1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstdint>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 //===----------------------------------------------------------------------===//
48 //                            AllocaInst Class
49 //===----------------------------------------------------------------------===//
50 
51 Optional<uint64_t>
52 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
53   uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
54   if (isArrayAllocation()) {
55     auto C = dyn_cast<ConstantInt>(getArraySize());
56     if (!C)
57       return None;
58     Size *= C->getZExtValue();
59   }
60   return Size;
61 }
62 
63 //===----------------------------------------------------------------------===//
64 //                            CallSite Class
65 //===----------------------------------------------------------------------===//
66 
67 User::op_iterator CallSite::getCallee() const {
68   return cast<CallBase>(getInstruction())->op_end() - 1;
69 }
70 
71 //===----------------------------------------------------------------------===//
72 //                              SelectInst Class
73 //===----------------------------------------------------------------------===//
74 
75 /// areInvalidOperands - Return a string if the specified operands are invalid
76 /// for a select operation, otherwise return null.
77 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
78   if (Op1->getType() != Op2->getType())
79     return "both values to select must have same type";
80 
81   if (Op1->getType()->isTokenTy())
82     return "select values cannot have token type";
83 
84   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
85     // Vector select.
86     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
87       return "vector select condition element type must be i1";
88     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
89     if (!ET)
90       return "selected values for vector select must be vectors";
91     if (ET->getNumElements() != VT->getNumElements())
92       return "vector select requires selected vectors to have "
93                    "the same vector length as select condition";
94   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
95     return "select condition must be i1 or <n x i1>";
96   }
97   return nullptr;
98 }
99 
100 //===----------------------------------------------------------------------===//
101 //                               PHINode Class
102 //===----------------------------------------------------------------------===//
103 
104 PHINode::PHINode(const PHINode &PN)
105     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
106       ReservedSpace(PN.getNumOperands()) {
107   allocHungoffUses(PN.getNumOperands());
108   std::copy(PN.op_begin(), PN.op_end(), op_begin());
109   std::copy(PN.block_begin(), PN.block_end(), block_begin());
110   SubclassOptionalData = PN.SubclassOptionalData;
111 }
112 
113 // removeIncomingValue - Remove an incoming value.  This is useful if a
114 // predecessor basic block is deleted.
115 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
116   Value *Removed = getIncomingValue(Idx);
117 
118   // Move everything after this operand down.
119   //
120   // FIXME: we could just swap with the end of the list, then erase.  However,
121   // clients might not expect this to happen.  The code as it is thrashes the
122   // use/def lists, which is kinda lame.
123   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
124   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
125 
126   // Nuke the last value.
127   Op<-1>().set(nullptr);
128   setNumHungOffUseOperands(getNumOperands() - 1);
129 
130   // If the PHI node is dead, because it has zero entries, nuke it now.
131   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
132     // If anyone is using this PHI, make them use a dummy value instead...
133     replaceAllUsesWith(UndefValue::get(getType()));
134     eraseFromParent();
135   }
136   return Removed;
137 }
138 
139 /// growOperands - grow operands - This grows the operand list in response
140 /// to a push_back style of operation.  This grows the number of ops by 1.5
141 /// times.
142 ///
143 void PHINode::growOperands() {
144   unsigned e = getNumOperands();
145   unsigned NumOps = e + e / 2;
146   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
147 
148   ReservedSpace = NumOps;
149   growHungoffUses(ReservedSpace, /* IsPhi */ true);
150 }
151 
152 /// hasConstantValue - If the specified PHI node always merges together the same
153 /// value, return the value, otherwise return null.
154 Value *PHINode::hasConstantValue() const {
155   // Exploit the fact that phi nodes always have at least one entry.
156   Value *ConstantValue = getIncomingValue(0);
157   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
158     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
159       if (ConstantValue != this)
160         return nullptr; // Incoming values not all the same.
161        // The case where the first value is this PHI.
162       ConstantValue = getIncomingValue(i);
163     }
164   if (ConstantValue == this)
165     return UndefValue::get(getType());
166   return ConstantValue;
167 }
168 
169 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
170 /// together the same value, assuming that undefs result in the same value as
171 /// non-undefs.
172 /// Unlike \ref hasConstantValue, this does not return a value because the
173 /// unique non-undef incoming value need not dominate the PHI node.
174 bool PHINode::hasConstantOrUndefValue() const {
175   Value *ConstantValue = nullptr;
176   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
177     Value *Incoming = getIncomingValue(i);
178     if (Incoming != this && !isa<UndefValue>(Incoming)) {
179       if (ConstantValue && ConstantValue != Incoming)
180         return false;
181       ConstantValue = Incoming;
182     }
183   }
184   return true;
185 }
186 
187 //===----------------------------------------------------------------------===//
188 //                       LandingPadInst Implementation
189 //===----------------------------------------------------------------------===//
190 
191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
192                                const Twine &NameStr, Instruction *InsertBefore)
193     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
194   init(NumReservedValues, NameStr);
195 }
196 
197 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
198                                const Twine &NameStr, BasicBlock *InsertAtEnd)
199     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
200   init(NumReservedValues, NameStr);
201 }
202 
203 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
204     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
205                   LP.getNumOperands()),
206       ReservedSpace(LP.getNumOperands()) {
207   allocHungoffUses(LP.getNumOperands());
208   Use *OL = getOperandList();
209   const Use *InOL = LP.getOperandList();
210   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
211     OL[I] = InOL[I];
212 
213   setCleanup(LP.isCleanup());
214 }
215 
216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
217                                        const Twine &NameStr,
218                                        Instruction *InsertBefore) {
219   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
220 }
221 
222 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
223                                        const Twine &NameStr,
224                                        BasicBlock *InsertAtEnd) {
225   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
226 }
227 
228 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
229   ReservedSpace = NumReservedValues;
230   setNumHungOffUseOperands(0);
231   allocHungoffUses(ReservedSpace);
232   setName(NameStr);
233   setCleanup(false);
234 }
235 
236 /// growOperands - grow operands - This grows the operand list in response to a
237 /// push_back style of operation. This grows the number of ops by 2 times.
238 void LandingPadInst::growOperands(unsigned Size) {
239   unsigned e = getNumOperands();
240   if (ReservedSpace >= e + Size) return;
241   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
242   growHungoffUses(ReservedSpace);
243 }
244 
245 void LandingPadInst::addClause(Constant *Val) {
246   unsigned OpNo = getNumOperands();
247   growOperands(1);
248   assert(OpNo < ReservedSpace && "Growing didn't work!");
249   setNumHungOffUseOperands(getNumOperands() + 1);
250   getOperandList()[OpNo] = Val;
251 }
252 
253 //===----------------------------------------------------------------------===//
254 //                        CallBase Implementation
255 //===----------------------------------------------------------------------===//
256 
257 Function *CallBase::getCaller() { return getParent()->getParent(); }
258 
259 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
260   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
261   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
262 }
263 
264 bool CallBase::isIndirectCall() const {
265   const Value *V = getCalledValue();
266   if (isa<Function>(V) || isa<Constant>(V))
267     return false;
268   if (const CallInst *CI = dyn_cast<CallInst>(this))
269     if (CI->isInlineAsm())
270       return false;
271   return true;
272 }
273 
274 /// Tests if this call site must be tail call optimized. Only a CallInst can
275 /// be tail call optimized.
276 bool CallBase::isMustTailCall() const {
277   if (auto *CI = dyn_cast<CallInst>(this))
278     return CI->isMustTailCall();
279   return false;
280 }
281 
282 /// Tests if this call site is marked as a tail call.
283 bool CallBase::isTailCall() const {
284   if (auto *CI = dyn_cast<CallInst>(this))
285     return CI->isTailCall();
286   return false;
287 }
288 
289 Intrinsic::ID CallBase::getIntrinsicID() const {
290   if (auto *F = getCalledFunction())
291     return F->getIntrinsicID();
292   return Intrinsic::not_intrinsic;
293 }
294 
295 bool CallBase::isReturnNonNull() const {
296   if (hasRetAttr(Attribute::NonNull))
297     return true;
298 
299   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
300            !NullPointerIsDefined(getCaller(),
301                                  getType()->getPointerAddressSpace()))
302     return true;
303 
304   return false;
305 }
306 
307 Value *CallBase::getReturnedArgOperand() const {
308   unsigned Index;
309 
310   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
311     return getArgOperand(Index - AttributeList::FirstArgIndex);
312   if (const Function *F = getCalledFunction())
313     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
314         Index)
315       return getArgOperand(Index - AttributeList::FirstArgIndex);
316 
317   return nullptr;
318 }
319 
320 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
321   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
322     return true;
323 
324   // Look at the callee, if available.
325   if (const Function *F = getCalledFunction())
326     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
327   return false;
328 }
329 
330 /// Determine whether the argument or parameter has the given attribute.
331 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
332   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
333 
334   if (Attrs.hasParamAttribute(ArgNo, Kind))
335     return true;
336   if (const Function *F = getCalledFunction())
337     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
338   return false;
339 }
340 
341 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
342   if (const Function *F = getCalledFunction())
343     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
344   return false;
345 }
346 
347 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
348   if (const Function *F = getCalledFunction())
349     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
350   return false;
351 }
352 
353 CallBase::op_iterator
354 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
355                                      const unsigned BeginIndex) {
356   auto It = op_begin() + BeginIndex;
357   for (auto &B : Bundles)
358     It = std::copy(B.input_begin(), B.input_end(), It);
359 
360   auto *ContextImpl = getContext().pImpl;
361   auto BI = Bundles.begin();
362   unsigned CurrentIndex = BeginIndex;
363 
364   for (auto &BOI : bundle_op_infos()) {
365     assert(BI != Bundles.end() && "Incorrect allocation?");
366 
367     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
368     BOI.Begin = CurrentIndex;
369     BOI.End = CurrentIndex + BI->input_size();
370     CurrentIndex = BOI.End;
371     BI++;
372   }
373 
374   assert(BI == Bundles.end() && "Incorrect allocation?");
375 
376   return It;
377 }
378 
379 //===----------------------------------------------------------------------===//
380 //                        CallInst Implementation
381 //===----------------------------------------------------------------------===//
382 
383 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
384                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
385   this->FTy = FTy;
386   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
387          "NumOperands not set up?");
388   setCalledOperand(Func);
389 
390 #ifndef NDEBUG
391   assert((Args.size() == FTy->getNumParams() ||
392           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
393          "Calling a function with bad signature!");
394 
395   for (unsigned i = 0; i != Args.size(); ++i)
396     assert((i >= FTy->getNumParams() ||
397             FTy->getParamType(i) == Args[i]->getType()) &&
398            "Calling a function with a bad signature!");
399 #endif
400 
401   llvm::copy(Args, op_begin());
402 
403   auto It = populateBundleOperandInfos(Bundles, Args.size());
404   (void)It;
405   assert(It + 1 == op_end() && "Should add up!");
406 
407   setName(NameStr);
408 }
409 
410 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
411   this->FTy = FTy;
412   assert(getNumOperands() == 1 && "NumOperands not set up?");
413   setCalledOperand(Func);
414 
415   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
416 
417   setName(NameStr);
418 }
419 
420 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
421                    Instruction *InsertBefore)
422     : CallBase(Ty->getReturnType(), Instruction::Call,
423                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
424   init(Ty, Func, Name);
425 }
426 
427 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
428                    BasicBlock *InsertAtEnd)
429     : CallBase(Ty->getReturnType(), Instruction::Call,
430                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
431   init(Ty, Func, Name);
432 }
433 
434 CallInst::CallInst(const CallInst &CI)
435     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
436                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
437                CI.getNumOperands()) {
438   setTailCallKind(CI.getTailCallKind());
439   setCallingConv(CI.getCallingConv());
440 
441   std::copy(CI.op_begin(), CI.op_end(), op_begin());
442   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
443             bundle_op_info_begin());
444   SubclassOptionalData = CI.SubclassOptionalData;
445 }
446 
447 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
448                            Instruction *InsertPt) {
449   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
450 
451   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
452                                  Args, OpB, CI->getName(), InsertPt);
453   NewCI->setTailCallKind(CI->getTailCallKind());
454   NewCI->setCallingConv(CI->getCallingConv());
455   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
456   NewCI->setAttributes(CI->getAttributes());
457   NewCI->setDebugLoc(CI->getDebugLoc());
458   return NewCI;
459 }
460 
461 /// IsConstantOne - Return true only if val is constant int 1
462 static bool IsConstantOne(Value *val) {
463   assert(val && "IsConstantOne does not work with nullptr val");
464   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
465   return CVal && CVal->isOne();
466 }
467 
468 static Instruction *createMalloc(Instruction *InsertBefore,
469                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
470                                  Type *AllocTy, Value *AllocSize,
471                                  Value *ArraySize,
472                                  ArrayRef<OperandBundleDef> OpB,
473                                  Function *MallocF, const Twine &Name) {
474   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
475          "createMalloc needs either InsertBefore or InsertAtEnd");
476 
477   // malloc(type) becomes:
478   //       bitcast (i8* malloc(typeSize)) to type*
479   // malloc(type, arraySize) becomes:
480   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
481   if (!ArraySize)
482     ArraySize = ConstantInt::get(IntPtrTy, 1);
483   else if (ArraySize->getType() != IntPtrTy) {
484     if (InsertBefore)
485       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
486                                               "", InsertBefore);
487     else
488       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
489                                               "", InsertAtEnd);
490   }
491 
492   if (!IsConstantOne(ArraySize)) {
493     if (IsConstantOne(AllocSize)) {
494       AllocSize = ArraySize;         // Operand * 1 = Operand
495     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
496       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
497                                                      false /*ZExt*/);
498       // Malloc arg is constant product of type size and array size
499       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
500     } else {
501       // Multiply type size by the array size...
502       if (InsertBefore)
503         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
504                                               "mallocsize", InsertBefore);
505       else
506         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
507                                               "mallocsize", InsertAtEnd);
508     }
509   }
510 
511   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
512   // Create the call to Malloc.
513   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
514   Module *M = BB->getParent()->getParent();
515   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
516   FunctionCallee MallocFunc = MallocF;
517   if (!MallocFunc)
518     // prototype malloc as "void *malloc(size_t)"
519     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
520   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
521   CallInst *MCall = nullptr;
522   Instruction *Result = nullptr;
523   if (InsertBefore) {
524     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
525                              InsertBefore);
526     Result = MCall;
527     if (Result->getType() != AllocPtrType)
528       // Create a cast instruction to convert to the right type...
529       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
530   } else {
531     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
532     Result = MCall;
533     if (Result->getType() != AllocPtrType) {
534       InsertAtEnd->getInstList().push_back(MCall);
535       // Create a cast instruction to convert to the right type...
536       Result = new BitCastInst(MCall, AllocPtrType, Name);
537     }
538   }
539   MCall->setTailCall();
540   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
541     MCall->setCallingConv(F->getCallingConv());
542     if (!F->returnDoesNotAlias())
543       F->setReturnDoesNotAlias();
544   }
545   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
546 
547   return Result;
548 }
549 
550 /// CreateMalloc - Generate the IR for a call to malloc:
551 /// 1. Compute the malloc call's argument as the specified type's size,
552 ///    possibly multiplied by the array size if the array size is not
553 ///    constant 1.
554 /// 2. Call malloc with that argument.
555 /// 3. Bitcast the result of the malloc call to the specified type.
