1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 //===----------------------------------------------------------------------===//
49 //                            AllocaInst Class
50 //===----------------------------------------------------------------------===//
51 
52 Optional<uint64_t>
53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54   uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55   if (isArrayAllocation()) {
56     auto C = dyn_cast<ConstantInt>(getArraySize());
57     if (!C)
58       return None;
59     Size *= C->getZExtValue();
60   }
61   return Size;
62 }
63 
64 //===----------------------------------------------------------------------===//
65 //                              SelectInst Class
66 //===----------------------------------------------------------------------===//
67 
68 /// areInvalidOperands - Return a string if the specified operands are invalid
69 /// for a select operation, otherwise return null.
70 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
71   if (Op1->getType() != Op2->getType())
72     return "both values to select must have same type";
73 
74   if (Op1->getType()->isTokenTy())
75     return "select values cannot have token type";
76 
77   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
78     // Vector select.
79     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
80       return "vector select condition element type must be i1";
81     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
82     if (!ET)
83       return "selected values for vector select must be vectors";
84     if (ET->getElementCount() != VT->getElementCount())
85       return "vector select requires selected vectors to have "
86                    "the same vector length as select condition";
87   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
88     return "select condition must be i1 or <n x i1>";
89   }
90   return nullptr;
91 }
92 
93 //===----------------------------------------------------------------------===//
94 //                               PHINode Class
95 //===----------------------------------------------------------------------===//
96 
97 PHINode::PHINode(const PHINode &PN)
98     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
99       ReservedSpace(PN.getNumOperands()) {
100   allocHungoffUses(PN.getNumOperands());
101   std::copy(PN.op_begin(), PN.op_end(), op_begin());
102   std::copy(PN.block_begin(), PN.block_end(), block_begin());
103   SubclassOptionalData = PN.SubclassOptionalData;
104 }
105 
106 // removeIncomingValue - Remove an incoming value.  This is useful if a
107 // predecessor basic block is deleted.
108 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
109   Value *Removed = getIncomingValue(Idx);
110 
111   // Move everything after this operand down.
112   //
113   // FIXME: we could just swap with the end of the list, then erase.  However,
114   // clients might not expect this to happen.  The code as it is thrashes the
115   // use/def lists, which is kinda lame.
116   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
117   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
118 
119   // Nuke the last value.
120   Op<-1>().set(nullptr);
121   setNumHungOffUseOperands(getNumOperands() - 1);
122 
123   // If the PHI node is dead, because it has zero entries, nuke it now.
124   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
125     // If anyone is using this PHI, make them use a dummy value instead...
126     replaceAllUsesWith(UndefValue::get(getType()));
127     eraseFromParent();
128   }
129   return Removed;
130 }
131 
132 /// growOperands - grow operands - This grows the operand list in response
133 /// to a push_back style of operation.  This grows the number of ops by 1.5
134 /// times.
135 ///
136 void PHINode::growOperands() {
137   unsigned e = getNumOperands();
138   unsigned NumOps = e + e / 2;
139   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
140 
141   ReservedSpace = NumOps;
142   growHungoffUses(ReservedSpace, /* IsPhi */ true);
143 }
144 
145 /// hasConstantValue - If the specified PHI node always merges together the same
146 /// value, return the value, otherwise return null.
147 Value *PHINode::hasConstantValue() const {
148   // Exploit the fact that phi nodes always have at least one entry.
149   Value *ConstantValue = getIncomingValue(0);
150   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
151     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
152       if (ConstantValue != this)
153         return nullptr; // Incoming values not all the same.
154        // The case where the first value is this PHI.
155       ConstantValue = getIncomingValue(i);
156     }
157   if (ConstantValue == this)
158     return UndefValue::get(getType());
159   return ConstantValue;
160 }
161 
162 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
163 /// together the same value, assuming that undefs result in the same value as
164 /// non-undefs.
165 /// Unlike \ref hasConstantValue, this does not return a value because the
166 /// unique non-undef incoming value need not dominate the PHI node.
