1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements all of the non-inline methods for the LLVM instruction 11 // classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/IR/Instructions.h" 16 #include "LLVMContextImpl.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // CallSite Class 31 //===----------------------------------------------------------------------===// 32 33 User::op_iterator CallSite::getCallee() const { 34 Instruction *II(getInstruction()); 35 return isCall() 36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee 37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee 38 } 39 40 //===----------------------------------------------------------------------===// 41 // TerminatorInst Class 42 //===----------------------------------------------------------------------===// 43 44 // Out of line virtual method, so the vtable, etc has a home. 45 TerminatorInst::~TerminatorInst() { 46 } 47 48 //===----------------------------------------------------------------------===// 49 // UnaryInstruction Class 50 //===----------------------------------------------------------------------===// 51 52 // Out of line virtual method, so the vtable, etc has a home. 53 UnaryInstruction::~UnaryInstruction() { 54 } 55 56 //===----------------------------------------------------------------------===// 57 // SelectInst Class 58 //===----------------------------------------------------------------------===// 59 60 /// areInvalidOperands - Return a string if the specified operands are invalid 61 /// for a select operation, otherwise return null. 62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 63 if (Op1->getType() != Op2->getType()) 64 return "both values to select must have same type"; 65 66 if (Op1->getType()->isTokenTy()) 67 return "select values cannot have token type"; 68 69 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 70 // Vector select. 71 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 72 return "vector select condition element type must be i1"; 73 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 74 if (!ET) 75 return "selected values for vector select must be vectors"; 76 if (ET->getNumElements() != VT->getNumElements()) 77 return "vector select requires selected vectors to have " 78 "the same vector length as select condition"; 79 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 80 return "select condition must be i1 or <n x i1>"; 81 } 82 return nullptr; 83 } 84 85 86 //===----------------------------------------------------------------------===// 87 // PHINode Class 88 //===----------------------------------------------------------------------===// 89 90 void PHINode::anchor() {} 91 92 PHINode::PHINode(const PHINode &PN) 93 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 94 ReservedSpace(PN.getNumOperands()) { 95 allocHungoffUses(PN.getNumOperands()); 96 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 97 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 98 SubclassOptionalData = PN.SubclassOptionalData; 99 } 100 101 // removeIncomingValue - Remove an incoming value. This is useful if a 102 // predecessor basic block is deleted. 103 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 104 Value *Removed = getIncomingValue(Idx); 105 106 // Move everything after this operand down. 107 // 108 // FIXME: we could just swap with the end of the list, then erase. However, 109 // clients might not expect this to happen. The code as it is thrashes the 110 // use/def lists, which is kinda lame. 111 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 112 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 113 114 // Nuke the last value. 115 Op<-1>().set(nullptr); 116 setNumHungOffUseOperands(getNumOperands() - 1); 117 118 // If the PHI node is dead, because it has zero entries, nuke it now. 119 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 120 // If anyone is using this PHI, make them use a dummy value instead... 121 replaceAllUsesWith(UndefValue::get(getType())); 122 eraseFromParent(); 123 } 124 return Removed; 125 } 126 127 /// growOperands - grow operands - This grows the operand list in response 128 /// to a push_back style of operation. This grows the number of ops by 1.5 129 /// times. 130 /// 131 void PHINode::growOperands() { 132 unsigned e = getNumOperands(); 133 unsigned NumOps = e + e / 2; 134 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 135 136 ReservedSpace = NumOps; 137 growHungoffUses(ReservedSpace, /* IsPhi */ true); 138 } 139 140 /// hasConstantValue - If the specified PHI node always merges together the same 141 /// value, return the value, otherwise return null. 142 Value *PHINode::hasConstantValue() const { 143 // Exploit the fact that phi nodes always have at least one entry. 144 Value *ConstantValue = getIncomingValue(0); 145 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 146 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 147 if (ConstantValue != this) 148 return nullptr; // Incoming values not all the same. 149 // The case where the first value is this PHI. 150 ConstantValue = getIncomingValue(i); 151 } 152 if (ConstantValue == this) 153 return UndefValue::get(getType()); 154 return ConstantValue; 155 } 156 157 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 158 /// together the same value, assuming that undefs result in the same value as 159 /// non-undefs. 160 /// Unlike \ref hasConstantValue, this does not return a value because the 161 /// unique non-undef incoming value need not dominate the PHI node. 162 bool PHINode::hasConstantOrUndefValue() const { 163 Value *ConstantValue = nullptr; 164 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 165 Value *Incoming = getIncomingValue(i); 166 if (Incoming != this && !isa<UndefValue>(Incoming)) { 167 if (ConstantValue && ConstantValue != Incoming) 168 return false; 169 ConstantValue = Incoming; 170 } 171 } 172 return true; 173 } 174 175 //===----------------------------------------------------------------------===// 176 // LandingPadInst Implementation 177 //===----------------------------------------------------------------------===// 178 179 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 180 const Twine &NameStr, Instruction *InsertBefore) 181 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 182 init(NumReservedValues, NameStr); 183 } 184 185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 186 const Twine &NameStr, BasicBlock *InsertAtEnd) 187 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 188 init(NumReservedValues, NameStr); 189 } 190 191 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 192 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 193 LP.getNumOperands()), 194 ReservedSpace(LP.getNumOperands()) { 195 allocHungoffUses(LP.getNumOperands()); 196 Use *OL = getOperandList(); 197 const Use *InOL = LP.getOperandList(); 198 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 199 OL[I] = InOL[I]; 200 201 setCleanup(LP.isCleanup()); 202 } 203 204 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 205 const Twine &NameStr, 206 Instruction *InsertBefore) { 207 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 208 } 209 210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 211 const Twine &NameStr, 212 BasicBlock *InsertAtEnd) { 213 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 214 } 215 216 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 217 ReservedSpace = NumReservedValues; 218 setNumHungOffUseOperands(0); 219 allocHungoffUses(ReservedSpace); 220 setName(NameStr); 221 setCleanup(false); 222 } 223 224 /// growOperands - grow operands - This grows the operand list in response to a 225 /// push_back style of operation. This grows the number of ops by 2 times. 226 void LandingPadInst::growOperands(unsigned Size) { 227 unsigned e = getNumOperands(); 228 if (ReservedSpace >= e + Size) return; 229 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 230 growHungoffUses(ReservedSpace); 231 } 232 233 void LandingPadInst::addClause(Constant *Val) { 234 unsigned OpNo = getNumOperands(); 235 growOperands(1); 236 assert(OpNo < ReservedSpace && "Growing didn't work!"); 237 setNumHungOffUseOperands(getNumOperands() + 1); 238 getOperandList()[OpNo] = Val; 239 } 240 241 //===----------------------------------------------------------------------===// 242 // CallInst Implementation 243 //===----------------------------------------------------------------------===// 244 245 CallInst::~CallInst() { 246 } 247 248 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 249 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 250 this->FTy = FTy; 251 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 252 "NumOperands not set up?"); 253 Op<-1>() = Func; 254 255 #ifndef NDEBUG 256 assert((Args.size() == FTy->getNumParams() || 257 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 258 "Calling a function with bad signature!"); 259 260 for (unsigned i = 0; i != Args.size(); ++i) 261 assert((i >= FTy->getNumParams() || 262 FTy->getParamType(i) == Args[i]->getType()) && 263 "Calling a function with a bad signature!"); 264 #endif 265 266 std::copy(Args.begin(), Args.end(), op_begin()); 267 268 auto It = populateBundleOperandInfos(Bundles, Args.size()); 269 (void)It; 270 assert(It + 1 == op_end() && "Should add up!"); 271 272 setName(NameStr); 273 } 274 275 void CallInst::init(Value *Func, const Twine &NameStr) { 276 FTy = 277 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 278 assert(getNumOperands() == 1 && "NumOperands not set up?"); 279 Op<-1>() = Func; 280 281 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 282 283 setName(NameStr); 284 } 285 286 CallInst::CallInst(Value *Func, const Twine &Name, 287 Instruction *InsertBefore) 288 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 289 ->getElementType())->getReturnType(), 290 Instruction::Call, 291 OperandTraits<CallInst>::op_end(this) - 1, 292 1, InsertBefore) { 293 init(Func, Name); 294 } 295 296 CallInst::CallInst(Value *Func, const Twine &Name, 297 BasicBlock *InsertAtEnd) 298 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 299 ->getElementType())->getReturnType(), 300 Instruction::Call, 301 OperandTraits<CallInst>::op_end(this) - 1, 302 1, InsertAtEnd) { 303 init(Func, Name); 304 } 305 306 CallInst::CallInst(const CallInst &CI) 307 : Instruction(CI.getType(), Instruction::Call, 308 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), 309 CI.getNumOperands()), 310 AttributeList(CI.AttributeList), FTy(CI.FTy) { 311 setTailCallKind(CI.getTailCallKind()); 312 setCallingConv(CI.getCallingConv()); 313 314 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 315 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 316 bundle_op_info_begin()); 317 SubclassOptionalData = CI.SubclassOptionalData; 318 } 319 320 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 321 Instruction *InsertPt) { 322 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 323 324 auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(), 325 InsertPt); 326 NewCI->setTailCallKind(CI->getTailCallKind()); 327 NewCI->setCallingConv(CI->getCallingConv()); 328 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 329 NewCI->setAttributes(CI->getAttributes()); 330 NewCI->setDebugLoc(CI->getDebugLoc()); 331 return NewCI; 332 } 333 334 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) { 335 AttributeSet PAL = getAttributes(); 336 PAL = PAL.addAttribute(getContext(), i, attr); 337 setAttributes(PAL); 338 } 339 340 void CallInst::addAttribute(unsigned i, StringRef Kind, StringRef Value) { 341 AttributeSet PAL = getAttributes(); 342 PAL = PAL.addAttribute(getContext(), i, Kind, Value); 343 setAttributes(PAL); 344 } 345 346 void CallInst::removeAttribute(unsigned i, Attribute::AttrKind attr) { 347 AttributeSet PAL = getAttributes(); 348 PAL = PAL.removeAttribute(getContext(), i, attr); 349 setAttributes(PAL); 350 } 351 352 void CallInst::removeAttribute(unsigned i, Attribute attr) { 353 AttributeSet PAL = getAttributes(); 354 AttrBuilder B(attr); 355 LLVMContext &Context = getContext(); 356 PAL = PAL.removeAttributes(Context, i, 357 AttributeSet::get(Context, i, B)); 358 setAttributes(PAL); 359 } 360 361 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 362 AttributeSet PAL = getAttributes(); 363 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 364 setAttributes(PAL); 365 } 366 367 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 368 AttributeSet PAL = getAttributes(); 369 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 370 setAttributes(PAL); 371 } 372 373 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { 374 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!"); 375 376 if (AttributeList.hasAttribute(i, A)) 377 return true; 378 if (const Function *F = getCalledFunction()) 379 return F->getAttributes().hasAttribute(i, A); 380 return false; 381 } 382 383 bool CallInst::dataOperandHasImpliedAttr(unsigned i, 384 Attribute::AttrKind A) const { 385 386 // There are getNumOperands() - 1 data operands. The last operand is the 387 // callee. 388 assert(i < getNumOperands() && "Data operand index out of bounds!"); 389 390 // The attribute A can either be directly specified, if the operand in 391 // question is a call argument; or be indirectly implied by the kind of its 392 // containing operand bundle, if the operand is a bundle operand. 393 394 if (i < (getNumArgOperands() + 1)) 395 return paramHasAttr(i, A); 396 397 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && 398 "Must be either a call argument or an operand bundle!"); 399 return bundleOperandHasAttr(i - 1, A); 400 } 401 402 /// IsConstantOne - Return true only if val is constant int 1 403 static bool IsConstantOne(Value *val) { 404 assert(val && "IsConstantOne does not work with nullptr val"); 405 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 406 return CVal && CVal->isOne(); 407 } 408 409 static Instruction *createMalloc(Instruction *InsertBefore, 410 BasicBlock *InsertAtEnd, Type *IntPtrTy, 411 Type *AllocTy, Value *AllocSize, 412 Value *ArraySize, 413 ArrayRef<OperandBundleDef> OpB, 414 Function *MallocF, const Twine &Name) { 415 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 416 "createMalloc needs either InsertBefore or InsertAtEnd"); 417 418 // malloc(type) becomes: 419 // bitcast (i8* malloc(typeSize)) to type* 420 // malloc(type, arraySize) becomes: 421 // bitcast (i8* malloc(typeSize*arraySize)) to type* 422 if (!ArraySize) 423 ArraySize = ConstantInt::get(IntPtrTy, 1); 424 else if (ArraySize->getType() != IntPtrTy) { 425 if (InsertBefore) 426 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 427 "", InsertBefore); 428 else 429 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 430 "", InsertAtEnd); 431 } 432 433 if (!IsConstantOne(ArraySize)) { 434 if (IsConstantOne(AllocSize)) { 435 AllocSize = ArraySize; // Operand * 1 = Operand 436 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 437 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 438 false /*ZExt*/); 439 // Malloc arg is constant product of type size and array size 440 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 441 } else { 442 // Multiply type size by the array size... 443 if (InsertBefore) 444 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 445 "mallocsize", InsertBefore); 446 else 447 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 448 "mallocsize", InsertAtEnd); 449 } 450 } 451 452 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 453 // Create the call to Malloc. 454 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 455 Module *M = BB->getParent()->getParent(); 456 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 457 Value *MallocFunc = MallocF; 458 if (!MallocFunc) 459 // prototype malloc as "void *malloc(size_t)" 460 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr); 461 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 462 CallInst *MCall = nullptr; 463 Instruction *Result = nullptr; 464 if (InsertBefore) { 465 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 466 InsertBefore); 467 Result = MCall; 468 if (Result->getType() != AllocPtrType) 469 // Create a cast instruction to convert to the right type... 470 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 471 } else { 472 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 473 Result = MCall; 474 if (Result->getType() != AllocPtrType) { 475 InsertAtEnd->getInstList().push_back(MCall); 476 // Create a cast instruction to convert to the right type... 477 Result = new BitCastInst(MCall, AllocPtrType, Name); 478 } 479 } 480 MCall->setTailCall(); 481 if (Function *F = dyn_cast<Function>(MallocFunc)) { 482 MCall->setCallingConv(F->getCallingConv()); 483 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); 484 } 485 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 486 487 return Result; 488 } 489 490 /// CreateMalloc - Generate the IR for a call to malloc: 491 /// 1. Compute the malloc call's argument as the specified type's size, 492 /// possibly multiplied by the array size if the array size is not 493 /// constant 1. 494 /// 2. Call malloc with that argument. 495 /// 3. Bitcast the result of the malloc call to the specified type. 496 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 497 Type *IntPtrTy, Type *AllocTy, 498 Value *AllocSize, Value *ArraySize, 499 Function *MallocF, 500 const Twine &Name) { 501 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 502 ArraySize, None, MallocF, Name); 503 } 504 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 505 Type *IntPtrTy, Type *AllocTy, 506 Value *AllocSize, Value *ArraySize, 507 ArrayRef<OperandBundleDef> OpB, 508 Function *MallocF, 509 const Twine &Name) { 510 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 511 ArraySize, OpB, MallocF, Name); 512 } 513 514 515 /// CreateMalloc - Generate the IR for a call to malloc: 516 /// 1. Compute the malloc call's argument as the specified type's size, 517 /// possibly multiplied by the array size if the array size is not 518 /// constant 1. 