556 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
557                                     Type *IntPtrTy, Type *AllocTy,
558                                     Value *AllocSize, Value *ArraySize,
559                                     Function *MallocF,
560                                     const Twine &Name) {
561   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
562                       ArraySize, None, MallocF, Name);
563 }
564 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
565                                     Type *IntPtrTy, Type *AllocTy,
566                                     Value *AllocSize, Value *ArraySize,
567                                     ArrayRef<OperandBundleDef> OpB,
568                                     Function *MallocF,
569                                     const Twine &Name) {
570   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
571                       ArraySize, OpB, MallocF, Name);
572 }
573 
574 /// CreateMalloc - Generate the IR for a call to malloc:
575 /// 1. Compute the malloc call's argument as the specified type's size,
576 ///    possibly multiplied by the array size if the array size is not
577 ///    constant 1.
578 /// 2. Call malloc with that argument.
579 /// 3. Bitcast the result of the malloc call to the specified type.
580 /// Note: This function does not add the bitcast to the basic block, that is the
581 /// responsibility of the caller.
582 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
583                                     Type *IntPtrTy, Type *AllocTy,
584                                     Value *AllocSize, Value *ArraySize,
585                                     Function *MallocF, const Twine &Name) {
586   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
587                       ArraySize, None, MallocF, Name);
588 }
589 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
590                                     Type *IntPtrTy, Type *AllocTy,
591                                     Value *AllocSize, Value *ArraySize,
592                                     ArrayRef<OperandBundleDef> OpB,
593                                     Function *MallocF, const Twine &Name) {
594   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
595                       ArraySize, OpB, MallocF, Name);
596 }
597 
598 static Instruction *createFree(Value *Source,
599                                ArrayRef<OperandBundleDef> Bundles,
600                                Instruction *InsertBefore,
601                                BasicBlock *InsertAtEnd) {
602   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
603          "createFree needs either InsertBefore or InsertAtEnd");
604   assert(Source->getType()->isPointerTy() &&
605          "Can not free something of nonpointer type!");
606 
607   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
608   Module *M = BB->getParent()->getParent();
609 
610   Type *VoidTy = Type::getVoidTy(M->getContext());
611   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
612   // prototype free as "void free(void*)"
613   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
614   CallInst *Result = nullptr;
615   Value *PtrCast = Source;
616   if (InsertBefore) {
617     if (Source->getType() != IntPtrTy)
618       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
619     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
620   } else {
621     if (Source->getType() != IntPtrTy)
622       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
623     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
624   }
625   Result->setTailCall();
626   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
627     Result->setCallingConv(F->getCallingConv());
628 
629   return Result;
630 }
631 
632 /// CreateFree - Generate the IR for a call to the builtin free function.
633 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
634   return createFree(Source, None, InsertBefore, nullptr);
635 }
636 Instruction *CallInst::CreateFree(Value *Source,
637                                   ArrayRef<OperandBundleDef> Bundles,
638                                   Instruction *InsertBefore) {
639   return createFree(Source, Bundles, InsertBefore, nullptr);
640 }
641 
642 /// CreateFree - Generate the IR for a call to the builtin free function.
643 /// Note: This function does not add the call to the basic block, that is the
644 /// responsibility of the caller.
645 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
646   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
647   assert(FreeCall && "CreateFree did not create a CallInst");
648   return FreeCall;
649 }
650 Instruction *CallInst::CreateFree(Value *Source,
651                                   ArrayRef<OperandBundleDef> Bundles,
652                                   BasicBlock *InsertAtEnd) {
653   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
654   assert(FreeCall && "CreateFree did not create a CallInst");
655   return FreeCall;
656 }
657 
658 //===----------------------------------------------------------------------===//
659 //                        InvokeInst Implementation
660 //===----------------------------------------------------------------------===//
661 
662 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
663                       BasicBlock *IfException, ArrayRef<Value *> Args,
664                       ArrayRef<OperandBundleDef> Bundles,
665                       const Twine &NameStr) {
666   this->FTy = FTy;
667 
668   assert((int)getNumOperands() ==
669              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
670          "NumOperands not set up?");
671   setNormalDest(IfNormal);
672   setUnwindDest(IfException);
673   setCalledOperand(Fn);
674 
675 #ifndef NDEBUG
676   assert(((Args.size() == FTy->getNumParams()) ||
677           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
678          "Invoking a function with bad signature");
679 
680   for (unsigned i = 0, e = Args.size(); i != e; i++)
681     assert((i >= FTy->getNumParams() ||
682             FTy->getParamType(i) == Args[i]->getType()) &&
683            "Invoking a function with a bad signature!");
684 #endif
685 
686   llvm::copy(Args, op_begin());
687 
688   auto It = populateBundleOperandInfos(Bundles, Args.size());
689   (void)It;
690   assert(It + 3 == op_end() && "Should add up!");
691 
692   setName(NameStr);
693 }
694 
695 InvokeInst::InvokeInst(const InvokeInst &II)
696     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
697                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
698                II.getNumOperands()) {
699   setCallingConv(II.getCallingConv());
700   std::copy(II.op_begin(), II.op_end(), op_begin());
701   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
702             bundle_op_info_begin());
703   SubclassOptionalData = II.SubclassOptionalData;
704 }
705 
706 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
707                                Instruction *InsertPt) {
708   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
709 
710   auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
711                                    II->getNormalDest(), II->getUnwindDest(),
712                                    Args, OpB, II->getName(), InsertPt);
713   NewII->setCallingConv(II->getCallingConv());
714   NewII->SubclassOptionalData = II->SubclassOptionalData;
715   NewII->setAttributes(II->getAttributes());
716   NewII->setDebugLoc(II->getDebugLoc());
717   return NewII;
718 }
719 
720 
721 LandingPadInst *InvokeInst::getLandingPadInst() const {
722   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
723 }
724 
725 //===----------------------------------------------------------------------===//
726 //                        CallBrInst Implementation
727 //===----------------------------------------------------------------------===//
728 
729 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
730                       ArrayRef<BasicBlock *> IndirectDests,
731                       ArrayRef<Value *> Args,
732                       ArrayRef<OperandBundleDef> Bundles,
733                       const Twine &NameStr) {
734   this->FTy = FTy;
735 
736   assert((int)getNumOperands() ==
737              ComputeNumOperands(Args.size(), IndirectDests.size(),
738                                 CountBundleInputs(Bundles)) &&
739          "NumOperands not set up?");
740   NumIndirectDests = IndirectDests.size();
741   setDefaultDest(Fallthrough);
742   for (unsigned i = 0; i != NumIndirectDests; ++i)
743     setIndirectDest(i, IndirectDests[i]);
744   setCalledOperand(Fn);
745 
746 #ifndef NDEBUG
747   assert(((Args.size() == FTy->getNumParams()) ||
748           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
749          "Calling a function with bad signature");
750 
751   for (unsigned i = 0, e = Args.size(); i != e; i++)
752     assert((i >= FTy->getNumParams() ||
753             FTy->getParamType(i) == Args[i]->getType()) &&
754            "Calling a function with a bad signature!");
755 #endif
756 
757   std::copy(Args.begin(), Args.end(), op_begin());
758 
759   auto It = populateBundleOperandInfos(Bundles, Args.size());
760   (void)It;
761   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
762 
763   setName(NameStr);
764 }
765 
766 CallBrInst::CallBrInst(const CallBrInst &CBI)
767     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
768                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
769                CBI.getNumOperands()) {
770   setCallingConv(CBI.getCallingConv());
771   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
772   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
773             bundle_op_info_begin());
774   SubclassOptionalData = CBI.SubclassOptionalData;
775   NumIndirectDests = CBI.NumIndirectDests;
776 }
777 
778 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
779                                Instruction *InsertPt) {
780   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
781 
782   auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
783                                     CBI->getCalledValue(),
784                                     CBI->getDefaultDest(),
785                                     CBI->getIndirectDests(),
786                                     Args, OpB, CBI->getName(), InsertPt);
787   NewCBI->setCallingConv(CBI->getCallingConv());
788   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
789   NewCBI->setAttributes(CBI->getAttributes());
790   NewCBI->setDebugLoc(CBI->getDebugLoc());
791   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
792   return NewCBI;
793 }
794 
795 //===----------------------------------------------------------------------===//
796 //                        ReturnInst Implementation
797 //===----------------------------------------------------------------------===//
798 
799 ReturnInst::ReturnInst(const ReturnInst &RI)
800     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
801                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
802                   RI.getNumOperands()) {
803   if (RI.getNumOperands())
804     Op<0>() = RI.Op<0>();
805   SubclassOptionalData = RI.SubclassOptionalData;
806 }
807 
808 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
809     : Instruction(Type::getVoidTy(C), Instruction::Ret,
810                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
811                   InsertBefore) {
812   if (retVal)
813     Op<0>() = retVal;
814 }
815 
816 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
817     : Instruction(Type::getVoidTy(C), Instruction::Ret,
818                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
819                   InsertAtEnd) {
820   if (retVal)
821     Op<0>() = retVal;
822 }
823 
824 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
825     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
826                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
827 
828 //===----------------------------------------------------------------------===//
829 //                        ResumeInst Implementation
830 //===----------------------------------------------------------------------===//
831 
832 ResumeInst::ResumeInst(const ResumeInst &RI)
833     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
834                   OperandTraits<ResumeInst>::op_begin(this), 1) {
835   Op<0>() = RI.Op<0>();
836 }
837 
838 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
839     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
840                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
841   Op<0>() = Exn;
842 }
843 
844 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
845     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
846                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
847   Op<0>() = Exn;
848 }
849 
850 //===----------------------------------------------------------------------===//
851 //                        CleanupReturnInst Implementation
852 //===----------------------------------------------------------------------===//
853 
854 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
855     : Instruction(CRI.getType(), Instruction::CleanupRet,
856                   OperandTraits<CleanupReturnInst>::op_end(this) -
857                       CRI.getNumOperands(),
858                   CRI.getNumOperands()) {
859   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
860   Op<0>() = CRI.Op<0>();
861   if (CRI.hasUnwindDest())
862     Op<1>() = CRI.Op<1>();
863 }
864 
865 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
866   if (UnwindBB)
867     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
868 
869   Op<0>() = CleanupPad;
870   if (UnwindBB)
871     Op<1>() = UnwindBB;
872 }
873 
874 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
875                                      unsigned Values, Instruction *InsertBefore)
876     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
877                   Instruction::CleanupRet,
878                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
879                   Values, InsertBefore) {
880   init(CleanupPad, UnwindBB);
881 }
882 
883 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
884                                      unsigned Values, BasicBlock *InsertAtEnd)
885     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
886                   Instruction::CleanupRet,
887                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
888                   Values, InsertAtEnd) {
889   init(CleanupPad, UnwindBB);
890 }
891 
892 //===----------------------------------------------------------------------===//
893 //                        CatchReturnInst Implementation
894 //===----------------------------------------------------------------------===//
895 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
896   Op<0>() = CatchPad;
897   Op<1>() = BB;
898 }
899 
900 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
901     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
902                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
903   Op<0>() = CRI.Op<0>();
904   Op<1>() = CRI.Op<1>();
905 }
906 
907 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
908                                  Instruction *InsertBefore)
909     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
910                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
911                   InsertBefore) {
912   init(CatchPad, BB);
913 }
914 
915 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
916                                  BasicBlock *InsertAtEnd)
917     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
918                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
919                   InsertAtEnd) {
920   init(CatchPad, BB);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 //                       CatchSwitchInst Implementation
925 //===----------------------------------------------------------------------===//
926 
927 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
928                                  unsigned NumReservedValues,
929                                  const Twine &NameStr,
930                                  Instruction *InsertBefore)
931     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
932                   InsertBefore) {
933   if (UnwindDest)
934     ++NumReservedValues;
935   init(ParentPad, UnwindDest, NumReservedValues + 1);
936   setName(NameStr);
937 }
938 
939 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
940                                  unsigned NumReservedValues,
941                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
942     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
943                   InsertAtEnd) {
944   if (UnwindDest)
945     ++NumReservedValues;
946   init(ParentPad, UnwindDest, NumReservedValues + 1);
947   setName(NameStr);
948 }
949 
950 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
951     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
952                   CSI.getNumOperands()) {
953   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
954   setNumHungOffUseOperands(ReservedSpace);
955   Use *OL = getOperandList();
956   const Use *InOL = CSI.getOperandList();
957   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
958     OL[I] = InOL[I];
959 }
960 
961 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
962                            unsigned NumReservedValues) {
963   assert(ParentPad && NumReservedValues);
964 
965   ReservedSpace = NumReservedValues;
966   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
967   allocHungoffUses(ReservedSpace);
968 
969   Op<0>() = ParentPad;
970   if (UnwindDest) {
971     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
972     setUnwindDest(UnwindDest);
973   }
974 }
975 
976 /// growOperands - grow operands - This grows the operand list in response to a
977 /// push_back style of operation. This grows the number of ops by 2 times.
978 void CatchSwitchInst::growOperands(unsigned Size) {
979   unsigned NumOperands = getNumOperands();
980   assert(NumOperands >= 1);
981   if (ReservedSpace >= NumOperands + Size)
982     return;
983   ReservedSpace = (NumOperands + Size / 2) * 2;
984   growHungoffUses(ReservedSpace);
985 }
986 
987 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
988   unsigned OpNo = getNumOperands();
989   growOperands(1);
990   assert(OpNo < ReservedSpace && "Growing didn't work!");
991   setNumHungOffUseOperands(getNumOperands() + 1);
992   getOperandList()[OpNo] = Handler;
993 }
994 
995 void CatchSwitchInst::removeHandler(handler_iterator HI) {
996   // Move all subsequent handlers up one.
997   Use *EndDst = op_end() - 1;
998   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
999     *CurDst = *(CurDst + 1);
1000   // Null out the last handler use.
1001   *EndDst = nullptr;
1002 
1003   setNumHungOffUseOperands(getNumOperands() - 1);
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 //                        FuncletPadInst Implementation
1008 //===----------------------------------------------------------------------===//
1009 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1010                           const Twine &NameStr) {
1011   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1012   llvm::copy(Args, op_begin());
1013   setParentPad(ParentPad);
1014   setName(NameStr);
1015 }
1016 
1017 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1018     : Instruction(FPI.getType(), FPI.getOpcode(),
1019                   OperandTraits<FuncletPadInst>::op_end(this) -
1020                       FPI.getNumOperands(),
1021                   FPI.getNumOperands()) {
1022   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1023   setParentPad(FPI.getParentPad());
1024 }
1025 
1026 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1027                                ArrayRef<Value *> Args, unsigned Values,
1028                                const Twine &NameStr, Instruction *InsertBefore)
1029     : Instruction(ParentPad->getType(), Op,
1030                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1031                   InsertBefore) {
1032   init(ParentPad, Args, NameStr);
1033 }
1034 
1035 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1036                                ArrayRef<Value *> Args, unsigned Values,
1037                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1038     : Instruction(ParentPad->getType(), Op,
1039                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1040                   InsertAtEnd) {
1041   init(ParentPad, Args, NameStr);
1042 }
1043 
1044 //===----------------------------------------------------------------------===//
1045 //                      UnreachableInst Implementation
1046 //===----------------------------------------------------------------------===//
1047 
1048 UnreachableInst::UnreachableInst(LLVMContext &Context,
1049                                  Instruction *InsertBefore)
1050     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1051                   0, InsertBefore) {}
1052 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1053     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1054                   0, InsertAtEnd) {}
1055 
1056 //===----------------------------------------------------------------------===//
1057 //                        BranchInst Implementation
1058 //===----------------------------------------------------------------------===//
1059 
1060 void BranchInst::AssertOK() {
1061   if (isConditional())
1062     assert(getCondition()->getType()->isIntegerTy(1) &&
1063            "May only branch on boolean predicates!");
1064 }
1065 
1066 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1067     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1068                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1069                   InsertBefore) {
1070   assert(IfTrue && "Branch destination may not be null!");
1071   Op<-1>() = IfTrue;
1072 }
1073 
1074 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1075                        Instruction *InsertBefore)
1076     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1077                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1078                   InsertBefore) {
1079   Op<-1>() = IfTrue;
1080   Op<-2>() = IfFalse;
1081   Op<-3>() = Cond;
1082 #ifndef NDEBUG
1083   AssertOK();
1084 #endif
1085 }
1086 
1087 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1088     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1089                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1090   assert(IfTrue && "Branch destination may not be null!");
1091   Op<-1>() = IfTrue;
1092 }
1093 
1094 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1095                        BasicBlock *InsertAtEnd)
1096     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1097                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1098   Op<-1>() = IfTrue;
1099   Op<-2>() = IfFalse;
1100   Op<-3>() = Cond;
1101 #ifndef NDEBUG
1102   AssertOK();
1103 #endif
1104 }
1105 
1106 BranchInst::BranchInst(const BranchInst &BI)
1107     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1108                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1109                   BI.getNumOperands()) {
1110   Op<-1>() = BI.Op<-1>();
1111   if (BI.getNumOperands() != 1) {
1112     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1113     Op<-3>() = BI.Op<-3>();
1114     Op<-2>() = BI.Op<-2>();
1115   }
1116   SubclassOptionalData = BI.SubclassOptionalData;
1117 }
1118 
1119 void BranchInst::swapSuccessors() {
1120   assert(isConditional() &&
1121          "Cannot swap successors of an unconditional branch");
1122   Op<-1>().swap(Op<-2>());
1123 
1124   // Update profile metadata if present and it matches our structural
1125   // expectations.
