1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements all of the non-inline methods for the LLVM instruction 11 // classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/IR/Instructions.h" 16 #include "LLVMContextImpl.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // CallSite Class 31 //===----------------------------------------------------------------------===// 32 33 User::op_iterator CallSite::getCallee() const { 34 Instruction *II(getInstruction()); 35 return isCall() 36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee 37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee 38 } 39 40 //===----------------------------------------------------------------------===// 41 // TerminatorInst Class 42 //===----------------------------------------------------------------------===// 43 44 // Out of line virtual method, so the vtable, etc has a home. 45 TerminatorInst::~TerminatorInst() { 46 } 47 48 //===----------------------------------------------------------------------===// 49 // UnaryInstruction Class 50 //===----------------------------------------------------------------------===// 51 52 // Out of line virtual method, so the vtable, etc has a home. 53 UnaryInstruction::~UnaryInstruction() { 54 } 55 56 //===----------------------------------------------------------------------===// 57 // SelectInst Class 58 //===----------------------------------------------------------------------===// 59 60 /// areInvalidOperands - Return a string if the specified operands are invalid 61 /// for a select operation, otherwise return null. 62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 63 if (Op1->getType() != Op2->getType()) 64 return "both values to select must have same type"; 65 66 if (Op1->getType()->isTokenTy()) 67 return "select values cannot have token type"; 68 69 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 70 // Vector select. 71 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 72 return "vector select condition element type must be i1"; 73 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 74 if (!ET) 75 return "selected values for vector select must be vectors"; 76 if (ET->getNumElements() != VT->getNumElements()) 77 return "vector select requires selected vectors to have " 78 "the same vector length as select condition"; 79 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 80 return "select condition must be i1 or <n x i1>"; 81 } 82 return nullptr; 83 } 84 85 86 //===----------------------------------------------------------------------===// 87 // PHINode Class 88 //===----------------------------------------------------------------------===// 89 90 void PHINode::anchor() {} 91 92 PHINode::PHINode(const PHINode &PN) 93 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 94 ReservedSpace(PN.getNumOperands()) { 95 allocHungoffUses(PN.getNumOperands()); 96 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 97 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 98 SubclassOptionalData = PN.SubclassOptionalData; 99 } 100 101 // removeIncomingValue - Remove an incoming value. This is useful if a 102 // predecessor basic block is deleted. 103 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 104 Value *Removed = getIncomingValue(Idx); 105 106 // Move everything after this operand down. 107 // 108 // FIXME: we could just swap with the end of the list, then erase. However, 109 // clients might not expect this to happen. The code as it is thrashes the 110 // use/def lists, which is kinda lame. 111 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 112 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 113 114 // Nuke the last value. 115 Op<-1>().set(nullptr); 116 setNumHungOffUseOperands(getNumOperands() - 1); 117 118 // If the PHI node is dead, because it has zero entries, nuke it now. 119 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 120 // If anyone is using this PHI, make them use a dummy value instead... 121 replaceAllUsesWith(UndefValue::get(getType())); 122 eraseFromParent(); 123 } 124 return Removed; 125 } 126 127 /// growOperands - grow operands - This grows the operand list in response 128 /// to a push_back style of operation. This grows the number of ops by 1.5 129 /// times. 130 /// 131 void PHINode::growOperands() { 132 unsigned e = getNumOperands(); 133 unsigned NumOps = e + e / 2; 134 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 135 136 ReservedSpace = NumOps; 137 growHungoffUses(ReservedSpace, /* IsPhi */ true); 138 } 139 140 /// hasConstantValue - If the specified PHI node always merges together the same 141 /// value, return the value, otherwise return null. 142 Value *PHINode::hasConstantValue() const { 143 // Exploit the fact that phi nodes always have at least one entry. 144 Value *ConstantValue = getIncomingValue(0); 145 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 146 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 147 if (ConstantValue != this) 148 return nullptr; // Incoming values not all the same. 149 // The case where the first value is this PHI. 150 ConstantValue = getIncomingValue(i); 151 } 152 if (ConstantValue == this) 153 return UndefValue::get(getType()); 154 return ConstantValue; 155 } 156 157 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 158 /// together the same value, assuming that undefs result in the same value as 159 /// non-undefs. 160 /// Unlike \ref hasConstantValue, this does not return a value because the 161 /// unique non-undef incoming value need not dominate the PHI node. 162 bool PHINode::hasConstantOrUndefValue() const { 163 Value *ConstantValue = nullptr; 164 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 165 Value *Incoming = getIncomingValue(i); 166 if (Incoming != this && !isa<UndefValue>(Incoming)) { 167 if (ConstantValue && ConstantValue != Incoming) 168 return false; 169 ConstantValue = Incoming; 170 } 171 } 172 return true; 173 } 174 175 //===----------------------------------------------------------------------===// 176 // LandingPadInst Implementation 177 //===----------------------------------------------------------------------===// 178 179 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 180 const Twine &NameStr, Instruction *InsertBefore) 181 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 182 init(NumReservedValues, NameStr); 183 } 184 185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 186 const Twine &NameStr, BasicBlock *InsertAtEnd) 187 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 188 init(NumReservedValues, NameStr); 189 } 190 191 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 192 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 193 LP.getNumOperands()), 194 ReservedSpace(LP.getNumOperands()) { 195 allocHungoffUses(LP.getNumOperands()); 196 Use *OL = getOperandList(); 197 const Use *InOL = LP.getOperandList(); 198 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 199 OL[I] = InOL[I]; 200 201 setCleanup(LP.isCleanup()); 202 } 203 204 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 205 const Twine &NameStr, 206 Instruction *InsertBefore) { 207 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 208 } 209 210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 211 const Twine &NameStr, 212 BasicBlock *InsertAtEnd) { 213 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 214 } 215 216 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 217 ReservedSpace = NumReservedValues; 218 setNumHungOffUseOperands(0); 219 allocHungoffUses(ReservedSpace); 220 setName(NameStr); 221 setCleanup(false); 222 } 223 224 /// growOperands - grow operands - This grows the operand list in response to a 225 /// push_back style of operation. This grows the number of ops by 2 times. 226 void LandingPadInst::growOperands(unsigned Size) { 227 unsigned e = getNumOperands(); 228 if (ReservedSpace >= e + Size) return; 229 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 230 growHungoffUses(ReservedSpace); 231 } 232 233 void LandingPadInst::addClause(Constant *Val) { 234 unsigned OpNo = getNumOperands(); 235 growOperands(1); 236 assert(OpNo < ReservedSpace && "Growing didn't work!"); 237 setNumHungOffUseOperands(getNumOperands() + 1); 238 getOperandList()[OpNo] = Val; 239 } 240 241 //===----------------------------------------------------------------------===// 242 // CallInst Implementation 243 //===----------------------------------------------------------------------===// 244 245 CallInst::~CallInst() { 246 } 247 248 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 249 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 250 this->FTy = FTy; 251 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 252 "NumOperands not set up?"); 253 Op<-1>() = Func; 254 255 #ifndef NDEBUG 256 assert((Args.size() == FTy->getNumParams() || 257 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 258 "Calling a function with bad signature!"); 259 260 for (unsigned i = 0; i != Args.size(); ++i) 261 assert((i >= FTy->getNumParams() || 262 FTy->getParamType(i) == Args[i]->getType()) && 263 "Calling a function with a bad signature!"); 264 #endif 265 266 std::copy(Args.begin(), Args.end(), op_begin()); 267 268 auto It = populateBundleOperandInfos(Bundles, Args.size()); 269 (void)It; 270 assert(It + 1 == op_end() && "Should add up!"); 271 272 setName(NameStr); 273 } 274 275 void CallInst::init(Value *Func, const Twine &NameStr) { 276 FTy = 277 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 278 assert(getNumOperands() == 1 && "NumOperands not set up?"); 279 Op<-1>() = Func; 280 281 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 282 283 setName(NameStr); 284 } 285 286 CallInst::CallInst(Value *Func, const Twine &Name, 287 Instruction *InsertBefore) 288 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 289 ->getElementType())->getReturnType(), 290 Instruction::Call, 291 OperandTraits<CallInst>::op_end(this) - 1, 292 1, InsertBefore) { 293 init(Func, Name); 294 } 295 296 CallInst::CallInst(Value *Func, const Twine &Name, 297 BasicBlock *InsertAtEnd) 298 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 299 ->getElementType())->getReturnType(), 300 Instruction::Call, 301 OperandTraits<CallInst>::op_end(this) - 1, 302 1, InsertAtEnd) { 303 init(Func, Name); 304 } 305 306 CallInst::CallInst(const CallInst &CI) 307 : Instruction(CI.getType(), Instruction::Call, 308 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), 309 CI.getNumOperands()), 310 AttributeList(CI.AttributeList), FTy(CI.FTy) { 311 setTailCallKind(CI.getTailCallKind()); 312 setCallingConv(CI.getCallingConv()); 313 314 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 315 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 316 bundle_op_info_begin()); 317 SubclassOptionalData = CI.SubclassOptionalData; 318 } 319 320 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 321 Instruction *InsertPt) { 322 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 323 324 auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(), 325 InsertPt); 326 NewCI->setTailCallKind(CI->getTailCallKind()); 327 NewCI->setCallingConv(CI->getCallingConv()); 328 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 329 NewCI->setAttributes(CI->getAttributes()); 330 NewCI->setDebugLoc(CI->getDebugLoc()); 331 return NewCI; 332 } 333 334 Value *CallInst::getReturnedArgOperand() const { 335 unsigned Index; 336 337 if (AttributeList.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 338 return getArgOperand(Index-1); 339 if (const Function *F = getCalledFunction()) 340 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 341 Index) 342 return getArgOperand(Index-1); 343 344 return nullptr; 345 } 346 347 void CallInst::addAttribute(unsigned i, Attribute::AttrKind Kind) { 348 AttributeSet PAL = getAttributes(); 349 PAL = PAL.addAttribute(getContext(), i, Kind); 350 setAttributes(PAL); 351 } 352 353 void CallInst::addAttribute(unsigned i, Attribute Attr) { 354 AttributeSet PAL = getAttributes(); 355 PAL = PAL.addAttribute(getContext(), i, Attr); 356 setAttributes(PAL); 357 } 358 359 void CallInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 360 AttributeSet PAL = getAttributes(); 361 PAL = PAL.removeAttribute(getContext(), i, Kind); 362 setAttributes(PAL); 363 } 364 365 void CallInst::removeAttribute(unsigned i, StringRef Kind) { 366 AttributeSet PAL = getAttributes(); 367 PAL = PAL.removeAttribute(getContext(), i, Kind); 368 setAttributes(PAL); 369 } 370 371 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 372 AttributeSet PAL = getAttributes(); 373 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 374 setAttributes(PAL); 375 } 376 377 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 378 AttributeSet PAL = getAttributes(); 379 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 380 setAttributes(PAL); 381 } 382 383 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const { 384 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!"); 385 386 if (AttributeList.hasAttribute(i, Kind)) 387 return true; 388 if (const Function *F = getCalledFunction()) 389 return F->getAttributes().hasAttribute(i, Kind); 390 return false; 391 } 392 393 bool CallInst::dataOperandHasImpliedAttr(unsigned i, 394 Attribute::AttrKind Kind) const { 395 // There are getNumOperands() - 1 data operands. The last operand is the 396 // callee. 397 assert(i < getNumOperands() && "Data operand index out of bounds!"); 398 399 // The attribute A can either be directly specified, if the operand in 400 // question is a call argument; or be indirectly implied by the kind of its 401 // containing operand bundle, if the operand is a bundle operand. 402 403 if (i < (getNumArgOperands() + 1)) 404 return paramHasAttr(i, Kind); 405 406 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && 407 "Must be either a call argument or an operand bundle!"); 408 return bundleOperandHasAttr(i - 1, Kind); 409 } 410 411 /// IsConstantOne - Return true only if val is constant int 1 412 static bool IsConstantOne(Value *val) { 413 assert(val && "IsConstantOne does not work with nullptr val"); 414 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 415 return CVal && CVal->isOne(); 416 } 417 418 static Instruction *createMalloc(Instruction *InsertBefore, 419 BasicBlock *InsertAtEnd, Type *IntPtrTy, 420 Type *AllocTy, Value *AllocSize, 421 Value *ArraySize, 422 ArrayRef<OperandBundleDef> OpB, 423 Function *MallocF, const Twine &Name) { 424 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 425 "createMalloc needs either InsertBefore or InsertAtEnd"); 426 427 // malloc(type) becomes: 428 // bitcast (i8* malloc(typeSize)) to type* 429 // malloc(type, arraySize) becomes: 430 // bitcast (i8* malloc(typeSize*arraySize)) to type* 431 if (!ArraySize) 432 ArraySize = ConstantInt::get(IntPtrTy, 1); 433 else if (ArraySize->getType() != IntPtrTy) { 434 if (InsertBefore) 435 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 436 "", InsertBefore); 437 else 438 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 439 "", InsertAtEnd); 440 } 441 442 if (!IsConstantOne(ArraySize)) { 443 if (IsConstantOne(AllocSize)) { 444 AllocSize = ArraySize; // Operand * 1 = Operand 445 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 446 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 447 false /*ZExt*/); 448 // Malloc arg is constant product of type size and array size 449 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 450 } else { 451 // Multiply type size by the array size... 452 if (InsertBefore) 453 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 454 "mallocsize", InsertBefore); 455 else 456 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 457 "mallocsize", InsertAtEnd); 458 } 459 } 460 461 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 462 // Create the call to Malloc. 463 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 464 Module *M = BB->getParent()->getParent(); 465 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 466 Value *MallocFunc = MallocF; 467 if (!MallocFunc) 468 // prototype malloc as "void *malloc(size_t)" 469 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr); 470 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 471 CallInst *MCall = nullptr; 472 Instruction *Result = nullptr; 473 if (InsertBefore) { 474 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 475 InsertBefore); 476 Result = MCall; 477 if (Result->getType() != AllocPtrType) 478 // Create a cast instruction to convert to the right type... 479 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 480 } else { 481 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 482 Result = MCall; 483 if (Result->getType() != AllocPtrType) { 484 InsertAtEnd->getInstList().push_back(MCall); 485 // Create a cast instruction to convert to the right type... 486 Result = new BitCastInst(MCall, AllocPtrType, Name); 487 } 488 } 489 MCall->setTailCall(); 490 if (Function *F = dyn_cast<Function>(MallocFunc)) { 491 MCall->setCallingConv(F->getCallingConv()); 492 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); 493 } 494 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 495 496 return Result; 497 } 498 499 /// CreateMalloc - Generate the IR for a call to malloc: 500 /// 1. Compute the malloc call's argument as the specified type's size, 501 /// possibly multiplied by the array size if the array size is not 502 /// constant 1. 503 /// 2. Call malloc with that argument. 