1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 //===----------------------------------------------------------------------===//
49 //                            AllocaInst Class
50 //===----------------------------------------------------------------------===//
51 
52 Optional<TypeSize>
53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55   if (isArrayAllocation()) {
56     auto *C = dyn_cast<ConstantInt>(getArraySize());
57     if (!C)
58       return None;
59     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
60     Size *= C->getZExtValue();
61   }
62   return Size;
63 }
64 
65 //===----------------------------------------------------------------------===//
66 //                              SelectInst Class
67 //===----------------------------------------------------------------------===//
68 
69 /// areInvalidOperands - Return a string if the specified operands are invalid
70 /// for a select operation, otherwise return null.
71 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
72   if (Op1->getType() != Op2->getType())
73     return "both values to select must have same type";
74 
75   if (Op1->getType()->isTokenTy())
76     return "select values cannot have token type";
77 
78   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
79     // Vector select.
80     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
81       return "vector select condition element type must be i1";
82     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
83     if (!ET)
84       return "selected values for vector select must be vectors";
85     if (ET->getElementCount() != VT->getElementCount())
86       return "vector select requires selected vectors to have "
87                    "the same vector length as select condition";
88   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
89     return "select condition must be i1 or <n x i1>";
90   }
91   return nullptr;
92 }
93 
94 //===----------------------------------------------------------------------===//
95 //                               PHINode Class
96 //===----------------------------------------------------------------------===//
97 
98 PHINode::PHINode(const PHINode &PN)
99     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
100       ReservedSpace(PN.getNumOperands()) {
101   allocHungoffUses(PN.getNumOperands());
102   std::copy(PN.op_begin(), PN.op_end(), op_begin());
103   std::copy(PN.block_begin(), PN.block_end(), block_begin());
104   SubclassOptionalData = PN.SubclassOptionalData;
105 }
106 
107 // removeIncomingValue - Remove an incoming value.  This is useful if a
108 // predecessor basic block is deleted.
109 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
110   Value *Removed = getIncomingValue(Idx);
111 
112   // Move everything after this operand down.
113   //
114   // FIXME: we could just swap with the end of the list, then erase.  However,
115   // clients might not expect this to happen.  The code as it is thrashes the
116   // use/def lists, which is kinda lame.
117   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
118   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
119 
120   // Nuke the last value.
121   Op<-1>().set(nullptr);
122   setNumHungOffUseOperands(getNumOperands() - 1);
123 
124   // If the PHI node is dead, because it has zero entries, nuke it now.
125   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
126     // If anyone is using this PHI, make them use a dummy value instead...
127     replaceAllUsesWith(UndefValue::get(getType()));
128     eraseFromParent();
129   }
130   return Removed;
131 }
132 
133 /// growOperands - grow operands - This grows the operand list in response
134 /// to a push_back style of operation.  This grows the number of ops by 1.5
135 /// times.
136 ///
137 void PHINode::growOperands() {
138   unsigned e = getNumOperands();
139   unsigned NumOps = e + e / 2;
140   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
141 
142   ReservedSpace = NumOps;
143   growHungoffUses(ReservedSpace, /* IsPhi */ true);
144 }
145 
146 /// hasConstantValue - If the specified PHI node always merges together the same
147 /// value, return the value, otherwise return null.
148 Value *PHINode::hasConstantValue() const {
149   // Exploit the fact that phi nodes always have at least one entry.
150   Value *ConstantValue = getIncomingValue(0);
151   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
152     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
153       if (ConstantValue != this)
154         return nullptr; // Incoming values not all the same.
155        // The case where the first value is this PHI.
156       ConstantValue = getIncomingValue(i);
157     }
158   if (ConstantValue == this)
159     return UndefValue::get(getType());
160   return ConstantValue;
161 }
162 
163 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
164 /// together the same value, assuming that undefs result in the same value as
165 /// non-undefs.
166 /// Unlike \ref hasConstantValue, this does not return a value because the
167 /// unique non-undef incoming value need not dominate the PHI node.
168 bool PHINode::hasConstantOrUndefValue() const {
169   Value *ConstantValue = nullptr;
170   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
171     Value *Incoming = getIncomingValue(i);
172     if (Incoming != this && !isa<UndefValue>(Incoming)) {
173       if (ConstantValue && ConstantValue != Incoming)
174         return false;
175       ConstantValue = Incoming;
176     }
177   }
178   return true;
179 }
180 
181 //===----------------------------------------------------------------------===//
182 //                       LandingPadInst Implementation
183 //===----------------------------------------------------------------------===//
184 
185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
186                                const Twine &NameStr, Instruction *InsertBefore)
187     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
188   init(NumReservedValues, NameStr);
189 }
190 
191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
192                                const Twine &NameStr, BasicBlock *InsertAtEnd)
193     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
194   init(NumReservedValues, NameStr);
195 }
196 
197 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
198     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
199                   LP.getNumOperands()),
200       ReservedSpace(LP.getNumOperands()) {
201   allocHungoffUses(LP.getNumOperands());
202   Use *OL = getOperandList();
203   const Use *InOL = LP.getOperandList();
204   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
205     OL[I] = InOL[I];
206 
207   setCleanup(LP.isCleanup());
208 }
209 
210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
211                                        const Twine &NameStr,
212                                        Instruction *InsertBefore) {
213   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
214 }
215 
216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
217                                        const Twine &NameStr,
218                                        BasicBlock *InsertAtEnd) {
219   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
220 }
221 
222 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
223   ReservedSpace = NumReservedValues;
224   setNumHungOffUseOperands(0);
225   allocHungoffUses(ReservedSpace);
226   setName(NameStr);
227   setCleanup(false);
228 }
229 
230 /// growOperands - grow operands - This grows the operand list in response to a
231 /// push_back style of operation. This grows the number of ops by 2 times.
232 void LandingPadInst::growOperands(unsigned Size) {
233   unsigned e = getNumOperands();
234   if (ReservedSpace >= e + Size) return;
235   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
236   growHungoffUses(ReservedSpace);
237 }
238 
239 void LandingPadInst::addClause(Constant *Val) {
240   unsigned OpNo = getNumOperands();
241   growOperands(1);
242   assert(OpNo < ReservedSpace && "Growing didn't work!");
243   setNumHungOffUseOperands(getNumOperands() + 1);
244   getOperandList()[OpNo] = Val;
245 }
246 
247 //===----------------------------------------------------------------------===//
248 //                        CallBase Implementation
249 //===----------------------------------------------------------------------===//
250 
251 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
252                            Instruction *InsertPt) {
253   switch (CB->getOpcode()) {
254   case Instruction::Call:
255     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
256   case Instruction::Invoke:
257     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
258   case Instruction::CallBr:
259     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
260   default:
261     llvm_unreachable("Unknown CallBase sub-class!");
262   }
263 }
264 
265 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
266                            Instruction *InsertPt) {
267   SmallVector<OperandBundleDef, 2> OpDefs;
268   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
269     auto ChildOB = CI->getOperandBundleAt(i);
270     if (ChildOB.getTagName() != OpB.getTag())
271       OpDefs.emplace_back(ChildOB);
272   }
273   OpDefs.emplace_back(OpB);
274   return CallBase::Create(CI, OpDefs, InsertPt);
275 }
276 
277 
278 Function *CallBase::getCaller() { return getParent()->getParent(); }
279 
280 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
281   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
282   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
283 }
284 
285 bool CallBase::isIndirectCall() const {
286   const Value *V = getCalledOperand();
287   if (isa<Function>(V) || isa<Constant>(V))
288     return false;
289   return !isInlineAsm();
290 }
291 
292 /// Tests if this call site must be tail call optimized. Only a CallInst can
293 /// be tail call optimized.
294 bool CallBase::isMustTailCall() const {
295   if (auto *CI = dyn_cast<CallInst>(this))
296     return CI->isMustTailCall();
297   return false;
298 }
299 
300 /// Tests if this call site is marked as a tail call.
301 bool CallBase::isTailCall() const {
302   if (auto *CI = dyn_cast<CallInst>(this))
303     return CI->isTailCall();
304   return false;
305 }
306 
307 Intrinsic::ID CallBase::getIntrinsicID() const {
308   if (auto *F = getCalledFunction())
309     return F->getIntrinsicID();
310   return Intrinsic::not_intrinsic;
311 }
312 
313 bool CallBase::isReturnNonNull() const {
314   if (hasRetAttr(Attribute::NonNull))
315     return true;
316 
317   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
318            !NullPointerIsDefined(getCaller(),
319                                  getType()->getPointerAddressSpace()))
320     return true;
321 
322   return false;
323 }
324 
325 Value *CallBase::getReturnedArgOperand() const {
326   unsigned Index;
327 
328   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
329     return getArgOperand(Index - AttributeList::FirstArgIndex);
330   if (const Function *F = getCalledFunction())
331     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
332         Index)
333       return getArgOperand(Index - AttributeList::FirstArgIndex);
334 
335   return nullptr;
336 }
337 
338 /// Determine whether the argument or parameter has the given attribute.
339 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
340   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
341 
342   if (Attrs.hasParamAttribute(ArgNo, Kind))
343     return true;
344   if (const Function *F = getCalledFunction())
345     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
346   return false;
347 }
348 
349 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
350   if (const Function *F = getCalledFunction())
351     return F->getAttributes().hasFnAttribute(Kind);
352   return false;
353 }
354 
355 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
356   if (const Function *F = getCalledFunction())
357     return F->getAttributes().hasFnAttribute(Kind);
358   return false;
359 }
360 
361 void CallBase::getOperandBundlesAsDefs(
362     SmallVectorImpl<OperandBundleDef> &Defs) const {
363   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
364     Defs.emplace_back(getOperandBundleAt(i));
365 }
366 
367 CallBase::op_iterator
368 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
369                                      const unsigned BeginIndex) {
370   auto It = op_begin() + BeginIndex;
371   for (auto &B : Bundles)
372     It = std::copy(B.input_begin(), B.input_end(), It);
373 
374   auto *ContextImpl = getContext().pImpl;
375   auto BI = Bundles.begin();
376   unsigned CurrentIndex = BeginIndex;
377 
378   for (auto &BOI : bundle_op_infos()) {
379     assert(BI != Bundles.end() && "Incorrect allocation?");
380 
381     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
382     BOI.Begin = CurrentIndex;
383     BOI.End = CurrentIndex + BI->input_size();
384     CurrentIndex = BOI.End;
385     BI++;
386   }
387 
388   assert(BI == Bundles.end() && "Incorrect allocation?");
389 
390   return It;
391 }
392 
393 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
394   /// When there isn't many bundles, we do a simple linear search.
395   /// Else fallback to a binary-search that use the fact that bundles usually
396   /// have similar number of argument to get faster convergence.
397   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
398     for (auto &BOI : bundle_op_infos())
399       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
400         return BOI;
401 
402     llvm_unreachable("Did not find operand bundle for operand!");
403   }
404 
405   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
406   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
407          OpIdx < std::prev(bundle_op_info_end())->End &&
408          "The Idx isn't in the operand bundle");
409 
410   /// We need a decimal number below and to prevent using floating point numbers
411   /// we use an intergal value multiplied by this constant.
412   constexpr unsigned NumberScaling = 1024;
413 
414   bundle_op_iterator Begin = bundle_op_info_begin();
415   bundle_op_iterator End = bundle_op_info_end();
416   bundle_op_iterator Current = Begin;
417 
418   while (Begin != End) {
419     unsigned ScaledOperandPerBundle =
420         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
421     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
422                        ScaledOperandPerBundle);
423     if (Current >= End)
424       Current = std::prev(End);
425     assert(Current < End && Current >= Begin &&
426            "the operand bundle doesn't cover every value in the range");
427     if (OpIdx >= Current->Begin && OpIdx < Current->End)
428       break;
429     if (OpIdx >= Current->End)
430       Begin = Current + 1;
431     else
432       End = Current;
433   }
434 
435   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
436          "the operand bundle doesn't cover every value in the range");
437   return *Current;
438 }
439 
440 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
441                                      OperandBundleDef OB,
442                                      Instruction *InsertPt) {
443   if (CB->getOperandBundle(ID))
444     return CB;
445 
446   SmallVector<OperandBundleDef, 1> Bundles;
447   CB->getOperandBundlesAsDefs(Bundles);
448   Bundles.push_back(OB);
449   return Create(CB, Bundles, InsertPt);
450 }
451 
452 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
453                                         Instruction *InsertPt) {
454   SmallVector<OperandBundleDef, 1> Bundles;
455   bool CreateNew = false;
456 
457   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
458     auto Bundle = CB->getOperandBundleAt(I);
459     if (Bundle.getTagID() == ID) {
460       CreateNew = true;
461       continue;
462     }
463     Bundles.emplace_back(Bundle);
464   }
465 
466   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
467 }
468 
469 bool CallBase::hasReadingOperandBundles() const {
470   // Implementation note: this is a conservative implementation of operand
471   // bundle semantics, where *any* non-assume operand bundle forces a callsite
472   // to be at least readonly.
473   return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
474 }
475 
476 //===----------------------------------------------------------------------===//
477 //                        CallInst Implementation
478 //===----------------------------------------------------------------------===//
479 
480 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
481                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
482   this->FTy = FTy;
483   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
484          "NumOperands not set up?");
485   setCalledOperand(Func);
486 
487 #ifndef NDEBUG
488   assert((Args.size() == FTy->getNumParams() ||
489           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
490          "Calling a function with bad signature!");
491 
492   for (unsigned i = 0; i != Args.size(); ++i)
493     assert((i >= FTy->getNumParams() ||
494             FTy->getParamType(i) == Args[i]->getType()) &&
495            "Calling a function with a bad signature!");
496 #endif
497 
498   llvm::copy(Args, op_begin());
499 
500   auto It = populateBundleOperandInfos(Bundles, Args.size());
501   (void)It;
502   assert(It + 1 == op_end() && "Should add up!");
503 
504   setName(NameStr);
505 }
506 
507 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
508   this->FTy = FTy;
509   assert(getNumOperands() == 1 && "NumOperands not set up?");
510   setCalledOperand(Func);
511 
512   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
513 
514   setName(NameStr);
515 }
516 
517 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
518                    Instruction *InsertBefore)
519     : CallBase(Ty->getReturnType(), Instruction::Call,
520                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
521   init(Ty, Func, Name);
522 }
523 
524 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
525                    BasicBlock *InsertAtEnd)
526     : CallBase(Ty->getReturnType(), Instruction::Call,
527                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
528   init(Ty, Func, Name);
529 }
530 
531 CallInst::CallInst(const CallInst &CI)
532     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
533                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
534                CI.getNumOperands()) {
535   setTailCallKind(CI.getTailCallKind());
536   setCallingConv(CI.getCallingConv());
537 
538   std::copy(CI.op_begin(), CI.op_end(), op_begin());
539   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
540             bundle_op_info_begin());
541   SubclassOptionalData = CI.SubclassOptionalData;
542 }
543 
544 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
545                            Instruction *InsertPt) {
546   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
547 
548   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
549                                  Args, OpB, CI->getName(), InsertPt);
550   NewCI->setTailCallKind(CI->getTailCallKind());
551   NewCI->setCallingConv(CI->getCallingConv());
552   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
553   NewCI->setAttributes(CI->getAttributes());
554   NewCI->setDebugLoc(CI->getDebugLoc());
555   return NewCI;
556 }
557 
558 // Update profile weight for call instruction by scaling it using the ratio
559 // of S/T. The meaning of "branch_weights" meta data for call instruction is
560 // transfered to represent call count.
561 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
562   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
563   if (ProfileData == nullptr)
564     return;
565 
566   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
567   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
568                         !ProfDataName->getString().equals("VP")))
569     return;
570 
571   if (T == 0) {
572     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
573                          "div by 0. Ignoring. Likely the function "
574                       << getParent()->getParent()->getName()
575                       << " has 0 entry count, and contains call instructions "
576                          "with non-zero prof info.");
577     return;
578   }
579 
580   MDBuilder MDB(getContext());
581   SmallVector<Metadata *, 3> Vals;
582   Vals.push_back(ProfileData->getOperand(0));
583   APInt APS(128, S), APT(128, T);
584   if (ProfDataName->getString().equals("branch_weights") &&
585       ProfileData->getNumOperands() > 0) {
586     // Using APInt::div may be expensive, but most cases should fit 64 bits.
587     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
588                        ->getValue()
589                        .getZExtValue());
590     Val *= APS;
591     Vals.push_back(MDB.createConstant(
592         ConstantInt::get(Type::getInt32Ty(getContext()),
593                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
594   } else if (ProfDataName->getString().equals("VP"))
595     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
596       // The first value is the key of the value profile, which will not change.
597       Vals.push_back(ProfileData->getOperand(i));
598       uint64_t Count =
599           mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
600               ->getValue()
601               .getZExtValue();
602       // Don't scale the magic number.
603       if (Count == NOMORE_ICP_MAGICNUM) {
604         Vals.push_back(ProfileData->getOperand(i + 1));
605         continue;
606       }
607       // Using APInt::div may be expensive, but most cases should fit 64 bits.
