsigned Integer Any 2868 // SEXT < Integral Signed Integer Any 2869 // FPTOUI n/a FloatPt n/a Integral Unsigned 2870 // FPTOSI n/a FloatPt n/a Integral Signed 2871 // UITOFP n/a Integral Unsigned FloatPt n/a 2872 // SITOFP n/a Integral Signed FloatPt n/a 2873 // FPTRUNC > FloatPt n/a FloatPt n/a 2874 // FPEXT < FloatPt n/a FloatPt n/a 2875 // PTRTOINT n/a Pointer n/a Integral Unsigned 2876 // INTTOPTR n/a Integral Unsigned Pointer n/a 2877 // BITCAST = FirstClass n/a FirstClass n/a 2878 // ADDRSPCST n/a Pointer n/a Pointer n/a 2879 // 2880 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2881 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2882 // into "fptoui double to i64", but this loses information about the range 2883 // of the produced value (we no longer know the top-part is all zeros). 2884 // Further this conversion is often much more expensive for typical hardware, 2885 // and causes issues when building libgcc. We disallow fptosi+sext for the 2886 // same reason. 2887 const unsigned numCastOps = 2888 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2889 static const uint8_t CastResults[numCastOps][numCastOps] = { 2890 // T F F U S F F P I B A -+ 2891 // R Z S P P I I T P 2 N T S | 2892 // U E E 2 2 2 2 R E I T C C +- secondOp 2893 // N X X U S F F N X N 2 V V | 2894 // C T T I I P P C T T P T T -+ 2895 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2896 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2897 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2898 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2899 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2900 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2901 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2902 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2903 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | 2904 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2905 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2906 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2907 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2908 }; 2909 2910 // TODO: This logic could be encoded into the table above and handled in the 2911 // switch below. 2912 // If either of the casts are a bitcast from scalar to vector, disallow the 2913 // merging. However, any pair of bitcasts are allowed. 2914 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2915 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2916 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2917 2918 // Check if any of the casts convert scalars <-> vectors. 2919 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2920 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2921 if (!AreBothBitcasts) 2922 return 0; 2923 2924 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2925 [secondOp-Instruction::CastOpsBegin]; 2926 switch (ElimCase) { 2927 case 0: 2928 // Categorically disallowed. 2929 return 0; 2930 case 1: 2931 // Allowed, use first cast's opcode. 2932 return firstOp; 2933 case 2: 2934 // Allowed, use second cast's opcode. 2935 return secondOp; 2936 case 3: 2937 // No-op cast in second op implies firstOp as long as the DestTy 2938 // is integer and we are not converting between a vector and a 2939 // non-vector type. 2940 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2941 return firstOp; 2942 return 0; 2943 case 4: 2944 // No-op cast in second op implies firstOp as long as the DestTy 2945 // is floating point. 2946 if (DstTy->isFloatingPointTy()) 2947 return firstOp; 2948 return 0; 2949 case 5: 2950 // No-op cast in first op implies secondOp as long as the SrcTy 2951 // is an integer. 2952 if (SrcTy->isIntegerTy()) 2953 return secondOp; 2954 return 0; 2955 case 6: 2956 // No-op cast in first op implies secondOp as long as the SrcTy 2957 // is a floating point. 2958 if (SrcTy->isFloatingPointTy()) 2959 return secondOp; 2960 return 0; 2961 case 7: { 2962 // Disable inttoptr/ptrtoint optimization if enabled. 2963 if (DisableI2pP2iOpt) 2964 return 0; 2965 2966 // Cannot simplify if address spaces are different! 2967 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2968 return 0; 2969 2970 unsigned MidSize = MidTy->getScalarSizeInBits(); 2971 // We can still fold this without knowing the actual sizes as long we 2972 // know that the intermediate pointer is the largest possible 2973 // pointer size. 2974 // FIXME: Is this always true? 2975 if (MidSize == 64) 2976 return Instruction::BitCast; 2977 2978 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2979 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2980 return 0; 2981 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2982 if (MidSize >= PtrSize) 2983 return Instruction::BitCast; 2984 return 0; 2985 } 2986 case 8: { 2987 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2988 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2989 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2990 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2991 unsigned DstSize = DstTy->getScalarSizeInBits(); 2992 if (SrcSize == DstSize) 2993 return Instruction::BitCast; 2994 else if (SrcSize < DstSize) 2995 return firstOp; 2996 return secondOp; 2997 } 2998 case 9: 2999 // zext, sext -> zext, because sext can't sign extend after zext 3000 return Instruction::ZExt; 3001 case 11: { 3002 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 3003 if (!MidIntPtrTy) 3004 return 0; 3005 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 3006 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 3007 unsigned DstSize = DstTy->getScalarSizeInBits(); 3008 if (SrcSize <= PtrSize && SrcSize == DstSize) 3009 return Instruction::BitCast; 3010 return 0; 3011 } 3012 case 12: 3013 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 3014 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 3015 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 3016 return Instruction::AddrSpaceCast; 3017 return Instruction::BitCast; 3018 case 13: 3019 // FIXME: this state can be merged with (1), but the following assert 3020 // is useful to check the correcteness of the sequence due to semantic 3021 // change of bitcast. 3022 assert( 3023 SrcTy->isPtrOrPtrVectorTy() && 3024 MidTy->isPtrOrPtrVectorTy() && 3025 DstTy->isPtrOrPtrVectorTy() && 3026 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 3027 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 3028 "Illegal addrspacecast, bitcast sequence!"); 3029 // Allowed, use first cast's opcode 3030 return firstOp; 3031 case 14: { 3032 // bitcast, addrspacecast -> addrspacecast if the element type of 3033 // bitcast's source is the same as that of addrspacecast's destination. 3034 PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType()); 3035 PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType()); 3036 if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy)) 3037 return Instruction::AddrSpaceCast; 3038 return 0; 3039 } 3040 case 15: 3041 // FIXME: this state can be merged with (1), but the following assert 3042 // is useful to check the correcteness of the sequence due to semantic 3043 // change of bitcast. 3044 assert( 3045 SrcTy->isIntOrIntVectorTy() && 3046 MidTy->isPtrOrPtrVectorTy() && 3047 DstTy->isPtrOrPtrVectorTy() && 3048 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 3049 "Illegal inttoptr, bitcast sequence!"); 3050 // Allowed, use first cast's opcode 3051 return firstOp; 3052 case 16: 3053 // FIXME: this state can be merged with (2), but the following assert 3054 // is useful to check the correcteness of the sequence due to semantic 3055 // change of bitcast. 3056 assert( 3057 SrcTy->isPtrOrPtrVectorTy() && 3058 MidTy->isPtrOrPtrVectorTy() && 3059 DstTy->isIntOrIntVectorTy() && 3060 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 3061 "Illegal bitcast, ptrtoint sequence!"); 3062 // Allowed, use second cast's opcode 3063 return secondOp; 3064 case 17: 3065 // (sitofp (zext x)) -> (uitofp x) 3066 return Instruction::UIToFP; 3067 case 99: 3068 // Cast combination can't happen (error in input). This is for all cases 3069 // where the MidTy is not the same for the two cast instructions. 