1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool> SwitchInstProfUpdateWrapperStrict(
49     "switch-inst-prof-update-wrapper-strict", cl::Hidden,
50     cl::desc("Assert that prof branch_weights metadata is valid when creating "
51              "an instance of SwitchInstProfUpdateWrapper"),
52     cl::init(false));
53 
54 //===----------------------------------------------------------------------===//
55 //                            AllocaInst Class
56 //===----------------------------------------------------------------------===//
57 
58 Optional<uint64_t>
59 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
60   uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
61   if (isArrayAllocation()) {
62     auto C = dyn_cast<ConstantInt>(getArraySize());
63     if (!C)
64       return None;
65     Size *= C->getZExtValue();
66   }
67   return Size;
68 }
69 
70 //===----------------------------------------------------------------------===//
71 //                            CallSite Class
72 //===----------------------------------------------------------------------===//
73 
74 User::op_iterator CallSite::getCallee() const {
75   return cast<CallBase>(getInstruction())->op_end() - 1;
76 }
77 
78 //===----------------------------------------------------------------------===//
79 //                              SelectInst Class
80 //===----------------------------------------------------------------------===//
81 
82 /// areInvalidOperands - Return a string if the specified operands are invalid
83 /// for a select operation, otherwise return null.
84 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
85   if (Op1->getType() != Op2->getType())
86     return "both values to select must have same type";
87 
88   if (Op1->getType()->isTokenTy())
89     return "select values cannot have token type";
90 
91   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
92     // Vector select.
93     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
94       return "vector select condition element type must be i1";
95     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
96     if (!ET)
97       return "selected values for vector select must be vectors";
98     if (ET->getNumElements() != VT->getNumElements())
99       return "vector select requires selected vectors to have "
100                    "the same vector length as select condition";
101   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
102     return "select condition must be i1 or <n x i1>";
103   }
104   return nullptr;
105 }
106 
107 //===----------------------------------------------------------------------===//
108 //                               PHINode Class
109 //===----------------------------------------------------------------------===//
110 
111 PHINode::PHINode(const PHINode &PN)
112     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
113       ReservedSpace(PN.getNumOperands()) {
114   allocHungoffUses(PN.getNumOperands());
115   std::copy(PN.op_begin(), PN.op_end(), op_begin());
116   std::copy(PN.block_begin(), PN.block_end(), block_begin());
117   SubclassOptionalData = PN.SubclassOptionalData;
118 }
119 
120 // removeIncomingValue - Remove an incoming value.  This is useful if a
121 // predecessor basic block is deleted.
122 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
123   Value *Removed = getIncomingValue(Idx);
124 
125   // Move everything after this operand down.
126   //
127   // FIXME: we could just swap with the end of the list, then erase.  However,
128   // clients might not expect this to happen.  The code as it is thrashes the
129   // use/def lists, which is kinda lame.
130   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
131   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
132 
133   // Nuke the last value.
134   Op<-1>().set(nullptr);
135   setNumHungOffUseOperands(getNumOperands() - 1);
136 
137   // If the PHI node is dead, because it has zero entries, nuke it now.
138   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
139     // If anyone is using this PHI, make them use a dummy value instead...
140     replaceAllUsesWith(UndefValue::get(getType()));
141     eraseFromParent();
142   }
143   return Removed;
144 }
145 
146 /// growOperands - grow operands - This grows the operand list in response
147 /// to a push_back style of operation.  This grows the number of ops by 1.5
148 /// times.
149 ///
150 void PHINode::growOperands() {
151   unsigned e = getNumOperands();
152   unsigned NumOps = e + e / 2;
153   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
154 
155   ReservedSpace = NumOps;
156   growHungoffUses(ReservedSpace, /* IsPhi */ true);
157 }
158 
159 /// hasConstantValue - If the specified PHI node always merges together the same
160 /// value, return the value, otherwise return null.
161 Value *PHINode::hasConstantValue() const {
162   // Exploit the fact that phi nodes always have at least one entry.
163   Value *ConstantValue = getIncomingValue(0);
164   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166       if (ConstantValue != this)
167         return nullptr; // Incoming values not all the same.
168        // The case where the first value is this PHI.
169       ConstantValue = getIncomingValue(i);
170     }
171   if (ConstantValue == this)
172     return UndefValue::get(getType());
173   return ConstantValue;
174 }
175 
176 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
177 /// together the same value, assuming that undefs result in the same value as
178 /// non-undefs.
179 /// Unlike \ref hasConstantValue, this does not return a value because the
180 /// unique non-undef incoming value need not dominate the PHI node.
181 bool PHINode::hasConstantOrUndefValue() const {
182   Value *ConstantValue = nullptr;
183   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
184     Value *Incoming = getIncomingValue(i);
185     if (Incoming != this && !isa<UndefValue>(Incoming)) {
186       if (ConstantValue && ConstantValue != Incoming)
187         return false;
188       ConstantValue = Incoming;
189     }
190   }
191   return true;
192 }
193 
194 //===----------------------------------------------------------------------===//
195 //                       LandingPadInst Implementation
196 //===----------------------------------------------------------------------===//
197 
198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
199                                const Twine &NameStr, Instruction *InsertBefore)
200     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
201   init(NumReservedValues, NameStr);
202 }
203 
204 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
205                                const Twine &NameStr, BasicBlock *InsertAtEnd)
206     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
207   init(NumReservedValues, NameStr);
208 }
209 
210 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
211     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
212                   LP.getNumOperands()),
213       ReservedSpace(LP.getNumOperands()) {
214   allocHungoffUses(LP.getNumOperands());
215   Use *OL = getOperandList();
216   const Use *InOL = LP.getOperandList();
217   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
218     OL[I] = InOL[I];
219 
220   setCleanup(LP.isCleanup());
221 }
222 
223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
224                                        const Twine &NameStr,
225                                        Instruction *InsertBefore) {
226   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
227 }
228 
229 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
230                                        const Twine &NameStr,
231                                        BasicBlock *InsertAtEnd) {
232   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
233 }
234 
235 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
236   ReservedSpace = NumReservedValues;
237   setNumHungOffUseOperands(0);
238   allocHungoffUses(ReservedSpace);
239   setName(NameStr);
240   setCleanup(false);
241 }
242 
243 /// growOperands - grow operands - This grows the operand list in response to a
244 /// push_back style of operation. This grows the number of ops by 2 times.
245 void LandingPadInst::growOperands(unsigned Size) {
246   unsigned e = getNumOperands();
247   if (ReservedSpace >= e + Size) return;
248   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
249   growHungoffUses(ReservedSpace);
250 }
251 
252 void LandingPadInst::addClause(Constant *Val) {
253   unsigned OpNo = getNumOperands();
254   growOperands(1);
255   assert(OpNo < ReservedSpace && "Growing didn't work!");
256   setNumHungOffUseOperands(getNumOperands() + 1);
257   getOperandList()[OpNo] = Val;
258 }
259 
260 //===----------------------------------------------------------------------===//
261 //                        CallBase Implementation
262 //===----------------------------------------------------------------------===//
263 
264 Function *CallBase::getCaller() { return getParent()->getParent(); }
265 
266 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
267   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
268   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
269 }
270 
271 bool CallBase::isIndirectCall() const {
272   const Value *V = getCalledValue();
273   if (isa<Function>(V) || isa<Constant>(V))
274     return false;
275   if (const CallInst *CI = dyn_cast<CallInst>(this))
276     if (CI->isInlineAsm())
277       return false;
278   return true;
279 }
280 
281 /// Tests if this call site must be tail call optimized. Only a CallInst can
282 /// be tail call optimized.
283 bool CallBase::isMustTailCall() const {
284   if (auto *CI = dyn_cast<CallInst>(this))
285     return CI->isMustTailCall();
286   return false;
287 }
288 
289 /// Tests if this call site is marked as a tail call.
290 bool CallBase::isTailCall() const {
291   if (auto *CI = dyn_cast<CallInst>(this))
292     return CI->isTailCall();
293   return false;
294 }
295 
296 Intrinsic::ID CallBase::getIntrinsicID() const {
297   if (auto *F = getCalledFunction())
298     return F->getIntrinsicID();
299   return Intrinsic::not_intrinsic;
300 }
301 
302 bool CallBase::isReturnNonNull() const {
303   if (hasRetAttr(Attribute::NonNull))
304     return true;
305 
306   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
307            !NullPointerIsDefined(getCaller(),
308                                  getType()->getPointerAddressSpace()))
309     return true;
310 
311   return false;
312 }
313 
314 Value *CallBase::getReturnedArgOperand() const {
315   unsigned Index;
316 
317   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
318     return getArgOperand(Index - AttributeList::FirstArgIndex);
319   if (const Function *F = getCalledFunction())
320     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
321         Index)
322       return getArgOperand(Index - AttributeList::FirstArgIndex);
323 
324   return nullptr;
325 }
326 
327 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
328   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
329     return true;
330 
331   // Look at the callee, if available.
332   if (const Function *F = getCalledFunction())
333     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
334   return false;
335 }
336 
337 /// Determine whether the argument or parameter has the given attribute.
338 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
339   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
340 
341   if (Attrs.hasParamAttribute(ArgNo, Kind))
342     return true;
343   if (const Function *F = getCalledFunction())
344     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
345   return false;
346 }
347 
348 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
349   if (const Function *F = getCalledFunction())
350     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
351   return false;
352 }
353 
354 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
355   if (const Function *F = getCalledFunction())
356     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
357   return false;
358 }
359 
360 CallBase::op_iterator
361 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
362                                      const unsigned BeginIndex) {
363   auto It = op_begin() + BeginIndex;
364   for (auto &B : Bundles)
365     It = std::copy(B.input_begin(), B.input_end(), It);
366 
367   auto *ContextImpl = getContext().pImpl;
368   auto BI = Bundles.begin();
369   unsigned CurrentIndex = BeginIndex;
370 
371   for (auto &BOI : bundle_op_infos()) {
372     assert(BI != Bundles.end() && "Incorrect allocation?");
373 
374     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
375     BOI.Begin = CurrentIndex;
376     BOI.End = CurrentIndex + BI->input_size();
377     CurrentIndex = BOI.End;
378     BI++;
379   }
380 
381   assert(BI == Bundles.end() && "Incorrect allocation?");
382 
383   return It;
384 }
385 
386 //===----------------------------------------------------------------------===//
387 //                        CallInst Implementation
388 //===----------------------------------------------------------------------===//
389 
390 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
391                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
392   this->FTy = FTy;
393   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
394          "NumOperands not set up?");
395   setCalledOperand(Func);
396 
397 #ifndef NDEBUG
398   assert((Args.size() == FTy->getNumParams() ||
399           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
400          "Calling a function with bad signature!");
401 
402   for (unsigned i = 0; i != Args.size(); ++i)
403     assert((i >= FTy->getNumParams() ||
404             FTy->getParamType(i) == Args[i]->getType()) &&
405            "Calling a function with a bad signature!");
406 #endif
407 
408   llvm::copy(Args, op_begin());
409 
410   auto It = populateBundleOperandInfos(Bundles, Args.size());
411   (void)It;
412   assert(It + 1 == op_end() && "Should add up!");
413 
414   setName(NameStr);
415 }
416 
417 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
418   this->FTy = FTy;
419   assert(getNumOperands() == 1 && "NumOperands not set up?");
420   setCalledOperand(Func);
421 
422   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
423 
424   setName(NameStr);
425 }
426 
427 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
428                    Instruction *InsertBefore)
429     : CallBase(Ty->getReturnType(), Instruction::Call,
430                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
431   init(Ty, Func, Name);
432 }
433 
434 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
435                    BasicBlock *InsertAtEnd)
436     : CallBase(Ty->getReturnType(), Instruction::Call,
437                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
438   init(Ty, Func, Name);
439 }
440 
441 CallInst::CallInst(const CallInst &CI)
442     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
443                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
444                CI.getNumOperands()) {
445   setTailCallKind(CI.getTailCallKind());
446   setCallingConv(CI.getCallingConv());
447 
448   std::copy(CI.op_begin(), CI.op_end(), op_begin());
449   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
450             bundle_op_info_begin());
451   SubclassOptionalData = CI.SubclassOptionalData;
452 }
453 
454 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
455                            Instruction *InsertPt) {
456   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
457 
458   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
459                                  Args, OpB, CI->getName(), InsertPt);
460   NewCI->setTailCallKind(CI->getTailCallKind());
461   NewCI->setCallingConv(CI->getCallingConv());
462   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
463   NewCI->setAttributes(CI->getAttributes());
464   NewCI->setDebugLoc(CI->getDebugLoc());
465   return NewCI;
466 }
467 
468 // Update profile weight for call instruction by scaling it using the ratio
469 // of S/T. The meaning of "branch_weights" meta data for call instruction is
470 // transfered to represent call count.
471 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
472   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
473   if (ProfileData == nullptr)
474     return;
475 
476   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
477   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
478                         !ProfDataName->getString().equals("VP")))
479     return;
480 
481   if (T == 0) {
482     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
483                          "div by 0. Ignoring. Likely the function "
484                       << getParent()->getParent()->getName()
485                       << " has 0 entry count, and contains call instructions "
486                          "with non-zero prof info.");
487     return;
488   }
489 
490   MDBuilder MDB(getContext());
491   SmallVector<Metadata *, 3> Vals;
492   Vals.push_back(ProfileData->getOperand(0));
493   APInt APS(128, S), APT(128, T);
494   if (ProfDataName->getString().equals("branch_weights") &&
495       ProfileData->getNumOperands() > 0) {
496     // Using APInt::div may be expensive, but most cases should fit 64 bits.
497     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
498                        ->getValue()
499                        .getZExtValue());
500     Val *= APS;
501     Vals.push_back(MDB.createConstant(ConstantInt::get(
502         Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
503   } else if (ProfDataName->getString().equals("VP"))
504     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
505       // The first value is the key of the value profile, which will not change.
506       Vals.push_back(ProfileData->getOperand(i));
507       // Using APInt::div may be expensive, but most cases should fit 64 bits.
508       APInt Val(128,
509                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
510                     ->getValue()
511                     .getZExtValue());
512       Val *= APS;
513       Vals.push_back(MDB.createConstant(
514           ConstantInt::get(Type::getInt64Ty(getContext()),
515                            Val.udiv(APT).getLimitedValue())));
516     }
517   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
518 }
519 
520 /// IsConstantOne - Return true only if val is constant int 1
521 static bool IsConstantOne(Value *val) {
522   assert(val && "IsConstantOne does not work with nullptr val");
523   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
524   return CVal && CVal->isOne();
525 }
526 
527 static Instruction *createMalloc(Instruction *InsertBefore,
528                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
529                                  Type *AllocTy, Value *AllocSize,
530                                  Value *ArraySize,
531                                  ArrayRef<OperandBundleDef> OpB,
532                                  Function *MallocF, const Twine &Name) {
533   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
534          "createMalloc needs either InsertBefore or InsertAtEnd");
535 
536   // malloc(type) becomes:
537   //       bitcast (i8* malloc(typeSize)) to type*
538   // malloc(type, arraySize) becomes:
539   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
540   if (!ArraySize)
541     ArraySize = ConstantInt::get(IntPtrTy, 1);
542   else if (ArraySize->getType() != IntPtrTy) {
543     if (InsertBefore)
544       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
545                                               "", InsertBefore);
546     else
547       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
548                                               "", InsertAtEnd);
549   }
550 
551   if (!IsConstantOne(ArraySize)) {
552     if (IsConstantOne(AllocSize)) {
553       AllocSize = ArraySize;         // Operand * 1 = Operand
554     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
555       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
556                                                      false /*ZExt*/);
557       // Malloc arg is constant product of type size and array size
558       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
559     } else {
560       // Multiply type size by the array size...
561       if (InsertBefore)
562         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
563                                               "mallocsize", InsertBefore);
564       else
565         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
566                                               "mallocsize", InsertAtEnd);
567     }
568   }
569 
570   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
571   // Create the call to Malloc.
572   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
573   Module *M = BB->getParent()->getParent();
574   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
575   FunctionCallee MallocFunc = MallocF;
576   if (!MallocFunc)
577     // prototype malloc as "void *malloc(size_t)"
578     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
579   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
580   CallInst *MCall = nullptr;
581   Instruction *Result = nullptr;
582   if (InsertBefore) {
583     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
584                              InsertBefore);
585     Result = MCall;
586     if (Result->getType() != AllocPtrType)
587       // Create a cast instruction to convert to the right type...