519 /// 2. Call malloc with that argument. 520 /// 3. Bitcast the result of the malloc call to the specified type. 521 /// Note: This function does not add the bitcast to the basic block, that is the 522 /// responsibility of the caller. 523 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 524 Type *IntPtrTy, Type *AllocTy, 525 Value *AllocSize, Value *ArraySize, 526 Function *MallocF, const Twine &Name) { 527 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 528 ArraySize, None, MallocF, Name); 529 } 530 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 531 Type *IntPtrTy, Type *AllocTy, 532 Value *AllocSize, Value *ArraySize, 533 ArrayRef<OperandBundleDef> OpB, 534 Function *MallocF, const Twine &Name) { 535 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 536 ArraySize, OpB, MallocF, Name); 537 } 538 539 static Instruction *createFree(Value *Source, 540 ArrayRef<OperandBundleDef> Bundles, 541 Instruction *InsertBefore, 542 BasicBlock *InsertAtEnd) { 543 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 544 "createFree needs either InsertBefore or InsertAtEnd"); 545 assert(Source->getType()->isPointerTy() && 546 "Can not free something of nonpointer type!"); 547 548 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 549 Module *M = BB->getParent()->getParent(); 550 551 Type *VoidTy = Type::getVoidTy(M->getContext()); 552 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 553 // prototype free as "void free(void*)" 554 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr); 555 CallInst *Result = nullptr; 556 Value *PtrCast = Source; 557 if (InsertBefore) { 558 if (Source->getType() != IntPtrTy) 559 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 560 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 561 } else { 562 if (Source->getType() != IntPtrTy) 563 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 564 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 565 } 566 Result->setTailCall(); 567 if (Function *F = dyn_cast<Function>(FreeFunc)) 568 Result->setCallingConv(F->getCallingConv()); 569 570 return Result; 571 } 572 573 /// CreateFree - Generate the IR for a call to the builtin free function. 574 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 575 return createFree(Source, None, InsertBefore, nullptr); 576 } 577 Instruction *CallInst::CreateFree(Value *Source, 578 ArrayRef<OperandBundleDef> Bundles, 579 Instruction *InsertBefore) { 580 return createFree(Source, Bundles, InsertBefore, nullptr); 581 } 582 583 /// CreateFree - Generate the IR for a call to the builtin free function. 584 /// Note: This function does not add the call to the basic block, that is the 585 /// responsibility of the caller. 586 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 587 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 588 assert(FreeCall && "CreateFree did not create a CallInst"); 589 return FreeCall; 590 } 591 Instruction *CallInst::CreateFree(Value *Source, 592 ArrayRef<OperandBundleDef> Bundles, 593 BasicBlock *InsertAtEnd) { 594 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 595 assert(FreeCall && "CreateFree did not create a CallInst"); 596 return FreeCall; 597 } 598 599 //===----------------------------------------------------------------------===// 600 // InvokeInst Implementation 601 //===----------------------------------------------------------------------===// 602 603 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 604 BasicBlock *IfException, ArrayRef<Value *> Args, 605 ArrayRef<OperandBundleDef> Bundles, 606 const Twine &NameStr) { 607 this->FTy = FTy; 608 609 assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) && 610 "NumOperands not set up?"); 611 Op<-3>() = Fn; 612 Op<-2>() = IfNormal; 613 Op<-1>() = IfException; 614 615 #ifndef NDEBUG 616 assert(((Args.size() == FTy->getNumParams()) || 617 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 618 "Invoking a function with bad signature"); 619 620 for (unsigned i = 0, e = Args.size(); i != e; i++) 621 assert((i >= FTy->getNumParams() || 622 FTy->getParamType(i) == Args[i]->getType()) && 623 "Invoking a function with a bad signature!"); 624 #endif 625 626 std::copy(Args.begin(), Args.end(), op_begin()); 627 628 auto It = populateBundleOperandInfos(Bundles, Args.size()); 629 (void)It; 630 assert(It + 3 == op_end() && "Should add up!"); 631 632 setName(NameStr); 633 } 634 635 InvokeInst::InvokeInst(const InvokeInst &II) 636 : TerminatorInst(II.getType(), Instruction::Invoke, 637 OperandTraits<InvokeInst>::op_end(this) - 638 II.getNumOperands(), 639 II.getNumOperands()), 640 AttributeList(II.AttributeList), FTy(II.FTy) { 641 setCallingConv(II.getCallingConv()); 642 std::copy(II.op_begin(), II.op_end(), op_begin()); 643 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 644 bundle_op_info_begin()); 645 SubclassOptionalData = II.SubclassOptionalData; 646 } 647 648 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 649 Instruction *InsertPt) { 650 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 651 652 auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(), 653 II->getUnwindDest(), Args, OpB, 654 II->getName(), InsertPt); 655 NewII->setCallingConv(II->getCallingConv()); 656 NewII->SubclassOptionalData = II->SubclassOptionalData; 657 NewII->setAttributes(II->getAttributes()); 658 NewII->setDebugLoc(II->getDebugLoc()); 659 return NewII; 660 } 661 662 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { 663 return getSuccessor(idx); 664 } 665 unsigned InvokeInst::getNumSuccessorsV() const { 666 return getNumSuccessors(); 667 } 668 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { 669 return setSuccessor(idx, B); 670 } 671 672 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { 673 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!"); 674 675 if (AttributeList.hasAttribute(i, A)) 676 return true; 677 if (const Function *F = getCalledFunction()) 678 return F->getAttributes().hasAttribute(i, A); 679 return false; 680 } 681 682 bool InvokeInst::dataOperandHasImpliedAttr(unsigned i, 683 Attribute::AttrKind A) const { 684 // There are getNumOperands() - 3 data operands. The last three operands are 685 // the callee and the two successor basic blocks. 686 assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!"); 687 688 // The attribute A can either be directly specified, if the operand in 689 // question is an invoke argument; or be indirectly implied by the kind of its 690 // containing operand bundle, if the operand is a bundle operand. 691 692 if (i < (getNumArgOperands() + 1)) 693 return paramHasAttr(i, A); 694 695 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && 696 "Must be either an invoke argument or an operand bundle!"); 697 return bundleOperandHasAttr(i - 1, A); 698 } 699 700 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) { 701 AttributeSet PAL = getAttributes(); 702 PAL = PAL.addAttribute(getContext(), i, attr); 703 setAttributes(PAL); 704 } 705 706 void InvokeInst::removeAttribute(unsigned i, Attribute::AttrKind attr) { 707 AttributeSet PAL = getAttributes(); 708 PAL = PAL.removeAttribute(getContext(), i, attr); 709 setAttributes(PAL); 710 } 711 712 void InvokeInst::removeAttribute(unsigned i, Attribute attr) { 713 AttributeSet PAL = getAttributes(); 714 AttrBuilder B(attr); 715 PAL = PAL.removeAttributes(getContext(), i, 716 AttributeSet::get(getContext(), i, B)); 717 setAttributes(PAL); 718 } 719 720 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 721 AttributeSet PAL = getAttributes(); 722 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 723 setAttributes(PAL); 724 } 725 726 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 727 AttributeSet PAL = getAttributes(); 728 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 729 setAttributes(PAL); 730 } 731 732 LandingPadInst *InvokeInst::getLandingPadInst() const { 733 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 734 } 735 736 //===----------------------------------------------------------------------===// 737 // ReturnInst Implementation 738 //===----------------------------------------------------------------------===// 739 740 ReturnInst::ReturnInst(const ReturnInst &RI) 741 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, 742 OperandTraits<ReturnInst>::op_end(this) - 743 RI.getNumOperands(), 744 RI.getNumOperands()) { 745 if (RI.getNumOperands()) 746 Op<0>() = RI.Op<0>(); 747 SubclassOptionalData = RI.SubclassOptionalData; 748 } 749 750 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 751 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 752 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 753 InsertBefore) { 754 if (retVal) 755 Op<0>() = retVal; 756 } 757 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 758 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 759 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 760 InsertAtEnd) { 761 if (retVal) 762 Op<0>() = retVal; 763 } 764 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 765 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, 766 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { 767 } 768 769 unsigned ReturnInst::getNumSuccessorsV() const { 770 return getNumSuccessors(); 771 } 772 773 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to 774 /// emit the vtable for the class in this translation unit. 775 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 776 llvm_unreachable("ReturnInst has no successors!"); 777 } 778 779 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { 780 llvm_unreachable("ReturnInst has no successors!"); 781 } 782 783 ReturnInst::~ReturnInst() { 784 } 785 786 //===----------------------------------------------------------------------===// 787 // ResumeInst Implementation 788 //===----------------------------------------------------------------------===// 789 790 ResumeInst::ResumeInst(const ResumeInst &RI) 791 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, 792 OperandTraits<ResumeInst>::op_begin(this), 1) { 793 Op<0>() = RI.Op<0>(); 794 } 795 796 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 797 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 798 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 799 Op<0>() = Exn; 800 } 801 802 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 803 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 804 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 805 Op<0>() = Exn; 806 } 807 808 unsigned ResumeInst::getNumSuccessorsV() const { 809 return getNumSuccessors(); 810 } 811 812 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 813 llvm_unreachable("ResumeInst has no successors!"); 814 } 815 816 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { 817 llvm_unreachable("ResumeInst has no successors!"); 818 } 819 820 //===----------------------------------------------------------------------===// 821 // CleanupReturnInst Implementation 822 //===----------------------------------------------------------------------===// 823 824 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 825 : TerminatorInst(CRI.getType(), Instruction::CleanupRet, 826 OperandTraits<CleanupReturnInst>::op_end(this) - 827 CRI.getNumOperands(), 828 CRI.getNumOperands()) { 829 setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); 830 Op<0>() = CRI.Op<0>(); 831 if (CRI.hasUnwindDest()) 832 Op<1>() = CRI.Op<1>(); 833 } 834 835 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 836 if (UnwindBB) 837 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 838 839 Op<0>() = CleanupPad; 840 if (UnwindBB) 841 Op<1>() = UnwindBB; 842 } 843 844 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 845 unsigned Values, Instruction *InsertBefore) 846 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), 847 Instruction::CleanupRet, 848 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 849 Values, InsertBefore) { 850 init(CleanupPad, UnwindBB); 851 } 852 853 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 854 unsigned Values, BasicBlock *InsertAtEnd) 855 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), 856 Instruction::CleanupRet, 857 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 858 Values, InsertAtEnd) { 859 init(CleanupPad, UnwindBB); 860 } 861 862 BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const { 863 assert(Idx == 0); 864 return getUnwindDest(); 865 } 866 unsigned CleanupReturnInst::getNumSuccessorsV() const { 867 return getNumSuccessors(); 868 } 869 void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) { 870 assert(Idx == 0); 871 setUnwindDest(B); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // CatchReturnInst Implementation 876 //===----------------------------------------------------------------------===// 877 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 878 Op<0>() = CatchPad; 879 Op<1>() = BB; 880 } 881 882 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 883 : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 884 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 885 Op<0>() = CRI.Op<0>(); 886 Op<1>() = CRI.Op<1>(); 887 } 888 889 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 890 Instruction *InsertBefore) 891 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 892 OperandTraits<CatchReturnInst>::op_begin(this), 2, 893 InsertBefore) { 894 init(CatchPad, BB); 895 } 896 897 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 898 BasicBlock *InsertAtEnd) 899 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 900 OperandTraits<CatchReturnInst>::op_begin(this), 2, 901 InsertAtEnd) { 902 init(CatchPad, BB); 903 } 904 905 BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const { 906 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); 907 return getSuccessor(); 908 } 909 unsigned CatchReturnInst::getNumSuccessorsV() const { 910 return getNumSuccessors(); 911 } 912 void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) { 913 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); 914 setSuccessor(B); 915 } 916 917 //===----------------------------------------------------------------------===// 918 // CatchSwitchInst Implementation 919 //===----------------------------------------------------------------------===// 920 921 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 922 unsigned NumReservedValues, 923 const Twine &NameStr, 924 Instruction *InsertBefore) 925 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 926 InsertBefore) { 927 if (UnwindDest) 928 ++NumReservedValues; 929 init(ParentPad, UnwindDest, NumReservedValues + 1); 930 setName(NameStr); 931 } 932 933 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 934 unsigned NumReservedValues, 935 const Twine &NameStr, BasicBlock *InsertAtEnd) 936 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 937 InsertAtEnd) { 938 if (UnwindDest) 939 ++NumReservedValues; 940 init(ParentPad, UnwindDest, NumReservedValues + 1); 941 setName(NameStr); 942 } 943 944 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 945 : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr, 946 CSI.getNumOperands()) { 947 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 948 setNumHungOffUseOperands(ReservedSpace); 949 Use *OL = getOperandList(); 950 const Use *InOL = CSI.getOperandList(); 951 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 952 OL[I] = InOL[I]; 953 } 954 955 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 956 unsigned NumReservedValues) { 957 assert(ParentPad && NumReservedValues); 958 959 ReservedSpace = NumReservedValues; 960 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 961 allocHungoffUses(ReservedSpace); 962 963 Op<0>() = ParentPad; 964 if (UnwindDest) { 965 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 966 setUnwindDest(UnwindDest); 967 } 968 } 969 970 /// growOperands - grow operands - This grows the operand list in response to a 971 /// push_back style of operation. This grows the number of ops by 2 times. 