608       APInt Val(128, Count);
609       Val *= APS;
610       Vals.push_back(MDB.createConstant(
611           ConstantInt::get(Type::getInt64Ty(getContext()),
612                            Val.udiv(APT).getLimitedValue())));
613     }
614   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
615 }
616 
617 /// IsConstantOne - Return true only if val is constant int 1
618 static bool IsConstantOne(Value *val) {
619   assert(val && "IsConstantOne does not work with nullptr val");
620   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
621   return CVal && CVal->isOne();
622 }
623 
624 static Instruction *createMalloc(Instruction *InsertBefore,
625                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
626                                  Type *AllocTy, Value *AllocSize,
627                                  Value *ArraySize,
628                                  ArrayRef<OperandBundleDef> OpB,
629                                  Function *MallocF, const Twine &Name) {
630   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
631          "createMalloc needs either InsertBefore or InsertAtEnd");
632 
633   // malloc(type) becomes:
634   //       bitcast (i8* malloc(typeSize)) to type*
635   // malloc(type, arraySize) becomes:
636   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
637   if (!ArraySize)
638     ArraySize = ConstantInt::get(IntPtrTy, 1);
639   else if (ArraySize->getType() != IntPtrTy) {
640     if (InsertBefore)
641       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
642                                               "", InsertBefore);
643     else
644       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
645                                               "", InsertAtEnd);
646   }
647 
648   if (!IsConstantOne(ArraySize)) {
649     if (IsConstantOne(AllocSize)) {
650       AllocSize = ArraySize;         // Operand * 1 = Operand
651     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
652       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
653                                                      false /*ZExt*/);
654       // Malloc arg is constant product of type size and array size
655       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
656     } else {
657       // Multiply type size by the array size...
658       if (InsertBefore)
659         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
660                                               "mallocsize", InsertBefore);
661       else
662         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
663                                               "mallocsize", InsertAtEnd);
664     }
665   }
666 
667   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
668   // Create the call to Malloc.
669   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
670   Module *M = BB->getParent()->getParent();
671   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
672   FunctionCallee MallocFunc = MallocF;
673   if (!MallocFunc)
674     // prototype malloc as "void *malloc(size_t)"
675     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
676   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
677   CallInst *MCall = nullptr;
678   Instruction *Result = nullptr;
679   if (InsertBefore) {
680     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
681                              InsertBefore);
682     Result = MCall;
683     if (Result->getType() != AllocPtrType)
684       // Create a cast instruction to convert to the right type...
685       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
686   } else {
687     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
688     Result = MCall;
689     if (Result->getType() != AllocPtrType) {
690       InsertAtEnd->getInstList().push_back(MCall);
691       // Create a cast instruction to convert to the right type...
692       Result = new BitCastInst(MCall, AllocPtrType, Name);
693     }
694   }
695   MCall->setTailCall();
696   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
697     MCall->setCallingConv(F->getCallingConv());
698     if (!F->returnDoesNotAlias())
699       F->setReturnDoesNotAlias();
700   }
701   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
702 
703   return Result;
704 }
705 
706 /// CreateMalloc - Generate the IR for a call to malloc:
707 /// 1. Compute the malloc call's argument as the specified type's size,
708 ///    possibly multiplied by the array size if the array size is not
709 ///    constant 1.
710 /// 2. Call malloc with that argument.
711 /// 3. Bitcast the result of the malloc call to the specified type.
712 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
713                                     Type *IntPtrTy, Type *AllocTy,
714                                     Value *AllocSize, Value *ArraySize,
715                                     Function *MallocF,
716                                     const Twine &Name) {
717   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
718                       ArraySize, None, MallocF, Name);
719 }
720 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
721                                     Type *IntPtrTy, Type *AllocTy,
722                                     Value *AllocSize, Value *ArraySize,
723                                     ArrayRef<OperandBundleDef> OpB,
724                                     Function *MallocF,
725                                     const Twine &Name) {
726   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
727                       ArraySize, OpB, MallocF, Name);
728 }
729 
730 /// CreateMalloc - Generate the IR for a call to malloc:
731 /// 1. Compute the malloc call's argument as the specified type's size,
732 ///    possibly multiplied by the array size if the array size is not
733 ///    constant 1.
734 /// 2. Call malloc with that argument.
735 /// 3. Bitcast the result of the malloc call to the specified type.
736 /// Note: This function does not add the bitcast to the basic block, that is the
737 /// responsibility of the caller.
738 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
739                                     Type *IntPtrTy, Type *AllocTy,
740                                     Value *AllocSize, Value *ArraySize,
741                                     Function *MallocF, const Twine &Name) {
742   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
743                       ArraySize, None, MallocF, Name);
744 }
745 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
746                                     Type *IntPtrTy, Type *AllocTy,
747                                     Value *AllocSize, Value *ArraySize,
748                                     ArrayRef<OperandBundleDef> OpB,
749                                     Function *MallocF, const Twine &Name) {
750   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
751                       ArraySize, OpB, MallocF, Name);
752 }
753 
754 static Instruction *createFree(Value *Source,
755                                ArrayRef<OperandBundleDef> Bundles,
756                                Instruction *InsertBefore,
757                                BasicBlock *InsertAtEnd) {
758   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
759          "createFree needs either InsertBefore or InsertAtEnd");
760   assert(Source->getType()->isPointerTy() &&
761          "Can not free something of nonpointer type!");
762 
763   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
764   Module *M = BB->getParent()->getParent();
765 
766   Type *VoidTy = Type::getVoidTy(M->getContext());
767   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
768   // prototype free as "void free(void*)"
769   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
770   CallInst *Result = nullptr;
771   Value *PtrCast = Source;
772   if (InsertBefore) {
773     if (Source->getType() != IntPtrTy)
774       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
775     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
776   } else {
777     if (Source->getType() != IntPtrTy)
778       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
779     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
780   }
781   Result->setTailCall();
782   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
783     Result->setCallingConv(F->getCallingConv());
784 
785   return Result;
786 }
787 
788 /// CreateFree - Generate the IR for a call to the builtin free function.
789 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
790   return createFree(Source, None, InsertBefore, nullptr);
791 }
792 Instruction *CallInst::CreateFree(Value *Source,
793                                   ArrayRef<OperandBundleDef> Bundles,
794                                   Instruction *InsertBefore) {
795   return createFree(Source, Bundles, InsertBefore, nullptr);
796 }
797 
798 /// CreateFree - Generate the IR for a call to the builtin free function.
799 /// Note: This function does not add the call to the basic block, that is the
800 /// responsibility of the caller.
801 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
802   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
803   assert(FreeCall && "CreateFree did not create a CallInst");
804   return FreeCall;
805 }
806 Instruction *CallInst::CreateFree(Value *Source,
807                                   ArrayRef<OperandBundleDef> Bundles,
808                                   BasicBlock *InsertAtEnd) {
809   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
810   assert(FreeCall && "CreateFree did not create a CallInst");
811   return FreeCall;
812 }
813 
814 //===----------------------------------------------------------------------===//
815 //                        InvokeInst Implementation
816 //===----------------------------------------------------------------------===//
817 
818 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
819                       BasicBlock *IfException, ArrayRef<Value *> Args,
820                       ArrayRef<OperandBundleDef> Bundles,
821                       const Twine &NameStr) {
822   this->FTy = FTy;
823 
824   assert((int)getNumOperands() ==
825              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
826          "NumOperands not set up?");
827   setNormalDest(IfNormal);
828   setUnwindDest(IfException);
829   setCalledOperand(Fn);
830 
831 #ifndef NDEBUG
832   assert(((Args.size() == FTy->getNumParams()) ||
833           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
834          "Invoking a function with bad signature");
835 
836   for (unsigned i = 0, e = Args.size(); i != e; i++)
837     assert((i >= FTy->getNumParams() ||
838             FTy->getParamType(i) == Args[i]->getType()) &&
839            "Invoking a function with a bad signature!");
840 #endif
841 
842   llvm::copy(Args, op_begin());
843 
844   auto It = populateBundleOperandInfos(Bundles, Args.size());
845   (void)It;
846   assert(It + 3 == op_end() && "Should add up!");
847 
848   setName(NameStr);
849 }
850 
851 InvokeInst::InvokeInst(const InvokeInst &II)
852     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
853                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
854                II.getNumOperands()) {
855   setCallingConv(II.getCallingConv());
856   std::copy(II.op_begin(), II.op_end(), op_begin());
857   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
858             bundle_op_info_begin());
859   SubclassOptionalData = II.SubclassOptionalData;
860 }
861 
862 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
863                                Instruction *InsertPt) {
864   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
865 
866   auto *NewII = InvokeInst::Create(
867       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
868       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
869   NewII->setCallingConv(II->getCallingConv());
870   NewII->SubclassOptionalData = II->SubclassOptionalData;
871   NewII->setAttributes(II->getAttributes());
872   NewII->setDebugLoc(II->getDebugLoc());
873   return NewII;
874 }
875 
876 LandingPadInst *InvokeInst::getLandingPadInst() const {
877   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
878 }
879 
880 //===----------------------------------------------------------------------===//
881 //                        CallBrInst Implementation
882 //===----------------------------------------------------------------------===//
883 
884 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
885                       ArrayRef<BasicBlock *> IndirectDests,
886                       ArrayRef<Value *> Args,
887                       ArrayRef<OperandBundleDef> Bundles,
888                       const Twine &NameStr) {
889   this->FTy = FTy;
890 
891   assert((int)getNumOperands() ==
892              ComputeNumOperands(Args.size(), IndirectDests.size(),
893                                 CountBundleInputs(Bundles)) &&
894          "NumOperands not set up?");
895   NumIndirectDests = IndirectDests.size();
896   setDefaultDest(Fallthrough);
897   for (unsigned i = 0; i != NumIndirectDests; ++i)
898     setIndirectDest(i, IndirectDests[i]);
899   setCalledOperand(Fn);
900 
901 #ifndef NDEBUG
902   assert(((Args.size() == FTy->getNumParams()) ||
903           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
904          "Calling a function with bad signature");
905 
906   for (unsigned i = 0, e = Args.size(); i != e; i++)
907     assert((i >= FTy->getNumParams() ||
908             FTy->getParamType(i) == Args[i]->getType()) &&
909            "Calling a function with a bad signature!");
910 #endif
911 
912   std::copy(Args.begin(), Args.end(), op_begin());
913 
914   auto It = populateBundleOperandInfos(Bundles, Args.size());
915   (void)It;
916   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
917 
918   setName(NameStr);
919 }
920 
921 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
922   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
923   if (BasicBlock *OldBB = getIndirectDest(i)) {
924     BlockAddress *Old = BlockAddress::get(OldBB);
925     BlockAddress *New = BlockAddress::get(B);
926     for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
927       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
928         setArgOperand(ArgNo, New);
929   }
930 }
931 
932 CallBrInst::CallBrInst(const CallBrInst &CBI)
933     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
934                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
935                CBI.getNumOperands()) {
936   setCallingConv(CBI.getCallingConv());
937   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
938   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
939             bundle_op_info_begin());
940   SubclassOptionalData = CBI.SubclassOptionalData;
941   NumIndirectDests = CBI.NumIndirectDests;
942 }
943 
944 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
945                                Instruction *InsertPt) {
946   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
947 
948   auto *NewCBI = CallBrInst::Create(
949       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
950       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
951   NewCBI->setCallingConv(CBI->getCallingConv());
952   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
953   NewCBI->setAttributes(CBI->getAttributes());
954   NewCBI->setDebugLoc(CBI->getDebugLoc());
955   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
956   return NewCBI;
957 }
958 
959 //===----------------------------------------------------------------------===//
960 //                        ReturnInst Implementation
961 //===----------------------------------------------------------------------===//
962 
963 ReturnInst::ReturnInst(const ReturnInst &RI)
964     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
965                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
966                   RI.getNumOperands()) {
967   if (RI.getNumOperands())
968     Op<0>() = RI.Op<0>();
969   SubclassOptionalData = RI.SubclassOptionalData;
970 }
971 
972 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
973     : Instruction(Type::getVoidTy(C), Instruction::Ret,
974                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
975                   InsertBefore) {
976   if (retVal)
977     Op<0>() = retVal;
978 }
979 
980 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
981     : Instruction(Type::getVoidTy(C), Instruction::Ret,
982                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
983                   InsertAtEnd) {
984   if (retVal)
985     Op<0>() = retVal;
986 }
987 
988 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
989     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
990                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
991 
992 //===----------------------------------------------------------------------===//
993 //                        ResumeInst Implementation
994 //===----------------------------------------------------------------------===//
995 
996 ResumeInst::ResumeInst(const ResumeInst &RI)
997     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
998                   OperandTraits<ResumeInst>::op_begin(this), 1) {
999   Op<0>() = RI.Op<0>();
1000 }
1001 
1002 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1003     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1004                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1005   Op<0>() = Exn;
1006 }
1007 
1008 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1009     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1010                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1011   Op<0>() = Exn;
1012 }
1013 
1014 //===----------------------------------------------------------------------===//
1015 //                        CleanupReturnInst Implementation
1016 //===----------------------------------------------------------------------===//
1017 
1018 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1019     : Instruction(CRI.getType(), Instruction::CleanupRet,
1020                   OperandTraits<CleanupReturnInst>::op_end(this) -
1021                       CRI.getNumOperands(),
1022                   CRI.getNumOperands()) {
1023   setSubclassData<Instruction::OpaqueField>(
1024       CRI.getSubclassData<Instruction::OpaqueField>());
1025   Op<0>() = CRI.Op<0>();
1026   if (CRI.hasUnwindDest())
1027     Op<1>() = CRI.Op<1>();
1028 }
1029 
1030 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1031   if (UnwindBB)
1032     setSubclassData<UnwindDestField>(true);
1033 
1034   Op<0>() = CleanupPad;
1035   if (UnwindBB)
1036     Op<1>() = UnwindBB;
1037 }
1038 
1039 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1040                                      unsigned Values, Instruction *InsertBefore)
1041     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1042                   Instruction::CleanupRet,
1043                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1044                   Values, InsertBefore) {
1045   init(CleanupPad, UnwindBB);
1046 }
1047 
1048 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1049                                      unsigned Values, BasicBlock *InsertAtEnd)
1050     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1051                   Instruction::CleanupRet,
1052                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1053                   Values, InsertAtEnd) {
1054   init(CleanupPad, UnwindBB);
1055 }
1056 
1057 //===----------------------------------------------------------------------===//
1058 //                        CatchReturnInst Implementation
1059 //===----------------------------------------------------------------------===//
1060 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1061   Op<0>() = CatchPad;
1062   Op<1>() = BB;
1063 }
1064 
1065 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1066     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1067                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1068   Op<0>() = CRI.Op<0>();
1069   Op<1>() = CRI.Op<1>();
1070 }
1071 
1072 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1073                                  Instruction *InsertBefore)
1074     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1075                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1076                   InsertBefore) {
1077   init(CatchPad, BB);
1078 }
1079 
1080 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1081                                  BasicBlock *InsertAtEnd)
1082     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1083                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1084                   InsertAtEnd) {
1085   init(CatchPad, BB);
1086 }
1087 
1088 //===----------------------------------------------------------------------===//
1089 //                       CatchSwitchInst Implementation
1090 //===----------------------------------------------------------------------===//
1091 
1092 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1093                                  unsigned NumReservedValues,
1094                                  const Twine &NameStr,
1095                                  Instruction *InsertBefore)
1096     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1097                   InsertBefore) {
1098   if (UnwindDest)
1099     ++NumReservedValues;
1100   init(ParentPad, UnwindDest, NumReservedValues + 1);
1101   setName(NameStr);
1102 }
1103 
1104 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1105                                  unsigned NumReservedValues,
1106                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1107     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1108                   InsertAtEnd) {
1109   if (UnwindDest)
1110     ++NumReservedValues;
1111   init(ParentPad, UnwindDest, NumReservedValues + 1);
1112   setName(NameStr);
1113 }
1114 
1115 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1116     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1117                   CSI.getNumOperands()) {
1118   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1119   setNumHungOffUseOperands(ReservedSpace);
1120   Use *OL = getOperandList();
1121   const Use *InOL = CSI.getOperandList();
1122   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1123     OL[I] = InOL[I];
1124 }
1125 
1126 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1127                            unsigned NumReservedValues) {
1128   assert(ParentPad && NumReservedValues);
1129 
1130   ReservedSpace = NumReservedValues;
1131   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1132   allocHungoffUses(ReservedSpace);
1133 
1134   Op<0>() = ParentPad;
1135   if (UnwindDest) {
1136     setSubclassData<UnwindDestField>(true);
1137     setUnwindDest(UnwindDest);
1138   }
1139 }
1140 
1141 /// growOperands - grow operands - This grows the operand list in response to a
1142 /// push_back style of operation. This grows the number of ops by 2 times.