1126   swapProfMetadata();
1127 }
1128 
1129 //===----------------------------------------------------------------------===//
1130 //                        AllocaInst Implementation
1131 //===----------------------------------------------------------------------===//
1132 
1133 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1134   if (!Amt)
1135     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1136   else {
1137     assert(!isa<BasicBlock>(Amt) &&
1138            "Passed basic block into allocation size parameter! Use other ctor");
1139     assert(Amt->getType()->isIntegerTy() &&
1140            "Allocation array size is not an integer!");
1141   }
1142   return Amt;
1143 }
1144 
1145 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1146                        Instruction *InsertBefore)
1147   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1148 
1149 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1150                        BasicBlock *InsertAtEnd)
1151   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1152 
1153 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1154                        const Twine &Name, Instruction *InsertBefore)
1155   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1156 
1157 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1158                        const Twine &Name, BasicBlock *InsertAtEnd)
1159   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1160 
1161 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1162                        unsigned Align, const Twine &Name,
1163                        Instruction *InsertBefore)
1164   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1165                      getAISize(Ty->getContext(), ArraySize), InsertBefore),
1166     AllocatedType(Ty) {
1167   setAlignment(Align);
1168   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1169   setName(Name);
1170 }
1171 
1172 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1173                        unsigned Align, const Twine &Name,
1174                        BasicBlock *InsertAtEnd)
1175   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1176                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1177       AllocatedType(Ty) {
1178   setAlignment(Align);
1179   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1180   setName(Name);
1181 }
1182 
1183 void AllocaInst::setAlignment(unsigned Align) {
1184   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1185   assert(Align <= MaximumAlignment &&
1186          "Alignment is greater than MaximumAlignment!");
1187   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1188                              (Log2_32(Align) + 1));
1189   assert(getAlignment() == Align && "Alignment representation error!");
1190 }
1191 
1192 bool AllocaInst::isArrayAllocation() const {
1193   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1194     return !CI->isOne();
1195   return true;
1196 }
1197 
1198 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1199 /// function and is a constant size.  If so, the code generator will fold it
1200 /// into the prolog/epilog code, so it is basically free.
1201 bool AllocaInst::isStaticAlloca() const {
1202   // Must be constant size.
1203   if (!isa<ConstantInt>(getArraySize())) return false;
1204 
1205   // Must be in the entry block.
1206   const BasicBlock *Parent = getParent();
1207   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1208 }
1209 
1210 //===----------------------------------------------------------------------===//
1211 //                           LoadInst Implementation
1212 //===----------------------------------------------------------------------===//
1213 
1214 void LoadInst::AssertOK() {
1215   assert(getOperand(0)->getType()->isPointerTy() &&
1216          "Ptr must have pointer type.");
1217   assert(!(isAtomic() && getAlignment() == 0) &&
1218          "Alignment required for atomic load");
1219 }
1220 
1221 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1222                    Instruction *InsertBef)
1223     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1224 
1225 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1226                    BasicBlock *InsertAE)
1227     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1228 
1229 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1230                    Instruction *InsertBef)
1231     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1232 
1233 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1234                    BasicBlock *InsertAE)
1235     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1236 
1237 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1238                    unsigned Align, Instruction *InsertBef)
1239     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1240                SyncScope::System, InsertBef) {}
1241 
1242 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1243                    unsigned Align, BasicBlock *InsertAE)
1244     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1245                SyncScope::System, InsertAE) {}
1246 
1247 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1248                    unsigned Align, AtomicOrdering Order,
1249                    SyncScope::ID SSID, Instruction *InsertBef)
1250     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1251   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1252   setVolatile(isVolatile);
1253   setAlignment(Align);
1254   setAtomic(Order, SSID);
1255   AssertOK();
1256   setName(Name);
1257 }
1258 
1259 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1260                    unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1261                    BasicBlock *InsertAE)
1262     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1263   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1264   setVolatile(isVolatile);
1265   setAlignment(Align);
1266   setAtomic(Order, SSID);
1267   AssertOK();
1268   setName(Name);
1269 }
1270 
1271 void LoadInst::setAlignment(unsigned Align) {
1272   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1273   assert(Align <= MaximumAlignment &&
1274          "Alignment is greater than MaximumAlignment!");
1275   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1276                              ((Log2_32(Align)+1)<<1));
1277   assert(getAlignment() == Align && "Alignment representation error!");
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 //                           StoreInst Implementation
1282 //===----------------------------------------------------------------------===//
1283 
1284 void StoreInst::AssertOK() {
1285   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1286   assert(getOperand(1)->getType()->isPointerTy() &&
1287          "Ptr must have pointer type!");
1288   assert(getOperand(0)->getType() ==
1289                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1290          && "Ptr must be a pointer to Val type!");
1291   assert(!(isAtomic() && getAlignment() == 0) &&
1292          "Alignment required for atomic store");
1293 }
1294 
1295 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1296     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1297 
1298 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1299     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1300 
1301 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1302                      Instruction *InsertBefore)
1303     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1304 
1305 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1306                      BasicBlock *InsertAtEnd)
1307     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1308 
1309 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1310                      Instruction *InsertBefore)
1311     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1312                 SyncScope::System, InsertBefore) {}
1313 
1314 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1315                      BasicBlock *InsertAtEnd)
1316     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1317                 SyncScope::System, InsertAtEnd) {}
1318 
1319 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1320                      unsigned Align, AtomicOrdering Order,
1321                      SyncScope::ID SSID,
1322                      Instruction *InsertBefore)
1323   : Instruction(Type::getVoidTy(val->getContext()), Store,
1324                 OperandTraits<StoreInst>::op_begin(this),
1325                 OperandTraits<StoreInst>::operands(this),
1326                 InsertBefore) {
1327   Op<0>() = val;
1328   Op<1>() = addr;
1329   setVolatile(isVolatile);
1330   setAlignment(Align);
1331   setAtomic(Order, SSID);
1332   AssertOK();
1333 }
1334 
1335 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1336                      unsigned Align, AtomicOrdering Order,
1337                      SyncScope::ID SSID,
1338                      BasicBlock *InsertAtEnd)
1339   : Instruction(Type::getVoidTy(val->getContext()), Store,
1340                 OperandTraits<StoreInst>::op_begin(this),
1341                 OperandTraits<StoreInst>::operands(this),
1342                 InsertAtEnd) {
1343   Op<0>() = val;
1344   Op<1>() = addr;
1345   setVolatile(isVolatile);
1346   setAlignment(Align);
1347   setAtomic(Order, SSID);
1348   AssertOK();
1349 }
1350 
1351 void StoreInst::setAlignment(unsigned Align) {
1352   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1353   assert(Align <= MaximumAlignment &&
1354          "Alignment is greater than MaximumAlignment!");
1355   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1356                              ((Log2_32(Align)+1) << 1));
1357   assert(getAlignment() == Align && "Alignment representation error!");
1358 }
1359 
1360 //===----------------------------------------------------------------------===//
1361 //                       AtomicCmpXchgInst Implementation
1362 //===----------------------------------------------------------------------===//
1363 
1364 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1365                              AtomicOrdering SuccessOrdering,
1366                              AtomicOrdering FailureOrdering,
1367                              SyncScope::ID SSID) {
1368   Op<0>() = Ptr;
1369   Op<1>() = Cmp;
1370   Op<2>() = NewVal;
1371   setSuccessOrdering(SuccessOrdering);
1372   setFailureOrdering(FailureOrdering);
1373   setSyncScopeID(SSID);
1374 
1375   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1376          "All operands must be non-null!");
1377   assert(getOperand(0)->getType()->isPointerTy() &&
1378          "Ptr must have pointer type!");
1379   assert(getOperand(1)->getType() ==
1380                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1381          && "Ptr must be a pointer to Cmp type!");
1382   assert(getOperand(2)->getType() ==
1383                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1384          && "Ptr must be a pointer to NewVal type!");
1385   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1386          "AtomicCmpXchg instructions must be atomic!");
1387   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1388          "AtomicCmpXchg instructions must be atomic!");
1389   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1390          "AtomicCmpXchg failure argument shall be no stronger than the success "
1391          "argument");
1392   assert(FailureOrdering != AtomicOrdering::Release &&
1393          FailureOrdering != AtomicOrdering::AcquireRelease &&
1394          "AtomicCmpXchg failure ordering cannot include release semantics");
1395 }
1396 
1397 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1398                                      AtomicOrdering SuccessOrdering,
1399                                      AtomicOrdering FailureOrdering,
1400                                      SyncScope::ID SSID,
1401                                      Instruction *InsertBefore)
1402     : Instruction(
1403           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1404           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1405           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1406   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1407 }
1408 
1409 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1410                                      AtomicOrdering SuccessOrdering,
1411                                      AtomicOrdering FailureOrdering,
1412                                      SyncScope::ID SSID,
1413                                      BasicBlock *InsertAtEnd)
1414     : Instruction(
1415           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1416           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1417           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1418   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1419 }
1420 
1421 //===----------------------------------------------------------------------===//
1422 //                       AtomicRMWInst Implementation
1423 //===----------------------------------------------------------------------===//
1424 
1425 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1426                          AtomicOrdering Ordering,
1427                          SyncScope::ID SSID) {
1428   Op<0>() = Ptr;
1429   Op<1>() = Val;
1430   setOperation(Operation);
1431   setOrdering(Ordering);
1432   setSyncScopeID(SSID);
1433 
1434   assert(getOperand(0) && getOperand(1) &&
1435          "All operands must be non-null!");
1436   assert(getOperand(0)->getType()->isPointerTy() &&
1437          "Ptr must have pointer type!");
1438   assert(getOperand(1)->getType() ==
1439          cast<PointerType>(getOperand(0)->getType())->getElementType()
1440          && "Ptr must be a pointer to Val type!");
1441   assert(Ordering != AtomicOrdering::NotAtomic &&
1442          "AtomicRMW instructions must be atomic!");
1443 }
1444 
1445 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1446                              AtomicOrdering Ordering,
1447                              SyncScope::ID SSID,
1448                              Instruction *InsertBefore)
1449   : Instruction(Val->getType(), AtomicRMW,
1450                 OperandTraits<AtomicRMWInst>::op_begin(this),
1451                 OperandTraits<AtomicRMWInst>::operands(this),
1452                 InsertBefore) {
1453   Init(Operation, Ptr, Val, Ordering, SSID);
1454 }
1455 
1456 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1457                              AtomicOrdering Ordering,
1458                              SyncScope::ID SSID,
1459                              BasicBlock *InsertAtEnd)
1460   : Instruction(Val->getType(), AtomicRMW,
1461                 OperandTraits<AtomicRMWInst>::op_begin(this),
1462                 OperandTraits<AtomicRMWInst>::operands(this),
1463                 InsertAtEnd) {
1464   Init(Operation, Ptr, Val, Ordering, SSID);
1465 }
1466 
1467 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1468   switch (Op) {
1469   case AtomicRMWInst::Xchg:
1470     return "xchg";
1471   case AtomicRMWInst::Add:
1472     return "add";
1473   case AtomicRMWInst::Sub:
1474     return "sub";
1475   case AtomicRMWInst::And:
1476     return "and";
1477   case AtomicRMWInst::Nand:
1478     return "nand";
1479   case AtomicRMWInst::Or:
1480     return "or";
1481   case AtomicRMWInst::Xor:
1482     return "xor";
1483   case AtomicRMWInst::Max:
1484     return "max";
1485   case AtomicRMWInst::Min:
1486     return "min";
1487   case AtomicRMWInst::UMax:
1488     return "umax";
1489   case AtomicRMWInst::UMin:
1490     return "umin";
1491   case AtomicRMWInst::FAdd:
1492     return "fadd";
1493   case AtomicRMWInst::FSub:
1494     return "fsub";
1495   case AtomicRMWInst::BAD_BINOP:
1496     return "<invalid operation>";
1497   }
1498 
1499   llvm_unreachable("invalid atomicrmw operation");
1500 }
1501 
1502 //===----------------------------------------------------------------------===//
1503 //                       FenceInst Implementation
1504 //===----------------------------------------------------------------------===//
1505 
1506 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1507                      SyncScope::ID SSID,
1508                      Instruction *InsertBefore)
1509   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1510   setOrdering(Ordering);
1511   setSyncScopeID(SSID);
1512 }
1513 
1514 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1515                      SyncScope::ID SSID,
1516                      BasicBlock *InsertAtEnd)
1517   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1518   setOrdering(Ordering);
1519   setSyncScopeID(SSID);
1520 }
1521 
1522 //===----------------------------------------------------------------------===//
1523 //                       GetElementPtrInst Implementation
1524 //===----------------------------------------------------------------------===//
1525 
1526 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1527                              const Twine &Name) {
1528   assert(getNumOperands() == 1 + IdxList.size() &&
1529          "NumOperands not initialized?");
1530   Op<0>() = Ptr;
1531   llvm::copy(IdxList, op_begin() + 1);
1532   setName(Name);
1533 }
1534 
1535 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1536     : Instruction(GEPI.getType(), GetElementPtr,
1537                   OperandTraits<GetElementPtrInst>::op_end(this) -
1538                       GEPI.getNumOperands(),
1539                   GEPI.getNumOperands()),
1540       SourceElementType(GEPI.SourceElementType),
1541       ResultElementType(GEPI.ResultElementType) {
1542   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1543   SubclassOptionalData = GEPI.SubclassOptionalData;
1544 }
1545 
1546 /// getIndexedType - Returns the type of the element that would be accessed with
1547 /// a gep instruction with the specified parameters.
1548 ///
1549 /// The Idxs pointer should point to a continuous piece of memory containing the
1550 /// indices, either as Value* or uint64_t.
1551 ///
1552 /// A null type is returned if the indices are invalid for the specified
1553 /// pointer type.
1554 ///
1555 template <typename IndexTy>
1556 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1557   // Handle the special case of the empty set index set, which is always valid.