504 /// 3. Bitcast the result of the malloc call to the specified type. 505 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 506 Type *IntPtrTy, Type *AllocTy, 507 Value *AllocSize, Value *ArraySize, 508 Function *MallocF, 509 const Twine &Name) { 510 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 511 ArraySize, None, MallocF, Name); 512 } 513 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 514 Type *IntPtrTy, Type *AllocTy, 515 Value *AllocSize, Value *ArraySize, 516 ArrayRef<OperandBundleDef> OpB, 517 Function *MallocF, 518 const Twine &Name) { 519 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 520 ArraySize, OpB, MallocF, Name); 521 } 522 523 524 /// CreateMalloc - Generate the IR for a call to malloc: 525 /// 1. Compute the malloc call's argument as the specified type's size, 526 /// possibly multiplied by the array size if the array size is not 527 /// constant 1. 528 /// 2. Call malloc with that argument. 529 /// 3. Bitcast the result of the malloc call to the specified type. 530 /// Note: This function does not add the bitcast to the basic block, that is the 531 /// responsibility of the caller. 532 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 533 Type *IntPtrTy, Type *AllocTy, 534 Value *AllocSize, Value *ArraySize, 535 Function *MallocF, const Twine &Name) { 536 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 537 ArraySize, None, MallocF, Name); 538 } 539 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 540 Type *IntPtrTy, Type *AllocTy, 541 Value *AllocSize, Value *ArraySize, 542 ArrayRef<OperandBundleDef> OpB, 543 Function *MallocF, const Twine &Name) { 544 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 545 ArraySize, OpB, MallocF, Name); 546 } 547 548 static Instruction *createFree(Value *Source, 549 ArrayRef<OperandBundleDef> Bundles, 550 Instruction *InsertBefore, 551 BasicBlock *InsertAtEnd) { 552 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 553 "createFree needs either InsertBefore or InsertAtEnd"); 554 assert(Source->getType()->isPointerTy() && 555 "Can not free something of nonpointer type!"); 556 557 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 558 Module *M = BB->getParent()->getParent(); 559 560 Type *VoidTy = Type::getVoidTy(M->getContext()); 561 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 562 // prototype free as "void free(void*)" 563 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr); 564 CallInst *Result = nullptr; 565 Value *PtrCast = Source; 566 if (InsertBefore) { 567 if (Source->getType() != IntPtrTy) 568 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 569 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 570 } else { 571 if (Source->getType() != IntPtrTy) 572 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 573 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 574 } 575 Result->setTailCall(); 576 if (Function *F = dyn_cast<Function>(FreeFunc)) 577 Result->setCallingConv(F->getCallingConv()); 578 579 return Result; 580 } 581 582 /// CreateFree - Generate the IR for a call to the builtin free function. 583 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 584 return createFree(Source, None, InsertBefore, nullptr); 585 } 586 Instruction *CallInst::CreateFree(Value *Source, 587 ArrayRef<OperandBundleDef> Bundles, 588 Instruction *InsertBefore) { 589 return createFree(Source, Bundles, InsertBefore, nullptr); 590 } 591 592 /// CreateFree - Generate the IR for a call to the builtin free function. 593 /// Note: This function does not add the call to the basic block, that is the 594 /// responsibility of the caller. 595 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 596 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 597 assert(FreeCall && "CreateFree did not create a CallInst"); 598 return FreeCall; 599 } 600 Instruction *CallInst::CreateFree(Value *Source, 601 ArrayRef<OperandBundleDef> Bundles, 602 BasicBlock *InsertAtEnd) { 603 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 604 assert(FreeCall && "CreateFree did not create a CallInst"); 605 return FreeCall; 606 } 607 608 //===----------------------------------------------------------------------===// 609 // InvokeInst Implementation 610 //===----------------------------------------------------------------------===// 611 612 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 613 BasicBlock *IfException, ArrayRef<Value *> Args, 614 ArrayRef<OperandBundleDef> Bundles, 615 const Twine &NameStr) { 616 this->FTy = FTy; 617 618 assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) && 619 "NumOperands not set up?"); 620 Op<-3>() = Fn; 621 Op<-2>() = IfNormal; 622 Op<-1>() = IfException; 623 624 #ifndef NDEBUG 625 assert(((Args.size() == FTy->getNumParams()) || 626 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 627 "Invoking a function with bad signature"); 628 629 for (unsigned i = 0, e = Args.size(); i != e; i++) 630 assert((i >= FTy->getNumParams() || 631 FTy->getParamType(i) == Args[i]->getType()) && 632 "Invoking a function with a bad signature!"); 633 #endif 634 635 std::copy(Args.begin(), Args.end(), op_begin()); 636 637 auto It = populateBundleOperandInfos(Bundles, Args.size()); 638 (void)It; 639 assert(It + 3 == op_end() && "Should add up!"); 640 641 setName(NameStr); 642 } 643 644 InvokeInst::InvokeInst(const InvokeInst &II) 645 : TerminatorInst(II.getType(), Instruction::Invoke, 646 OperandTraits<InvokeInst>::op_end(this) - 647 II.getNumOperands(), 648 II.getNumOperands()), 649 AttributeList(II.AttributeList), FTy(II.FTy) { 650 setCallingConv(II.getCallingConv()); 651 std::copy(II.op_begin(), II.op_end(), op_begin()); 652 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 653 bundle_op_info_begin()); 654 SubclassOptionalData = II.SubclassOptionalData; 655 } 656 657 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 658 Instruction *InsertPt) { 659 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 660 661 auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(), 662 II->getUnwindDest(), Args, OpB, 663 II->getName(), InsertPt); 664 NewII->setCallingConv(II->getCallingConv()); 665 NewII->SubclassOptionalData = II->SubclassOptionalData; 666 NewII->setAttributes(II->getAttributes()); 667 NewII->setDebugLoc(II->getDebugLoc()); 668 return NewII; 669 } 670 671 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { 672 return getSuccessor(idx); 673 } 674 unsigned InvokeInst::getNumSuccessorsV() const { 675 return getNumSuccessors(); 676 } 677 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { 678 return setSuccessor(idx, B); 679 } 680 681 Value *InvokeInst::getReturnedArgOperand() const { 682 unsigned Index; 683 684 if (AttributeList.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 685 return getArgOperand(Index-1); 686 if (const Function *F = getCalledFunction()) 687 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 688 Index) 689 return getArgOperand(Index-1); 690 691 return nullptr; 692 } 693 694 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const { 695 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!"); 696 697 if (AttributeList.hasAttribute(i, Kind)) 698 return true; 699 if (const Function *F = getCalledFunction()) 700 return F->getAttributes().hasAttribute(i, Kind); 701 return false; 702 } 703 704 bool InvokeInst::dataOperandHasImpliedAttr(unsigned i, 705 Attribute::AttrKind Kind) const { 706 // There are getNumOperands() - 3 data operands. The last three operands are 707 // the callee and the two successor basic blocks. 708 assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!"); 709 710 // The attribute A can either be directly specified, if the operand in 711 // question is an invoke argument; or be indirectly implied by the kind of its 712 // containing operand bundle, if the operand is a bundle operand. 713 714 if (i < (getNumArgOperands() + 1)) 715 return paramHasAttr(i, Kind); 716 717 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && 718 "Must be either an invoke argument or an operand bundle!"); 719 return bundleOperandHasAttr(i - 1, Kind); 720 } 721 722 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind Kind) { 723 AttributeSet PAL = getAttributes(); 724 PAL = PAL.addAttribute(getContext(), i, Kind); 725 setAttributes(PAL); 726 } 727 728 void InvokeInst::addAttribute(unsigned i, Attribute Attr) { 729 AttributeSet PAL = getAttributes(); 730 PAL = PAL.addAttribute(getContext(), i, Attr); 731 setAttributes(PAL); 732 } 733 734 void InvokeInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 735 AttributeSet PAL = getAttributes(); 736 PAL = PAL.removeAttribute(getContext(), i, Kind); 737 setAttributes(PAL); 738 } 739 740 void InvokeInst::removeAttribute(unsigned i, StringRef Kind) { 741 AttributeSet PAL = getAttributes(); 742 PAL = PAL.removeAttribute(getContext(), i, Kind); 743 setAttributes(PAL); 744 } 745 746 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 747 AttributeSet PAL = getAttributes(); 748 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 749 setAttributes(PAL); 750 } 751 752 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 753 AttributeSet PAL = getAttributes(); 754 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 755 setAttributes(PAL); 756 } 757 758 LandingPadInst *InvokeInst::getLandingPadInst() const { 759 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 760 } 761 762 //===----------------------------------------------------------------------===// 763 // ReturnInst Implementation 764 //===----------------------------------------------------------------------===// 765 766 ReturnInst::ReturnInst(const ReturnInst &RI) 767 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, 768 OperandTraits<ReturnInst>::op_end(this) - 769 RI.getNumOperands(), 770 RI.getNumOperands()) { 771 if (RI.getNumOperands()) 772 Op<0>() = RI.Op<0>(); 773 SubclassOptionalData = RI.SubclassOptionalData; 774 } 775 776 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 777 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 778 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 779 InsertBefore) { 780 if (retVal) 781 Op<0>() = retVal; 782 } 783 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 784 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 785 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 786 InsertAtEnd) { 787 if (retVal) 788 Op<0>() = retVal; 789 } 790 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 791 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, 792 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { 793 } 794 795 unsigned ReturnInst::getNumSuccessorsV() const { 796 return getNumSuccessors(); 797 } 798 799 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to 800 /// emit the vtable for the class in this translation unit. 801 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 802 llvm_unreachable("ReturnInst has no successors!"); 803 } 804 805 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { 806 llvm_unreachable("ReturnInst has no successors!"); 807 } 808 809 ReturnInst::~ReturnInst() { 810 } 811 812 //===----------------------------------------------------------------------===// 813 // ResumeInst Implementation 814 //===----------------------------------------------------------------------===// 815 816 ResumeInst::ResumeInst(const ResumeInst &RI) 817 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, 818 OperandTraits<ResumeInst>::op_begin(this), 1) { 819 Op<0>() = RI.Op<0>(); 820 } 821 822 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 823 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 824 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 825 Op<0>() = Exn; 826 } 827 828 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 829 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 830 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 831 Op<0>() = Exn; 832 } 833 834 unsigned ResumeInst::getNumSuccessorsV() const { 835 return getNumSuccessors(); 836 } 837 838 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 839 llvm_unreachable("ResumeInst has no successors!"); 840 } 841 842 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { 843 llvm_unreachable("ResumeInst has no successors!"); 844 } 845 846 //===----------------------------------------------------------------------===// 847 // CleanupReturnInst Implementation 848 //===----------------------------------------------------------------------===// 849 850 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 851 : TerminatorInst(CRI.getType(), Instruction::CleanupRet, 852 OperandTraits<CleanupReturnInst>::op_end(this) - 853 CRI.getNumOperands(), 854 CRI.getNumOperands()) { 855 setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); 856 Op<0>() = CRI.Op<0>(); 857 if (CRI.hasUnwindDest()) 858 Op<1>() = CRI.Op<1>(); 859 } 860 861 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 862 if (UnwindBB) 863 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 864 865 Op<0>() = CleanupPad; 866 if (UnwindBB) 867 Op<1>() = UnwindBB; 868 } 869 870 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 871 unsigned Values, Instruction *InsertBefore) 872 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), 873 Instruction::CleanupRet, 874 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 875 Values, InsertBefore) { 876 init(CleanupPad, UnwindBB); 877 } 878 879 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 880 unsigned Values, BasicBlock *InsertAtEnd) 881 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), 882 Instruction::CleanupRet, 883 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 884 Values, InsertAtEnd) { 885 init(CleanupPad, UnwindBB); 886 } 887 888 BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const { 889 assert(Idx == 0); 890 return getUnwindDest(); 891 } 892 unsigned CleanupReturnInst::getNumSuccessorsV() const { 893 return getNumSuccessors(); 894 } 895 void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) { 896 assert(Idx == 0); 897 setUnwindDest(B); 898 } 899 900 //===----------------------------------------------------------------------===// 901 // CatchReturnInst Implementation 902 //===----------------------------------------------------------------------===// 903 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 904 Op<0>() = CatchPad; 905 Op<1>() = BB; 906 } 907 908 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 909 : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 910 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 911 Op<0>() = CRI.Op<0>(); 912 Op<1>() = CRI.Op<1>(); 913 } 914 915 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 916 Instruction *InsertBefore) 917 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 918 OperandTraits<CatchReturnInst>::op_begin(this), 2, 919 InsertBefore) { 920 init(CatchPad, BB); 921 } 922 923 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 924 BasicBlock *InsertAtEnd) 925 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 926 OperandTraits<CatchReturnInst>::op_begin(this), 2, 927 InsertAtEnd) { 928 init(CatchPad, BB); 929 } 930 931 BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const { 932 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); 933 return getSuccessor(); 934 } 935 unsigned CatchReturnInst::getNumSuccessorsV() const { 936 return getNumSuccessors(); 937 } 938 void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) { 939 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); 940 setSuccessor(B); 941 } 942 943 //===----------------------------------------------------------------------===// 944 // CatchSwitchInst Implementation 945 //===----------------------------------------------------------------------===// 946 947 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 948 unsigned NumReservedValues, 949 const Twine &NameStr, 950 Instruction *InsertBefore) 951 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 952 InsertBefore) { 953 if (UnwindDest) 954 ++NumReservedValues; 955 init(ParentPad, UnwindDest, NumReservedValues + 1); 956 setName(NameStr); 957 } 958 959 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 960 unsigned NumReservedValues, 961 const Twine &NameStr, BasicBlock *InsertAtEnd) 962 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 963 InsertAtEnd) { 964 if (UnwindDest) 965 ++NumReservedValues; 966 init(ParentPad, UnwindDest, NumReservedValues + 1); 967 setName(NameStr); 968 } 969 970 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 971 : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr, 972 CSI.getNumOperands()) { 973 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 974 setNumHungOffUseOperands(ReservedSpace); 975 Use *OL = getOperandList(); 976 const Use *InOL = CSI.getOperandList(); 977 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 978 OL[I] = InOL[I]; 979 } 980 981 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 982 unsigned NumReservedValues) { 983 assert(ParentPad && NumReservedValues); 984 985 ReservedSpace = NumReservedValues; 986 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 987 allocHungoffUses(ReservedSpace); 988 989 Op<0>() = ParentPad; 990 if (UnwindDest) { 991 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 992 setUnwindDest(UnwindDest); 993 } 994 } 995 996 /// growOperands - grow operands - This grows the operand list in response to a 997 /// push_back style of operation. This grows the number of ops by 2 times. 