1143 void CatchSwitchInst::growOperands(unsigned Size) {
1144   unsigned NumOperands = getNumOperands();
1145   assert(NumOperands >= 1);
1146   if (ReservedSpace >= NumOperands + Size)
1147     return;
1148   ReservedSpace = (NumOperands + Size / 2) * 2;
1149   growHungoffUses(ReservedSpace);
1150 }
1151 
1152 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1153   unsigned OpNo = getNumOperands();
1154   growOperands(1);
1155   assert(OpNo < ReservedSpace && "Growing didn't work!");
1156   setNumHungOffUseOperands(getNumOperands() + 1);
1157   getOperandList()[OpNo] = Handler;
1158 }
1159 
1160 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1161   // Move all subsequent handlers up one.
1162   Use *EndDst = op_end() - 1;
1163   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1164     *CurDst = *(CurDst + 1);
1165   // Null out the last handler use.
1166   *EndDst = nullptr;
1167 
1168   setNumHungOffUseOperands(getNumOperands() - 1);
1169 }
1170 
1171 //===----------------------------------------------------------------------===//
1172 //                        FuncletPadInst Implementation
1173 //===----------------------------------------------------------------------===//
1174 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1175                           const Twine &NameStr) {
1176   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1177   llvm::copy(Args, op_begin());
1178   setParentPad(ParentPad);
1179   setName(NameStr);
1180 }
1181 
1182 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1183     : Instruction(FPI.getType(), FPI.getOpcode(),
1184                   OperandTraits<FuncletPadInst>::op_end(this) -
1185                       FPI.getNumOperands(),
1186                   FPI.getNumOperands()) {
1187   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1188   setParentPad(FPI.getParentPad());
1189 }
1190 
1191 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1192                                ArrayRef<Value *> Args, unsigned Values,
1193                                const Twine &NameStr, Instruction *InsertBefore)
1194     : Instruction(ParentPad->getType(), Op,
1195                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1196                   InsertBefore) {
1197   init(ParentPad, Args, NameStr);
1198 }
1199 
1200 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1201                                ArrayRef<Value *> Args, unsigned Values,
1202                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1203     : Instruction(ParentPad->getType(), Op,
1204                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1205                   InsertAtEnd) {
1206   init(ParentPad, Args, NameStr);
1207 }
1208 
1209 //===----------------------------------------------------------------------===//
1210 //                      UnreachableInst Implementation
1211 //===----------------------------------------------------------------------===//
1212 
1213 UnreachableInst::UnreachableInst(LLVMContext &Context,
1214                                  Instruction *InsertBefore)
1215     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1216                   0, InsertBefore) {}
1217 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1218     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1219                   0, InsertAtEnd) {}
1220 
1221 //===----------------------------------------------------------------------===//
1222 //                        BranchInst Implementation
1223 //===----------------------------------------------------------------------===//
1224 
1225 void BranchInst::AssertOK() {
1226   if (isConditional())
1227     assert(getCondition()->getType()->isIntegerTy(1) &&
1228            "May only branch on boolean predicates!");
1229 }
1230 
1231 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1232     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1233                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1234                   InsertBefore) {
1235   assert(IfTrue && "Branch destination may not be null!");
1236   Op<-1>() = IfTrue;
1237 }
1238 
1239 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1240                        Instruction *InsertBefore)
1241     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1242                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1243                   InsertBefore) {
1244   Op<-1>() = IfTrue;
1245   Op<-2>() = IfFalse;
1246   Op<-3>() = Cond;
1247 #ifndef NDEBUG
1248   AssertOK();
1249 #endif
1250 }
1251 
1252 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1253     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1254                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1255   assert(IfTrue && "Branch destination may not be null!");
1256   Op<-1>() = IfTrue;
1257 }
1258 
1259 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1260                        BasicBlock *InsertAtEnd)
1261     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1262                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1263   Op<-1>() = IfTrue;
1264   Op<-2>() = IfFalse;
1265   Op<-3>() = Cond;
1266 #ifndef NDEBUG
1267   AssertOK();
1268 #endif
1269 }
1270 
1271 BranchInst::BranchInst(const BranchInst &BI)
1272     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1273                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1274                   BI.getNumOperands()) {
1275   Op<-1>() = BI.Op<-1>();
1276   if (BI.getNumOperands() != 1) {
1277     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1278     Op<-3>() = BI.Op<-3>();
1279     Op<-2>() = BI.Op<-2>();
1280   }
1281   SubclassOptionalData = BI.SubclassOptionalData;
1282 }
1283 
1284 void BranchInst::swapSuccessors() {
1285   assert(isConditional() &&
1286          "Cannot swap successors of an unconditional branch");
1287   Op<-1>().swap(Op<-2>());
1288 
1289   // Update profile metadata if present and it matches our structural
1290   // expectations.
1291   swapProfMetadata();
1292 }
1293 
1294 //===----------------------------------------------------------------------===//
1295 //                        AllocaInst Implementation
1296 //===----------------------------------------------------------------------===//
1297 
1298 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1299   if (!Amt)
1300     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1301   else {
1302     assert(!isa<BasicBlock>(Amt) &&
1303            "Passed basic block into allocation size parameter! Use other ctor");
1304     assert(Amt->getType()->isIntegerTy() &&
1305            "Allocation array size is not an integer!");
1306   }
1307   return Amt;
1308 }
1309 
1310 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1311   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1312   assert(BB->getParent() &&
1313          "BB must be in a Function when alignment not provided!");
1314   const DataLayout &DL = BB->getModule()->getDataLayout();
1315   return DL.getPrefTypeAlign(Ty);
1316 }
1317 
1318 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1319   assert(I && "Insertion position cannot be null when alignment not provided!");
1320   return computeAllocaDefaultAlign(Ty, I->getParent());
1321 }
1322 
1323 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1324                        Instruction *InsertBefore)
1325   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1326 
1327 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1328                        BasicBlock *InsertAtEnd)
1329   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1330 
1331 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1332                        const Twine &Name, Instruction *InsertBefore)
1333     : AllocaInst(Ty, AddrSpace, ArraySize,
1334                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1335                  InsertBefore) {}
1336 
1337 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1338                        const Twine &Name, BasicBlock *InsertAtEnd)
1339     : AllocaInst(Ty, AddrSpace, ArraySize,
1340                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1341                  InsertAtEnd) {}
1342 
1343 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1344                        Align Align, const Twine &Name,
1345                        Instruction *InsertBefore)
1346     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1347                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1348       AllocatedType(Ty) {
1349   setAlignment(Align);
1350   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1351   setName(Name);
1352 }
1353 
1354 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1355                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1356     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1357                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1358       AllocatedType(Ty) {
1359   setAlignment(Align);
1360   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1361   setName(Name);
1362 }
1363 
1364 
1365 bool AllocaInst::isArrayAllocation() const {
1366   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1367     return !CI->isOne();
1368   return true;
1369 }
1370 
1371 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1372 /// function and is a constant size.  If so, the code generator will fold it
1373 /// into the prolog/epilog code, so it is basically free.
1374 bool AllocaInst::isStaticAlloca() const {
1375   // Must be constant size.
1376   if (!isa<ConstantInt>(getArraySize())) return false;
1377 
1378   // Must be in the entry block.
1379   const BasicBlock *Parent = getParent();
1380   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1381 }
1382 
1383 //===----------------------------------------------------------------------===//
1384 //                           LoadInst Implementation
1385 //===----------------------------------------------------------------------===//
1386 
1387 void LoadInst::AssertOK() {
1388   assert(getOperand(0)->getType()->isPointerTy() &&
1389          "Ptr must have pointer type.");
1390   assert(!(isAtomic() && getAlignment() == 0) &&
1391          "Alignment required for atomic load");
1392 }
1393 
1394 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1395   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1396   assert(BB->getParent() &&
1397          "BB must be in a Function when alignment not provided!");
1398   const DataLayout &DL = BB->getModule()->getDataLayout();
1399   return DL.getABITypeAlign(Ty);
1400 }
1401 
1402 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1403   assert(I && "Insertion position cannot be null when alignment not provided!");
1404   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1405 }
1406 
1407 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1408                    Instruction *InsertBef)
1409     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1410 
1411 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1412                    BasicBlock *InsertAE)
1413     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1414 
1415 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1416                    Instruction *InsertBef)
1417     : LoadInst(Ty, Ptr, Name, isVolatile,
1418                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1419 
1420 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1421                    BasicBlock *InsertAE)
1422     : LoadInst(Ty, Ptr, Name, isVolatile,
1423                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1424 
1425 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1426                    Align Align, Instruction *InsertBef)
1427     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1428                SyncScope::System, InsertBef) {}
1429 
1430 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1431                    Align Align, BasicBlock *InsertAE)
1432     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1433                SyncScope::System, InsertAE) {}
1434 
1435 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1436                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1437                    Instruction *InsertBef)
1438     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1439   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1440   setVolatile(isVolatile);
1441   setAlignment(Align);
1442   setAtomic(Order, SSID);
1443   AssertOK();
1444   setName(Name);
1445 }
1446 
1447 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1448                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1449                    BasicBlock *InsertAE)
1450     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1451   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1452   setVolatile(isVolatile);
1453   setAlignment(Align);
1454   setAtomic(Order, SSID);
1455   AssertOK();
1456   setName(Name);
1457 }
1458 
1459 //===----------------------------------------------------------------------===//
1460 //                           StoreInst Implementation
1461 //===----------------------------------------------------------------------===//
1462 
1463 void StoreInst::AssertOK() {
1464   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1465   assert(getOperand(1)->getType()->isPointerTy() &&
1466          "Ptr must have pointer type!");
1467   assert(getOperand(0)->getType() ==
1468                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1469          && "Ptr must be a pointer to Val type!");
1470   assert(!(isAtomic() && getAlignment() == 0) &&
1471          "Alignment required for atomic store");
1472 }
1473 
1474 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1475     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1476 
1477 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1478     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1479 
1480 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1481                      Instruction *InsertBefore)
1482     : StoreInst(val, addr, isVolatile,
1483                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1484                 InsertBefore) {}
1485 
1486 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1487                      BasicBlock *InsertAtEnd)
1488     : StoreInst(val, addr, isVolatile,
1489                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1490                 InsertAtEnd) {}
1491 
1492 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1493                      Instruction *InsertBefore)
1494     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1495                 SyncScope::System, InsertBefore) {}
1496 
1497 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1498                      BasicBlock *InsertAtEnd)
1499     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1500                 SyncScope::System, InsertAtEnd) {}
1501 
1502 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1503                      AtomicOrdering Order, SyncScope::ID SSID,
1504                      Instruction *InsertBefore)
1505     : Instruction(Type::getVoidTy(val->getContext()), Store,
1506                   OperandTraits<StoreInst>::op_begin(this),
1507                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1508   Op<0>() = val;
1509   Op<1>() = addr;
1510   setVolatile(isVolatile);
1511   setAlignment(Align);
1512   setAtomic(Order, SSID);
1513   AssertOK();
1514 }
1515 
1516 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1517                      AtomicOrdering Order, SyncScope::ID SSID,
1518                      BasicBlock *InsertAtEnd)
1519     : Instruction(Type::getVoidTy(val->getContext()), Store,
1520                   OperandTraits<StoreInst>::op_begin(this),
1521                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1522   Op<0>() = val;
1523   Op<1>() = addr;
1524   setVolatile(isVolatile);
1525   setAlignment(Align);
1526   setAtomic(Order, SSID);
1527   AssertOK();
1528 }
1529 
1530 
1531 //===----------------------------------------------------------------------===//
1532 //                       AtomicCmpXchgInst Implementation
1533 //===----------------------------------------------------------------------===//
1534 
1535 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1536                              Align Alignment, AtomicOrdering SuccessOrdering,
1537                              AtomicOrdering FailureOrdering,
1538                              SyncScope::ID SSID) {
1539   Op<0>() = Ptr;
1540   Op<1>() = Cmp;
1541   Op<2>() = NewVal;
1542   setSuccessOrdering(SuccessOrdering);
1543   setFailureOrdering(FailureOrdering);
1544   setSyncScopeID(SSID);
1545   setAlignment(Alignment);
1546 
1547   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1548          "All operands must be non-null!");
1549   assert(getOperand(0)->getType()->isPointerTy() &&
1550          "Ptr must have pointer type!");
1551   assert(getOperand(1)->getType() ==
1552                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1553          && "Ptr must be a pointer to Cmp type!");
1554   assert(getOperand(2)->getType() ==
1555                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1556          && "Ptr must be a pointer to NewVal type!");
1557   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1558          "AtomicCmpXchg instructions must be atomic!");
1559   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1560          "AtomicCmpXchg instructions must be atomic!");
1561   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1562          "AtomicCmpXchg failure argument shall be no stronger than the success "
1563          "argument");
1564   assert(FailureOrdering != AtomicOrdering::Release &&
1565          FailureOrdering != AtomicOrdering::AcquireRelease &&
1566          "AtomicCmpXchg failure ordering cannot include release semantics");
1567 }
1568 
1569 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1570                                      Align Alignment,
1571                                      AtomicOrdering SuccessOrdering,
1572                                      AtomicOrdering FailureOrdering,
1573                                      SyncScope::ID SSID,
1574                                      Instruction *InsertBefore)
1575     : Instruction(
1576           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1577           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1578           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1579   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1580 }
1581 
1582 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1583                                      Align Alignment,
1584                                      AtomicOrdering SuccessOrdering,
1585                                      AtomicOrdering FailureOrdering,
1586                                      SyncScope::ID SSID,
1587                                      BasicBlock *InsertAtEnd)
1588     : Instruction(
1589           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1590           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1591           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1592   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1593 }
1594 
1595 //===----------------------------------------------------------------------===//
1596 //                       AtomicRMWInst Implementation
1597 //===----------------------------------------------------------------------===//
1598 
1599 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1600                          Align Alignment, AtomicOrdering Ordering,
1601                          SyncScope::ID SSID) {
1602   Op<0>() = Ptr;
1603   Op<1>() = Val;
1604   setOperation(Operation);
1605   setOrdering(Ordering);
1606   setSyncScopeID(SSID);
1607   setAlignment(Alignment);
1608 
1609   assert(getOperand(0) && getOperand(1) &&
1610          "All operands must be non-null!");
1611   assert(getOperand(0)->getType()->isPointerTy() &&
1612          "Ptr must have pointer type!");
1613   assert(getOperand(1)->getType() ==
1614          cast<PointerType>(getOperand(0)->getType())->getElementType()
1615          && "Ptr must be a pointer to Val type!");
1616   assert(Ordering != AtomicOrdering::NotAtomic &&
1617          "AtomicRMW instructions must be atomic!");
1618 }
1619 
1620 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1621                              Align Alignment, AtomicOrdering Ordering,
1622                              SyncScope::ID SSID, Instruction *InsertBefore)
1623     : Instruction(Val->getType(), AtomicRMW,
1624                   OperandTraits<AtomicRMWInst>::op_begin(this),
1625                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1626   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1627 }
1628 
1629 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1630                              Align Alignment, AtomicOrdering Ordering,
1631                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1632     : Instruction(Val->getType(), AtomicRMW,
1633                   OperandTraits<AtomicRMWInst>::op_begin(this),
1634                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1635   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1636 }
1637 
1638 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1639   switch (Op) {
1640   case AtomicRMWInst::Xchg:
1641     return "xchg";
1642   case AtomicRMWInst::Add:
1643     return "add";
1644   case AtomicRMWInst::Sub:
1645     return "sub";
1646   case AtomicRMWInst::And:
1647     return "and";
1648   case AtomicRMWInst::Nand:
1649     return "nand";
1650   case AtomicRMWInst::Or:
1651     return "or";
1652   case AtomicRMWInst::Xor:
1653     return "xor";
1654   case AtomicRMWInst::Max:
1655     return "max";
1656   case AtomicRMWInst::Min:
1657     return "min";
1658   case AtomicRMWInst::UMax:
1659     return "umax";
1660   case AtomicRMWInst::UMin:
1661     return "umin";
1662   case AtomicRMWInst::FAdd:
1663     return "fadd";
1664   case AtomicRMWInst::FSub:
1665     return "fsub";
1666   case AtomicRMWInst::BAD_BINOP:
1667     return "<invalid operation>";
1668   }
1669 
1670   llvm_unreachable("invalid atomicrmw operation");
1671 }
1672 
1673 //===----------------------------------------------------------------------===//
1674 //                       FenceInst Implementation
1675 //===----------------------------------------------------------------------===//
1676 
1677 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1678                      SyncScope::ID SSID,
1679                      Instruction *InsertBefore)
1680   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1681   setOrdering(Ordering);
1682   setSyncScopeID(SSID);
1683 }
1684 
1685 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1686                      SyncScope::ID SSID,
1687                      BasicBlock *InsertAtEnd)
1688   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1689   setOrdering(Ordering);
1690   setSyncScopeID(SSID);
1691 }
1692 
1693 //===----------------------------------------------------------------------===//
1694 //                       GetElementPtrInst Implementation
1695 //===----------------------------------------------------------------------===//
1696 
1697 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1698                              const Twine &Name) {
1699   assert(getNumOperands() == 1 + IdxList.size() &&
1700          "NumOperands not initialized?");
1701   Op<0>() = Ptr;
1702   llvm::copy(IdxList, op_begin() + 1);
1703   setName(Name);
1704 }
1705 
1706 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1707     : Instruction(GEPI.getType(), GetElementPtr,
1708                   OperandTraits<GetElementPtrInst>::op_end(this) -
1709                       GEPI.getNumOperands(),
1710                   GEPI.getNumOperands()),
1711       SourceElementType(GEPI.SourceElementType),
1712       ResultElementType(GEPI.ResultElementType) {
1713   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1714   SubclassOptionalData = GEPI.SubclassOptionalData;
1715 }
1716 
1717 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1718   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1719     if (!Struct->indexValid(Idx))
1720       return nullptr;
1721     return Struct->getTypeAtIndex(Idx);
1722   }
1723   if (!Idx->getType()->isIntOrIntVectorTy())
1724     return nullptr;
1725   if (auto *Array = dyn_cast<ArrayType>(Ty))
1726     return Array->getElementType();
1727   if (auto *Vector = dyn_cast<VectorType>(Ty))
1728     return Vector->getElementType();
1729   return nullptr;
1730 }
1731 
1732 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1733   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1734     if (Idx >= Struct->getNumElements())
1735       return nullptr;
1736     return Struct->getElementType(Idx);
1737   }
1738   if (auto *Array = dyn_cast<ArrayType>(Ty))
1739     return Array->getElementType();
1740   if (auto *Vector = dyn_cast<VectorType>(Ty))
1741     return Vector->getElementType();
1742   return nullptr;
1743 }
1744 
1745 template <typename IndexTy>
1746 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1747   if (IdxList.empty())
1748     return Ty;
1749   for (IndexTy V : IdxList.slice(1)) {
1750     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1751     if (!Ty)
1752       return Ty;
1753   }
1754   return Ty;
1755 }
1756 
1757 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1758   return getIndexedTypeInternal(Ty, IdxList);
1759 }
1760 
1761 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1762                                         ArrayRef<Constant *> IdxList) {
1763   return getIndexedTypeInternal(Ty, IdxList);
1764 }
1765 
1766 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1767   return getIndexedTypeInternal(Ty, IdxList);
1768 }
1769 
1770 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1771 /// zeros.  If so, the result pointer and the first operand have the same
1772 /// value, just potentially different types.