167 bool PHINode::hasConstantOrUndefValue() const {
168   Value *ConstantValue = nullptr;
169   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
170     Value *Incoming = getIncomingValue(i);
171     if (Incoming != this && !isa<UndefValue>(Incoming)) {
172       if (ConstantValue && ConstantValue != Incoming)
173         return false;
174       ConstantValue = Incoming;
175     }
176   }
177   return true;
178 }
179 
180 //===----------------------------------------------------------------------===//
181 //                       LandingPadInst Implementation
182 //===----------------------------------------------------------------------===//
183 
184 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
185                                const Twine &NameStr, Instruction *InsertBefore)
186     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
187   init(NumReservedValues, NameStr);
188 }
189 
190 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
191                                const Twine &NameStr, BasicBlock *InsertAtEnd)
192     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
193   init(NumReservedValues, NameStr);
194 }
195 
196 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
197     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
198                   LP.getNumOperands()),
199       ReservedSpace(LP.getNumOperands()) {
200   allocHungoffUses(LP.getNumOperands());
201   Use *OL = getOperandList();
202   const Use *InOL = LP.getOperandList();
203   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
204     OL[I] = InOL[I];
205 
206   setCleanup(LP.isCleanup());
207 }
208 
209 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
210                                        const Twine &NameStr,
211                                        Instruction *InsertBefore) {
212   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
213 }
214 
215 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
216                                        const Twine &NameStr,
217                                        BasicBlock *InsertAtEnd) {
218   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
219 }
220 
221 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
222   ReservedSpace = NumReservedValues;
223   setNumHungOffUseOperands(0);
224   allocHungoffUses(ReservedSpace);
225   setName(NameStr);
226   setCleanup(false);
227 }
228 
229 /// growOperands - grow operands - This grows the operand list in response to a
230 /// push_back style of operation. This grows the number of ops by 2 times.
231 void LandingPadInst::growOperands(unsigned Size) {
232   unsigned e = getNumOperands();
233   if (ReservedSpace >= e + Size) return;
234   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
235   growHungoffUses(ReservedSpace);
236 }
237 
238 void LandingPadInst::addClause(Constant *Val) {
239   unsigned OpNo = getNumOperands();
240   growOperands(1);
241   assert(OpNo < ReservedSpace && "Growing didn't work!");
242   setNumHungOffUseOperands(getNumOperands() + 1);
243   getOperandList()[OpNo] = Val;
244 }
245 
246 //===----------------------------------------------------------------------===//
247 //                        CallBase Implementation
248 //===----------------------------------------------------------------------===//
249 
250 Function *CallBase::getCaller() { return getParent()->getParent(); }
251 
252 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
253   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
254   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
255 }
256 
257 bool CallBase::isIndirectCall() const {
258   const Value *V = getCalledOperand();
259   if (isa<Function>(V) || isa<Constant>(V))
260     return false;
261   return !isInlineAsm();
262 }
263 
264 /// Tests if this call site must be tail call optimized. Only a CallInst can
265 /// be tail call optimized.
266 bool CallBase::isMustTailCall() const {
267   if (auto *CI = dyn_cast<CallInst>(this))
268     return CI->isMustTailCall();
269   return false;
270 }
271 
272 /// Tests if this call site is marked as a tail call.
273 bool CallBase::isTailCall() const {
274   if (auto *CI = dyn_cast<CallInst>(this))
275     return CI->isTailCall();
276   return false;
277 }
278 
279 Intrinsic::ID CallBase::getIntrinsicID() const {
280   if (auto *F = getCalledFunction())
281     return F->getIntrinsicID();
282   return Intrinsic::not_intrinsic;
283 }
284 
285 bool CallBase::isReturnNonNull() const {
286   if (hasRetAttr(Attribute::NonNull))
287     return true;
288 
289   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
290            !NullPointerIsDefined(getCaller(),
291                                  getType()->getPointerAddressSpace()))
292     return true;
293 
294   return false;
295 }
296 
297 Value *CallBase::getReturnedArgOperand() const {
298   unsigned Index;
299 
300   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
301     return getArgOperand(Index - AttributeList::FirstArgIndex);
302   if (const Function *F = getCalledFunction())
303     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
304         Index)
305       return getArgOperand(Index - AttributeList::FirstArgIndex);
306 
307   return nullptr;
308 }
309 
310 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
311   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
312     return true;
313 
314   // Look at the callee, if available.