998 void CatchSwitchInst::growOperands(unsigned Size) { 999 unsigned NumOperands = getNumOperands(); 1000 assert(NumOperands >= 1); 1001 if (ReservedSpace >= NumOperands + Size) 1002 return; 1003 ReservedSpace = (NumOperands + Size / 2) * 2; 1004 growHungoffUses(ReservedSpace); 1005 } 1006 1007 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 1008 unsigned OpNo = getNumOperands(); 1009 growOperands(1); 1010 assert(OpNo < ReservedSpace && "Growing didn't work!"); 1011 setNumHungOffUseOperands(getNumOperands() + 1); 1012 getOperandList()[OpNo] = Handler; 1013 } 1014 1015 void CatchSwitchInst::removeHandler(handler_iterator HI) { 1016 // Move all subsequent handlers up one. 1017 Use *EndDst = op_end() - 1; 1018 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 1019 *CurDst = *(CurDst + 1); 1020 // Null out the last handler use. 1021 *EndDst = nullptr; 1022 1023 setNumHungOffUseOperands(getNumOperands() - 1); 1024 } 1025 1026 BasicBlock *CatchSwitchInst::getSuccessorV(unsigned idx) const { 1027 return getSuccessor(idx); 1028 } 1029 unsigned CatchSwitchInst::getNumSuccessorsV() const { 1030 return getNumSuccessors(); 1031 } 1032 void CatchSwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 1033 setSuccessor(idx, B); 1034 } 1035 1036 //===----------------------------------------------------------------------===// 1037 // FuncletPadInst Implementation 1038 //===----------------------------------------------------------------------===// 1039 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1040 const Twine &NameStr) { 1041 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1042 std::copy(Args.begin(), Args.end(), op_begin()); 1043 setParentPad(ParentPad); 1044 setName(NameStr); 1045 } 1046 1047 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1048 : Instruction(FPI.getType(), FPI.getOpcode(), 1049 OperandTraits<FuncletPadInst>::op_end(this) - 1050 FPI.getNumOperands(), 1051 FPI.getNumOperands()) { 1052 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1053 setParentPad(FPI.getParentPad()); 1054 } 1055 1056 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1057 ArrayRef<Value *> Args, unsigned Values, 1058 const Twine &NameStr, Instruction *InsertBefore) 1059 : Instruction(ParentPad->getType(), Op, 1060 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1061 InsertBefore) { 1062 init(ParentPad, Args, NameStr); 1063 } 1064 1065 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1066 ArrayRef<Value *> Args, unsigned Values, 1067 const Twine &NameStr, BasicBlock *InsertAtEnd) 1068 : Instruction(ParentPad->getType(), Op, 1069 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1070 InsertAtEnd) { 1071 init(ParentPad, Args, NameStr); 1072 } 1073 1074 //===----------------------------------------------------------------------===// 1075 // UnreachableInst Implementation 1076 //===----------------------------------------------------------------------===// 1077 1078 UnreachableInst::UnreachableInst(LLVMContext &Context, 1079 Instruction *InsertBefore) 1080 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 1081 nullptr, 0, InsertBefore) { 1082 } 1083 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1084 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 1085 nullptr, 0, InsertAtEnd) { 1086 } 1087 1088 unsigned UnreachableInst::getNumSuccessorsV() const { 1089 return getNumSuccessors(); 1090 } 1091 1092 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 1093 llvm_unreachable("UnreachableInst has no successors!"); 1094 } 1095 1096 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { 1097 llvm_unreachable("UnreachableInst has no successors!"); 1098 } 1099 1100 //===----------------------------------------------------------------------===// 1101 // BranchInst Implementation 1102 //===----------------------------------------------------------------------===// 1103 1104 void BranchInst::AssertOK() { 1105 if (isConditional()) 1106 assert(getCondition()->getType()->isIntegerTy(1) && 1107 "May only branch on boolean predicates!"); 1108 } 1109 1110 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1111 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1112 OperandTraits<BranchInst>::op_end(this) - 1, 1113 1, InsertBefore) { 1114 assert(IfTrue && "Branch destination may not be null!"); 1115 Op<-1>() = IfTrue; 1116 } 1117 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1118 Instruction *InsertBefore) 1119 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1120 OperandTraits<BranchInst>::op_end(this) - 3, 1121 3, InsertBefore) { 1122 Op<-1>() = IfTrue; 1123 Op<-2>() = IfFalse; 1124 Op<-3>() = Cond; 1125 #ifndef NDEBUG 1126 AssertOK(); 1127 #endif 1128 } 1129 1130 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1131 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1132 OperandTraits<BranchInst>::op_end(this) - 1, 1133 1, InsertAtEnd) { 1134 assert(IfTrue && "Branch destination may not be null!"); 1135 Op<-1>() = IfTrue; 1136 } 1137 1138 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1139 BasicBlock *InsertAtEnd) 1140 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1141 OperandTraits<BranchInst>::op_end(this) - 3, 1142 3, InsertAtEnd) { 1143 Op<-1>() = IfTrue; 1144 Op<-2>() = IfFalse; 1145 Op<-3>() = Cond; 1146 #ifndef NDEBUG 1147 AssertOK(); 1148 #endif 1149 } 1150 1151 1152 BranchInst::BranchInst(const BranchInst &BI) : 1153 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, 1154 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1155 BI.getNumOperands()) { 1156 Op<-1>() = BI.Op<-1>(); 1157 if (BI.getNumOperands() != 1) { 1158 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1159 Op<-3>() = BI.Op<-3>(); 1160 Op<-2>() = BI.Op<-2>(); 1161 } 1162 SubclassOptionalData = BI.SubclassOptionalData; 1163 } 1164 1165 void BranchInst::swapSuccessors() { 1166 assert(isConditional() && 1167 "Cannot swap successors of an unconditional branch"); 1168 Op<-1>().swap(Op<-2>()); 1169 1170 // Update profile metadata if present and it matches our structural 1171 // expectations. 1172 swapProfMetadata(); 1173 } 1174 1175 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { 1176 return getSuccessor(idx); 1177 } 1178 unsigned BranchInst::getNumSuccessorsV() const { 1179 return getNumSuccessors(); 1180 } 1181 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 1182 setSuccessor(idx, B); 1183 } 1184 1185 1186 //===----------------------------------------------------------------------===// 1187 // AllocaInst Implementation 1188 //===----------------------------------------------------------------------===// 1189 1190 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1191 if (!Amt) 1192 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1193 else { 1194 assert(!isa<BasicBlock>(Amt) && 1195 "Passed basic block into allocation size parameter! Use other ctor"); 1196 assert(Amt->getType()->isIntegerTy() && 1197 "Allocation array size is not an integer!"); 1198 } 1199 return Amt; 1200 } 1201 1202 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore) 1203 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1204 1205 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) 1206 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1207 1208 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, 1209 Instruction *InsertBefore) 1210 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {} 1211 1212 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, 1213 BasicBlock *InsertAtEnd) 1214 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} 1215 1216 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 1217 const Twine &Name, Instruction *InsertBefore) 1218 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 1219 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1220 AllocatedType(Ty) { 1221 setAlignment(Align); 1222 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1223 setName(Name); 1224 } 1225 1226 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 1227 const Twine &Name, BasicBlock *InsertAtEnd) 1228 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 1229 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1230 AllocatedType(Ty) { 1231 setAlignment(Align); 1232 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1233 setName(Name); 1234 } 1235 1236 // Out of line virtual method, so the vtable, etc has a home. 1237 AllocaInst::~AllocaInst() { 1238 } 1239 1240 void AllocaInst::setAlignment(unsigned Align) { 1241 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1242 assert(Align <= MaximumAlignment && 1243 "Alignment is greater than MaximumAlignment!"); 1244 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | 1245 (Log2_32(Align) + 1)); 1246 assert(getAlignment() == Align && "Alignment representation error!"); 1247 } 1248 1249 bool AllocaInst::isArrayAllocation() const { 1250 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1251 return !CI->isOne(); 1252 return true; 1253 } 1254 1255 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1256 /// function and is a constant size. If so, the code generator will fold it 1257 /// into the prolog/epilog code, so it is basically free. 1258 bool AllocaInst::isStaticAlloca() const { 1259 // Must be constant size. 1260 if (!isa<ConstantInt>(getArraySize())) return false; 1261 1262 // Must be in the entry block. 1263 const BasicBlock *Parent = getParent(); 1264 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1265 } 1266 1267 //===----------------------------------------------------------------------===// 1268 // LoadInst Implementation 1269 //===----------------------------------------------------------------------===// 1270 1271 void LoadInst::AssertOK() { 1272 assert(getOperand(0)->getType()->isPointerTy() && 1273 "Ptr must have pointer type."); 1274 assert(!(isAtomic() && getAlignment() == 0) && 1275 "Alignment required for atomic load"); 1276 } 1277 1278 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) 1279 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1280 1281 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) 1282 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1283 1284 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1285 Instruction *InsertBef) 1286 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} 1287 1288 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1289 BasicBlock *InsertAE) 1290 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} 1291 1292 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1293 unsigned Align, Instruction *InsertBef) 1294 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1295 CrossThread, InsertBef) {} 1296 1297 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1298 unsigned Align, BasicBlock *InsertAE) 1299 : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1300 CrossThread, InsertAE) {} 1301 1302 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1303 unsigned Align, AtomicOrdering Order, 1304 SynchronizationScope SynchScope, Instruction *InsertBef) 1305 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1306 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1307 setVolatile(isVolatile); 1308 setAlignment(Align); 1309 setAtomic(Order, SynchScope); 1310 AssertOK(); 1311 setName(Name); 1312 } 1313 1314 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1315 unsigned Align, AtomicOrdering Order, 1316 SynchronizationScope SynchScope, 1317 BasicBlock *InsertAE) 1318 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1319 Load, Ptr, InsertAE) { 1320 setVolatile(isVolatile); 1321 setAlignment(Align); 1322 setAtomic(Order, SynchScope); 1323 AssertOK(); 1324 setName(Name); 1325 } 1326 1327 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) 1328 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1329 Load, Ptr, InsertBef) { 1330 setVolatile(false); 1331 setAlignment(0); 1332 setAtomic(AtomicOrdering::NotAtomic); 1333 AssertOK(); 1334 if (Name && Name[0]) setName(Name); 1335 } 1336 1337 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) 1338 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1339 Load, Ptr, InsertAE) { 1340 setVolatile(false); 1341 setAlignment(0); 1342 setAtomic(AtomicOrdering::NotAtomic); 1343 AssertOK(); 1344 if (Name && Name[0]) setName(Name); 1345 } 1346 1347 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile, 1348 Instruction *InsertBef) 1349 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1350 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1351 setVolatile(isVolatile); 1352 setAlignment(0); 1353 setAtomic(AtomicOrdering::NotAtomic); 1354 AssertOK(); 1355 if (Name && Name[0]) setName(Name); 1356 } 1357 1358 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1359 BasicBlock *InsertAE) 1360 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1361 Load, Ptr, InsertAE) { 1362 setVolatile(isVolatile); 1363 setAlignment(0); 1364 setAtomic(AtomicOrdering::NotAtomic); 1365 AssertOK(); 1366 if (Name && Name[0]) setName(Name); 1367 } 1368 1369 void LoadInst::setAlignment(unsigned Align) { 1370 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1371 assert(Align <= MaximumAlignment && 1372 "Alignment is greater than MaximumAlignment!"); 1373 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1374 ((Log2_32(Align)+1)<<1)); 1375 assert(getAlignment() == Align && "Alignment representation error!"); 1376 } 1377 1378 //===----------------------------------------------------------------------===// 1379 // StoreInst Implementation 1380 //===----------------------------------------------------------------------===// 1381 1382 void StoreInst::AssertOK() { 1383 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1384 assert(getOperand(1)->getType()->isPointerTy() && 1385 "Ptr must have pointer type!"); 1386 assert(getOperand(0)->getType() == 1387 cast<PointerType>(getOperand(1)->getType())->getElementType() 1388 && "Ptr must be a pointer to Val type!"); 1389 assert(!(isAtomic() && getAlignment() == 0) && 1390 "Alignment required for atomic store"); 1391 } 1392 1393 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1394 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1395 1396 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1397 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1398 1399 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1400 Instruction *InsertBefore) 1401 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} 1402 1403 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1404 BasicBlock *InsertAtEnd) 1405 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} 1406 1407 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1408 Instruction *InsertBefore) 1409 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1410 CrossThread, InsertBefore) {} 1411 1412 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1413 BasicBlock *InsertAtEnd) 1414 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1415 CrossThread, InsertAtEnd) {} 1416 1417 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1418 unsigned Align, AtomicOrdering Order, 1419 SynchronizationScope SynchScope, 1420 Instruction *InsertBefore) 1421 : Instruction(Type::getVoidTy(val->getContext()), Store, 1422 OperandTraits<StoreInst>::op_begin(this), 1423 OperandTraits<StoreInst>::operands(this), 1424 InsertBefore) { 1425 Op<0>() = val; 1426 Op<1>() = addr; 1427 setVolatile(isVolatile); 1428 setAlignment(Align); 1429 setAtomic(Order, SynchScope); 1430 AssertOK(); 1431 } 1432 1433 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1434 unsigned Align, AtomicOrdering Order, 1435 SynchronizationScope SynchScope, 1436 BasicBlock *InsertAtEnd) 1437 : Instruction(Type::getVoidTy(val->getContext()), Store, 1438 OperandTraits<StoreInst>::op_begin(this), 1439 OperandTraits<StoreInst>::operands(this), 1440 InsertAtEnd) { 1441 Op<0>() = val; 1442 Op<1>() = addr; 1443 setVolatile(isVolatile); 1444 setAlignment(Align); 1445 setAtomic(Order, SynchScope); 1446 AssertOK(); 1447 } 1448 1449 void StoreInst::setAlignment(unsigned Align) { 1450 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1451 assert(Align <= MaximumAlignment && 1452 "Alignment is greater than MaximumAlignment!"); 1453 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1454 ((Log2_32(Align)+1) << 1)); 1455 assert(getAlignment() == Align && "Alignment representation error!"); 1456 } 1457 1458 //===----------------------------------------------------------------------===// 1459 // AtomicCmpXchgInst Implementation 1460 //===----------------------------------------------------------------------===// 1461 1462 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1463 AtomicOrdering SuccessOrdering, 1464 AtomicOrdering FailureOrdering, 1465 SynchronizationScope SynchScope) { 1466 Op<0>() = Ptr; 1467 Op<1>() = Cmp; 1468 Op<2>() = NewVal; 1469 setSuccessOrdering(SuccessOrdering); 1470 setFailureOrdering(FailureOrdering); 1471 setSynchScope(SynchScope); 1472 1473 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1474 "All operands must be non-null!"); 1475 assert(getOperand(0)->getType()->isPointerTy() && 1476 "Ptr must have pointer type!"); 1477 assert(getOperand(1)->getType() == 1478 cast<PointerType>(getOperand(0)->getType())->getElementType() 1479 && "Ptr must be a pointer to Cmp type!"); 1480 assert(getOperand(2)->getType() == 1481 cast<PointerType>(getOperand(0)->getType())->getElementType() 1482 && "Ptr must be a pointer to NewVal type!"); 1483 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 1484 "AtomicCmpXchg instructions must be atomic!"); 1485 assert(FailureOrdering != AtomicOrdering::NotAtomic && 1486 "AtomicCmpXchg instructions must be atomic!"); 1487 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && 1488 "AtomicCmpXchg failure argument shall be no stronger than the success " 1489 "argument"); 1490 assert(FailureOrdering != AtomicOrdering::Release && 1491 FailureOrdering != AtomicOrdering::AcquireRelease && 1492 "AtomicCmpXchg failure ordering cannot include release semantics"); 1493 } 1494 1495 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1496 AtomicOrdering SuccessOrdering, 1497 AtomicOrdering FailureOrdering, 1498 SynchronizationScope SynchScope, 1499 Instruction *InsertBefore) 1500 : Instruction( 1501 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), 1502 nullptr), 1503 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1504 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1505 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); 1506 } 1507 1508 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1509 AtomicOrdering SuccessOrdering, 1510 AtomicOrdering FailureOrdering, 1511 SynchronizationScope SynchScope, 1512 BasicBlock *InsertAtEnd) 1513 : Instruction( 1514 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), 1515 nullptr), 1516 