1773 bool GetElementPtrInst::hasAllZeroIndices() const {
1774   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1775     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1776       if (!CI->isZero()) return false;
1777     } else {
1778       return false;
1779     }
1780   }
1781   return true;
1782 }
1783 
1784 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1785 /// constant integers.  If so, the result pointer and the first operand have
1786 /// a constant offset between them.
1787 bool GetElementPtrInst::hasAllConstantIndices() const {
1788   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1789     if (!isa<ConstantInt>(getOperand(i)))
1790       return false;
1791   }
1792   return true;
1793 }
1794 
1795 void GetElementPtrInst::setIsInBounds(bool B) {
1796   cast<GEPOperator>(this)->setIsInBounds(B);
1797 }
1798 
1799 bool GetElementPtrInst::isInBounds() const {
1800   return cast<GEPOperator>(this)->isInBounds();
1801 }
1802 
1803 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1804                                                  APInt &Offset) const {
1805   // Delegate to the generic GEPOperator implementation.
1806   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1807 }
1808 
1809 //===----------------------------------------------------------------------===//
1810 //                           ExtractElementInst Implementation
1811 //===----------------------------------------------------------------------===//
1812 
1813 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1814                                        const Twine &Name,
1815                                        Instruction *InsertBef)
1816   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1817                 ExtractElement,
1818                 OperandTraits<ExtractElementInst>::op_begin(this),
1819                 2, InsertBef) {
1820   assert(isValidOperands(Val, Index) &&
1821          "Invalid extractelement instruction operands!");
1822   Op<0>() = Val;
1823   Op<1>() = Index;
1824   setName(Name);
1825 }
1826 
1827 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1828                                        const Twine &Name,
1829                                        BasicBlock *InsertAE)
1830   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1831                 ExtractElement,
1832                 OperandTraits<ExtractElementInst>::op_begin(this),
1833                 2, InsertAE) {
1834   assert(isValidOperands(Val, Index) &&
1835          "Invalid extractelement instruction operands!");
1836 
1837   Op<0>() = Val;
1838   Op<1>() = Index;
1839   setName(Name);
1840 }
1841 
1842 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1843   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1844     return false;
1845   return true;
1846 }
1847 
1848 //===----------------------------------------------------------------------===//
1849 //                           InsertElementInst Implementation
1850 //===----------------------------------------------------------------------===//
1851 
1852 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1853                                      const Twine &Name,
1854                                      Instruction *InsertBef)
1855   : Instruction(Vec->getType(), InsertElement,
1856                 OperandTraits<InsertElementInst>::op_begin(this),
1857                 3, InsertBef) {
1858   assert(isValidOperands(Vec, Elt, Index) &&
1859          "Invalid insertelement instruction operands!");
1860   Op<0>() = Vec;
1861   Op<1>() = Elt;
1862   Op<2>() = Index;
1863   setName(Name);
1864 }
1865 
1866 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1867                                      const Twine &Name,
1868                                      BasicBlock *InsertAE)
1869   : Instruction(Vec->getType(), InsertElement,
1870                 OperandTraits<InsertElementInst>::op_begin(this),
1871                 3, InsertAE) {
1872   assert(isValidOperands(Vec, Elt, Index) &&
1873          "Invalid insertelement instruction operands!");
1874 
1875   Op<0>() = Vec;
1876   Op<1>() = Elt;
1877   Op<2>() = Index;
1878   setName(Name);
1879 }
1880 
1881 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1882                                         const Value *Index) {
1883   if (!Vec->getType()->isVectorTy())
1884     return false;   // First operand of insertelement must be vector type.
1885 
1886   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1887     return false;// Second operand of insertelement must be vector element type.
1888 
1889   if (!Index->getType()->isIntegerTy())
1890     return false;  // Third operand of insertelement must be i32.
1891   return true;
1892 }
1893 
1894 //===----------------------------------------------------------------------===//
1895 //                      ShuffleVectorInst Implementation
1896 //===----------------------------------------------------------------------===//
1897 
1898 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1899                                      const Twine &Name,
1900                                      Instruction *InsertBefore)
1901     : Instruction(
1902           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1903                           cast<VectorType>(Mask->getType())->getElementCount()),
1904           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1905           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1906   assert(isValidOperands(V1, V2, Mask) &&
1907          "Invalid shuffle vector instruction operands!");
1908 
1909   Op<0>() = V1;
1910   Op<1>() = V2;
1911   SmallVector<int, 16> MaskArr;
1912   getShuffleMask(cast<Constant>(Mask), MaskArr);
1913   setShuffleMask(MaskArr);
1914   setName(Name);
1915 }
1916 
1917 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1918                                      const Twine &Name, BasicBlock *InsertAtEnd)
1919     : Instruction(
1920           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1921                           cast<VectorType>(Mask->getType())->getElementCount()),
1922           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1923           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1924   assert(isValidOperands(V1, V2, Mask) &&
1925          "Invalid shuffle vector instruction operands!");
1926 
1927   Op<0>() = V1;
1928   Op<1>() = V2;
1929   SmallVector<int, 16> MaskArr;
1930   getShuffleMask(cast<Constant>(Mask), MaskArr);
1931   setShuffleMask(MaskArr);
1932   setName(Name);
1933 }
1934 
1935 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1936                                      const Twine &Name,
1937                                      Instruction *InsertBefore)
1938     : Instruction(
1939           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1940                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1941           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1942           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1943   assert(isValidOperands(V1, V2, Mask) &&
1944          "Invalid shuffle vector instruction operands!");
1945   Op<0>() = V1;
1946   Op<1>() = V2;
1947   setShuffleMask(Mask);
1948   setName(Name);
1949 }
1950 
1951 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1952                                      const Twine &Name, BasicBlock *InsertAtEnd)
1953     : Instruction(
1954           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1955                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1956           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1957           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1958   assert(isValidOperands(V1, V2, Mask) &&
1959          "Invalid shuffle vector instruction operands!");
1960 
1961   Op<0>() = V1;
1962   Op<1>() = V2;
1963   setShuffleMask(Mask);
1964   setName(Name);
1965 }
1966 
1967 void ShuffleVectorInst::commute() {
1968   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1969   int NumMaskElts = ShuffleMask.size();
1970   SmallVector<int, 16> NewMask(NumMaskElts);
1971   for (int i = 0; i != NumMaskElts; ++i) {
1972     int MaskElt = getMaskValue(i);
1973     if (MaskElt == UndefMaskElem) {
1974       NewMask[i] = UndefMaskElem;
1975       continue;
1976     }
1977     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1978     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1979     NewMask[i] = MaskElt;
1980   }
1981   setShuffleMask(NewMask);
1982   Op<0>().swap(Op<1>());
1983 }
1984 
1985 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1986                                         ArrayRef<int> Mask) {
1987   // V1 and V2 must be vectors of the same type.
1988   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1989     return false;
1990 
1991   // Make sure the mask elements make sense.
1992   int V1Size =
1993       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
1994   for (int Elem : Mask)
1995     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
1996       return false;
1997 
1998   if (isa<ScalableVectorType>(V1->getType()))
1999     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2000       return false;
2001 
2002   return true;
2003 }
2004 
2005 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2006                                         const Value *Mask) {
2007   // V1 and V2 must be vectors of the same type.
2008   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2009     return false;
2010 
2011   // Mask must be vector of i32, and must be the same kind of vector as the
2012   // input vectors
2013   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2014   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2015       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2016     return false;
2017 
2018   // Check to see if Mask is valid.
2019   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2020     return true;
2021 
2022   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2023     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2024     for (Value *Op : MV->operands()) {
2025       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2026         if (CI->uge(V1Size*2))
2027           return false;
2028       } else if (!isa<UndefValue>(Op)) {
2029         return false;
2030       }
2031     }
2032     return true;
2033   }
2034 
2035   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2036     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2037     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2038          i != e; ++i)
2039       if (CDS->getElementAsInteger(i) >= V1Size*2)
2040         return false;
2041     return true;
2042   }
2043 
2044   return false;
2045 }
2046 
2047 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2048                                        SmallVectorImpl<int> &Result) {
2049   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2050 
2051   if (isa<ConstantAggregateZero>(Mask)) {
2052     Result.resize(EC.getKnownMinValue(), 0);
2053     return;
2054   }
2055 
2056   Result.reserve(EC.getKnownMinValue());
2057 
2058   if (EC.isScalable()) {
2059     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2060            "Scalable vector shuffle mask must be undef or zeroinitializer");
2061     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2062     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2063       Result.emplace_back(MaskVal);
2064     return;
2065   }
2066 
2067   unsigned NumElts = EC.getKnownMinValue();
2068 
2069   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2070     for (unsigned i = 0; i != NumElts; ++i)
2071       Result.push_back(CDS->getElementAsInteger(i));
2072     return;
2073   }
2074   for (unsigned i = 0; i != NumElts; ++i) {
2075     Constant *C = Mask->getAggregateElement(i);
2076     Result.push_back(isa<UndefValue>(C) ? -1 :
2077                      cast<ConstantInt>(C)->getZExtValue());
2078   }
2079 }
2080 
2081 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2082   ShuffleMask.assign(Mask.begin(), Mask.end());
2083   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2084 }
2085 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2086                                                           Type *ResultTy) {
2087   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2088   if (isa<ScalableVectorType>(ResultTy)) {
2089     assert(is_splat(Mask) && "Unexpected shuffle");
2090     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2091     if (Mask[0] == 0)
2092       return Constant::getNullValue(VecTy);
2093     return UndefValue::get(VecTy);
2094   }
2095   SmallVector<Constant *, 16> MaskConst;
2096   for (int Elem : Mask) {
2097     if (Elem == UndefMaskElem)
2098       MaskConst.push_back(UndefValue::get(Int32Ty));
2099     else
2100       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2101   }
2102   return ConstantVector::get(MaskConst);
2103 }
2104 
2105 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2106   assert(!Mask.empty() && "Shuffle mask must contain elements");
2107   bool UsesLHS = false;
2108   bool UsesRHS = false;
2109   for (int I : Mask) {
2110     if (I == -1)
2111       continue;
2112     assert(I >= 0 && I < (NumOpElts * 2) &&
2113            "Out-of-bounds shuffle mask element");
2114     UsesLHS |= (I < NumOpElts);
2115     UsesRHS |= (I >= NumOpElts);
2116     if (UsesLHS && UsesRHS)
2117       return false;
2118   }
2119   // Allow for degenerate case: completely undef mask means neither source is used.
2120   return UsesLHS || UsesRHS;
2121 }
2122 
2123 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2124   // We don't have vector operand size information, so assume operands are the
2125   // same size as the mask.
2126   return isSingleSourceMaskImpl(Mask, Mask.size());
2127 }
2128 
2129 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2130   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2131     return false;
2132   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2133     if (Mask[i] == -1)
2134       continue;
2135     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2136       return false;
2137   }
2138   return true;
2139 }
2140 
2141 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2142   // We don't have vector operand size information, so assume operands are the
2143   // same size as the mask.
2144   return isIdentityMaskImpl(Mask, Mask.size());
2145 }
2146 
2147 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2148   if (!isSingleSourceMask(Mask))
2149     return false;
2150   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2151     if (Mask[i] == -1)
2152       continue;
2153     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2154       return false;
2155   }
2156   return true;
2157 }
2158 
2159 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2160   if (!isSingleSourceMask(Mask))
2161     return false;
2162   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2163     if (Mask[i] == -1)
2164       continue;
2165     if (Mask[i] != 0 && Mask[i] != NumElts)
2166       return false;
2167   }
2168   return true;
2169 }
2170 
2171 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2172   // Select is differentiated from identity. It requires using both sources.
2173   if (isSingleSourceMask(Mask))
2174     return false;
2175   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2176     if (Mask[i] == -1)
2177       continue;
2178     if (Mask[i] != i && Mask[i] != (NumElts + i))
2179       return false;
2180   }
2181   return true;
2182 }
2183 
2184 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2185   // Example masks that will return true:
2186   // v1 = <a, b, c, d>
2187   // v2 = <e, f, g, h>
2188   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2189   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2190 
2191   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2192   int NumElts = Mask.size();
2193   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2194     return false;
2195 
2196   // 2. The first element of the mask must be either a 0 or a 1.
2197   if (Mask[0] != 0 && Mask[0] != 1)
2198     return false;
2199 
2200   // 3. The difference between the first 2 elements must be equal to the
2201   // number of elements in the mask.
2202   if ((Mask[1] - Mask[0]) != NumElts)
2203     return false;
2204 
2205   // 4. The difference between consecutive even-numbered and odd-numbered
2206   // elements must be equal to 2.
2207   for (int i = 2; i < NumElts; ++i) {
2208     int MaskEltVal = Mask[i];
2209     if (MaskEltVal == -1)
2210       return false;
2211     int MaskEltPrevVal = Mask[i - 2];
2212     if (MaskEltVal - MaskEltPrevVal != 2)
2213       return false;
2214   }
2215   return true;
2216 }
2217 
2218 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2219                                                int NumSrcElts, int &Index) {
2220   // Must extract from a single source.
2221   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2222     return false;
2223 
2224   // Must be smaller (else this is an Identity shuffle).
2225   if (NumSrcElts <= (int)Mask.size())
2226     return false;
2227 
2228   // Find start of extraction, accounting that we may start with an UNDEF.
2229   int SubIndex = -1;
2230   for (int i = 0, e = Mask.size(); i != e; ++i) {
2231     int M = Mask[i];
2232     if (M < 0)
2233       continue;
2234     int Offset = (M % NumSrcElts) - i;
2235     if (0 <= SubIndex && SubIndex != Offset)
2236       return false;
2237     SubIndex = Offset;
2238   }
2239 
2240   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2241     Index = SubIndex;
2242     return true;
2243   }
2244   return false;
2245 }
2246 
2247 bool ShuffleVectorInst::isIdentityWithPadding() const {
2248   if (isa<UndefValue>(Op<2>()))
2249     return false;
2250 
2251   // FIXME: Not currently possible to express a shuffle mask for a scalable
2252   // vector for this case.
2253   if (isa<ScalableVectorType>(getType()))
2254     return false;
2255 
2256   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2257   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2258   if (NumMaskElts <= NumOpElts)
2259     return false;
2260 
2261   // The first part of the mask must choose elements from exactly 1 source op.
2262   ArrayRef<int> Mask = getShuffleMask();
2263   if (!isIdentityMaskImpl(Mask, NumOpElts))
2264     return false;
2265 
2266   // All extending must be with undef elements.