315   if (const Function *F = getCalledFunction())
316     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
317   return false;
318 }
319 
320 /// Determine whether the argument or parameter has the given attribute.
321 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
322   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
323 
324   if (Attrs.hasParamAttribute(ArgNo, Kind))
325     return true;
326   if (const Function *F = getCalledFunction())
327     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
328   return false;
329 }
330 
331 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
332   if (const Function *F = getCalledFunction())
333     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
334   return false;
335 }
336 
337 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
338   if (const Function *F = getCalledFunction())
339     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
340   return false;
341 }
342 
343 void CallBase::getOperandBundlesAsDefs(
344     SmallVectorImpl<OperandBundleDef> &Defs) const {
345   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
346     Defs.emplace_back(getOperandBundleAt(i));
347 }
348 
349 CallBase::op_iterator
350 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
351                                      const unsigned BeginIndex) {
352   auto It = op_begin() + BeginIndex;
353   for (auto &B : Bundles)
354     It = std::copy(B.input_begin(), B.input_end(), It);
355 
356   auto *ContextImpl = getContext().pImpl;
357   auto BI = Bundles.begin();
358   unsigned CurrentIndex = BeginIndex;
359 
360   for (auto &BOI : bundle_op_infos()) {
361     assert(BI != Bundles.end() && "Incorrect allocation?");
362 
363     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
364     BOI.Begin = CurrentIndex;
365     BOI.End = CurrentIndex + BI->input_size();
366     CurrentIndex = BOI.End;
367     BI++;
368   }
369 
370   assert(BI == Bundles.end() && "Incorrect allocation?");
371 
372   return It;
373 }
374 
375 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
376   /// When there isn't many bundles, we do a simple linear search.
377   /// Else fallback to a binary-search that use the fact that bundles usually
378   /// have similar number of argument to get faster convergence.
379   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
380     for (auto &BOI : bundle_op_infos())
381       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
382         return BOI;
383 
384     llvm_unreachable("Did not find operand bundle for operand!");
385   }
386 
387   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
388   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
389          OpIdx < std::prev(bundle_op_info_end())->End &&
390          "The Idx isn't in the operand bundle");
391 
392   /// We need a decimal number below and to prevent using floating point numbers
393   /// we use an intergal value multiplied by this constant.
394   constexpr unsigned NumberScaling = 1024;
395 
396   bundle_op_iterator Begin = bundle_op_info_begin();
397   bundle_op_iterator End = bundle_op_info_end();
398   bundle_op_iterator Current;
399 
400   while (Begin != End) {
401     unsigned ScaledOperandPerBundle =
402         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
403     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
404                        ScaledOperandPerBundle);
405     if (Current >= End)
406       Current = std::prev(End);
407     assert(Current < End && Current >= Begin &&
408            "the operand bundle doesn't cover every value in the range");
409     if (OpIdx >= Current->Begin && OpIdx < Current->End)
410       break;
411     if (OpIdx >= Current->End)
412       Begin = Current + 1;
413     else
414       End = Current;
415   }
416 
417   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
418          "the operand bundle doesn't cover every value in the range");
419   return *Current;
420 }
421 
422 //===----------------------------------------------------------------------===//
423 //                        CallInst Implementation
424 //===----------------------------------------------------------------------===//
425 
426 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
427                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
428   this->FTy = FTy;
429   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
430          "NumOperands not set up?");
431   setCalledOperand(Func);
432 
433 #ifndef NDEBUG
434   assert((Args.size() == FTy->getNumParams() ||
435           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
436          "Calling a function with bad signature!");
437 
438   for (unsigned i = 0; i != Args.size(); ++i)
439     assert((i >= FTy->getNumParams() ||
440             FTy->getParamType(i) == Args[i]->getType()) &&
441            "Calling a function with a bad signature!");
442 #endif
443 
444   llvm::copy(Args, op_begin());
445 
446   auto It = populateBundleOperandInfos(Bundles, Args.size());
447   (void)It;
448   assert(It + 1 == op_end() && "Should add up!");
449 
450   setName(NameStr);
451 }
452 
453 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
454   this->FTy = FTy;
455   assert(getNumOperands() == 1 && "NumOperands not set up?");
456   setCalledOperand(Func);
457 
458   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
459 
460   setName(NameStr);
461 }
462 
463 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
464                    Instruction *InsertBefore)
465     : CallBase(Ty->getReturnType(), Instruction::Call,
466                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
467   init(Ty, Func, Name);
468 }
469 
470 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