3070 llvm_unreachable("Invalid Cast Combination"); 3071 default: 3072 llvm_unreachable("Error in CastResults table!!!"); 3073 } 3074 } 3075 3076 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 3077 const Twine &Name, Instruction *InsertBefore) { 3078 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 3079 // Construct and return the appropriate CastInst subclass 3080 switch (op) { 3081 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 3082 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 3083 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 3084 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 3085 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 3086 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 3087 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 3088 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 3089 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 3090 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 3091 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 3092 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 3093 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 3094 default: llvm_unreachable("Invalid opcode provided"); 3095 } 3096 } 3097 3098 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 3099 const Twine &Name, BasicBlock *InsertAtEnd) { 3100 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 3101 // Construct and return the appropriate CastInst subclass 3102 switch (op) { 3103 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 3104 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 3105 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 3106 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 3107 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 3108 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 3109 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 3110 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 3111 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 3112 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 3113 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 3114 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 3115 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 3116 default: llvm_unreachable("Invalid opcode provided"); 3117 } 3118 } 3119 3120 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 3121 const Twine &Name, 3122 Instruction *InsertBefore) { 3123 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3124 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3125 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 3126 } 3127 3128 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 3129 const Twine &Name, 3130 BasicBlock *InsertAtEnd) { 3131 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3132 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3133 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 3134 } 3135 3136 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 3137 const Twine &Name, 3138 Instruction *InsertBefore) { 3139 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3140 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3141 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 3142 } 3143 3144 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 3145 const Twine &Name, 3146 BasicBlock *InsertAtEnd) { 3147 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3148 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3149 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 3150 } 3151 3152 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 3153 const Twine &Name, 3154 Instruction *InsertBefore) { 3155 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3156 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3157 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 3158 } 3159 3160 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 3161 const Twine &Name, 3162 BasicBlock *InsertAtEnd) { 3163 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3164 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3165 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 3166 } 3167 3168 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 3169 const Twine &Name, 3170 BasicBlock *InsertAtEnd) { 3171 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3172 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3173 "Invalid cast"); 3174 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3175 assert((!Ty->isVectorTy() || 3176 cast<VectorType>(Ty)->getElementCount() == 3177 cast<VectorType>(S->getType())->getElementCount()) && 3178 "Invalid cast"); 3179 3180 if (Ty->isIntOrIntVectorTy()) 3181 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 3182 3183 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 3184 } 3185 3186 /// Create a BitCast or a PtrToInt cast instruction 3187 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 3188 const Twine &Name, 3189 Instruction *InsertBefore) { 3190 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3191 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3192 "Invalid cast"); 3193 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3194 assert((!Ty->isVectorTy() || 3195 cast<VectorType>(Ty)->getElementCount() == 3196 cast<VectorType>(S->getType())->getElementCount()) && 3197 "Invalid cast"); 3198 3199 if (Ty->isIntOrIntVectorTy()) 3200 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3201 3202 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 3203 } 3204 3205 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3206 Value *S, Type *Ty, 3207 const Twine &Name, 3208 BasicBlock *InsertAtEnd) { 3209 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3210 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3211 3212 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3213 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 3214 3215 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3216 } 3217 3218 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3219 Value *S, Type *Ty, 3220 const Twine &Name, 3221 Instruction *InsertBefore) { 3222 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3223 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3224 3225 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3226 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 3227 3228 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3229 } 3230 3231 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 3232 const Twine &Name, 3233 Instruction *InsertBefore) { 3234 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 3235 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3236 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 3237 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 3238 3239 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3240 } 3241 3242 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 3243 bool isSigned, const Twine &Name, 3244 Instruction *InsertBefore) { 3245 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3246 "Invalid integer cast"); 3247 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3248 unsigned DstBits = Ty->getScalarSizeInBits(); 3249 Instruction::CastOps opcode = 3250 (SrcBits == DstBits ? Instruction::BitCast : 3251 (SrcBits > DstBits ? Instruction::Trunc : 3252 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3253 return Create(opcode, C, Ty, Name, InsertBefore); 3254 } 3255 3256 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 3257 bool isSigned, const Twine &Name, 3258 BasicBlock *InsertAtEnd) { 3259 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3260 "Invalid cast"); 3261 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3262 unsigned DstBits = Ty->getScalarSizeInBits(); 3263 Instruction::CastOps opcode = 3264 (SrcBits == DstBits ? Instruction::BitCast : 3265 (SrcBits > DstBits ? Instruction::Trunc : 3266 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3267 return Create(opcode, C, Ty, Name, InsertAtEnd); 3268 } 3269 3270 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 3271 const Twine &Name, 3272 Instruction *InsertBefore) { 3273 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3274 "Invalid cast"); 3275 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3276 unsigned DstBits = Ty->getScalarSizeInBits(); 3277 Instruction::CastOps opcode = 3278 (SrcBits == DstBits ? Instruction::BitCast : 3279 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3280 return Create(opcode, C, Ty, Name, InsertBefore); 3281 } 3282 3283 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 3284 const Twine &Name, 3285 BasicBlock *InsertAtEnd) { 3286 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3287 "Invalid cast"); 3288 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3289 unsigned DstBits = Ty->getScalarSizeInBits(); 3290 Instruction::CastOps opcode = 3291 (SrcBits == DstBits ? Instruction::BitCast : 3292 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3293 return Create(opcode, C, Ty, Name, InsertAtEnd); 3294 } 3295 3296 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 3297 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 3298 return false; 3299 3300 if (SrcTy == DestTy) 3301 return true; 3302 3303 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3304 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 3305 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3306 // An element by element cast. Valid if casting the elements is valid. 3307 SrcTy = SrcVecTy->getElementType(); 3308 DestTy = DestVecTy->getElementType(); 3309 } 3310 } 3311 } 3312 3313 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 3314 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 3315 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 3316 } 3317 } 3318 3319 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3320 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3321 3322 // Could still have vectors of pointers if the number of elements doesn't 3323 // match 3324 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0) 3325 return false; 3326 3327 if (SrcBits != DestBits) 3328 return false; 3329 3330 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 3331 return false; 3332 3333 return true; 3334 } 3335 3336 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 3337 const DataLayout &DL) { 3338 // ptrtoint and inttoptr are not allowed on non-integral pointers 3339 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 3340 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 3341 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3342 !DL.isNonIntegralPointerType(PtrTy)); 3343 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 3344 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 3345 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3346 !DL.isNonIntegralPointerType(PtrTy)); 3347 3348 return isBitCastable(SrcTy, DestTy); 3349 } 3350 3351 // Provide a way to get a "cast" where the cast opcode is inferred from the 3352 // types and size of the operand. This, basically, is a parallel of the 3353 // logic in the castIsValid function below. This axiom should hold: 3354 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 3355 // should not assert in castIsValid. In other words, this produces a "correct" 3356 // casting opcode for the arguments passed to it. 3357 Instruction::CastOps 3358 CastInst::getCastOpcode( 3359 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 3360 Type *SrcTy = Src->getType(); 3361 3362 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 3363 "Only first class types are castable!"); 3364 3365 if (SrcTy == DestTy) 3366 return BitCast; 3367 3368 // FIXME: Check address space sizes here 3369 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 3370 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 3371 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3372 // An element by element cast. Find the appropriate opcode based on the 3373 // element types. 3374 SrcTy = SrcVecTy->getElementType(); 3375 DestTy = DestVecTy->getElementType(); 3376 } 3377 3378 // Get the bit sizes, we'll need these 3379 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3380 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3381 3382 // Run through the possibilities ... 3383 if (DestTy->isIntegerTy()) { // Casting to integral 3384 if (SrcTy->isIntegerTy()) { // Casting from integral 3385 if (DestBits < SrcBits) 3386 return Trunc; // int -> smaller int 3387 else if (DestBits > SrcBits) { // its an extension 3388 if (SrcIsSigned) 3389 return SExt; // signed -> SEXT 3390 else 3391 return ZExt; // unsigned -> ZEXT 3392 } else { 3393 return BitCast; // Same size, No-op cast 3394 } 3395 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3396 if (DestIsSigned) 3397 return FPToSI; // FP -> sint 3398 else 3399 return FPToUI; // FP -> uint 3400 } else if (SrcTy->isVectorTy()) { 3401 assert(DestBits == SrcBits && 3402 "Casting vector to integer of different width"); 3403 return BitCast; // Same size, no-op cast 3404 } else { 3405 assert(SrcTy->isPointerTy() && 3406 "Casting from a value that is not first-class type"); 3407 return PtrToInt; // ptr -> int 3408 } 3409 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3410 if (SrcTy->isIntegerTy()) { // Casting from integral 3411 if (SrcIsSigned) 3412 return SIToFP; // sint -> FP 3413 else 3414 return UIToFP; // uint -> FP 3415 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3416 if (DestBits < SrcBits) { 3417 return FPTrunc; // FP -> smaller FP 3418 } else if (DestBits > SrcBits) { 3419 return FPExt; // FP -> larger FP 3420 } else { 3421 return BitCast; // same size, no-op cast 3422 } 3423 } else if (SrcTy->isVectorTy()) { 3424 assert(DestBits == SrcBits && 3425 "Casting vector to floating point of different width"); 3426 return BitCast; // same size, no-op cast 3427 } 3428 llvm_unreachable("Casting pointer or non-first class to float"); 3429 } else if (DestTy->isVectorTy()) { 3430 assert(DestBits == SrcBits && 3431 "Illegal cast to vector (wrong type or size)"); 3432 return BitCast; 3433 } else if (DestTy->isPointerTy()) { 3434 if (SrcTy->isPointerTy()) { 3435 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3436 return AddrSpaceCast; 3437 return BitCast; // ptr -> ptr 3438 } else if (SrcTy->isIntegerTy()) { 3439 return IntToPtr; // int -> ptr 3440 } 3441 llvm_unreachable("Casting pointer to other than pointer or int"); 3442 } else if (DestTy->isX86_MMXTy()) { 3443 if (SrcTy->isVectorTy()) { 3444 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3445 return BitCast; // 64-bit vector to MMX 3446 } 3447 llvm_unreachable("Illegal cast to X86_MMX"); 3448 } 3449 llvm_unreachable("Casting to type that is not first-class"); 3450 } 3451 3452 //===----------------------------------------------------------------------===// 3453 // CastInst SubClass Constructors 3454 //===----------------------------------------------------------------------===// 3455 3456 /// Check that the construction parameters for a CastInst are correct. This 3457 /// could be broken out into the separate constructors but it is useful to have 3458 /// it in one place and to eliminate the redundant code for getting the sizes 3459 /// of the types involved. 3460 bool 3461 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) { 3462 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3463 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3464 return false; 3465 3466 // Get the size of the types in bits, and whether we are dealing 3467 // with vector types, we'll need this later. 3468 bool SrcIsVec = isa<VectorType>(SrcTy); 3469 bool DstIsVec = isa<VectorType>(DstTy); 3470 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits(); 3471 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits(); 3472 3473 // If these are vector types, get the lengths of the vectors (using zero for 3474 // scalar types means that checking that vector lengths match also checks that 3475 // scalars are not being converted to vectors or vectors to scalars). 