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1517 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1518 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); 1519 } 1520 1521 //===----------------------------------------------------------------------===// 1522 // AtomicRMWInst Implementation 1523 //===----------------------------------------------------------------------===// 1524 1525 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1526 AtomicOrdering Ordering, 1527 SynchronizationScope SynchScope) { 1528 Op<0>() = Ptr; 1529 Op<1>() = Val; 1530 setOperation(Operation); 1531 setOrdering(Ordering); 1532 setSynchScope(SynchScope); 1533 1534 assert(getOperand(0) && getOperand(1) && 1535 "All operands must be non-null!"); 1536 assert(getOperand(0)->getType()->isPointerTy() && 1537 "Ptr must have pointer type!"); 1538 assert(getOperand(1)->getType() == 1539 cast<PointerType>(getOperand(0)->getType())->getElementType() 1540 && "Ptr must be a pointer to Val type!"); 1541 assert(Ordering != AtomicOrdering::NotAtomic && 1542 "AtomicRMW instructions must be atomic!"); 1543 } 1544 1545 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1546 AtomicOrdering Ordering, 1547 SynchronizationScope SynchScope, 1548 Instruction *InsertBefore) 1549 : Instruction(Val->getType(), AtomicRMW, 1550 OperandTraits<AtomicRMWInst>::op_begin(this), 1551 OperandTraits<AtomicRMWInst>::operands(this), 1552 InsertBefore) { 1553 Init(Operation, Ptr, Val, Ordering, SynchScope); 1554 } 1555 1556 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1557 AtomicOrdering Ordering, 1558 SynchronizationScope SynchScope, 1559 BasicBlock *InsertAtEnd) 1560 : Instruction(Val->getType(), AtomicRMW, 1561 OperandTraits<AtomicRMWInst>::op_begin(this), 1562 OperandTraits<AtomicRMWInst>::operands(this), 1563 InsertAtEnd) { 1564 Init(Operation, Ptr, Val, Ordering, SynchScope); 1565 } 1566 1567 //===----------------------------------------------------------------------===// 1568 // FenceInst Implementation 1569 //===----------------------------------------------------------------------===// 1570 1571 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1572 SynchronizationScope SynchScope, 1573 Instruction *InsertBefore) 1574 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1575 setOrdering(Ordering); 1576 setSynchScope(SynchScope); 1577 } 1578 1579 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1580 SynchronizationScope SynchScope, 1581 BasicBlock *InsertAtEnd) 1582 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1583 setOrdering(Ordering); 1584 setSynchScope(SynchScope); 1585 } 1586 1587 //===----------------------------------------------------------------------===// 1588 // GetElementPtrInst Implementation 1589 //===----------------------------------------------------------------------===// 1590 1591 void GetElementPtrInst::anchor() {} 1592 1593 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1594 const Twine &Name) { 1595 assert(getNumOperands() == 1 + IdxList.size() && 1596 "NumOperands not initialized?"); 1597 Op<0>() = Ptr; 1598 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); 1599 setName(Name); 1600 } 1601 1602 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1603 : Instruction(GEPI.getType(), GetElementPtr, 1604 OperandTraits<GetElementPtrInst>::op_end(this) - 1605 GEPI.getNumOperands(), 1606 GEPI.getNumOperands()), 1607 SourceElementType(GEPI.SourceElementType), 1608 ResultElementType(GEPI.ResultElementType) { 1609 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1610 SubclassOptionalData = GEPI.SubclassOptionalData; 1611 } 1612 1613 /// getIndexedType - Returns the type of the element that would be accessed with 1614 /// a gep instruction with the specified parameters. 1615 /// 1616 /// The Idxs pointer should point to a continuous piece of memory containing the 1617 /// indices, either as Value* or uint64_t. 1618 /// 1619 /// A null type is returned if the indices are invalid for the specified 1620 /// pointer type. 1621 /// 1622 template <typename IndexTy> 1623 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { 1624 // Handle the special case of the empty set index set, which is always valid. 1625 if (IdxList.empty()) 1626 return Agg; 1627 1628 // If there is at least one index, the top level type must be sized, otherwise 1629 // it cannot be 'stepped over'. 1630 if (!Agg->isSized()) 1631 return nullptr; 1632 1633 unsigned CurIdx = 1; 1634 for (; CurIdx != IdxList.size(); ++CurIdx) { 1635 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1636 if (!CT || CT->isPointerTy()) return nullptr; 1637 IndexTy Index = IdxList[CurIdx]; 1638 if (!CT->indexValid(Index)) return nullptr; 1639 Agg = CT->getTypeAtIndex(Index); 1640 } 1641 return CurIdx == IdxList.size() ? Agg : nullptr; 1642 } 1643 1644 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1645 return getIndexedTypeInternal(Ty, IdxList); 1646 } 1647 1648 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1649 ArrayRef<Constant *> IdxList) { 1650 return getIndexedTypeInternal(Ty, IdxList); 1651 } 1652 1653 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1654 return getIndexedTypeInternal(Ty, IdxList); 1655 } 1656 1657 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1658 /// zeros. If so, the result pointer and the first operand have the same 1659 /// value, just potentially different types. 1660 bool GetElementPtrInst::hasAllZeroIndices() const { 1661 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1662 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1663 if (!CI->isZero()) return false; 1664 } else { 1665 return false; 1666 } 1667 } 1668 return true; 1669 } 1670 1671 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1672 /// constant integers. If so, the result pointer and the first operand have 1673 /// a constant offset between them. 1674 bool GetElementPtrInst::hasAllConstantIndices() const { 1675 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1676 if (!isa<ConstantInt>(getOperand(i))) 1677 return false; 1678 } 1679 return true; 1680 } 1681 1682 void GetElementPtrInst::setIsInBounds(bool B) { 1683 cast<GEPOperator>(this)->setIsInBounds(B); 1684 } 1685 1686 bool GetElementPtrInst::isInBounds() const { 1687 return cast<GEPOperator>(this)->isInBounds(); 1688 } 1689 1690 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1691 APInt &Offset) const { 1692 // Delegate to the generic GEPOperator implementation. 1693 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1694 } 1695 1696 //===----------------------------------------------------------------------===// 1697 // ExtractElementInst Implementation 1698 //===----------------------------------------------------------------------===// 1699 1700 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1701 const Twine &Name, 1702 Instruction *InsertBef) 1703 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1704 ExtractElement, 1705 OperandTraits<ExtractElementInst>::op_begin(this), 1706 2, InsertBef) { 1707 assert(isValidOperands(Val, Index) && 1708 "Invalid extractelement instruction operands!"); 1709 Op<0>() = Val; 1710 Op<1>() = Index; 1711 setName(Name); 1712 } 1713 1714 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1715 const Twine &Name, 1716 BasicBlock *InsertAE) 1717 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1718 ExtractElement, 1719 OperandTraits<ExtractElementInst>::op_begin(this), 1720 2, InsertAE) { 1721 assert(isValidOperands(Val, Index) && 1722 "Invalid extractelement instruction operands!"); 1723 1724 Op<0>() = Val; 1725 Op<1>() = Index; 1726 setName(Name); 1727 } 1728 1729 1730 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1731 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1732 return false; 1733 return true; 1734 } 1735 1736 1737 //===----------------------------------------------------------------------===// 1738 // InsertElementInst Implementation 1739 //===----------------------------------------------------------------------===// 1740 1741 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1742 const Twine &Name, 1743 Instruction *InsertBef) 1744 : Instruction(Vec->getType(), InsertElement, 1745 OperandTraits<InsertElementInst>::op_begin(this), 1746 3, InsertBef) { 1747 assert(isValidOperands(Vec, Elt, Index) && 1748 "Invalid insertelement instruction operands!"); 1749 Op<0>() = Vec; 1750 Op<1>() = Elt; 1751 Op<2>() = Index; 1752 setName(Name); 1753 } 1754 1755 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1756 const Twine &Name, 1757 BasicBlock *InsertAE) 1758 : Instruction(Vec->getType(), InsertElement, 1759 OperandTraits<InsertElementInst>::op_begin(this), 1760 3, InsertAE) { 1761 assert(isValidOperands(Vec, Elt, Index) && 1762 "Invalid insertelement instruction operands!"); 1763 1764 Op<0>() = Vec; 1765 Op<1>() = Elt; 1766 Op<2>() = Index; 1767 setName(Name); 1768 } 1769 1770 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1771 const Value *Index) { 1772 if (!Vec->getType()->isVectorTy()) 1773 return false; // First operand of insertelement must be vector type. 1774 1775 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1776 return false;// Second operand of insertelement must be vector element type. 1777 1778 if (!Index->getType()->isIntegerTy()) 1779 return false; // Third operand of insertelement must be i32. 1780 return true; 1781 } 1782 1783 1784 //===----------------------------------------------------------------------===// 1785 // ShuffleVectorInst Implementation 1786 //===----------------------------------------------------------------------===// 1787 1788 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1789 const Twine &Name, 1790 Instruction *InsertBefore) 1791 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1792 cast<VectorType>(Mask->getType())->getNumElements()), 1793 ShuffleVector, 1794 OperandTraits<ShuffleVectorInst>::op_begin(this), 1795 OperandTraits<ShuffleVectorInst>::operands(this), 1796 InsertBefore) { 1797 assert(isValidOperands(V1, V2, Mask) && 1798 "Invalid shuffle vector instruction operands!"); 1799 Op<0>() = V1; 1800 Op<1>() = V2; 1801 Op<2>() = Mask; 1802 setName(Name); 1803 } 1804 1805 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1806 const Twine &Name, 1807 BasicBlock *InsertAtEnd) 1808 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1809 cast<VectorType>(Mask->getType())->getNumElements()), 1810 ShuffleVector, 1811 OperandTraits<ShuffleVectorInst>::op_begin(this), 1812 OperandTraits<ShuffleVectorInst>::operands(this), 1813 InsertAtEnd) { 1814 assert(isValidOperands(V1, V2, Mask) && 1815 "Invalid shuffle vector instruction operands!"); 1816 1817 Op<0>() = V1; 1818 Op<1>() = V2; 1819 Op<2>() = Mask; 1820 setName(Name); 1821 } 1822 1823 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1824 const Value *Mask) { 1825 // V1 and V2 must be vectors of the same type. 1826 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1827 return false; 1828 1829 // Mask must be vector of i32. 1830 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1831 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) 1832 return false; 1833 1834 // Check to see if Mask is valid. 1835 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1836 return true; 1837 1838 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { 1839 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1840 for (Value *Op : MV->operands()) { 1841 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1842 if (CI->uge(V1Size*2)) 1843 return false; 1844 } else if (!isa<UndefValue>(Op)) { 1845 return false; 1846 } 1847 } 1848 return true; 1849 } 1850 1851 if (const ConstantDataSequential *CDS = 1852 dyn_cast<ConstantDataSequential>(Mask)) { 1853 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1854 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1855 if (CDS->getElementAsInteger(i) >= V1Size*2) 1856 return false; 1857 return true; 1858 } 1859 1860 // The bitcode reader can create a place holder for a forward reference 1861 // used as the shuffle mask. When this occurs, the shuffle mask will 1862 // fall into this case and fail. To avoid this error, do this bit of 1863 // ugliness to allow such a mask pass. 1864 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) 1865 if (CE->getOpcode() == Instruction::UserOp1) 1866 return true; 1867 1868 return false; 1869 } 1870 1871 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { 1872 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1873 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) 1874 return CDS->getElementAsInteger(i); 1875 Constant *C = Mask->getAggregateElement(i); 1876 if (isa<UndefValue>(C)) 1877 return -1; 1878 return cast<ConstantInt>(C)->getZExtValue(); 1879 } 1880 1881 void ShuffleVectorInst::getShuffleMask(Constant *Mask, 1882 SmallVectorImpl<int> &Result) { 1883 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1884 1885 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { 1886 for (unsigned i = 0; i != NumElts; ++i) 1887 Result.push_back(CDS->getElementAsInteger(i)); 1888 return; 1889 } 1890 for (unsigned i = 0; i != NumElts; ++i) { 1891 Constant *C = Mask->getAggregateElement(i); 1892 Result.push_back(isa<UndefValue>(C) ? -1 : 1893 cast<ConstantInt>(C)->getZExtValue()); 1894 } 1895 } 1896 1897 1898 //===----------------------------------------------------------------------===// 1899 // InsertValueInst Class 1900 //===----------------------------------------------------------------------===// 1901 1902 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 1903 const Twine &Name) { 1904 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 1905 1906 // There's no fundamental reason why we require at least one index 1907 // (other than weirdness with &*IdxBegin being invalid; see 1908 // getelementptr's init routine for example). But there's no 1909 // present need to support it. 1910 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); 1911 1912 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 1913 Val->getType() && "Inserted value must match indexed type!"); 1914 Op<0>() = Agg; 1915 Op<1>() = Val; 1916 1917 Indices.append(Idxs.begin(), Idxs.end()); 1918 setName(Name); 1919 } 1920 1921 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 1922 : Instruction(IVI.getType(), InsertValue, 1923 OperandTraits<InsertValueInst>::op_begin(this), 2), 1924 Indices(IVI.Indices) { 1925 Op<0>() = IVI.getOperand(0); 1926 Op<1>() = IVI.getOperand(1); 1927 SubclassOptionalData = IVI.SubclassOptionalData; 1928 } 1929 1930 //===----------------------------------------------------------------------===// 1931 // ExtractValueInst Class 1932 //===----------------------------------------------------------------------===// 1933 1934 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 1935 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 1936 1937 // There's no fundamental reason why we require at least one index. 1938 // But there's no present need to support it. 1939 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); 1940 1941 Indices.append(Idxs.begin(), Idxs.end()); 1942 setName(Name); 1943 } 1944 1945 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 1946 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 1947 Indices(EVI.Indices) { 1948 SubclassOptionalData = EVI.SubclassOptionalData; 1949 } 1950 1951 // getIndexedType - Returns the type of the element that would be extracted 1952 // with an extractvalue instruction with the specified parameters. 1953 // 1954 // A null type is returned if the indices are invalid for the specified 1955 // pointer type. 1956 // 1957 Type *ExtractValueInst::getIndexedType(Type *Agg, 1958 ArrayRef<unsigned> Idxs) { 1959 for (unsigned Index : Idxs) { 1960 // We can't use CompositeType::indexValid(Index) here. 1961 // indexValid() always returns true for arrays because getelementptr allows 1962 // out-of-bounds indices. Since we don't allow those for extractvalue and 1963 // insertvalue we need to check array indexing manually. 1964 // Since the only other types we can index into are struct types it's just 1965 // as easy to check those manually as well. 1966 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 1967 if (Index >= AT->getNumElements()) 1968 return nullptr; 1969 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 1970 if (Index >= ST->getNumElements()) 1971 return nullptr; 1972 } else { 1973 // Not a valid type to index into. 1974 return nullptr; 1975 } 1976 1977 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 1978 } 1979 return const_cast<Type*>(Agg); 1980 } 1981 1982 //===----------------------------------------------------------------------===// 1983 // BinaryOperator Class 1984 //===----------------------------------------------------------------------===// 1985 1986 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1987 Type *Ty, const Twine &Name, 1988 Instruction *InsertBefore) 1989 : Instruction(Ty, iType, 1990 OperandTraits<BinaryOperator>::op_begin(this), 1991 OperandTraits<BinaryOperator>::operands(this), 1992 InsertBefore) { 1993 Op<0>() = S1; 1994 Op<1>() = S2; 1995 init(iType); 1996 setName(Name); 1997 } 1998 1999 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2000 Type *Ty, const Twine &Name, 2001 BasicBlock *InsertAtEnd) 2002 : Instruction(Ty, iType, 2003 OperandTraits<BinaryOperator>::op_begin(this), 2004 OperandTraits<BinaryOperator>::operands(this), 2005 InsertAtEnd) { 2006 Op<0>() = S1; 2007 Op<1>() = S2; 2008 init(iType); 2009 setName(Name); 2010 } 2011 2012 2013 void BinaryOperator::init(BinaryOps iType) { 2014 Value *LHS = getOperand(0), *RHS = getOperand(1); 2015 (void)LHS; (void)RHS; // Silence warnings. 