2267   for (int i = NumOpElts; i < NumMaskElts; ++i)
2268     if (Mask[i] != -1)
2269       return false;
2270 
2271   return true;
2272 }
2273 
2274 bool ShuffleVectorInst::isIdentityWithExtract() const {
2275   if (isa<UndefValue>(Op<2>()))
2276     return false;
2277 
2278   // FIXME: Not currently possible to express a shuffle mask for a scalable
2279   // vector for this case.
2280   if (isa<ScalableVectorType>(getType()))
2281     return false;
2282 
2283   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2284   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2285   if (NumMaskElts >= NumOpElts)
2286     return false;
2287 
2288   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2289 }
2290 
2291 bool ShuffleVectorInst::isConcat() const {
2292   // Vector concatenation is differentiated from identity with padding.
2293   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2294       isa<UndefValue>(Op<2>()))
2295     return false;
2296 
2297   // FIXME: Not currently possible to express a shuffle mask for a scalable
2298   // vector for this case.
2299   if (isa<ScalableVectorType>(getType()))
2300     return false;
2301 
2302   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2303   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2304   if (NumMaskElts != NumOpElts * 2)
2305     return false;
2306 
2307   // Use the mask length rather than the operands' vector lengths here. We
2308   // already know that the shuffle returns a vector twice as long as the inputs,
2309   // and neither of the inputs are undef vectors. If the mask picks consecutive
2310   // elements from both inputs, then this is a concatenation of the inputs.
2311   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2312 }
2313 
2314 //===----------------------------------------------------------------------===//
2315 //                             InsertValueInst Class
2316 //===----------------------------------------------------------------------===//
2317 
2318 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2319                            const Twine &Name) {
2320   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2321 
2322   // There's no fundamental reason why we require at least one index
2323   // (other than weirdness with &*IdxBegin being invalid; see
2324   // getelementptr's init routine for example). But there's no
2325   // present need to support it.
2326   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2327 
2328   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2329          Val->getType() && "Inserted value must match indexed type!");
2330   Op<0>() = Agg;
2331   Op<1>() = Val;
2332 
2333   Indices.append(Idxs.begin(), Idxs.end());
2334   setName(Name);
2335 }
2336 
2337 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2338   : Instruction(IVI.getType(), InsertValue,
2339                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2340     Indices(IVI.Indices) {
2341   Op<0>() = IVI.getOperand(0);
2342   Op<1>() = IVI.getOperand(1);
2343   SubclassOptionalData = IVI.SubclassOptionalData;
2344 }
2345 
2346 //===----------------------------------------------------------------------===//
2347 //                             ExtractValueInst Class
2348 //===----------------------------------------------------------------------===//
2349 
2350 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2351   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2352 
2353   // There's no fundamental reason why we require at least one index.
2354   // But there's no present need to support it.
2355   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2356 
2357   Indices.append(Idxs.begin(), Idxs.end());
2358   setName(Name);
2359 }
2360 
2361 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2362   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2363     Indices(EVI.Indices) {
2364   SubclassOptionalData = EVI.SubclassOptionalData;
2365 }
2366 
2367 // getIndexedType - Returns the type of the element that would be extracted
2368 // with an extractvalue instruction with the specified parameters.
2369 //
2370 // A null type is returned if the indices are invalid for the specified
2371 // pointer type.
2372 //
2373 Type *ExtractValueInst::getIndexedType(Type *Agg,
2374                                        ArrayRef<unsigned> Idxs) {
2375   for (unsigned Index : Idxs) {
2376     // We can't use CompositeType::indexValid(Index) here.
2377     // indexValid() always returns true for arrays because getelementptr allows
2378     // out-of-bounds indices. Since we don't allow those for extractvalue and
2379     // insertvalue we need to check array indexing manually.
2380     // Since the only other types we can index into are struct types it's just
2381     // as easy to check those manually as well.
2382     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2383       if (Index >= AT->getNumElements())
2384         return nullptr;
2385       Agg = AT->getElementType();
2386     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2387       if (Index >= ST->getNumElements())
2388         return nullptr;
2389       Agg = ST->getElementType(Index);
2390     } else {
2391       // Not a valid type to index into.
2392       return nullptr;
2393     }
2394   }
2395   return const_cast<Type*>(Agg);
2396 }
2397 
2398 //===----------------------------------------------------------------------===//
2399 //                             UnaryOperator Class
2400 //===----------------------------------------------------------------------===//
2401 
2402 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2403                              Type *Ty, const Twine &Name,
2404                              Instruction *InsertBefore)
2405   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2406   Op<0>() = S;
2407   setName(Name);
2408   AssertOK();
2409 }
2410 
2411 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2412                              Type *Ty, const Twine &Name,
2413                              BasicBlock *InsertAtEnd)
2414   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2415   Op<0>() = S;
2416   setName(Name);
2417   AssertOK();
2418 }
2419 
2420 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2421                                      const Twine &Name,
2422                                      Instruction *InsertBefore) {
2423   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2424 }
2425 
2426 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2427                                      const Twine &Name,
2428                                      BasicBlock *InsertAtEnd) {
2429   UnaryOperator *Res = Create(Op, S, Name);
2430   InsertAtEnd->getInstList().push_back(Res);
2431   return Res;
2432 }
2433 
2434 void UnaryOperator::AssertOK() {
2435   Value *LHS = getOperand(0);
2436   (void)LHS; // Silence warnings.
2437 #ifndef NDEBUG
2438   switch (getOpcode()) {
2439   case FNeg:
2440     assert(getType() == LHS->getType() &&
2441            "Unary operation should return same type as operand!");
2442     assert(getType()->isFPOrFPVectorTy() &&
2443            "Tried to create a floating-point operation on a "
2444            "non-floating-point type!");
2445     break;
2446   default: llvm_unreachable("Invalid opcode provided");
2447   }
2448 #endif
2449 }
2450 
2451 //===----------------------------------------------------------------------===//
2452 //                             BinaryOperator Class
2453 //===----------------------------------------------------------------------===//
2454 
2455 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2456                                Type *Ty, const Twine &Name,
2457                                Instruction *InsertBefore)
2458   : Instruction(Ty, iType,
2459                 OperandTraits<BinaryOperator>::op_begin(this),
2460                 OperandTraits<BinaryOperator>::operands(this),
2461                 InsertBefore) {
2462   Op<0>() = S1;
2463   Op<1>() = S2;
2464   setName(Name);
2465   AssertOK();
2466 }
2467 
2468 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2469                                Type *Ty, const Twine &Name,
2470                                BasicBlock *InsertAtEnd)
2471   : Instruction(Ty, iType,
2472                 OperandTraits<BinaryOperator>::op_begin(this),
2473                 OperandTraits<BinaryOperator>::operands(this),
2474                 InsertAtEnd) {
2475   Op<0>() = S1;
2476   Op<1>() = S2;
2477   setName(Name);
2478   AssertOK();
2479 }
2480 
2481 void BinaryOperator::AssertOK() {
2482   Value *LHS = getOperand(0), *RHS = getOperand(1);
2483   (void)LHS; (void)RHS; // Silence warnings.
2484   assert(LHS->getType() == RHS->getType() &&
2485          "Binary operator operand types must match!");
2486 #ifndef NDEBUG
2487   switch (getOpcode()) {
2488   case Add: case Sub:
2489   case Mul:
2490     assert(getType() == LHS->getType() &&
2491            "Arithmetic operation should return same type as operands!");
2492     assert(getType()->isIntOrIntVectorTy() &&
2493            "Tried to create an integer operation on a non-integer type!");
2494     break;
2495   case FAdd: case FSub:
2496   case FMul:
2497     assert(getType() == LHS->getType() &&
2498            "Arithmetic operation should return same type as operands!");
2499     assert(getType()->isFPOrFPVectorTy() &&
2500            "Tried to create a floating-point operation on a "
2501            "non-floating-point type!");
2502     break;
2503   case UDiv:
2504   case SDiv:
2505     assert(getType() == LHS->getType() &&
2506            "Arithmetic operation should return same type as operands!");
2507     assert(getType()->isIntOrIntVectorTy() &&
2508            "Incorrect operand type (not integer) for S/UDIV");
2509     break;
2510   case FDiv:
2511     assert(getType() == LHS->getType() &&
2512            "Arithmetic operation should return same type as operands!");
2513     assert(getType()->isFPOrFPVectorTy() &&
2514            "Incorrect operand type (not floating point) for FDIV");
2515     break;
2516   case URem:
2517   case SRem:
2518     assert(getType() == LHS->getType() &&
2519            "Arithmetic operation should return same type as operands!");
2520     assert(getType()->isIntOrIntVectorTy() &&
2521            "Incorrect operand type (not integer) for S/UREM");
2522     break;
2523   case FRem:
2524     assert(getType() == LHS->getType() &&
2525            "Arithmetic operation should return same type as operands!");
2526     assert(getType()->isFPOrFPVectorTy() &&
2527            "Incorrect operand type (not floating point) for FREM");
2528     break;
2529   case Shl:
2530   case LShr:
2531   case AShr:
2532     assert(getType() == LHS->getType() &&
2533            "Shift operation should return same type as operands!");
2534     assert(getType()->isIntOrIntVectorTy() &&
2535            "Tried to create a shift operation on a non-integral type!");
2536     break;
2537   case And: case Or:
2538   case Xor:
2539     assert(getType() == LHS->getType() &&
2540            "Logical operation should return same type as operands!");
2541     assert(getType()->isIntOrIntVectorTy() &&
2542            "Tried to create a logical operation on a non-integral type!");
2543     break;
2544   default: llvm_unreachable("Invalid opcode provided");
2545   }
2546 #endif
2547 }
2548 
2549 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2550                                        const Twine &Name,
2551                                        Instruction *InsertBefore) {
2552   assert(S1->getType() == S2->getType() &&
2553          "Cannot create binary operator with two operands of differing type!");
2554   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2555 }
2556 
2557 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2558                                        const Twine &Name,
2559                                        BasicBlock *InsertAtEnd) {
2560   BinaryOperator *Res = Create(Op, S1, S2, Name);
2561   InsertAtEnd->getInstList().push_back(Res);
2562   return Res;
2563 }
2564 
2565 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2566                                           Instruction *InsertBefore) {
2567   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2568   return new BinaryOperator(Instruction::Sub,
2569                             zero, Op,
2570                             Op->getType(), Name, InsertBefore);
2571 }
2572 
2573 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2574                                           BasicBlock *InsertAtEnd) {
2575   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2576   return new BinaryOperator(Instruction::Sub,
2577                             zero, Op,
2578                             Op->getType(), Name, InsertAtEnd);
2579 }
2580 
2581 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2582                                              Instruction *InsertBefore) {
2583   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2584   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2585 }
2586 
2587 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2588                                              BasicBlock *InsertAtEnd) {
2589   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2590   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2591 }
2592 
2593 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2594                                              Instruction *InsertBefore) {
2595   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2596   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2597 }
2598 
2599 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2600                                              BasicBlock *InsertAtEnd) {
2601   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2602   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2603 }
2604 
2605 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2606                                           Instruction *InsertBefore) {
2607   Constant *C = Constant::getAllOnesValue(Op->getType());
2608   return new BinaryOperator(Instruction::Xor, Op, C,
2609                             Op->getType(), Name, InsertBefore);
2610 }
2611 
2612 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2613                                           BasicBlock *InsertAtEnd) {
2614   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2615   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2616                             Op->getType(), Name, InsertAtEnd);
2617 }
2618 
2619 // Exchange the two operands to this instruction. This instruction is safe to
2620 // use on any binary instruction and does not modify the semantics of the
2621 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2622 // is changed.
2623 bool BinaryOperator::swapOperands() {
2624   if (!isCommutative())
2625     return true; // Can't commute operands
2626   Op<0>().swap(Op<1>());
2627   return false;
2628 }
2629 
2630 //===----------------------------------------------------------------------===//
2631 //                             FPMathOperator Class
2632 //===----------------------------------------------------------------------===//
2633 
2634 float FPMathOperator::getFPAccuracy() const {
2635   const MDNode *MD =
2636       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2637   if (!MD)
2638     return 0.0;
2639   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2640   return Accuracy->getValueAPF().convertToFloat();
2641 }
2642 
2643 //===----------------------------------------------------------------------===//
2644 //                                CastInst Class
2645 //===----------------------------------------------------------------------===//
2646 
2647 // Just determine if this cast only deals with integral->integral conversion.
2648 bool CastInst::isIntegerCast() const {
2649   switch (getOpcode()) {
2650     default: return false;
2651     case Instruction::ZExt:
2652     case Instruction::SExt:
2653     case Instruction::Trunc:
2654       return true;
2655     case Instruction::BitCast:
2656       return getOperand(0)->getType()->isIntegerTy() &&
2657         getType()->isIntegerTy();
2658   }
2659 }
2660 
2661 bool CastInst::isLosslessCast() const {
2662   // Only BitCast can be lossless, exit fast if we're not BitCast
2663   if (getOpcode() != Instruction::BitCast)
2664     return false;
2665 
2666   // Identity cast is always lossless
2667   Type *SrcTy = getOperand(0)->getType();
2668   Type *DstTy = getType();
2669   if (SrcTy == DstTy)
2670     return true;
2671 
2672   // Pointer to pointer is always lossless.
2673   if (SrcTy->isPointerTy())
2674     return DstTy->isPointerTy();
2675   return false;  // Other types have no identity values
2676 }
2677 
2678 /// This function determines if the CastInst does not require any bits to be
2679 /// changed in order to effect the cast. Essentially, it identifies cases where
2680 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2681 /// example, the following are all no-op casts:
2682 /// # bitcast i32* %x to i8*
2683 /// # bitcast <2 x i32> %x to <4 x i16>
2684 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2685 /// Determine if the described cast is a no-op.
2686 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2687                           Type *SrcTy,
2688                           Type *DestTy,
2689                           const DataLayout &DL) {
2690   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2691   switch (Opcode) {
2692     default: llvm_unreachable("Invalid CastOp");
2693     case Instruction::Trunc:
2694     case Instruction::ZExt:
2695     case Instruction::SExt:
2696     case Instruction::FPTrunc:
2697     case Instruction::FPExt:
2698     case Instruction::UIToFP:
2699     case Instruction::SIToFP:
2700     case Instruction::FPToUI:
2701     case Instruction::FPToSI:
2702     case Instruction::AddrSpaceCast:
2703       // TODO: Target informations may give a more accurate answer here.
2704       return false;
2705     case Instruction::BitCast:
2706       return true;  // BitCast never modifies bits.
2707     case Instruction::PtrToInt:
2708       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2709              DestTy->getScalarSizeInBits();
2710     case Instruction::IntToPtr:
2711       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2712              SrcTy->getScalarSizeInBits();
2713   }
2714 }
2715 
2716 bool CastInst::isNoopCast(const DataLayout &DL) const {
2717   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2718 }
2719 
2720 /// This function determines if a pair of casts can be eliminated and what
2721 /// opcode should be used in the elimination. This assumes that there are two
2722 /// instructions like this:
2723 /// *  %F = firstOpcode SrcTy %x to MidTy
2724 /// *  %S = secondOpcode MidTy %F to DstTy
2725 /// The function returns a resultOpcode so these two casts can be replaced with:
2726 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2727 /// If no such cast is permitted, the function returns 0.
2728 unsigned CastInst::isEliminableCastPair(
2729   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2730   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2731   Type *DstIntPtrTy) {
2732   // Define the 144 possibilities for these two cast instructions. The values
2733   // in this matrix determine what to do in a given situation and select the
2734   // case in the switch below.  The rows correspond to firstOp, the columns
2735   // correspond to secondOp.  In looking at the table below, keep in mind
2736   // the following cast properties:
2737   //
2738   //          Size Compare       Source               Destination
2739   // Operator  Src ? Size   Type       Sign         Type       Sign
2740   // -------- ------------ -------------------   ---------------------
2741   // TRUNC         >       Integer      Any        Integral     Any
2742   // ZEXT          <       Integral   Unsigned     Integer      Any
2743   // SEXT          <       Integral    Signed      Integer      Any
2744   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2745   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2746   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2747   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2748   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2749   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2750   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2751   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2752   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2753   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2754   //
2755   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2756   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2757   // into "fptoui double to i64", but this loses information about the range
2758   // of the produced value (we no longer know the top-part is all zeros).
2759   // Further this conversion is often much more expensive for typical hardware,
2760   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2761   // same reason.
2762   const unsigned numCastOps =
2763     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2764   static const uint8_t CastResults[numCastOps][numCastOps] = {
2765     // T        F  F  U  S  F  F  P  I  B  A  -+
2766     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2767     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2768     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2769     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2770     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2771     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2772     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2773     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2774     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2775     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2776     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2777     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2778     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2779     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2780     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2781     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2782     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2783   };
2784 
2785   // TODO: This logic could be encoded into the table above and handled in the
2786   // switch below.
2787   // If either of the casts are a bitcast from scalar to vector, disallow the
2788   // merging. However, any pair of bitcasts are allowed.