3476 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount() 3477 : ElementCount::getFixed(0); 3478 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount() 3479 : ElementCount::getFixed(0); 3480 3481 // Switch on the opcode provided 3482 switch (op) { 3483 default: return false; // This is an input error 3484 case Instruction::Trunc: 3485 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3486 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3487 case Instruction::ZExt: 3488 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3489 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3490 case Instruction::SExt: 3491 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3492 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3493 case Instruction::FPTrunc: 3494 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3495 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3496 case Instruction::FPExt: 3497 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3498 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3499 case Instruction::UIToFP: 3500 case Instruction::SIToFP: 3501 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3502 SrcEC == DstEC; 3503 case Instruction::FPToUI: 3504 case Instruction::FPToSI: 3505 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3506 SrcEC == DstEC; 3507 case Instruction::PtrToInt: 3508 if (SrcEC != DstEC) 3509 return false; 3510 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); 3511 case Instruction::IntToPtr: 3512 if (SrcEC != DstEC) 3513 return false; 3514 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); 3515 case Instruction::BitCast: { 3516 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3517 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3518 3519 // BitCast implies a no-op cast of type only. No bits change. 3520 // However, you can't cast pointers to anything but pointers. 3521 if (!SrcPtrTy != !DstPtrTy) 3522 return false; 3523 3524 // For non-pointer cases, the cast is okay if the source and destination bit 3525 // widths are identical. 3526 if (!SrcPtrTy) 3527 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3528 3529 // If both are pointers then the address spaces must match. 3530 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3531 return false; 3532 3533 // A vector of pointers must have the same number of elements. 3534 if (SrcIsVec && DstIsVec) 3535 return SrcEC == DstEC; 3536 if (SrcIsVec) 3537 return SrcEC == ElementCount::getFixed(1); 3538 if (DstIsVec) 3539 return DstEC == ElementCount::getFixed(1); 3540 3541 return true; 3542 } 3543 case Instruction::AddrSpaceCast: { 3544 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3545 if (!SrcPtrTy) 3546 return false; 3547 3548 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3549 if (!DstPtrTy) 3550 return false; 3551 3552 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3553 return false; 3554 3555 return SrcEC == DstEC; 3556 } 3557 } 3558 } 3559 3560 TruncInst::TruncInst( 3561 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3562 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3563 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3564 } 3565 3566 TruncInst::TruncInst( 3567 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3568 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3569 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3570 } 3571 3572 ZExtInst::ZExtInst( 3573 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3574 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3575 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3576 } 3577 3578 ZExtInst::ZExtInst( 3579 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3580 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3581 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3582 } 3583 SExtInst::SExtInst( 3584 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3585 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3586 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3587 } 3588 3589 SExtInst::SExtInst( 3590 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3591 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3592 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3593 } 3594 3595 FPTruncInst::FPTruncInst( 3596 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3597 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3598 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3599 } 3600 3601 FPTruncInst::FPTruncInst( 3602 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3603 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3604 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3605 } 3606 3607 FPExtInst::FPExtInst( 3608 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3609 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3610 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3611 } 3612 3613 FPExtInst::FPExtInst( 3614 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3615 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3616 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3617 } 3618 3619 UIToFPInst::UIToFPInst( 3620 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3621 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3622 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3623 } 3624 3625 UIToFPInst::UIToFPInst( 3626 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3627 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3628 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3629 } 3630 3631 SIToFPInst::SIToFPInst( 3632 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3633 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3634 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3635 } 3636 3637 SIToFPInst::SIToFPInst( 3638 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3639 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3640 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3641 } 3642 3643 FPToUIInst::FPToUIInst( 3644 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3645 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3646 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3647 } 3648 3649 FPToUIInst::FPToUIInst( 3650 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3651 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3652 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3653 } 3654 3655 FPToSIInst::FPToSIInst( 3656 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3657 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3658 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3659 } 3660 3661 FPToSIInst::FPToSIInst( 3662 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3663 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3664 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3665 } 3666 3667 PtrToIntInst::PtrToIntInst( 3668 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3669 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3670 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3671 } 3672 3673 PtrToIntInst::PtrToIntInst( 3674 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3675 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3676 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3677 } 3678 3679 IntToPtrInst::IntToPtrInst( 3680 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3681 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3682 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3683 } 3684 3685 IntToPtrInst::IntToPtrInst( 3686 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3687 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3688 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3689 } 3690 3691 BitCastInst::BitCastInst( 3692 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3693 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3694 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3695 } 3696 3697 BitCastInst::BitCastInst( 3698 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3699 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3700 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3701 } 3702 3703 AddrSpaceCastInst::AddrSpaceCastInst( 3704 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3705 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3706 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3707 } 3708 3709 AddrSpaceCastInst::AddrSpaceCastInst( 3710 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3711 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3712 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3713 } 3714 3715 //===----------------------------------------------------------------------===// 3716 // CmpInst Classes 3717 //===----------------------------------------------------------------------===// 3718 3719 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3720 Value *RHS, const Twine &Name, Instruction *InsertBefore, 3721 Instruction *FlagsSource) 3722 : Instruction(ty, op, 3723 OperandTraits<CmpInst>::op_begin(this), 3724 OperandTraits<CmpInst>::operands(this), 3725 InsertBefore) { 3726 Op<0>() = LHS; 3727 Op<1>() = RHS; 3728 setPredicate((Predicate)predicate); 3729 setName(Name); 3730 if (FlagsSource) 3731 copyIRFlags(FlagsSource); 3732 } 3733 3734 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3735 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3736 : Instruction(ty, op, 3737 OperandTraits<CmpInst>::op_begin(this), 3738 OperandTraits<CmpInst>::operands(this), 3739 InsertAtEnd) { 3740 Op<0>() = LHS; 3741 Op<1>() = RHS; 3742 setPredicate((Predicate)predicate); 3743 setName(Name); 3744 } 3745 3746 CmpInst * 3747 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3748 const Twine &Name, Instruction *InsertBefore) { 3749 if (Op == Instruction::ICmp) { 3750 if (InsertBefore) 3751 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3752 S1, S2, Name); 3753 else 3754 return new ICmpInst(CmpInst::Predicate(predicate), 3755 S1, S2, Name); 3756 } 3757 3758 if (InsertBefore) 3759 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3760 S1, S2, Name); 3761 else 3762 return new FCmpInst(CmpInst::Predicate(predicate), 3763 S1, S2, Name); 3764 } 3765 3766 CmpInst * 3767 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3768 const Twine &Name, BasicBlock *InsertAtEnd) { 3769 if (Op == Instruction::ICmp) { 3770 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3771 S1, S2, Name); 3772 } 3773 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3774 S1, S2, Name); 3775 } 3776 3777 void CmpInst::swapOperands() { 3778 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3779 IC->swapOperands(); 3780 else 3781 cast<FCmpInst>(this)->swapOperands(); 3782 } 3783 3784 bool CmpInst::isCommutative() const { 3785 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3786 return IC->isCommutative(); 3787 return cast<FCmpInst>(this)->isCommutative(); 3788 } 3789 3790 bool CmpInst::isEquality(Predicate P) { 3791 if (ICmpInst::isIntPredicate(P)) 3792 return ICmpInst::isEquality(P); 3793 if (FCmpInst::isFPPredicate(P)) 3794 return FCmpInst::isEquality(P); 3795 llvm_unreachable("Unsupported predicate kind"); 3796 } 3797 3798 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3799 switch (pred) { 3800 default: llvm_unreachable("Unknown cmp predicate!"); 3801 case ICMP_EQ: return ICMP_NE; 3802 case ICMP_NE: return ICMP_EQ; 3803 case ICMP_UGT: return ICMP_ULE; 3804 case ICMP_ULT: return ICMP_UGE; 3805 case ICMP_UGE: return ICMP_ULT; 3806 case ICMP_ULE: return ICMP_UGT; 3807 case ICMP_SGT: return ICMP_SLE; 3808 case ICMP_SLT: return ICMP_SGE; 3809 case ICMP_SGE: return ICMP_SLT; 3810 case ICMP_SLE: return ICMP_SGT; 3811 3812 case FCMP_OEQ: return FCMP_UNE; 3813 case FCMP_ONE: return FCMP_UEQ; 3814 case FCMP_OGT: return FCMP_ULE; 3815 case FCMP_OLT: return FCMP_UGE; 3816 case FCMP_OGE: return FCMP_ULT; 3817 case FCMP_OLE: return FCMP_UGT; 3818 case FCMP_UEQ: return FCMP_ONE; 3819 case FCMP_UNE: return FCMP_OEQ; 3820 case FCMP_UGT: return FCMP_OLE; 3821 case FCMP_ULT: return FCMP_OGE; 3822 case FCMP_UGE: return FCMP_OLT; 3823 case FCMP_ULE: return FCMP_OGT; 3824 case FCMP_ORD: return FCMP_UNO; 3825 case FCMP_UNO: return FCMP_ORD; 3826 case FCMP_TRUE: return FCMP_FALSE; 3827 case FCMP_FALSE: return FCMP_TRUE; 3828 } 3829 } 3830 3831 StringRef CmpInst::getPredicateName(Predicate Pred) { 3832 switch (Pred) { 3833 default: return "unknown"; 3834 case FCmpInst::FCMP_FALSE: return "false"; 3835 case FCmpInst::FCMP_OEQ: return "oeq"; 3836 case FCmpInst::FCMP_OGT: return "ogt"; 3837 case FCmpInst::FCMP_OGE: return "oge"; 3838 case FCmpInst::FCMP_OLT: return "olt"; 3839 case FCmpInst::FCMP_OLE: return "ole"; 3840 case FCmpInst::FCMP_ONE: return "one"; 3841 case FCmpInst::FCMP_ORD: return "ord"; 3842 case FCmpInst::FCMP_UNO: return "uno"; 3843 case FCmpInst::FCMP_UEQ: return "ueq"; 3844 case FCmpInst::FCMP_UGT: return "ugt"; 3845 case FCmpInst::FCMP_UGE: return "uge"; 3846 case FCmpInst::FCMP_ULT: return "ult"; 3847 case FCmpInst::FCMP_ULE: return "ule"; 3848 case FCmpInst::FCMP_UNE: return "une"; 3849 case FCmpInst::FCMP_TRUE: return "true"; 3850 case ICmpInst::ICMP_EQ: return "eq"; 3851 case ICmpInst::ICMP_NE: return "ne"; 3852 case ICmpInst::ICMP_SGT: return "sgt"; 3853 case ICmpInst::ICMP_SGE: return "sge"; 3854 case ICmpInst::ICMP_SLT: return "slt"; 3855 case ICmpInst::ICMP_SLE: return "sle"; 3856 case ICmpInst::ICMP_UGT: return "ugt"; 3857 case ICmpInst::ICMP_UGE: return "uge"; 3858 case ICmpInst::ICMP_ULT: return "ult"; 3859 case ICmpInst::ICMP_ULE: return "ule"; 3860 } 3861 } 3862 3863 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3864 switch (pred) { 3865 default: llvm_unreachable("Unknown icmp predicate!"); 3866 case ICMP_EQ: case ICMP_NE: 3867 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3868 return pred; 3869 case ICMP_UGT: return ICMP_SGT; 3870 case ICMP_ULT: return ICMP_SLT; 3871 case ICMP_UGE: return ICMP_SGE; 3872 case ICMP_ULE: return ICMP_SLE; 3873 } 3874 } 3875 3876 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3877 switch (pred) { 3878 default: llvm_unreachable("Unknown icmp predicate!"); 3879 case ICMP_EQ: case ICMP_NE: 3880 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3881 return pred; 3882 case ICMP_SGT: return ICMP_UGT; 3883 case ICMP_SLT: return ICMP_ULT; 3884 case ICMP_SGE: return ICMP_UGE; 3885 case ICMP_SLE: return ICMP_ULE; 3886 } 3887 } 3888 3889 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3890 switch (pred) { 3891 default: llvm_unreachable("Unknown cmp predicate!"); 3892 case ICMP_EQ: case ICMP_NE: 3893 return pred; 3894 case ICMP_SGT: return ICMP_SLT; 3895 case ICMP_SLT: return ICMP_SGT; 3896 case ICMP_SGE: return ICMP_SLE; 3897 case ICMP_SLE: return ICMP_SGE; 3898 case ICMP_UGT: return ICMP_ULT; 3899 case ICMP_ULT: return ICMP_UGT; 3900 case ICMP_UGE: return ICMP_ULE; 3901 case ICMP_ULE: return ICMP_UGE; 3902 3903 case FCMP_FALSE: case FCMP_TRUE: 3904 case FCMP_OEQ: case FCMP_ONE: 3905 case FCMP_UEQ: case FCMP_UNE: 3906 case FCMP_ORD: case FCMP_UNO: 3907 return pred; 3908 case FCMP_OGT: return FCMP_OLT; 3909 case FCMP_OLT: return FCMP_OGT; 3910 case FCMP_OGE: return FCMP_OLE; 3911 case FCMP_OLE: return FCMP_OGE; 3912 case FCMP_UGT: return FCMP_ULT; 3913 case FCMP_ULT: return FCMP_UGT; 3914 case FCMP_UGE: return FCMP_ULE; 3915 case FCMP_ULE: return FCMP_UGE; 3916 } 3917 } 3918 3919 bool CmpInst::isNonStrictPredicate(Predicate pred) { 3920 switch (pred) { 3921 case ICMP_SGE: 3922 case ICMP_SLE: 3923 case ICMP_UGE: 3924 case ICMP_ULE: 3925 case FCMP_OGE: 3926 case FCMP_OLE: 3927 case FCMP_UGE: 3928 case FCMP_ULE: 3929 return true; 3930 default: 3931 return false; 3932 } 3933 } 3934 3935 bool CmpInst::isStrictPredicate(Predicate pred) { 3936 switch (pred) { 3937 case ICMP_SGT: 3938 case ICMP_SLT: 3939 case ICMP_UGT: 3940 case ICMP_ULT: 3941 case FCMP_OGT: 3942 case FCMP_OLT: 3943 case FCMP_UGT: 3944 case FCMP_ULT: 3945 return