1558   if (IdxList.empty())
1559     return Agg;
1560 
1561   // If there is at least one index, the top level type must be sized, otherwise
1562   // it cannot be 'stepped over'.
1563   if (!Agg->isSized())
1564     return nullptr;
1565 
1566   unsigned CurIdx = 1;
1567   for (; CurIdx != IdxList.size(); ++CurIdx) {
1568     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1569     if (!CT || CT->isPointerTy()) return nullptr;
1570     IndexTy Index = IdxList[CurIdx];
1571     if (!CT->indexValid(Index)) return nullptr;
1572     Agg = CT->getTypeAtIndex(Index);
1573   }
1574   return CurIdx == IdxList.size() ? Agg : nullptr;
1575 }
1576 
1577 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1578   return getIndexedTypeInternal(Ty, IdxList);
1579 }
1580 
1581 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1582                                         ArrayRef<Constant *> IdxList) {
1583   return getIndexedTypeInternal(Ty, IdxList);
1584 }
1585 
1586 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1587   return getIndexedTypeInternal(Ty, IdxList);
1588 }
1589 
1590 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1591 /// zeros.  If so, the result pointer and the first operand have the same
1592 /// value, just potentially different types.
1593 bool GetElementPtrInst::hasAllZeroIndices() const {
1594   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1595     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1596       if (!CI->isZero()) return false;
1597     } else {
1598       return false;
1599     }
1600   }
1601   return true;
1602 }
1603 
1604 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1605 /// constant integers.  If so, the result pointer and the first operand have
1606 /// a constant offset between them.
1607 bool GetElementPtrInst::hasAllConstantIndices() const {
1608   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1609     if (!isa<ConstantInt>(getOperand(i)))
1610       return false;
1611   }
1612   return true;
1613 }
1614 
1615 void GetElementPtrInst::setIsInBounds(bool B) {
1616   cast<GEPOperator>(this)->setIsInBounds(B);
1617 }
1618 
1619 bool GetElementPtrInst::isInBounds() const {
1620   return cast<GEPOperator>(this)->isInBounds();
1621 }
1622 
1623 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1624                                                  APInt &Offset) const {
1625   // Delegate to the generic GEPOperator implementation.
1626   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1627 }
1628 
1629 //===----------------------------------------------------------------------===//
1630 //                           ExtractElementInst Implementation
1631 //===----------------------------------------------------------------------===//
1632 
1633 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1634                                        const Twine &Name,
1635                                        Instruction *InsertBef)
1636   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1637                 ExtractElement,
1638                 OperandTraits<ExtractElementInst>::op_begin(this),
1639                 2, InsertBef) {
1640   assert(isValidOperands(Val, Index) &&
1641          "Invalid extractelement instruction operands!");
1642   Op<0>() = Val;
1643   Op<1>() = Index;
1644   setName(Name);
1645 }
1646 
1647 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1648                                        const Twine &Name,
1649                                        BasicBlock *InsertAE)
1650   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1651                 ExtractElement,
1652                 OperandTraits<ExtractElementInst>::op_begin(this),
1653                 2, InsertAE) {
1654   assert(isValidOperands(Val, Index) &&
1655          "Invalid extractelement instruction operands!");
1656 
1657   Op<0>() = Val;
1658   Op<1>() = Index;
1659   setName(Name);
1660 }
1661 
1662 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1663   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1664     return false;
1665   return true;
1666 }
1667 
1668 //===----------------------------------------------------------------------===//
1669 //                           InsertElementInst Implementation
1670 //===----------------------------------------------------------------------===//
1671 
1672 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1673                                      const Twine &Name,
1674                                      Instruction *InsertBef)
1675   : Instruction(Vec->getType(), InsertElement,
1676                 OperandTraits<InsertElementInst>::op_begin(this),
1677                 3, InsertBef) {
1678   assert(isValidOperands(Vec, Elt, Index) &&
1679          "Invalid insertelement instruction operands!");
1680   Op<0>() = Vec;
1681   Op<1>() = Elt;
1682   Op<2>() = Index;
1683   setName(Name);
1684 }
1685 
1686 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1687                                      const Twine &Name,
1688                                      BasicBlock *InsertAE)
1689   : Instruction(Vec->getType(), InsertElement,
1690                 OperandTraits<InsertElementInst>::op_begin(this),
1691                 3, InsertAE) {
1692   assert(isValidOperands(Vec, Elt, Index) &&
1693          "Invalid insertelement instruction operands!");
1694 
1695   Op<0>() = Vec;
1696   Op<1>() = Elt;
1697   Op<2>() = Index;
1698   setName(Name);
1699 }
1700 
1701 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1702                                         const Value *Index) {
1703   if (!Vec->getType()->isVectorTy())
1704     return false;   // First operand of insertelement must be vector type.
1705 
1706   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1707     return false;// Second operand of insertelement must be vector element type.
1708 
1709   if (!Index->getType()->isIntegerTy())
1710     return false;  // Third operand of insertelement must be i32.
1711   return true;
1712 }
1713 
1714 //===----------------------------------------------------------------------===//
1715 //                      ShuffleVectorInst Implementation
1716 //===----------------------------------------------------------------------===//
1717 
1718 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1719                                      const Twine &Name,
1720                                      Instruction *InsertBefore)
1721 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1722                 cast<VectorType>(Mask->getType())->getNumElements()),
1723               ShuffleVector,
1724               OperandTraits<ShuffleVectorInst>::op_begin(this),
1725               OperandTraits<ShuffleVectorInst>::operands(this),
1726               InsertBefore) {
1727   assert(isValidOperands(V1, V2, Mask) &&
1728          "Invalid shuffle vector instruction operands!");
1729   Op<0>() = V1;
1730   Op<1>() = V2;
1731   Op<2>() = Mask;
1732   setName(Name);
1733 }
1734 
1735 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1736                                      const Twine &Name,
1737                                      BasicBlock *InsertAtEnd)
1738 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1739                 cast<VectorType>(Mask->getType())->getNumElements()),
1740               ShuffleVector,
1741               OperandTraits<ShuffleVectorInst>::op_begin(this),
1742               OperandTraits<ShuffleVectorInst>::operands(this),
1743               InsertAtEnd) {
1744   assert(isValidOperands(V1, V2, Mask) &&
1745          "Invalid shuffle vector instruction operands!");
1746 
1747   Op<0>() = V1;
1748   Op<1>() = V2;
1749   Op<2>() = Mask;
1750   setName(Name);
1751 }
1752 
1753 void ShuffleVectorInst::commute() {
1754   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1755   int NumMaskElts = getMask()->getType()->getVectorNumElements();
1756   SmallVector<Constant*, 16> NewMask(NumMaskElts);
1757   Type *Int32Ty = Type::getInt32Ty(getContext());
1758   for (int i = 0; i != NumMaskElts; ++i) {
1759     int MaskElt = getMaskValue(i);
1760     if (MaskElt == -1) {
1761       NewMask[i] = UndefValue::get(Int32Ty);
1762       continue;
1763     }
1764     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1765     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1766     NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1767   }
1768   Op<2>() = ConstantVector::get(NewMask);
1769   Op<0>().swap(Op<1>());
1770 }
1771 
1772 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1773                                         const Value *Mask) {
1774   // V1 and V2 must be vectors of the same type.
1775   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1776     return false;
1777 
1778   // Mask must be vector of i32.
1779   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1780   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1781     return false;
1782 
1783   // Check to see if Mask is valid.
1784   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1785     return true;
1786 
1787   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1788     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1789     for (Value *Op : MV->operands()) {
1790       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1791         if (CI->uge(V1Size*2))
1792           return false;
1793       } else if (!isa<UndefValue>(Op)) {
1794         return false;
1795       }
1796     }
1797     return true;
1798   }
1799 
1800   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1801     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1802     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1803       if (CDS->getElementAsInteger(i) >= V1Size*2)
1804         return false;
1805     return true;
1806   }
1807 
1808   // The bitcode reader can create a place holder for a forward reference
1809   // used as the shuffle mask. When this occurs, the shuffle mask will
1810   // fall into this case and fail. To avoid this error, do this bit of
1811   // ugliness to allow such a mask pass.
1812   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1813     if (CE->getOpcode() == Instruction::UserOp1)
1814       return true;
1815 
1816   return false;
1817 }
1818 
1819 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1820   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1821   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1822     return CDS->getElementAsInteger(i);
1823   Constant *C = Mask->getAggregateElement(i);
1824   if (isa<UndefValue>(C))
1825     return -1;
1826   return cast<ConstantInt>(C)->getZExtValue();
1827 }
1828 
1829 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1830                                        SmallVectorImpl<int> &Result) {
1831   unsigned NumElts = Mask->getType()->getVectorNumElements();
1832 
1833   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1834     for (unsigned i = 0; i != NumElts; ++i)
1835       Result.push_back(CDS->getElementAsInteger(i));
1836     return;
1837   }
1838   for (unsigned i = 0; i != NumElts; ++i) {
1839     Constant *C = Mask->getAggregateElement(i);
1840     Result.push_back(isa<UndefValue>(C) ? -1 :
1841                      cast<ConstantInt>(C)->getZExtValue());
1842   }
1843 }
1844 
1845 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1846   assert(!Mask.empty() && "Shuffle mask must contain elements");
1847   bool UsesLHS = false;
1848   bool UsesRHS = false;
1849   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1850     if (Mask[i] == -1)
1851       continue;
1852     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1853            "Out-of-bounds shuffle mask element");
1854     UsesLHS |= (Mask[i] < NumOpElts);
1855     UsesRHS |= (Mask[i] >= NumOpElts);
1856     if (UsesLHS && UsesRHS)
1857       return false;
1858   }
1859   assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1860   return true;
1861 }
1862 
1863 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1864   // We don't have vector operand size information, so assume operands are the
1865   // same size as the mask.
1866   return isSingleSourceMaskImpl(Mask, Mask.size());
1867 }
1868 
1869 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1870   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1871     return false;
1872   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1873     if (Mask[i] == -1)
1874       continue;
1875     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1876       return false;
1877   }
1878   return true;
1879 }
1880 
1881 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1882   // We don't have vector operand size information, so assume operands are the
1883   // same size as the mask.
1884   return isIdentityMaskImpl(Mask, Mask.size());
1885 }
1886 
1887 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1888   if (!isSingleSourceMask(Mask))
1889     return false;
1890   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1891     if (Mask[i] == -1)
1892       continue;
1893     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1894       return false;
1895   }
1896   return true;
1897 }
1898 
1899 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1900   if (!isSingleSourceMask(Mask))
1901     return false;
1902   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1903     if (Mask[i] == -1)
1904       continue;
1905     if (Mask[i] != 0 && Mask[i] != NumElts)
1906       return false;
1907   }
1908   return true;
1909 }
1910 
1911 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1912   // Select is differentiated from identity. It requires using both sources.
1913   if (isSingleSourceMask(Mask))
1914     return false;
1915   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1916     if (Mask[i] == -1)
1917       continue;
1918     if (Mask[i] != i && Mask[i] != (NumElts + i))
1919       return false;
1920   }
1921   return true;
1922 }
1923 
1924 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1925   // Example masks that will return true:
1926   // v1 = <a, b, c, d>
1927   // v2 = <e, f, g, h>
1928   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1929   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1930 
1931   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1932   int NumElts = Mask.size();
1933   if (NumElts < 2 || !isPowerOf2_32(NumElts))
1934     return false;
1935 
1936   // 2. The first element of the mask must be either a 0 or a 1.
1937   if (Mask[0] != 0 && Mask[0] != 1)
1938     return false;
1939 
1940   // 3. The difference between the first 2 elements must be equal to the
1941   // number of elements in the mask.
1942   if ((Mask[1] - Mask[0]) != NumElts)
1943     return false;
1944 
1945   // 4. The difference between consecutive even-numbered and odd-numbered
1946   // elements must be equal to 2.
1947   for (int i = 2; i < NumElts; ++i) {
1948     int MaskEltVal = Mask[i];
1949     if (MaskEltVal == -1)
1950       return false;
1951     int MaskEltPrevVal = Mask[i - 2];
1952     if (MaskEltVal - MaskEltPrevVal != 2)
1953       return false;
1954   }
1955   return true;
1956 }
1957 
1958 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
1959                                                int NumSrcElts, int &Index) {
1960   // Must extract from a single source.
1961   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
1962     return false;
1963 
1964   // Must be smaller (else this is an Identity shuffle).
1965   if (NumSrcElts <= (int)Mask.size())
1966     return false;
1967 
1968   // Find start of extraction, accounting that we may start with an UNDEF.
1969   int SubIndex = -1;
1970   for (int i = 0, e = Mask.size(); i != e; ++i) {
1971     int M = Mask[i];
1972     if (M < 0)
1973       continue;
1974     int Offset = (M % NumSrcElts) - i;
1975     if (0 <= SubIndex && SubIndex != Offset)
1976       return false;
1977     SubIndex = Offset;
1978   }
1979 
1980   if (0 <= SubIndex) {
1981     Index = SubIndex;
1982     return true;
1983   }
1984   return false;
1985 }
1986 
1987 bool ShuffleVectorInst::isIdentityWithPadding() const {
1988   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1989   int NumMaskElts = getType()->getVectorNumElements();
1990   if (NumMaskElts <= NumOpElts)
1991     return false;
1992 
1993   // The first part of the mask must choose elements from exactly 1 source op.
1994   SmallVector<int, 16> Mask = getShuffleMask();
1995   if (!isIdentityMaskImpl(Mask, NumOpElts))
1996     return false;
1997 
1998   // All extending must be with undef elements.
1999   for (int i = NumOpElts; i < NumMaskElts; ++i)
2000     if (Mask[i] != -1)
2001       return false;
2002 
2003   return true;
2004 }
2005 
2006 bool ShuffleVectorInst::isIdentityWithExtract() const {
2007   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2008   int NumMaskElts = getType()->getVectorNumElements();
2009   if (NumMaskElts >= NumOpElts)
2010     return false;
2011 
2012   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2013 }
2014 
2015 bool ShuffleVectorInst::isConcat() const {
2016   // Vector concatenation is differentiated from identity with padding.
2017   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2018     return false;
2019 
2020   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2021   int NumMaskElts = getType()->getVectorNumElements();
2022   if (NumMaskElts != NumOpElts * 2)
2023     return false;
2024 
2025   // Use the mask length rather than the operands' vector lengths here. We
2026   // already know that the shuffle returns a vector twice as long as the inputs,
2027   // and neither of the inputs are undef vectors. If the mask picks consecutive
2028   // elements from both inputs, then this is a concatenation of the inputs.
2029   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2030 }
2031 
2032 //===----------------------------------------------------------------------===//
2033 //                             InsertValueInst Class
2034 //===----------------------------------------------------------------------===//
2035 
2036 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2037                            const Twine &Name) {
2038   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2039 
2040   // There's no fundamental reason why we require at least one index
2041   // (other than weirdness with &*IdxBegin being invalid; see
2042   // getelementptr's init routine for example). But there's no
2043   // present need to support it.
2044   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2045 
2046   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2047          Val->getType() && "Inserted value must match indexed type!");
2048   Op<0>() = Agg;
2049   Op<1>() = Val;
2050 
2051   Indices.append(Idxs.begin(), Idxs.end());
2052   setName(Name);
2053 }
2054 
2055 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2056   : Instruction(IVI.getType(), InsertValue,
2057                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2058     Indices(IVI.Indices) {
2059   Op<0>() = IVI.getOperand(0);
2060   Op<1>() = IVI.getOperand(1);
2061   SubclassOptionalData = IVI.SubclassOptionalData;
2062 }
2063 
2064 //===----------------------------------------------------------------------===//
2065 //                             ExtractValueInst Class
2066 //===----------------------------------------------------------------------===//
2067 
2068 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2069   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2070 
2071   // There's no fundamental reason why we require at least one index.