2789   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2790   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2791   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2792 
2793   // Check if any of the casts convert scalars <-> vectors.
2794   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2795       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2796     if (!AreBothBitcasts)
2797       return 0;
2798 
2799   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2800                             [secondOp-Instruction::CastOpsBegin];
2801   switch (ElimCase) {
2802     case 0:
2803       // Categorically disallowed.
2804       return 0;
2805     case 1:
2806       // Allowed, use first cast's opcode.
2807       return firstOp;
2808     case 2:
2809       // Allowed, use second cast's opcode.
2810       return secondOp;
2811     case 3:
2812       // No-op cast in second op implies firstOp as long as the DestTy
2813       // is integer and we are not converting between a vector and a
2814       // non-vector type.
2815       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2816         return firstOp;
2817       return 0;
2818     case 4:
2819       // No-op cast in second op implies firstOp as long as the DestTy
2820       // is floating point.
2821       if (DstTy->isFloatingPointTy())
2822         return firstOp;
2823       return 0;
2824     case 5:
2825       // No-op cast in first op implies secondOp as long as the SrcTy
2826       // is an integer.
2827       if (SrcTy->isIntegerTy())
2828         return secondOp;
2829       return 0;
2830     case 6:
2831       // No-op cast in first op implies secondOp as long as the SrcTy
2832       // is a floating point.
2833       if (SrcTy->isFloatingPointTy())
2834         return secondOp;
2835       return 0;
2836     case 7: {
2837       // Cannot simplify if address spaces are different!
2838       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2839         return 0;
2840 
2841       unsigned MidSize = MidTy->getScalarSizeInBits();
2842       // We can still fold this without knowing the actual sizes as long we
2843       // know that the intermediate pointer is the largest possible
2844       // pointer size.
2845       // FIXME: Is this always true?
2846       if (MidSize == 64)
2847         return Instruction::BitCast;
2848 
2849       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2850       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2851         return 0;
2852       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2853       if (MidSize >= PtrSize)
2854         return Instruction::BitCast;
2855       return 0;
2856     }
2857     case 8: {
2858       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2859       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2860       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2861       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2862       unsigned DstSize = DstTy->getScalarSizeInBits();
2863       if (SrcSize == DstSize)
2864         return Instruction::BitCast;
2865       else if (SrcSize < DstSize)
2866         return firstOp;
2867       return secondOp;
2868     }
2869     case 9:
2870       // zext, sext -> zext, because sext can't sign extend after zext
2871       return Instruction::ZExt;
2872     case 11: {
2873       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2874       if (!MidIntPtrTy)
2875         return 0;
2876       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2877       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2878       unsigned DstSize = DstTy->getScalarSizeInBits();
2879       if (SrcSize <= PtrSize && SrcSize == DstSize)
2880         return Instruction::BitCast;
2881       return 0;
2882     }
2883     case 12:
2884       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2885       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2886       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2887         return Instruction::AddrSpaceCast;
2888       return Instruction::BitCast;
2889     case 13:
2890       // FIXME: this state can be merged with (1), but the following assert
2891       // is useful to check the correcteness of the sequence due to semantic
2892       // change of bitcast.
2893       assert(
2894         SrcTy->isPtrOrPtrVectorTy() &&
2895         MidTy->isPtrOrPtrVectorTy() &&
2896         DstTy->isPtrOrPtrVectorTy() &&
2897         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2898         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2899         "Illegal addrspacecast, bitcast sequence!");
2900       // Allowed, use first cast's opcode
2901       return firstOp;
2902     case 14:
2903       // bitcast, addrspacecast -> addrspacecast if the element type of
2904       // bitcast's source is the same as that of addrspacecast's destination.
2905       if (SrcTy->getScalarType()->getPointerElementType() ==
2906           DstTy->getScalarType()->getPointerElementType())
2907         return Instruction::AddrSpaceCast;
2908       return 0;
2909     case 15:
2910       // FIXME: this state can be merged with (1), but the following assert
2911       // is useful to check the correcteness of the sequence due to semantic
2912       // change of bitcast.
2913       assert(
2914         SrcTy->isIntOrIntVectorTy() &&
2915         MidTy->isPtrOrPtrVectorTy() &&
2916         DstTy->isPtrOrPtrVectorTy() &&
2917         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2918         "Illegal inttoptr, bitcast sequence!");
2919       // Allowed, use first cast's opcode
2920       return firstOp;
2921     case 16:
2922       // FIXME: this state can be merged with (2), but the following assert
2923       // is useful to check the correcteness of the sequence due to semantic
2924       // change of bitcast.
2925       assert(
2926         SrcTy->isPtrOrPtrVectorTy() &&
2927         MidTy->isPtrOrPtrVectorTy() &&
2928         DstTy->isIntOrIntVectorTy() &&
2929         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2930         "Illegal bitcast, ptrtoint sequence!");
2931       // Allowed, use second cast's opcode
2932       return secondOp;
2933     case 17:
2934       // (sitofp (zext x)) -> (uitofp x)
2935       return Instruction::UIToFP;
2936     case 99:
2937       // Cast combination can't happen (error in input). This is for all cases
2938       // where the MidTy is not the same for the two cast instructions.
2939       llvm_unreachable("Invalid Cast Combination");
2940     default:
2941       llvm_unreachable("Error in CastResults table!!!");
2942   }
2943 }
2944 
2945 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2946   const Twine &Name, Instruction *InsertBefore) {
2947   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2948   // Construct and return the appropriate CastInst subclass
2949   switch (op) {
2950   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2951   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2952   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2953   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2954   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2955   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2956   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2957   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2958   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2959   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2960   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2961   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2962   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2963   default: llvm_unreachable("Invalid opcode provided");
2964   }
2965 }
2966 
2967 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2968   const Twine &Name, BasicBlock *InsertAtEnd) {
2969   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2970   // Construct and return the appropriate CastInst subclass
2971   switch (op) {
2972   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2973   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2974   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2975   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2976   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2977   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2978   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2979   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2980   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2981   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2982   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2983   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2984   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2985   default: llvm_unreachable("Invalid opcode provided");
2986   }
2987 }
2988 
2989 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2990                                         const Twine &Name,
2991                                         Instruction *InsertBefore) {
2992   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2993     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2994   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2995 }
2996 
2997 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2998                                         const Twine &Name,
2999                                         BasicBlock *InsertAtEnd) {
3000   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3001     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3002   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3003 }
3004 
3005 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3006                                         const Twine &Name,
3007                                         Instruction *InsertBefore) {
3008   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3009     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3010   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3011 }
3012 
3013 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3014                                         const Twine &Name,
3015                                         BasicBlock *InsertAtEnd) {
3016   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3017     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3018   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3019 }
3020 
3021 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3022                                          const Twine &Name,
3023                                          Instruction *InsertBefore) {
3024   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3025     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3026   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3027 }
3028 
3029 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3030                                          const Twine &Name,
3031                                          BasicBlock *InsertAtEnd) {
3032   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3033     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3034   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3035 }
3036 
3037 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3038                                       const Twine &Name,
3039                                       BasicBlock *InsertAtEnd) {
3040   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3041   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3042          "Invalid cast");
3043   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3044   assert((!Ty->isVectorTy() ||
3045           cast<VectorType>(Ty)->getElementCount() ==
3046               cast<VectorType>(S->getType())->getElementCount()) &&
3047          "Invalid cast");
3048 
3049   if (Ty->isIntOrIntVectorTy())
3050     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3051 
3052   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3053 }
3054 
3055 /// Create a BitCast or a PtrToInt cast instruction
3056 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3057                                       const Twine &Name,
3058                                       Instruction *InsertBefore) {
3059   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3060   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3061          "Invalid cast");
3062   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3063   assert((!Ty->isVectorTy() ||
3064           cast<VectorType>(Ty)->getElementCount() ==
3065               cast<VectorType>(S->getType())->getElementCount()) &&
3066          "Invalid cast");
3067 
3068   if (Ty->isIntOrIntVectorTy())
3069     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3070 
3071   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3072 }
3073 
3074 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3075   Value *S, Type *Ty,
3076   const Twine &Name,
3077   BasicBlock *InsertAtEnd) {
3078   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3079   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3080 
3081   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3082     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3083 
3084   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3085 }
3086 
3087 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3088   Value *S, Type *Ty,
3089   const Twine &Name,
3090   Instruction *InsertBefore) {
3091   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3092   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3093 
3094   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3095     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3096 
3097   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3098 }
3099 
3100 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3101                                            const Twine &Name,
3102                                            Instruction *InsertBefore) {
3103   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3104     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3105   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3106     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3107 
3108   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3109 }
3110 
3111 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3112                                       bool isSigned, const Twine &Name,
3113                                       Instruction *InsertBefore) {
3114   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3115          "Invalid integer cast");
3116   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3117   unsigned DstBits = Ty->getScalarSizeInBits();
3118   Instruction::CastOps opcode =
3119     (SrcBits == DstBits ? Instruction::BitCast :
3120      (SrcBits > DstBits ? Instruction::Trunc :
3121       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3122   return Create(opcode, C, Ty, Name, InsertBefore);
3123 }
3124 
3125 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3126                                       bool isSigned, const Twine &Name,
3127                                       BasicBlock *InsertAtEnd) {
3128   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3129          "Invalid cast");
3130   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3131   unsigned DstBits = Ty->getScalarSizeInBits();
3132   Instruction::CastOps opcode =
3133     (SrcBits == DstBits ? Instruction::BitCast :
3134      (SrcBits > DstBits ? Instruction::Trunc :
3135       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3136   return Create(opcode, C, Ty, Name, InsertAtEnd);
3137 }
3138 
3139 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3140                                  const Twine &Name,
3141                                  Instruction *InsertBefore) {
3142   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3143          "Invalid cast");
3144   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3145   unsigned DstBits = Ty->getScalarSizeInBits();
3146   Instruction::CastOps opcode =
3147     (SrcBits == DstBits ? Instruction::BitCast :
3148      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3149   return Create(opcode, C, Ty, Name, InsertBefore);
3150 }
3151 
3152 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3153                                  const Twine &Name,
3154                                  BasicBlock *InsertAtEnd) {
3155   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3156          "Invalid cast");
3157   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3158   unsigned DstBits = Ty->getScalarSizeInBits();
3159   Instruction::CastOps opcode =
3160     (SrcBits == DstBits ? Instruction::BitCast :
3161      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3162   return Create(opcode, C, Ty, Name, InsertAtEnd);
3163 }
3164 
3165 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3166   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3167     return false;
3168 
3169   if (SrcTy == DestTy)
3170     return true;
3171 
3172   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3173     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3174       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3175         // An element by element cast. Valid if casting the elements is valid.
3176         SrcTy = SrcVecTy->getElementType();
3177         DestTy = DestVecTy->getElementType();
3178       }
3179     }
3180   }
3181 
3182   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3183     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3184       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3185     }
3186   }
3187 
3188   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3189   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3190 
3191   // Could still have vectors of pointers if the number of elements doesn't
3192   // match
3193   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3194     return false;
3195 
3196   if (SrcBits != DestBits)
3197     return false;
3198 
3199   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3200     return false;
3201 
3202   return true;
3203 }
3204 
3205 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3206                                           const DataLayout &DL) {
3207   // ptrtoint and inttoptr are not allowed on non-integral pointers
3208   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3209     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3210       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3211               !DL.isNonIntegralPointerType(PtrTy));
3212   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3213     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3214       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3215               !DL.isNonIntegralPointerType(PtrTy));
3216 
3217   return isBitCastable(SrcTy, DestTy);
3218 }
3219 
3220 // Provide a way to get a "cast" where the cast opcode is inferred from the
3221 // types and size of the operand. This, basically, is a parallel of the
3222 // logic in the castIsValid function below.  This axiom should hold:
3223 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3224 // should not assert in castIsValid. In other words, this produces a "correct"
3225 // casting opcode for the arguments passed to it.
3226 Instruction::CastOps
3227 CastInst::getCastOpcode(
3228   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3229   Type *SrcTy = Src->getType();
3230 
3231   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3232          "Only first class types are castable!");
3233 
3234   if (SrcTy == DestTy)
3235     return BitCast;
3236 
3237   // FIXME: Check address space sizes here
3238   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3239     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3240       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3241         // An element by element cast.  Find the appropriate opcode based on the
3242         // element types.
3243         SrcTy = SrcVecTy->getElementType();
3244         DestTy = DestVecTy->getElementType();
3245       }
3246 
3247   // Get the bit sizes, we'll need these
3248   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3249   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3250 
3251   // Run through the possibilities ...
3252   if (DestTy->isIntegerTy()) {                      // Casting to integral
3253     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3254       if (DestBits < SrcBits)
3255         return Trunc;                               // int -> smaller int
3256       else if (DestBits > SrcBits) {                // its an extension
3257         if (SrcIsSigned)
3258           return SExt;                              // signed -> SEXT
3259         else
3260           return ZExt;                              // unsigned -> ZEXT
3261       } else {
3262         return BitCast;                             // Same size, No-op cast
3263       }
3264     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3265       if (DestIsSigned)
3266         return FPToSI;                              // FP -> sint
3267       else
3268         return FPToUI;                              // FP -> uint
3269     } else if (SrcTy->isVectorTy()) {
3270       assert(DestBits == SrcBits &&
3271              "Casting vector to integer of different width");
3272       return BitCast;                             // Same size, no-op cast
3273     } else {
3274       assert(SrcTy->isPointerTy() &&
3275              "Casting from a value that is not first-class type");
3276       return PtrToInt;                              // ptr -> int
3277     }
3278   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3279     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3280       if (SrcIsSigned)
3281         return SIToFP;                              // sint -> FP
3282       else
3283         return UIToFP;                              // uint -> FP
3284     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3285       if (DestBits < SrcBits) {
3286         return FPTrunc;                             // FP -> smaller FP
3287       } else if (DestBits > SrcBits) {
3288         return FPExt;                               // FP -> larger FP
3289       } else  {
3290         return BitCast;                             // same size, no-op cast
3291       }
3292     } else if (SrcTy->isVectorTy()) {
3293       assert(DestBits == SrcBits &&
3294              "Casting vector to floating point of different width");
3295       return BitCast;                             // same size, no-op cast
3296     }
3297     llvm_unreachable("Casting pointer or non-first class to float");
3298   } else if (DestTy->isVectorTy()) {
3299     assert(DestBits == SrcBits &&
3300            "Illegal cast to vector (wrong type or size)");
3301     return BitCast;
3302   } else if (DestTy->isPointerTy()) {
3303     if (SrcTy->isPointerTy()) {
3304       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3305         return AddrSpaceCast;
3306       return BitCast;                               // ptr -> ptr
3307     } else if (SrcTy->isIntegerTy()) {
3308       return IntToPtr;                              // int -> ptr
3309     }
3310     llvm_unreachable("Casting pointer to other than pointer or int");
3311   } else if (DestTy->isX86_MMXTy()) {
3312     if (SrcTy->isVectorTy()) {
3313       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3314       return BitCast;                               // 64-bit vector to MMX
3315     }
3316     llvm_unreachable("Illegal cast to X86_MMX");
3317   }
3318   llvm_unreachable("Casting to type that is not first-class");
3319 }
3320 
3321 //===----------------------------------------------------------------------===//
3322 //                    CastInst SubClass Constructors
3323 //===----------------------------------------------------------------------===//
3324 
3325 /// Check that the construction parameters for a CastInst are correct. This
3326 /// could be broken out into the separate constructors but it is useful to have
3327 /// it in one place and to eliminate the redundant code for getting the sizes
3328 /// of the types involved.
3329 bool
3330 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3331   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3332       SrcTy->isAggregateType() || DstTy->isAggregateType())
3333     return false;
3334 
3335   // Get the size of the types in bits, and whether we are dealing
3336   // with vector types, we'll need this later.
3337   bool SrcIsVec = isa<VectorType>(SrcTy);
3338   bool DstIsVec = isa<VectorType>(DstTy);
3339   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3340   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3341 
3342   // If these are vector types, get the lengths of the vectors (using zero for
3343   // scalar types means that checking that vector lengths match also checks that
3344   // scalars are not being converted to vectors or vectors to scalars).
3345   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3346                                 : ElementCount::getFixed(0);
3347   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3348                                 : ElementCount::getFixed(0);
3349 
3350   // Switch on the opcode provided
3351   switch (op) {
3352   default: return false; // This is an input error
3353   case Instruction::Trunc:
3354     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3355            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3356   case Instruction::ZExt:
3357     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3358            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3359   case Instruction::SExt:
3360     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3361            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3362   case Instruction::FPTrunc:
3363     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3364            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3365   case Instruction::FPExt:
3366     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3367            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3368   case Instruction::UIToFP:
3369   case Instruction::SIToFP:
3370     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3371            SrcEC == DstEC;
3372   case Instruction::FPToUI:
3373   case Instruction::FPToSI:
3374     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3375            SrcEC == DstEC;
3376   case Instruction::PtrToInt:
3377     if (SrcEC != DstEC)
3378       return false;
3379     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3380   case Instruction::IntToPtr:
3381     if (SrcEC != DstEC)
3382       return false;
3383     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3384   case Instruction::BitCast: {
3385     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3386     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3387 
3388     // BitCast implies a no-op cast of type only. No bits change.