true; 3946 default: 3947 return false; 3948 } 3949 } 3950 3951 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) { 3952 switch (pred) { 3953 case ICMP_SGE: 3954 return ICMP_SGT; 3955 case ICMP_SLE: 3956 return ICMP_SLT; 3957 case ICMP_UGE: 3958 return ICMP_UGT; 3959 case ICMP_ULE: 3960 return ICMP_ULT; 3961 case FCMP_OGE: 3962 return FCMP_OGT; 3963 case FCMP_OLE: 3964 return FCMP_OLT; 3965 case FCMP_UGE: 3966 return FCMP_UGT; 3967 case FCMP_ULE: 3968 return FCMP_ULT; 3969 default: 3970 return pred; 3971 } 3972 } 3973 3974 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { 3975 switch (pred) { 3976 case ICMP_SGT: 3977 return ICMP_SGE; 3978 case ICMP_SLT: 3979 return ICMP_SLE; 3980 case ICMP_UGT: 3981 return ICMP_UGE; 3982 case ICMP_ULT: 3983 return ICMP_ULE; 3984 case FCMP_OGT: 3985 return FCMP_OGE; 3986 case FCMP_OLT: 3987 return FCMP_OLE; 3988 case FCMP_UGT: 3989 return FCMP_UGE; 3990 case FCMP_ULT: 3991 return FCMP_ULE; 3992 default: 3993 return pred; 3994 } 3995 } 3996 3997 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { 3998 assert(CmpInst::isRelational(pred) && "Call only with relational predicate!"); 3999 4000 if (isStrictPredicate(pred)) 4001 return getNonStrictPredicate(pred); 4002 if (isNonStrictPredicate(pred)) 4003 return getStrictPredicate(pred); 4004 4005 llvm_unreachable("Unknown predicate!"); 4006 } 4007 4008 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 4009 assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!"); 4010 4011 switch (pred) { 4012 default: 4013 llvm_unreachable("Unknown predicate!"); 4014 case CmpInst::ICMP_ULT: 4015 return CmpInst::ICMP_SLT; 4016 case CmpInst::ICMP_ULE: 4017 return CmpInst::ICMP_SLE; 4018 case CmpInst::ICMP_UGT: 4019 return CmpInst::ICMP_SGT; 4020 case CmpInst::ICMP_UGE: 4021 return CmpInst::ICMP_SGE; 4022 } 4023 } 4024 4025 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) { 4026 assert(CmpInst::isSigned(pred) && "Call only with signed predicates!"); 4027 4028 switch (pred) { 4029 default: 4030 llvm_unreachable("Unknown predicate!"); 4031 case CmpInst::ICMP_SLT: 4032 return CmpInst::ICMP_ULT; 4033 case CmpInst::ICMP_SLE: 4034 return CmpInst::ICMP_ULE; 4035 case CmpInst::ICMP_SGT: 4036 return CmpInst::ICMP_UGT; 4037 case CmpInst::ICMP_SGE: 4038 return CmpInst::ICMP_UGE; 4039 } 4040 } 4041 4042 bool CmpInst::isUnsigned(Predicate predicate) { 4043 switch (predicate) { 4044 default: return false; 4045 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 4046 case ICmpInst::ICMP_UGE: return true; 4047 } 4048 } 4049 4050 bool CmpInst::isSigned(Predicate predicate) { 4051 switch (predicate) { 4052 default: return false; 4053 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 4054 case ICmpInst::ICMP_SGE: return true; 4055 } 4056 } 4057 4058 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS, 4059 ICmpInst::Predicate Pred) { 4060 assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!"); 4061 switch (Pred) { 4062 case ICmpInst::Predicate::ICMP_EQ: 4063 return LHS.eq(RHS); 4064 case ICmpInst::Predicate::ICMP_NE: 4065 return LHS.ne(RHS); 4066 case ICmpInst::Predicate::ICMP_UGT: 4067 return LHS.ugt(RHS); 4068 case ICmpInst::Predicate::ICMP_UGE: 4069 return LHS.uge(RHS); 4070 case ICmpInst::Predicate::ICMP_ULT: 4071 return LHS.ult(RHS); 4072 case ICmpInst::Predicate::ICMP_ULE: 4073 return LHS.ule(RHS); 4074 case ICmpInst::Predicate::ICMP_SGT: 4075 return LHS.sgt(RHS); 4076 case ICmpInst::Predicate::ICMP_SGE: 4077 return LHS.sge(RHS); 4078 case ICmpInst::Predicate::ICMP_SLT: 4079 return LHS.slt(RHS); 4080 case ICmpInst::Predicate::ICMP_SLE: 4081 return LHS.sle(RHS); 4082 default: 4083 llvm_unreachable("Unexpected non-integer predicate."); 4084 }; 4085 } 4086 4087 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) { 4088 assert(CmpInst::isRelational(pred) && 4089 "Call only with non-equality predicates!"); 4090 4091 if (isSigned(pred)) 4092 return getUnsignedPredicate(pred); 4093 if (isUnsigned(pred)) 4094 return getSignedPredicate(pred); 4095 4096 llvm_unreachable("Unknown predicate!"); 4097 } 4098 4099 bool CmpInst::isOrdered(Predicate predicate) { 4100 switch (predicate) { 4101 default: return false; 4102 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 4103 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 4104 case FCmpInst::FCMP_ORD: return true; 4105 } 4106 } 4107 4108 bool CmpInst::isUnordered(Predicate predicate) { 4109 switch (predicate) { 4110 default: return false; 4111 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 4112 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 4113 case FCmpInst::FCMP_UNO: return true; 4114 } 4115 } 4116 4117 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 4118 switch(predicate) { 4119 default: return false; 4120 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 4121 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 4122 } 4123 } 4124 4125 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 4126 switch(predicate) { 4127 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 4128 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 4129 default: return false; 4130 } 4131 } 4132 4133 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 4134 // If the predicates match, then we know the first condition implies the 4135 // second is true. 4136 if (Pred1 == Pred2) 4137 return true; 4138 4139 switch (Pred1) { 4140 default: 4141 break; 4142 case ICMP_EQ: 4143 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 4144 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 4145 Pred2 == ICMP_SLE; 4146 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 4147 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 4148 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 4149 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 4150 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 4151 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 4152 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 4153 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 4154 } 4155 return false; 4156 } 4157 4158 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 4159 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 4160 } 4161 4162 //===----------------------------------------------------------------------===// 4163 // SwitchInst Implementation 4164 //===----------------------------------------------------------------------===// 4165 4166 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 4167 assert(Value && Default && NumReserved); 4168 ReservedSpace = NumReserved; 4169 setNumHungOffUseOperands(2); 4170 allocHungoffUses(ReservedSpace); 4171 4172 Op<0>() = Value; 4173 Op<1>() = Default; 4174 } 4175 4176 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 4177 /// switch on and a default destination. The number of additional cases can 4178 /// be specified here to make memory allocation more efficient. This 4179 /// constructor can also autoinsert before another instruction. 4180 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 4181 Instruction *InsertBefore) 4182 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 4183 nullptr, 0, InsertBefore) { 4184 init(Value, Default, 2+NumCases*2); 4185 } 4186 4187 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 4188 /// switch on and a default destination. The number of additional cases can 4189 /// be specified here to make memory allocation more efficient. This 4190 /// constructor also autoinserts at the end of the specified BasicBlock. 4191 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 4192 BasicBlock *InsertAtEnd) 4193 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 4194 nullptr, 0, InsertAtEnd) { 4195 init(Value, Default, 2+NumCases*2); 4196 } 4197 4198 SwitchInst::SwitchInst(const SwitchInst &SI) 4199 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { 4200 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 4201 setNumHungOffUseOperands(SI.getNumOperands()); 4202 Use *OL = getOperandList(); 4203 const Use *InOL = SI.getOperandList(); 4204 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 4205 OL[i] = InOL[i]; 4206 OL[i+1] = InOL[i+1]; 4207 } 4208 SubclassOptionalData = SI.SubclassOptionalData; 4209 } 4210 4211 /// addCase - Add an entry to the switch instruction... 