588       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
589   } else {
590     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
591     Result = MCall;
592     if (Result->getType() != AllocPtrType) {
593       InsertAtEnd->getInstList().push_back(MCall);
594       // Create a cast instruction to convert to the right type...
595       Result = new BitCastInst(MCall, AllocPtrType, Name);
596     }
597   }
598   MCall->setTailCall();
599   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
600     MCall->setCallingConv(F->getCallingConv());
601     if (!F->returnDoesNotAlias())
602       F->setReturnDoesNotAlias();
603   }
604   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
605 
606   return Result;
607 }
608 
609 /// CreateMalloc - Generate the IR for a call to malloc:
610 /// 1. Compute the malloc call's argument as the specified type's size,
611 ///    possibly multiplied by the array size if the array size is not
612 ///    constant 1.
613 /// 2. Call malloc with that argument.
614 /// 3. Bitcast the result of the malloc call to the specified type.
615 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
616                                     Type *IntPtrTy, Type *AllocTy,
617                                     Value *AllocSize, Value *ArraySize,
618                                     Function *MallocF,
619                                     const Twine &Name) {
620   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
621                       ArraySize, None, MallocF, Name);
622 }
623 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
624                                     Type *IntPtrTy, Type *AllocTy,
625                                     Value *AllocSize, Value *ArraySize,
626                                     ArrayRef<OperandBundleDef> OpB,
627                                     Function *MallocF,
628                                     const Twine &Name) {
629   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
630                       ArraySize, OpB, MallocF, Name);
631 }
632 
633 /// CreateMalloc - Generate the IR for a call to malloc:
634 /// 1. Compute the malloc call's argument as the specified type's size,
635 ///    possibly multiplied by the array size if the array size is not
636 ///    constant 1.
637 /// 2. Call malloc with that argument.
638 /// 3. Bitcast the result of the malloc call to the specified type.
639 /// Note: This function does not add the bitcast to the basic block, that is the
640 /// responsibility of the caller.
641 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
642                                     Type *IntPtrTy, Type *AllocTy,
643                                     Value *AllocSize, Value *ArraySize,
644                                     Function *MallocF, const Twine &Name) {
645   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
646                       ArraySize, None, MallocF, Name);
647 }
648 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
649                                     Type *IntPtrTy, Type *AllocTy,
650                                     Value *AllocSize, Value *ArraySize,
651                                     ArrayRef<OperandBundleDef> OpB,
652                                     Function *MallocF, const Twine &Name) {
653   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
654                       ArraySize, OpB, MallocF, Name);
655 }
656 
657 static Instruction *createFree(Value *Source,
658                                ArrayRef<OperandBundleDef> Bundles,
659                                Instruction *InsertBefore,
660                                BasicBlock *InsertAtEnd) {
661   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
662          "createFree needs either InsertBefore or InsertAtEnd");
663   assert(Source->getType()->isPointerTy() &&
664          "Can not free something of nonpointer type!");
665 
666   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
667   Module *M = BB->getParent()->getParent();
668 
669   Type *VoidTy = Type::getVoidTy(M->getContext());
670   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
671   // prototype free as "void free(void*)"
672   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
673   CallInst *Result = nullptr;
674   Value *PtrCast = Source;
675   if (InsertBefore) {
676     if (Source->getType() != IntPtrTy)
677       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
678     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
679   } else {
680     if (Source->getType() != IntPtrTy)
681       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
682     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
683   }
684   Result->setTailCall();
685   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
686     Result->setCallingConv(F->getCallingConv());
687 
688   return Result;
689 }
690 
691 /// CreateFree - Generate the IR for a call to the builtin free function.
692 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
693   return createFree(Source, None, InsertBefore, nullptr);
694 }
695 Instruction *CallInst::CreateFree(Value *Source,
696                                   ArrayRef<OperandBundleDef> Bundles,
697                                   Instruction *InsertBefore) {
698   return createFree(Source, Bundles, InsertBefore, nullptr);
699 }
700 
701 /// CreateFree - Generate the IR for a call to the builtin free function.
702 /// Note: This function does not add the call to the basic block, that is the
703 /// responsibility of the caller.
704 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
705   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
706   assert(FreeCall && "CreateFree did not create a CallInst");
707   return FreeCall;
708 }
709 Instruction *CallInst::CreateFree(Value *Source,
710                                   ArrayRef<OperandBundleDef> Bundles,
711                                   BasicBlock *InsertAtEnd) {
712   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
713   assert(FreeCall && "CreateFree did not create a CallInst");
714   return FreeCall;
715 }
716 
717 //===----------------------------------------------------------------------===//
718 //                        InvokeInst Implementation
719 //===----------------------------------------------------------------------===//
720 
721 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
722                       BasicBlock *IfException, ArrayRef<Value *> Args,
723                       ArrayRef<OperandBundleDef> Bundles,
724                       const Twine &NameStr) {
725   this->FTy = FTy;
726 
727   assert((int)getNumOperands() ==
728              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
729          "NumOperands not set up?");
730   setNormalDest(IfNormal);
731   setUnwindDest(IfException);
732   setCalledOperand(Fn);
733 
734 #ifndef NDEBUG
735   assert(((Args.size() == FTy->getNumParams()) ||
736           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
737          "Invoking a function with bad signature");
738 
739   for (unsigned i = 0, e = Args.size(); i != e; i++)
740     assert((i >= FTy->getNumParams() ||
741             FTy->getParamType(i) == Args[i]->getType()) &&
742            "Invoking a function with a bad signature!");
743 #endif
744 
745   llvm::copy(Args, op_begin());
746 
747   auto It = populateBundleOperandInfos(Bundles, Args.size());
748   (void)It;
749   assert(It + 3 == op_end() && "Should add up!");
750 
751   setName(NameStr);
752 }
753 
754 InvokeInst::InvokeInst(const InvokeInst &II)
755     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
756                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
757                II.getNumOperands()) {
758   setCallingConv(II.getCallingConv());
759   std::copy(II.op_begin(), II.op_end(), op_begin());
760   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
761             bundle_op_info_begin());
762   SubclassOptionalData = II.SubclassOptionalData;
763 }
764 
765 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
766                                Instruction *InsertPt) {
767   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
768 
769   auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
770                                    II->getNormalDest(), II->getUnwindDest(),
771                                    Args, OpB, II->getName(), InsertPt);
772   NewII->setCallingConv(II->getCallingConv());
773   NewII->SubclassOptionalData = II->SubclassOptionalData;
774   NewII->setAttributes(II->getAttributes());
775   NewII->setDebugLoc(II->getDebugLoc());
776   return NewII;
777 }
778 
779 
780 LandingPadInst *InvokeInst::getLandingPadInst() const {
781   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
782 }
783 
784 //===----------------------------------------------------------------------===//
785 //                        CallBrInst Implementation
786 //===----------------------------------------------------------------------===//
787 
788 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
789                       ArrayRef<BasicBlock *> IndirectDests,
790                       ArrayRef<Value *> Args,
791                       ArrayRef<OperandBundleDef> Bundles,
792                       const Twine &NameStr) {
793   this->FTy = FTy;
794 
795   assert((int)getNumOperands() ==
796              ComputeNumOperands(Args.size(), IndirectDests.size(),
797                                 CountBundleInputs(Bundles)) &&
798          "NumOperands not set up?");
799   NumIndirectDests = IndirectDests.size();
800   setDefaultDest(Fallthrough);
801   for (unsigned i = 0; i != NumIndirectDests; ++i)
802     setIndirectDest(i, IndirectDests[i]);
803   setCalledOperand(Fn);
804 
805 #ifndef NDEBUG
806   assert(((Args.size() == FTy->getNumParams()) ||
807           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
808          "Calling a function with bad signature");
809 
810   for (unsigned i = 0, e = Args.size(); i != e; i++)
811     assert((i >= FTy->getNumParams() ||
812             FTy->getParamType(i) == Args[i]->getType()) &&
813            "Calling a function with a bad signature!");
814 #endif
815 
816   std::copy(Args.begin(), Args.end(), op_begin());
817 
818   auto It = populateBundleOperandInfos(Bundles, Args.size());
819   (void)It;
820   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
821 
822   setName(NameStr);
823 }
824 
825 CallBrInst::CallBrInst(const CallBrInst &CBI)
826     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
827                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
828                CBI.getNumOperands()) {
829   setCallingConv(CBI.getCallingConv());
830   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
831   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
832             bundle_op_info_begin());
833   SubclassOptionalData = CBI.SubclassOptionalData;
834   NumIndirectDests = CBI.NumIndirectDests;
835 }
836 
837 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
838                                Instruction *InsertPt) {
839   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
840 
841   auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
842                                     CBI->getCalledValue(),
843                                     CBI->getDefaultDest(),
844                                     CBI->getIndirectDests(),
845                                     Args, OpB, CBI->getName(), InsertPt);
846   NewCBI->setCallingConv(CBI->getCallingConv());
847   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
848   NewCBI->setAttributes(CBI->getAttributes());
849   NewCBI->setDebugLoc(CBI->getDebugLoc());
850   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
851   return NewCBI;
852 }
853 
854 //===----------------------------------------------------------------------===//
855 //                        ReturnInst Implementation
856 //===----------------------------------------------------------------------===//
857 
858 ReturnInst::ReturnInst(const ReturnInst &RI)
859     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
860                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
861                   RI.getNumOperands()) {
862   if (RI.getNumOperands())
863     Op<0>() = RI.Op<0>();
864   SubclassOptionalData = RI.SubclassOptionalData;
865 }
866 
867 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
868     : Instruction(Type::getVoidTy(C), Instruction::Ret,
869                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
870                   InsertBefore) {
871   if (retVal)
872     Op<0>() = retVal;
873 }
874 
875 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
876     : Instruction(Type::getVoidTy(C), Instruction::Ret,
877                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
878                   InsertAtEnd) {
879   if (retVal)
880     Op<0>() = retVal;
881 }
882 
883 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
884     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
885                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
886 
887 //===----------------------------------------------------------------------===//
888 //                        ResumeInst Implementation
889 //===----------------------------------------------------------------------===//
890 
891 ResumeInst::ResumeInst(const ResumeInst &RI)
892     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
893                   OperandTraits<ResumeInst>::op_begin(this), 1) {
894   Op<0>() = RI.Op<0>();
895 }
896 
897 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
898     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
899                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
900   Op<0>() = Exn;
901 }
902 
903 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
904     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
905                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
906   Op<0>() = Exn;
907 }
908 
909 //===----------------------------------------------------------------------===//
910 //                        CleanupReturnInst Implementation
911 //===----------------------------------------------------------------------===//
912 
913 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
914     : Instruction(CRI.getType(), Instruction::CleanupRet,
915                   OperandTraits<CleanupReturnInst>::op_end(this) -
916                       CRI.getNumOperands(),
917                   CRI.getNumOperands()) {
918   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
919   Op<0>() = CRI.Op<0>();
920   if (CRI.hasUnwindDest())
921     Op<1>() = CRI.Op<1>();
922 }
923 
924 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
925   if (UnwindBB)
926     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
927 
928   Op<0>() = CleanupPad;
929   if (UnwindBB)
930     Op<1>() = UnwindBB;
931 }
932 
933 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
934                                      unsigned Values, Instruction *InsertBefore)
935     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
936                   Instruction::CleanupRet,
937                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
938                   Values, InsertBefore) {
939   init(CleanupPad, UnwindBB);
940 }
941 
942 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
943                                      unsigned Values, BasicBlock *InsertAtEnd)
944     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
945                   Instruction::CleanupRet,
946                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
947                   Values, InsertAtEnd) {
948   init(CleanupPad, UnwindBB);
949 }
950 
951 //===----------------------------------------------------------------------===//
952 //                        CatchReturnInst Implementation
953 //===----------------------------------------------------------------------===//
954 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
955   Op<0>() = CatchPad;
956   Op<1>() = BB;
957 }
958 
959 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
960     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
961                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
962   Op<0>() = CRI.Op<0>();
963   Op<1>() = CRI.Op<1>();
964 }
965 
966 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
967                                  Instruction *InsertBefore)
968     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
969                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
970                   InsertBefore) {
971   init(CatchPad, BB);
972 }
973 
974 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
975                                  BasicBlock *InsertAtEnd)
976     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
977                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
978                   InsertAtEnd) {
979   init(CatchPad, BB);
980 }
981 
982 //===----------------------------------------------------------------------===//
983 //                       CatchSwitchInst Implementation
984 //===----------------------------------------------------------------------===//
985 
986 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
987                                  unsigned NumReservedValues,
988                                  const Twine &NameStr,
989                                  Instruction *InsertBefore)
990     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
991                   InsertBefore) {
992   if (UnwindDest)
993     ++NumReservedValues;
994   init(ParentPad, UnwindDest, NumReservedValues + 1);
995   setName(NameStr);
996 }
997 
998 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
999                                  unsigned NumReservedValues,
1000                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1001     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1002                   InsertAtEnd) {
1003   if (UnwindDest)
1004     ++NumReservedValues;
1005   init(ParentPad, UnwindDest, NumReservedValues + 1);
1006   setName(NameStr);
1007 }
1008 
1009 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1010     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1011                   CSI.getNumOperands()) {
1012   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1013   setNumHungOffUseOperands(ReservedSpace);
1014   Use *OL = getOperandList();
1015   const Use *InOL = CSI.getOperandList();
1016   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1017     OL[I] = InOL[I];
1018 }
1019 
1020 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1021                            unsigned NumReservedValues) {
1022   assert(ParentPad && NumReservedValues);
1023 
1024   ReservedSpace = NumReservedValues;
1025   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1026   allocHungoffUses(ReservedSpace);
1027 
1028   Op<0>() = ParentPad;
1029   if (UnwindDest) {
1030     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1031     setUnwindDest(UnwindDest);
1032   }
1033 }
1034 
1035 /// growOperands - grow operands - This grows the operand list in response to a
1036 /// push_back style of operation. This grows the number of ops by 2 times.
1037 void CatchSwitchInst::growOperands(unsigned Size) {
1038   unsigned NumOperands = getNumOperands();
1039   assert(NumOperands >= 1);
1040   if (ReservedSpace >= NumOperands + Size)
1041     return;
1042   ReservedSpace = (NumOperands + Size / 2) * 2;
1043   growHungoffUses(ReservedSpace);
1044 }
1045 
1046 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1047   unsigned OpNo = getNumOperands();
1048   growOperands(1);
1049   assert(OpNo < ReservedSpace && "Growing didn't work!");
1050   setNumHungOffUseOperands(getNumOperands() + 1);
1051   getOperandList()[OpNo] = Handler;
1052 }
1053 
1054 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1055   // Move all subsequent handlers up one.
1056   Use *EndDst = op_end() - 1;
1057   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1058     *CurDst = *(CurDst + 1);
1059   // Null out the last handler use.