2016 assert(LHS->getType() == RHS->getType() && 2017 "Binary operator operand types must match!"); 2018 #ifndef NDEBUG 2019 switch (iType) { 2020 case Add: case Sub: 2021 case Mul: 2022 assert(getType() == LHS->getType() && 2023 "Arithmetic operation should return same type as operands!"); 2024 assert(getType()->isIntOrIntVectorTy() && 2025 "Tried to create an integer operation on a non-integer type!"); 2026 break; 2027 case FAdd: case FSub: 2028 case FMul: 2029 assert(getType() == LHS->getType() && 2030 "Arithmetic operation should return same type as operands!"); 2031 assert(getType()->isFPOrFPVectorTy() && 2032 "Tried to create a floating-point operation on a " 2033 "non-floating-point type!"); 2034 break; 2035 case UDiv: 2036 case SDiv: 2037 assert(getType() == LHS->getType() && 2038 "Arithmetic operation should return same type as operands!"); 2039 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 2040 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2041 "Incorrect operand type (not integer) for S/UDIV"); 2042 break; 2043 case FDiv: 2044 assert(getType() == LHS->getType() && 2045 "Arithmetic operation should return same type as operands!"); 2046 assert(getType()->isFPOrFPVectorTy() && 2047 "Incorrect operand type (not floating point) for FDIV"); 2048 break; 2049 case URem: 2050 case SRem: 2051 assert(getType() == LHS->getType() && 2052 "Arithmetic operation should return same type as operands!"); 2053 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 2054 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2055 "Incorrect operand type (not integer) for S/UREM"); 2056 break; 2057 case FRem: 2058 assert(getType() == LHS->getType() && 2059 "Arithmetic operation should return same type as operands!"); 2060 assert(getType()->isFPOrFPVectorTy() && 2061 "Incorrect operand type (not floating point) for FREM"); 2062 break; 2063 case Shl: 2064 case LShr: 2065 case AShr: 2066 assert(getType() == LHS->getType() && 2067 "Shift operation should return same type as operands!"); 2068 assert((getType()->isIntegerTy() || 2069 (getType()->isVectorTy() && 2070 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2071 "Tried to create a shift operation on a non-integral type!"); 2072 break; 2073 case And: case Or: 2074 case Xor: 2075 assert(getType() == LHS->getType() && 2076 "Logical operation should return same type as operands!"); 2077 assert((getType()->isIntegerTy() || 2078 (getType()->isVectorTy() && 2079 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 2080 "Tried to create a logical operation on a non-integral type!"); 2081 break; 2082 default: 2083 break; 2084 } 2085 #endif 2086 } 2087 2088 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2089 const Twine &Name, 2090 Instruction *InsertBefore) { 2091 assert(S1->getType() == S2->getType() && 2092 "Cannot create binary operator with two operands of differing type!"); 2093 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2094 } 2095 2096 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2097 const Twine &Name, 2098 BasicBlock *InsertAtEnd) { 2099 BinaryOperator *Res = Create(Op, S1, S2, Name); 2100 InsertAtEnd->getInstList().push_back(Res); 2101 return Res; 2102 } 2103 2104 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2105 Instruction *InsertBefore) { 2106 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2107 return new BinaryOperator(Instruction::Sub, 2108 zero, Op, 2109 Op->getType(), Name, InsertBefore); 2110 } 2111 2112 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2113 BasicBlock *InsertAtEnd) { 2114 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2115 return new BinaryOperator(Instruction::Sub, 2116 zero, Op, 2117 Op->getType(), Name, InsertAtEnd); 2118 } 2119 2120 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2121 Instruction *InsertBefore) { 2122 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2123 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2124 } 2125 2126 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2127 BasicBlock *InsertAtEnd) { 2128 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2129 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2130 } 2131 2132 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2133 Instruction *InsertBefore) { 2134 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2135 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2136 } 2137 2138 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2139 BasicBlock *InsertAtEnd) { 2140 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2141 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2142 } 2143 2144 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2145 Instruction *InsertBefore) { 2146 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2147 return new BinaryOperator(Instruction::FSub, zero, Op, 2148 Op->getType(), Name, InsertBefore); 2149 } 2150 2151 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2152 BasicBlock *InsertAtEnd) { 2153 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2154 return new BinaryOperator(Instruction::FSub, zero, Op, 2155 Op->getType(), Name, InsertAtEnd); 2156 } 2157 2158 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2159 Instruction *InsertBefore) { 2160 Constant *C = Constant::getAllOnesValue(Op->getType()); 2161 return new BinaryOperator(Instruction::Xor, Op, C, 2162 Op->getType(), Name, InsertBefore); 2163 } 2164 2165 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2166 BasicBlock *InsertAtEnd) { 2167 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2168 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2169 Op->getType(), Name, InsertAtEnd); 2170 } 2171 2172 2173 // isConstantAllOnes - Helper function for several functions below 2174 static inline bool isConstantAllOnes(const Value *V) { 2175 if (const Constant *C = dyn_cast<Constant>(V)) 2176 return C->isAllOnesValue(); 2177 return false; 2178 } 2179 2180 bool BinaryOperator::isNeg(const Value *V) { 2181 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2182 if (Bop->getOpcode() == Instruction::Sub) 2183 if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) 2184 return C->isNegativeZeroValue(); 2185 return false; 2186 } 2187 2188 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { 2189 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2190 if (Bop->getOpcode() == Instruction::FSub) 2191 if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) { 2192 if (!IgnoreZeroSign) 2193 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); 2194 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); 2195 } 2196 return false; 2197 } 2198 2199 bool BinaryOperator::isNot(const Value *V) { 2200 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 2201 return (Bop->getOpcode() == Instruction::Xor && 2202 (isConstantAllOnes(Bop->getOperand(1)) || 2203 isConstantAllOnes(Bop->getOperand(0)))); 2204 return false; 2205 } 2206 2207 Value *BinaryOperator::getNegArgument(Value *BinOp) { 2208 return cast<BinaryOperator>(BinOp)->getOperand(1); 2209 } 2210 2211 const Value *BinaryOperator::getNegArgument(const Value *BinOp) { 2212 return getNegArgument(const_cast<Value*>(BinOp)); 2213 } 2214 2215 Value *BinaryOperator::getFNegArgument(Value *BinOp) { 2216 return cast<BinaryOperator>(BinOp)->getOperand(1); 2217 } 2218 2219 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { 2220 return getFNegArgument(const_cast<Value*>(BinOp)); 2221 } 2222 2223 Value *BinaryOperator::getNotArgument(Value *BinOp) { 2224 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); 2225 BinaryOperator *BO = cast<BinaryOperator>(BinOp); 2226 Value *Op0 = BO->getOperand(0); 2227 Value *Op1 = BO->getOperand(1); 2228 if (isConstantAllOnes(Op0)) return Op1; 2229 2230 assert(isConstantAllOnes(Op1)); 2231 return Op0; 2232 } 2233 2234 const Value *BinaryOperator::getNotArgument(const Value *BinOp) { 2235 return getNotArgument(const_cast<Value*>(BinOp)); 2236 } 2237 2238 2239 // swapOperands - Exchange the two operands to this instruction. This 2240 // instruction is safe to use on any binary instruction and does not 2241 // modify the semantics of the instruction. If the instruction is 2242 // order dependent (SetLT f.e.) the opcode is changed. 2243 // 2244 bool BinaryOperator::swapOperands() { 2245 if (!isCommutative()) 2246 return true; // Can't commute operands 2247 Op<0>().swap(Op<1>()); 2248 return false; 2249 } 2250 2251 2252 //===----------------------------------------------------------------------===// 2253 // FPMathOperator Class 2254 //===----------------------------------------------------------------------===// 2255 2256 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. 2257 /// An accuracy of 0.0 means that the operation should be performed with the 2258 /// default precision. 2259 float FPMathOperator::getFPAccuracy() const { 2260 const MDNode *MD = 2261 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2262 if (!MD) 2263 return 0.0; 2264 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2265 return Accuracy->getValueAPF().convertToFloat(); 2266 } 2267 2268 2269 //===----------------------------------------------------------------------===// 2270 // CastInst Class 2271 //===----------------------------------------------------------------------===// 2272 2273 void CastInst::anchor() {} 2274 2275 // Just determine if this cast only deals with integral->integral conversion. 2276 bool CastInst::isIntegerCast() const { 2277 switch (getOpcode()) { 2278 default: return false; 2279 case Instruction::ZExt: 2280 case Instruction::SExt: 2281 case Instruction::Trunc: 2282 return true; 2283 case Instruction::BitCast: 2284 return getOperand(0)->getType()->isIntegerTy() && 2285 getType()->isIntegerTy(); 2286 } 2287 } 2288 2289 bool CastInst::isLosslessCast() const { 2290 // Only BitCast can be lossless, exit fast if we're not BitCast 2291 if (getOpcode() != Instruction::BitCast) 2292 return false; 2293 2294 // Identity cast is always lossless 2295 Type *SrcTy = getOperand(0)->getType(); 2296 Type *DstTy = getType(); 2297 if (SrcTy == DstTy) 2298 return true; 2299 2300 // Pointer to pointer is always lossless. 2301 if (SrcTy->isPointerTy()) 2302 return DstTy->isPointerTy(); 2303 return false; // Other types have no identity values 2304 } 2305 2306 /// This function determines if the CastInst does not require any bits to be 2307 /// changed in order to effect the cast. Essentially, it identifies cases where 2308 /// no code gen is necessary for the cast, hence the name no-op cast. For 2309 /// example, the following are all no-op casts: 2310 /// # bitcast i32* %x to i8* 2311 /// # bitcast <2 x i32> %x to <4 x i16> 2312 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2313 /// @brief Determine if the described cast is a no-op. 2314 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2315 Type *SrcTy, 2316 Type *DestTy, 2317 Type *IntPtrTy) { 2318 switch (Opcode) { 2319 default: llvm_unreachable("Invalid CastOp"); 2320 case Instruction::Trunc: 2321 case Instruction::ZExt: 2322 case Instruction::SExt: 2323 case Instruction::FPTrunc: 2324 case Instruction::FPExt: 2325 case Instruction::UIToFP: 2326 case Instruction::SIToFP: 2327 case Instruction::FPToUI: 2328 case Instruction::FPToSI: 2329 case Instruction::AddrSpaceCast: 2330 // TODO: Target informations may give a more accurate answer here. 2331 return false; 2332 case Instruction::BitCast: 2333 return true; // BitCast never modifies bits. 2334 case Instruction::PtrToInt: 2335 return IntPtrTy->getScalarSizeInBits() == 2336 DestTy->getScalarSizeInBits(); 2337 case Instruction::IntToPtr: 2338 return IntPtrTy->getScalarSizeInBits() == 2339 SrcTy->getScalarSizeInBits(); 2340 } 2341 } 2342 2343 /// @brief Determine if a cast is a no-op. 2344 bool CastInst::isNoopCast(Type *IntPtrTy) const { 2345 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2346 } 2347 2348 bool CastInst::isNoopCast(const DataLayout &DL) const { 2349 Type *PtrOpTy = nullptr; 2350 if (getOpcode() == Instruction::PtrToInt) 2351 PtrOpTy = getOperand(0)->getType(); 2352 else if (getOpcode() == Instruction::IntToPtr) 2353 PtrOpTy = getType(); 2354 2355 Type *IntPtrTy = 2356 PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0); 2357 2358 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2359 } 2360 2361 /// This function determines if a pair of casts can be eliminated and what 2362 /// opcode should be used in the elimination. This assumes that there are two 2363 /// instructions like this: 2364 /// * %F = firstOpcode SrcTy %x to MidTy 2365 /// * %S = secondOpcode MidTy %F to DstTy 2366 /// The function returns a resultOpcode so these two casts can be replaced with: 2367 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2368 /// If no such cast is permitted, the function returns 0. 2369 unsigned CastInst::isEliminableCastPair( 2370 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2371 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2372 Type *DstIntPtrTy) { 2373 // Define the 144 possibilities for these two cast instructions. The values 2374 // in this matrix determine what to do in a given situation and select the 2375 // case in the switch below. The rows correspond to firstOp, the columns 2376 // correspond to secondOp. In looking at the table below, keep in mind 2377 // the following cast properties: 2378 // 2379 // Size Compare Source Destination 2380 // Operator Src ? Size Type Sign Type Sign 2381 // -------- ------------ ------------------- --------------------- 2382 // TRUNC > Integer Any Integral Any 2383 // ZEXT < Integral Unsigned Integer Any 2384 // SEXT < Integral Signed Integer Any 2385 // FPTOUI n/a FloatPt n/a Integral Unsigned 2386 // FPTOSI n/a FloatPt n/a Integral Signed 2387 // UITOFP n/a Integral Unsigned FloatPt n/a 2388 // SITOFP n/a Integral Signed FloatPt n/a 2389 // FPTRUNC > FloatPt n/a FloatPt n/a 2390 // FPEXT < FloatPt n/a FloatPt n/a 2391 // PTRTOINT n/a Pointer n/a Integral Unsigned 2392 // INTTOPTR n/a Integral Unsigned Pointer n/a 2393 // BITCAST = FirstClass n/a FirstClass n/a 2394 // ADDRSPCST n/a Pointer n/a Pointer n/a 2395 // 2396 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2397 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2398 // into "fptoui double to i64", but this loses information about the range 2399 // of the produced value (we no longer know the top-part is all zeros). 2400 // Further this conversion is often much more expensive for typical hardware, 2401 // and causes issues when building libgcc. We disallow fptosi+sext for the 2402 // same reason. 2403 const unsigned numCastOps = 2404 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2405 static const uint8_t CastResults[numCastOps][numCastOps] = { 2406 // T F F U S F F P I B A -+ 2407 // R Z S P P I I T P 2 N T S | 2408 // U E E 2 2 2 2 R E I T C C +- secondOp 2409 // N X X U S F F N X N 2 V V | 2410 // C T T I I P P C T T P T T -+ 2411 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2412 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2413 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2414 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2415 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2416 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2417 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2418 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2419 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt | 2420 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2421 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2422 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2423 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2424 }; 2425 2426 // TODO: This logic could be encoded into the table above and handled in the 2427 // switch below. 2428 // If either of the casts are a bitcast from scalar to vector, disallow the 2429 // merging. However, any pair of bitcasts are allowed. 2430 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2431 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2432 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2433 2434 // Check if any of the casts convert scalars <-> vectors. 2435 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2436 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2437 if (!AreBothBitcasts) 2438 return 0; 2439 2440 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2441 [secondOp-Instruction::CastOpsBegin]; 2442 switch (ElimCase) { 2443 case 0: 2444 // Categorically disallowed. 2445 return 0; 2446 case 1: 2447 // Allowed, use first cast's opcode. 2448 return firstOp; 2449 case 2: 2450 // Allowed, use second cast's opcode. 2451 return secondOp; 2452 case 3: 2453 // No-op cast in second op implies firstOp as long as the DestTy 2454 // is integer and we are not converting between a vector and a 2455 // non-vector type. 2456 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2457 return firstOp; 2458 return 0; 2459 case 4: 2460 // No-op cast in second op implies firstOp as long as the DestTy 2461 // is floating point. 2462 if (DstTy->isFloatingPointTy()) 2463 return firstOp; 2464 return 0; 2465 case 5: 2466 // No-op cast in first op implies secondOp as long as the SrcTy 2467 // is an integer. 2468 if (SrcTy->isIntegerTy()) 2469 return secondOp; 2470 return 0; 2471 case 6: 2472 // No-op cast in first op implies secondOp as long as the SrcTy 2473 // is a floating point. 2474 if (SrcTy->isFloatingPointTy()) 2475 return secondOp; 2476 return 0; 2477 case 7: { 2478 // Cannot simplify if address spaces are different! 