972 void CatchSwitchInst::growOperands(unsigned Size) { 973 unsigned NumOperands = getNumOperands(); 974 assert(NumOperands >= 1); 975 if (ReservedSpace >= NumOperands + Size) 976 return; 977 ReservedSpace = (NumOperands + Size / 2) * 2; 978 growHungoffUses(ReservedSpace); 979 } 980 981 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 982 unsigned OpNo = getNumOperands(); 983 growOperands(1); 984 assert(OpNo < ReservedSpace && "Growing didn't work!"); 985 setNumHungOffUseOperands(getNumOperands() + 1); 986 getOperandList()[OpNo] = Handler; 987 } 988 989 void CatchSwitchInst::removeHandler(handler_iterator HI) { 990 // Move all subsequent handlers up one. 991 Use *EndDst = op_end() - 1; 992 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 993 *CurDst = *(CurDst + 1); 994 // Null out the last handler use. 995 *EndDst = nullptr; 996 997 setNumHungOffUseOperands(getNumOperands() - 1); 998 } 999 1000 BasicBlock *CatchSwitchInst::getSuccessorV(unsigned idx) const { 1001 return getSuccessor(idx); 1002 } 1003 unsigned CatchSwitchInst::getNumSuccessorsV() const { 1004 return getNumSuccessors(); 1005 } 1006 void CatchSwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 1007 setSuccessor(idx, B); 1008 } 1009 1010 //===----------------------------------------------------------------------===// 1011 // FuncletPadInst Implementation 1012 //===----------------------------------------------------------------------===// 1013 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1014 const Twine &NameStr) { 1015 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1016 std::copy(Args.begin(), Args.end(), op_begin()); 1017 setParentPad(ParentPad); 1018 setName(NameStr); 1019 } 1020 1021 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1022 : Instruction(FPI.getType(), FPI.getOpcode(), 1023 OperandTraits<FuncletPadInst>::op_end(this) - 1024 FPI.getNumOperands(), 1025 FPI.getNumOperands()) { 1026 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1027 setParentPad(FPI.getParentPad()); 1028 } 1029 1030 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1031 ArrayRef<Value *> Args, unsigned Values, 1032 const Twine &NameStr, Instruction *InsertBefore) 1033 : Instruction(ParentPad->getType(), Op, 1034 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1035 InsertBefore) { 1036 init(ParentPad, Args, NameStr); 1037 } 1038 1039 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1040 ArrayRef<Value *> Args, unsigned Values, 1041 const Twine &NameStr, BasicBlock *InsertAtEnd) 1042 : Instruction(ParentPad->getType(), Op, 1043 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1044 InsertAtEnd) { 1045 init(ParentPad, Args, NameStr); 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // UnreachableInst Implementation 1050 //===----------------------------------------------------------------------===// 1051 1052 UnreachableInst::UnreachableInst(LLVMContext &Context, 1053 Instruction *InsertBefore) 1054 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 1055 nullptr, 0, InsertBefore) { 1056 } 1057 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1058 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 1059 nullptr, 0, InsertAtEnd) { 1060 } 1061 1062 unsigned UnreachableInst::getNumSuccessorsV() const { 1063 return getNumSuccessors(); 1064 } 1065 1066 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 1067 llvm_unreachable("UnreachableInst has no successors!"); 1068 } 1069 1070 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { 1071 llvm_unreachable("UnreachableInst has no successors!"); 1072 } 1073 1074 //===----------------------------------------------------------------------===// 1075 // BranchInst Implementation 1076 //===----------------------------------------------------------------------===// 1077 1078 void BranchInst::AssertOK() { 1079 if (isConditional()) 1080 assert(getCondition()->getType()->isIntegerTy(1) && 1081 "May only branch on boolean predicates!"); 1082 } 1083 1084 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1085 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1086 OperandTraits<BranchInst>::op_end(this) - 1, 1087 1, InsertBefore) { 1088 assert(IfTrue && "Branch destination may not be null!"); 1089 Op<-1>() = IfTrue; 1090 } 1091 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1092 Instruction *InsertBefore) 1093 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1094 OperandTraits<BranchInst>::op_end(this) - 3, 1095 3, InsertBefore) { 1096 Op<-1>() = IfTrue; 1097 Op<-2>() = IfFalse; 1098 Op<-3>() = Cond; 1099 #ifndef NDEBUG 1100 AssertOK(); 1101 #endif 1102 } 1103 1104 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1105 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1106 OperandTraits<BranchInst>::op_end(this) - 1, 1107 1, InsertAtEnd) { 1108 assert(IfTrue && "Branch destination may not be null!"); 1109 Op<-1>() = IfTrue; 1110 } 1111 1112 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1113 BasicBlock *InsertAtEnd) 1114 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1115 OperandTraits<BranchInst>::op_end(this) - 3, 1116 3, InsertAtEnd) { 1117 Op<-1>() = IfTrue; 1118 Op<-2>() = IfFalse; 1119 Op<-3>() = Cond; 1120 #ifndef NDEBUG 1121 AssertOK(); 1122 #endif 1123 } 1124 1125 1126 BranchInst::BranchInst(const BranchInst &BI) : 1127 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, 1128 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1129 BI.getNumOperands()) { 1130 Op<-1>() = BI.Op<-1>(); 1131 if (BI.getNumOperands() != 1) { 1132 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1133 Op<-3>() = BI.Op<-3>(); 1134 Op<-2>() = BI.Op<-2>(); 1135 } 1136 SubclassOptionalData = BI.SubclassOptionalData; 1137 } 1138 1139 void BranchInst::swapSuccessors() { 1140 assert(isConditional() && 1141 "Cannot swap successors of an unconditional branch"); 1142 Op<-1>().swap(Op<-2>()); 1143 1144 // Update profile metadata if present and it matches our structural 1145 // expectations. 1146 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); 1147 if (!ProfileData || ProfileData->getNumOperands() != 3) 1148 return; 1149 1150 // The first operand is the name. Fetch them backwards and build a new one. 1151 Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2), 1152 ProfileData->getOperand(1)}; 1153 setMetadata(LLVMContext::MD_prof, 1154 MDNode::get(ProfileData->getContext(), Ops)); 1155 } 1156 1157 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { 1158 return getSuccessor(idx); 1159 } 1160 unsigned BranchInst::getNumSuccessorsV() const { 1161 return getNumSuccessors(); 1162 } 1163 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 1164 setSuccessor(idx, B); 1165 } 1166 1167 1168 //===----------------------------------------------------------------------===// 1169 // AllocaInst Implementation 1170 //===----------------------------------------------------------------------===// 1171 1172 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1173 if (!Amt) 1174 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1175 else { 1176 assert(!isa<BasicBlock>(Amt) && 1177 "Passed basic block into allocation size parameter! Use other ctor"); 1178 assert(Amt->getType()->isIntegerTy() && 1179 "Allocation array size is not an integer!"); 1180 } 1181 return Amt; 1182 } 1183 1184 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore) 1185 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1186 1187 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) 1188 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1189 1190 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, 1191 Instruction *InsertBefore) 1192 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {} 1193 1194 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, 1195 BasicBlock *InsertAtEnd) 1196 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} 1197 1198 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 1199 const Twine &Name, Instruction *InsertBefore) 1200 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 1201 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1202 AllocatedType(Ty) { 1203 setAlignment(Align); 1204 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1205 setName(Name); 1206 } 1207 1208 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 1209 const Twine &Name, BasicBlock *InsertAtEnd) 1210 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 1211 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1212 AllocatedType(Ty) { 1213 setAlignment(Align); 1214 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1215 setName(Name); 1216 } 1217 1218 // Out of line virtual method, so the vtable, etc has a home. 1219 AllocaInst::~AllocaInst() { 1220 } 1221 1222 void AllocaInst::setAlignment(unsigned Align) { 1223 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1224 assert(Align <= MaximumAlignment && 1225 "Alignment is greater than MaximumAlignment!"); 1226 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | 1227 (Log2_32(Align) + 1)); 1228 assert(getAlignment() == Align && "Alignment representation error!"); 1229 } 1230 1231 bool AllocaInst::isArrayAllocation() const { 1232 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1233 return !CI->isOne(); 1234 return true; 1235 } 1236 1237 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1238 /// function and is a constant size. If so, the code generator will fold it 1239 /// into the prolog/epilog code, so it is basically free. 1240 bool AllocaInst::isStaticAlloca() const { 1241 // Must be constant size. 1242 if (!isa<ConstantInt>(getArraySize())) return false; 1243 1244 // Must be in the entry block. 1245 const BasicBlock *Parent = getParent(); 1246 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1247 } 1248 1249 //===----------------------------------------------------------------------===// 1250 // LoadInst Implementation 1251 //===----------------------------------------------------------------------===// 1252 1253 void LoadInst::AssertOK() { 1254 assert(getOperand(0)->getType()->isPointerTy() && 1255 "Ptr must have pointer type."); 1256 assert(!(isAtomic() && getAlignment() == 0) && 1257 "Alignment required for atomic load"); 1258 } 1259 1260 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) 1261 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1262 1263 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) 1264 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1265 1266 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1267 Instruction *InsertBef) 1268 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} 1269 1270 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1271 BasicBlock *InsertAE) 1272 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} 1273 1274 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1275 unsigned Align, Instruction *InsertBef) 1276 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1277 CrossThread, InsertBef) {} 1278 1279 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1280 unsigned Align, BasicBlock *InsertAE) 1281 : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1282 CrossThread, InsertAE) {} 1283 1284 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1285 unsigned Align, AtomicOrdering Order, 1286 SynchronizationScope SynchScope, Instruction *InsertBef) 1287 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1288 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1289 setVolatile(isVolatile); 1290 setAlignment(Align); 1291 setAtomic(Order, SynchScope); 1292 AssertOK(); 1293 setName(Name); 1294 } 1295 1296 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1297 unsigned Align, AtomicOrdering Order, 1298 SynchronizationScope SynchScope, 1299 BasicBlock *InsertAE) 1300 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1301 Load, Ptr, InsertAE) { 1302 setVolatile(isVolatile); 1303 setAlignment(Align); 1304 setAtomic(Order, SynchScope); 1305 AssertOK(); 1306 setName(Name); 1307 } 1308 1309 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) 1310 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1311 Load, Ptr, InsertBef) { 1312 setVolatile(false); 1313 setAlignment(0); 1314 setAtomic(AtomicOrdering::NotAtomic); 1315 AssertOK(); 1316 if (Name && Name[0]) setName(Name); 1317 } 1318 1319 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) 1320 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1321 Load, Ptr, InsertAE) { 1322 setVolatile(false); 1323 setAlignment(0); 1324 setAtomic(AtomicOrdering::NotAtomic); 1325 AssertOK(); 1326 if (Name && Name[0]) setName(Name); 1327 } 1328 1329 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile, 1330 Instruction *InsertBef) 1331 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1332 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1333 setVolatile(isVolatile); 1334 setAlignment(0); 1335 setAtomic(AtomicOrdering::NotAtomic); 1336 AssertOK(); 1337 if (Name && Name[0]) setName(Name); 1338 } 1339 1340 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1341 BasicBlock *InsertAE) 1342 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1343 Load, Ptr, InsertAE) { 1344 setVolatile(isVolatile); 1345 setAlignment(0); 1346 setAtomic(AtomicOrdering::NotAtomic); 1347 AssertOK(); 1348 if (Name && Name[0]) setName(Name); 1349 } 1350 1351 void LoadInst::setAlignment(unsigned Align) { 1352 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1353 assert(Align <= MaximumAlignment && 1354 "Alignment is greater than MaximumAlignment!"); 1355 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1356 ((Log2_32(Align)+1)<<1)); 1357 assert(getAlignment() == Align && "Alignment representation error!"); 1358 } 1359 1360 //===----------------------------------------------------------------------===// 1361 // StoreInst Implementation 1362 //===----------------------------------------------------------------------===// 1363 1364 void StoreInst::AssertOK() { 1365 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1366 assert(getOperand(1)->getType()->isPointerTy() && 1367 "Ptr must have pointer type!"); 1368 assert(getOperand(0)->getType() == 1369 cast<PointerType>(getOperand(1)->getType())->getElementType() 1370 && "Ptr must be a pointer to Val type!"); 1371 assert(!(isAtomic() && getAlignment() == 0) && 1372 "Alignment required for atomic store"); 1373 } 1374 1375 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1376 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1377 1378 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1379 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1380 1381 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1382 Instruction *InsertBefore) 1383 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} 1384 1385 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1386 BasicBlock *InsertAtEnd) 1387 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} 1388 1389 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1390 Instruction *InsertBefore) 1391 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1392 CrossThread, InsertBefore) {} 1393 1394 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1395 BasicBlock *InsertAtEnd) 1396 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1397 CrossThread, InsertAtEnd) {} 1398 1399 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1400 unsigned Align, AtomicOrdering Order, 1401 SynchronizationScope SynchScope, 1402 Instruction *InsertBefore) 1403 : Instruction(Type::getVoidTy(val->getContext()), Store, 1404 OperandTraits<StoreInst>::op_begin(this), 1405 OperandTraits<StoreInst>::operands(this), 1406 InsertBefore) { 1407 Op<0>() = val; 1408 Op<1>() = addr; 1409 setVolatile(isVolatile); 1410 setAlignment(Align); 1411 setAtomic(Order, SynchScope); 1412 AssertOK(); 1413 } 1414 1415 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1416 unsigned Align, AtomicOrdering Order, 1417 SynchronizationScope SynchScope, 1418 BasicBlock *InsertAtEnd) 1419 : Instruction(Type::getVoidTy(val->getContext()), Store, 1420 OperandTraits<StoreInst>::op_begin(this), 1421 OperandTraits<StoreInst>::operands(this), 1422 InsertAtEnd) { 1423 Op<0>() = val; 1424 Op<1>() = addr; 1425 setVolatile(isVolatile); 1426 setAlignment(Align); 1427 setAtomic(Order, SynchScope); 1428 AssertOK(); 1429 } 1430 1431 void StoreInst::setAlignment(unsigned Align) { 1432 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1433 assert(Align <= MaximumAlignment && 1434 "Alignment is greater than MaximumAlignment!"); 1435 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1436 ((Log2_32(Align)+1) << 1)); 1437 assert(getAlignment() == Align && "Alignment representation error!"); 1438 } 1439 1440 //===----------------------------------------------------------------------===// 1441 // AtomicCmpXchgInst Implementation 1442 //===----------------------------------------------------------------------===// 1443 1444 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1445 AtomicOrdering SuccessOrdering, 1446 AtomicOrdering FailureOrdering, 1447 SynchronizationScope SynchScope) { 1448 Op<0>() = Ptr; 1449 Op<1>() = Cmp; 1450 Op<2>() = NewVal; 1451 setSuccessOrdering(SuccessOrdering); 1452 setFailureOrdering(FailureOrdering); 1453 setSynchScope(SynchScope); 1454 1455 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1456 "All operands must be non-null!"); 1457 assert(getOperand(0)->getType()->isPointerTy() && 1458 "Ptr must have pointer type!"); 1459 assert(getOperand(1)->getType() == 1460 cast<PointerType>(getOperand(0)->getType())->getElementType() 1461 && "Ptr must be a pointer to Cmp type!"); 1462 assert(getOperand(2)->getType() == 1463 cast<PointerType>(getOperand(0)->getType())->getElementType() 1464 && "Ptr must be a pointer to NewVal type!"); 1465 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 1466 "AtomicCmpXchg instructions must be atomic!"); 1467 assert(FailureOrdering != AtomicOrdering::NotAtomic && 1468 "AtomicCmpXchg instructions must be atomic!"); 1469 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && 1470 "AtomicCmpXchg failure argument shall be no stronger than the success " 1471 "argument"); 1472 assert(FailureOrdering != AtomicOrdering::Release && 1473 FailureOrdering != AtomicOrdering::AcquireRelease && 1474 "AtomicCmpXchg failure ordering cannot include release semantics"); 1475 } 1476 1477 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1478 AtomicOrdering SuccessOrdering, 1479 AtomicOrdering FailureOrdering, 1480 SynchronizationScope SynchScope, 1481 Instruction *InsertBefore) 1482 : Instruction( 1483 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), 1484 nullptr), 1485 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1486 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1487 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); 1488 } 1489 1490 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1491 AtomicOrdering SuccessOrdering, 1492 AtomicOrdering FailureOrdering, 1493 SynchronizationScope SynchScope, 1494 BasicBlock *InsertAtEnd) 1495 : Instruction( 1496 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), 1497 nullptr), 1498 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1499 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1500 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); 1501 } 1502 1503 //===----------------------------------------------------------------------===// 1504 // AtomicRMWInst Implementation 1505 //===----------------------------------------------------------------------===// 1506 1507 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1508 AtomicOrdering Ordering, 1509 SynchronizationScope SynchScope) { 1510 Op<0>() = Ptr; 1511 Op<1>() = Val; 1512 setOperation(Operation); 1513 setOrdering(Ordering); 1514 setSynchScope(SynchScope); 1515 1516 assert(getOperand(0) && getOperand(1) && 1517 "All operands must be non-null!"); 1518 assert(getOperand(0)->getType()->isPointerTy() && 1519 "Ptr must have pointer type!"); 1520 