1060   *EndDst = nullptr;
1061 
1062   setNumHungOffUseOperands(getNumOperands() - 1);
1063 }
1064 
1065 //===----------------------------------------------------------------------===//
1066 //                        FuncletPadInst Implementation
1067 //===----------------------------------------------------------------------===//
1068 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1069                           const Twine &NameStr) {
1070   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1071   llvm::copy(Args, op_begin());
1072   setParentPad(ParentPad);
1073   setName(NameStr);
1074 }
1075 
1076 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1077     : Instruction(FPI.getType(), FPI.getOpcode(),
1078                   OperandTraits<FuncletPadInst>::op_end(this) -
1079                       FPI.getNumOperands(),
1080                   FPI.getNumOperands()) {
1081   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1082   setParentPad(FPI.getParentPad());
1083 }
1084 
1085 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1086                                ArrayRef<Value *> Args, unsigned Values,
1087                                const Twine &NameStr, Instruction *InsertBefore)
1088     : Instruction(ParentPad->getType(), Op,
1089                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1090                   InsertBefore) {
1091   init(ParentPad, Args, NameStr);
1092 }
1093 
1094 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1095                                ArrayRef<Value *> Args, unsigned Values,
1096                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1097     : Instruction(ParentPad->getType(), Op,
1098                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1099                   InsertAtEnd) {
1100   init(ParentPad, Args, NameStr);
1101 }
1102 
1103 //===----------------------------------------------------------------------===//
1104 //                      UnreachableInst Implementation
1105 //===----------------------------------------------------------------------===//
1106 
1107 UnreachableInst::UnreachableInst(LLVMContext &Context,
1108                                  Instruction *InsertBefore)
1109     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1110                   0, InsertBefore) {}
1111 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1112     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1113                   0, InsertAtEnd) {}
1114 
1115 //===----------------------------------------------------------------------===//
1116 //                        BranchInst Implementation
1117 //===----------------------------------------------------------------------===//
1118 
1119 void BranchInst::AssertOK() {
1120   if (isConditional())
1121     assert(getCondition()->getType()->isIntegerTy(1) &&
1122            "May only branch on boolean predicates!");
1123 }
1124 
1125 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1126     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1127                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1128                   InsertBefore) {
1129   assert(IfTrue && "Branch destination may not be null!");
1130   Op<-1>() = IfTrue;
1131 }
1132 
1133 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1134                        Instruction *InsertBefore)
1135     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1136                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1137                   InsertBefore) {
1138   Op<-1>() = IfTrue;
1139   Op<-2>() = IfFalse;
1140   Op<-3>() = Cond;
1141 #ifndef NDEBUG
1142   AssertOK();
1143 #endif
1144 }
1145 
1146 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1147     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1148                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1149   assert(IfTrue && "Branch destination may not be null!");
1150   Op<-1>() = IfTrue;
1151 }
1152 
1153 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1154                        BasicBlock *InsertAtEnd)
1155     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1156                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1157   Op<-1>() = IfTrue;
1158   Op<-2>() = IfFalse;
1159   Op<-3>() = Cond;
1160 #ifndef NDEBUG
1161   AssertOK();
1162 #endif
1163 }
1164 
1165 BranchInst::BranchInst(const BranchInst &BI)
1166     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1167                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1168                   BI.getNumOperands()) {
1169   Op<-1>() = BI.Op<-1>();
1170   if (BI.getNumOperands() != 1) {
1171     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1172     Op<-3>() = BI.Op<-3>();
1173     Op<-2>() = BI.Op<-2>();
1174   }
1175   SubclassOptionalData = BI.SubclassOptionalData;
1176 }
1177 
1178 void BranchInst::swapSuccessors() {
1179   assert(isConditional() &&
1180          "Cannot swap successors of an unconditional branch");
1181   Op<-1>().swap(Op<-2>());
1182 
1183   // Update profile metadata if present and it matches our structural
1184   // expectations.
1185   swapProfMetadata();
1186 }
1187 
1188 //===----------------------------------------------------------------------===//
1189 //                        AllocaInst Implementation
1190 //===----------------------------------------------------------------------===//
1191 
1192 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1193   if (!Amt)
1194     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1195   else {
1196     assert(!isa<BasicBlock>(Amt) &&
1197            "Passed basic block into allocation size parameter! Use other ctor");
1198     assert(Amt->getType()->isIntegerTy() &&
1199            "Allocation array size is not an integer!");
1200   }
1201   return Amt;
1202 }
1203 
1204 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1205                        Instruction *InsertBefore)
1206   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1207 
1208 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1209                        BasicBlock *InsertAtEnd)
1210   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1211 
1212 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1213                        const Twine &Name, Instruction *InsertBefore)
1214   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1215 
1216 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1217                        const Twine &Name, BasicBlock *InsertAtEnd)
1218   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1219 
1220 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1221                        unsigned Align, const Twine &Name,
1222                        Instruction *InsertBefore)
1223   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1224                      getAISize(Ty->getContext(), ArraySize), InsertBefore),
1225     AllocatedType(Ty) {
1226   setAlignment(Align);
1227   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1228   setName(Name);
1229 }
1230 
1231 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1232                        unsigned Align, const Twine &Name,
1233                        BasicBlock *InsertAtEnd)
1234   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1235                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1236       AllocatedType(Ty) {
1237   setAlignment(Align);
1238   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1239   setName(Name);
1240 }
1241 
1242 void AllocaInst::setAlignment(unsigned Align) {
1243   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1244   assert(Align <= MaximumAlignment &&
1245          "Alignment is greater than MaximumAlignment!");
1246   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1247                              (Log2_32(Align) + 1));
1248   assert(getAlignment() == Align && "Alignment representation error!");
1249 }
1250 
1251 bool AllocaInst::isArrayAllocation() const {
1252   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1253     return !CI->isOne();
1254   return true;
1255 }
1256 
1257 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1258 /// function and is a constant size.  If so, the code generator will fold it
1259 /// into the prolog/epilog code, so it is basically free.
1260 bool AllocaInst::isStaticAlloca() const {
1261   // Must be constant size.
1262   if (!isa<ConstantInt>(getArraySize())) return false;
1263 
1264   // Must be in the entry block.
1265   const BasicBlock *Parent = getParent();
1266   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1267 }
1268 
1269 //===----------------------------------------------------------------------===//
1270 //                           LoadInst Implementation
1271 //===----------------------------------------------------------------------===//
1272 
1273 void LoadInst::AssertOK() {
1274   assert(getOperand(0)->getType()->isPointerTy() &&
1275          "Ptr must have pointer type.");
1276   assert(!(isAtomic() && getAlignment() == 0) &&
1277          "Alignment required for atomic load");
1278 }
1279 
1280 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1281                    Instruction *InsertBef)
1282     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1283 
1284 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1285                    BasicBlock *InsertAE)
1286     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1287 
1288 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1289                    Instruction *InsertBef)
1290     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1291 
1292 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1293                    BasicBlock *InsertAE)
1294     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1295 
1296 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1297                    unsigned Align, Instruction *InsertBef)
1298     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1299                SyncScope::System, InsertBef) {}
1300 
1301 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1302                    unsigned Align, BasicBlock *InsertAE)
1303     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1304                SyncScope::System, InsertAE) {}
1305 
1306 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1307                    unsigned Align, AtomicOrdering Order,
1308                    SyncScope::ID SSID, Instruction *InsertBef)
1309     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1310   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1311   setVolatile(isVolatile);
1312   setAlignment(Align);
1313   setAtomic(Order, SSID);
1314   AssertOK();
1315   setName(Name);
1316 }
1317 
1318 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1319                    unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1320                    BasicBlock *InsertAE)
1321     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1322   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1323   setVolatile(isVolatile);
1324   setAlignment(Align);
1325   setAtomic(Order, SSID);
1326   AssertOK();
1327   setName(Name);
1328 }
1329 
1330 void LoadInst::setAlignment(unsigned Align) {
1331   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1332   assert(Align <= MaximumAlignment &&
1333          "Alignment is greater than MaximumAlignment!");
1334   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1335                              ((Log2_32(Align)+1)<<1));
1336   assert(getAlignment() == Align && "Alignment representation error!");
1337 }
1338 
1339 //===----------------------------------------------------------------------===//
1340 //                           StoreInst Implementation
1341 //===----------------------------------------------------------------------===//
1342 
1343 void StoreInst::AssertOK() {
1344   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1345   assert(getOperand(1)->getType()->isPointerTy() &&
1346          "Ptr must have pointer type!");
1347   assert(getOperand(0)->getType() ==
1348                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1349          && "Ptr must be a pointer to Val type!");
1350   assert(!(isAtomic() && getAlignment() == 0) &&
1351          "Alignment required for atomic store");
1352 }
1353 
1354 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1355     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1356 
1357 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1358     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1359 
1360 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1361                      Instruction *InsertBefore)
1362     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1363 
1364 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1365                      BasicBlock *InsertAtEnd)
1366     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1367 
1368 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1369                      Instruction *InsertBefore)
1370     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1371                 SyncScope::System, InsertBefore) {}
1372 
1373 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1374                      BasicBlock *InsertAtEnd)
1375     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1376                 SyncScope::System, InsertAtEnd) {}
1377 
1378 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1379                      unsigned Align, AtomicOrdering Order,
1380                      SyncScope::ID SSID,
1381                      Instruction *InsertBefore)
1382   : Instruction(Type::getVoidTy(val->getContext()), Store,
1383                 OperandTraits<StoreInst>::op_begin(this),
1384                 OperandTraits<StoreInst>::operands(this),
1385                 InsertBefore) {
1386   Op<0>() = val;
1387   Op<1>() = addr;
1388   setVolatile(isVolatile);
1389   setAlignment(Align);
1390   setAtomic(Order, SSID);
1391   AssertOK();
1392 }
1393 
1394 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1395                      unsigned Align, AtomicOrdering Order,
1396                      SyncScope::ID SSID,
1397                      BasicBlock *InsertAtEnd)
1398   : Instruction(Type::getVoidTy(val->getContext()), Store,
1399                 OperandTraits<StoreInst>::op_begin(this),
1400                 OperandTraits<StoreInst>::operands(this),
1401                 InsertAtEnd) {
1402   Op<0>() = val;
1403   Op<1>() = addr;
1404   setVolatile(isVolatile);
1405   setAlignment(Align);
1406   setAtomic(Order, SSID);
1407   AssertOK();
1408 }
1409 
1410 void StoreInst::setAlignment(unsigned Align) {
1411   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1412   assert(Align <= MaximumAlignment &&
1413          "Alignment is greater than MaximumAlignment!");
1414   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1415                              ((Log2_32(Align)+1) << 1));
1416   assert(getAlignment() == Align && "Alignment representation error!");
1417 }
1418 
1419 //===----------------------------------------------------------------------===//
1420 //                       AtomicCmpXchgInst Implementation
1421 //===----------------------------------------------------------------------===//
1422 
1423 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1424                              AtomicOrdering SuccessOrdering,
1425                              AtomicOrdering FailureOrdering,
1426                              SyncScope::ID SSID) {
1427   Op<0>() = Ptr;
1428   Op<1>() = Cmp;
1429   Op<2>() = NewVal;
1430   setSuccessOrdering(SuccessOrdering);
1431   setFailureOrdering(FailureOrdering);
1432   setSyncScopeID(SSID);
1433 
1434   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1435          "All operands must be non-null!");
1436   assert(getOperand(0)->getType()->isPointerTy() &&
1437          "Ptr must have pointer type!");
1438   assert(getOperand(1)->getType() ==
1439                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1440          && "Ptr must be a pointer to Cmp type!");
1441   assert(getOperand(2)->getType() ==
1442                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1443          && "Ptr must be a pointer to NewVal type!");
1444   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1445          "AtomicCmpXchg instructions must be atomic!");
1446   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1447          "AtomicCmpXchg instructions must be atomic!");
1448   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1449          "AtomicCmpXchg failure argument shall be no stronger than the success "
1450          "argument");
1451   assert(FailureOrdering != AtomicOrdering::Release &&
1452          FailureOrdering != AtomicOrdering::AcquireRelease &&
1453          "AtomicCmpXchg failure ordering cannot include release semantics");
1454 }
1455 
1456 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1457                                      AtomicOrdering SuccessOrdering,
1458                                      AtomicOrdering FailureOrdering,
1459                                      SyncScope::ID SSID,
1460                                      Instruction *InsertBefore)
1461     : Instruction(
1462           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1463           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1464           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1465   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1466 }
1467 
1468 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1469                                      AtomicOrdering SuccessOrdering,
1470                                      AtomicOrdering FailureOrdering,
1471                                      SyncScope::ID SSID,
1472                                      BasicBlock *InsertAtEnd)
1473     : Instruction(
1474           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1475           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1476           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1477   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1478 }
1479 
1480 //===----------------------------------------------------------------------===//
1481 //                       AtomicRMWInst Implementation
1482 //===----------------------------------------------------------------------===//
1483 
1484 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1485                          AtomicOrdering Ordering,
1486                          SyncScope::ID SSID) {
1487   Op<0>() = Ptr;
1488   Op<1>() = Val;
1489   setOperation(Operation);
1490   setOrdering(Ordering);
1491   setSyncScopeID(SSID);
1492 
1493   assert(getOperand(0) && getOperand(1) &&
1494          "All operands must be non-null!");
1495   assert(getOperand(0)->getType()->isPointerTy() &&
1496          "Ptr must have pointer type!");
1497   assert(getOperand(1)->getType() ==
1498          cast<PointerType>(getOperand(0)->getType())->getElementType()
1499          && "Ptr must be a pointer to Val type!");
1500   assert(Ordering != AtomicOrdering::NotAtomic &&
1501          "AtomicRMW instructions must be atomic!");
1502 }
1503 
1504 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1505                              AtomicOrdering Ordering,
1506                              SyncScope::ID SSID,
1507                              Instruction *InsertBefore)
1508   : Instruction(Val->getType(), AtomicRMW,
1509                 OperandTraits<AtomicRMWInst>::op_begin(this),
1510                 OperandTraits<AtomicRMWInst>::operands(this),
1511                 InsertBefore) {
1512   Init(Operation, Ptr, Val, Ordering, SSID);
1513 }
1514 
1515 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1516                              AtomicOrdering Ordering,
1517                              SyncScope::ID SSID,
1518                              BasicBlock *InsertAtEnd)
1519   : Instruction(Val->getType(), AtomicRMW,
1520                 OperandTraits<AtomicRMWInst>::op_begin(this),
1521                 OperandTraits<AtomicRMWInst>::operands(this),
1522                 InsertAtEnd) {
1523   Init(Operation, Ptr, Val, Ordering, SSID);
1524 }
1525 
1526 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1527   switch (Op) {
1528   case AtomicRMWInst::Xchg:
1529     return "xchg";
1530   case AtomicRMWInst::Add:
1531     return "add";
1532   case AtomicRMWInst::Sub:
1533     return "sub";
1534   case AtomicRMWInst::And:
1535     return "and";
1536   case AtomicRMWInst::Nand:
1537     return "nand";
1538   case AtomicRMWInst::Or:
1539     return "or";
1540   case AtomicRMWInst::Xor:
1541     return "xor";
1542   case AtomicRMWInst::Max:
1543     return "max";
1544   case AtomicRMWInst::Min:
1545     return "min";
1546   case AtomicRMWInst::UMax:
1547     return "umax";
1548   case AtomicRMWInst::UMin:
1549     return "umin";
1550   case AtomicRMWInst::FAdd:
1551     return "fadd";
1552   case AtomicRMWInst::FSub:
1553     return "fsub";
1554   case AtomicRMWInst::BAD_BINOP:
1555     return "<invalid operation>";
1556   }
1557 
1558   llvm_unreachable("invalid atomicrmw operation");
1559 }
1560 
1561 //===----------------------------------------------------------------------===//
1562 //                       FenceInst Implementation
1563 //===----------------------------------------------------------------------===//
1564 
1565 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1566                      SyncScope::ID SSID,
1567                      Instruction *InsertBefore)
1568   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1569   setOrdering(Ordering);
1570   setSyncScopeID(SSID);
1571 }
1572 
1573 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1574                      SyncScope::ID SSID,
1575                      BasicBlock *InsertAtEnd)
1576   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1577   setOrdering(Ordering);
1578   setSyncScopeID(SSID);
1579 }
1580 
1581 //===----------------------------------------------------------------------===//
1582 //                       GetElementPtrInst Implementation
1583 //===----------------------------------------------------------------------===//
1584 
1585 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1586                              const Twine &Name) {
1587   assert(getNumOperands() == 1 + IdxList.size() &&
1588          "NumOperands not initialized?");
1589   Op<0>() = Ptr;
1590   llvm::copy(IdxList, op_begin() + 1);
1591   setName(Name);
1592 }
1593 
1594 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1595     : Instruction(GEPI.getType(), GetElementPtr,
1596                   OperandTraits<GetElementPtrInst>::op_end(this) -
1597                       GEPI.getNumOperands(),
1598                   GEPI.getNumOperands()),
1599       SourceElementType(GEPI.SourceElementType),
1600       ResultElementType(GEPI.ResultElementType) {
1601   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1602   SubclassOptionalData = GEPI.SubclassOptionalData;
1603 }
1604 
1605 /// getIndexedType - Returns the type of the element that would be accessed with
1606 /// a gep instruction with the specified parameters.
1607 ///
1608 /// The Idxs pointer should point to a continuous piece of memory containing the
1609 /// indices, either as Value* or uint64_t.
1610 ///
1611 /// A null type is returned if the indices are invalid for the specified
1612 /// pointer type.
1613 ///
1614 template <typename IndexTy>
1615 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1616   // Handle the special case of the empty set index set, which is always valid.