2479 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2480 return 0; 2481 2482 unsigned MidSize = MidTy->getScalarSizeInBits(); 2483 // We can still fold this without knowing the actual sizes as long we 2484 // know that the intermediate pointer is the largest possible 2485 // pointer size. 2486 // FIXME: Is this always true? 2487 if (MidSize == 64) 2488 return Instruction::BitCast; 2489 2490 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2491 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2492 return 0; 2493 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2494 if (MidSize >= PtrSize) 2495 return Instruction::BitCast; 2496 return 0; 2497 } 2498 case 8: { 2499 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2500 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2501 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2502 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2503 unsigned DstSize = DstTy->getScalarSizeInBits(); 2504 if (SrcSize == DstSize) 2505 return Instruction::BitCast; 2506 else if (SrcSize < DstSize) 2507 return firstOp; 2508 return secondOp; 2509 } 2510 case 9: 2511 // zext, sext -> zext, because sext can't sign extend after zext 2512 return Instruction::ZExt; 2513 case 10: 2514 // fpext followed by ftrunc is allowed if the bit size returned to is 2515 // the same as the original, in which case its just a bitcast 2516 if (SrcTy == DstTy) 2517 return Instruction::BitCast; 2518 return 0; // If the types are not the same we can't eliminate it. 2519 case 11: { 2520 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2521 if (!MidIntPtrTy) 2522 return 0; 2523 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2524 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2525 unsigned DstSize = DstTy->getScalarSizeInBits(); 2526 if (SrcSize <= PtrSize && SrcSize == DstSize) 2527 return Instruction::BitCast; 2528 return 0; 2529 } 2530 case 12: { 2531 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2532 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2533 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2534 return Instruction::AddrSpaceCast; 2535 return Instruction::BitCast; 2536 } 2537 case 13: 2538 // FIXME: this state can be merged with (1), but the following assert 2539 // is useful to check the correcteness of the sequence due to semantic 2540 // change of bitcast. 2541 assert( 2542 SrcTy->isPtrOrPtrVectorTy() && 2543 MidTy->isPtrOrPtrVectorTy() && 2544 DstTy->isPtrOrPtrVectorTy() && 2545 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2546 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2547 "Illegal addrspacecast, bitcast sequence!"); 2548 // Allowed, use first cast's opcode 2549 return firstOp; 2550 case 14: 2551 // bitcast, addrspacecast -> addrspacecast if the element type of 2552 // bitcast's source is the same as that of addrspacecast's destination. 2553 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType()) 2554 return Instruction::AddrSpaceCast; 2555 return 0; 2556 2557 case 15: 2558 // FIXME: this state can be merged with (1), but the following assert 2559 // is useful to check the correcteness of the sequence due to semantic 2560 // change of bitcast. 2561 assert( 2562 SrcTy->isIntOrIntVectorTy() && 2563 MidTy->isPtrOrPtrVectorTy() && 2564 DstTy->isPtrOrPtrVectorTy() && 2565 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2566 "Illegal inttoptr, bitcast sequence!"); 2567 // Allowed, use first cast's opcode 2568 return firstOp; 2569 case 16: 2570 // FIXME: this state can be merged with (2), but the following assert 2571 // is useful to check the correcteness of the sequence due to semantic 2572 // change of bitcast. 2573 assert( 2574 SrcTy->isPtrOrPtrVectorTy() && 2575 MidTy->isPtrOrPtrVectorTy() && 2576 DstTy->isIntOrIntVectorTy() && 2577 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2578 "Illegal bitcast, ptrtoint sequence!"); 2579 // Allowed, use second cast's opcode 2580 return secondOp; 2581 case 17: 2582 // (sitofp (zext x)) -> (uitofp x) 2583 return Instruction::UIToFP; 2584 case 99: 2585 // Cast combination can't happen (error in input). This is for all cases 2586 // where the MidTy is not the same for the two cast instructions. 2587 llvm_unreachable("Invalid Cast Combination"); 2588 default: 2589 llvm_unreachable("Error in CastResults table!!!"); 2590 } 2591 } 2592 2593 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2594 const Twine &Name, Instruction *InsertBefore) { 2595 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2596 // Construct and return the appropriate CastInst subclass 2597 switch (op) { 2598 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2599 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2600 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2601 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2602 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2603 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2604 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2605 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2606 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2607 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2608 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2609 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2610 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2611 default: llvm_unreachable("Invalid opcode provided"); 2612 } 2613 } 2614 2615 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2616 const Twine &Name, BasicBlock *InsertAtEnd) { 2617 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2618 // Construct and return the appropriate CastInst subclass 2619 switch (op) { 2620 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2621 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2622 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2623 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2624 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2625 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2626 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2627 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2628 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2629 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2630 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2631 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2632 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2633 default: llvm_unreachable("Invalid opcode provided"); 2634 } 2635 } 2636 2637 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2638 const Twine &Name, 2639 Instruction *InsertBefore) { 2640 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2641 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2642 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2643 } 2644 2645 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2646 const Twine &Name, 2647 BasicBlock *InsertAtEnd) { 2648 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2649 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2650 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2651 } 2652 2653 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2654 const Twine &Name, 2655 Instruction *InsertBefore) { 2656 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2657 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2658 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2659 } 2660 2661 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2662 const Twine &Name, 2663 BasicBlock *InsertAtEnd) { 2664 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2665 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2666 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2667 } 2668 2669 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2670 const Twine &Name, 2671 Instruction *InsertBefore) { 2672 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2673 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2674 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2675 } 2676 2677 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2678 const Twine &Name, 2679 BasicBlock *InsertAtEnd) { 2680 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2681 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2682 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2683 } 2684 2685 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2686 const Twine &Name, 2687 BasicBlock *InsertAtEnd) { 2688 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2689 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2690 "Invalid cast"); 2691 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2692 assert((!Ty->isVectorTy() || 2693 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2694 "Invalid cast"); 2695 2696 if (Ty->isIntOrIntVectorTy()) 2697 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2698 2699 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 2700 } 2701 2702 /// @brief Create a BitCast or a PtrToInt cast instruction 2703 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2704 const Twine &Name, 2705 Instruction *InsertBefore) { 2706 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2707 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2708 "Invalid cast"); 2709 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2710 assert((!Ty->isVectorTy() || 2711 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2712 "Invalid cast"); 2713 2714 if (Ty->isIntOrIntVectorTy()) 2715 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2716 2717 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 2718 } 2719 2720 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2721 Value *S, Type *Ty, 2722 const Twine &Name, 2723 BasicBlock *InsertAtEnd) { 2724 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2725 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2726 2727 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2728 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 2729 2730 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2731 } 2732 2733 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2734 Value *S, Type *Ty, 2735 const Twine &Name, 2736 Instruction *InsertBefore) { 2737 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2738 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2739 2740 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2741 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 2742 2743 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2744 } 2745 2746 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 2747 const Twine &Name, 2748 Instruction *InsertBefore) { 2749 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 2750 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2751 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 2752 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 2753 2754 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2755 } 2756 2757 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2758 bool isSigned, const Twine &Name, 2759 Instruction *InsertBefore) { 2760 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2761 "Invalid integer cast"); 2762 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2763 unsigned DstBits = Ty->getScalarSizeInBits(); 2764 Instruction::CastOps opcode = 2765 (SrcBits == DstBits ? Instruction::BitCast : 2766 (SrcBits > DstBits ? Instruction::Trunc : 2767 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2768 return Create(opcode, C, Ty, Name, InsertBefore); 2769 } 2770 2771 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2772 bool isSigned, const Twine &Name, 2773 BasicBlock *InsertAtEnd) { 2774 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2775 "Invalid cast"); 2776 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2777 unsigned DstBits = Ty->getScalarSizeInBits(); 2778 Instruction::CastOps opcode = 2779 (SrcBits == DstBits ? Instruction::BitCast : 2780 (SrcBits > DstBits ? Instruction::Trunc : 2781 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2782 return Create(opcode, C, Ty, Name, InsertAtEnd); 2783 } 2784 2785 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2786 const Twine &Name, 2787 Instruction *InsertBefore) { 2788 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2789 "Invalid cast"); 2790 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2791 unsigned DstBits = Ty->getScalarSizeInBits(); 2792 Instruction::CastOps opcode = 2793 (SrcBits == DstBits ? Instruction::BitCast : 2794 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2795 return Create(opcode, C, Ty, Name, InsertBefore); 2796 } 2797 2798 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2799 const Twine &Name, 2800 BasicBlock *InsertAtEnd) { 2801 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2802 "Invalid cast"); 2803 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2804 unsigned DstBits = Ty->getScalarSizeInBits(); 2805 Instruction::CastOps opcode = 2806 (SrcBits == DstBits ? Instruction::BitCast : 2807 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2808 return Create(opcode, C, Ty, Name, InsertAtEnd); 2809 } 2810 2811 // Check whether it is valid to call getCastOpcode for these types. 2812 // This routine must be kept in sync with getCastOpcode. 2813 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2814 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2815 return false; 2816 2817 if (SrcTy == DestTy) 2818 return true; 2819 2820 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2821 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2822 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2823 // An element by element cast. Valid if casting the elements is valid. 2824 SrcTy = SrcVecTy->getElementType(); 2825 DestTy = DestVecTy->getElementType(); 2826 } 2827 2828 // Get the bit sizes, we'll need these 2829 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2830 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2831 2832 // Run through the possibilities ... 2833 if (DestTy->isIntegerTy()) { // Casting to integral 2834 if (SrcTy->isIntegerTy()) // Casting from integral 2835 return true; 2836 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2837 return true; 2838 if (SrcTy->isVectorTy()) // Casting from vector 2839 return DestBits == SrcBits; 2840 // Casting from something else 2841 return SrcTy->isPointerTy(); 2842 } 2843 if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2844 if (SrcTy->isIntegerTy()) // Casting from integral 2845 return true; 2846 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2847 return true; 2848 if (SrcTy->isVectorTy()) // Casting from vector 2849 return DestBits == SrcBits; 2850 // Casting from something else 2851 return false; 2852 } 2853 if (DestTy->isVectorTy()) // Casting to vector 2854 return DestBits == SrcBits; 2855 if (DestTy->isPointerTy()) { // Casting to pointer 2856 if (SrcTy->isPointerTy()) // Casting from pointer 2857 return true; 2858 return SrcTy->isIntegerTy(); // Casting from integral 2859 } 2860 if (DestTy->isX86_MMXTy()) { 2861 if (SrcTy->isVectorTy()) 2862 return DestBits == SrcBits; // 64-bit vector to MMX 2863 return false; 2864 } // Casting to something else 2865 return false; 2866 } 2867 2868 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 2869 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2870 return false; 2871 2872 if (SrcTy == DestTy) 2873 return true; 2874 2875 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2876 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 2877 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2878 // An element by element cast. Valid if casting the elements is valid. 2879 SrcTy = SrcVecTy->getElementType(); 2880 DestTy = DestVecTy->getElementType(); 2881 } 2882 } 2883 } 2884 2885 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 2886 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 2887 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 2888 } 2889 } 2890 2891 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2892 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2893 2894 // Could still have vectors of pointers if the number of elements doesn't 2895 // match 2896 if (SrcBits == 0 || DestBits == 0) 2897 return false; 2898 2899 if (SrcBits != DestBits) 2900 return false; 2901 2902 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 2903 return false; 2904 2905 return true; 2906 } 2907 2908 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 2909 const DataLayout &DL) { 2910 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 2911 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 2912 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy); 2913 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 2914 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 2915 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy); 2916 2917 return isBitCastable(SrcTy, DestTy); 2918 } 2919 2920 // Provide a way to get a "cast" where the cast opcode is inferred from the 2921 // types and size of the operand. This, basically, is a parallel of the 2922 // logic in the castIsValid function below. This axiom should hold: 2923 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2924 // should not assert in castIsValid. In other words, this produces a "correct" 2925 // casting opcode for the arguments passed to it. 2926 // This routine must be kept in sync with isCastable. 2927 Instruction::CastOps 2928 CastInst::getCastOpcode( 2929 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2930 Type *SrcTy = Src->getType(); 2931 2932 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 2933 "Only first class types are castable!"); 2934 2935 if (SrcTy == DestTy) 2936 return BitCast; 2937 2938 // FIXME: Check address space sizes here 2939 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2940 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2941 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2942 // An element by element cast. Find the appropriate opcode based on the 2943 // element types. 2944 SrcTy = SrcVecTy->getElementType(); 2945 DestTy = DestVecTy->getElementType(); 2946 } 2947 2948 // Get the bit sizes, we'll need these 2949 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2950 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2951 2952 // Run through the possibilities ... 