471                    BasicBlock *InsertAtEnd)
472     : CallBase(Ty->getReturnType(), Instruction::Call,
473                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
474   init(Ty, Func, Name);
475 }
476 
477 CallInst::CallInst(const CallInst &CI)
478     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
479                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
480                CI.getNumOperands()) {
481   setTailCallKind(CI.getTailCallKind());
482   setCallingConv(CI.getCallingConv());
483 
484   std::copy(CI.op_begin(), CI.op_end(), op_begin());
485   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
486             bundle_op_info_begin());
487   SubclassOptionalData = CI.SubclassOptionalData;
488 }
489 
490 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
491                            Instruction *InsertPt) {
492   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
493 
494   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
495                                  Args, OpB, CI->getName(), InsertPt);
496   NewCI->setTailCallKind(CI->getTailCallKind());
497   NewCI->setCallingConv(CI->getCallingConv());
498   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
499   NewCI->setAttributes(CI->getAttributes());
500   NewCI->setDebugLoc(CI->getDebugLoc());
501   return NewCI;
502 }
503 
504 // Update profile weight for call instruction by scaling it using the ratio
505 // of S/T. The meaning of "branch_weights" meta data for call instruction is
506 // transfered to represent call count.
507 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
508   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
509   if (ProfileData == nullptr)
510     return;
511 
512   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
513   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
514                         !ProfDataName->getString().equals("VP")))
515     return;
516 
517   if (T == 0) {
518     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
519                          "div by 0. Ignoring. Likely the function "
520                       << getParent()->getParent()->getName()
521                       << " has 0 entry count, and contains call instructions "
522                          "with non-zero prof info.");
523     return;
524   }
525 
526   MDBuilder MDB(getContext());
527   SmallVector<Metadata *, 3> Vals;
528   Vals.push_back(ProfileData->getOperand(0));
529   APInt APS(128, S), APT(128, T);
530   if (ProfDataName->getString().equals("branch_weights") &&
531       ProfileData->getNumOperands() > 0) {
532     // Using APInt::div may be expensive, but most cases should fit 64 bits.
533     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
534                        ->getValue()
535                        .getZExtValue());
536     Val *= APS;
537     Vals.push_back(MDB.createConstant(ConstantInt::get(
538         Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
539   } else if (ProfDataName->getString().equals("VP"))
540     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
541       // The first value is the key of the value profile, which will not change.
542       Vals.push_back(ProfileData->getOperand(i));
543       // Using APInt::div may be expensive, but most cases should fit 64 bits.
544       APInt Val(128,
545                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
546                     ->getValue()
547                     .getZExtValue());
548       Val *= APS;
549       Vals.push_back(MDB.createConstant(
550           ConstantInt::get(Type::getInt64Ty(getContext()),
551                            Val.udiv(APT).getLimitedValue())));
552     }
553   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
554 }
555 
556 /// IsConstantOne - Return true only if val is constant int 1
557 static bool IsConstantOne(Value *val) {
558   assert(val && "IsConstantOne does not work with nullptr val");
559   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
560   return CVal && CVal->isOne();
561 }
562 
563 static Instruction *createMalloc(Instruction *InsertBefore,
564                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
565                                  Type *AllocTy, Value *AllocSize,
566                                  Value *ArraySize,
567                                  ArrayRef<OperandBundleDef> OpB,
568                                  Function *MallocF, const Twine &Name) {
569   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
570          "createMalloc needs either InsertBefore or InsertAtEnd");
571 
572   // malloc(type) becomes:
573   //       bitcast (i8* malloc(typeSize)) to type*
574   // malloc(type, arraySize) becomes:
575   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
576   if (!ArraySize)
577     ArraySize = ConstantInt::get(IntPtrTy, 1);
578   else if (ArraySize->getType() != IntPtrTy) {
579     if (InsertBefore)
580       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
581                                               "", InsertBefore);
582     else
583       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
584                                               "", InsertAtEnd);
585   }
586 
587   if (!IsConstantOne(ArraySize)) {
588     if (IsConstantOne(AllocSize)) {
589       AllocSize = ArraySize;         // Operand * 1 = Operand
590     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
591       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
592                                                      false /*ZExt*/);
593       // Malloc arg is constant product of type size and array size
594       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
595     } else {
596       // Multiply type size by the array size...