1617   if (IdxList.empty())
1618     return Agg;
1619 
1620   // If there is at least one index, the top level type must be sized, otherwise
1621   // it cannot be 'stepped over'.
1622   if (!Agg->isSized())
1623     return nullptr;
1624 
1625   unsigned CurIdx = 1;
1626   for (; CurIdx != IdxList.size(); ++CurIdx) {
1627     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1628     if (!CT || CT->isPointerTy()) return nullptr;
1629     IndexTy Index = IdxList[CurIdx];
1630     if (!CT->indexValid(Index)) return nullptr;
1631     Agg = CT->getTypeAtIndex(Index);
1632   }
1633   return CurIdx == IdxList.size() ? Agg : nullptr;
1634 }
1635 
1636 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1637   return getIndexedTypeInternal(Ty, IdxList);
1638 }
1639 
1640 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1641                                         ArrayRef<Constant *> IdxList) {
1642   return getIndexedTypeInternal(Ty, IdxList);
1643 }
1644 
1645 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1646   return getIndexedTypeInternal(Ty, IdxList);
1647 }
1648 
1649 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1650 /// zeros.  If so, the result pointer and the first operand have the same
1651 /// value, just potentially different types.
1652 bool GetElementPtrInst::hasAllZeroIndices() const {
1653   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1654     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1655       if (!CI->isZero()) return false;
1656     } else {
1657       return false;
1658     }
1659   }
1660   return true;
1661 }
1662 
1663 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1664 /// constant integers.  If so, the result pointer and the first operand have
1665 /// a constant offset between them.
1666 bool GetElementPtrInst::hasAllConstantIndices() const {
1667   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1668     if (!isa<ConstantInt>(getOperand(i)))
1669       return false;
1670   }
1671   return true;
1672 }
1673 
1674 void GetElementPtrInst::setIsInBounds(bool B) {
1675   cast<GEPOperator>(this)->setIsInBounds(B);
1676 }
1677 
1678 bool GetElementPtrInst::isInBounds() const {
1679   return cast<GEPOperator>(this)->isInBounds();
1680 }
1681 
1682 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1683                                                  APInt &Offset) const {
1684   // Delegate to the generic GEPOperator implementation.
1685   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1686 }
1687 
1688 //===----------------------------------------------------------------------===//
1689 //                           ExtractElementInst Implementation
1690 //===----------------------------------------------------------------------===//
1691 
1692 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1693                                        const Twine &Name,
1694                                        Instruction *InsertBef)
1695   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1696                 ExtractElement,
1697                 OperandTraits<ExtractElementInst>::op_begin(this),
1698                 2, InsertBef) {
1699   assert(isValidOperands(Val, Index) &&
1700          "Invalid extractelement instruction operands!");
1701   Op<0>() = Val;
1702   Op<1>() = Index;
1703   setName(Name);
1704 }
1705 
1706 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1707                                        const Twine &Name,
1708                                        BasicBlock *InsertAE)
1709   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1710                 ExtractElement,
1711                 OperandTraits<ExtractElementInst>::op_begin(this),
1712                 2, InsertAE) {
1713   assert(isValidOperands(Val, Index) &&
1714          "Invalid extractelement instruction operands!");
1715 
1716   Op<0>() = Val;
1717   Op<1>() = Index;
1718   setName(Name);
1719 }
1720 
1721 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1722   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1723     return false;
1724   return true;
1725 }
1726 
1727 //===----------------------------------------------------------------------===//
1728 //                           InsertElementInst Implementation
1729 //===----------------------------------------------------------------------===//
1730 
1731 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1732                                      const Twine &Name,
1733                                      Instruction *InsertBef)
1734   : Instruction(Vec->getType(), InsertElement,
1735                 OperandTraits<InsertElementInst>::op_begin(this),
1736                 3, InsertBef) {
1737   assert(isValidOperands(Vec, Elt, Index) &&
1738          "Invalid insertelement instruction operands!");
1739   Op<0>() = Vec;
1740   Op<1>() = Elt;
1741   Op<2>() = Index;
1742   setName(Name);
1743 }
1744 
1745 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1746                                      const Twine &Name,
1747                                      BasicBlock *InsertAE)
1748   : Instruction(Vec->getType(), InsertElement,
1749                 OperandTraits<InsertElementInst>::op_begin(this),
1750                 3, InsertAE) {
1751   assert(isValidOperands(Vec, Elt, Index) &&
1752          "Invalid insertelement instruction operands!");
1753 
1754   Op<0>() = Vec;
1755   Op<1>() = Elt;
1756   Op<2>() = Index;
1757   setName(Name);
1758 }
1759 
1760 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1761                                         const Value *Index) {
1762   if (!Vec->getType()->isVectorTy())
1763     return false;   // First operand of insertelement must be vector type.
1764 
1765   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1766     return false;// Second operand of insertelement must be vector element type.
1767 
1768   if (!Index->getType()->isIntegerTy())
1769     return false;  // Third operand of insertelement must be i32.
1770   return true;
1771 }
1772 
1773 //===----------------------------------------------------------------------===//
1774 //                      ShuffleVectorInst Implementation
1775 //===----------------------------------------------------------------------===//
1776 
1777 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1778                                      const Twine &Name,
1779                                      Instruction *InsertBefore)
1780 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1781                 cast<VectorType>(Mask->getType())->getNumElements()),
1782               ShuffleVector,
1783               OperandTraits<ShuffleVectorInst>::op_begin(this),
1784               OperandTraits<ShuffleVectorInst>::operands(this),
1785               InsertBefore) {
1786   assert(isValidOperands(V1, V2, Mask) &&
1787          "Invalid shuffle vector instruction operands!");
1788   Op<0>() = V1;
1789   Op<1>() = V2;
1790   Op<2>() = Mask;
1791   setName(Name);
1792 }
1793 
1794 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1795                                      const Twine &Name,
1796                                      BasicBlock *InsertAtEnd)
1797 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1798                 cast<VectorType>(Mask->getType())->getNumElements()),
1799               ShuffleVector,
1800               OperandTraits<ShuffleVectorInst>::op_begin(this),
1801               OperandTraits<ShuffleVectorInst>::operands(this),
1802               InsertAtEnd) {
1803   assert(isValidOperands(V1, V2, Mask) &&
1804          "Invalid shuffle vector instruction operands!");
1805 
1806   Op<0>() = V1;
1807   Op<1>() = V2;
1808   Op<2>() = Mask;
1809   setName(Name);
1810 }
1811 
1812 void ShuffleVectorInst::commute() {
1813   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1814   int NumMaskElts = getMask()->getType()->getVectorNumElements();
1815   SmallVector<Constant*, 16> NewMask(NumMaskElts);
1816   Type *Int32Ty = Type::getInt32Ty(getContext());
1817   for (int i = 0; i != NumMaskElts; ++i) {
1818     int MaskElt = getMaskValue(i);
1819     if (MaskElt == -1) {
1820       NewMask[i] = UndefValue::get(Int32Ty);
1821       continue;
1822     }
1823     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1824     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1825     NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1826   }
1827   Op<2>() = ConstantVector::get(NewMask);
1828   Op<0>().swap(Op<1>());
1829 }
1830 
1831 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1832                                         const Value *Mask) {
1833   // V1 and V2 must be vectors of the same type.
1834   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1835     return false;
1836 
1837   // Mask must be vector of i32.
1838   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1839   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1840     return false;
1841 
1842   // Check to see if Mask is valid.
1843   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1844     return true;
1845 
1846   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1847     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1848     for (Value *Op : MV->operands()) {
1849       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1850         if (CI->uge(V1Size*2))
1851           return false;
1852       } else if (!isa<UndefValue>(Op)) {
1853         return false;
1854       }
1855     }
1856     return true;
1857   }
1858 
1859   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1860     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1861     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1862       if (CDS->getElementAsInteger(i) >= V1Size*2)
1863         return false;
1864     return true;
1865   }
1866 
1867   // The bitcode reader can create a place holder for a forward reference
1868   // used as the shuffle mask. When this occurs, the shuffle mask will
1869   // fall into this case and fail. To avoid this error, do this bit of
1870   // ugliness to allow such a mask pass.
1871   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1872     if (CE->getOpcode() == Instruction::UserOp1)
1873       return true;
1874 
1875   return false;
1876 }
1877 
1878 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1879   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1880   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1881     return CDS->getElementAsInteger(i);
1882   Constant *C = Mask->getAggregateElement(i);
1883   if (isa<UndefValue>(C))
1884     return -1;
1885   return cast<ConstantInt>(C)->getZExtValue();
1886 }
1887 
1888 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1889                                        SmallVectorImpl<int> &Result) {
1890   unsigned NumElts = Mask->getType()->getVectorNumElements();
1891 
1892   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1893     for (unsigned i = 0; i != NumElts; ++i)
1894       Result.push_back(CDS->getElementAsInteger(i));
1895     return;
1896   }
1897   for (unsigned i = 0; i != NumElts; ++i) {
1898     Constant *C = Mask->getAggregateElement(i);
1899     Result.push_back(isa<UndefValue>(C) ? -1 :
1900                      cast<ConstantInt>(C)->getZExtValue());
1901   }
1902 }
1903 
1904 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1905   assert(!Mask.empty() && "Shuffle mask must contain elements");
1906   bool UsesLHS = false;
1907   bool UsesRHS = false;
1908   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1909     if (Mask[i] == -1)
1910       continue;
1911     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1912            "Out-of-bounds shuffle mask element");
1913     UsesLHS |= (Mask[i] < NumOpElts);
1914     UsesRHS |= (Mask[i] >= NumOpElts);
1915     if (UsesLHS && UsesRHS)
1916       return false;
1917   }
1918   assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1919   return true;
1920 }
1921 
1922 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1923   // We don't have vector operand size information, so assume operands are the
1924   // same size as the mask.
1925   return isSingleSourceMaskImpl(Mask, Mask.size());
1926 }
1927 
1928 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1929   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1930     return false;
1931   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1932     if (Mask[i] == -1)
1933       continue;
1934     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1935       return false;
1936   }
1937   return true;
1938 }
1939 
1940 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1941   // We don't have vector operand size information, so assume operands are the
1942   // same size as the mask.
1943   return isIdentityMaskImpl(Mask, Mask.size());
1944 }
1945 
1946 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1947   if (!isSingleSourceMask(Mask))
1948     return false;
1949   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1950     if (Mask[i] == -1)
1951       continue;
1952     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1953       return false;
1954   }
1955   return true;
1956 }
1957 
1958 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1959   if (!isSingleSourceMask(Mask))
1960     return false;
1961   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1962     if (Mask[i] == -1)
1963       continue;
1964     if (Mask[i] != 0 && Mask[i] != NumElts)
1965       return false;
1966   }
1967   return true;
1968 }
1969 
1970 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1971   // Select is differentiated from identity. It requires using both sources.
1972   if (isSingleSourceMask(Mask))
1973     return false;
1974   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1975     if (Mask[i] == -1)
1976       continue;
1977     if (Mask[i] != i && Mask[i] != (NumElts + i))
1978       return false;
1979   }
1980   return true;
1981 }
1982 
1983 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1984   // Example masks that will return true:
1985   // v1 = <a, b, c, d>
1986   // v2 = <e, f, g, h>
1987   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1988   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1989 
1990   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1991   int NumElts = Mask.size();
1992   if (NumElts < 2 || !isPowerOf2_32(NumElts))
1993     return false;
1994 
1995   // 2. The first element of the mask must be either a 0 or a 1.
1996   if (Mask[0] != 0 && Mask[0] != 1)
1997     return false;
1998 
1999   // 3. The difference between the first 2 elements must be equal to the
2000   // number of elements in the mask.
2001   if ((Mask[1] - Mask[0]) != NumElts)
2002     return false;
2003 
2004   // 4. The difference between consecutive even-numbered and odd-numbered
2005   // elements must be equal to 2.
2006   for (int i = 2; i < NumElts; ++i) {
2007     int MaskEltVal = Mask[i];
2008     if (MaskEltVal == -1)
2009       return false;
2010     int MaskEltPrevVal = Mask[i - 2];
2011     if (MaskEltVal - MaskEltPrevVal != 2)
2012       return false;
2013   }
2014   return true;
2015 }
2016 
2017 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2018                                                int NumSrcElts, int &Index) {
2019   // Must extract from a single source.
2020   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2021     return false;
2022 
2023   // Must be smaller (else this is an Identity shuffle).
2024   if (NumSrcElts <= (int)Mask.size())
2025     return false;
2026 
2027   // Find start of extraction, accounting that we may start with an UNDEF.
2028   int SubIndex = -1;
2029   for (int i = 0, e = Mask.size(); i != e; ++i) {
2030     int M = Mask[i];
2031     if (M < 0)
2032       continue;
2033     int Offset = (M % NumSrcElts) - i;
2034     if (0 <= SubIndex && SubIndex != Offset)
2035       return false;
2036     SubIndex = Offset;
2037   }
2038 
2039   if (0 <= SubIndex) {
2040     Index = SubIndex;
2041     return true;
2042   }
2043   return false;
2044 }
2045 
2046 bool ShuffleVectorInst::isIdentityWithPadding() const {
2047   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2048   int NumMaskElts = getType()->getVectorNumElements();
2049   if (NumMaskElts <= NumOpElts)
2050     return false;
2051 
2052   // The first part of the mask must choose elements from exactly 1 source op.
2053   SmallVector<int, 16> Mask = getShuffleMask();
2054   if (!isIdentityMaskImpl(Mask, NumOpElts))
2055     return false;
2056 
2057   // All extending must be with undef elements.
2058   for (int i = NumOpElts; i < NumMaskElts; ++i)
2059     if (Mask[i] != -1)
2060       return false;
2061 
2062   return true;
2063 }
2064 
2065 bool ShuffleVectorInst::isIdentityWithExtract() const {
2066   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2067   int NumMaskElts = getType()->getVectorNumElements();
2068   if (NumMaskElts >= NumOpElts)
2069     return false;
2070 
2071   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2072 }
2073 
2074 bool ShuffleVectorInst::isConcat() const {
2075   // Vector concatenation is differentiated from identity with padding.
2076   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2077     return false;
2078 
2079   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2080   int NumMaskElts = getType()->getVectorNumElements();
2081   if (NumMaskElts != NumOpElts * 2)
2082     return false;
2083 
2084   // Use the mask length rather than the operands' vector lengths here. We
2085   // already know that the shuffle returns a vector twice as long as the inputs,
2086   // and neither of the inputs are undef vectors. If the mask picks consecutive
2087   // elements from both inputs, then this is a concatenation of the inputs.
2088   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2089 }
2090 
2091 //===----------------------------------------------------------------------===//
2092 //                             InsertValueInst Class
2093 //===----------------------------------------------------------------------===//
2094 
2095 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2096                            const Twine &Name) {
2097   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2098 
2099   // There's no fundamental reason why we require at least one index
2100   // (other than weirdness with &*IdxBegin being invalid; see
2101   // getelementptr's init routine for example). But there's no
2102   // present need to support it.
2103   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2104 
2105   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2106          Val->getType() && "Inserted value must match indexed type!");
2107   Op<0>() = Agg;
2108   Op<1>() = Val;
2109 
2110   Indices.append(Idxs.begin(), Idxs.end());
2111   setName(Name);
2112 }
2113 
2114 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2115   : Instruction(IVI.getType(), InsertValue,
2116                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2117     Indices(IVI.Indices) {
2118   Op<0>() = IVI.getOperand(0);
2119   Op<1>() = IVI.getOperand(1);
2120   SubclassOptionalData = IVI.SubclassOptionalData;
2121 }
2122 
2123 //===----------------------------------------------------------------------===//
2124 //                             ExtractValueInst Class
2125 //===----------------------------------------------------------------------===//
2126 
2127 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2128   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2129 
2130   // There's no fundamental reason why we require at least one index.
2131   // But there's no present need to support it.
2132   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2133 
2134   Indices.append(Idxs.begin(), Idxs.end());
2135   setName(Name);
2136 }
2137 
2138 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2139   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2140     Indices(EVI.Indices) {
2141   SubclassOptionalData = EVI.SubclassOptionalData;
2142 }
2143 
2144 // getIndexedType - Returns the type of the element that would be extracted
2145 // with an extractvalue instruction with the specified parameters.
2146 //
2147 // A null type is returned if the indices are invalid for the specified
2148 // pointer type.