assert(getOperand(1)->getType() == 1521 cast<PointerType>(getOperand(0)->getType())->getElementType() 1522 && "Ptr must be a pointer to Val type!"); 1523 assert(Ordering != AtomicOrdering::NotAtomic && 1524 "AtomicRMW instructions must be atomic!"); 1525 } 1526 1527 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1528 AtomicOrdering Ordering, 1529 SynchronizationScope SynchScope, 1530 Instruction *InsertBefore) 1531 : Instruction(Val->getType(), AtomicRMW, 1532 OperandTraits<AtomicRMWInst>::op_begin(this), 1533 OperandTraits<AtomicRMWInst>::operands(this), 1534 InsertBefore) { 1535 Init(Operation, Ptr, Val, Ordering, SynchScope); 1536 } 1537 1538 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1539 AtomicOrdering Ordering, 1540 SynchronizationScope SynchScope, 1541 BasicBlock *InsertAtEnd) 1542 : Instruction(Val->getType(), AtomicRMW, 1543 OperandTraits<AtomicRMWInst>::op_begin(this), 1544 OperandTraits<AtomicRMWInst>::operands(this), 1545 InsertAtEnd) { 1546 Init(Operation, Ptr, Val, Ordering, SynchScope); 1547 } 1548 1549 //===----------------------------------------------------------------------===// 1550 // FenceInst Implementation 1551 //===----------------------------------------------------------------------===// 1552 1553 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1554 SynchronizationScope SynchScope, 1555 Instruction *InsertBefore) 1556 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1557 setOrdering(Ordering); 1558 setSynchScope(SynchScope); 1559 } 1560 1561 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1562 SynchronizationScope SynchScope, 1563 BasicBlock *InsertAtEnd) 1564 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1565 setOrdering(Ordering); 1566 setSynchScope(SynchScope); 1567 } 1568 1569 //===----------------------------------------------------------------------===// 1570 // GetElementPtrInst Implementation 1571 //===----------------------------------------------------------------------===// 1572 1573 void GetElementPtrInst::anchor() {} 1574 1575 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1576 const Twine &Name) { 1577 assert(getNumOperands() == 1 + IdxList.size() && 1578 "NumOperands not initialized?"); 1579 Op<0>() = Ptr; 1580 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); 1581 setName(Name); 1582 } 1583 1584 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1585 : Instruction(GEPI.getType(), GetElementPtr, 1586 OperandTraits<GetElementPtrInst>::op_end(this) - 1587 GEPI.getNumOperands(), 1588 GEPI.getNumOperands()), 1589 SourceElementType(GEPI.SourceElementType), 1590 ResultElementType(GEPI.ResultElementType) { 1591 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1592 SubclassOptionalData = GEPI.SubclassOptionalData; 1593 } 1594 1595 /// getIndexedType - Returns the type of the element that would be accessed with 1596 /// a gep instruction with the specified parameters. 1597 /// 1598 /// The Idxs pointer should point to a continuous piece of memory containing the 1599 /// indices, either as Value* or uint64_t. 1600 /// 1601 /// A null type is returned if the indices are invalid for the specified 1602 /// pointer type. 1603 /// 1604 template <typename IndexTy> 1605 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { 1606 // Handle the special case of the empty set index set, which is always valid. 1607 if (IdxList.empty()) 1608 return Agg; 1609 1610 // If there is at least one index, the top level type must be sized, otherwise 1611 // it cannot be 'stepped over'. 1612 if (!Agg->isSized()) 1613 return nullptr; 1614 1615 unsigned CurIdx = 1; 1616 for (; CurIdx != IdxList.size(); ++CurIdx) { 1617 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1618 if (!CT || CT->isPointerTy()) return nullptr; 1619 IndexTy Index = IdxList[CurIdx]; 1620 if (!CT->indexValid(Index)) return nullptr; 1621 Agg = CT->getTypeAtIndex(Index); 1622 } 1623 return CurIdx == IdxList.size() ? Agg : nullptr; 1624 } 1625 1626 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1627 return getIndexedTypeInternal(Ty, IdxList); 1628 } 1629 1630 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1631 ArrayRef<Constant *> IdxList) { 1632 return getIndexedTypeInternal(Ty, IdxList); 1633 } 1634 1635 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1636 return getIndexedTypeInternal(Ty, IdxList); 1637 } 1638 1639 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1640 /// zeros. If so, the result pointer and the first operand have the same 1641 /// value, just potentially different types. 1642 bool GetElementPtrInst::hasAllZeroIndices() const { 1643 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1644 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1645 if (!CI->isZero()) return false; 1646 } else { 1647 return false; 1648 } 1649 } 1650 return true; 1651 } 1652 1653 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1654 /// constant integers. If so, the result pointer and the first operand have 1655 /// a constant offset between them. 1656 bool GetElementPtrInst::hasAllConstantIndices() const { 1657 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1658 if (!isa<ConstantInt>(getOperand(i))) 1659 return false; 1660 } 1661 return true; 1662 } 1663 1664 void GetElementPtrInst::setIsInBounds(bool B) { 1665 cast<GEPOperator>(this)->setIsInBounds(B); 1666 } 1667 1668 bool GetElementPtrInst::isInBounds() const { 1669 return cast<GEPOperator>(this)->isInBounds(); 1670 } 1671 1672 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1673 APInt &Offset) const { 1674 // Delegate to the generic GEPOperator implementation. 1675 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1676 } 1677 1678 //===----------------------------------------------------------------------===// 1679 // ExtractElementInst Implementation 1680 //===----------------------------------------------------------------------===// 1681 1682 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1683 const Twine &Name, 1684 Instruction *InsertBef) 1685 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1686 ExtractElement, 1687 OperandTraits<ExtractElementInst>::op_begin(this), 1688 2, InsertBef) { 1689 assert(isValidOperands(Val, Index) && 1690 "Invalid extractelement instruction operands!"); 1691 Op<0>() = Val; 1692 Op<1>() = Index; 1693 setName(Name); 1694 } 1695 1696 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1697 const Twine &Name, 1698 BasicBlock *InsertAE) 1699 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1700 ExtractElement, 1701 OperandTraits<ExtractElementInst>::op_begin(this), 1702 2, InsertAE) { 1703 assert(isValidOperands(Val, Index) && 1704 "Invalid extractelement instruction operands!"); 1705 1706 Op<0>() = Val; 1707 Op<1>() = Index; 1708 setName(Name); 1709 } 1710 1711 1712 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1713 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1714 return false; 1715 return true; 1716 } 1717 1718 1719 //===----------------------------------------------------------------------===// 1720 // InsertElementInst Implementation 1721 //===----------------------------------------------------------------------===// 1722 1723 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1724 const Twine &Name, 1725 Instruction *InsertBef) 1726 : Instruction(Vec->getType(), InsertElement, 1727 OperandTraits<InsertElementInst>::op_begin(this), 1728 3, InsertBef) { 1729 assert(isValidOperands(Vec, Elt, Index) && 1730 "Invalid insertelement instruction operands!"); 1731 Op<0>() = Vec; 1732 Op<1>() = Elt; 1733 Op<2>() = Index; 1734 setName(Name); 1735 } 1736 1737 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1738 const Twine &Name, 1739 BasicBlock *InsertAE) 1740 : Instruction(Vec->getType(), InsertElement, 1741 OperandTraits<InsertElementInst>::op_begin(this), 1742 3, InsertAE) { 1743 assert(isValidOperands(Vec, Elt, Index) && 1744 "Invalid insertelement instruction operands!"); 1745 1746 Op<0>() = Vec; 1747 Op<1>() = Elt; 1748 Op<2>() = Index; 1749 setName(Name); 1750 } 1751 1752 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1753 const Value *Index) { 1754 if (!Vec->getType()->isVectorTy()) 1755 return false; // First operand of insertelement must be vector type. 1756 1757 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1758 return false;// Second operand of insertelement must be vector element type. 1759 1760 if (!Index->getType()->isIntegerTy()) 1761 return false; // Third operand of insertelement must be i32. 1762 return true; 1763 } 1764 1765 1766 //===----------------------------------------------------------------------===// 1767 // ShuffleVectorInst Implementation 1768 //===----------------------------------------------------------------------===// 1769 1770 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1771 const Twine &Name, 1772 Instruction *InsertBefore) 1773 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1774 cast<VectorType>(Mask->getType())->getNumElements()), 1775 ShuffleVector, 1776 OperandTraits<ShuffleVectorInst>::op_begin(this), 1777 OperandTraits<ShuffleVectorInst>::operands(this), 1778 InsertBefore) { 1779 assert(isValidOperands(V1, V2, Mask) && 1780 "Invalid shuffle vector instruction operands!"); 1781 Op<0>() = V1; 1782 Op<1>() = V2; 1783 Op<2>() = Mask; 1784 setName(Name); 1785 } 1786 1787 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1788 const Twine &Name, 1789 BasicBlock *InsertAtEnd) 1790 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1791 cast<VectorType>(Mask->getType())->getNumElements()), 1792 ShuffleVector, 1793 OperandTraits<ShuffleVectorInst>::op_begin(this), 1794 OperandTraits<ShuffleVectorInst>::operands(this), 1795 InsertAtEnd) { 1796 assert(isValidOperands(V1, V2, Mask) && 1797 "Invalid shuffle vector instruction operands!"); 1798 1799 Op<0>() = V1; 1800 Op<1>() = V2; 1801 Op<2>() = Mask; 1802 setName(Name); 1803 } 1804 1805 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1806 const Value *Mask) { 1807 // V1 and V2 must be vectors of the same type. 1808 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1809 return false; 1810 1811 // Mask must be vector of i32. 1812 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1813 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) 1814 return false; 1815 1816 // Check to see if Mask is valid. 1817 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1818 return true; 1819 1820 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { 1821 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1822 for (Value *Op : MV->operands()) { 1823 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1824 if (CI->uge(V1Size*2)) 1825 return false; 1826 } else if (!isa<UndefValue>(Op)) { 1827 return false; 1828 } 1829 } 1830 return true; 1831 } 1832 1833 if (const ConstantDataSequential *CDS = 1834 dyn_cast<ConstantDataSequential>(Mask)) { 1835 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1836 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1837 if (CDS->getElementAsInteger(i) >= V1Size*2) 1838 return false; 1839 return true; 1840 } 1841 1842 // The bitcode reader can create a place holder for a forward reference 1843 // used as the shuffle mask. When this occurs, the shuffle mask will 1844 // fall into this case and fail. To avoid this error, do this bit of 1845 // ugliness to allow such a mask pass. 1846 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) 1847 if (CE->getOpcode() == Instruction::UserOp1) 1848 return true; 1849 1850 return false; 1851 } 1852 1853 /// getMaskValue - Return the index from the shuffle mask for the specified 1854 /// output result. This is either -1 if the element is undef or a number less 1855 /// than 2*numelements. 1856 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { 1857 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1858 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) 1859 return CDS->getElementAsInteger(i); 1860 Constant *C = Mask->getAggregateElement(i); 1861 if (isa<UndefValue>(C)) 1862 return -1; 1863 return cast<ConstantInt>(C)->getZExtValue(); 1864 } 1865 1866 /// getShuffleMask - Return the full mask for this instruction, where each 1867 /// element is the element number and undef's are returned as -1. 1868 void ShuffleVectorInst::getShuffleMask(Constant *Mask, 1869 SmallVectorImpl<int> &Result) { 1870 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1871 1872 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { 1873 for (unsigned i = 0; i != NumElts; ++i) 1874 Result.push_back(CDS->getElementAsInteger(i)); 1875 return; 1876 } 1877 for (unsigned i = 0; i != NumElts; ++i) { 1878 Constant *C = Mask->getAggregateElement(i); 1879 Result.push_back(isa<UndefValue>(C) ? -1 : 1880 cast<ConstantInt>(C)->getZExtValue()); 1881 } 1882 } 1883 1884 1885 //===----------------------------------------------------------------------===// 1886 // InsertValueInst Class 1887 //===----------------------------------------------------------------------===// 1888 1889 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 1890 const Twine &Name) { 1891 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 1892 1893 // There's no fundamental reason why we require at least one index 1894 // (other than weirdness with &*IdxBegin being invalid; see 1895 // getelementptr's init routine for example). But there's no 1896 // present need to support it. 1897 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); 1898 1899 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 1900 Val->getType() && "Inserted value must match indexed type!"); 1901 Op<0>() = Agg; 1902 Op<1>() = Val; 1903 1904 Indices.append(Idxs.begin(), Idxs.end()); 1905 setName(Name); 1906 } 1907 1908 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 1909 : Instruction(IVI.getType(), InsertValue, 1910 OperandTraits<InsertValueInst>::op_begin(this), 2), 1911 Indices(IVI.Indices) { 1912 Op<0>() = IVI.getOperand(0); 1913 Op<1>() = IVI.getOperand(1); 1914 SubclassOptionalData = IVI.SubclassOptionalData; 1915 } 1916 1917 //===----------------------------------------------------------------------===// 1918 // ExtractValueInst Class 1919 //===----------------------------------------------------------------------===// 1920 1921 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 1922 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 1923 1924 // There's no fundamental reason why we require at least one index. 1925 // But there's no present need to support it. 1926 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); 1927 1928 Indices.append(Idxs.begin(), Idxs.end()); 1929 setName(Name); 1930 } 1931 1932 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 1933 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 1934 Indices(EVI.Indices) { 1935 SubclassOptionalData = EVI.SubclassOptionalData; 1936 } 1937 1938 // getIndexedType - Returns the type of the element that would be extracted 1939 // with an extractvalue instruction with the specified parameters. 1940 // 1941 // A null type is returned if the indices are invalid for the specified 1942 // pointer type. 1943 // 1944 Type *ExtractValueInst::getIndexedType(Type *Agg, 1945 ArrayRef<unsigned> Idxs) { 1946 for (unsigned Index : Idxs) { 1947 // We can't use CompositeType::indexValid(Index) here. 1948 // indexValid() always returns true for arrays because getelementptr allows 1949 // out-of-bounds indices. Since we don't allow those for extractvalue and 1950 // insertvalue we need to check array indexing manually. 1951 // Since the only other types we can index into are struct types it's just 1952 // as easy to check those manually as well. 1953 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 1954 if (Index >= AT->getNumElements()) 1955 return nullptr; 1956 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 1957 if (Index >= ST->getNumElements()) 1958 return nullptr; 1959 } else { 1960 // Not a valid type to index into. 1961 return nullptr; 1962 } 1963 1964 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 1965 } 1966 return const_cast<Type*>(Agg); 1967 } 1968 1969 //===----------------------------------------------------------------------===// 1970 // BinaryOperator Class 1971 //===----------------------------------------------------------------------===// 1972 1973 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1974 Type *Ty, const Twine &Name, 1975 Instruction *InsertBefore) 1976 : Instruction(Ty, iType, 1977 OperandTraits<BinaryOperator>::op_begin(this), 1978 OperandTraits<BinaryOperator>::operands(this), 1979 InsertBefore) { 1980 Op<0>() = S1; 1981 Op<1>() = S2; 1982 init(iType); 1983 setName(Name); 1984 } 1985 1986 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1987 Type *Ty, const Twine &Name, 1988 BasicBlock *InsertAtEnd) 1989 : Instruction(Ty, iType, 1990 OperandTraits<BinaryOperator>::op_begin(this), 1991 OperandTraits<BinaryOperator>::operands(this), 1992 InsertAtEnd) { 1993 Op<0>() = S1; 1994 Op<1>() = S2; 1995 init(iType); 1996 setName(Name); 1997 } 1998 1999 2000 void BinaryOperator::init(BinaryOps iType) { 2001 Value *LHS = getOperand(0), *RHS = getOperand(1); 2002 (void)LHS; (void)RHS; // Silence warnings. 