597       if (InsertBefore)
598         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
599                                               "mallocsize", InsertBefore);
600       else
601         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
602                                               "mallocsize", InsertAtEnd);
603     }
604   }
605 
606   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
607   // Create the call to Malloc.
608   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
609   Module *M = BB->getParent()->getParent();
610   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
611   FunctionCallee MallocFunc = MallocF;
612   if (!MallocFunc)
613     // prototype malloc as "void *malloc(size_t)"
614     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
615   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
616   CallInst *MCall = nullptr;
617   Instruction *Result = nullptr;
618   if (InsertBefore) {
619     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
620                              InsertBefore);
621     Result = MCall;
622     if (Result->getType() != AllocPtrType)
623       // Create a cast instruction to convert to the right type...
624       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
625   } else {
626     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
627     Result = MCall;
628     if (Result->getType() != AllocPtrType) {
629       InsertAtEnd->getInstList().push_back(MCall);
630       // Create a cast instruction to convert to the right type...
631       Result = new BitCastInst(MCall, AllocPtrType, Name);
632     }
633   }
634   MCall->setTailCall();
635   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
636     MCall->setCallingConv(F->getCallingConv());
637     if (!F->returnDoesNotAlias())
638       F->setReturnDoesNotAlias();
639   }
640   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
641 
642   return Result;
643 }
644 
645 /// CreateMalloc - Generate the IR for a call to malloc:
646 /// 1. Compute the malloc call's argument as the specified type's size,
647 ///    possibly multiplied by the array size if the array size is not
648 ///    constant 1.
649 /// 2. Call malloc with that argument.
650 /// 3. Bitcast the result of the malloc call to the specified type.
651 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
652                                     Type *IntPtrTy, Type *AllocTy,
653                                     Value *AllocSize, Value *ArraySize,
654                                     Function *MallocF,
655                                     const Twine &Name) {
656   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
657                       ArraySize, None, MallocF, Name);
658 }
659 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
660                                     Type *IntPtrTy, Type *AllocTy,
661                                     Value *AllocSize, Value *ArraySize,
662                                     ArrayRef<OperandBundleDef> OpB,
663                                     Function *MallocF,
664                                     const Twine &Name) {
665   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
666                       ArraySize, OpB, MallocF, Name);
667 }
668 
669 /// CreateMalloc - Generate the IR for a call to malloc:
670 /// 1. Compute the malloc call's argument as the specified type's size,
671 ///    possibly multiplied by the array size if the array size is not
672 ///    constant 1.
673 /// 2. Call malloc with that argument.
674 /// 3. Bitcast the result of the malloc call to the specified type.
675 /// Note: This function does not add the bitcast to the basic block, that is the
676 /// responsibility of the caller.
677 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
678                                     Type *IntPtrTy, Type *AllocTy,
679                                     Value *AllocSize, Value *ArraySize,
680                                     Function *MallocF, const Twine &Name) {
681   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
682                       ArraySize, None, MallocF, Name);
683 }
684 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
685                                     Type *IntPtrTy, Type *AllocTy,
686                                     Value *AllocSize, Value *ArraySize,
687                                     ArrayRef<OperandBundleDef> OpB,
688                                     Function *MallocF, const Twine &Name) {
689   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
690                       ArraySize, OpB, MallocF, Name);
691 }
692 
693 static Instruction *createFree(Value *Source,
694                                ArrayRef<OperandBundleDef> Bundles,
695                                Instruction *InsertBefore,
696                                BasicBlock *InsertAtEnd) {
697   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
698          "createFree needs either InsertBefore or InsertAtEnd");
699   assert(Source->getType()->isPointerTy() &&
700          "Can not free something of nonpointer type!");
701 
702   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
703   Module *M = BB->getParent()->getParent();
704 
705   Type *VoidTy = Type::getVoidTy(M->getContext());
706   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
707   // prototype free as "void free(void*)"
708   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
709   CallInst *Result = nullptr;
710   Value *PtrCast = Source;
711   if (InsertBefore) {
712     if (Source->getType() != IntPtrTy)
713       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
714     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
715   } else {
716     if (Source->getType() != IntPtrTy)
717       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
718     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
719   }
720   Result->setTailCall();
721   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
722     Result->setCallingConv(F->getCallingConv());
723 
724   return Result;
725 }
726 
727 /// CreateFree - Generate the IR for a call to the builtin free function.