2149 //
2150 Type *ExtractValueInst::getIndexedType(Type *Agg,
2151                                        ArrayRef<unsigned> Idxs) {
2152   for (unsigned Index : Idxs) {
2153     // We can't use CompositeType::indexValid(Index) here.
2154     // indexValid() always returns true for arrays because getelementptr allows
2155     // out-of-bounds indices. Since we don't allow those for extractvalue and
2156     // insertvalue we need to check array indexing manually.
2157     // Since the only other types we can index into are struct types it's just
2158     // as easy to check those manually as well.
2159     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2160       if (Index >= AT->getNumElements())
2161         return nullptr;
2162     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2163       if (Index >= ST->getNumElements())
2164         return nullptr;
2165     } else {
2166       // Not a valid type to index into.
2167       return nullptr;
2168     }
2169 
2170     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2171   }
2172   return const_cast<Type*>(Agg);
2173 }
2174 
2175 //===----------------------------------------------------------------------===//
2176 //                             UnaryOperator Class
2177 //===----------------------------------------------------------------------===//
2178 
2179 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2180                              Type *Ty, const Twine &Name,
2181                              Instruction *InsertBefore)
2182   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2183   Op<0>() = S;
2184   setName(Name);
2185   AssertOK();
2186 }
2187 
2188 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2189                              Type *Ty, const Twine &Name,
2190                              BasicBlock *InsertAtEnd)
2191   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2192   Op<0>() = S;
2193   setName(Name);
2194   AssertOK();
2195 }
2196 
2197 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2198                                      const Twine &Name,
2199                                      Instruction *InsertBefore) {
2200   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2201 }
2202 
2203 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2204                                      const Twine &Name,
2205                                      BasicBlock *InsertAtEnd) {
2206   UnaryOperator *Res = Create(Op, S, Name);
2207   InsertAtEnd->getInstList().push_back(Res);
2208   return Res;
2209 }
2210 
2211 void UnaryOperator::AssertOK() {
2212   Value *LHS = getOperand(0);
2213   (void)LHS; // Silence warnings.
2214 #ifndef NDEBUG
2215   switch (getOpcode()) {
2216   case FNeg:
2217     assert(getType() == LHS->getType() &&
2218            "Unary operation should return same type as operand!");
2219     assert(getType()->isFPOrFPVectorTy() &&
2220            "Tried to create a floating-point operation on a "
2221            "non-floating-point type!");
2222     break;
2223   default: llvm_unreachable("Invalid opcode provided");
2224   }
2225 #endif
2226 }
2227 
2228 //===----------------------------------------------------------------------===//
2229 //                             BinaryOperator Class
2230 //===----------------------------------------------------------------------===//
2231 
2232 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2233                                Type *Ty, const Twine &Name,
2234                                Instruction *InsertBefore)
2235   : Instruction(Ty, iType,
2236                 OperandTraits<BinaryOperator>::op_begin(this),
2237                 OperandTraits<BinaryOperator>::operands(this),
2238                 InsertBefore) {
2239   Op<0>() = S1;
2240   Op<1>() = S2;
2241   setName(Name);
2242   AssertOK();
2243 }
2244 
2245 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2246                                Type *Ty, const Twine &Name,
2247                                BasicBlock *InsertAtEnd)
2248   : Instruction(Ty, iType,
2249                 OperandTraits<BinaryOperator>::op_begin(this),
2250                 OperandTraits<BinaryOperator>::operands(this),
2251                 InsertAtEnd) {
2252   Op<0>() = S1;
2253   Op<1>() = S2;
2254   setName(Name);
2255   AssertOK();
2256 }
2257 
2258 void BinaryOperator::AssertOK() {
2259   Value *LHS = getOperand(0), *RHS = getOperand(1);
2260   (void)LHS; (void)RHS; // Silence warnings.
2261   assert(LHS->getType() == RHS->getType() &&
2262          "Binary operator operand types must match!");
2263 #ifndef NDEBUG
2264   switch (getOpcode()) {
2265   case Add: case Sub:
2266   case Mul:
2267     assert(getType() == LHS->getType() &&
2268            "Arithmetic operation should return same type as operands!");
2269     assert(getType()->isIntOrIntVectorTy() &&
2270            "Tried to create an integer operation on a non-integer type!");
2271     break;
2272   case FAdd: case FSub:
2273   case FMul:
2274     assert(getType() == LHS->getType() &&
2275            "Arithmetic operation should return same type as operands!");
2276     assert(getType()->isFPOrFPVectorTy() &&
2277            "Tried to create a floating-point operation on a "
2278            "non-floating-point type!");
2279     break;
2280   case UDiv:
2281   case SDiv:
2282     assert(getType() == LHS->getType() &&
2283            "Arithmetic operation should return same type as operands!");
2284     assert(getType()->isIntOrIntVectorTy() &&
2285            "Incorrect operand type (not integer) for S/UDIV");
2286     break;
2287   case FDiv:
2288     assert(getType() == LHS->getType() &&
2289            "Arithmetic operation should return same type as operands!");
2290     assert(getType()->isFPOrFPVectorTy() &&
2291            "Incorrect operand type (not floating point) for FDIV");
2292     break;
2293   case URem:
2294   case SRem:
2295     assert(getType() == LHS->getType() &&
2296            "Arithmetic operation should return same type as operands!");
2297     assert(getType()->isIntOrIntVectorTy() &&
2298            "Incorrect operand type (not integer) for S/UREM");
2299     break;
2300   case FRem:
2301     assert(getType() == LHS->getType() &&
2302            "Arithmetic operation should return same type as operands!");
2303     assert(getType()->isFPOrFPVectorTy() &&
2304            "Incorrect operand type (not floating point) for FREM");
2305     break;
2306   case Shl:
2307   case LShr:
2308   case AShr:
2309     assert(getType() == LHS->getType() &&
2310            "Shift operation should return same type as operands!");
2311     assert(getType()->isIntOrIntVectorTy() &&
2312            "Tried to create a shift operation on a non-integral type!");
2313     break;
2314   case And: case Or:
2315   case Xor:
2316     assert(getType() == LHS->getType() &&
2317            "Logical operation should return same type as operands!");
2318     assert(getType()->isIntOrIntVectorTy() &&
2319            "Tried to create a logical operation on a non-integral type!");
2320     break;
2321   default: llvm_unreachable("Invalid opcode provided");
2322   }
2323 #endif
2324 }
2325 
2326 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2327                                        const Twine &Name,
2328                                        Instruction *InsertBefore) {
2329   assert(S1->getType() == S2->getType() &&
2330          "Cannot create binary operator with two operands of differing type!");
2331   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2332 }
2333 
2334 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2335                                        const Twine &Name,
2336                                        BasicBlock *InsertAtEnd) {
2337   BinaryOperator *Res = Create(Op, S1, S2, Name);
2338   InsertAtEnd->getInstList().push_back(Res);
2339   return Res;
2340 }
2341 
2342 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2343                                           Instruction *InsertBefore) {
2344   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2345   return new BinaryOperator(Instruction::Sub,
2346                             zero, Op,
2347                             Op->getType(), Name, InsertBefore);
2348 }
2349 
2350 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2351                                           BasicBlock *InsertAtEnd) {
2352   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2353   return new BinaryOperator(Instruction::Sub,
2354                             zero, Op,
2355                             Op->getType(), Name, InsertAtEnd);
2356 }
2357 
2358 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2359                                              Instruction *InsertBefore) {
2360   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2361   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2362 }
2363 
2364 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2365                                              BasicBlock *InsertAtEnd) {
2366   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2367   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2368 }
2369 
2370 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2371                                              Instruction *InsertBefore) {
2372   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2373   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2374 }
2375 
2376 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2377                                              BasicBlock *InsertAtEnd) {
2378   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2379   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2380 }
2381 
2382 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2383                                            Instruction *InsertBefore) {
2384   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2385   return new BinaryOperator(Instruction::FSub, zero, Op,
2386                             Op->getType(), Name, InsertBefore);
2387 }
2388 
2389 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2390                                            BasicBlock *InsertAtEnd) {
2391   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2392   return new BinaryOperator(Instruction::FSub, zero, Op,
2393                             Op->getType(), Name, InsertAtEnd);
2394 }
2395 
2396 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2397                                           Instruction *InsertBefore) {
2398   Constant *C = Constant::getAllOnesValue(Op->getType());
2399   return new BinaryOperator(Instruction::Xor, Op, C,
2400                             Op->getType(), Name, InsertBefore);
2401 }
2402 
2403 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2404                                           BasicBlock *InsertAtEnd) {
2405   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2406   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2407                             Op->getType(), Name, InsertAtEnd);
2408 }
2409 
2410 // Exchange the two operands to this instruction. This instruction is safe to
2411 // use on any binary instruction and does not modify the semantics of the
2412 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2413 // is changed.
2414 bool BinaryOperator::swapOperands() {
2415   if (!isCommutative())
2416     return true; // Can't commute operands
2417   Op<0>().swap(Op<1>());
2418   return false;
2419 }
2420 
2421 //===----------------------------------------------------------------------===//
2422 //                             FPMathOperator Class
2423 //===----------------------------------------------------------------------===//
2424 
2425 float FPMathOperator::getFPAccuracy() const {
2426   const MDNode *MD =
2427       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2428   if (!MD)
2429     return 0.0;
2430   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2431   return Accuracy->getValueAPF().convertToFloat();
2432 }
2433 
2434 //===----------------------------------------------------------------------===//
2435 //                                CastInst Class
2436 //===----------------------------------------------------------------------===//
2437 
2438 // Just determine if this cast only deals with integral->integral conversion.
2439 bool CastInst::isIntegerCast() const {
2440   switch (getOpcode()) {
2441     default: return false;
2442     case Instruction::ZExt:
2443     case Instruction::SExt:
2444     case Instruction::Trunc:
2445       return true;
2446     case Instruction::BitCast:
2447       return getOperand(0)->getType()->isIntegerTy() &&
2448         getType()->isIntegerTy();
2449   }
2450 }
2451 
2452 bool CastInst::isLosslessCast() const {
2453   // Only BitCast can be lossless, exit fast if we're not BitCast
2454   if (getOpcode() != Instruction::BitCast)
2455     return false;
2456 
2457   // Identity cast is always lossless
2458   Type *SrcTy = getOperand(0)->getType();
2459   Type *DstTy = getType();
2460   if (SrcTy == DstTy)
2461     return true;
2462 
2463   // Pointer to pointer is always lossless.
2464   if (SrcTy->isPointerTy())
2465     return DstTy->isPointerTy();
2466   return false;  // Other types have no identity values
2467 }
2468 
2469 /// This function determines if the CastInst does not require any bits to be
2470 /// changed in order to effect the cast. Essentially, it identifies cases where
2471 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2472 /// example, the following are all no-op casts:
2473 /// # bitcast i32* %x to i8*
2474 /// # bitcast <2 x i32> %x to <4 x i16>
2475 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2476 /// Determine if the described cast is a no-op.
2477 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2478                           Type *SrcTy,
2479                           Type *DestTy,
2480                           const DataLayout &DL) {
2481   switch (Opcode) {
2482     default: llvm_unreachable("Invalid CastOp");
2483     case Instruction::Trunc:
2484     case Instruction::ZExt:
2485     case Instruction::SExt:
2486     case Instruction::FPTrunc:
2487     case Instruction::FPExt:
2488     case Instruction::UIToFP:
2489     case Instruction::SIToFP:
2490     case Instruction::FPToUI:
2491     case Instruction::FPToSI:
2492     case Instruction::AddrSpaceCast:
2493       // TODO: Target informations may give a more accurate answer here.
2494       return false;
2495     case Instruction::BitCast:
2496       return true;  // BitCast never modifies bits.
2497     case Instruction::PtrToInt:
2498       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2499              DestTy->getScalarSizeInBits();
2500     case Instruction::IntToPtr:
2501       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2502              SrcTy->getScalarSizeInBits();
2503   }
2504 }
2505 
2506 bool CastInst::isNoopCast(const DataLayout &DL) const {
2507   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2508 }
2509 
2510 /// This function determines if a pair of casts can be eliminated and what
2511 /// opcode should be used in the elimination. This assumes that there are two
2512 /// instructions like this:
2513 /// *  %F = firstOpcode SrcTy %x to MidTy
2514 /// *  %S = secondOpcode MidTy %F to DstTy
2515 /// The function returns a resultOpcode so these two casts can be replaced with:
2516 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2517 /// If no such cast is permitted, the function returns 0.
2518 unsigned CastInst::isEliminableCastPair(
2519   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2520   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2521   Type *DstIntPtrTy) {
2522   // Define the 144 possibilities for these two cast instructions. The values
2523   // in this matrix determine what to do in a given situation and select the
2524   // case in the switch below.  The rows correspond to firstOp, the columns
2525   // correspond to secondOp.  In looking at the table below, keep in mind
2526   // the following cast properties:
2527   //
2528   //          Size Compare       Source               Destination
2529   // Operator  Src ? Size   Type       Sign         Type       Sign
2530   // -------- ------------ -------------------   ---------------------
2531   // TRUNC         >       Integer      Any        Integral     Any
2532   // ZEXT          <       Integral   Unsigned     Integer      Any
2533   // SEXT          <       Integral    Signed      Integer      Any
2534   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2535   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2536   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2537   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2538   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2539   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2540   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2541   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2542   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2543   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2544   //
2545   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2546   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2547   // into "fptoui double to i64", but this loses information about the range
2548   // of the produced value (we no longer know the top-part is all zeros).
2549   // Further this conversion is often much more expensive for typical hardware,
2550   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2551   // same reason.
2552   const unsigned numCastOps =
2553     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2554   static const uint8_t CastResults[numCastOps][numCastOps] = {
2555     // T        F  F  U  S  F  F  P  I  B  A  -+
2556     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2557     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2558     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2559     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2560     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2561     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2562     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2563     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2564     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2565     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2566     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2567     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2568     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2569     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2570     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2571     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2572     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2573   };
2574 
2575   // TODO: This logic could be encoded into the table above and handled in the
2576   // switch below.
2577   // If either of the casts are a bitcast from scalar to vector, disallow the
2578   // merging. However, any pair of bitcasts are allowed.
2579   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2580   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2581   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2582 
2583   // Check if any of the casts convert scalars <-> vectors.
2584   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2585       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2586     if (!AreBothBitcasts)
2587       return 0;
2588 
2589   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2590                             [secondOp-Instruction::CastOpsBegin];
2591   switch (ElimCase) {
2592     case 0:
2593       // Categorically disallowed.
2594       return 0;
2595     case 1:
2596       // Allowed, use first cast's opcode.
2597       return firstOp;
2598     case 2:
2599       // Allowed, use second cast's opcode.
2600       return secondOp;
2601     case 3:
2602       // No-op cast in second op implies firstOp as long as the DestTy
2603       // is integer and we are not converting between a vector and a
2604       // non-vector type.
2605       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2606         return firstOp;
2607       return 0;
2608     case 4:
2609       // No-op cast in second op implies firstOp as long as the DestTy
2610       // is floating point.
2611       if (DstTy->isFloatingPointTy())
2612         return firstOp;
2613       return 0;
2614     case 5:
2615       // No-op cast in first op implies secondOp as long as the SrcTy
2616       // is an integer.
2617       if (SrcTy->isIntegerTy())
2618         return secondOp;
2619       return 0;
2620     case 6:
2621       // No-op cast in first op implies secondOp as long as the SrcTy
2622       // is a floating point.
2623       if (SrcTy->isFloatingPointTy())
2624         return secondOp;
2625       return 0;
2626     case 7: {
2627       // Cannot simplify if address spaces are different!
2628       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2629         return 0;
2630 
2631       unsigned MidSize = MidTy->getScalarSizeInBits();
2632       // We can still fold this without knowing the actual sizes as long we
2633       // know that the intermediate pointer is the largest possible
2634       // pointer size.
2635       // FIXME: Is this always true?