2003 assert(LHS->getType() == RHS->getType() && 2004 "Binary operator operand types must match!"); 2005 #ifndef NDEBUG 2006 switch (iType) { 2007 case Add: case Sub: 2008 case Mul: 2009 assert(getType() == LHS->getType() && 2010 "Arithmetic operation should return same type as operands!"); 2011 assert(getType()->isIntOrIntVectorTy() && 2012 "Tried to create an integer operation on a non-integer type!"); 2013 break; 2014 case FAdd: case FSub: 2015 case FMul: 2016 assert(getType() == LHS->getType() && 2017 "Arithmetic operation should return same type as operands!"); 2018 assert(getType()->isFPOrFPVectorTy() && 2019 "Tried to create a floating-point operation on a " 2020 "non-floating-point type!"); 2021 break; 2022 case UDiv: 2023 case SDiv: 2024 assert(getType() == LHS->getType() && 2025 "Arithmetic operation should return same type as operands!"); 2026 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 2027 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2028 "Incorrect operand type (not integer) for S/UDIV"); 2029 break; 2030 case FDiv: 2031 assert(getType() == LHS->getType() && 2032 "Arithmetic operation should return same type as operands!"); 2033 assert(getType()->isFPOrFPVectorTy() && 2034 "Incorrect operand type (not floating point) for FDIV"); 2035 break; 2036 case URem: 2037 case SRem: 2038 assert(getType() == LHS->getType() && 2039 "Arithmetic operation should return same type as operands!"); 2040 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 2041 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2042 "Incorrect operand type (not integer) for S/UREM"); 2043 break; 2044 case FRem: 2045 assert(getType() == LHS->getType() && 2046 "Arithmetic operation should return same type as operands!"); 2047 assert(getType()->isFPOrFPVectorTy() && 2048 "Incorrect operand type (not floating point) for FREM"); 2049 break; 2050 case Shl: 2051 case LShr: 2052 case AShr: 2053 assert(getType() == LHS->getType() && 2054 "Shift operation should return same type as operands!"); 2055 assert((getType()->isIntegerTy() || 2056 (getType()->isVectorTy() && 2057 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2058 "Tried to create a shift operation on a non-integral type!"); 2059 break; 2060 case And: case Or: 2061 case Xor: 2062 assert(getType() == LHS->getType() && 2063 "Logical operation should return same type as operands!"); 2064 assert((getType()->isIntegerTy() || 2065 (getType()->isVectorTy() && 2066 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2067 "Tried to create a logical operation on a non-integral type!"); 2068 break; 2069 default: 2070 break; 2071 } 2072 #endif 2073 } 2074 2075 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2076 const Twine &Name, 2077 Instruction *InsertBefore) { 2078 assert(S1->getType() == S2->getType() && 2079 "Cannot create binary operator with two operands of differing type!"); 2080 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2081 } 2082 2083 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2084 const Twine &Name, 2085 BasicBlock *InsertAtEnd) { 2086 BinaryOperator *Res = Create(Op, S1, S2, Name); 2087 InsertAtEnd->getInstList().push_back(Res); 2088 return Res; 2089 } 2090 2091 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2092 Instruction *InsertBefore) { 2093 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2094 return new BinaryOperator(Instruction::Sub, 2095 zero, Op, 2096 Op->getType(), Name, InsertBefore); 2097 } 2098 2099 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2100 BasicBlock *InsertAtEnd) { 2101 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2102 return new BinaryOperator(Instruction::Sub, 2103 zero, Op, 2104 Op->getType(), Name, InsertAtEnd); 2105 } 2106 2107 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2108 Instruction *InsertBefore) { 2109 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2110 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2111 } 2112 2113 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2114 BasicBlock *InsertAtEnd) { 2115 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2116 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2117 } 2118 2119 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2120 Instruction *InsertBefore) { 2121 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2122 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2123 } 2124 2125 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2126 BasicBlock *InsertAtEnd) { 2127 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2128 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2129 } 2130 2131 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2132 Instruction *InsertBefore) { 2133 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2134 return new BinaryOperator(Instruction::FSub, zero, Op, 2135 Op->getType(), Name, InsertBefore); 2136 } 2137 2138 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2139 BasicBlock *InsertAtEnd) { 2140 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2141 return new BinaryOperator(Instruction::FSub, zero, Op, 2142 Op->getType(), Name, InsertAtEnd); 2143 } 2144 2145 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2146 Instruction *InsertBefore) { 2147 Constant *C = Constant::getAllOnesValue(Op->getType()); 2148 return new BinaryOperator(Instruction::Xor, Op, C, 2149 Op->getType(), Name, InsertBefore); 2150 } 2151 2152 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2153 BasicBlock *InsertAtEnd) { 2154 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2155 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2156 Op->getType(), Name, InsertAtEnd); 2157 } 2158 2159 2160 // isConstantAllOnes - Helper function for several functions below 2161 static inline bool isConstantAllOnes(const Value *V) { 2162 if (const Constant *C = dyn_cast<Constant>(V)) 2163 return C->isAllOnesValue(); 2164 return false; 2165 } 2166 2167 bool BinaryOperator::isNeg(const Value *V) { 2168 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2169 if (Bop->getOpcode() == Instruction::Sub) 2170 if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) 2171 return C->isNegativeZeroValue(); 2172 return false; 2173 } 2174 2175 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { 2176 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2177 if (Bop->getOpcode() == Instruction::FSub) 2178 if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) { 2179 if (!IgnoreZeroSign) 2180 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); 2181 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); 2182 } 2183 return false; 2184 } 2185 2186 bool BinaryOperator::isNot(const Value *V) { 2187 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2188 return (Bop->getOpcode() == Instruction::Xor && 2189 (isConstantAllOnes(Bop->getOperand(1)) || 2190 isConstantAllOnes(Bop->getOperand(0)))); 2191 return false; 2192 } 2193 2194 Value *BinaryOperator::getNegArgument(Value *BinOp) { 2195 return cast<BinaryOperator>(BinOp)->getOperand(1); 2196 } 2197 2198 const Value *BinaryOperator::getNegArgument(const Value *BinOp) { 2199 return getNegArgument(const_cast<Value*>(BinOp)); 2200 } 2201 2202 Value *BinaryOperator::getFNegArgument(Value *BinOp) { 2203 return cast<BinaryOperator>(BinOp)->getOperand(1); 2204 } 2205 2206 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { 2207 return getFNegArgument(const_cast<Value*>(BinOp)); 2208 } 2209 2210 Value *BinaryOperator::getNotArgument(Value *BinOp) { 2211 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); 2212 BinaryOperator *BO = cast<BinaryOperator>(BinOp); 2213 Value *Op0 = BO->getOperand(0); 2214 Value *Op1 = BO->getOperand(1); 2215 if (isConstantAllOnes(Op0)) return Op1; 2216 2217 assert(isConstantAllOnes(Op1)); 2218 return Op0; 2219 } 2220 2221 const Value *BinaryOperator::getNotArgument(const Value *BinOp) { 2222 return getNotArgument(const_cast<Value*>(BinOp)); 2223 } 2224 2225 2226 // swapOperands - Exchange the two operands to this instruction. This 2227 // instruction is safe to use on any binary instruction and does not 2228 // modify the semantics of the instruction. If the instruction is 2229 // order dependent (SetLT f.e.) the opcode is changed. 2230 // 2231 bool BinaryOperator::swapOperands() { 2232 if (!isCommutative()) 2233 return true; // Can't commute operands 2234 Op<0>().swap(Op<1>()); 2235 return false; 2236 } 2237 2238 2239 //===----------------------------------------------------------------------===// 2240 // FPMathOperator Class 2241 //===----------------------------------------------------------------------===// 2242 2243 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. 2244 /// An accuracy of 0.0 means that the operation should be performed with the 2245 /// default precision. 2246 float FPMathOperator::getFPAccuracy() const { 2247 const MDNode *MD = 2248 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2249 if (!MD) 2250 return 0.0; 2251 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2252 return Accuracy->getValueAPF().convertToFloat(); 2253 } 2254 2255 2256 //===----------------------------------------------------------------------===// 2257 // CastInst Class 2258 //===----------------------------------------------------------------------===// 2259 2260 void CastInst::anchor() {} 2261 2262 // Just determine if this cast only deals with integral->integral conversion. 2263 bool CastInst::isIntegerCast() const { 2264 switch (getOpcode()) { 2265 default: return false; 2266 case Instruction::ZExt: 2267 case Instruction::SExt: 2268 case Instruction::Trunc: 2269 return true; 2270 case Instruction::BitCast: 2271 return getOperand(0)->getType()->isIntegerTy() && 2272 getType()->isIntegerTy(); 2273 } 2274 } 2275 2276 bool CastInst::isLosslessCast() const { 2277 // Only BitCast can be lossless, exit fast if we're not BitCast 2278 if (getOpcode() != Instruction::BitCast) 2279 return false; 2280 2281 // Identity cast is always lossless 2282 Type *SrcTy = getOperand(0)->getType(); 2283 Type *DstTy = getType(); 2284 if (SrcTy == DstTy) 2285 return true; 2286 2287 // Pointer to pointer is always lossless. 2288 if (SrcTy->isPointerTy()) 2289 return DstTy->isPointerTy(); 2290 return false; // Other types have no identity values 2291 } 2292 2293 /// This function determines if the CastInst does not require any bits to be 2294 /// changed in order to effect the cast. Essentially, it identifies cases where 2295 /// no code gen is necessary for the cast, hence the name no-op cast. For 2296 /// example, the following are all no-op casts: 2297 /// # bitcast i32* %x to i8* 2298 /// # bitcast <2 x i32> %x to <4 x i16> 2299 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2300 /// @brief Determine if the described cast is a no-op. 2301 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2302 Type *SrcTy, 2303 Type *DestTy, 2304 Type *IntPtrTy) { 2305 switch (Opcode) { 2306 default: llvm_unreachable("Invalid CastOp"); 2307 case Instruction::Trunc: 2308 case Instruction::ZExt: 2309 case Instruction::SExt: 2310 case Instruction::FPTrunc: 2311 case Instruction::FPExt: 2312 case Instruction::UIToFP: 2313 case Instruction::SIToFP: 2314 case Instruction::FPToUI: 2315 case Instruction::FPToSI: 2316 case Instruction::AddrSpaceCast: 2317 // TODO: Target informations may give a more accurate answer here. 2318 return false; 2319 case Instruction::BitCast: 2320 return true; // BitCast never modifies bits. 2321 case Instruction::PtrToInt: 2322 return IntPtrTy->getScalarSizeInBits() == 2323 DestTy->getScalarSizeInBits(); 2324 case Instruction::IntToPtr: 2325 return IntPtrTy->getScalarSizeInBits() == 2326 SrcTy->getScalarSizeInBits(); 2327 } 2328 } 2329 2330 /// @brief Determine if a cast is a no-op. 2331 bool CastInst::isNoopCast(Type *IntPtrTy) const { 2332 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2333 } 2334 2335 bool CastInst::isNoopCast(const DataLayout &DL) const { 2336 Type *PtrOpTy = nullptr; 2337 if (getOpcode() == Instruction::PtrToInt) 2338 PtrOpTy = getOperand(0)->getType(); 2339 else if (getOpcode() == Instruction::IntToPtr) 2340 PtrOpTy = getType(); 2341 2342 Type *IntPtrTy = 2343 PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0); 2344 2345 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2346 } 2347 2348 /// This function determines if a pair of casts can be eliminated and what 2349 /// opcode should be used in the elimination. This assumes that there are two 2350 /// instructions like this: 2351 /// * %F = firstOpcode SrcTy %x to MidTy 2352 /// * %S = secondOpcode MidTy %F to DstTy 2353 /// The function returns a resultOpcode so these two casts can be replaced with: 2354 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2355 /// If no such cast is permitted, the function returns 0. 2356 unsigned CastInst::isEliminableCastPair( 2357 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2358 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2359 Type *DstIntPtrTy) { 2360 // Define the 144 possibilities for these two cast instructions. The values 2361 // in this matrix determine what to do in a given situation and select the 2362 // case in the switch below. The rows correspond to firstOp, the columns 2363 // correspond to secondOp. In looking at the table below, keep in mind 2364 // the following cast properties: 2365 // 2366 // Size Compare Source Destination 2367 // Operator Src ? Size Type Sign Type Sign 2368 // -------- ------------ ------------------- --------------------- 2369 // TRUNC > Integer Any Integral Any 2370 // ZEXT < Integral Unsigned Integer Any 2371 // SEXT < Integral Signed Integer Any 2372 // FPTOUI n/a FloatPt n/a Integral Unsigned 2373 // FPTOSI n/a FloatPt n/a Integral Signed 2374 // UITOFP n/a Integral Unsigned FloatPt n/a 2375 // SITOFP n/a Integral Signed FloatPt n/a 2376 // FPTRUNC > FloatPt n/a FloatPt n/a 2377 // FPEXT < FloatPt n/a FloatPt n/a 2378 // PTRTOINT n/a Pointer n/a Integral Unsigned 2379 // INTTOPTR n/a Integral Unsigned Pointer n/a 2380 // BITCAST = FirstClass n/a FirstClass n/a 2381 // ADDRSPCST n/a Pointer n/a Pointer n/a 2382 // 2383 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2384 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2385 // into "fptoui double to i64", but this loses information about the range 2386 // of the produced value (we no longer know the top-part is all zeros). 2387 // Further this conversion is often much more expensive for typical hardware, 2388 // and causes issues when building libgcc. We disallow fptosi+sext for the 2389 // same reason. 2390 const unsigned numCastOps = 2391 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2392 static const uint8_t CastResults[numCastOps][numCastOps] = { 2393 // T F F U S F F P I B A -+ 2394 // R Z S P P I I T P 2 N T S | 2395 // U E E 2 2 2 2 R E I T C C +- secondOp 2396 // N X X U S F F N X N 2 V V | 2397 // C T T I I P P C T T P T T -+ 2398 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2399 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2400 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2401 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2402 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2403 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2404 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2405 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2406 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt | 2407 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2408 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2409 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2410 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2411 }; 2412 2413 // TODO: This logic could be encoded into the table above and handled in the 2414 // switch below. 2415 // If either of the casts are a bitcast from scalar to vector, disallow the 2416 // merging. However, any pair of bitcasts are allowed. 2417 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2418 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2419 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2420 2421 // Check if any of the casts convert scalars <-> vectors. 2422 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2423 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2424 if (!AreBothBitcasts) 2425 return 0; 2426 2427 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2428 [secondOp-Instruction::CastOpsBegin]; 2429 switch (ElimCase) { 2430 case 0: 2431 // Categorically disallowed. 2432 return 0; 2433 case 1: 2434 // Allowed, use first cast's opcode. 2435 return firstOp; 2436 case 2: 2437 // Allowed, use second cast's opcode. 2438 return secondOp; 2439 case 3: 2440 // No-op cast in second op implies firstOp as long as the DestTy 2441 // is integer and we are not converting between a vector and a 2442 // non-vector type. 2443 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2444 return firstOp; 2445 return 0; 2446 case 4: 2447 // No-op cast in second op implies firstOp as long as the DestTy 2448 // is floating point. 2449 if (DstTy->isFloatingPointTy()) 2450 return firstOp; 2451 return 0; 2452 case 5: 2453 // No-op cast in first op implies secondOp as long as the SrcTy 2454 // is an integer. 2455 if (SrcTy->isIntegerTy()) 2456 return secondOp; 2457 return 0; 2458 case 6: 2459 // No-op cast in first op implies secondOp as long as the SrcTy 2460 // is a floating point. 2461 if (SrcTy->isFloatingPointTy()) 2462 return secondOp; 2463 return 0; 2464 case 7: { 2465 // Cannot simplify if address spaces are different! 2466 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2467 return 0; 2468 2469 unsigned MidSize = MidTy->getScalarSizeInBits(); 2470 // We can still fold this without knowing the actual sizes as long we 2471 // know that the intermediate pointer is the largest possible 2472 // pointer size. 2473 // FIXME: Is this always true? 2474 if (MidSize == 64) 2475 return Instruction::BitCast; 2476 2477 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2478 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2479 return 0; 2480 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2481 if (MidSize >= PtrSize) 2482 return Instruction::BitCast; 2483 return 0; 2484 } 2485 case 8: { 2486 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2487 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2488 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2489 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2490 unsigned DstSize = DstTy->getScalarSizeInBits(); 2491 if (SrcSize == DstSize) 2492 return Instruction::BitCast; 2493 else if (SrcSize < DstSize) 2494 return firstOp; 2495 return secondOp; 2496 } 2497 case 9: 2498 // zext, sext -> zext, because sext can't sign extend after zext 2499 return Instruction::ZExt; 2500 case 10: 2501 // fpext followed by ftrunc is allowed if the bit size returned to is 2502 // the same as the original, in which case its just a bitcast 2503 if (SrcTy == DstTy) 2504 return Instruction::BitCast; 2505 return 0; // If the types are not the same we can't eliminate it. 2506 case 11: { 2507 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2508 if (!MidIntPtrTy) 2509 return 0; 2510 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2511 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2512 unsigned DstSize = DstTy->getScalarSizeInBits(); 2513 if (SrcSize <= PtrSize && SrcSize == DstSize) 2514 return Instruction::BitCast; 2515 return 0; 2516 } 2517 case 12: { 2518 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2519 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2520 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2521 return Instruction::AddrSpaceCast; 2522 return Instruction::BitCast; 2523 } 2524 case 13: 2525 // FIXME: this state can be merged with (1), but the following assert 2526 // is useful to check the correcteness of the sequence due to semantic 2527 // change of bitcast. 