4212 /// 4213 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 4214 unsigned NewCaseIdx = getNumCases(); 4215 unsigned OpNo = getNumOperands(); 4216 if (OpNo+2 > ReservedSpace) 4217 growOperands(); // Get more space! 4218 // Initialize some new operands. 4219 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 4220 setNumHungOffUseOperands(OpNo+2); 4221 CaseHandle Case(this, NewCaseIdx); 4222 Case.setValue(OnVal); 4223 Case.setSuccessor(Dest); 4224 } 4225 4226 /// removeCase - This method removes the specified case and its successor 4227 /// from the switch instruction. 4228 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { 4229 unsigned idx = I->getCaseIndex(); 4230 4231 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 4232 4233 unsigned NumOps = getNumOperands(); 4234 Use *OL = getOperandList(); 4235 4236 // Overwrite this case with the end of the list. 4237 if (2 + (idx + 1) * 2 != NumOps) { 4238 OL[2 + idx * 2] = OL[NumOps - 2]; 4239 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 4240 } 4241 4242 // Nuke the last value. 4243 OL[NumOps-2].set(nullptr); 4244 OL[NumOps-2+1].set(nullptr); 4245 setNumHungOffUseOperands(NumOps-2); 4246 4247 return CaseIt(this, idx); 4248 } 4249 4250 /// growOperands - grow operands - This grows the operand list in response 4251 /// to a push_back style of operation. This grows the number of ops by 3 times. 4252 /// 4253 void SwitchInst::growOperands() { 4254 unsigned e = getNumOperands(); 4255 unsigned NumOps = e*3; 4256 4257 ReservedSpace = NumOps; 4258 growHungoffUses(ReservedSpace); 4259 } 4260 4261 MDNode * 4262 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) { 4263 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof)) 4264 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0))) 4265 if (MDName->getString() == "branch_weights") 4266 return ProfileData; 4267 return nullptr; 4268 } 4269 4270 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() { 4271 assert(Changed && "called only if metadata has changed"); 4272 4273 if (!Weights) 4274 return nullptr; 4275 4276 assert(SI.getNumSuccessors() == Weights->size() && 4277 "num of prof branch_weights must accord with num of successors"); 4278 4279 bool AllZeroes = 4280 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; }); 4281 4282 if (AllZeroes || Weights.getValue().size() < 2) 4283 return nullptr; 4284 4285 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights); 4286 } 4287 4288 void SwitchInstProfUpdateWrapper::init() { 4289 MDNode *ProfileData = getProfBranchWeightsMD(SI); 4290 if (!ProfileData) 4291 return; 4292 4293 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) { 4294 llvm_unreachable("number of prof branch_weights metadata operands does " 4295 "not correspond to number of succesors"); 4296 } 4297 4298 SmallVector<uint32_t, 8> Weights; 4299 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) { 4300 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI)); 4301 uint32_t CW = C->getValue().getZExtValue(); 4302 Weights.push_back(CW); 4303 } 4304 this->Weights = std::move(Weights); 4305 } 4306 4307 SwitchInst::CaseIt 4308 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) { 4309 if (Weights) { 4310 assert(SI.getNumSuccessors() == Weights->size() && 4311 "num of prof branch_weights must accord with num of successors"); 4312 Changed = true; 4313 // Copy the last case to the place of the removed one and shrink. 4314 // This is tightly coupled with the way SwitchInst::removeCase() removes 4315 // the cases in SwitchInst::removeCase(CaseIt). 4316 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back(); 4317 Weights.getValue().pop_back(); 4318 } 4319 return SI.removeCase(I); 4320 } 4321 4322 void SwitchInstProfUpdateWrapper::addCase( 4323 ConstantInt *OnVal, BasicBlock *Dest, 4324 SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4325 SI.addCase(OnVal, Dest); 4326 4327 if (!Weights && W && *W) { 4328 Changed = true; 4329 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4330 Weights.getValue()[SI.getNumSuccessors() - 1] = *W; 4331 } else if (Weights) { 4332 Changed = true; 4333 Weights.getValue().push_back(W ? *W : 0); 4334 } 4335 if (Weights) 4336 assert(SI.getNumSuccessors() == Weights->size() && 4337 "num of prof branch_weights must accord with num of successors"); 4338 } 4339 4340 SymbolTableList<Instruction>::iterator 4341 SwitchInstProfUpdateWrapper::eraseFromParent() { 4342 // Instruction is erased. Mark as unchanged to not touch it in the destructor. 4343 Changed = false; 4344 if (Weights) 4345 Weights->resize(0); 4346 return SI.eraseFromParent(); 4347 } 4348 4349 SwitchInstProfUpdateWrapper::CaseWeightOpt 4350 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) { 4351 if (!Weights) 4352 return None; 4353 return Weights.getValue()[idx]; 4354 } 4355 4356 void SwitchInstProfUpdateWrapper::setSuccessorWeight( 4357 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4358 if (!W) 4359 return; 4360 4361 if (!Weights && *W) 4362 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4363 4364 if (Weights) { 4365 auto &OldW = Weights.getValue()[idx]; 4366 if (*W != OldW) { 4367 Changed = true; 4368 OldW = *W; 4369 } 4370 } 4371 } 4372 4373 SwitchInstProfUpdateWrapper::CaseWeightOpt 4374 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI, 4375 unsigned idx) { 4376 if (MDNode *ProfileData = getProfBranchWeightsMD(SI)) 4377 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1) 4378 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1)) 4379 ->getValue() 4380 .getZExtValue(); 4381 4382 return None; 4383 } 4384 4385 //===----------------------------------------------------------------------===// 4386 // IndirectBrInst Implementation 4387 //===----------------------------------------------------------------------===// 4388 4389 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 4390 assert(Address && Address->getType()->isPointerTy() && 4391 "Address of indirectbr must be a pointer"); 4392 ReservedSpace = 1+NumDests; 4393 setNumHungOffUseOperands(1); 4394 allocHungoffUses(ReservedSpace); 4395 4396 Op<0>() = Address; 4397 } 4398 4399 4400 /// growOperands - grow operands - This grows the operand list in response 4401 /// to a push_back style of operation. This grows the number of ops by 2 times. 4402 /// 4403 void IndirectBrInst::growOperands() { 4404 unsigned e = getNumOperands(); 4405 unsigned NumOps = e*2; 4406 4407 ReservedSpace = NumOps; 4408 growHungoffUses(ReservedSpace); 4409 } 4410 4411 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4412 Instruction *InsertBefore) 4413 : Instruction(Type::getVoidTy(Address->getContext()), 4414 Instruction::IndirectBr, nullptr, 0, InsertBefore) { 4415 init(Address, NumCases); 4416 } 4417 4418 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4419 BasicBlock *InsertAtEnd) 4420 : Instruction(Type::getVoidTy(Address->getContext()), 4421 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) { 4422 init(Address, NumCases); 4423 } 4424 4425 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 4426 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 4427 nullptr, IBI.getNumOperands()) { 4428 allocHungoffUses(IBI.getNumOperands()); 4429 Use *OL = getOperandList(); 4430 const Use *InOL = IBI.getOperandList(); 4431 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 4432 OL[i] = InOL[i]; 4433 SubclassOptionalData = IBI.SubclassOptionalData; 4434 } 4435 4436 /// addDestination - Add a destination. 4437 /// 4438 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 4439 unsigned OpNo = getNumOperands(); 4440 if (OpNo+1 > ReservedSpace) 4441 growOperands(); // Get more space! 4442 // Initialize some new operands. 