2636       if (MidSize == 64)
2637         return Instruction::BitCast;
2638 
2639       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2640       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2641         return 0;
2642       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2643       if (MidSize >= PtrSize)
2644         return Instruction::BitCast;
2645       return 0;
2646     }
2647     case 8: {
2648       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2649       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2650       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2651       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2652       unsigned DstSize = DstTy->getScalarSizeInBits();
2653       if (SrcSize == DstSize)
2654         return Instruction::BitCast;
2655       else if (SrcSize < DstSize)
2656         return firstOp;
2657       return secondOp;
2658     }
2659     case 9:
2660       // zext, sext -> zext, because sext can't sign extend after zext
2661       return Instruction::ZExt;
2662     case 11: {
2663       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2664       if (!MidIntPtrTy)
2665         return 0;
2666       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2667       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2668       unsigned DstSize = DstTy->getScalarSizeInBits();
2669       if (SrcSize <= PtrSize && SrcSize == DstSize)
2670         return Instruction::BitCast;
2671       return 0;
2672     }
2673     case 12:
2674       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2675       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2676       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2677         return Instruction::AddrSpaceCast;
2678       return Instruction::BitCast;
2679     case 13:
2680       // FIXME: this state can be merged with (1), but the following assert
2681       // is useful to check the correcteness of the sequence due to semantic
2682       // change of bitcast.
2683       assert(
2684         SrcTy->isPtrOrPtrVectorTy() &&
2685         MidTy->isPtrOrPtrVectorTy() &&
2686         DstTy->isPtrOrPtrVectorTy() &&
2687         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2688         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2689         "Illegal addrspacecast, bitcast sequence!");
2690       // Allowed, use first cast's opcode
2691       return firstOp;
2692     case 14:
2693       // bitcast, addrspacecast -> addrspacecast if the element type of
2694       // bitcast's source is the same as that of addrspacecast's destination.
2695       if (SrcTy->getScalarType()->getPointerElementType() ==
2696           DstTy->getScalarType()->getPointerElementType())
2697         return Instruction::AddrSpaceCast;
2698       return 0;
2699     case 15:
2700       // FIXME: this state can be merged with (1), but the following assert
2701       // is useful to check the correcteness of the sequence due to semantic
2702       // change of bitcast.
2703       assert(
2704         SrcTy->isIntOrIntVectorTy() &&
2705         MidTy->isPtrOrPtrVectorTy() &&
2706         DstTy->isPtrOrPtrVectorTy() &&
2707         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2708         "Illegal inttoptr, bitcast sequence!");
2709       // Allowed, use first cast's opcode
2710       return firstOp;
2711     case 16:
2712       // FIXME: this state can be merged with (2), but the following assert
2713       // is useful to check the correcteness of the sequence due to semantic
2714       // change of bitcast.
2715       assert(
2716         SrcTy->isPtrOrPtrVectorTy() &&
2717         MidTy->isPtrOrPtrVectorTy() &&
2718         DstTy->isIntOrIntVectorTy() &&
2719         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2720         "Illegal bitcast, ptrtoint sequence!");
2721       // Allowed, use second cast's opcode
2722       return secondOp;
2723     case 17:
2724       // (sitofp (zext x)) -> (uitofp x)
2725       return Instruction::UIToFP;
2726     case 99:
2727       // Cast combination can't happen (error in input). This is for all cases
2728       // where the MidTy is not the same for the two cast instructions.
2729       llvm_unreachable("Invalid Cast Combination");
2730     default:
2731       llvm_unreachable("Error in CastResults table!!!");
2732   }
2733 }
2734 
2735 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2736   const Twine &Name, Instruction *InsertBefore) {
2737   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2738   // Construct and return the appropriate CastInst subclass
2739   switch (op) {
2740   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2741   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2742   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2743   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2744   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2745   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2746   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2747   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2748   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2749   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2750   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2751   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2752   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2753   default: llvm_unreachable("Invalid opcode provided");
2754   }
2755 }
2756 
2757 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2758   const Twine &Name, BasicBlock *InsertAtEnd) {
2759   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2760   // Construct and return the appropriate CastInst subclass
2761   switch (op) {
2762   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2763   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2764   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2765   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2766   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2767   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2768   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2769   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2770   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2771   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2772   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2773   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2774   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2775   default: llvm_unreachable("Invalid opcode provided");
2776   }
2777 }
2778 
2779 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2780                                         const Twine &Name,
2781                                         Instruction *InsertBefore) {
2782   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2783     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2784   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2785 }
2786 
2787 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2788                                         const Twine &Name,
2789                                         BasicBlock *InsertAtEnd) {
2790   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2791     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2792   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2793 }
2794 
2795 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2796                                         const Twine &Name,
2797                                         Instruction *InsertBefore) {
2798   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2799     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2800   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2801 }
2802 
2803 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2804                                         const Twine &Name,
2805                                         BasicBlock *InsertAtEnd) {
2806   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2807     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2808   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2809 }
2810 
2811 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2812                                          const Twine &Name,
2813                                          Instruction *InsertBefore) {
2814   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2815     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2816   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2817 }
2818 
2819 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2820                                          const Twine &Name,
2821                                          BasicBlock *InsertAtEnd) {
2822   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2823     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2824   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2825 }
2826 
2827 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2828                                       const Twine &Name,
2829                                       BasicBlock *InsertAtEnd) {
2830   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2831   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2832          "Invalid cast");
2833   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2834   assert((!Ty->isVectorTy() ||
2835           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2836          "Invalid cast");
2837 
2838   if (Ty->isIntOrIntVectorTy())
2839     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2840 
2841   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2842 }
2843 
2844 /// Create a BitCast or a PtrToInt cast instruction
2845 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2846                                       const Twine &Name,
2847                                       Instruction *InsertBefore) {
2848   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2849   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2850          "Invalid cast");
2851   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2852   assert((!Ty->isVectorTy() ||
2853           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2854          "Invalid cast");
2855 
2856   if (Ty->isIntOrIntVectorTy())
2857     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2858 
2859   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2860 }
2861 
2862 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2863   Value *S, Type *Ty,
2864   const Twine &Name,
2865   BasicBlock *InsertAtEnd) {
2866   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2867   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2868 
2869   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2870     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2871 
2872   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2873 }
2874 
2875 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2876   Value *S, Type *Ty,
2877   const Twine &Name,
2878   Instruction *InsertBefore) {
2879   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2880   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2881 
2882   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2883     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2884 
2885   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2886 }
2887 
2888 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2889                                            const Twine &Name,
2890                                            Instruction *InsertBefore) {
2891   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2892     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2893   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2894     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2895 
2896   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2897 }
2898 
2899 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2900                                       bool isSigned, const Twine &Name,
2901                                       Instruction *InsertBefore) {
2902   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2903          "Invalid integer cast");
2904   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2905   unsigned DstBits = Ty->getScalarSizeInBits();
2906   Instruction::CastOps opcode =
2907     (SrcBits == DstBits ? Instruction::BitCast :
2908      (SrcBits > DstBits ? Instruction::Trunc :
2909       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2910   return Create(opcode, C, Ty, Name, InsertBefore);
2911 }
2912 
2913 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2914                                       bool isSigned, const Twine &Name,
2915                                       BasicBlock *InsertAtEnd) {
2916   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2917          "Invalid cast");
2918   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2919   unsigned DstBits = Ty->getScalarSizeInBits();
2920   Instruction::CastOps opcode =
2921     (SrcBits == DstBits ? Instruction::BitCast :
2922      (SrcBits > DstBits ? Instruction::Trunc :
2923       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2924   return Create(opcode, C, Ty, Name, InsertAtEnd);
2925 }
2926 
2927 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2928                                  const Twine &Name,
2929                                  Instruction *InsertBefore) {
2930   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2931          "Invalid cast");
2932   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2933   unsigned DstBits = Ty->getScalarSizeInBits();
2934   Instruction::CastOps opcode =
2935     (SrcBits == DstBits ? Instruction::BitCast :
2936      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2937   return Create(opcode, C, Ty, Name, InsertBefore);
2938 }
2939 
2940 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2941                                  const Twine &Name,
2942                                  BasicBlock *InsertAtEnd) {
2943   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2944          "Invalid cast");
2945   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2946   unsigned DstBits = Ty->getScalarSizeInBits();
2947   Instruction::CastOps opcode =
2948     (SrcBits == DstBits ? Instruction::BitCast :
2949      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2950   return Create(opcode, C, Ty, Name, InsertAtEnd);
2951 }
2952 
2953 // Check whether it is valid to call getCastOpcode for these types.
2954 // This routine must be kept in sync with getCastOpcode.
2955 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2956   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2957     return false;
2958 
2959   if (SrcTy == DestTy)
2960     return true;
2961 
2962   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2963     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2964       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2965         // An element by element cast.  Valid if casting the elements is valid.
2966         SrcTy = SrcVecTy->getElementType();
2967         DestTy = DestVecTy->getElementType();
2968       }
2969 
2970   // Get the bit sizes, we'll need these
2971   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2972   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2973 
2974   // Run through the possibilities ...
2975   if (DestTy->isIntegerTy()) {               // Casting to integral
2976     if (SrcTy->isIntegerTy())                // Casting from integral
2977         return true;
2978     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2979       return true;
2980     if (SrcTy->isVectorTy())          // Casting from vector
2981       return DestBits == SrcBits;
2982                                       // Casting from something else
2983     return SrcTy->isPointerTy();
2984   }
2985   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2986     if (SrcTy->isIntegerTy())                // Casting from integral
2987       return true;
2988     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2989       return true;
2990     if (SrcTy->isVectorTy())          // Casting from vector
2991       return DestBits == SrcBits;
2992                                     // Casting from something else
2993     return false;
2994   }
2995   if (DestTy->isVectorTy())         // Casting to vector
2996     return DestBits == SrcBits;
2997   if (DestTy->isPointerTy()) {        // Casting to pointer
2998     if (SrcTy->isPointerTy())                // Casting from pointer
2999       return true;
3000     return SrcTy->isIntegerTy();             // Casting from integral
3001   }
3002   if (DestTy->isX86_MMXTy()) {
3003     if (SrcTy->isVectorTy())
3004       return DestBits == SrcBits;       // 64-bit vector to MMX
3005     return false;
3006   }                                    // Casting to something else
3007   return false;
3008 }
3009 
3010 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3011   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3012     return false;
3013 
3014   if (SrcTy == DestTy)
3015     return true;
3016 
3017   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3018     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3019       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3020         // An element by element cast. Valid if casting the elements is valid.
3021         SrcTy = SrcVecTy->getElementType();
3022         DestTy = DestVecTy->getElementType();
3023       }
3024     }
3025   }
3026 
3027   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3028     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3029       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3030     }
3031   }
3032 
3033   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3034   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3035 
3036   // Could still have vectors of pointers if the number of elements doesn't
3037   // match
3038   if (SrcBits == 0 || DestBits == 0)
3039     return false;
3040 
3041   if (SrcBits != DestBits)
3042     return false;
3043 
3044   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3045     return false;
3046 
3047   return true;
3048 }
3049 
3050 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3051                                           const DataLayout &DL) {
3052   // ptrtoint and inttoptr are not allowed on non-integral pointers
3053   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3054     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3055       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3056               !DL.isNonIntegralPointerType(PtrTy));
3057   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3058     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3059       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3060               !DL.isNonIntegralPointerType(PtrTy));
3061 
3062   return isBitCastable(SrcTy, DestTy);
3063 }
3064 
3065 // Provide a way to get a "cast" where the cast opcode is inferred from the
3066 // types and size of the operand. This, basically, is a parallel of the
3067 // logic in the castIsValid function below.  This axiom should hold:
3068 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3069 // should not assert in castIsValid. In other words, this produces a "correct"
3070 // casting opcode for the arguments passed to it.
3071 // This routine must be kept in sync with isCastable.
3072 Instruction::CastOps
3073 CastInst::getCastOpcode(
3074   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3075   Type *SrcTy = Src->getType();
3076 
3077   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3078          "Only first class types are castable!");
3079 
3080   if (SrcTy == DestTy)
3081     return BitCast;
3082 
3083   // FIXME: Check address space sizes here
3084   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3085     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3086       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3087         // An element by element cast.  Find the appropriate opcode based on the
3088         // element types.
3089         SrcTy = SrcVecTy->getElementType();
3090         DestTy = DestVecTy->getElementType();
3091       }
3092 
3093   // Get the bit sizes, we'll need these
3094   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3095   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3096 
3097   // Run through the possibilities ...
3098   if (DestTy->isIntegerTy()) {                      // Casting to integral
3099     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3100       if (DestBits < SrcBits)
3101         return Trunc;                               // int -> smaller int
3102       else if (DestBits > SrcBits) {                // its an extension
3103         if (SrcIsSigned)
3104           return SExt;                              // signed -> SEXT
3105         else
3106           return ZExt;                              // unsigned -> ZEXT
3107       } else {
3108         return BitCast;                             // Same size, No-op cast
3109       }
3110     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3111       if (DestIsSigned)
3112         return FPToSI;                              // FP -> sint
3113       else
3114         return FPToUI;                              // FP -> uint
3115     } else if (SrcTy->isVectorTy()) {
3116       assert(DestBits == SrcBits &&
3117              "Casting vector to integer of different width");
3118       return BitCast;                             // Same size, no-op cast
3119     } else {
3120       assert(SrcTy->isPointerTy() &&
3121              "Casting from a value that is not first-class type");
3122       return PtrToInt;                              // ptr -> int
3123     }
3124   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3125     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3126       if (SrcIsSigned)
3127         return SIToFP;                              // sint -> FP
3128       else
3129         return UIToFP;                              // uint -> FP
3130     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3131       if (DestBits < SrcBits) {
3132         return FPTrunc;                             // FP -> smaller FP
3133       } else if (DestBits > SrcBits) {
3134         return FPExt;                               // FP -> larger FP
3135       } else  {
3136         return BitCast;                             // same size, no-op cast
3137       }
3138     } else if (SrcTy->isVectorTy()) {
3139       assert(DestBits == SrcBits &&
3140              "Casting vector to floating point of different width");
3141       return BitCast;                             // same size, no-op cast
3142     }
3143     llvm_unreachable("Casting pointer or non-first class to float");
3144   } else if (DestTy->isVectorTy()) {
3145     assert(DestBits == SrcBits &&
3146            "Illegal cast to vector (wrong type or size)");
3147     return BitCast;
3148   } else if (DestTy->isPointerTy()) {
3149     if (SrcTy->isPointerTy()) {
3150       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3151         return AddrSpaceCast;
3152       return BitCast;                               // ptr -> ptr
3153     } else if (SrcTy->isIntegerTy()) {
3154       return IntToPtr;                              // int -> ptr
3155     }
3156     llvm_unreachable("Casting pointer to other than pointer or int");
3157   } else if (DestTy->isX86_MMXTy()) {
3158     if (SrcTy->isVectorTy()) {
3159       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3160       return BitCast;                               // 64-bit vector to MMX
3161     }
3162     llvm_unreachable("Illegal cast to X86_MMX");
3163   }
3164   llvm_unreachable("Casting to type that is not first-class");
3165 }
3166 
3167 //===----------------------------------------------------------------------===//
3168 //                    CastInst SubClass Constructors
3169 //===----------------------------------------------------------------------===//
3170 
3171 /// Check that the construction parameters for a CastInst are correct. This
3172 /// could be broken out into the separate constructors but it is useful to have
3173 /// it in one place and to eliminate the redundant code for getting the sizes
3174 /// of the types involved.
3175 bool
3176 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3177   // Check for type sanity on the arguments
3178   Type *SrcTy = S->getType();
3179 
3180   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3181       SrcTy->isAggregateType() || DstTy->isAggregateType())
3182     return false;
3183 
3184   // Get the size of the types in bits, we'll need this later
3185   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3186   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3187 
3188   // If these are vector types, get the lengths of the vectors (using zero for
3189   // scalar types means that checking that vector lengths match also checks that
3190   // scalars are not being converted to vectors or vectors to scalars).
3191   unsigned SrcLength = SrcTy->isVectorTy() ?
3192     cast<VectorType>(SrcTy)->getNumElements() : 0;
3193   unsigned DstLength = DstTy->isVectorTy() ?