2072   // But there's no present need to support it.
2073   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2074 
2075   Indices.append(Idxs.begin(), Idxs.end());
2076   setName(Name);
2077 }
2078 
2079 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2080   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2081     Indices(EVI.Indices) {
2082   SubclassOptionalData = EVI.SubclassOptionalData;
2083 }
2084 
2085 // getIndexedType - Returns the type of the element that would be extracted
2086 // with an extractvalue instruction with the specified parameters.
2087 //
2088 // A null type is returned if the indices are invalid for the specified
2089 // pointer type.
2090 //
2091 Type *ExtractValueInst::getIndexedType(Type *Agg,
2092                                        ArrayRef<unsigned> Idxs) {
2093   for (unsigned Index : Idxs) {
2094     // We can't use CompositeType::indexValid(Index) here.
2095     // indexValid() always returns true for arrays because getelementptr allows
2096     // out-of-bounds indices. Since we don't allow those for extractvalue and
2097     // insertvalue we need to check array indexing manually.
2098     // Since the only other types we can index into are struct types it's just
2099     // as easy to check those manually as well.
2100     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2101       if (Index >= AT->getNumElements())
2102         return nullptr;
2103     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2104       if (Index >= ST->getNumElements())
2105         return nullptr;
2106     } else {
2107       // Not a valid type to index into.
2108       return nullptr;
2109     }
2110 
2111     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2112   }
2113   return const_cast<Type*>(Agg);
2114 }
2115 
2116 //===----------------------------------------------------------------------===//
2117 //                             UnaryOperator Class
2118 //===----------------------------------------------------------------------===//
2119 
2120 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2121                              Type *Ty, const Twine &Name,
2122                              Instruction *InsertBefore)
2123   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2124   Op<0>() = S;
2125   setName(Name);
2126   AssertOK();
2127 }
2128 
2129 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2130                              Type *Ty, const Twine &Name,
2131                              BasicBlock *InsertAtEnd)
2132   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2133   Op<0>() = S;
2134   setName(Name);
2135   AssertOK();
2136 }
2137 
2138 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2139                                      const Twine &Name,
2140                                      Instruction *InsertBefore) {
2141   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2142 }
2143 
2144 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2145                                      const Twine &Name,
2146                                      BasicBlock *InsertAtEnd) {
2147   UnaryOperator *Res = Create(Op, S, Name);
2148   InsertAtEnd->getInstList().push_back(Res);
2149   return Res;
2150 }
2151 
2152 void UnaryOperator::AssertOK() {
2153   Value *LHS = getOperand(0);
2154   (void)LHS; // Silence warnings.
2155 #ifndef NDEBUG
2156   switch (getOpcode()) {
2157   case FNeg:
2158     assert(getType() == LHS->getType() &&
2159            "Unary operation should return same type as operand!");
2160     assert(getType()->isFPOrFPVectorTy() &&
2161            "Tried to create a floating-point operation on a "
2162            "non-floating-point type!");
2163     break;
2164   default: llvm_unreachable("Invalid opcode provided");
2165   }
2166 #endif
2167 }
2168 
2169 //===----------------------------------------------------------------------===//
2170 //                             BinaryOperator Class
2171 //===----------------------------------------------------------------------===//
2172 
2173 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2174                                Type *Ty, const Twine &Name,
2175                                Instruction *InsertBefore)
2176   : Instruction(Ty, iType,
2177                 OperandTraits<BinaryOperator>::op_begin(this),
2178                 OperandTraits<BinaryOperator>::operands(this),
2179                 InsertBefore) {
2180   Op<0>() = S1;
2181   Op<1>() = S2;
2182   setName(Name);
2183   AssertOK();
2184 }
2185 
2186 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2187                                Type *Ty, const Twine &Name,
2188                                BasicBlock *InsertAtEnd)
2189   : Instruction(Ty, iType,
2190                 OperandTraits<BinaryOperator>::op_begin(this),
2191                 OperandTraits<BinaryOperator>::operands(this),
2192                 InsertAtEnd) {
2193   Op<0>() = S1;
2194   Op<1>() = S2;
2195   setName(Name);
2196   AssertOK();
2197 }
2198 
2199 void BinaryOperator::AssertOK() {
2200   Value *LHS = getOperand(0), *RHS = getOperand(1);
2201   (void)LHS; (void)RHS; // Silence warnings.
2202   assert(LHS->getType() == RHS->getType() &&
2203          "Binary operator operand types must match!");
2204 #ifndef NDEBUG
2205   switch (getOpcode()) {
2206   case Add: case Sub:
2207   case Mul:
2208     assert(getType() == LHS->getType() &&
2209            "Arithmetic operation should return same type as operands!");
2210     assert(getType()->isIntOrIntVectorTy() &&
2211            "Tried to create an integer operation on a non-integer type!");
2212     break;
2213   case FAdd: case FSub:
2214   case FMul:
2215     assert(getType() == LHS->getType() &&
2216            "Arithmetic operation should return same type as operands!");
2217     assert(getType()->isFPOrFPVectorTy() &&
2218            "Tried to create a floating-point operation on a "
2219            "non-floating-point type!");
2220     break;
2221   case UDiv:
2222   case SDiv:
2223     assert(getType() == LHS->getType() &&
2224            "Arithmetic operation should return same type as operands!");
2225     assert(getType()->isIntOrIntVectorTy() &&
2226            "Incorrect operand type (not integer) for S/UDIV");
2227     break;
2228   case FDiv:
2229     assert(getType() == LHS->getType() &&
2230            "Arithmetic operation should return same type as operands!");
2231     assert(getType()->isFPOrFPVectorTy() &&
2232            "Incorrect operand type (not floating point) for FDIV");
2233     break;
2234   case URem:
2235   case SRem:
2236     assert(getType() == LHS->getType() &&
2237            "Arithmetic operation should return same type as operands!");
2238     assert(getType()->isIntOrIntVectorTy() &&
2239            "Incorrect operand type (not integer) for S/UREM");
2240     break;
2241   case FRem:
2242     assert(getType() == LHS->getType() &&
2243            "Arithmetic operation should return same type as operands!");
2244     assert(getType()->isFPOrFPVectorTy() &&
2245            "Incorrect operand type (not floating point) for FREM");
2246     break;
2247   case Shl:
2248   case LShr:
2249   case AShr:
2250     assert(getType() == LHS->getType() &&
2251            "Shift operation should return same type as operands!");
2252     assert(getType()->isIntOrIntVectorTy() &&
2253            "Tried to create a shift operation on a non-integral type!");
2254     break;
2255   case And: case Or:
2256   case Xor:
2257     assert(getType() == LHS->getType() &&
2258            "Logical operation should return same type as operands!");
2259     assert(getType()->isIntOrIntVectorTy() &&
2260            "Tried to create a logical operation on a non-integral type!");
2261     break;
2262   default: llvm_unreachable("Invalid opcode provided");
2263   }
2264 #endif
2265 }
2266 
2267 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2268                                        const Twine &Name,
2269                                        Instruction *InsertBefore) {
2270   assert(S1->getType() == S2->getType() &&
2271          "Cannot create binary operator with two operands of differing type!");
2272   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2273 }
2274 
2275 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2276                                        const Twine &Name,
2277                                        BasicBlock *InsertAtEnd) {
2278   BinaryOperator *Res = Create(Op, S1, S2, Name);
2279   InsertAtEnd->getInstList().push_back(Res);
2280   return Res;
2281 }
2282 
2283 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2284                                           Instruction *InsertBefore) {
2285   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2286   return new BinaryOperator(Instruction::Sub,
2287                             zero, Op,
2288                             Op->getType(), Name, InsertBefore);
2289 }
2290 
2291 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2292                                           BasicBlock *InsertAtEnd) {
2293   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2294   return new BinaryOperator(Instruction::Sub,
2295                             zero, Op,
2296                             Op->getType(), Name, InsertAtEnd);
2297 }
2298 
2299 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2300                                              Instruction *InsertBefore) {
2301   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2302   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2303 }
2304 
2305 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2306                                              BasicBlock *InsertAtEnd) {
2307   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2308   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2309 }
2310 
2311 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2312                                              Instruction *InsertBefore) {
2313   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2314   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2315 }
2316 
2317 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2318                                              BasicBlock *InsertAtEnd) {
2319   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2320   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2321 }
2322 
2323 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2324                                            Instruction *InsertBefore) {
2325   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2326   return new BinaryOperator(Instruction::FSub, zero, Op,
2327                             Op->getType(), Name, InsertBefore);
2328 }
2329 
2330 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2331                                            BasicBlock *InsertAtEnd) {
2332   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2333   return new BinaryOperator(Instruction::FSub, zero, Op,
2334                             Op->getType(), Name, InsertAtEnd);
2335 }
2336 
2337 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2338                                           Instruction *InsertBefore) {
2339   Constant *C = Constant::getAllOnesValue(Op->getType());
2340   return new BinaryOperator(Instruction::Xor, Op, C,
2341                             Op->getType(), Name, InsertBefore);
2342 }
2343 
2344 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2345                                           BasicBlock *InsertAtEnd) {
2346   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2347   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2348                             Op->getType(), Name, InsertAtEnd);
2349 }
2350 
2351 // Exchange the two operands to this instruction. This instruction is safe to
2352 // use on any binary instruction and does not modify the semantics of the
2353 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2354 // is changed.
2355 bool BinaryOperator::swapOperands() {
2356   if (!isCommutative())
2357     return true; // Can't commute operands
2358   Op<0>().swap(Op<1>());
2359   return false;
2360 }
2361 
2362 //===----------------------------------------------------------------------===//
2363 //                             FPMathOperator Class
2364 //===----------------------------------------------------------------------===//
2365 
2366 float FPMathOperator::getFPAccuracy() const {
2367   const MDNode *MD =
2368       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2369   if (!MD)
2370     return 0.0;
2371   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2372   return Accuracy->getValueAPF().convertToFloat();
2373 }
2374 
2375 //===----------------------------------------------------------------------===//
2376 //                                CastInst Class
2377 //===----------------------------------------------------------------------===//
2378 
2379 // Just determine if this cast only deals with integral->integral conversion.
2380 bool CastInst::isIntegerCast() const {
2381   switch (getOpcode()) {
2382     default: return false;
2383     case Instruction::ZExt:
2384     case Instruction::SExt:
2385     case Instruction::Trunc:
2386       return true;
2387     case Instruction::BitCast:
2388       return getOperand(0)->getType()->isIntegerTy() &&
2389         getType()->isIntegerTy();
2390   }
2391 }
2392 
2393 bool CastInst::isLosslessCast() const {
2394   // Only BitCast can be lossless, exit fast if we're not BitCast
2395   if (getOpcode() != Instruction::BitCast)
2396     return false;
2397 
2398   // Identity cast is always lossless
2399   Type *SrcTy = getOperand(0)->getType();
2400   Type *DstTy = getType();
2401   if (SrcTy == DstTy)
2402     return true;
2403 
2404   // Pointer to pointer is always lossless.
2405   if (SrcTy->isPointerTy())
2406     return DstTy->isPointerTy();
2407   return false;  // Other types have no identity values
2408 }
2409 
2410 /// This function determines if the CastInst does not require any bits to be
2411 /// changed in order to effect the cast. Essentially, it identifies cases where
2412 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2413 /// example, the following are all no-op casts:
2414 /// # bitcast i32* %x to i8*
2415 /// # bitcast <2 x i32> %x to <4 x i16>
2416 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2417 /// Determine if the described cast is a no-op.
2418 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2419                           Type *SrcTy,
2420                           Type *DestTy,
2421                           const DataLayout &DL) {
2422   switch (Opcode) {
2423     default: llvm_unreachable("Invalid CastOp");
2424     case Instruction::Trunc:
2425     case Instruction::ZExt:
2426     case Instruction::SExt:
2427     case Instruction::FPTrunc:
2428     case Instruction::FPExt:
2429     case Instruction::UIToFP:
2430     case Instruction::SIToFP:
2431     case Instruction::FPToUI:
2432     case Instruction::FPToSI:
2433     case Instruction::AddrSpaceCast:
2434       // TODO: Target informations may give a more accurate answer here.
2435       return false;
2436     case Instruction::BitCast:
2437       return true;  // BitCast never modifies bits.
2438     case Instruction::PtrToInt:
2439       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2440              DestTy->getScalarSizeInBits();
2441     case Instruction::IntToPtr:
2442       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2443              SrcTy->getScalarSizeInBits();
2444   }
2445 }
2446 
2447 bool CastInst::isNoopCast(const DataLayout &DL) const {
2448   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2449 }
2450 
2451 /// This function determines if a pair of casts can be eliminated and what
2452 /// opcode should be used in the elimination. This assumes that there are two
2453 /// instructions like this:
2454 /// *  %F = firstOpcode SrcTy %x to MidTy
2455 /// *  %S = secondOpcode MidTy %F to DstTy
2456 /// The function returns a resultOpcode so these two casts can be replaced with:
2457 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2458 /// If no such cast is permitted, the function returns 0.
2459 unsigned CastInst::isEliminableCastPair(
2460   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2461   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2462   Type *DstIntPtrTy) {
2463   // Define the 144 possibilities for these two cast instructions. The values
2464   // in this matrix determine what to do in a given situation and select the
2465   // case in the switch below.  The rows correspond to firstOp, the columns
2466   // correspond to secondOp.  In looking at the table below, keep in mind
2467   // the following cast properties:
2468   //
2469   //          Size Compare       Source               Destination
2470   // Operator  Src ? Size   Type       Sign         Type       Sign
2471   // -------- ------------ -------------------   ---------------------
2472   // TRUNC         >       Integer      Any        Integral     Any
2473   // ZEXT          <       Integral   Unsigned     Integer      Any
2474   // SEXT          <       Integral    Signed      Integer      Any
2475   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2476   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2477   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2478   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2479   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2480   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2481   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2482   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2483   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2484   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2485   //
2486   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2487   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2488   // into "fptoui double to i64", but this loses information about the range
2489   // of the produced value (we no longer know the top-part is all zeros).
2490   // Further this conversion is often much more expensive for typical hardware,
2491   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2492   // same reason.
2493   const unsigned numCastOps =
2494     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2495   static const uint8_t CastResults[numCastOps][numCastOps] = {
2496     // T        F  F  U  S  F  F  P  I  B  A  -+
2497     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2498     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2499     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2500     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2501     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2502     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2503     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2504     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2505     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2506     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2507     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2508     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2509     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2510     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2511     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2512     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2513     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2514   };
2515 
2516   // TODO: This logic could be encoded into the table above and handled in the
2517   // switch below.
2518   // If either of the casts are a bitcast from scalar to vector, disallow the
2519   // merging. However, any pair of bitcasts are allowed.
2520   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2521   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2522   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2523 
2524   // Check if any of the casts convert scalars <-> vectors.
2525   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2526       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2527     if (!AreBothBitcasts)
2528       return 0;
2529 
2530   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2531                             [secondOp-Instruction::CastOpsBegin];
2532   switch (ElimCase) {
2533     case 0:
2534       // Categorically disallowed.
2535       return 0;
2536     case 1:
2537       // Allowed, use first cast's opcode.
2538       return firstOp;
2539     case 2:
2540       // Allowed, use second cast's opcode.
2541       return secondOp;
2542     case 3:
2543       // No-op cast in second op implies firstOp as long as the DestTy
2544       // is integer and we are not converting between a vector and a
2545       // non-vector type.