2953 if (DestTy->isIntegerTy()) { // Casting to integral 2954 if (SrcTy->isIntegerTy()) { // Casting from integral 2955 if (DestBits < SrcBits) 2956 return Trunc; // int -> smaller int 2957 else if (DestBits > SrcBits) { // its an extension 2958 if (SrcIsSigned) 2959 return SExt; // signed -> SEXT 2960 else 2961 return ZExt; // unsigned -> ZEXT 2962 } else { 2963 return BitCast; // Same size, No-op cast 2964 } 2965 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2966 if (DestIsSigned) 2967 return FPToSI; // FP -> sint 2968 else 2969 return FPToUI; // FP -> uint 2970 } else if (SrcTy->isVectorTy()) { 2971 assert(DestBits == SrcBits && 2972 "Casting vector to integer of different width"); 2973 return BitCast; // Same size, no-op cast 2974 } else { 2975 assert(SrcTy->isPointerTy() && 2976 "Casting from a value that is not first-class type"); 2977 return PtrToInt; // ptr -> int 2978 } 2979 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2980 if (SrcTy->isIntegerTy()) { // Casting from integral 2981 if (SrcIsSigned) 2982 return SIToFP; // sint -> FP 2983 else 2984 return UIToFP; // uint -> FP 2985 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2986 if (DestBits < SrcBits) { 2987 return FPTrunc; // FP -> smaller FP 2988 } else if (DestBits > SrcBits) { 2989 return FPExt; // FP -> larger FP 2990 } else { 2991 return BitCast; // same size, no-op cast 2992 } 2993 } else if (SrcTy->isVectorTy()) { 2994 assert(DestBits == SrcBits && 2995 "Casting vector to floating point of different width"); 2996 return BitCast; // same size, no-op cast 2997 } 2998 llvm_unreachable("Casting pointer or non-first class to float"); 2999 } else if (DestTy->isVectorTy()) { 3000 assert(DestBits == SrcBits && 3001 "Illegal cast to vector (wrong type or size)"); 3002 return BitCast; 3003 } else if (DestTy->isPointerTy()) { 3004 if (SrcTy->isPointerTy()) { 3005 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3006 return AddrSpaceCast; 3007 return BitCast; // ptr -> ptr 3008 } else if (SrcTy->isIntegerTy()) { 3009 return IntToPtr; // int -> ptr 3010 } 3011 llvm_unreachable("Casting pointer to other than pointer or int"); 3012 } else if (DestTy->isX86_MMXTy()) { 3013 if (SrcTy->isVectorTy()) { 3014 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3015 return BitCast; // 64-bit vector to MMX 3016 } 3017 llvm_unreachable("Illegal cast to X86_MMX"); 3018 } 3019 llvm_unreachable("Casting to type that is not first-class"); 3020 } 3021 3022 //===----------------------------------------------------------------------===// 3023 // CastInst SubClass Constructors 3024 //===----------------------------------------------------------------------===// 3025 3026 /// Check that the construction parameters for a CastInst are correct. This 3027 /// could be broken out into the separate constructors but it is useful to have 3028 /// it in one place and to eliminate the redundant code for getting the sizes 3029 /// of the types involved. 3030 bool 3031 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 3032 3033 // Check for type sanity on the arguments 3034 Type *SrcTy = S->getType(); 3035 3036 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3037 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3038 return false; 3039 3040 // Get the size of the types in bits, we'll need this later 3041 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3042 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 3043 3044 // If these are vector types, get the lengths of the vectors (using zero for 3045 // scalar types means that checking that vector lengths match also checks that 3046 // scalars are not being converted to vectors or vectors to scalars). 3047 unsigned SrcLength = SrcTy->isVectorTy() ? 3048 cast<VectorType>(SrcTy)->getNumElements() : 0; 3049 unsigned DstLength = DstTy->isVectorTy() ? 3050 cast<VectorType>(DstTy)->getNumElements() : 0; 3051 3052 // Switch on the opcode provided 3053 switch (op) { 3054 default: return false; // This is an input error 3055 case Instruction::Trunc: 3056 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3057 SrcLength == DstLength && SrcBitSize > DstBitSize; 3058 case Instruction::ZExt: 3059 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3060 SrcLength == DstLength && SrcBitSize < DstBitSize; 3061 case Instruction::SExt: 3062 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3063 SrcLength == DstLength && SrcBitSize < DstBitSize; 3064 case Instruction::FPTrunc: 3065 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3066 SrcLength == DstLength && SrcBitSize > DstBitSize; 3067 case Instruction::FPExt: 3068 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3069 SrcLength == DstLength && SrcBitSize < DstBitSize; 3070 case Instruction::UIToFP: 3071 case Instruction::SIToFP: 3072 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3073 SrcLength == DstLength; 3074 case Instruction::FPToUI: 3075 case Instruction::FPToSI: 3076 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3077 SrcLength == DstLength; 3078 case Instruction::PtrToInt: 3079 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3080 return false; 3081 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3082 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3083 return false; 3084 return SrcTy->getScalarType()->isPointerTy() && 3085 DstTy->getScalarType()->isIntegerTy(); 3086 case Instruction::IntToPtr: 3087 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3088 return false; 3089 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3090 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3091 return false; 3092 return SrcTy->getScalarType()->isIntegerTy() && 3093 DstTy->getScalarType()->isPointerTy(); 3094 case Instruction::BitCast: { 3095 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3096 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3097 3098 // BitCast implies a no-op cast of type only. No bits change. 3099 // However, you can't cast pointers to anything but pointers. 3100 if (!SrcPtrTy != !DstPtrTy) 3101 return false; 3102 3103 // For non-pointer cases, the cast is okay if the source and destination bit 3104 // widths are identical. 3105 if (!SrcPtrTy) 3106 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3107 3108 // If both are pointers then the address spaces must match. 3109 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3110 return false; 3111 3112 // A vector of pointers must have the same number of elements. 3113 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3114 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3115 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3116 3117 return false; 3118 } 3119 3120 return true; 3121 } 3122 case Instruction::AddrSpaceCast: { 3123 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3124 if (!SrcPtrTy) 3125 return false; 3126 3127 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3128 if (!DstPtrTy) 3129 return false; 3130 3131 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3132 return false; 3133 3134 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3135 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3136 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3137 3138 return false; 3139 } 3140 3141 return true; 3142 } 3143 } 3144 } 3145 3146 TruncInst::TruncInst( 3147 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3148 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3149 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3150 } 3151 3152 TruncInst::TruncInst( 3153 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3154 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3155 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3156 } 3157 3158 ZExtInst::ZExtInst( 3159 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3160 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3161 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3162 } 3163 3164 ZExtInst::ZExtInst( 3165 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3166 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3167 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3168 } 3169 SExtInst::SExtInst( 3170 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3171 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3172 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3173 } 3174 3175 SExtInst::SExtInst( 3176 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3177 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3178 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3179 } 3180 3181 FPTruncInst::FPTruncInst( 3182 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3183 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3184 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3185 } 3186 3187 FPTruncInst::FPTruncInst( 3188 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3189 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3190 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3191 } 3192 3193 FPExtInst::FPExtInst( 3194 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3195 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3196 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3197 } 3198 3199 FPExtInst::FPExtInst( 3200 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3201 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3202 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3203 } 3204 3205 UIToFPInst::UIToFPInst( 3206 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3207 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3208 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3209 } 3210 3211 UIToFPInst::UIToFPInst( 3212 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3213 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3214 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3215 } 3216 3217 SIToFPInst::SIToFPInst( 3218 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3219 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3220 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3221 } 3222 3223 SIToFPInst::SIToFPInst( 3224 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3225 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3226 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3227 } 3228 3229 FPToUIInst::FPToUIInst( 3230 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3231 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3232 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3233 } 3234 3235 FPToUIInst::FPToUIInst( 3236 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3237 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3238 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3239 } 3240 3241 FPToSIInst::FPToSIInst( 3242 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3243 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3244 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3245 } 3246 3247 FPToSIInst::FPToSIInst( 3248 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3249 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3250 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3251 } 3252 3253 PtrToIntInst::PtrToIntInst( 3254 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3255 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3256 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3257 } 3258 3259 PtrToIntInst::PtrToIntInst( 3260 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3261 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3262 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3263 } 3264 3265 IntToPtrInst::IntToPtrInst( 3266 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3267 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3268 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3269 } 3270 3271 IntToPtrInst::IntToPtrInst( 3272 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3273 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3274 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3275 } 3276 3277 BitCastInst::BitCastInst( 3278 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3279 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3280 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3281 } 3282 3283 BitCastInst::BitCastInst( 3284 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3285 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3286 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3287 } 3288 3289 AddrSpaceCastInst::AddrSpaceCastInst( 3290 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3291 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3292 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3293 } 3294 3295 AddrSpaceCastInst::AddrSpaceCastInst( 3296 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3297 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3298 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3299 } 3300 3301 //===----------------------------------------------------------------------===// 3302 // CmpInst Classes 3303 //===----------------------------------------------------------------------===// 3304 3305 void CmpInst::anchor() {} 3306 3307 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3308 Value *RHS, const Twine &Name, Instruction *InsertBefore) 3309 : Instruction(ty, op, 3310 OperandTraits<CmpInst>::op_begin(this), 3311 OperandTraits<CmpInst>::operands(this), 3312 InsertBefore) { 3313 Op<0>() = LHS; 3314 Op<1>() = RHS; 3315 setPredicate((Predicate)predicate); 3316 setName(Name); 3317 } 3318 3319 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3320 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3321 : Instruction(ty, op, 3322 OperandTraits<CmpInst>::op_begin(this), 3323 OperandTraits<CmpInst>::operands(this), 3324 InsertAtEnd) { 3325 Op<0>() = LHS; 3326 Op<1>() = RHS; 3327 setPredicate((Predicate)predicate); 3328 setName(Name); 3329 } 3330 3331 CmpInst * 3332 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3333 const Twine &Name, Instruction *InsertBefore) { 3334 if (Op == Instruction::ICmp) { 3335 if (InsertBefore) 3336 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3337 S1, S2, Name); 3338 else 3339 return new ICmpInst(CmpInst::Predicate(predicate), 3340 S1, S2, Name); 3341 } 3342 3343 if (InsertBefore) 3344 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3345 S1, S2, Name); 3346 else 3347 return new FCmpInst(CmpInst::Predicate(predicate), 3348 S1, S2, Name); 3349 } 3350 3351 CmpInst * 3352 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3353 const Twine &Name, BasicBlock *InsertAtEnd) { 3354 if (Op == Instruction::ICmp) { 3355 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3356 S1, S2, Name); 3357 } 3358 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3359 S1, S2, Name); 3360 } 3361 3362 void CmpInst::swapOperands() { 3363 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3364 IC->swapOperands(); 3365 else 3366 cast<FCmpInst>(this)->swapOperands(); 3367 } 3368 3369 bool CmpInst::isCommutative() const { 3370 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3371 return IC->isCommutative(); 3372 return cast<FCmpInst>(this)->isCommutative(); 3373 } 3374 3375 bool CmpInst::isEquality() const { 3376 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3377 return IC->isEquality(); 3378 return cast<FCmpInst>(this)->isEquality(); 3379 } 3380 3381 3382 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3383 switch (pred) { 3384 default: llvm_unreachable("Unknown cmp predicate!"); 3385 case ICMP_EQ: return ICMP_NE; 3386 case ICMP_NE: return ICMP_EQ; 3387 case ICMP_UGT: return ICMP_ULE; 3388 case ICMP_ULT: return ICMP_UGE; 3389 case ICMP_UGE: return ICMP_ULT; 3390 case ICMP_ULE: return ICMP_UGT; 3391 case ICMP_SGT: return ICMP_SLE; 3392 case ICMP_SLT: return ICMP_SGE; 3393 case ICMP_SGE: return ICMP_SLT; 3394 case ICMP_SLE: return ICMP_SGT; 3395 3396 case FCMP_OEQ: return FCMP_UNE; 3397 case FCMP_ONE: return FCMP_UEQ; 3398 case FCMP_OGT: return FCMP_ULE; 3399 case FCMP_OLT: return FCMP_UGE; 3400 case FCMP_OGE: return FCMP_ULT; 3401 case FCMP_OLE: return FCMP_UGT; 3402 case FCMP_UEQ: return FCMP_ONE; 3403 case FCMP_UNE: return FCMP_OEQ; 3404 case FCMP_UGT: return FCMP_OLE; 3405 case FCMP_ULT: return FCMP_OGE; 3406 case FCMP_UGE: return FCMP_OLT; 3407 case FCMP_ULE: return FCMP_OGT; 3408 case FCMP_ORD: return FCMP_UNO; 3409 case FCMP_UNO: return FCMP_ORD; 3410 case FCMP_TRUE: return FCMP_FALSE; 3411 case FCMP_FALSE: return FCMP_TRUE; 3412 } 3413 } 3414 3415 StringRef CmpInst::getPredicateName(Predicate Pred) { 3416 switch (Pred) { 3417 default: return "unknown"; 3418 case FCmpInst::FCMP_FALSE: return "false"; 3419 case FCmpInst::FCMP_OEQ: return "oeq"; 3420 case FCmpInst::FCMP_OGT: return "ogt"; 3421 case FCmpInst::FCMP_OGE: return "oge"; 3422 case FCmpInst::FCMP_OLT: return "olt"; 3423 case FCmpInst::FCMP_OLE: return "ole"; 3424 case FCmpInst::FCMP_ONE: return "one"; 3425 case FCmpInst::FCMP_ORD: return "ord"; 3426 case FCmpInst::FCMP_UNO: return "uno"; 3427 case FCmpInst::FCMP_UEQ: return "ueq"; 3428 case FCmpInst::FCMP_UGT: return "ugt"; 3429 case FCmpInst::FCMP_UGE: return "uge"; 3430 case FCmpInst::FCMP_ULT: return "ult"; 3431 case FCmpInst::FCMP_ULE: return "ule"; 3432 case FCmpInst::FCMP_UNE: return "une"; 3433 case FCmpInst::FCMP_TRUE: return "true"; 3434 case ICmpInst::ICMP_EQ: return "eq"; 3435 case ICmpInst::ICMP_NE: return "ne"; 3436 case ICmpInst::ICMP_SGT: return "sgt"; 3437 case ICmpInst::ICMP_SGE: return "sge"; 3438 case ICmpInst::ICMP_SLT: return "slt"; 3439 case ICmpInst::ICMP_SLE: return "sle"; 3440 case ICmpInst::ICMP_UGT: return "ugt"; 3441 case ICmpInst::ICMP_UGE: return "uge"; 3442 case ICmpInst::ICMP_ULT: return "ult"; 3443 case ICmpInst::ICMP_ULE: return "ule"; 3444 } 3445 } 3446 3447 void ICmpInst::anchor() {} 3448 3449 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3450 switch (pred) { 3451 default: llvm_unreachable("Unknown icmp predicate!"); 3452 case ICMP_EQ: case ICMP_NE: 3453 