3194     cast<VectorType>(DstTy)->getNumElements() : 0;
3195 
3196   // Switch on the opcode provided
3197   switch (op) {
3198   default: return false; // This is an input error
3199   case Instruction::Trunc:
3200     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3201       SrcLength == DstLength && SrcBitSize > DstBitSize;
3202   case Instruction::ZExt:
3203     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3204       SrcLength == DstLength && SrcBitSize < DstBitSize;
3205   case Instruction::SExt:
3206     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3207       SrcLength == DstLength && SrcBitSize < DstBitSize;
3208   case Instruction::FPTrunc:
3209     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3210       SrcLength == DstLength && SrcBitSize > DstBitSize;
3211   case Instruction::FPExt:
3212     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3213       SrcLength == DstLength && SrcBitSize < DstBitSize;
3214   case Instruction::UIToFP:
3215   case Instruction::SIToFP:
3216     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3217       SrcLength == DstLength;
3218   case Instruction::FPToUI:
3219   case Instruction::FPToSI:
3220     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3221       SrcLength == DstLength;
3222   case Instruction::PtrToInt:
3223     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3224       return false;
3225     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3226       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3227         return false;
3228     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3229   case Instruction::IntToPtr:
3230     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3231       return false;
3232     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3233       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3234         return false;
3235     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3236   case Instruction::BitCast: {
3237     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3238     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3239 
3240     // BitCast implies a no-op cast of type only. No bits change.
3241     // However, you can't cast pointers to anything but pointers.
3242     if (!SrcPtrTy != !DstPtrTy)
3243       return false;
3244 
3245     // For non-pointer cases, the cast is okay if the source and destination bit
3246     // widths are identical.
3247     if (!SrcPtrTy)
3248       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3249 
3250     // If both are pointers then the address spaces must match.
3251     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3252       return false;
3253 
3254     // A vector of pointers must have the same number of elements.
3255     VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3256     VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3257     if (SrcVecTy && DstVecTy)
3258       return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3259     if (SrcVecTy)
3260       return SrcVecTy->getNumElements() == 1;
3261     if (DstVecTy)
3262       return DstVecTy->getNumElements() == 1;
3263 
3264     return true;
3265   }
3266   case Instruction::AddrSpaceCast: {
3267     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3268     if (!SrcPtrTy)
3269       return false;
3270 
3271     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3272     if (!DstPtrTy)
3273       return false;
3274 
3275     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3276       return false;
3277 
3278     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3279       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3280         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3281 
3282       return false;
3283     }
3284 
3285     return true;
3286   }
3287   }
3288 }
3289 
3290 TruncInst::TruncInst(
3291   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3292 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3293   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3294 }
3295 
3296 TruncInst::TruncInst(
3297   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3298 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3299   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3300 }
3301 
3302 ZExtInst::ZExtInst(
3303   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3304 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3305   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3306 }
3307 
3308 ZExtInst::ZExtInst(
3309   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3310 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3311   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3312 }
3313 SExtInst::SExtInst(
3314   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3315 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3316   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3317 }
3318 
3319 SExtInst::SExtInst(
3320   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3321 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3322   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3323 }
3324 
3325 FPTruncInst::FPTruncInst(
3326   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3327 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3328   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3329 }
3330 
3331 FPTruncInst::FPTruncInst(
3332   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3333 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3334   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3335 }
3336 
3337 FPExtInst::FPExtInst(
3338   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3339 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3340   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3341 }
3342 
3343 FPExtInst::FPExtInst(
3344   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3345 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3346   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3347 }
3348 
3349 UIToFPInst::UIToFPInst(
3350   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3351 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3352   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3353 }
3354 
3355 UIToFPInst::UIToFPInst(
3356   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3357 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3358   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3359 }
3360 
3361 SIToFPInst::SIToFPInst(
3362   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3363 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3364   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3365 }
3366 
3367 SIToFPInst::SIToFPInst(
3368   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3369 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3370   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3371 }
3372 
3373 FPToUIInst::FPToUIInst(
3374   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3375 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3376   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3377 }
3378 
3379 FPToUIInst::FPToUIInst(
3380   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3381 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3382   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3383 }
3384 
3385 FPToSIInst::FPToSIInst(
3386   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3387 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3388   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3389 }
3390 
3391 FPToSIInst::FPToSIInst(
3392   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3393 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3394   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3395 }
3396 
3397 PtrToIntInst::PtrToIntInst(
3398   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3399 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3400   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3401 }
3402 
3403 PtrToIntInst::PtrToIntInst(
3404   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3405 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3406   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3407 }
3408 
3409 IntToPtrInst::IntToPtrInst(
3410   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3411 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3412   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3413 }
3414 
3415 IntToPtrInst::IntToPtrInst(
3416   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3417 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3418   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3419 }
3420 
3421 BitCastInst::BitCastInst(
3422   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3423 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3424   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3425 }
3426 
3427 BitCastInst::BitCastInst(
3428   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3429 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3430   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3431 }
3432 
3433 AddrSpaceCastInst::AddrSpaceCastInst(
3434   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3435 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3436   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3437 }
3438 
3439 AddrSpaceCastInst::AddrSpaceCastInst(
3440   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3441 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3442   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3443 }
3444 
3445 //===----------------------------------------------------------------------===//
3446 //                               CmpInst Classes
3447 //===----------------------------------------------------------------------===//
3448 
3449 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3450                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3451                  Instruction *FlagsSource)
3452   : Instruction(ty, op,
3453                 OperandTraits<CmpInst>::op_begin(this),
3454                 OperandTraits<CmpInst>::operands(this),
3455                 InsertBefore) {
3456   Op<0>() = LHS;
3457   Op<1>() = RHS;
3458   setPredicate((Predicate)predicate);
3459   setName(Name);
3460   if (FlagsSource)
3461     copyIRFlags(FlagsSource);
3462 }
3463 
3464 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3465                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3466   : Instruction(ty, op,
3467                 OperandTraits<CmpInst>::op_begin(this),
3468                 OperandTraits<CmpInst>::operands(this),
3469                 InsertAtEnd) {
3470   Op<0>() = LHS;
3471   Op<1>() = RHS;
3472   setPredicate((Predicate)predicate);
3473   setName(Name);
3474 }
3475 
3476 CmpInst *
3477 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3478                 const Twine &Name, Instruction *InsertBefore) {
3479   if (Op == Instruction::ICmp) {
3480     if (InsertBefore)
3481       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3482                           S1, S2, Name);
3483     else
3484       return new ICmpInst(CmpInst::Predicate(predicate),
3485                           S1, S2, Name);
3486   }
3487 
3488   if (InsertBefore)
3489     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3490                         S1, S2, Name);
3491   else
3492     return new FCmpInst(CmpInst::Predicate(predicate),
3493                         S1, S2, Name);
3494 }
3495 
3496 CmpInst *
3497 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3498                 const Twine &Name, BasicBlock *InsertAtEnd) {
3499   if (Op == Instruction::ICmp) {
3500     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3501                         S1, S2, Name);
3502   }
3503   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3504                       S1, S2, Name);
3505 }
3506 
3507 void CmpInst::swapOperands() {
3508   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3509     IC->swapOperands();
3510   else
3511     cast<FCmpInst>(this)->swapOperands();
3512 }
3513 
3514 bool CmpInst::isCommutative() const {
3515   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3516     return IC->isCommutative();
3517   return cast<FCmpInst>(this)->isCommutative();
3518 }
3519 
3520 bool CmpInst::isEquality() const {
3521   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3522     return IC->isEquality();
3523   return cast<FCmpInst>(this)->isEquality();
3524 }
3525 
3526 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3527   switch (pred) {
3528     default: llvm_unreachable("Unknown cmp predicate!");
3529     case ICMP_EQ: return ICMP_NE;
3530     case ICMP_NE: return ICMP_EQ;
3531     case ICMP_UGT: return ICMP_ULE;
3532     case ICMP_ULT: return ICMP_UGE;
3533     case ICMP_UGE: return ICMP_ULT;
3534     case ICMP_ULE: return ICMP_UGT;
3535     case ICMP_SGT: return ICMP_SLE;
3536     case ICMP_SLT: return ICMP_SGE;
3537     case ICMP_SGE: return ICMP_SLT;
3538     case ICMP_SLE: return ICMP_SGT;
3539 
3540     case FCMP_OEQ: return FCMP_UNE;
3541     case FCMP_ONE: return FCMP_UEQ;
3542     case FCMP_OGT: return FCMP_ULE;
3543     case FCMP_OLT: return FCMP_UGE;
3544     case FCMP_OGE: return FCMP_ULT;
3545     case FCMP_OLE: return FCMP_UGT;
3546     case FCMP_UEQ: return FCMP_ONE;
3547     case FCMP_UNE: return FCMP_OEQ;
3548     case FCMP_UGT: return FCMP_OLE;
3549     case FCMP_ULT: return FCMP_OGE;
3550     case FCMP_UGE: return FCMP_OLT;
3551     case FCMP_ULE: return FCMP_OGT;
3552     case FCMP_ORD: return FCMP_UNO;
3553     case FCMP_UNO: return FCMP_ORD;
3554     case FCMP_TRUE: return FCMP_FALSE;
3555     case FCMP_FALSE: return FCMP_TRUE;
3556   }
3557 }
3558 
3559 StringRef CmpInst::getPredicateName(Predicate Pred) {
3560   switch (Pred) {
3561   default:                   return "unknown";
3562   case FCmpInst::FCMP_FALSE: return "false";
3563   case FCmpInst::FCMP_OEQ:   return "oeq";
3564   case FCmpInst::FCMP_OGT:   return "ogt";
3565   case FCmpInst::FCMP_OGE:   return "oge";
3566   case FCmpInst::FCMP_OLT:   return "olt";
3567   case FCmpInst::FCMP_OLE:   return "ole";
3568   case FCmpInst::FCMP_ONE:   return "one";
3569   case FCmpInst::FCMP_ORD:   return "ord";
3570   case FCmpInst::FCMP_UNO:   return "uno";
3571   case FCmpInst::FCMP_UEQ:   return "ueq";
3572   case FCmpInst::FCMP_UGT:   return "ugt";
3573   case FCmpInst::FCMP_UGE:   return "uge";
3574   case FCmpInst::FCMP_ULT:   return "ult";
3575   case FCmpInst::FCMP_ULE:   return "ule";
3576   case FCmpInst::FCMP_UNE:   return "une";
3577   case FCmpInst::FCMP_TRUE:  return "true";
3578   case ICmpInst::ICMP_EQ:    return "eq";
3579   case ICmpInst::ICMP_NE:    return "ne";
3580   case ICmpInst::ICMP_SGT:   return "sgt";
3581   case ICmpInst::ICMP_SGE:   return "sge";
3582   case ICmpInst::ICMP_SLT:   return "slt";
3583   case ICmpInst::ICMP_SLE:   return "sle";
3584   case ICmpInst::ICMP_UGT:   return "ugt";
3585   case ICmpInst::ICMP_UGE:   return "uge";
3586   case ICmpInst::ICMP_ULT:   return "ult";
3587   case ICmpInst::ICMP_ULE:   return "ule";
3588   }
3589 }
3590 
3591 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3592   switch (pred) {
3593     default: llvm_unreachable("Unknown icmp predicate!");
3594     case ICMP_EQ: case ICMP_NE:
3595     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3596        return pred;
3597     case ICMP_UGT: return ICMP_SGT;
3598     case ICMP_ULT: return ICMP_SLT;
3599     case ICMP_UGE: return ICMP_SGE;
3600     case ICMP_ULE: return ICMP_SLE;
3601   }
3602 }
3603 
3604 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3605   switch (pred) {
3606     default: llvm_unreachable("Unknown icmp predicate!");
3607     case ICMP_EQ: case ICMP_NE:
3608     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3609        return pred;
3610     case ICMP_SGT: return ICMP_UGT;
3611     case ICMP_SLT: return ICMP_ULT;
3612     case ICMP_SGE: return ICMP_UGE;
3613     case ICMP_SLE: return ICMP_ULE;
3614   }
3615 }
3616 
3617 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3618   switch (pred) {
3619     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3620     case ICMP_SGT: return ICMP_SGE;
3621     case ICMP_SLT: return ICMP_SLE;
3622     case ICMP_SGE: return ICMP_SGT;
3623     case ICMP_SLE: return ICMP_SLT;
3624     case ICMP_UGT: return ICMP_UGE;
3625     case ICMP_ULT: return ICMP_ULE;
3626     case ICMP_UGE: return ICMP_UGT;
3627     case ICMP_ULE: return ICMP_ULT;
3628 
3629     case FCMP_OGT: return FCMP_OGE;
3630     case FCMP_OLT: return FCMP_OLE;
3631     case FCMP_OGE: return FCMP_OGT;
3632     case FCMP_OLE: return FCMP_OLT;
3633     case FCMP_UGT: return FCMP_UGE;
3634     case FCMP_ULT: return FCMP_ULE;
3635     case FCMP_UGE: return FCMP_UGT;
3636     case FCMP_ULE: return FCMP_ULT;
3637   }
3638 }
3639 
3640 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3641   switch (pred) {
3642     default: llvm_unreachable("Unknown cmp predicate!");
3643     case ICMP_EQ: case ICMP_NE:
3644       return pred;
3645     case ICMP_SGT: return ICMP_SLT;
3646     case ICMP_SLT: return ICMP_SGT;
3647     case ICMP_SGE: return ICMP_SLE;
3648     case ICMP_SLE: return ICMP_SGE;
3649     case ICMP_UGT: return ICMP_ULT;
3650     case ICMP_ULT: return ICMP_UGT;
3651     case ICMP_UGE: return ICMP_ULE;
3652     case ICMP_ULE: return ICMP_UGE;
3653 
3654     case FCMP_FALSE: case FCMP_TRUE:
3655     case FCMP_OEQ: case FCMP_ONE:
3656     case FCMP_UEQ: case FCMP_UNE:
3657     case FCMP_ORD: case FCMP_UNO:
3658       return pred;
3659     case FCMP_OGT: return FCMP_OLT;
3660     case FCMP_OLT: return FCMP_OGT;
3661     case FCMP_OGE: return FCMP_OLE;
3662     case FCMP_OLE: return FCMP_OGE;
3663     case FCMP_UGT: return FCMP_ULT;
3664     case FCMP_ULT: return FCMP_UGT;
3665     case FCMP_UGE: return FCMP_ULE;
3666     case FCMP_ULE: return FCMP_UGE;
3667   }
3668 }
3669 
3670 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3671   switch (pred) {
3672   case ICMP_SGT: return ICMP_SGE;
3673   case ICMP_SLT: return ICMP_SLE;
3674   case ICMP_UGT: return ICMP_UGE;
3675   case ICMP_ULT: return ICMP_ULE;
3676   case FCMP_OGT: return FCMP_OGE;
3677   case FCMP_OLT: return FCMP_OLE;
3678   case FCMP_UGT: return FCMP_UGE;
3679   case FCMP_ULT: return FCMP_ULE;
3680   default: return pred;
3681   }
3682 }
3683 
3684 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3685   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3686 
3687   switch (pred) {
3688   default:
3689     llvm_unreachable("Unknown predicate!");
3690   case CmpInst::ICMP_ULT:
3691     return CmpInst::ICMP_SLT;
3692   case CmpInst::ICMP_ULE:
3693     return CmpInst::ICMP_SLE;
3694   case CmpInst::ICMP_UGT:
3695     return CmpInst::ICMP_SGT;
3696   case CmpInst::ICMP_UGE:
3697     return CmpInst::ICMP_SGE;
3698   }
3699 }
3700 
3701 bool CmpInst::isUnsigned(Predicate predicate) {
3702   switch (predicate) {
3703     default: return false;
3704     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3705     case ICmpInst::ICMP_UGE: return true;
3706   }
3707 }
3708 
3709 bool CmpInst::isSigned(Predicate predicate) {
3710   switch (predicate) {
3711     default: return false;
3712     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3713     case ICmpInst::ICMP_SGE: return true;
3714   }
3715 }
3716 
3717 bool CmpInst::isOrdered(Predicate predicate) {
3718   switch (predicate) {
3719     default: return false;
3720     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3721     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3722     case FCmpInst::FCMP_ORD: return true;
3723   }
3724 }
3725 
3726 bool CmpInst::isUnordered(Predicate predicate) {
3727   switch (predicate) {
3728     default: return false;
3729     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3730     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3731     case FCmpInst::FCMP_UNO: return true;
3732   }
3733 }
3734 
3735 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3736   switch(predicate) {
3737     default: return false;
3738     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3739     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3740   }
3741 }
3742 
3743 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3744   switch(predicate) {
3745   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3746   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3747   default: return false;
3748   }
3749 }
3750 
3751 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3752   // If the predicates match, then we know the first condition implies the
3753   // second is true.