2546       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2547         return firstOp;
2548       return 0;
2549     case 4:
2550       // No-op cast in second op implies firstOp as long as the DestTy
2551       // is floating point.
2552       if (DstTy->isFloatingPointTy())
2553         return firstOp;
2554       return 0;
2555     case 5:
2556       // No-op cast in first op implies secondOp as long as the SrcTy
2557       // is an integer.
2558       if (SrcTy->isIntegerTy())
2559         return secondOp;
2560       return 0;
2561     case 6:
2562       // No-op cast in first op implies secondOp as long as the SrcTy
2563       // is a floating point.
2564       if (SrcTy->isFloatingPointTy())
2565         return secondOp;
2566       return 0;
2567     case 7: {
2568       // Cannot simplify if address spaces are different!
2569       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2570         return 0;
2571 
2572       unsigned MidSize = MidTy->getScalarSizeInBits();
2573       // We can still fold this without knowing the actual sizes as long we
2574       // know that the intermediate pointer is the largest possible
2575       // pointer size.
2576       // FIXME: Is this always true?
2577       if (MidSize == 64)
2578         return Instruction::BitCast;
2579 
2580       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2581       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2582         return 0;
2583       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2584       if (MidSize >= PtrSize)
2585         return Instruction::BitCast;
2586       return 0;
2587     }
2588     case 8: {
2589       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2590       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2591       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2592       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2593       unsigned DstSize = DstTy->getScalarSizeInBits();
2594       if (SrcSize == DstSize)
2595         return Instruction::BitCast;
2596       else if (SrcSize < DstSize)
2597         return firstOp;
2598       return secondOp;
2599     }
2600     case 9:
2601       // zext, sext -> zext, because sext can't sign extend after zext
2602       return Instruction::ZExt;
2603     case 11: {
2604       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2605       if (!MidIntPtrTy)
2606         return 0;
2607       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2608       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2609       unsigned DstSize = DstTy->getScalarSizeInBits();
2610       if (SrcSize <= PtrSize && SrcSize == DstSize)
2611         return Instruction::BitCast;
2612       return 0;
2613     }
2614     case 12:
2615       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2616       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2617       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2618         return Instruction::AddrSpaceCast;
2619       return Instruction::BitCast;
2620     case 13:
2621       // FIXME: this state can be merged with (1), but the following assert
2622       // is useful to check the correcteness of the sequence due to semantic
2623       // change of bitcast.
2624       assert(
2625         SrcTy->isPtrOrPtrVectorTy() &&
2626         MidTy->isPtrOrPtrVectorTy() &&
2627         DstTy->isPtrOrPtrVectorTy() &&
2628         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2629         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2630         "Illegal addrspacecast, bitcast sequence!");
2631       // Allowed, use first cast's opcode
2632       return firstOp;
2633     case 14:
2634       // bitcast, addrspacecast -> addrspacecast if the element type of
2635       // bitcast's source is the same as that of addrspacecast's destination.
2636       if (SrcTy->getScalarType()->getPointerElementType() ==
2637           DstTy->getScalarType()->getPointerElementType())
2638         return Instruction::AddrSpaceCast;
2639       return 0;
2640     case 15:
2641       // FIXME: this state can be merged with (1), but the following assert
2642       // is useful to check the correcteness of the sequence due to semantic
2643       // change of bitcast.
2644       assert(
2645         SrcTy->isIntOrIntVectorTy() &&
2646         MidTy->isPtrOrPtrVectorTy() &&
2647         DstTy->isPtrOrPtrVectorTy() &&
2648         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2649         "Illegal inttoptr, bitcast sequence!");
2650       // Allowed, use first cast's opcode
2651       return firstOp;
2652     case 16:
2653       // FIXME: this state can be merged with (2), but the following assert
2654       // is useful to check the correcteness of the sequence due to semantic
2655       // change of bitcast.
2656       assert(
2657         SrcTy->isPtrOrPtrVectorTy() &&
2658         MidTy->isPtrOrPtrVectorTy() &&
2659         DstTy->isIntOrIntVectorTy() &&
2660         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2661         "Illegal bitcast, ptrtoint sequence!");
2662       // Allowed, use second cast's opcode
2663       return secondOp;
2664     case 17:
2665       // (sitofp (zext x)) -> (uitofp x)
2666       return Instruction::UIToFP;
2667     case 99:
2668       // Cast combination can't happen (error in input). This is for all cases
2669       // where the MidTy is not the same for the two cast instructions.
2670       llvm_unreachable("Invalid Cast Combination");
2671     default:
2672       llvm_unreachable("Error in CastResults table!!!");
2673   }
2674 }
2675 
2676 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2677   const Twine &Name, Instruction *InsertBefore) {
2678   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2679   // Construct and return the appropriate CastInst subclass
2680   switch (op) {
2681   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2682   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2683   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2684   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2685   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2686   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2687   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2688   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2689   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2690   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2691   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2692   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2693   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2694   default: llvm_unreachable("Invalid opcode provided");
2695   }
2696 }
2697 
2698 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2699   const Twine &Name, BasicBlock *InsertAtEnd) {
2700   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2701   // Construct and return the appropriate CastInst subclass
2702   switch (op) {
2703   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2704   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2705   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2706   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2707   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2708   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2709   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2710   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2711   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2712   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2713   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2714   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2715   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2716   default: llvm_unreachable("Invalid opcode provided");
2717   }
2718 }
2719 
2720 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2721                                         const Twine &Name,
2722                                         Instruction *InsertBefore) {
2723   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2724     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2725   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2726 }
2727 
2728 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2729                                         const Twine &Name,
2730                                         BasicBlock *InsertAtEnd) {
2731   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2732     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2733   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2734 }
2735 
2736 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2737                                         const Twine &Name,
2738                                         Instruction *InsertBefore) {
2739   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2740     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2741   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2742 }
2743 
2744 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2745                                         const Twine &Name,
2746                                         BasicBlock *InsertAtEnd) {
2747   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2748     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2749   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2750 }
2751 
2752 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2753                                          const Twine &Name,
2754                                          Instruction *InsertBefore) {
2755   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2756     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2757   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2758 }
2759 
2760 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2761                                          const Twine &Name,
2762                                          BasicBlock *InsertAtEnd) {
2763   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2764     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2765   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2766 }
2767 
2768 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2769                                       const Twine &Name,
2770                                       BasicBlock *InsertAtEnd) {
2771   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2772   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2773          "Invalid cast");
2774   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2775   assert((!Ty->isVectorTy() ||
2776           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2777          "Invalid cast");
2778 
2779   if (Ty->isIntOrIntVectorTy())
2780     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2781 
2782   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2783 }
2784 
2785 /// Create a BitCast or a PtrToInt cast instruction
2786 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2787                                       const Twine &Name,
2788                                       Instruction *InsertBefore) {
2789   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2790   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2791          "Invalid cast");
2792   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2793   assert((!Ty->isVectorTy() ||
2794           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2795          "Invalid cast");
2796 
2797   if (Ty->isIntOrIntVectorTy())
2798     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2799 
2800   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2801 }
2802 
2803 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2804   Value *S, Type *Ty,
2805   const Twine &Name,
2806   BasicBlock *InsertAtEnd) {
2807   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2808   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2809 
2810   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2811     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2812 
2813   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2814 }
2815 
2816 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2817   Value *S, Type *Ty,
2818   const Twine &Name,
2819   Instruction *InsertBefore) {
2820   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2821   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2822 
2823   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2824     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2825 
2826   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2827 }
2828 
2829 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2830                                            const Twine &Name,
2831                                            Instruction *InsertBefore) {
2832   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2833     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2834   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2835     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2836 
2837   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2838 }
2839 
2840 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2841                                       bool isSigned, const Twine &Name,
2842                                       Instruction *InsertBefore) {
2843   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2844          "Invalid integer cast");
2845   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2846   unsigned DstBits = Ty->getScalarSizeInBits();
2847   Instruction::CastOps opcode =
2848     (SrcBits == DstBits ? Instruction::BitCast :
2849      (SrcBits > DstBits ? Instruction::Trunc :
2850       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2851   return Create(opcode, C, Ty, Name, InsertBefore);
2852 }
2853 
2854 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2855                                       bool isSigned, const Twine &Name,
2856                                       BasicBlock *InsertAtEnd) {
2857   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2858          "Invalid cast");
2859   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2860   unsigned DstBits = Ty->getScalarSizeInBits();
2861   Instruction::CastOps opcode =
2862     (SrcBits == DstBits ? Instruction::BitCast :
2863      (SrcBits > DstBits ? Instruction::Trunc :
2864       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2865   return Create(opcode, C, Ty, Name, InsertAtEnd);
2866 }
2867 
2868 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2869                                  const Twine &Name,
2870                                  Instruction *InsertBefore) {
2871   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2872          "Invalid cast");
2873   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2874   unsigned DstBits = Ty->getScalarSizeInBits();
2875   Instruction::CastOps opcode =
2876     (SrcBits == DstBits ? Instruction::BitCast :
2877      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2878   return Create(opcode, C, Ty, Name, InsertBefore);
2879 }
2880 
2881 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2882                                  const Twine &Name,
2883                                  BasicBlock *InsertAtEnd) {
2884   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2885          "Invalid cast");
2886   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2887   unsigned DstBits = Ty->getScalarSizeInBits();
2888   Instruction::CastOps opcode =
2889     (SrcBits == DstBits ? Instruction::BitCast :
2890      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2891   return Create(opcode, C, Ty, Name, InsertAtEnd);
2892 }
2893 
2894 // Check whether it is valid to call getCastOpcode for these types.
2895 // This routine must be kept in sync with getCastOpcode.
2896 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2897   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2898     return false;
2899 
2900   if (SrcTy == DestTy)
2901     return true;
2902 
2903   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2904     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2905       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2906         // An element by element cast.  Valid if casting the elements is valid.
2907         SrcTy = SrcVecTy->getElementType();
2908         DestTy = DestVecTy->getElementType();
2909       }
2910 
2911   // Get the bit sizes, we'll need these
2912   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2913   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2914 
2915   // Run through the possibilities ...
2916   if (DestTy->isIntegerTy()) {               // Casting to integral
2917     if (SrcTy->isIntegerTy())                // Casting from integral
2918         return true;
2919     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2920       return true;
2921     if (SrcTy->isVectorTy())          // Casting from vector
2922       return DestBits == SrcBits;
2923                                       // Casting from something else
2924     return SrcTy->isPointerTy();
2925   }
2926   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2927     if (SrcTy->isIntegerTy())                // Casting from integral
2928       return true;
2929     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2930       return true;
2931     if (SrcTy->isVectorTy())          // Casting from vector
2932       return DestBits == SrcBits;
2933                                     // Casting from something else
2934     return false;
2935   }
2936   if (DestTy->isVectorTy())         // Casting to vector
2937     return DestBits == SrcBits;
2938   if (DestTy->isPointerTy()) {        // Casting to pointer
2939     if (SrcTy->isPointerTy())                // Casting from pointer
2940       return true;
2941     return SrcTy->isIntegerTy();             // Casting from integral
2942   }
2943   if (DestTy->isX86_MMXTy()) {
2944     if (SrcTy->isVectorTy())
2945       return DestBits == SrcBits;       // 64-bit vector to MMX
2946     return false;
2947   }                                    // Casting to something else
2948   return false;
2949 }
2950 
2951 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2952   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2953     return false;
2954 
2955   if (SrcTy == DestTy)
2956     return true;
2957 
2958   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2959     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2960       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2961         // An element by element cast. Valid if casting the elements is valid.
2962         SrcTy = SrcVecTy->getElementType();
2963         DestTy = DestVecTy->getElementType();
2964       }
2965     }
2966   }
2967 
2968   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2969     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2970       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2971     }
2972   }
2973 
2974   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2975   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2976 
2977   // Could still have vectors of pointers if the number of elements doesn't
2978   // match
2979   if (SrcBits == 0 || DestBits == 0)
2980     return false;
2981 
2982   if (SrcBits != DestBits)
2983     return false;
2984 
2985   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2986     return false;
2987 
2988   return true;
2989 }
2990 
2991 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2992                                           const DataLayout &DL) {
2993   // ptrtoint and inttoptr are not allowed on non-integral pointers
2994   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2995     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2996       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2997               !DL.isNonIntegralPointerType(PtrTy));
2998   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2999     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3000       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3001               !DL.isNonIntegralPointerType(PtrTy));
3002 
3003   return isBitCastable(SrcTy, DestTy);
3004 }
3005 
3006 // Provide a way to get a "cast" where the cast opcode is inferred from the
3007 // types and size of the operand. This, basically, is a parallel of the
3008 // logic in the castIsValid function below.  This axiom should hold:
3009 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3010 // should not assert in castIsValid. In other words, this produces a "correct"
3011 // casting opcode for the arguments passed to it.
3012 // This routine must be kept in sync with isCastable.
3013 Instruction::CastOps
3014 CastInst::getCastOpcode(
3015   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3016   Type *SrcTy = Src->getType();
3017 
3018   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3019          "Only first class types are castable!");
3020 
3021   if (SrcTy == DestTy)
3022     return BitCast;
3023 
3024   // FIXME: Check address space sizes here
3025   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3026     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3027       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3028         // An element by element cast.  Find the appropriate opcode based on the
3029         // element types.
3030         SrcTy = SrcVecTy->getElementType();
3031         DestTy = DestVecTy->getElementType();
3032       }
3033 
3034   // Get the bit sizes, we'll need these
3035   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3036   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3037 
3038   // Run through the possibilities ...
3039   if (DestTy->isIntegerTy()) {                      // Casting to integral
3040     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3041       if (DestBits < SrcBits)
3042         return Trunc;                               // int -> smaller int
3043       else if (DestBits > SrcBits) {                // its an extension
3044         if (SrcIsSigned)
3045           return SExt;                              // signed -> SEXT
3046         else
3047           return ZExt;                              // unsigned -> ZEXT
3048       } else {
3049         return BitCast;                             // Same size, No-op cast
3050       }
3051     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3052       if (DestIsSigned)
3053         return FPToSI;                              // FP -> sint
3054       else
3055         return FPToUI;                              // FP -> uint
3056     } else if (SrcTy->isVectorTy()) {
3057       assert(DestBits == SrcBits &&
3058              "Casting vector to integer of different width");
3059       return BitCast;                             // Same size, no-op cast
3060     } else {
3061       assert(SrcTy->isPointerTy() &&
3062              "Casting from a value that is not first-class type");
3063       return PtrToInt;                              // ptr -> int
3064     }
3065   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3066     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3067       if (SrcIsSigned)
3068         return SIToFP;                              // sint -> FP
3069       else
3070         return UIToFP;                              // uint -> FP
3071     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3072       if (DestBits < SrcBits) {
3073         return FPTrunc;                             // FP -> smaller FP
3074       } else if (DestBits > SrcBits) {
3075         return FPExt;                               // FP -> larger FP
3076       } else  {
3077         return BitCast;                             // same size, no-op cast
3078       }
3079     } else if (SrcTy->isVectorTy()) {
3080       assert(DestBits == SrcBits &&
3081              "Casting vector to floating point of different width");
3082       return BitCast;                             // same size, no-op cast
3083     }
3084     llvm_unreachable("Casting pointer or non-first class to float");
3085   } else if (DestTy->isVectorTy()) {
3086     assert(DestBits == SrcBits &&
3087            "Illegal cast to vector (wrong type or size)");
3088     return BitCast;
3089   } else if (DestTy->isPointerTy()) {
3090     if (SrcTy->isPointerTy()) {
3091       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3092         return AddrSpaceCast;
3093       return BitCast;                               // ptr -> ptr
3094     } else if (SrcTy->isIntegerTy()) {
3095       return IntToPtr;                              // int -> ptr
3096     }
3097     llvm_unreachable("Casting pointer to other than pointer or int");
3098   } else if (DestTy->isX86_MMXTy()) {
3099     if (SrcTy->isVectorTy()) {
3100       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3101       return BitCast;                               // 64-bit vector to MMX
3102     }
3103     llvm_unreachable("Illegal cast to X86_MMX");
3104   }
3105   llvm_unreachable("Casting to type that is not first-class");
3106 }
3107 
3108 //===----------------------------------------------------------------------===//
3109 //                    CastInst SubClass Constructors
3110 //===----------------------------------------------------------------------===//
3111 
3112 /// Check that the construction parameters for a CastInst are correct. This
3113 /// could be broken out into the separate constructors but it is useful to have
3114 /// it in one place and to eliminate the redundant code for getting the sizes
3115 /// of the types involved.