728 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
729   return createFree(Source, None, InsertBefore, nullptr);
730 }
731 Instruction *CallInst::CreateFree(Value *Source,
732                                   ArrayRef<OperandBundleDef> Bundles,
733                                   Instruction *InsertBefore) {
734   return createFree(Source, Bundles, InsertBefore, nullptr);
735 }
736 
737 /// CreateFree - Generate the IR for a call to the builtin free function.
738 /// Note: This function does not add the call to the basic block, that is the
739 /// responsibility of the caller.
740 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
741   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
742   assert(FreeCall && "CreateFree did not create a CallInst");
743   return FreeCall;
744 }
745 Instruction *CallInst::CreateFree(Value *Source,
746                                   ArrayRef<OperandBundleDef> Bundles,
747                                   BasicBlock *InsertAtEnd) {
748   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
749   assert(FreeCall && "CreateFree did not create a CallInst");
750   return FreeCall;
751 }
752 
753 //===----------------------------------------------------------------------===//
754 //                        InvokeInst Implementation
755 //===----------------------------------------------------------------------===//
756 
757 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
758                       BasicBlock *IfException, ArrayRef<Value *> Args,
759                       ArrayRef<OperandBundleDef> Bundles,
760                       const Twine &NameStr) {
761   this->FTy = FTy;
762 
763   assert((int)getNumOperands() ==
764              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
765          "NumOperands not set up?");
766   setNormalDest(IfNormal);
767   setUnwindDest(IfException);
768   setCalledOperand(Fn);
769 
770 #ifndef NDEBUG
771   assert(((Args.size() == FTy->getNumParams()) ||
772           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
773          "Invoking a function with bad signature");
774 
775   for (unsigned i = 0, e = Args.size(); i != e; i++)
776     assert((i >= FTy->getNumParams() ||
777             FTy->getParamType(i) == Args[i]->getType()) &&
778            "Invoking a function with a bad signature!");
779 #endif
780 
781   llvm::copy(Args, op_begin());
782 
783   auto It = populateBundleOperandInfos(Bundles, Args.size());
784   (void)It;
785   assert(It + 3 == op_end() && "Should add up!");
786 
787   setName(NameStr);
788 }
789 
790 InvokeInst::InvokeInst(const InvokeInst &II)
791     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
792                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
793                II.getNumOperands()) {
794   setCallingConv(II.getCallingConv());
795   std::copy(II.op_begin(), II.op_end(), op_begin());
796   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
797             bundle_op_info_begin());
798   SubclassOptionalData = II.SubclassOptionalData;
799 }
800 
801 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
802                                Instruction *InsertPt) {
803   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
804 
805   auto *NewII = InvokeInst::Create(
806       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
807       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
808   NewII->setCallingConv(II->getCallingConv());
809   NewII->SubclassOptionalData = II->SubclassOptionalData;
810   NewII->setAttributes(II->getAttributes());
811   NewII->setDebugLoc(II->getDebugLoc());
812   return NewII;
813 }
814 
815 
816 LandingPadInst *InvokeInst::getLandingPadInst() const {
817   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
818 }
819 
820 //===----------------------------------------------------------------------===//
821 //                        CallBrInst Implementation
822 //===----------------------------------------------------------------------===//
823 
824 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
825                       ArrayRef<BasicBlock *> IndirectDests,
826                       ArrayRef<Value *> Args,
827                       ArrayRef<OperandBundleDef> Bundles,
828                       const Twine &NameStr) {
829   this->FTy = FTy;
830 
831   assert((int)getNumOperands() ==
832              ComputeNumOperands(Args.size(), IndirectDests.size(),
833                                 CountBundleInputs(Bundles)) &&
834          "NumOperands not set up?");
835   NumIndirectDests = IndirectDests.size();
836   setDefaultDest(Fallthrough);
837   for (unsigned i = 0; i != NumIndirectDests; ++i)
838     setIndirectDest(i, IndirectDests[i]);
839   setCalledOperand(Fn);
840 
841 #ifndef NDEBUG
842   assert(((Args.size() == FTy->getNumParams()) ||
843           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
844          "Calling a function with bad signature");
845 
846   for (unsigned i = 0, e = Args.size(); i != e; i++)
847     assert((i >= FTy->getNumParams() ||
848             FTy->getParamType(i) == Args[i]->getType()) &&
849            "Calling a function with a bad signature!");
850 #endif
851 