2528 assert( 2529 SrcTy->isPtrOrPtrVectorTy() && 2530 MidTy->isPtrOrPtrVectorTy() && 2531 DstTy->isPtrOrPtrVectorTy() && 2532 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2533 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2534 "Illegal addrspacecast, bitcast sequence!"); 2535 // Allowed, use first cast's opcode 2536 return firstOp; 2537 case 14: 2538 // bitcast, addrspacecast -> addrspacecast if the element type of 2539 // bitcast's source is the same as that of addrspacecast's destination. 2540 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType()) 2541 return Instruction::AddrSpaceCast; 2542 return 0; 2543 2544 case 15: 2545 // FIXME: this state can be merged with (1), but the following assert 2546 // is useful to check the correcteness of the sequence due to semantic 2547 // change of bitcast. 2548 assert( 2549 SrcTy->isIntOrIntVectorTy() && 2550 MidTy->isPtrOrPtrVectorTy() && 2551 DstTy->isPtrOrPtrVectorTy() && 2552 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2553 "Illegal inttoptr, bitcast sequence!"); 2554 // Allowed, use first cast's opcode 2555 return firstOp; 2556 case 16: 2557 // FIXME: this state can be merged with (2), but the following assert 2558 // is useful to check the correcteness of the sequence due to semantic 2559 // change of bitcast. 2560 assert( 2561 SrcTy->isPtrOrPtrVectorTy() && 2562 MidTy->isPtrOrPtrVectorTy() && 2563 DstTy->isIntOrIntVectorTy() && 2564 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2565 "Illegal bitcast, ptrtoint sequence!"); 2566 // Allowed, use second cast's opcode 2567 return secondOp; 2568 case 17: 2569 // (sitofp (zext x)) -> (uitofp x) 2570 return Instruction::UIToFP; 2571 case 99: 2572 // Cast combination can't happen (error in input). This is for all cases 2573 // where the MidTy is not the same for the two cast instructions. 2574 llvm_unreachable("Invalid Cast Combination"); 2575 default: 2576 llvm_unreachable("Error in CastResults table!!!"); 2577 } 2578 } 2579 2580 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2581 const Twine &Name, Instruction *InsertBefore) { 2582 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2583 // Construct and return the appropriate CastInst subclass 2584 switch (op) { 2585 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2586 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2587 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2588 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2589 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2590 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2591 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2592 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2593 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2594 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2595 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2596 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2597 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2598 default: llvm_unreachable("Invalid opcode provided"); 2599 } 2600 } 2601 2602 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2603 const Twine &Name, BasicBlock *InsertAtEnd) { 2604 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2605 // Construct and return the appropriate CastInst subclass 2606 switch (op) { 2607 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2608 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2609 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2610 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2611 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2612 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2613 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2614 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2615 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2616 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2617 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2618 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2619 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2620 default: llvm_unreachable("Invalid opcode provided"); 2621 } 2622 } 2623 2624 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2625 const Twine &Name, 2626 Instruction *InsertBefore) { 2627 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2628 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2629 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2630 } 2631 2632 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2633 const Twine &Name, 2634 BasicBlock *InsertAtEnd) { 2635 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2636 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2637 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2638 } 2639 2640 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2641 const Twine &Name, 2642 Instruction *InsertBefore) { 2643 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2644 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2645 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2646 } 2647 2648 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2649 const Twine &Name, 2650 BasicBlock *InsertAtEnd) { 2651 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2652 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2653 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2654 } 2655 2656 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2657 const Twine &Name, 2658 Instruction *InsertBefore) { 2659 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2660 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2661 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2662 } 2663 2664 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2665 const Twine &Name, 2666 BasicBlock *InsertAtEnd) { 2667 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2668 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2669 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2670 } 2671 2672 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2673 const Twine &Name, 2674 BasicBlock *InsertAtEnd) { 2675 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2676 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2677 "Invalid cast"); 2678 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2679 assert((!Ty->isVectorTy() || 2680 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2681 "Invalid cast"); 2682 2683 if (Ty->isIntOrIntVectorTy()) 2684 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2685 2686 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 2687 } 2688 2689 /// @brief Create a BitCast or a PtrToInt cast instruction 2690 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2691 const Twine &Name, 2692 Instruction *InsertBefore) { 2693 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2694 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2695 "Invalid cast"); 2696 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2697 assert((!Ty->isVectorTy() || 2698 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2699 "Invalid cast"); 2700 2701 if (Ty->isIntOrIntVectorTy()) 2702 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2703 2704 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 2705 } 2706 2707 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2708 Value *S, Type *Ty, 2709 const Twine &Name, 2710 BasicBlock *InsertAtEnd) { 2711 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2712 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2713 2714 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2715 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 2716 2717 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2718 } 2719 2720 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2721 Value *S, Type *Ty, 2722 const Twine &Name, 2723 Instruction *InsertBefore) { 2724 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2725 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2726 2727 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2728 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 2729 2730 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2731 } 2732 2733 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 2734 const Twine &Name, 2735 Instruction *InsertBefore) { 2736 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 2737 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2738 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 2739 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 2740 2741 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2742 } 2743 2744 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2745 bool isSigned, const Twine &Name, 2746 Instruction *InsertBefore) { 2747 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2748 "Invalid integer cast"); 2749 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2750 unsigned DstBits = Ty->getScalarSizeInBits(); 2751 Instruction::CastOps opcode = 2752 (SrcBits == DstBits ? Instruction::BitCast : 2753 (SrcBits > DstBits ? Instruction::Trunc : 2754 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2755 return Create(opcode, C, Ty, Name, InsertBefore); 2756 } 2757 2758 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2759 bool isSigned, const Twine &Name, 2760 BasicBlock *InsertAtEnd) { 2761 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2762 "Invalid cast"); 2763 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2764 unsigned DstBits = Ty->getScalarSizeInBits(); 2765 Instruction::CastOps opcode = 2766 (SrcBits == DstBits ? Instruction::BitCast : 2767 (SrcBits > DstBits ? Instruction::Trunc : 2768 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2769 return Create(opcode, C, Ty, Name, InsertAtEnd); 2770 } 2771 2772 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2773 const Twine &Name, 2774 Instruction *InsertBefore) { 2775 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2776 "Invalid cast"); 2777 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2778 unsigned DstBits = Ty->getScalarSizeInBits(); 2779 Instruction::CastOps opcode = 2780 (SrcBits == DstBits ? Instruction::BitCast : 2781 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2782 return Create(opcode, C, Ty, Name, InsertBefore); 2783 } 2784 2785 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2786 const Twine &Name, 2787 BasicBlock *InsertAtEnd) { 2788 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2789 "Invalid cast"); 2790 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2791 unsigned DstBits = Ty->getScalarSizeInBits(); 2792 Instruction::CastOps opcode = 2793 (SrcBits == DstBits ? Instruction::BitCast : 2794 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2795 return Create(opcode, C, Ty, Name, InsertAtEnd); 2796 } 2797 2798 // Check whether it is valid to call getCastOpcode for these types. 2799 // This routine must be kept in sync with getCastOpcode. 2800 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2801 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2802 return false; 2803 2804 if (SrcTy == DestTy) 2805 return true; 2806 2807 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2808 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2809 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2810 // An element by element cast. Valid if casting the elements is valid. 2811 SrcTy = SrcVecTy->getElementType(); 2812 DestTy = DestVecTy->getElementType(); 2813 } 2814 2815 // Get the bit sizes, we'll need these 2816 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2817 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2818 2819 // Run through the possibilities ... 2820 if (DestTy->isIntegerTy()) { // Casting to integral 2821 if (SrcTy->isIntegerTy()) // Casting from integral 2822 return true; 2823 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2824 return true; 2825 if (SrcTy->isVectorTy()) // Casting from vector 2826 return DestBits == SrcBits; 2827 // Casting from something else 2828 return SrcTy->isPointerTy(); 2829 } 2830 if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2831 if (SrcTy->isIntegerTy()) // Casting from integral 2832 return true; 2833 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2834 return true; 2835 if (SrcTy->isVectorTy()) // Casting from vector 2836 return DestBits == SrcBits; 2837 // Casting from something else 2838 return false; 2839 } 2840 if (DestTy->isVectorTy()) // Casting to vector 2841 return DestBits == SrcBits; 2842 if (DestTy->isPointerTy()) { // Casting to pointer 2843 if (SrcTy->isPointerTy()) // Casting from pointer 2844 return true; 2845 return SrcTy->isIntegerTy(); // Casting from integral 2846 } 2847 if (DestTy->isX86_MMXTy()) { 2848 if (SrcTy->isVectorTy()) 2849 return DestBits == SrcBits; // 64-bit vector to MMX 2850 return false; 2851 } // Casting to something else 2852 return false; 2853 } 2854 2855 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 2856 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2857 return false; 2858 2859 if (SrcTy == DestTy) 2860 return true; 2861 2862 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2863 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 2864 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2865 // An element by element cast. Valid if casting the elements is valid. 2866 SrcTy = SrcVecTy->getElementType(); 2867 DestTy = DestVecTy->getElementType(); 2868 } 2869 } 2870 } 2871 2872 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 2873 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 2874 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 2875 } 2876 } 2877 2878 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2879 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2880 2881 // Could still have vectors of pointers if the number of elements doesn't 2882 // match 2883 if (SrcBits == 0 || DestBits == 0) 2884 return false; 2885 2886 if (SrcBits != DestBits) 2887 return false; 2888 2889 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 2890 return false; 2891 2892 return true; 2893 } 2894 2895 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 2896 const DataLayout &DL) { 2897 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 2898 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 2899 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy); 2900 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 2901 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 2902 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy); 2903 2904 return isBitCastable(SrcTy, DestTy); 2905 } 2906 2907 // Provide a way to get a "cast" where the cast opcode is inferred from the 2908 // types and size of the operand. This, basically, is a parallel of the 2909 // logic in the castIsValid function below. This axiom should hold: 2910 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2911 // should not assert in castIsValid. In other words, this produces a "correct" 2912 // casting opcode for the arguments passed to it. 2913 // This routine must be kept in sync with isCastable. 2914 Instruction::CastOps 2915 CastInst::getCastOpcode( 2916 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2917 Type *SrcTy = Src->getType(); 2918 2919 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 2920 "Only first class types are castable!"); 2921 2922 if (SrcTy == DestTy) 2923 return BitCast; 2924 2925 // FIXME: Check address space sizes here 2926 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2927 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2928 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2929 // An element by element cast. Find the appropriate opcode based on the 2930 // element types. 2931 SrcTy = SrcVecTy->getElementType(); 2932 DestTy = DestVecTy->getElementType(); 2933 } 2934 2935 // Get the bit sizes, we'll need these 2936 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2937 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2938 2939 // Run through the possibilities ... 