4443 assert(OpNo < ReservedSpace && "Growing didn't work!"); 4444 setNumHungOffUseOperands(OpNo+1); 4445 getOperandList()[OpNo] = DestBB; 4446 } 4447 4448 /// removeDestination - This method removes the specified successor from the 4449 /// indirectbr instruction. 4450 void IndirectBrInst::removeDestination(unsigned idx) { 4451 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 4452 4453 unsigned NumOps = getNumOperands(); 4454 Use *OL = getOperandList(); 4455 4456 // Replace this value with the last one. 4457 OL[idx+1] = OL[NumOps-1]; 4458 4459 // Nuke the last value. 4460 OL[NumOps-1].set(nullptr); 4461 setNumHungOffUseOperands(NumOps-1); 4462 } 4463 4464 //===----------------------------------------------------------------------===// 4465 // FreezeInst Implementation 4466 //===----------------------------------------------------------------------===// 4467 4468 FreezeInst::FreezeInst(Value *S, 4469 const Twine &Name, Instruction *InsertBefore) 4470 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) { 4471 setName(Name); 4472 } 4473 4474 FreezeInst::FreezeInst(Value *S, 4475 const Twine &Name, BasicBlock *InsertAtEnd) 4476 : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) { 4477 setName(Name); 4478 } 4479 4480 //===----------------------------------------------------------------------===// 4481 // cloneImpl() implementations 4482 //===----------------------------------------------------------------------===// 4483 4484 // Define these methods here so vtables don't get emitted into every translation 4485 // unit that uses these classes. 4486 4487 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 4488 return new (getNumOperands()) GetElementPtrInst(*this); 4489 } 4490 4491 UnaryOperator *UnaryOperator::cloneImpl() const { 4492 return Create(getOpcode(), Op<0>()); 4493 } 4494 4495 BinaryOperator *BinaryOperator::cloneImpl() const { 4496 return Create(getOpcode(), Op<0>(), Op<1>()); 4497 } 4498 4499 FCmpInst *FCmpInst::cloneImpl() const { 4500 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 4501 } 4502 4503 ICmpInst *ICmpInst::cloneImpl() const { 4504 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 4505 } 4506 4507 ExtractValueInst *ExtractValueInst::cloneImpl() const { 4508 return new ExtractValueInst(*this); 4509 } 4510 4511 InsertValueInst *InsertValueInst::cloneImpl() const { 4512 return new InsertValueInst(*this); 4513 } 4514 4515 AllocaInst *AllocaInst::cloneImpl() const { 4516 AllocaInst *Result = 4517 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(), 4518 getOperand(0), getAlign()); 4519 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 4520 Result->setSwiftError(isSwiftError()); 4521 return Result; 4522 } 4523 4524 LoadInst *LoadInst::cloneImpl() const { 4525 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), 4526 getAlign(), getOrdering(), getSyncScopeID()); 4527 } 4528 4529 StoreInst *StoreInst::cloneImpl() const { 4530 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(), 4531 getOrdering(), getSyncScopeID()); 4532 } 4533 4534 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 4535 AtomicCmpXchgInst *Result = new AtomicCmpXchgInst( 4536 getOperand(0), getOperand(1), getOperand(2), getAlign(), 4537 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID()); 4538 Result->setVolatile(isVolatile()); 4539 Result->setWeak(isWeak()); 4540 return Result; 4541 } 4542 4543 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 4544 AtomicRMWInst *Result = 4545 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), 4546 getAlign(), getOrdering(), getSyncScopeID()); 4547 Result->setVolatile(isVolatile()); 4548 return Result; 4549 } 4550 4551 FenceInst *FenceInst::cloneImpl() const { 4552 return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); 4553 } 4554 4555 TruncInst *TruncInst::cloneImpl() const { 4556 return new TruncInst(getOperand(0), getType()); 4557 } 4558 4559 ZExtInst *ZExtInst::cloneImpl() const { 4560 return new ZExtInst(getOperand(0), getType()); 4561 } 4562 4563 SExtInst *SExtInst::cloneImpl() const { 4564 return new SExtInst(getOperand(0), getType()); 4565 } 4566 4567 FPTruncInst *FPTruncInst::cloneImpl() const { 4568 return new FPTruncInst(getOperand(0), getType()); 4569 } 4570 4571 FPExtInst *FPExtInst::cloneImpl() const { 4572 return new FPExtInst(getOperand(0), getType()); 4573 } 4574 4575 UIToFPInst *UIToFPInst::cloneImpl() const { 4576 return new UIToFPInst(getOperand(0), getType()); 4577 } 4578 4579 SIToFPInst *SIToFPInst::cloneImpl() const { 4580 return new SIToFPInst(getOperand(0), getType()); 4581 } 4582 4583 FPToUIInst *FPToUIInst::cloneImpl() const { 4584 return new FPToUIInst(getOperand(0), getType()); 4585 } 4586 4587 FPToSIInst *FPToSIInst::cloneImpl() const { 4588 return new FPToSIInst(getOperand(0), getType()); 4589 } 4590 4591 PtrToIntInst *PtrToIntInst::cloneImpl() const { 4592 return new PtrToIntInst(getOperand(0), getType()); 4593 } 4594 4595 IntToPtrInst *IntToPtrInst::cloneImpl() const { 4596 return new IntToPtrInst(getOperand(0), getType()); 4597 } 4598 4599 BitCastInst *BitCastInst::cloneImpl() const { 4600 return new BitCastInst(getOperand(0), getType()); 4601 } 4602 4603 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 4604 return new AddrSpaceCastInst(getOperand(0), getType()); 4605 } 4606 4607 CallInst *CallInst::cloneImpl() const { 4608 if (hasOperandBundles()) { 4609 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4610 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 4611 } 4612 return new(getNumOperands()) CallInst(*this); 4613 } 4614 4615 SelectInst *SelectInst::cloneImpl() const { 4616 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4617 } 4618 4619 VAArgInst *VAArgInst::cloneImpl() const { 4620 return new VAArgInst(getOperand(0), getType()); 4621 } 4622 4623 ExtractElementInst *ExtractElementInst::cloneImpl() const { 4624 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 4625 } 4626 4627 InsertElementInst *InsertElementInst::cloneImpl() const { 4628 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4629 } 4630 4631 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 4632 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask()); 4633 } 4634 4635 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 4636 4637 LandingPadInst *LandingPadInst::cloneImpl() const { 4638 return new LandingPadInst(*this); 4639 } 4640 4641 ReturnInst *ReturnInst::cloneImpl() const { 4642 return new(getNumOperands()) ReturnInst(*this); 4643 } 4644 4645 BranchInst *BranchInst::cloneImpl() const { 4646 return new(getNumOperands()) BranchInst(*this); 4647 } 4648 4649 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 4650 4651 IndirectBrInst *IndirectBrInst::cloneImpl() const { 4652 return new IndirectBrInst(*this); 4653 } 4654 4655 InvokeInst *InvokeInst::cloneImpl() const { 4656 if (hasOperandBundles()) { 4657 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4658 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 4659 } 4660 return new(getNumOperands()) InvokeInst(*this); 4661 } 4662 4663 CallBrInst *CallBrInst::cloneImpl() const { 4664 if (hasOperandBundles()) { 4665 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4666 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this); 4667 } 4668 return new (getNumOperands()) CallBrInst(*this); 4669 } 4670 4671 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 4672 4673 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4674 return new (getNumOperands()) CleanupReturnInst(*this); 4675 } 4676 4677 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4678 return new (getNumOperands()) CatchReturnInst(*this); 4679 } 4680 4681 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4682 return new CatchSwitchInst(*this); 4683 } 4684 4685 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4686 return new (getNumOperands()) FuncletPadInst(*this); 4687 } 4688 4689 UnreachableInst *UnreachableInst::cloneImpl() const { 4690 LLVMContext &Context = getContext(); 4691 return new UnreachableInst(Context); 4692 } 4693 4694 FreezeInst *FreezeInst::cloneImpl() const { 4695 return new FreezeInst(getOperand(0)); 4696 } 4697