3116 bool
3117 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3118   // Check for type sanity on the arguments
3119   Type *SrcTy = S->getType();
3120 
3121   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3122       SrcTy->isAggregateType() || DstTy->isAggregateType())
3123     return false;
3124 
3125   // Get the size of the types in bits, we'll need this later
3126   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3127   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3128 
3129   // If these are vector types, get the lengths of the vectors (using zero for
3130   // scalar types means that checking that vector lengths match also checks that
3131   // scalars are not being converted to vectors or vectors to scalars).
3132   unsigned SrcLength = SrcTy->isVectorTy() ?
3133     cast<VectorType>(SrcTy)->getNumElements() : 0;
3134   unsigned DstLength = DstTy->isVectorTy() ?
3135     cast<VectorType>(DstTy)->getNumElements() : 0;
3136 
3137   // Switch on the opcode provided
3138   switch (op) {
3139   default: return false; // This is an input error
3140   case Instruction::Trunc:
3141     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3142       SrcLength == DstLength && SrcBitSize > DstBitSize;
3143   case Instruction::ZExt:
3144     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3145       SrcLength == DstLength && SrcBitSize < DstBitSize;
3146   case Instruction::SExt:
3147     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3148       SrcLength == DstLength && SrcBitSize < DstBitSize;
3149   case Instruction::FPTrunc:
3150     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3151       SrcLength == DstLength && SrcBitSize > DstBitSize;
3152   case Instruction::FPExt:
3153     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3154       SrcLength == DstLength && SrcBitSize < DstBitSize;
3155   case Instruction::UIToFP:
3156   case Instruction::SIToFP:
3157     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3158       SrcLength == DstLength;
3159   case Instruction::FPToUI:
3160   case Instruction::FPToSI:
3161     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3162       SrcLength == DstLength;
3163   case Instruction::PtrToInt:
3164     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3165       return false;
3166     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3167       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3168         return false;
3169     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3170   case Instruction::IntToPtr:
3171     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3172       return false;
3173     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3174       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3175         return false;
3176     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3177   case Instruction::BitCast: {
3178     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3179     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3180 
3181     // BitCast implies a no-op cast of type only. No bits change.
3182     // However, you can't cast pointers to anything but pointers.
3183     if (!SrcPtrTy != !DstPtrTy)
3184       return false;
3185 
3186     // For non-pointer cases, the cast is okay if the source and destination bit
3187     // widths are identical.
3188     if (!SrcPtrTy)
3189       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3190 
3191     // If both are pointers then the address spaces must match.
3192     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3193       return false;
3194 
3195     // A vector of pointers must have the same number of elements.
3196     VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3197     VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3198     if (SrcVecTy && DstVecTy)
3199       return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3200     if (SrcVecTy)
3201       return SrcVecTy->getNumElements() == 1;
3202     if (DstVecTy)
3203       return DstVecTy->getNumElements() == 1;
3204 
3205     return true;
3206   }
3207   case Instruction::AddrSpaceCast: {
3208     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3209     if (!SrcPtrTy)
3210       return false;
3211 
3212     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3213     if (!DstPtrTy)
3214       return false;
3215 
3216     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3217       return false;
3218 
3219     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3220       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3221         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3222 
3223       return false;
3224     }
3225 
3226     return true;
3227   }
3228   }
3229 }
3230 
3231 TruncInst::TruncInst(
3232   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3233 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3234   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3235 }
3236 
3237 TruncInst::TruncInst(
3238   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3239 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3240   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3241 }
3242 
3243 ZExtInst::ZExtInst(
3244   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3245 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3246   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3247 }
3248 
3249 ZExtInst::ZExtInst(
3250   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3251 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3252   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3253 }
3254 SExtInst::SExtInst(
3255   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3256 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3257   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3258 }
3259 
3260 SExtInst::SExtInst(
3261   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3262 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3263   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3264 }
3265 
3266 FPTruncInst::FPTruncInst(
3267   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3268 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3269   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3270 }
3271 
3272 FPTruncInst::FPTruncInst(
3273   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3274 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3275   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3276 }
3277 
3278 FPExtInst::FPExtInst(
3279   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3280 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3281   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3282 }
3283 
3284 FPExtInst::FPExtInst(
3285   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3286 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3287   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3288 }
3289 
3290 UIToFPInst::UIToFPInst(
3291   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3292 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3293   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3294 }
3295 
3296 UIToFPInst::UIToFPInst(
3297   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3298 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3299   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3300 }
3301 
3302 SIToFPInst::SIToFPInst(
3303   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3304 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3305   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3306 }
3307 
3308 SIToFPInst::SIToFPInst(
3309   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3310 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3311   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3312 }
3313 
3314 FPToUIInst::FPToUIInst(
3315   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3316 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3317   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3318 }
3319 
3320 FPToUIInst::FPToUIInst(
3321   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3322 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3323   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3324 }
3325 
3326 FPToSIInst::FPToSIInst(
3327   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3328 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3329   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3330 }
3331 
3332 FPToSIInst::FPToSIInst(
3333   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3334 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3335   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3336 }
3337 
3338 PtrToIntInst::PtrToIntInst(
3339   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3340 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3341   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3342 }
3343 
3344 PtrToIntInst::PtrToIntInst(
3345   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3346 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3347   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3348 }
3349 
3350 IntToPtrInst::IntToPtrInst(
3351   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3352 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3353   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3354 }
3355 
3356 IntToPtrInst::IntToPtrInst(
3357   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3358 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3359   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3360 }
3361 
3362 BitCastInst::BitCastInst(
3363   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3364 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3365   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3366 }
3367 
3368 BitCastInst::BitCastInst(
3369   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3370 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3371   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3372 }
3373 
3374 AddrSpaceCastInst::AddrSpaceCastInst(
3375   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3376 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3377   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3378 }
3379 
3380 AddrSpaceCastInst::AddrSpaceCastInst(
3381   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3382 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3383   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3384 }
3385 
3386 //===----------------------------------------------------------------------===//
3387 //                               CmpInst Classes
3388 //===----------------------------------------------------------------------===//
3389 
3390 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3391                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3392                  Instruction *FlagsSource)
3393   : Instruction(ty, op,
3394                 OperandTraits<CmpInst>::op_begin(this),
3395                 OperandTraits<CmpInst>::operands(this),
3396                 InsertBefore) {
3397   Op<0>() = LHS;
3398   Op<1>() = RHS;
3399   setPredicate((Predicate)predicate);
3400   setName(Name);
3401   if (FlagsSource)
3402     copyIRFlags(FlagsSource);
3403 }
3404 
3405 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3406                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3407   : Instruction(ty, op,
3408                 OperandTraits<CmpInst>::op_begin(this),
3409                 OperandTraits<CmpInst>::operands(this),
3410                 InsertAtEnd) {
3411   Op<0>() = LHS;
3412   Op<1>() = RHS;
3413   setPredicate((Predicate)predicate);
3414   setName(Name);
3415 }
3416 
3417 CmpInst *
3418 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3419                 const Twine &Name, Instruction *InsertBefore) {
3420   if (Op == Instruction::ICmp) {
3421     if (InsertBefore)
3422       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3423                           S1, S2, Name);
3424     else
3425       return new ICmpInst(CmpInst::Predicate(predicate),
3426                           S1, S2, Name);
3427   }
3428 
3429   if (InsertBefore)
3430     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3431                         S1, S2, Name);
3432   else
3433     return new FCmpInst(CmpInst::Predicate(predicate),
3434                         S1, S2, Name);
3435 }
3436 
3437 CmpInst *
3438 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3439                 const Twine &Name, BasicBlock *InsertAtEnd) {
3440   if (Op == Instruction::ICmp) {
3441     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3442                         S1, S2, Name);
3443   }
3444   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3445                       S1, S2, Name);
3446 }
3447 
3448 void CmpInst::swapOperands() {
3449   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3450     IC->swapOperands();
3451   else
3452     cast<FCmpInst>(this)->swapOperands();
3453 }
3454 
3455 bool CmpInst::isCommutative() const {
3456   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3457     return IC->isCommutative();
3458   return cast<FCmpInst>(this)->isCommutative();
3459 }
3460 
3461 bool CmpInst::isEquality() const {
3462   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3463     return IC->isEquality();
3464   return cast<FCmpInst>(this)->isEquality();
3465 }
3466 
3467 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3468   switch (pred) {
3469     default: llvm_unreachable("Unknown cmp predicate!");
3470     case ICMP_EQ: return ICMP_NE;
3471     case ICMP_NE: return ICMP_EQ;
3472     case ICMP_UGT: return ICMP_ULE;
3473     case ICMP_ULT: return ICMP_UGE;
3474     case ICMP_UGE: return ICMP_ULT;
3475     case ICMP_ULE: return ICMP_UGT;
3476     case ICMP_SGT: return ICMP_SLE;
3477     case ICMP_SLT: return ICMP_SGE;
3478     case ICMP_SGE: return ICMP_SLT;
3479     case ICMP_SLE: return ICMP_SGT;
3480 
3481     case FCMP_OEQ: return FCMP_UNE;
3482     case FCMP_ONE: return FCMP_UEQ;
3483     case FCMP_OGT: return FCMP_ULE;
3484     case FCMP_OLT: return FCMP_UGE;
3485     case FCMP_OGE: return FCMP_ULT;
3486     case FCMP_OLE: return FCMP_UGT;
3487     case FCMP_UEQ: return FCMP_ONE;
3488     case FCMP_UNE: return FCMP_OEQ;
3489     case FCMP_UGT: return FCMP_OLE;
3490     case FCMP_ULT: return FCMP_OGE;
3491     case FCMP_UGE: return FCMP_OLT;
3492     case FCMP_ULE: return FCMP_OGT;
3493     case FCMP_ORD: return FCMP_UNO;
3494     case FCMP_UNO: return FCMP_ORD;
3495     case FCMP_TRUE: return FCMP_FALSE;
3496     case FCMP_FALSE: return FCMP_TRUE;
3497   }
3498 }
3499 
3500 StringRef CmpInst::getPredicateName(Predicate Pred) {
3501   switch (Pred) {
3502   default:                   return "unknown";
3503   case FCmpInst::FCMP_FALSE: return "false";
3504   case FCmpInst::FCMP_OEQ:   return "oeq";
3505   case FCmpInst::FCMP_OGT:   return "ogt";
3506   case FCmpInst::FCMP_OGE:   return "oge";
3507   case FCmpInst::FCMP_OLT:   return "olt";
3508   case FCmpInst::FCMP_OLE:   return "ole";
3509   case FCmpInst::FCMP_ONE:   return "one";
3510   case FCmpInst::FCMP_ORD:   return "ord";
3511   case FCmpInst::FCMP_UNO:   return "uno";
3512   case FCmpInst::FCMP_UEQ:   return "ueq";
3513   case FCmpInst::FCMP_UGT:   return "ugt";
3514   case FCmpInst::FCMP_UGE:   return "uge";
3515   case FCmpInst::FCMP_ULT:   return "ult";
3516   case FCmpInst::FCMP_ULE:   return "ule";
3517   case FCmpInst::FCMP_UNE:   return "une";
3518   case FCmpInst::FCMP_TRUE:  return "true";
3519   case ICmpInst::ICMP_EQ:    return "eq";
3520   case ICmpInst::ICMP_NE:    return "ne";
3521   case ICmpInst::ICMP_SGT:   return "sgt";
3522   case ICmpInst::ICMP_SGE:   return "sge";
3523   case ICmpInst::ICMP_SLT:   return "slt";
3524   case ICmpInst::ICMP_SLE:   return "sle";
3525   case ICmpInst::ICMP_UGT:   return "ugt";
3526   case ICmpInst::ICMP_UGE:   return "uge";
3527   case ICmpInst::ICMP_ULT:   return "ult";
3528   case ICmpInst::ICMP_ULE:   return "ule";
3529   }
3530 }
3531 
3532 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3533   switch (pred) {
3534     default: llvm_unreachable("Unknown icmp predicate!");
3535     case ICMP_EQ: case ICMP_NE:
3536     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3537        return pred;
3538     case ICMP_UGT: return ICMP_SGT;
3539     case ICMP_ULT: return ICMP_SLT;
3540     case ICMP_UGE: return ICMP_SGE;
3541     case ICMP_ULE: return ICMP_SLE;
3542   }
3543 }
3544 
3545 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3546   switch (pred) {
3547     default: llvm_unreachable("Unknown icmp predicate!");
3548     case ICMP_EQ: case ICMP_NE:
3549     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3550        return pred;
3551     case ICMP_SGT: return ICMP_UGT;
3552     case ICMP_SLT: return ICMP_ULT;
3553     case ICMP_SGE: return ICMP_UGE;
3554     case ICMP_SLE: return ICMP_ULE;
3555   }
3556 }
3557 
3558 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3559   switch (pred) {
3560     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3561     case ICMP_SGT: return ICMP_SGE;
3562     case ICMP_SLT: return ICMP_SLE;
3563     case ICMP_SGE: return ICMP_SGT;
3564     case ICMP_SLE: return ICMP_SLT;
3565     case ICMP_UGT: return ICMP_UGE;
3566     case ICMP_ULT: return ICMP_ULE;
3567     case ICMP_UGE: return ICMP_UGT;
3568     case ICMP_ULE: return ICMP_ULT;
3569 
3570     case FCMP_OGT: return FCMP_OGE;
3571     case FCMP_OLT: return FCMP_OLE;
3572     case FCMP_OGE: return FCMP_OGT;
3573     case FCMP_OLE: return FCMP_OLT;
3574     case FCMP_UGT: return FCMP_UGE;
3575     case FCMP_ULT: return FCMP_ULE;
3576     case FCMP_UGE: return FCMP_UGT;
3577     case FCMP_ULE: return FCMP_ULT;
3578   }
3579 }
3580 
3581 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3582   switch (pred) {
3583     default: llvm_unreachable("Unknown cmp predicate!");
3584     case ICMP_EQ: case ICMP_NE:
3585       return pred;
3586     case ICMP_SGT: return ICMP_SLT;
3587     case ICMP_SLT: return ICMP_SGT;
3588     case ICMP_SGE: return ICMP_SLE;
3589     case ICMP_SLE: return ICMP_SGE;
3590     case ICMP_UGT: return ICMP_ULT;
3591     case ICMP_ULT: return ICMP_UGT;
3592     case ICMP_UGE: return ICMP_ULE;
3593     case ICMP_ULE: return ICMP_UGE;
3594 
3595     case FCMP_FALSE: case FCMP_TRUE:
3596     case FCMP_OEQ: case FCMP_ONE:
3597     case FCMP_UEQ: case FCMP_UNE:
3598     case FCMP_ORD: case FCMP_UNO:
3599       return pred;
3600     case FCMP_OGT: return FCMP_OLT;
3601     case FCMP_OLT: return FCMP_OGT;
3602     case FCMP_OGE: return FCMP_OLE;
3603     case FCMP_OLE: return FCMP_OGE;
3604     case FCMP_UGT: return FCMP_ULT;
3605     case FCMP_ULT: return FCMP_UGT;
3606     case FCMP_UGE: return FCMP_ULE;
3607     case FCMP_ULE: return FCMP_UGE;
3608   }
3609 }
3610 
3611 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3612   switch (pred) {
3613   case ICMP_SGT: return ICMP_SGE;
3614   case ICMP_SLT: return ICMP_SLE;
3615   case ICMP_UGT: return ICMP_UGE;
3616   case ICMP_ULT: return ICMP_ULE;
3617   case FCMP_OGT: return FCMP_OGE;
3618   case FCMP_OLT: return FCMP_OLE;
3619   case FCMP_UGT: return FCMP_UGE;
3620   case FCMP_ULT: return FCMP_ULE;
3621   default: return pred;
3622   }
3623 }
3624 
3625 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3626   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3627 
3628   switch (pred) {
3629   default:
3630     llvm_unreachable("Unknown predicate!");
3631   case CmpInst::ICMP_ULT:
3632     return CmpInst::ICMP_SLT;
3633   case CmpInst::ICMP_ULE:
3634     return CmpInst::ICMP_SLE;
3635   case CmpInst::ICMP_UGT:
3636     return CmpInst::ICMP_SGT;
3637   case CmpInst::ICMP_UGE:
3638     return CmpInst::ICMP_SGE;
3639   }
3640 }
3641 
3642 bool CmpInst::isUnsigned(Predicate predicate) {
3643   switch (predicate) {
3644     default: return false;
3645     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3646     case ICmpInst::ICMP_UGE: return true;
3647   }
3648 }
3649 
3650 bool CmpInst::isSigned(Predicate predicate) {
3651   switch (predicate) {
3652     default: return false;
3653     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3654     case ICmpInst::ICMP_SGE: return true;
3655   }
3656 }
3657 
3658 bool CmpInst::isOrdered(Predicate predicate) {
3659   switch (predicate) {
3660     default: return false;
3661     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3662     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3663     case FCmpInst::FCMP_ORD: return true;
3664   }
3665 }
3666 
3667 bool CmpInst::isUnordered(Predicate predicate) {
3668   switch (predicate) {
3669     default: return false;
3670     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3671     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3672     case FCmpInst::FCMP_UNO: return true;
3673   }
3674 }
3675 
3676 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3677   switch(predicate) {
3678     default: return false;
3679     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3680     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3681   }
3682 }
3683 
3684 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3685   switch(predicate) {
3686   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3687   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3688   default: return false;
3689   }
3690 }
3691 
3692 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3693   // If the predicates match, then we know the first condition implies the
3694   // second is true.