2940 if (DestTy->isIntegerTy()) { // Casting to integral 2941 if (SrcTy->isIntegerTy()) { // Casting from integral 2942 if (DestBits < SrcBits) 2943 return Trunc; // int -> smaller int 2944 else if (DestBits > SrcBits) { // its an extension 2945 if (SrcIsSigned) 2946 return SExt; // signed -> SEXT 2947 else 2948 return ZExt; // unsigned -> ZEXT 2949 } else { 2950 return BitCast; // Same size, No-op cast 2951 } 2952 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2953 if (DestIsSigned) 2954 return FPToSI; // FP -> sint 2955 else 2956 return FPToUI; // FP -> uint 2957 } else if (SrcTy->isVectorTy()) { 2958 assert(DestBits == SrcBits && 2959 "Casting vector to integer of different width"); 2960 return BitCast; // Same size, no-op cast 2961 } else { 2962 assert(SrcTy->isPointerTy() && 2963 "Casting from a value that is not first-class type"); 2964 return PtrToInt; // ptr -> int 2965 } 2966 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2967 if (SrcTy->isIntegerTy()) { // Casting from integral 2968 if (SrcIsSigned) 2969 return SIToFP; // sint -> FP 2970 else 2971 return UIToFP; // uint -> FP 2972 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2973 if (DestBits < SrcBits) { 2974 return FPTrunc; // FP -> smaller FP 2975 } else if (DestBits > SrcBits) { 2976 return FPExt; // FP -> larger FP 2977 } else { 2978 return BitCast; // same size, no-op cast 2979 } 2980 } else if (SrcTy->isVectorTy()) { 2981 assert(DestBits == SrcBits && 2982 "Casting vector to floating point of different width"); 2983 return BitCast; // same size, no-op cast 2984 } 2985 llvm_unreachable("Casting pointer or non-first class to float"); 2986 } else if (DestTy->isVectorTy()) { 2987 assert(DestBits == SrcBits && 2988 "Illegal cast to vector (wrong type or size)"); 2989 return BitCast; 2990 } else if (DestTy->isPointerTy()) { 2991 if (SrcTy->isPointerTy()) { 2992 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 2993 return AddrSpaceCast; 2994 return BitCast; // ptr -> ptr 2995 } else if (SrcTy->isIntegerTy()) { 2996 return IntToPtr; // int -> ptr 2997 } 2998 llvm_unreachable("Casting pointer to other than pointer or int"); 2999 } else if (DestTy->isX86_MMXTy()) { 3000 if (SrcTy->isVectorTy()) { 3001 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3002 return BitCast; // 64-bit vector to MMX 3003 } 3004 llvm_unreachable("Illegal cast to X86_MMX"); 3005 } 3006 llvm_unreachable("Casting to type that is not first-class"); 3007 } 3008 3009 //===----------------------------------------------------------------------===// 3010 // CastInst SubClass Constructors 3011 //===----------------------------------------------------------------------===// 3012 3013 /// Check that the construction parameters for a CastInst are correct. This 3014 /// could be broken out into the separate constructors but it is useful to have 3015 /// it in one place and to eliminate the redundant code for getting the sizes 3016 /// of the types involved. 3017 bool 3018 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 3019 3020 // Check for type sanity on the arguments 3021 Type *SrcTy = S->getType(); 3022 3023 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3024 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3025 return false; 3026 3027 // Get the size of the types in bits, we'll need this later 3028 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3029 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 3030 3031 // If these are vector types, get the lengths of the vectors (using zero for 3032 // scalar types means that checking that vector lengths match also checks that 3033 // scalars are not being converted to vectors or vectors to scalars). 3034 unsigned SrcLength = SrcTy->isVectorTy() ? 3035 cast<VectorType>(SrcTy)->getNumElements() : 0; 3036 unsigned DstLength = DstTy->isVectorTy() ? 3037 cast<VectorType>(DstTy)->getNumElements() : 0; 3038 3039 // Switch on the opcode provided 3040 switch (op) { 3041 default: return false; // This is an input error 3042 case Instruction::Trunc: 3043 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3044 SrcLength == DstLength && SrcBitSize > DstBitSize; 3045 case Instruction::ZExt: 3046 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3047 SrcLength == DstLength && SrcBitSize < DstBitSize; 3048 case Instruction::SExt: 3049 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3050 SrcLength == DstLength && SrcBitSize < DstBitSize; 3051 case Instruction::FPTrunc: 3052 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3053 SrcLength == DstLength && SrcBitSize > DstBitSize; 3054 case Instruction::FPExt: 3055 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3056 SrcLength == DstLength && SrcBitSize < DstBitSize; 3057 case Instruction::UIToFP: 3058 case Instruction::SIToFP: 3059 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3060 SrcLength == DstLength; 3061 case Instruction::FPToUI: 3062 case Instruction::FPToSI: 3063 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3064 SrcLength == DstLength; 3065 case Instruction::PtrToInt: 3066 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3067 return false; 3068 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3069 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3070 return false; 3071 return SrcTy->getScalarType()->isPointerTy() && 3072 DstTy->getScalarType()->isIntegerTy(); 3073 case Instruction::IntToPtr: 3074 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3075 return false; 3076 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3077 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3078 return false; 3079 return SrcTy->getScalarType()->isIntegerTy() && 3080 DstTy->getScalarType()->isPointerTy(); 3081 case Instruction::BitCast: { 3082 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3083 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3084 3085 // BitCast implies a no-op cast of type only. No bits change. 3086 // However, you can't cast pointers to anything but pointers. 3087 if (!SrcPtrTy != !DstPtrTy) 3088 return false; 3089 3090 // For non-pointer cases, the cast is okay if the source and destination bit 3091 // widths are identical. 3092 if (!SrcPtrTy) 3093 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3094 3095 // If both are pointers then the address spaces must match. 3096 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3097 return false; 3098 3099 // A vector of pointers must have the same number of elements. 3100 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3101 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3102 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3103 3104 return false; 3105 } 3106 3107 return true; 3108 } 3109 case Instruction::AddrSpaceCast: { 3110 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3111 if (!SrcPtrTy) 3112 return false; 3113 3114 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3115 if (!DstPtrTy) 3116 return false; 3117 3118 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3119 return false; 3120 3121 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3122 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3123 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3124 3125 return false; 3126 } 3127 3128 return true; 3129 } 3130 } 3131 } 3132 3133 TruncInst::TruncInst( 3134 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3135 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3136 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3137 } 3138 3139 TruncInst::TruncInst( 3140 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3141 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3142 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3143 } 3144 3145 ZExtInst::ZExtInst( 3146 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3147 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3148 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3149 } 3150 3151 ZExtInst::ZExtInst( 3152 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3153 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3154 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3155 } 3156 SExtInst::SExtInst( 3157 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3158 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3159 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3160 } 3161 3162 SExtInst::SExtInst( 3163 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3164 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3165 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3166 } 3167 3168 FPTruncInst::FPTruncInst( 3169 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3170 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3171 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3172 } 3173 3174 FPTruncInst::FPTruncInst( 3175 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3176 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3177 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3178 } 3179 3180 FPExtInst::FPExtInst( 3181 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3182 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3183 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3184 } 3185 3186 FPExtInst::FPExtInst( 3187 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3188 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3189 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3190 } 3191 3192 UIToFPInst::UIToFPInst( 3193 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3194 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3195 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3196 } 3197 3198 UIToFPInst::UIToFPInst( 3199 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3200 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3201 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3202 } 3203 3204 SIToFPInst::SIToFPInst( 3205 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3206 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3207 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3208 } 3209 3210 SIToFPInst::SIToFPInst( 3211 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3212 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3213 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3214 } 3215 3216 FPToUIInst::FPToUIInst( 3217 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3218 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3219 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3220 } 3221 3222 FPToUIInst::FPToUIInst( 3223 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3224 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3225 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3226 } 3227 3228 FPToSIInst::FPToSIInst( 3229 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3230 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3231 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3232 } 3233 3234 FPToSIInst::FPToSIInst( 3235 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3236 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3237 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3238 } 3239 3240 PtrToIntInst::PtrToIntInst( 3241 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3242 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3243 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3244 } 3245 3246 PtrToIntInst::PtrToIntInst( 3247 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3248 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3249 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3250 } 3251 3252 IntToPtrInst::IntToPtrInst( 3253 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3254 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3255 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3256 } 3257 3258 IntToPtrInst::IntToPtrInst( 3259 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3260 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3261 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3262 } 3263 3264 BitCastInst::BitCastInst( 3265 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3266 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3267 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3268 } 3269 3270 BitCastInst::BitCastInst( 3271 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3272 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3273 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3274 } 3275 3276 AddrSpaceCastInst::AddrSpaceCastInst( 3277 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3278 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3279 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3280 } 3281 3282 AddrSpaceCastInst::AddrSpaceCastInst( 3283 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3284 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3285 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3286 } 3287 3288 //===----------------------------------------------------------------------===// 3289 // CmpInst Classes 3290 //===----------------------------------------------------------------------===// 3291 3292 void CmpInst::anchor() {} 3293 3294 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3295 Value *RHS, const Twine &Name, Instruction *InsertBefore) 3296 : Instruction(ty, op, 3297 OperandTraits<CmpInst>::op_begin(this), 3298 OperandTraits<CmpInst>::operands(this), 3299 InsertBefore) { 3300 Op<0>() = LHS; 3301 Op<1>() = RHS; 3302 setPredicate((Predicate)predicate); 3303 setName(Name); 3304 } 3305 3306 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3307 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3308 : Instruction(ty, op, 3309 OperandTraits<CmpInst>::op_begin(this), 3310 OperandTraits<CmpInst>::operands(this), 3311 InsertAtEnd) { 3312 Op<0>() = LHS; 3313 Op<1>() = RHS; 3314 setPredicate((Predicate)predicate); 3315 setName(Name); 3316 } 3317 3318 CmpInst * 3319 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3320 const Twine &Name, Instruction *InsertBefore) { 3321 if (Op == Instruction::ICmp) { 3322 if (InsertBefore) 3323 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3324 S1, S2, Name); 3325 else 3326 return new ICmpInst(CmpInst::Predicate(predicate), 3327 S1, S2, Name); 3328 } 3329 3330 if (InsertBefore) 3331 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3332 S1, S2, Name); 3333 else 3334 return new FCmpInst(CmpInst::Predicate(predicate), 3335 S1, S2, Name); 3336 } 3337 3338 CmpInst * 3339 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3340 const Twine &Name, BasicBlock *InsertAtEnd) { 3341 if (Op == Instruction::ICmp) { 3342 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3343 S1, S2, Name); 3344 } 3345 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3346 S1, S2, Name); 3347 } 3348 3349 void CmpInst::swapOperands() { 3350 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3351 IC->swapOperands(); 3352 else 3353 cast<FCmpInst>(this)->swapOperands(); 3354 } 3355 3356 bool CmpInst::isCommutative() const { 3357 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3358 return IC->isCommutative(); 3359 return cast<FCmpInst>(this)->isCommutative(); 3360 } 3361 3362 bool CmpInst::isEquality() const { 3363 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3364 return IC->isEquality(); 3365 return cast<FCmpInst>(this)->isEquality(); 3366 } 3367 3368 3369 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3370 switch (pred) { 3371 default: llvm_unreachable("Unknown cmp predicate!"); 3372 case ICMP_EQ: return ICMP_NE; 3373 case ICMP_NE: return ICMP_EQ; 3374 case ICMP_UGT: return ICMP_ULE; 3375 case ICMP_ULT: return ICMP_UGE; 3376 case ICMP_UGE: return ICMP_ULT; 3377 case ICMP_ULE: return ICMP_UGT; 3378 case ICMP_SGT: return ICMP_SLE; 3379 case ICMP_SLT: return ICMP_SGE; 3380 case ICMP_SGE: return ICMP_SLT; 3381 case ICMP_SLE: return ICMP_SGT; 3382 3383 case FCMP_OEQ: return FCMP_UNE; 3384 case FCMP_ONE: return FCMP_UEQ; 3385 case FCMP_OGT: return FCMP_ULE; 3386 case FCMP_OLT: return FCMP_UGE; 3387 case FCMP_OGE: return FCMP_ULT; 3388 case FCMP_OLE: return FCMP_UGT; 3389 case FCMP_UEQ: return FCMP_ONE; 3390 case FCMP_UNE: return FCMP_OEQ; 3391 case FCMP_UGT: return FCMP_OLE; 3392 case FCMP_ULT: return FCMP_OGE; 3393 case FCMP_UGE: return FCMP_OLT; 3394 case FCMP_ULE: return FCMP_OGT; 3395 case FCMP_ORD: return FCMP_UNO; 3396 case FCMP_UNO: return FCMP_ORD; 3397 case FCMP_TRUE: return FCMP_FALSE; 3398 case FCMP_FALSE: return FCMP_TRUE; 3399 } 3400 } 3401 3402 void ICmpInst::anchor() {} 3403 3404 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3405 switch (pred) { 3406 default: llvm_unreachable("Unknown icmp predicate!"); 3407 case ICMP_EQ: case ICMP_NE: 3408 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3409 return pred; 3410 case ICMP_UGT: return ICMP_SGT; 3411 case ICMP_ULT: return ICMP_SLT; 3412 case ICMP_UGE: return ICMP_SGE; 3413 case ICMP_ULE: return ICMP_SLE; 3414 } 3415 } 3416 3417 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3418 switch (pred) { 3419 default: llvm_unreachable("Unknown icmp predicate!"); 3420 case ICMP_EQ: case ICMP_NE: 3421 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3422 return pred; 3423 case ICMP_SGT: return ICMP_UGT; 3424 case ICMP_SLT: return ICMP_ULT; 3425 case ICMP_SGE: return ICMP_UGE; 3426 case ICMP_SLE: return ICMP_ULE; 3427 } 3428 } 3429 3430 /// Initialize a set of values that all satisfy the condition with C. 3431 /// 3432 ConstantRange 3433 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { 3434 APInt Lower(C); 3435 APInt Upper(C); 3436 uint32_t BitWidth = C.getBitWidth(); 3437 switch (pred) { 3438 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); 3439 case ICmpInst::ICMP_EQ: ++Upper; break; 3440 case ICmpInst::ICMP_NE: ++Lower; break; 3441 case ICmpInst::ICMP_ULT: 3442 Lower = APInt::getMinValue(BitWidth); 3443 // Check for an empty-set condition. 3444 if (Lower == Upper) 3445 return ConstantRange(BitWidth, /*isFullSet=*/false); 3446 break; 3447 case ICmpInst::ICMP_SLT: 3448 Lower = APInt::getSignedMinValue(BitWidth); 3449 // Check for an empty-set condition. 3450 if (Lower == Upper) 3451 return ConstantRange(BitWidth, /*isFullSet=*/false); 3452 break; 3453 case ICmpInst::ICMP_UGT: 3454 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3455 // Check for an empty-set condition. 3456 if (Lower == Upper) 3457 return ConstantRange(BitWidth, /*isFullSet=*/false); 3458 break; 3459 case ICmpInst::ICMP_SGT: 3460 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3461 // Check for an empty-set condition. 3462 if (Lower == Upper) 3463 return ConstantRange(BitWidth, /*isFullSet=*/false); 3464 break; 3465 case ICmpInst::ICMP_ULE: 3466 Lower = APInt::getMinValue(BitWidth); ++Upper; 3467 // Check for a full-set condition. 