3389     // However, you can't cast pointers to anything but pointers.
3390     if (!SrcPtrTy != !DstPtrTy)
3391       return false;
3392 
3393     // For non-pointer cases, the cast is okay if the source and destination bit
3394     // widths are identical.
3395     if (!SrcPtrTy)
3396       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3397 
3398     // If both are pointers then the address spaces must match.
3399     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3400       return false;
3401 
3402     // A vector of pointers must have the same number of elements.
3403     if (SrcIsVec && DstIsVec)
3404       return SrcEC == DstEC;
3405     if (SrcIsVec)
3406       return SrcEC == ElementCount::getFixed(1);
3407     if (DstIsVec)
3408       return DstEC == ElementCount::getFixed(1);
3409 
3410     return true;
3411   }
3412   case Instruction::AddrSpaceCast: {
3413     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3414     if (!SrcPtrTy)
3415       return false;
3416 
3417     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3418     if (!DstPtrTy)
3419       return false;
3420 
3421     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3422       return false;
3423 
3424     return SrcEC == DstEC;
3425   }
3426   }
3427 }
3428 
3429 TruncInst::TruncInst(
3430   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3431 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3432   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3433 }
3434 
3435 TruncInst::TruncInst(
3436   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3437 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3438   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3439 }
3440 
3441 ZExtInst::ZExtInst(
3442   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3443 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3444   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3445 }
3446 
3447 ZExtInst::ZExtInst(
3448   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3449 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3450   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3451 }
3452 SExtInst::SExtInst(
3453   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3454 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3455   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3456 }
3457 
3458 SExtInst::SExtInst(
3459   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3460 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3461   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3462 }
3463 
3464 FPTruncInst::FPTruncInst(
3465   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3466 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3467   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3468 }
3469 
3470 FPTruncInst::FPTruncInst(
3471   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3472 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3473   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3474 }
3475 
3476 FPExtInst::FPExtInst(
3477   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3478 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3479   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3480 }
3481 
3482 FPExtInst::FPExtInst(
3483   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3484 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3485   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3486 }
3487 
3488 UIToFPInst::UIToFPInst(
3489   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3490 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3491   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3492 }
3493 
3494 UIToFPInst::UIToFPInst(
3495   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3496 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3497   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3498 }
3499 
3500 SIToFPInst::SIToFPInst(
3501   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3502 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3503   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3504 }
3505 
3506 SIToFPInst::SIToFPInst(
3507   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3508 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3509   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3510 }
3511 
3512 FPToUIInst::FPToUIInst(
3513   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3514 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3515   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3516 }
3517 
3518 FPToUIInst::FPToUIInst(
3519   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3520 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3521   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3522 }
3523 
3524 FPToSIInst::FPToSIInst(
3525   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3526 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3527   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3528 }
3529 
3530 FPToSIInst::FPToSIInst(
3531   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3532 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3533   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3534 }
3535 
3536 PtrToIntInst::PtrToIntInst(
3537   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3538 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3539   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3540 }
3541 
3542 PtrToIntInst::PtrToIntInst(
3543   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3544 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3545   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3546 }
3547 
3548 IntToPtrInst::IntToPtrInst(
3549   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3550 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3551   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3552 }
3553 
3554 IntToPtrInst::IntToPtrInst(
3555   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3556 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3557   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3558 }
3559 
3560 BitCastInst::BitCastInst(
3561   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3562 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3563   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3564 }
3565 
3566 BitCastInst::BitCastInst(
3567   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3568 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3569   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3570 }
3571 
3572 AddrSpaceCastInst::AddrSpaceCastInst(
3573   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3574 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3575   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3576 }
3577 
3578 AddrSpaceCastInst::AddrSpaceCastInst(
3579   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3580 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3581   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3582 }
3583 
3584 //===----------------------------------------------------------------------===//
3585 //                               CmpInst Classes
3586 //===----------------------------------------------------------------------===//
3587 
3588 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3589                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3590                  Instruction *FlagsSource)
3591   : Instruction(ty, op,
3592                 OperandTraits<CmpInst>::op_begin(this),
3593                 OperandTraits<CmpInst>::operands(this),
3594                 InsertBefore) {
3595   Op<0>() = LHS;
3596   Op<1>() = RHS;
3597   setPredicate((Predicate)predicate);
3598   setName(Name);
3599   if (FlagsSource)
3600     copyIRFlags(FlagsSource);
3601 }
3602 
3603 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3604                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3605   : Instruction(ty, op,
3606                 OperandTraits<CmpInst>::op_begin(this),
3607                 OperandTraits<CmpInst>::operands(this),
3608                 InsertAtEnd) {
3609   Op<0>() = LHS;
3610   Op<1>() = RHS;
3611   setPredicate((Predicate)predicate);
3612   setName(Name);
3613 }
3614 
3615 CmpInst *
3616 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3617                 const Twine &Name, Instruction *InsertBefore) {
3618   if (Op == Instruction::ICmp) {
3619     if (InsertBefore)
3620       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3621                           S1, S2, Name);
3622     else
3623       return new ICmpInst(CmpInst::Predicate(predicate),
3624                           S1, S2, Name);
3625   }
3626 
3627   if (InsertBefore)
3628     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3629                         S1, S2, Name);
3630   else
3631     return new FCmpInst(CmpInst::Predicate(predicate),
3632                         S1, S2, Name);
3633 }
3634 
3635 CmpInst *
3636 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3637                 const Twine &Name, BasicBlock *InsertAtEnd) {
3638   if (Op == Instruction::ICmp) {
3639     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3640                         S1, S2, Name);
3641   }
3642   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3643                       S1, S2, Name);
3644 }
3645 
3646 void CmpInst::swapOperands() {
3647   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3648     IC->swapOperands();
3649   else
3650     cast<FCmpInst>(this)->swapOperands();
3651 }
3652 
3653 bool CmpInst::isCommutative() const {
3654   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3655     return IC->isCommutative();
3656   return cast<FCmpInst>(this)->isCommutative();
3657 }
3658 
3659 bool CmpInst::isEquality(Predicate P) {
3660   if (ICmpInst::isIntPredicate(P))
3661     return ICmpInst::isEquality(P);
3662   if (FCmpInst::isFPPredicate(P))
3663     return FCmpInst::isEquality(P);
3664   llvm_unreachable("Unsupported predicate kind");
3665 }
3666 
3667 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3668   switch (pred) {
3669     default: llvm_unreachable("Unknown cmp predicate!");
3670     case ICMP_EQ: return ICMP_NE;
3671     case ICMP_NE: return ICMP_EQ;
3672     case ICMP_UGT: return ICMP_ULE;
3673     case ICMP_ULT: return ICMP_UGE;
3674     case ICMP_UGE: return ICMP_ULT;
3675     case ICMP_ULE: return ICMP_UGT;
3676     case ICMP_SGT: return ICMP_SLE;
3677     case ICMP_SLT: return ICMP_SGE;
3678     case ICMP_SGE: return ICMP_SLT;
3679     case ICMP_SLE: return ICMP_SGT;
3680 
3681     case FCMP_OEQ: return FCMP_UNE;
3682     case FCMP_ONE: return FCMP_UEQ;
3683     case FCMP_OGT: return FCMP_ULE;
3684     case FCMP_OLT: return FCMP_UGE;
3685     case FCMP_OGE: return FCMP_ULT;
3686     case FCMP_OLE: return FCMP_UGT;
3687     case FCMP_UEQ: return FCMP_ONE;
3688     case FCMP_UNE: return FCMP_OEQ;
3689     case FCMP_UGT: return FCMP_OLE;
3690     case FCMP_ULT: return FCMP_OGE;
3691     case FCMP_UGE: return FCMP_OLT;
3692     case FCMP_ULE: return FCMP_OGT;
3693     case FCMP_ORD: return FCMP_UNO;
3694     case FCMP_UNO: return FCMP_ORD;
3695     case FCMP_TRUE: return FCMP_FALSE;
3696     case FCMP_FALSE: return FCMP_TRUE;
3697   }
3698 }
3699 
3700 StringRef CmpInst::getPredicateName(Predicate Pred) {
3701   switch (Pred) {
3702   default:                   return "unknown";
3703   case FCmpInst::FCMP_FALSE: return "false";
3704   case FCmpInst::FCMP_OEQ:   return "oeq";
3705   case FCmpInst::FCMP_OGT:   return "ogt";
3706   case FCmpInst::FCMP_OGE:   return "oge";
3707   case FCmpInst::FCMP_OLT:   return "olt";
3708   case FCmpInst::FCMP_OLE:   return "ole";
3709   case FCmpInst::FCMP_ONE:   return "one";
3710   case FCmpInst::FCMP_ORD:   return "ord";
3711   case FCmpInst::FCMP_UNO:   return "uno";
3712   case FCmpInst::FCMP_UEQ:   return "ueq";
3713   case FCmpInst::FCMP_UGT:   return "ugt";
3714   case FCmpInst::FCMP_UGE:   return "uge";
3715   case FCmpInst::FCMP_ULT:   return "ult";
3716   case FCmpInst::FCMP_ULE:   return "ule";
3717   case FCmpInst::FCMP_UNE:   return "une";
3718   case FCmpInst::FCMP_TRUE:  return "true";
3719   case ICmpInst::ICMP_EQ:    return "eq";
3720   case ICmpInst::ICMP_NE:    return "ne";
3721   case ICmpInst::ICMP_SGT:   return "sgt";
3722   case ICmpInst::ICMP_SGE:   return "sge";
3723   case ICmpInst::ICMP_SLT:   return "slt";
3724   case ICmpInst::ICMP_SLE:   return "sle";
3725   case ICmpInst::ICMP_UGT:   return "ugt";
3726   case ICmpInst::ICMP_UGE:   return "uge";
3727   case ICmpInst::ICMP_ULT:   return "ult";
3728   case ICmpInst::ICMP_ULE:   return "ule";
3729   }
3730 }
3731 
3732 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3733   switch (pred) {
3734     default: llvm_unreachable("Unknown icmp predicate!");
3735     case ICMP_EQ: case ICMP_NE:
3736     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3737        return pred;
3738     case ICMP_UGT: return ICMP_SGT;
3739     case ICMP_ULT: return ICMP_SLT;
3740     case ICMP_UGE: return ICMP_SGE;
3741     case ICMP_ULE: return ICMP_SLE;
3742   }
3743 }
3744 
3745 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3746   switch (pred) {
3747     default: llvm_unreachable("Unknown icmp predicate!");
3748     case ICMP_EQ: case ICMP_NE:
3749     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3750        return pred;
3751     case ICMP_SGT: return ICMP_UGT;
3752     case ICMP_SLT: return ICMP_ULT;
3753     case ICMP_SGE: return ICMP_UGE;
3754     case ICMP_SLE: return ICMP_ULE;
3755   }
3756 }
3757 
3758 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3759   switch (pred) {
3760     default: llvm_unreachable("Unknown cmp predicate!");
3761     case ICMP_EQ: case ICMP_NE:
3762       return pred;
3763     case ICMP_SGT: return ICMP_SLT;
3764     case ICMP_SLT: return ICMP_SGT;
3765     case ICMP_SGE: return ICMP_SLE;
3766     case ICMP_SLE: return ICMP_SGE;
3767     case ICMP_UGT: return ICMP_ULT;
3768     case ICMP_ULT: return ICMP_UGT;
3769     case ICMP_UGE: return ICMP_ULE;
3770     case ICMP_ULE: return ICMP_UGE;
3771 
3772     case FCMP_FALSE: case FCMP_TRUE:
3773     case FCMP_OEQ: case FCMP_ONE:
3774     case FCMP_UEQ: case FCMP_UNE:
3775     case FCMP_ORD: case FCMP_UNO:
3776       return pred;
3777     case FCMP_OGT: return FCMP_OLT;
3778     case FCMP_OLT: return FCMP_OGT;
3779     case FCMP_OGE: return FCMP_OLE;
3780     case FCMP_OLE: return FCMP_OGE;
3781     case FCMP_UGT: return FCMP_ULT;
3782     case FCMP_ULT: return FCMP_UGT;
3783     case FCMP_UGE: return FCMP_ULE;
3784     case FCMP_ULE: return FCMP_UGE;
3785   }
3786 }
3787 
3788 bool CmpInst::isNonStrictPredicate(Predicate pred) {
3789   switch (pred) {
3790   case ICMP_SGE:
3791   case ICMP_SLE:
3792   case ICMP_UGE:
3793   case ICMP_ULE:
3794   case FCMP_OGE:
3795   case FCMP_OLE:
3796   case FCMP_UGE:
3797   case FCMP_ULE:
3798     return true;
3799   default:
3800     return false;
3801   }
3802 }
3803 
3804 bool CmpInst::isStrictPredicate(Predicate pred) {
3805   switch (pred) {
3806   case ICMP_SGT:
3807   case ICMP_SLT:
3808   case ICMP_UGT:
3809   case ICMP_ULT:
3810   case FCMP_OGT:
3811   case FCMP_OLT:
3812   case FCMP_UGT:
3813   case FCMP_ULT:
3814     return true;
3815   default:
3816     return false;
3817   }
3818 }
3819 
3820 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3821   switch (pred) {
3822   case ICMP_SGE:
3823     return ICMP_SGT;
3824   case ICMP_SLE:
3825     return ICMP_SLT;
3826   case ICMP_UGE:
3827     return ICMP_UGT;
3828   case ICMP_ULE:
3829     return ICMP_ULT;
3830   case FCMP_OGE:
3831     return FCMP_OGT;
3832   case FCMP_OLE:
3833     return FCMP_OLT;
3834   case FCMP_UGE:
3835     return FCMP_UGT;
3836   case FCMP_ULE:
3837     return FCMP_ULT;
3838   default:
3839     return pred;
3840   }
3841 }
3842 
3843 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3844   switch (pred) {
3845   case ICMP_SGT:
3846     return ICMP_SGE;
3847   case ICMP_SLT:
3848     return ICMP_SLE;
3849   case ICMP_UGT:
3850     return ICMP_UGE;
3851   case ICMP_ULT:
3852     return ICMP_ULE;
3853   case FCMP_OGT:
3854     return FCMP_OGE;
3855   case FCMP_OLT:
3856     return FCMP_OLE;
3857   case FCMP_UGT:
3858     return FCMP_UGE;
3859   case FCMP_ULT:
3860     return FCMP_ULE;
3861   default:
3862     return pred;
3863   }
3864 }
3865 
3866 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3867   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3868 
3869   if (isStrictPredicate(pred))
3870     return getNonStrictPredicate(pred);
3871   if (isNonStrictPredicate(pred))
3872     return getStrictPredicate(pred);
3873 
3874   llvm_unreachable("Unknown predicate!");
3875 }
3876 
3877 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3878   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3879 
3880   switch (pred) {
3881   default:
3882     llvm_unreachable("Unknown predicate!");
3883   case CmpInst::ICMP_ULT:
3884     return CmpInst::ICMP_SLT;
3885   case CmpInst::ICMP_ULE:
3886     return CmpInst::ICMP_SLE;
3887   case CmpInst::ICMP_UGT:
3888     return CmpInst::ICMP_SGT;
3889   case CmpInst::ICMP_UGE:
3890     return CmpInst::ICMP_SGE;
3891   }
3892 }
3893 
3894 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3895   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3896 
3897   switch (pred) {
3898   default:
3899     llvm_unreachable("Unknown predicate!");
3900   case CmpInst::ICMP_SLT:
3901     return CmpInst::ICMP_ULT;
3902   case CmpInst::ICMP_SLE:
3903     return CmpInst::ICMP_ULE;
3904   case CmpInst::ICMP_SGT:
3905     return CmpInst::ICMP_UGT;
3906   case CmpInst::ICMP_SGE:
3907     return CmpInst::ICMP_UGE;
3908   }
3909 }
3910 
3911 bool CmpInst::isUnsigned(Predicate predicate) {
3912   switch (predicate) {
3913     default: return false;
3914     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3915     case ICmpInst::ICMP_UGE: return true;
3916   }
3917 }
3918 
3919 bool CmpInst::isSigned(Predicate predicate) {
3920   switch (predicate) {
3921     default: return false;
3922     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3923     case ICmpInst::ICMP_SGE: return true;
3924   }
3925 }
3926 
3927 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
3928   assert(CmpInst::isRelational(pred) &&
3929          "Call only with non-equality predicates!");
3930 
3931   if (isSigned(pred))
3932     return getUnsignedPredicate(pred);
3933   if (isUnsigned(pred))
3934     return getSignedPredicate(pred);
3935 
3936   llvm_unreachable("Unknown predicate!");
3937 }
3938 
3939 bool CmpInst::isOrdered(Predicate predicate) {
3940   switch (predicate) {
3941     default: return false;
3942     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3943     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3944     case FCmpInst::FCMP_ORD: return true;
3945   }
3946 }
3947 
3948 bool CmpInst::isUnordered(Predicate predicate) {
3949   switch (predicate) {
3950     default: return false;
3951     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3952     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3953     case FCmpInst::FCMP_UNO: return true;
3954   }
3955 }
3956 
3957 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3958   switch(predicate) {
3959     default: return false;
3960     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3961     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3962   }
3963 }
3964 
3965 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3966   switch(predicate) {
3967   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3968   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3969   default: return false;
3970   }
3971 }
3972 
3973 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3974   // If the predicates match, then we know the first condition implies the
3975   // second is true.