3695   if (Pred1 == Pred2)
3696     return true;
3697 
3698   switch (Pred1) {
3699   default:
3700     break;
3701   case ICMP_EQ:
3702     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3703     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3704            Pred2 == ICMP_SLE;
3705   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3706     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3707   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3708     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3709   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3710     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3711   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3712     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3713   }
3714   return false;
3715 }
3716 
3717 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3718   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3719 }
3720 
3721 //===----------------------------------------------------------------------===//
3722 //                        SwitchInst Implementation
3723 //===----------------------------------------------------------------------===//
3724 
3725 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3726   assert(Value && Default && NumReserved);
3727   ReservedSpace = NumReserved;
3728   setNumHungOffUseOperands(2);
3729   allocHungoffUses(ReservedSpace);
3730 
3731   Op<0>() = Value;
3732   Op<1>() = Default;
3733 }
3734 
3735 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3736 /// switch on and a default destination.  The number of additional cases can
3737 /// be specified here to make memory allocation more efficient.  This
3738 /// constructor can also autoinsert before another instruction.
3739 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3740                        Instruction *InsertBefore)
3741     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3742                   nullptr, 0, InsertBefore) {
3743   init(Value, Default, 2+NumCases*2);
3744 }
3745 
3746 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3747 /// switch on and a default destination.  The number of additional cases can
3748 /// be specified here to make memory allocation more efficient.  This
3749 /// constructor also autoinserts at the end of the specified BasicBlock.
3750 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3751                        BasicBlock *InsertAtEnd)
3752     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3753                   nullptr, 0, InsertAtEnd) {
3754   init(Value, Default, 2+NumCases*2);
3755 }
3756 
3757 SwitchInst::SwitchInst(const SwitchInst &SI)
3758     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3759   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3760   setNumHungOffUseOperands(SI.getNumOperands());
3761   Use *OL = getOperandList();
3762   const Use *InOL = SI.getOperandList();
3763   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3764     OL[i] = InOL[i];
3765     OL[i+1] = InOL[i+1];
3766   }
3767   SubclassOptionalData = SI.SubclassOptionalData;
3768 }
3769 
3770 /// addCase - Add an entry to the switch instruction...
3771 ///
3772 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3773   unsigned NewCaseIdx = getNumCases();
3774   unsigned OpNo = getNumOperands();
3775   if (OpNo+2 > ReservedSpace)
3776     growOperands();  // Get more space!
3777   // Initialize some new operands.
3778   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3779   setNumHungOffUseOperands(OpNo+2);
3780   CaseHandle Case(this, NewCaseIdx);
3781   Case.setValue(OnVal);
3782   Case.setSuccessor(Dest);
3783 }
3784 
3785 /// removeCase - This method removes the specified case and its successor
3786 /// from the switch instruction.
3787 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3788   unsigned idx = I->getCaseIndex();
3789 
3790   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3791 
3792   unsigned NumOps = getNumOperands();
3793   Use *OL = getOperandList();
3794 
3795   // Overwrite this case with the end of the list.
3796   if (2 + (idx + 1) * 2 != NumOps) {
3797     OL[2 + idx * 2] = OL[NumOps - 2];
3798     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3799   }
3800 
3801   // Nuke the last value.
3802   OL[NumOps-2].set(nullptr);
3803   OL[NumOps-2+1].set(nullptr);
3804   setNumHungOffUseOperands(NumOps-2);
3805 
3806   return CaseIt(this, idx);
3807 }
3808 
3809 /// growOperands - grow operands - This grows the operand list in response
3810 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3811 ///
3812 void SwitchInst::growOperands() {
3813   unsigned e = getNumOperands();
3814   unsigned NumOps = e*3;
3815 
3816   ReservedSpace = NumOps;
3817   growHungoffUses(ReservedSpace);
3818 }
3819 
3820 //===----------------------------------------------------------------------===//
3821 //                        IndirectBrInst Implementation
3822 //===----------------------------------------------------------------------===//
3823 
3824 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3825   assert(Address && Address->getType()->isPointerTy() &&
3826          "Address of indirectbr must be a pointer");
3827   ReservedSpace = 1+NumDests;
3828   setNumHungOffUseOperands(1);
3829   allocHungoffUses(ReservedSpace);
3830 
3831   Op<0>() = Address;
3832 }
3833 
3834 
3835 /// growOperands - grow operands - This grows the operand list in response
3836 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3837 ///
3838 void IndirectBrInst::growOperands() {
3839   unsigned e = getNumOperands();
3840   unsigned NumOps = e*2;
3841 
3842   ReservedSpace = NumOps;
3843   growHungoffUses(ReservedSpace);
3844 }
3845 
3846 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3847                                Instruction *InsertBefore)
3848     : Instruction(Type::getVoidTy(Address->getContext()),
3849                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
3850   init(Address, NumCases);
3851 }
3852 
3853 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3854                                BasicBlock *InsertAtEnd)
3855     : Instruction(Type::getVoidTy(Address->getContext()),
3856                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
3857   init(Address, NumCases);
3858 }
3859 
3860 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3861     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3862                   nullptr, IBI.getNumOperands()) {
3863   allocHungoffUses(IBI.getNumOperands());
3864   Use *OL = getOperandList();
3865   const Use *InOL = IBI.getOperandList();
3866   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3867     OL[i] = InOL[i];
3868   SubclassOptionalData = IBI.SubclassOptionalData;
3869 }
3870 
3871 /// addDestination - Add a destination.
3872 ///
3873 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3874   unsigned OpNo = getNumOperands();
3875   if (OpNo+1 > ReservedSpace)
3876     growOperands();  // Get more space!
3877   // Initialize some new operands.
3878   assert(OpNo < ReservedSpace && "Growing didn't work!");
3879   setNumHungOffUseOperands(OpNo+1);
3880   getOperandList()[OpNo] = DestBB;
3881 }
3882 
3883 /// removeDestination - This method removes the specified successor from the
3884 /// indirectbr instruction.
3885 void IndirectBrInst::removeDestination(unsigned idx) {
3886   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3887 
3888   unsigned NumOps = getNumOperands();
3889   Use *OL = getOperandList();
3890 
3891   // Replace this value with the last one.
3892   OL[idx+1] = OL[NumOps-1];
3893 
3894   // Nuke the last value.
3895   OL[NumOps-1].set(nullptr);
3896   setNumHungOffUseOperands(NumOps-1);
3897 }
3898 
3899 //===----------------------------------------------------------------------===//
3900 //                           cloneImpl() implementations
3901 //===----------------------------------------------------------------------===//
3902 
3903 // Define these methods here so vtables don't get emitted into every translation
3904 // unit that uses these classes.
3905 
3906 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3907   return new (getNumOperands()) GetElementPtrInst(*this);
3908 }
3909 
3910 UnaryOperator *UnaryOperator::cloneImpl() const {
3911   return Create(getOpcode(), Op<0>());
3912 }
3913 
3914 BinaryOperator *BinaryOperator::cloneImpl() const {
3915   return Create(getOpcode(), Op<0>(), Op<1>());
3916 }
3917 
3918 FCmpInst *FCmpInst::cloneImpl() const {
3919   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3920 }
3921 
3922 ICmpInst *ICmpInst::cloneImpl() const {
3923   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3924 }
3925 
3926 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3927   return new ExtractValueInst(*this);
3928 }
3929 
3930 InsertValueInst *InsertValueInst::cloneImpl() const {
3931   return new InsertValueInst(*this);
3932 }
3933 
3934 AllocaInst *AllocaInst::cloneImpl() const {
3935   AllocaInst *Result = new AllocaInst(getAllocatedType(),
3936                                       getType()->getAddressSpace(),
3937                                       (Value *)getOperand(0), getAlignment());
3938   Result->setUsedWithInAlloca(isUsedWithInAlloca());
3939   Result->setSwiftError(isSwiftError());
3940   return Result;
3941 }
3942 
3943 LoadInst *LoadInst::cloneImpl() const {
3944   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
3945                       getAlignment(), getOrdering(), getSyncScopeID());
3946 }
3947 
3948 StoreInst *StoreInst::cloneImpl() const {
3949   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3950                        getAlignment(), getOrdering(), getSyncScopeID());
3951 
3952 }
3953 
3954 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3955   AtomicCmpXchgInst *Result =
3956     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3957                           getSuccessOrdering(), getFailureOrdering(),
3958                           getSyncScopeID());
3959   Result->setVolatile(isVolatile());
3960   Result->setWeak(isWeak());
3961   return Result;
3962 }
3963 
3964 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3965   AtomicRMWInst *Result =
3966     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3967                       getOrdering(), getSyncScopeID());
3968   Result->setVolatile(isVolatile());
3969   return Result;
3970 }
3971 
3972 FenceInst *FenceInst::cloneImpl() const {
3973   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3974 }
3975 
3976 TruncInst *TruncInst::cloneImpl() const {
3977   return new TruncInst(getOperand(0), getType());
3978 }
3979 
3980 ZExtInst *ZExtInst::cloneImpl() const {
3981   return new ZExtInst(getOperand(0), getType());
3982 }
3983 
3984 SExtInst *SExtInst::cloneImpl() const {
3985   return new SExtInst(getOperand(0), getType());
3986 }
3987 
3988 FPTruncInst *FPTruncInst::cloneImpl() const {
3989   return new FPTruncInst(getOperand(0), getType());
3990 }
3991 
3992 FPExtInst *FPExtInst::cloneImpl() const {
3993   return new FPExtInst(getOperand(0), getType());
3994 }
3995 
3996 UIToFPInst *UIToFPInst::cloneImpl() const {
3997   return new UIToFPInst(getOperand(0), getType());
3998 }
3999 
4000 SIToFPInst *SIToFPInst::cloneImpl() const {
4001   return new SIToFPInst(getOperand(0), getType());
4002 }
4003 
4004 FPToUIInst *FPToUIInst::cloneImpl() const {
4005   return new FPToUIInst(getOperand(0), getType());
4006 }
4007 
4008 FPToSIInst *FPToSIInst::cloneImpl() const {
4009   return new FPToSIInst(getOperand(0), getType());
4010 }
4011 
4012 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4013   return new PtrToIntInst(getOperand(0), getType());
4014 }
4015 
4016 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4017   return new IntToPtrInst(getOperand(0), getType());
4018 }
4019 
4020 BitCastInst *BitCastInst::cloneImpl() const {
4021   return new BitCastInst(getOperand(0), getType());
4022 }
4023 
4024 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4025   return new AddrSpaceCastInst(getOperand(0), getType());
4026 }
4027 
4028 CallInst *CallInst::cloneImpl() const {
4029   if (hasOperandBundles()) {
4030     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4031     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4032   }
4033   return  new(getNumOperands()) CallInst(*this);
4034 }
4035 
4036 SelectInst *SelectInst::cloneImpl() const {
4037   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4038 }
4039 
4040 VAArgInst *VAArgInst::cloneImpl() const {
4041   return new VAArgInst(getOperand(0), getType());
4042 }
4043 
4044 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4045   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4046 }
4047 
4048 InsertElementInst *InsertElementInst::cloneImpl() const {
4049   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4050 }
4051 
4052 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4053   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4054 }
4055 
4056 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4057 
4058 LandingPadInst *LandingPadInst::cloneImpl() const {
4059   return new LandingPadInst(*this);
4060 }
4061 
4062 ReturnInst *ReturnInst::cloneImpl() const {
4063   return new(getNumOperands()) ReturnInst(*this);
4064 }
4065 
4066 BranchInst *BranchInst::cloneImpl() const {
4067   return new(getNumOperands()) BranchInst(*this);
4068 }
4069 
4070 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4071 
4072 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4073   return new IndirectBrInst(*this);
4074 }
4075 
4076 InvokeInst *InvokeInst::cloneImpl() const {
4077   if (hasOperandBundles()) {
4078     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4079     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4080   }
4081   return new(getNumOperands()) InvokeInst(*this);
4082 }
4083 
4084 CallBrInst *CallBrInst::cloneImpl() const {
4085   if (hasOperandBundles()) {
4086     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4087     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4088   }
4089   return new (getNumOperands()) CallBrInst(*this);
4090 }
4091 
4092 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4093 
4094 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4095   return new (getNumOperands()) CleanupReturnInst(*this);
4096 }
4097 
4098 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4099   return new (getNumOperands()) CatchReturnInst(*this);
4100 }
4101 
4102 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4103   return new CatchSwitchInst(*this);
4104 }
4105 
4106 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4107   return new (getNumOperands()) FuncletPadInst(*this);
4108 }
4109 
4110 UnreachableInst *UnreachableInst::cloneImpl() const {
4111   LLVMContext &Context = getContext();
4112   return new UnreachableInst(Context);
4113 }
4114