3754   if (Pred1 == Pred2)
3755     return true;
3756 
3757   switch (Pred1) {
3758   default:
3759     break;
3760   case ICMP_EQ:
3761     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3762     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3763            Pred2 == ICMP_SLE;
3764   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3765     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3766   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3767     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3768   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3769     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3770   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3771     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3772   }
3773   return false;
3774 }
3775 
3776 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3777   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3778 }
3779 
3780 //===----------------------------------------------------------------------===//
3781 //                        SwitchInst Implementation
3782 //===----------------------------------------------------------------------===//
3783 
3784 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3785   assert(Value && Default && NumReserved);
3786   ReservedSpace = NumReserved;
3787   setNumHungOffUseOperands(2);
3788   allocHungoffUses(ReservedSpace);
3789 
3790   Op<0>() = Value;
3791   Op<1>() = Default;
3792 }
3793 
3794 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3795 /// switch on and a default destination.  The number of additional cases can
3796 /// be specified here to make memory allocation more efficient.  This
3797 /// constructor can also autoinsert before another instruction.
3798 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3799                        Instruction *InsertBefore)
3800     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3801                   nullptr, 0, InsertBefore) {
3802   init(Value, Default, 2+NumCases*2);
3803 }
3804 
3805 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3806 /// switch on and a default destination.  The number of additional cases can
3807 /// be specified here to make memory allocation more efficient.  This
3808 /// constructor also autoinserts at the end of the specified BasicBlock.
3809 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3810                        BasicBlock *InsertAtEnd)
3811     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3812                   nullptr, 0, InsertAtEnd) {
3813   init(Value, Default, 2+NumCases*2);
3814 }
3815 
3816 SwitchInst::SwitchInst(const SwitchInst &SI)
3817     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3818   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3819   setNumHungOffUseOperands(SI.getNumOperands());
3820   Use *OL = getOperandList();
3821   const Use *InOL = SI.getOperandList();
3822   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3823     OL[i] = InOL[i];
3824     OL[i+1] = InOL[i+1];
3825   }
3826   SubclassOptionalData = SI.SubclassOptionalData;
3827 }
3828 
3829 /// addCase - Add an entry to the switch instruction...
3830 ///
3831 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3832   unsigned NewCaseIdx = getNumCases();
3833   unsigned OpNo = getNumOperands();
3834   if (OpNo+2 > ReservedSpace)
3835     growOperands();  // Get more space!
3836   // Initialize some new operands.
3837   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3838   setNumHungOffUseOperands(OpNo+2);
3839   CaseHandle Case(this, NewCaseIdx);
3840   Case.setValue(OnVal);
3841   Case.setSuccessor(Dest);
3842 }
3843 
3844 /// removeCase - This method removes the specified case and its successor
3845 /// from the switch instruction.
3846 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3847   unsigned idx = I->getCaseIndex();
3848 
3849   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3850 
3851   unsigned NumOps = getNumOperands();
3852   Use *OL = getOperandList();
3853 
3854   // Overwrite this case with the end of the list.
3855   if (2 + (idx + 1) * 2 != NumOps) {
3856     OL[2 + idx * 2] = OL[NumOps - 2];
3857     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3858   }
3859 
3860   // Nuke the last value.
3861   OL[NumOps-2].set(nullptr);
3862   OL[NumOps-2+1].set(nullptr);
3863   setNumHungOffUseOperands(NumOps-2);
3864 
3865   return CaseIt(this, idx);
3866 }
3867 
3868 /// growOperands - grow operands - This grows the operand list in response
3869 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3870 ///
3871 void SwitchInst::growOperands() {
3872   unsigned e = getNumOperands();
3873   unsigned NumOps = e*3;
3874 
3875   ReservedSpace = NumOps;
3876   growHungoffUses(ReservedSpace);
3877 }
3878 
3879 MDNode *
3880 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
3881   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
3882     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
3883       if (MDName->getString() == "branch_weights")
3884         return ProfileData;
3885   return nullptr;
3886 }
3887 
3888 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3889   assert(State == Changed && "called only if metadata has changed");
3890 
3891   if (!Weights)
3892     return nullptr;
3893 
3894   assert(SI.getNumSuccessors() == Weights->size() &&
3895          "num of prof branch_weights must accord with num of successors");
3896 
3897   bool AllZeroes =
3898       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
3899 
3900   if (AllZeroes || Weights.getValue().size() < 2)
3901     return nullptr;
3902 
3903   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3904 }
3905 
3906 void SwitchInstProfUpdateWrapper::init() {
3907   MDNode *ProfileData = getProfBranchWeightsMD(SI);
3908   if (!ProfileData) {
3909     State = Initialized;
3910     return;
3911   }
3912 
3913   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
3914     State = Invalid;
3915     if (SwitchInstProfUpdateWrapperStrict)
3916       llvm_unreachable("number of prof branch_weights metadata operands does "
3917                        "not correspond to number of succesors");
3918     return;
3919   }
3920 
3921   SmallVector<uint32_t, 8> Weights;
3922   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
3923     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
3924     uint32_t CW = C->getValue().getZExtValue();
3925     Weights.push_back(CW);
3926   }
3927   State = Initialized;
3928   this->Weights = std::move(Weights);
3929 }
3930 
3931 SwitchInst::CaseIt
3932 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
3933   if (Weights) {
3934     assert(SI.getNumSuccessors() == Weights->size() &&
3935            "num of prof branch_weights must accord with num of successors");
3936     State = Changed;
3937     // Copy the last case to the place of the removed one and shrink.
3938     // This is tightly coupled with the way SwitchInst::removeCase() removes
3939     // the cases in SwitchInst::removeCase(CaseIt).
3940     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
3941     Weights.getValue().pop_back();
3942   }
3943   return SI.removeCase(I);
3944 }
3945 
3946 void SwitchInstProfUpdateWrapper::addCase(
3947     ConstantInt *OnVal, BasicBlock *Dest,
3948     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3949   SI.addCase(OnVal, Dest);
3950 
3951   if (State == Invalid)
3952     return;
3953 
3954   if (!Weights && W && *W) {
3955     State = Changed;
3956     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3957     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
3958   } else if (Weights) {
3959     State = Changed;
3960     Weights.getValue().push_back(W ? *W : 0);
3961   }
3962   if (Weights)
3963     assert(SI.getNumSuccessors() == Weights->size() &&
3964            "num of prof branch_weights must accord with num of successors");
3965 }
3966 
3967 SymbolTableList<Instruction>::iterator
3968 SwitchInstProfUpdateWrapper::eraseFromParent() {
3969   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3970   if (State != Invalid) {
3971     State = Initialized;
3972     if (Weights)
3973       Weights->resize(0);
3974   }
3975   return SI.eraseFromParent();
3976 }
3977 
3978 SwitchInstProfUpdateWrapper::CaseWeightOpt
3979 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
3980   if (!Weights)
3981     return None;
3982   return Weights.getValue()[idx];
3983 }
3984 
3985 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
3986     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3987   if (!W || State == Invalid)
3988     return;
3989 
3990   if (!Weights && *W)
3991     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3992 
3993   if (Weights) {
3994     auto &OldW = Weights.getValue()[idx];
3995     if (*W != OldW) {
3996       State = Changed;
3997       OldW = *W;
3998     }
3999   }
4000 }
4001 
4002 SwitchInstProfUpdateWrapper::CaseWeightOpt
4003 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4004                                                 unsigned idx) {
4005   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4006     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4007       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4008           ->getValue()
4009           .getZExtValue();
4010 
4011   return None;
4012 }
4013 
4014 //===----------------------------------------------------------------------===//
4015 //                        IndirectBrInst Implementation
4016 //===----------------------------------------------------------------------===//
4017 
4018 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4019   assert(Address && Address->getType()->isPointerTy() &&
4020          "Address of indirectbr must be a pointer");
4021   ReservedSpace = 1+NumDests;
4022   setNumHungOffUseOperands(1);
4023   allocHungoffUses(ReservedSpace);
4024 
4025   Op<0>() = Address;
4026 }
4027 
4028 
4029 /// growOperands - grow operands - This grows the operand list in response
4030 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4031 ///
4032 void IndirectBrInst::growOperands() {
4033   unsigned e = getNumOperands();
4034   unsigned NumOps = e*2;
4035 
4036   ReservedSpace = NumOps;
4037   growHungoffUses(ReservedSpace);
4038 }
4039 
4040 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4041                                Instruction *InsertBefore)
4042     : Instruction(Type::getVoidTy(Address->getContext()),
4043                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4044   init(Address, NumCases);
4045 }
4046 
4047 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4048                                BasicBlock *InsertAtEnd)
4049     : Instruction(Type::getVoidTy(Address->getContext()),
4050                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4051   init(Address, NumCases);
4052 }
4053 
4054 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4055     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4056                   nullptr, IBI.getNumOperands()) {
4057   allocHungoffUses(IBI.getNumOperands());
4058   Use *OL = getOperandList();
4059   const Use *InOL = IBI.getOperandList();
4060   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4061     OL[i] = InOL[i];
4062   SubclassOptionalData = IBI.SubclassOptionalData;
4063 }
4064 
4065 /// addDestination - Add a destination.
4066 ///
4067 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4068   unsigned OpNo = getNumOperands();
4069   if (OpNo+1 > ReservedSpace)
4070     growOperands();  // Get more space!
4071   // Initialize some new operands.
4072   assert(OpNo < ReservedSpace && "Growing didn't work!");
4073   setNumHungOffUseOperands(OpNo+1);
4074   getOperandList()[OpNo] = DestBB;
4075 }
4076 
4077 /// removeDestination - This method removes the specified successor from the
4078 /// indirectbr instruction.
4079 void IndirectBrInst::removeDestination(unsigned idx) {
4080   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4081 
4082   unsigned NumOps = getNumOperands();
4083   Use *OL = getOperandList();
4084 
4085   // Replace this value with the last one.
4086   OL[idx+1] = OL[NumOps-1];
4087 
4088   // Nuke the last value.
4089   OL[NumOps-1].set(nullptr);
4090   setNumHungOffUseOperands(NumOps-1);
4091 }
4092 
4093 //===----------------------------------------------------------------------===//
4094 //                           cloneImpl() implementations
4095 //===----------------------------------------------------------------------===//
4096 
4097 // Define these methods here so vtables don't get emitted into every translation
4098 // unit that uses these classes.
4099 
4100 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4101   return new (getNumOperands()) GetElementPtrInst(*this);
4102 }
4103 
4104 UnaryOperator *UnaryOperator::cloneImpl() const {
4105   return Create(getOpcode(), Op<0>());
4106 }
4107 
4108 BinaryOperator *BinaryOperator::cloneImpl() const {
4109   return Create(getOpcode(), Op<0>(), Op<1>());
4110 }
4111 
4112 FCmpInst *FCmpInst::cloneImpl() const {
4113   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4114 }
4115 
4116 ICmpInst *ICmpInst::cloneImpl() const {
4117   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4118 }
4119 
4120 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4121   return new ExtractValueInst(*this);
4122 }
4123 
4124 InsertValueInst *InsertValueInst::cloneImpl() const {
4125   return new InsertValueInst(*this);
4126 }
4127 
4128 AllocaInst *AllocaInst::cloneImpl() const {
4129   AllocaInst *Result = new AllocaInst(getAllocatedType(),
4130                                       getType()->getAddressSpace(),
4131                                       (Value *)getOperand(0), getAlignment());
4132   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4133   Result->setSwiftError(isSwiftError());
4134   return Result;
4135 }
4136 
4137 LoadInst *LoadInst::cloneImpl() const {
4138   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4139                       getAlignment(), getOrdering(), getSyncScopeID());
4140 }
4141 
4142 StoreInst *StoreInst::cloneImpl() const {
4143   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4144                        getAlignment(), getOrdering(), getSyncScopeID());
4145 
4146 }
4147 
4148 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4149   AtomicCmpXchgInst *Result =
4150     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4151                           getSuccessOrdering(), getFailureOrdering(),
4152                           getSyncScopeID());
4153   Result->setVolatile(isVolatile());
4154   Result->setWeak(isWeak());
4155   return Result;
4156 }
4157 
4158 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4159   AtomicRMWInst *Result =
4160     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4161                       getOrdering(), getSyncScopeID());
4162   Result->setVolatile(isVolatile());
4163   return Result;
4164 }
4165 
4166 FenceInst *FenceInst::cloneImpl() const {
4167   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4168 }
4169 
4170 TruncInst *TruncInst::cloneImpl() const {
4171   return new TruncInst(getOperand(0), getType());
4172 }
4173 
4174 ZExtInst *ZExtInst::cloneImpl() const {
4175   return new ZExtInst(getOperand(0), getType());
4176 }
4177 
4178 SExtInst *SExtInst::cloneImpl() const {
4179   return new SExtInst(getOperand(0), getType());
4180 }
4181 
4182 FPTruncInst *FPTruncInst::cloneImpl() const {
4183   return new FPTruncInst(getOperand(0), getType());
4184 }
4185 
4186 FPExtInst *FPExtInst::cloneImpl() const {
4187   return new FPExtInst(getOperand(0), getType());
4188 }
4189 
4190 UIToFPInst *UIToFPInst::cloneImpl() const {
4191   return new UIToFPInst(getOperand(0), getType());
4192 }
4193 
4194 SIToFPInst *SIToFPInst::cloneImpl() const {
4195   return new SIToFPInst(getOperand(0), getType());
4196 }
4197 
4198 FPToUIInst *FPToUIInst::cloneImpl() const {
4199   return new FPToUIInst(getOperand(0), getType());
4200 }
4201 
4202 FPToSIInst *FPToSIInst::cloneImpl() const {
4203   return new FPToSIInst(getOperand(0), getType());
4204 }
4205 
4206 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4207   return new PtrToIntInst(getOperand(0), getType());
4208 }
4209 
4210 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4211   return new IntToPtrInst(getOperand(0), getType());
4212 }
4213 
4214 BitCastInst *BitCastInst::cloneImpl() const {
4215   return new BitCastInst(getOperand(0), getType());
4216 }
4217 
4218 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4219   return new AddrSpaceCastInst(getOperand(0), getType());
4220 }
4221 
4222 CallInst *CallInst::cloneImpl() const {
4223   if (hasOperandBundles()) {
4224     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4225     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4226   }
4227   return  new(getNumOperands()) CallInst(*this);
4228 }
4229 
4230 SelectInst *SelectInst::cloneImpl() const {
4231   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4232 }
4233 
4234 VAArgInst *VAArgInst::cloneImpl() const {
4235   return new VAArgInst(getOperand(0), getType());
4236 }
4237 
4238 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4239   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4240 }
4241 
4242 InsertElementInst *InsertElementInst::cloneImpl() const {
4243   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4244 }
4245 
4246 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4247   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4248 }
4249 
4250 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4251 
4252 LandingPadInst *LandingPadInst::cloneImpl() const {
4253   return new LandingPadInst(*this);
4254 }
4255 
4256 ReturnInst *ReturnInst::cloneImpl() const {
4257   return new(getNumOperands()) ReturnInst(*this);
4258 }
4259 
4260 BranchInst *BranchInst::cloneImpl() const {
4261   return new(getNumOperands()) BranchInst(*this);
4262 }
4263 
4264 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4265 
4266 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4267   return new IndirectBrInst(*this);
4268 }
4269 
4270 InvokeInst *InvokeInst::cloneImpl() const {
4271   if (hasOperandBundles()) {
4272     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4273     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4274   }
4275   return new(getNumOperands()) InvokeInst(*this);
4276 }
4277 
4278 CallBrInst *CallBrInst::cloneImpl() const {
4279   if (hasOperandBundles()) {
4280     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4281     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4282   }
4283   return new (getNumOperands()) CallBrInst(*this);
4284 }
4285 
4286 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4287 
4288 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4289   return new (getNumOperands()) CleanupReturnInst(*this);
4290 }
4291 
4292 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4293   return new (getNumOperands()) CatchReturnInst(*this);
4294 }
4295 
4296 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4297   return new CatchSwitchInst(*this);
4298 }
4299 
4300 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4301   return new (getNumOperands()) FuncletPadInst(*this);
4302 }
4303 
4304 UnreachableInst *UnreachableInst::cloneImpl() const {
4305   LLVMContext &Context = getContext();
4306   return new UnreachableInst(Context);
4307 }
4308