3976   if (Pred1 == Pred2)
3977     return true;
3978 
3979   switch (Pred1) {
3980   default:
3981     break;
3982   case ICMP_EQ:
3983     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3984     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3985            Pred2 == ICMP_SLE;
3986   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3987     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3988   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3989     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3990   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3991     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3992   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3993     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3994   }
3995   return false;
3996 }
3997 
3998 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3999   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4000 }
4001 
4002 //===----------------------------------------------------------------------===//
4003 //                        SwitchInst Implementation
4004 //===----------------------------------------------------------------------===//
4005 
4006 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4007   assert(Value && Default && NumReserved);
4008   ReservedSpace = NumReserved;
4009   setNumHungOffUseOperands(2);
4010   allocHungoffUses(ReservedSpace);
4011 
4012   Op<0>() = Value;
4013   Op<1>() = Default;
4014 }
4015 
4016 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4017 /// switch on and a default destination.  The number of additional cases can
4018 /// be specified here to make memory allocation more efficient.  This
4019 /// constructor can also autoinsert before another instruction.
4020 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4021                        Instruction *InsertBefore)
4022     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4023                   nullptr, 0, InsertBefore) {
4024   init(Value, Default, 2+NumCases*2);
4025 }
4026 
4027 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4028 /// switch on and a default destination.  The number of additional cases can
4029 /// be specified here to make memory allocation more efficient.  This
4030 /// constructor also autoinserts at the end of the specified BasicBlock.
4031 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4032                        BasicBlock *InsertAtEnd)
4033     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4034                   nullptr, 0, InsertAtEnd) {
4035   init(Value, Default, 2+NumCases*2);
4036 }
4037 
4038 SwitchInst::SwitchInst(const SwitchInst &SI)
4039     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4040   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4041   setNumHungOffUseOperands(SI.getNumOperands());
4042   Use *OL = getOperandList();
4043   const Use *InOL = SI.getOperandList();
4044   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4045     OL[i] = InOL[i];
4046     OL[i+1] = InOL[i+1];
4047   }
4048   SubclassOptionalData = SI.SubclassOptionalData;
4049 }
4050 
4051 /// addCase - Add an entry to the switch instruction...
4052 ///
4053 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4054   unsigned NewCaseIdx = getNumCases();
4055   unsigned OpNo = getNumOperands();
4056   if (OpNo+2 > ReservedSpace)
4057     growOperands();  // Get more space!
4058   // Initialize some new operands.
4059   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4060   setNumHungOffUseOperands(OpNo+2);
4061   CaseHandle Case(this, NewCaseIdx);
4062   Case.setValue(OnVal);
4063   Case.setSuccessor(Dest);
4064 }
4065 
4066 /// removeCase - This method removes the specified case and its successor
4067 /// from the switch instruction.
4068 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4069   unsigned idx = I->getCaseIndex();
4070 
4071   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4072 
4073   unsigned NumOps = getNumOperands();
4074   Use *OL = getOperandList();
4075 
4076   // Overwrite this case with the end of the list.
4077   if (2 + (idx + 1) * 2 != NumOps) {
4078     OL[2 + idx * 2] = OL[NumOps - 2];
4079     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4080   }
4081 
4082   // Nuke the last value.
4083   OL[NumOps-2].set(nullptr);
4084   OL[NumOps-2+1].set(nullptr);
4085   setNumHungOffUseOperands(NumOps-2);
4086 
4087   return CaseIt(this, idx);
4088 }
4089 
4090 /// growOperands - grow operands - This grows the operand list in response
4091 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4092 ///
4093 void SwitchInst::growOperands() {
4094   unsigned e = getNumOperands();
4095   unsigned NumOps = e*3;
4096 
4097   ReservedSpace = NumOps;
4098   growHungoffUses(ReservedSpace);
4099 }
4100 
4101 MDNode *
4102 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4103   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4104     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4105       if (MDName->getString() == "branch_weights")
4106         return ProfileData;
4107   return nullptr;
4108 }
4109 
4110 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4111   assert(Changed && "called only if metadata has changed");
4112 
4113   if (!Weights)
4114     return nullptr;
4115 
4116   assert(SI.getNumSuccessors() == Weights->size() &&
4117          "num of prof branch_weights must accord with num of successors");
4118 
4119   bool AllZeroes =
4120       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4121 
4122   if (AllZeroes || Weights.getValue().size() < 2)
4123     return nullptr;
4124 
4125   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4126 }
4127 
4128 void SwitchInstProfUpdateWrapper::init() {
4129   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4130   if (!ProfileData)
4131     return;
4132 
4133   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4134     llvm_unreachable("number of prof branch_weights metadata operands does "
4135                      "not correspond to number of succesors");
4136   }
4137 
4138   SmallVector<uint32_t, 8> Weights;
4139   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4140     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4141     uint32_t CW = C->getValue().getZExtValue();
4142     Weights.push_back(CW);
4143   }
4144   this->Weights = std::move(Weights);
4145 }
4146 
4147 SwitchInst::CaseIt
4148 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4149   if (Weights) {
4150     assert(SI.getNumSuccessors() == Weights->size() &&
4151            "num of prof branch_weights must accord with num of successors");
4152     Changed = true;
4153     // Copy the last case to the place of the removed one and shrink.
4154     // This is tightly coupled with the way SwitchInst::removeCase() removes
4155     // the cases in SwitchInst::removeCase(CaseIt).
4156     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4157     Weights.getValue().pop_back();
4158   }
4159   return SI.removeCase(I);
4160 }
4161 
4162 void SwitchInstProfUpdateWrapper::addCase(
4163     ConstantInt *OnVal, BasicBlock *Dest,
4164     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4165   SI.addCase(OnVal, Dest);
4166 
4167   if (!Weights && W && *W) {
4168     Changed = true;
4169     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4170     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4171   } else if (Weights) {
4172     Changed = true;
4173     Weights.getValue().push_back(W ? *W : 0);
4174   }
4175   if (Weights)
4176     assert(SI.getNumSuccessors() == Weights->size() &&
4177            "num of prof branch_weights must accord with num of successors");
4178 }
4179 
4180 SymbolTableList<Instruction>::iterator
4181 SwitchInstProfUpdateWrapper::eraseFromParent() {
4182   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4183   Changed = false;
4184   if (Weights)
4185     Weights->resize(0);
4186   return SI.eraseFromParent();
4187 }
4188 
4189 SwitchInstProfUpdateWrapper::CaseWeightOpt
4190 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4191   if (!Weights)
4192     return None;
4193   return Weights.getValue()[idx];
4194 }
4195 
4196 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4197     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4198   if (!W)
4199     return;
4200 
4201   if (!Weights && *W)
4202     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4203 
4204   if (Weights) {
4205     auto &OldW = Weights.getValue()[idx];
4206     if (*W != OldW) {
4207       Changed = true;
4208       OldW = *W;
4209     }
4210   }
4211 }
4212 
4213 SwitchInstProfUpdateWrapper::CaseWeightOpt
4214 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4215                                                 unsigned idx) {
4216   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4217     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4218       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4219           ->getValue()
4220           .getZExtValue();
4221 
4222   return None;
4223 }
4224 
4225 //===----------------------------------------------------------------------===//
4226 //                        IndirectBrInst Implementation
4227 //===----------------------------------------------------------------------===//
4228 
4229 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4230   assert(Address && Address->getType()->isPointerTy() &&
4231          "Address of indirectbr must be a pointer");
4232   ReservedSpace = 1+NumDests;
4233   setNumHungOffUseOperands(1);
4234   allocHungoffUses(ReservedSpace);
4235 
4236   Op<0>() = Address;
4237 }
4238 
4239 
4240 /// growOperands - grow operands - This grows the operand list in response
4241 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4242 ///
4243 void IndirectBrInst::growOperands() {
4244   unsigned e = getNumOperands();
4245   unsigned NumOps = e*2;
4246 
4247   ReservedSpace = NumOps;
4248   growHungoffUses(ReservedSpace);
4249 }
4250 
4251 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4252                                Instruction *InsertBefore)
4253     : Instruction(Type::getVoidTy(Address->getContext()),
4254                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4255   init(Address, NumCases);
4256 }
4257 
4258 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4259                                BasicBlock *InsertAtEnd)
4260     : Instruction(Type::getVoidTy(Address->getContext()),
4261                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4262   init(Address, NumCases);
4263 }
4264 
4265 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4266     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4267                   nullptr, IBI.getNumOperands()) {
4268   allocHungoffUses(IBI.getNumOperands());
4269   Use *OL = getOperandList();
4270   const Use *InOL = IBI.getOperandList();
4271   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4272     OL[i] = InOL[i];
4273   SubclassOptionalData = IBI.SubclassOptionalData;
4274 }
4275 
4276 /// addDestination - Add a destination.
4277 ///
4278 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4279   unsigned OpNo = getNumOperands();
4280   if (OpNo+1 > ReservedSpace)
4281     growOperands();  // Get more space!
4282   // Initialize some new operands.
4283   assert(OpNo < ReservedSpace && "Growing didn't work!");
4284   setNumHungOffUseOperands(OpNo+1);
4285   getOperandList()[OpNo] = DestBB;
4286 }
4287 
4288 /// removeDestination - This method removes the specified successor from the
4289 /// indirectbr instruction.
4290 void IndirectBrInst::removeDestination(unsigned idx) {
4291   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4292 
4293   unsigned NumOps = getNumOperands();
4294   Use *OL = getOperandList();
4295 
4296   // Replace this value with the last one.
4297   OL[idx+1] = OL[NumOps-1];
4298 
4299   // Nuke the last value.
4300   OL[NumOps-1].set(nullptr);
4301   setNumHungOffUseOperands(NumOps-1);
4302 }
4303 
4304 //===----------------------------------------------------------------------===//
4305 //                            FreezeInst Implementation
4306 //===----------------------------------------------------------------------===//
4307 
4308 FreezeInst::FreezeInst(Value *S,
4309                        const Twine &Name, Instruction *InsertBefore)
4310     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4311   setName(Name);
4312 }
4313 
4314 FreezeInst::FreezeInst(Value *S,
4315                        const Twine &Name, BasicBlock *InsertAtEnd)
4316     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4317   setName(Name);
4318 }
4319 
4320 //===----------------------------------------------------------------------===//
4321 //                           cloneImpl() implementations
4322 //===----------------------------------------------------------------------===//
4323 
4324 // Define these methods here so vtables don't get emitted into every translation
4325 // unit that uses these classes.
4326 
4327 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4328   return new (getNumOperands()) GetElementPtrInst(*this);
4329 }
4330 
4331 UnaryOperator *UnaryOperator::cloneImpl() const {
4332   return Create(getOpcode(), Op<0>());
4333 }
4334 
4335 BinaryOperator *BinaryOperator::cloneImpl() const {
4336   return Create(getOpcode(), Op<0>(), Op<1>());
4337 }
4338 
4339 FCmpInst *FCmpInst::cloneImpl() const {
4340   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4341 }
4342 
4343 ICmpInst *ICmpInst::cloneImpl() const {
4344   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4345 }
4346 
4347 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4348   return new ExtractValueInst(*this);
4349 }
4350 
4351 InsertValueInst *InsertValueInst::cloneImpl() const {
4352   return new InsertValueInst(*this);
4353 }
4354 
4355 AllocaInst *AllocaInst::cloneImpl() const {
4356   AllocaInst *Result =
4357       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4358                      getOperand(0), getAlign());
4359   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4360   Result->setSwiftError(isSwiftError());
4361   return Result;
4362 }
4363 
4364 LoadInst *LoadInst::cloneImpl() const {
4365   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4366                       getAlign(), getOrdering(), getSyncScopeID());
4367 }
4368 
4369 StoreInst *StoreInst::cloneImpl() const {
4370   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4371                        getOrdering(), getSyncScopeID());
4372 }
4373 
4374 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4375   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4376       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4377       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4378   Result->setVolatile(isVolatile());
4379   Result->setWeak(isWeak());
4380   return Result;
4381 }
4382 
4383 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4384   AtomicRMWInst *Result =
4385       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4386                         getAlign(), getOrdering(), getSyncScopeID());
4387   Result->setVolatile(isVolatile());
4388   return Result;
4389 }
4390 
4391 FenceInst *FenceInst::cloneImpl() const {
4392   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4393 }
4394 
4395 TruncInst *TruncInst::cloneImpl() const {
4396   return new TruncInst(getOperand(0), getType());
4397 }
4398 
4399 ZExtInst *ZExtInst::cloneImpl() const {
4400   return new ZExtInst(getOperand(0), getType());
4401 }
4402 
4403 SExtInst *SExtInst::cloneImpl() const {
4404   return new SExtInst(getOperand(0), getType());
4405 }
4406 
4407 FPTruncInst *FPTruncInst::cloneImpl() const {
4408   return new FPTruncInst(getOperand(0), getType());
4409 }
4410 
4411 FPExtInst *FPExtInst::cloneImpl() const {
4412   return new FPExtInst(getOperand(0), getType());
4413 }
4414 
4415 UIToFPInst *UIToFPInst::cloneImpl() const {
4416   return new UIToFPInst(getOperand(0), getType());
4417 }
4418 
4419 SIToFPInst *SIToFPInst::cloneImpl() const {
4420   return new SIToFPInst(getOperand(0), getType());
4421 }
4422 
4423 FPToUIInst *FPToUIInst::cloneImpl() const {
4424   return new FPToUIInst(getOperand(0), getType());
4425 }
4426 
4427 FPToSIInst *FPToSIInst::cloneImpl() const {
4428   return new FPToSIInst(getOperand(0), getType());
4429 }
4430 
4431 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4432   return new PtrToIntInst(getOperand(0), getType());
4433 }
4434 
4435 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4436   return new IntToPtrInst(getOperand(0), getType());
4437 }
4438 
4439 BitCastInst *BitCastInst::cloneImpl() const {
4440   return new BitCastInst(getOperand(0), getType());
4441 }
4442 
4443 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4444   return new AddrSpaceCastInst(getOperand(0), getType());
4445 }
4446 
4447 CallInst *CallInst::cloneImpl() const {
4448   if (hasOperandBundles()) {
4449     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4450     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4451   }
4452   return  new(getNumOperands()) CallInst(*this);
4453 }
4454 
4455 SelectInst *SelectInst::cloneImpl() const {
4456   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4457 }
4458 
4459 VAArgInst *VAArgInst::cloneImpl() const {
4460   return new VAArgInst(getOperand(0), getType());
4461 }
4462 
4463 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4464   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4465 }
4466 
4467 InsertElementInst *InsertElementInst::cloneImpl() const {
4468   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4469 }
4470 
4471 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4472   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4473 }
4474 
4475 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4476 
4477 LandingPadInst *LandingPadInst::cloneImpl() const {
4478   return new LandingPadInst(*this);
4479 }
4480 
4481 ReturnInst *ReturnInst::cloneImpl() const {
4482   return new(getNumOperands()) ReturnInst(*this);
4483 }
4484 
4485 BranchInst *BranchInst::cloneImpl() const {
4486   return new(getNumOperands()) BranchInst(*this);
4487 }
4488 
4489 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4490 
4491 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4492   return new IndirectBrInst(*this);
4493 }
4494 
4495 InvokeInst *InvokeInst::cloneImpl() const {
4496   if (hasOperandBundles()) {
4497     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4498     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4499   }
4500   return new(getNumOperands()) InvokeInst(*this);
4501 }
4502 
4503 CallBrInst *CallBrInst::cloneImpl() const {
4504   if (hasOperandBundles()) {
4505     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4506     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4507   }
4508   return new (getNumOperands()) CallBrInst(*this);
4509 }
4510 
4511 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4512 
4513 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4514   return new (getNumOperands()) CleanupReturnInst(*this);
4515 }
4516 
4517 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4518   return new (getNumOperands()) CatchReturnInst(*this);
4519 }
4520 
4521 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4522   return new CatchSwitchInst(*this);
4523 }
4524 
4525 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4526   return new (getNumOperands()) FuncletPadInst(*this);
4527 }
4528 
4529 UnreachableInst *UnreachableInst::cloneImpl() const {
4530   LLVMContext &Context = getContext();
4531   return new UnreachableInst(Context);
4532 }
4533 
4534 FreezeInst *FreezeInst::cloneImpl() const {
4535   return new FreezeInst(getOperand(0));
4536 }
4537