3468 if (Lower == Upper) 3469 return ConstantRange(BitWidth, /*isFullSet=*/true); 3470 break; 3471 case ICmpInst::ICMP_SLE: 3472 Lower = APInt::getSignedMinValue(BitWidth); ++Upper; 3473 // Check for a full-set condition. 3474 if (Lower == Upper) 3475 return ConstantRange(BitWidth, /*isFullSet=*/true); 3476 break; 3477 case ICmpInst::ICMP_UGE: 3478 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3479 // Check for a full-set condition. 3480 if (Lower == Upper) 3481 return ConstantRange(BitWidth, /*isFullSet=*/true); 3482 break; 3483 case ICmpInst::ICMP_SGE: 3484 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3485 // Check for a full-set condition. 3486 if (Lower == Upper) 3487 return ConstantRange(BitWidth, /*isFullSet=*/true); 3488 break; 3489 } 3490 return ConstantRange(Lower, Upper); 3491 } 3492 3493 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3494 switch (pred) { 3495 default: llvm_unreachable("Unknown cmp predicate!"); 3496 case ICMP_EQ: case ICMP_NE: 3497 return pred; 3498 case ICMP_SGT: return ICMP_SLT; 3499 case ICMP_SLT: return ICMP_SGT; 3500 case ICMP_SGE: return ICMP_SLE; 3501 case ICMP_SLE: return ICMP_SGE; 3502 case ICMP_UGT: return ICMP_ULT; 3503 case ICMP_ULT: return ICMP_UGT; 3504 case ICMP_UGE: return ICMP_ULE; 3505 case ICMP_ULE: return ICMP_UGE; 3506 3507 case FCMP_FALSE: case FCMP_TRUE: 3508 case FCMP_OEQ: case FCMP_ONE: 3509 case FCMP_UEQ: case FCMP_UNE: 3510 case FCMP_ORD: case FCMP_UNO: 3511 return pred; 3512 case FCMP_OGT: return FCMP_OLT; 3513 case FCMP_OLT: return FCMP_OGT; 3514 case FCMP_OGE: return FCMP_OLE; 3515 case FCMP_OLE: return FCMP_OGE; 3516 case FCMP_UGT: return FCMP_ULT; 3517 case FCMP_ULT: return FCMP_UGT; 3518 case FCMP_UGE: return FCMP_ULE; 3519 case FCMP_ULE: return FCMP_UGE; 3520 } 3521 } 3522 3523 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3524 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); 3525 3526 switch (pred) { 3527 default: 3528 llvm_unreachable("Unknown predicate!"); 3529 case CmpInst::ICMP_ULT: 3530 return CmpInst::ICMP_SLT; 3531 case CmpInst::ICMP_ULE: 3532 return CmpInst::ICMP_SLE; 3533 case CmpInst::ICMP_UGT: 3534 return CmpInst::ICMP_SGT; 3535 case CmpInst::ICMP_UGE: 3536 return CmpInst::ICMP_SGE; 3537 } 3538 } 3539 3540 bool CmpInst::isUnsigned(Predicate predicate) { 3541 switch (predicate) { 3542 default: return false; 3543 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3544 case ICmpInst::ICMP_UGE: return true; 3545 } 3546 } 3547 3548 bool CmpInst::isSigned(Predicate predicate) { 3549 switch (predicate) { 3550 default: return false; 3551 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3552 case ICmpInst::ICMP_SGE: return true; 3553 } 3554 } 3555 3556 bool CmpInst::isOrdered(Predicate predicate) { 3557 switch (predicate) { 3558 default: return false; 3559 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3560 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3561 case FCmpInst::FCMP_ORD: return true; 3562 } 3563 } 3564 3565 bool CmpInst::isUnordered(Predicate predicate) { 3566 switch (predicate) { 3567 default: return false; 3568 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3569 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3570 case FCmpInst::FCMP_UNO: return true; 3571 } 3572 } 3573 3574 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3575 switch(predicate) { 3576 default: return false; 3577 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3578 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3579 } 3580 } 3581 3582 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3583 switch(predicate) { 3584 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3585 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3586 default: return false; 3587 } 3588 } 3589 3590 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3591 // If the predicates match, then we know the first condition implies the 3592 // second is true. 3593 if (Pred1 == Pred2) 3594 return true; 3595 3596 switch (Pred1) { 3597 default: 3598 break; 3599 case ICMP_EQ: 3600 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3601 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3602 Pred2 == ICMP_SLE; 3603 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3604 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3605 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3606 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3607 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3608 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3609 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3610 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3611 } 3612 return false; 3613 } 3614 3615 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3616 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3617 } 3618 3619 //===----------------------------------------------------------------------===// 3620 // SwitchInst Implementation 3621 //===----------------------------------------------------------------------===// 3622 3623 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3624 assert(Value && Default && NumReserved); 3625 ReservedSpace = NumReserved; 3626 setNumHungOffUseOperands(2); 3627 allocHungoffUses(ReservedSpace); 3628 3629 Op<0>() = Value; 3630 Op<1>() = Default; 3631 } 3632 3633 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3634 /// switch on and a default destination. The number of additional cases can 3635 /// be specified here to make memory allocation more efficient. This 3636 /// constructor can also autoinsert before another instruction. 3637 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3638 Instruction *InsertBefore) 3639 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3640 nullptr, 0, InsertBefore) { 3641 init(Value, Default, 2+NumCases*2); 3642 } 3643 3644 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3645 /// switch on and a default destination. The number of additional cases can 3646 /// be specified here to make memory allocation more efficient. This 3647 /// constructor also autoinserts at the end of the specified BasicBlock. 3648 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3649 BasicBlock *InsertAtEnd) 3650 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3651 nullptr, 0, InsertAtEnd) { 3652 init(Value, Default, 2+NumCases*2); 3653 } 3654 3655 SwitchInst::SwitchInst(const SwitchInst &SI) 3656 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) { 3657 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3658 setNumHungOffUseOperands(SI.getNumOperands()); 3659 Use *OL = getOperandList(); 3660 const Use *InOL = SI.getOperandList(); 3661 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3662 OL[i] = InOL[i]; 3663 OL[i+1] = InOL[i+1]; 3664 } 3665 SubclassOptionalData = SI.SubclassOptionalData; 3666 } 3667 3668 3669 /// addCase - Add an entry to the switch instruction... 3670 /// 3671 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3672 unsigned NewCaseIdx = getNumCases(); 3673 unsigned OpNo = getNumOperands(); 3674 if (OpNo+2 > ReservedSpace) 3675 growOperands(); // Get more space! 3676 // Initialize some new operands. 3677 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3678 setNumHungOffUseOperands(OpNo+2); 3679 CaseIt Case(this, NewCaseIdx); 3680 Case.setValue(OnVal); 3681 Case.setSuccessor(Dest); 3682 } 3683 3684 /// removeCase - This method removes the specified case and its successor 3685 /// from the switch instruction. 3686 void SwitchInst::removeCase(CaseIt i) { 3687 unsigned idx = i.getCaseIndex(); 3688 3689 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3690 3691 unsigned NumOps = getNumOperands(); 3692 Use *OL = getOperandList(); 3693 3694 // Overwrite this case with the end of the list. 3695 if (2 + (idx + 1) * 2 != NumOps) { 3696 OL[2 + idx * 2] = OL[NumOps - 2]; 3697 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3698 } 3699 3700 // Nuke the last value. 3701 OL[NumOps-2].set(nullptr); 3702 OL[NumOps-2+1].set(nullptr); 3703 setNumHungOffUseOperands(NumOps-2); 3704 } 3705 3706 /// growOperands - grow operands - This grows the operand list in response 3707 /// to a push_back style of operation. This grows the number of ops by 3 times. 3708 /// 3709 void SwitchInst::growOperands() { 3710 unsigned e = getNumOperands(); 3711 unsigned NumOps = e*3; 3712 3713 ReservedSpace = NumOps; 3714 growHungoffUses(ReservedSpace); 3715 } 3716 3717 3718 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { 3719 return getSuccessor(idx); 3720 } 3721 unsigned SwitchInst::getNumSuccessorsV() const { 3722 return getNumSuccessors(); 3723 } 3724 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3725 setSuccessor(idx, B); 3726 } 3727 3728 //===----------------------------------------------------------------------===// 3729 // IndirectBrInst Implementation 3730 //===----------------------------------------------------------------------===// 3731 3732 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3733 assert(Address && Address->getType()->isPointerTy() && 3734 "Address of indirectbr must be a pointer"); 3735 ReservedSpace = 1+NumDests; 3736 setNumHungOffUseOperands(1); 3737 allocHungoffUses(ReservedSpace); 3738 3739 Op<0>() = Address; 3740 } 3741 3742 3743 /// growOperands - grow operands - This grows the operand list in response 3744 /// to a push_back style of operation. This grows the number of ops by 2 times. 3745 /// 3746 void IndirectBrInst::growOperands() { 3747 unsigned e = getNumOperands(); 3748 unsigned NumOps = e*2; 3749 3750 ReservedSpace = NumOps; 3751 growHungoffUses(ReservedSpace); 3752 } 3753 3754 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3755 Instruction *InsertBefore) 3756 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3757 nullptr, 0, InsertBefore) { 3758 init(Address, NumCases); 3759 } 3760 3761 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3762 BasicBlock *InsertAtEnd) 3763 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3764 nullptr, 0, InsertAtEnd) { 3765 init(Address, NumCases); 3766 } 3767 3768 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3769 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3770 nullptr, IBI.getNumOperands()) { 3771 allocHungoffUses(IBI.getNumOperands()); 3772 Use *OL = getOperandList(); 3773 const Use *InOL = IBI.getOperandList(); 3774 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3775 OL[i] = InOL[i]; 3776 SubclassOptionalData = IBI.SubclassOptionalData; 3777 } 3778 3779 /// addDestination - Add a destination. 3780 /// 3781 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3782 unsigned OpNo = getNumOperands(); 3783 if (OpNo+1 > ReservedSpace) 3784 growOperands(); // Get more space! 3785 // Initialize some new operands. 3786 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3787 setNumHungOffUseOperands(OpNo+1); 3788 getOperandList()[OpNo] = DestBB; 3789 } 3790 3791 /// removeDestination - This method removes the specified successor from the 3792 /// indirectbr instruction. 3793 void IndirectBrInst::removeDestination(unsigned idx) { 3794 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3795 3796 unsigned NumOps = getNumOperands(); 3797 Use *OL = getOperandList(); 3798 3799 // Replace this value with the last one. 3800 OL[idx+1] = OL[NumOps-1]; 3801 3802 // Nuke the last value. 3803 OL[NumOps-1].set(nullptr); 3804 setNumHungOffUseOperands(NumOps-1); 3805 } 3806 3807 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { 3808 return getSuccessor(idx); 3809 } 3810 unsigned IndirectBrInst::getNumSuccessorsV() const { 3811 return getNumSuccessors(); 3812 } 3813 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3814 setSuccessor(idx, B); 3815 } 3816 3817 //===----------------------------------------------------------------------===// 3818 // cloneImpl() implementations 3819 //===----------------------------------------------------------------------===// 3820 3821 // Define these methods here so vtables don't get emitted into every translation 3822 // unit that uses these classes. 3823 3824 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 3825 return new (getNumOperands()) GetElementPtrInst(*this); 3826 } 3827 3828 BinaryOperator *BinaryOperator::cloneImpl() const { 3829 return Create(getOpcode(), Op<0>(), Op<1>()); 3830 } 3831 3832 FCmpInst *FCmpInst::cloneImpl() const { 3833 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3834 } 3835 3836 ICmpInst *ICmpInst::cloneImpl() const { 3837 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3838 } 3839 3840 ExtractValueInst *ExtractValueInst::cloneImpl() const { 3841 return new ExtractValueInst(*this); 3842 } 3843 3844 InsertValueInst *InsertValueInst::cloneImpl() const { 3845 return new InsertValueInst(*this); 3846 } 3847 3848 AllocaInst *AllocaInst::cloneImpl() const { 3849 AllocaInst *Result = new AllocaInst(getAllocatedType(), 3850 (Value *)getOperand(0), getAlignment()); 3851 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 3852 Result->setSwiftError(isSwiftError()); 3853 return Result; 3854 } 3855 3856 LoadInst *LoadInst::cloneImpl() const { 3857 return new LoadInst(getOperand(0), Twine(), isVolatile(), 3858 getAlignment(), getOrdering(), getSynchScope()); 3859 } 3860 3861 StoreInst *StoreInst::cloneImpl() const { 3862 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3863 getAlignment(), getOrdering(), getSynchScope()); 3864 3865 } 3866 3867 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 3868 AtomicCmpXchgInst *Result = 3869 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3870 getSuccessOrdering(), getFailureOrdering(), 3871 getSynchScope()); 3872 Result->setVolatile(isVolatile()); 3873 Result->setWeak(isWeak()); 3874 return Result; 3875 } 3876 3877 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 3878 AtomicRMWInst *Result = 3879 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), 3880 getOrdering(), getSynchScope()); 3881 Result->setVolatile(isVolatile()); 3882 return Result; 3883 } 3884 3885 FenceInst *FenceInst::cloneImpl() const { 3886 return new FenceInst(getContext(), getOrdering(), getSynchScope()); 3887 } 3888 3889 TruncInst *TruncInst::cloneImpl() const { 3890 return new TruncInst(getOperand(0), getType()); 3891 } 3892 3893 ZExtInst *ZExtInst::cloneImpl() const { 3894 return new ZExtInst(getOperand(0), getType()); 3895 } 3896 3897 SExtInst *SExtInst::cloneImpl() const { 3898 return new SExtInst(getOperand(0), getType()); 3899 } 3900 3901 FPTruncInst *FPTruncInst::cloneImpl() const { 3902 return new FPTruncInst(getOperand(0), getType()); 3903 } 3904 3905 FPExtInst *FPExtInst::cloneImpl() const { 3906 return new FPExtInst(getOperand(0), getType()); 3907 } 3908 3909 UIToFPInst *UIToFPInst::cloneImpl() const { 3910 return new UIToFPInst(getOperand(0), getType()); 3911 } 3912 3913 SIToFPInst *SIToFPInst::cloneImpl() const { 3914 return new SIToFPInst(getOperand(0), getType()); 3915 } 3916 3917 FPToUIInst *FPToUIInst::cloneImpl() const { 3918 return new FPToUIInst(getOperand(0), getType()); 3919 } 3920 3921 FPToSIInst *FPToSIInst::cloneImpl() const { 3922 return new FPToSIInst(getOperand(0), getType()); 3923 } 3924 3925 PtrToIntInst *PtrToIntInst::cloneImpl() const { 3926 return new PtrToIntInst(getOperand(0), getType()); 3927 } 3928 3929 IntToPtrInst *IntToPtrInst::cloneImpl() const { 3930 return new IntToPtrInst(getOperand(0), getType()); 3931 } 3932 3933 BitCastInst *BitCastInst::cloneImpl() const { 3934 return new BitCastInst(getOperand(0), getType()); 3935 } 3936 3937 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 3938 return new AddrSpaceCastInst(getOperand(0), getType()); 3939 } 3940 3941 CallInst *CallInst::cloneImpl() const { 3942 if (hasOperandBundles()) { 3943 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 3944 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 3945 } 3946 return new(getNumOperands()) CallInst(*this); 3947 } 3948 3949 SelectInst *SelectInst::cloneImpl() const { 3950 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3951 } 3952 3953 VAArgInst *VAArgInst::cloneImpl() const { 3954 return new VAArgInst(getOperand(0), getType()); 3955 } 3956 3957 ExtractElementInst *ExtractElementInst::cloneImpl() const { 3958 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 3959 } 3960 3961 InsertElementInst *InsertElementInst::cloneImpl() const { 3962 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3963 } 3964 3965 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 3966 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 3967 } 3968 3969 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 3970 3971 LandingPadInst *LandingPadInst::cloneImpl() const { 3972 return new LandingPadInst(*this); 3973 } 3974 3975 ReturnInst *ReturnInst::cloneImpl() const { 3976 return new(getNumOperands()) ReturnInst(*this); 3977 } 3978 3979 BranchInst *BranchInst::cloneImpl() const { 3980 return new(getNumOperands()) BranchInst(*this); 3981 } 3982 3983 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 3984 3985 IndirectBrInst *IndirectBrInst::cloneImpl() const { 3986 return new IndirectBrInst(*this); 3987 } 3988 3989 InvokeInst *InvokeInst::cloneImpl() const { 3990 if (hasOperandBundles()) { 3991 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 3992 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 3993 } 3994 return new(getNumOperands()) InvokeInst(*this); 3995 } 3996 3997 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 3998 3999 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4000 return new (getNumOperands()) CleanupReturnInst(*this); 4001 } 4002 4003 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4004 return new (getNumOperands()) CatchReturnInst(*this); 4005 } 4006 4007 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4008 return new CatchSwitchInst(*this); 4009 } 4010 4011 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4012 return new (getNumOperands()) FuncletPadInst(*this); 4013 } 4014 4015 UnreachableInst *UnreachableInst::cloneImpl() const { 4016 LLVMContext &Context = getContext(); 4017 return new UnreachableInst(Context); 4018 } 4019