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3454 return pred; 3455 case ICMP_UGT: return ICMP_SGT; 3456 case ICMP_ULT: return ICMP_SLT; 3457 case ICMP_UGE: return ICMP_SGE; 3458 case ICMP_ULE: return ICMP_SLE; 3459 } 3460 } 3461 3462 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3463 switch (pred) { 3464 default: llvm_unreachable("Unknown icmp predicate!"); 3465 case ICMP_EQ: case ICMP_NE: 3466 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3467 return pred; 3468 case ICMP_SGT: return ICMP_UGT; 3469 case ICMP_SLT: return ICMP_ULT; 3470 case ICMP_SGE: return ICMP_UGE; 3471 case ICMP_SLE: return ICMP_ULE; 3472 } 3473 } 3474 3475 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3476 switch (pred) { 3477 default: llvm_unreachable("Unknown cmp predicate!"); 3478 case ICMP_EQ: case ICMP_NE: 3479 return pred; 3480 case ICMP_SGT: return ICMP_SLT; 3481 case ICMP_SLT: return ICMP_SGT; 3482 case ICMP_SGE: return ICMP_SLE; 3483 case ICMP_SLE: return ICMP_SGE; 3484 case ICMP_UGT: return ICMP_ULT; 3485 case ICMP_ULT: return ICMP_UGT; 3486 case ICMP_UGE: return ICMP_ULE; 3487 case ICMP_ULE: return ICMP_UGE; 3488 3489 case FCMP_FALSE: case FCMP_TRUE: 3490 case FCMP_OEQ: case FCMP_ONE: 3491 case FCMP_UEQ: case FCMP_UNE: 3492 case FCMP_ORD: case FCMP_UNO: 3493 return pred; 3494 case FCMP_OGT: return FCMP_OLT; 3495 case FCMP_OLT: return FCMP_OGT; 3496 case FCMP_OGE: return FCMP_OLE; 3497 case FCMP_OLE: return FCMP_OGE; 3498 case FCMP_UGT: return FCMP_ULT; 3499 case FCMP_ULT: return FCMP_UGT; 3500 case FCMP_UGE: return FCMP_ULE; 3501 case FCMP_ULE: return FCMP_UGE; 3502 } 3503 } 3504 3505 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3506 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); 3507 3508 switch (pred) { 3509 default: 3510 llvm_unreachable("Unknown predicate!"); 3511 case CmpInst::ICMP_ULT: 3512 return CmpInst::ICMP_SLT; 3513 case CmpInst::ICMP_ULE: 3514 return CmpInst::ICMP_SLE; 3515 case CmpInst::ICMP_UGT: 3516 return CmpInst::ICMP_SGT; 3517 case CmpInst::ICMP_UGE: 3518 return CmpInst::ICMP_SGE; 3519 } 3520 } 3521 3522 bool CmpInst::isUnsigned(Predicate predicate) { 3523 switch (predicate) { 3524 default: return false; 3525 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3526 case ICmpInst::ICMP_UGE: return true; 3527 } 3528 } 3529 3530 bool CmpInst::isSigned(Predicate predicate) { 3531 switch (predicate) { 3532 default: return false; 3533 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3534 case ICmpInst::ICMP_SGE: return true; 3535 } 3536 } 3537 3538 bool CmpInst::isOrdered(Predicate predicate) { 3539 switch (predicate) { 3540 default: return false; 3541 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3542 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3543 case FCmpInst::FCMP_ORD: return true; 3544 } 3545 } 3546 3547 bool CmpInst::isUnordered(Predicate predicate) { 3548 switch (predicate) { 3549 default: return false; 3550 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3551 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3552 case FCmpInst::FCMP_UNO: return true; 3553 } 3554 } 3555 3556 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3557 switch(predicate) { 3558 default: return false; 3559 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3560 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3561 } 3562 } 3563 3564 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3565 switch(predicate) { 3566 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3567 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3568 default: return false; 3569 } 3570 } 3571 3572 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3573 // If the predicates match, then we know the first condition implies the 3574 // second is true. 3575 if (Pred1 == Pred2) 3576 return true; 3577 3578 switch (Pred1) { 3579 default: 3580 break; 3581 case ICMP_EQ: 3582 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3583 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3584 Pred2 == ICMP_SLE; 3585 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3586 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3587 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3588 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3589 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3590 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3591 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3592 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3593 } 3594 return false; 3595 } 3596 3597 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3598 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3599 } 3600 3601 //===----------------------------------------------------------------------===// 3602 // SwitchInst Implementation 3603 //===----------------------------------------------------------------------===// 3604 3605 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3606 assert(Value && Default && NumReserved); 3607 ReservedSpace = NumReserved; 3608 setNumHungOffUseOperands(2); 3609 allocHungoffUses(ReservedSpace); 3610 3611 Op<0>() = Value; 3612 Op<1>() = Default; 3613 } 3614 3615 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3616 /// switch on and a default destination. The number of additional cases can 3617 /// be specified here to make memory allocation more efficient. This 3618 /// constructor can also autoinsert before another instruction. 3619 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3620 Instruction *InsertBefore) 3621 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3622 nullptr, 0, InsertBefore) { 3623 init(Value, Default, 2+NumCases*2); 3624 } 3625 3626 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3627 /// switch on and a default destination. The number of additional cases can 3628 /// be specified here to make memory allocation more efficient. This 3629 /// constructor also autoinserts at the end of the specified BasicBlock. 3630 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3631 BasicBlock *InsertAtEnd) 3632 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3633 nullptr, 0, InsertAtEnd) { 3634 init(Value, Default, 2+NumCases*2); 3635 } 3636 3637 SwitchInst::SwitchInst(const SwitchInst &SI) 3638 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) { 3639 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3640 setNumHungOffUseOperands(SI.getNumOperands()); 3641 Use *OL = getOperandList(); 3642 const Use *InOL = SI.getOperandList(); 3643 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3644 OL[i] = InOL[i]; 3645 OL[i+1] = InOL[i+1]; 3646 } 3647 SubclassOptionalData = SI.SubclassOptionalData; 3648 } 3649 3650 3651 /// addCase - Add an entry to the switch instruction... 3652 /// 3653 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3654 unsigned NewCaseIdx = getNumCases(); 3655 unsigned OpNo = getNumOperands(); 3656 if (OpNo+2 > ReservedSpace) 3657 growOperands(); // Get more space! 3658 // Initialize some new operands. 3659 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3660 setNumHungOffUseOperands(OpNo+2); 3661 CaseIt Case(this, NewCaseIdx); 3662 Case.setValue(OnVal); 3663 Case.setSuccessor(Dest); 3664 } 3665 3666 /// removeCase - This method removes the specified case and its successor 3667 /// from the switch instruction. 3668 void SwitchInst::removeCase(CaseIt i) { 3669 unsigned idx = i.getCaseIndex(); 3670 3671 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3672 3673 unsigned NumOps = getNumOperands(); 3674 Use *OL = getOperandList(); 3675 3676 // Overwrite this case with the end of the list. 3677 if (2 + (idx + 1) * 2 != NumOps) { 3678 OL[2 + idx * 2] = OL[NumOps - 2]; 3679 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3680 } 3681 3682 // Nuke the last value. 3683 OL[NumOps-2].set(nullptr); 3684 OL[NumOps-2+1].set(nullptr); 3685 setNumHungOffUseOperands(NumOps-2); 3686 } 3687 3688 /// growOperands - grow operands - This grows the operand list in response 3689 /// to a push_back style of operation. This grows the number of ops by 3 times. 3690 /// 3691 void SwitchInst::growOperands() { 3692 unsigned e = getNumOperands(); 3693 unsigned NumOps = e*3; 3694 3695 ReservedSpace = NumOps; 3696 growHungoffUses(ReservedSpace); 3697 } 3698 3699 3700 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { 3701 return getSuccessor(idx); 3702 } 3703 unsigned SwitchInst::getNumSuccessorsV() const { 3704 return getNumSuccessors(); 3705 } 3706 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3707 setSuccessor(idx, B); 3708 } 3709 3710 //===----------------------------------------------------------------------===// 3711 // IndirectBrInst Implementation 3712 //===----------------------------------------------------------------------===// 3713 3714 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3715 assert(Address && Address->getType()->isPointerTy() && 3716 "Address of indirectbr must be a pointer"); 3717 ReservedSpace = 1+NumDests; 3718 setNumHungOffUseOperands(1); 3719 allocHungoffUses(ReservedSpace); 3720 3721 Op<0>() = Address; 3722 } 3723 3724 3725 /// growOperands - grow operands - This grows the operand list in response 3726 /// to a push_back style of operation. This grows the number of ops by 2 times. 3727 /// 3728 void IndirectBrInst::growOperands() { 3729 unsigned e = getNumOperands(); 3730 unsigned NumOps = e*2; 3731 3732 ReservedSpace = NumOps; 3733 growHungoffUses(ReservedSpace); 3734 } 3735 3736 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3737 Instruction *InsertBefore) 3738 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3739 nullptr, 0, InsertBefore) { 3740 init(Address, NumCases); 3741 } 3742 3743 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3744 BasicBlock *InsertAtEnd) 3745 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3746 nullptr, 0, InsertAtEnd) { 3747 init(Address, NumCases); 3748 } 3749 3750 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3751 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3752 nullptr, IBI.getNumOperands()) { 3753 allocHungoffUses(IBI.getNumOperands()); 3754 Use *OL = getOperandList(); 3755 const Use *InOL = IBI.getOperandList(); 3756 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3757 OL[i] = InOL[i]; 3758 SubclassOptionalData = IBI.SubclassOptionalData; 3759 } 3760 3761 /// addDestination - Add a destination. 3762 /// 3763 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3764 unsigned OpNo = getNumOperands(); 3765 if (OpNo+1 > ReservedSpace) 3766 growOperands(); // Get more space! 3767 // Initialize some new operands. 3768 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3769 setNumHungOffUseOperands(OpNo+1); 3770 getOperandList()[OpNo] = DestBB; 3771 } 3772 3773 /// removeDestination - This method removes the specified successor from the 3774 /// indirectbr instruction. 3775 void IndirectBrInst::removeDestination(unsigned idx) { 3776 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3777 3778 unsigned NumOps = getNumOperands(); 3779 Use *OL = getOperandList(); 3780 3781 // Replace this value with the last one. 3782 OL[idx+1] = OL[NumOps-1]; 3783 3784 // Nuke the last value. 3785 OL[NumOps-1].set(nullptr); 3786 setNumHungOffUseOperands(NumOps-1); 3787 } 3788 3789 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { 3790 return getSuccessor(idx); 3791 } 3792 unsigned IndirectBrInst::getNumSuccessorsV() const { 3793 return getNumSuccessors(); 3794 } 3795 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3796 setSuccessor(idx, B); 3797 } 3798 3799 //===----------------------------------------------------------------------===// 3800 // cloneImpl() implementations 3801 //===----------------------------------------------------------------------===// 3802 3803 // Define these methods here so vtables don't get emitted into every translation 3804 // unit that uses these classes. 3805 3806 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 3807 return new (getNumOperands()) GetElementPtrInst(*this); 3808 } 3809 3810 BinaryOperator *BinaryOperator::cloneImpl() const { 3811 return Create(getOpcode(), Op<0>(), Op<1>()); 3812 } 3813 3814 FCmpInst *FCmpInst::cloneImpl() const { 3815 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3816 } 3817 3818 ICmpInst *ICmpInst::cloneImpl() const { 3819 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3820 } 3821 3822 ExtractValueInst *ExtractValueInst::cloneImpl() const { 3823 return new ExtractValueInst(*this); 3824 } 3825 3826 InsertValueInst *InsertValueInst::cloneImpl() const { 3827 return new InsertValueInst(*this); 3828 } 3829 3830 AllocaInst *AllocaInst::cloneImpl() const { 3831 AllocaInst *Result = new AllocaInst(getAllocatedType(), 3832 (Value *)getOperand(0), getAlignment()); 3833 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 3834 Result->setSwiftError(isSwiftError()); 3835 return Result; 3836 } 3837 3838 LoadInst *LoadInst::cloneImpl() const { 3839 return new LoadInst(getOperand(0), Twine(), isVolatile(), 3840 getAlignment(), getOrdering(), getSynchScope()); 3841 } 3842 3843 StoreInst *StoreInst::cloneImpl() const { 3844 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3845 getAlignment(), getOrdering(), getSynchScope()); 3846 3847 } 3848 3849 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 3850 AtomicCmpXchgInst *Result = 3851 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3852 getSuccessOrdering(), getFailureOrdering(), 3853 getSynchScope()); 3854 Result->setVolatile(isVolatile()); 3855 Result->setWeak(isWeak()); 3856 return Result; 3857 } 3858 3859 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 3860 AtomicRMWInst *Result = 3861 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), 3862 getOrdering(), getSynchScope()); 3863 Result->setVolatile(isVolatile()); 3864 return Result; 3865 } 3866 3867 FenceInst *FenceInst::cloneImpl() const { 3868 return new FenceInst(getContext(), getOrdering(), getSynchScope()); 3869 } 3870 3871 TruncInst *TruncInst::cloneImpl() const { 3872 return new TruncInst(getOperand(0), getType()); 3873 } 3874 3875 ZExtInst *ZExtInst::cloneImpl() const { 3876 return new ZExtInst(getOperand(0), getType()); 3877 } 3878 3879 SExtInst *SExtInst::cloneImpl() const { 3880 return new SExtInst(getOperand(0), getType()); 3881 } 3882 3883 FPTruncInst *FPTruncInst::cloneImpl() const { 3884 return new FPTruncInst(getOperand(0), getType()); 3885 } 3886 3887 FPExtInst *FPExtInst::cloneImpl() const { 3888 return new FPExtInst(getOperand(0), getType()); 3889 } 3890 3891 UIToFPInst *UIToFPInst::cloneImpl() const { 3892 return new UIToFPInst(getOperand(0), getType()); 3893 } 3894 3895 SIToFPInst *SIToFPInst::cloneImpl() const { 3896 return new SIToFPInst(getOperand(0), getType()); 3897 } 3898 3899 FPToUIInst *FPToUIInst::cloneImpl() const { 3900 return new FPToUIInst(getOperand(0), getType()); 3901 } 3902 3903 FPToSIInst *FPToSIInst::cloneImpl() const { 3904 return new FPToSIInst(getOperand(0), getType()); 3905 } 3906 3907 PtrToIntInst *PtrToIntInst::cloneImpl() const { 3908 return new PtrToIntInst(getOperand(0), getType()); 3909 } 3910 3911 IntToPtrInst *IntToPtrInst::cloneImpl() const { 3912 return new IntToPtrInst(getOperand(0), getType()); 3913 } 3914 3915 BitCastInst *BitCastInst::cloneImpl() const { 3916 return new BitCastInst(getOperand(0), getType()); 3917 } 3918 3919 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 3920 return new AddrSpaceCastInst(getOperand(0), getType()); 3921 } 3922 3923 CallInst *CallInst::cloneImpl() const { 3924 if (hasOperandBundles()) { 3925 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 3926 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 3927 } 3928 return new(getNumOperands()) CallInst(*this); 3929 } 3930 3931 SelectInst *SelectInst::cloneImpl() const { 3932 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3933 } 3934 3935 VAArgInst *VAArgInst::cloneImpl() const { 3936 return new VAArgInst(getOperand(0), getType()); 3937 } 3938 3939 ExtractElementInst *ExtractElementInst::cloneImpl() const { 3940 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 3941 } 3942 3943 InsertElementInst *InsertElementInst::cloneImpl() const { 3944 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3945 } 3946 3947 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 3948 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 3949 } 3950 3951 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 3952 3953 LandingPadInst *LandingPadInst::cloneImpl() const { 3954 return new LandingPadInst(*this); 3955 } 3956 3957 ReturnInst *ReturnInst::cloneImpl() const { 3958 return new(getNumOperands()) ReturnInst(*this); 3959 } 3960 3961 BranchInst *BranchInst::cloneImpl() const { 3962 return new(getNumOperands()) BranchInst(*this); 3963 } 3964 3965 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 3966 3967 IndirectBrInst *IndirectBrInst::cloneImpl() const { 3968 return new IndirectBrInst(*this); 3969 } 3970 3971 InvokeInst *InvokeInst::cloneImpl() const { 3972 if (hasOperandBundles()) { 3973 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 3974 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 3975 } 3976 return new(getNumOperands()) InvokeInst(*this); 3977 } 3978 3979 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 3980 3981 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 3982 return new (getNumOperands()) CleanupReturnInst(*this); 3983 } 3984 3985 CatchReturnInst *CatchReturnInst::cloneImpl() const { 3986 return new (getNumOperands()) CatchReturnInst(*this); 3987 } 3988 3989 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 3990 return new CatchSwitchInst(*this); 3991 } 3992 3993 FuncletPadInst *FuncletPadInst::cloneImpl() const { 3994 return new (getNumOperands()) FuncletPadInst(*this); 3995 } 3996 3997 UnreachableInst *UnreachableInst::cloneImpl() const { 3998 LLVMContext &Context = getContext(); 3999 return new UnreachableInst(Context); 4000 } 4001