852   std::copy(Args.begin(), Args.end(), op_begin());
853 
854   auto It = populateBundleOperandInfos(Bundles, Args.size());
855   (void)It;
856   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
857 
858   setName(NameStr);
859 }
860 
861 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
862   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
863   if (BasicBlock *OldBB = getIndirectDest(i)) {
864     BlockAddress *Old = BlockAddress::get(OldBB);
865     BlockAddress *New = BlockAddress::get(B);
866     for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
867       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
868         setArgOperand(ArgNo, New);
869   }
870 }
871 
872 CallBrInst::CallBrInst(const CallBrInst &CBI)
873     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
874                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
875                CBI.getNumOperands()) {
876   setCallingConv(CBI.getCallingConv());
877   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
878   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
879             bundle_op_info_begin());
880   SubclassOptionalData = CBI.SubclassOptionalData;
881   NumIndirectDests = CBI.NumIndirectDests;
882 }
883 
884 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
885                                Instruction *InsertPt) {
886   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
887 
888   auto *NewCBI = CallBrInst::Create(
889       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
890       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
891   NewCBI->setCallingConv(CBI->getCallingConv());
892   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
893   NewCBI->setAttributes(CBI->getAttributes());
894   NewCBI->setDebugLoc(CBI->getDebugLoc());
895   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
896   return NewCBI;
897 }
898 
899 //===----------------------------------------------------------------------===//
900 //                        ReturnInst Implementation
901 //===----------------------------------------------------------------------===//
902 
903 ReturnInst::ReturnInst(const ReturnInst &RI)
904     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
905                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
906                   RI.getNumOperands()) {
907   if (RI.getNumOperands())
908     Op<0>() = RI.Op<0>();
909   SubclassOptionalData = RI.SubclassOptionalData;
910 }
911 
912 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
913     : Instruction(Type::getVoidTy(C), Instruction::Ret,
914                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
915                   InsertBefore) {
916   if (retVal)
917     Op<0>() = retVal;
918 }
919 
920 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
921     : Instruction(Type::getVoidTy(C), Instruction::Ret,
922                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
923                   InsertAtEnd) {
924   if (retVal)
925     Op<0>() = retVal;
926 }
927 
928 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
929     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
930                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
931 
932 //===----------------------------------------------------------------------===//
933 //                        ResumeInst Implementation
934 //===----------------------------------------------------------------------===//
935 
936 ResumeInst::ResumeInst(const ResumeInst &RI)
937     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
938                   OperandTraits<ResumeInst>::op_begin(this), 1) {
939   Op<0>() = RI.Op<0>();
940 }
941 
942 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
943     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
944                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
945   Op<0>() = Exn;
946 }
947 
948 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
949     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
950                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
951   Op<0>() = Exn;
952 }
953 
954 //===----------------------------------------------------------------------===//
955 //                        CleanupReturnInst Implementation
956 //===----------------------------------------------------------------------===//
957 
958 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
959     : Instruction(CRI.getType(), Instruction::CleanupRet,
960                   OperandTraits<CleanupReturnInst>::op_end(this) -
961                       CRI.getNumOperands(),
962                   CRI.getNumOperands()) {
963   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
964   Op<0>() = CRI.Op<0>();
965   if (CRI.hasUnwindDest())
966     Op<1>() = CRI.Op<1>();
967 }
968 
969 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
970   if (UnwindBB)
971     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
972 
973   Op<0>() = CleanupPad;
974   if (UnwindBB)
975     Op<1>() = UnwindBB;
976 }
977 
978 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
979                                      unsigned Values, Instruction *InsertBefore)
980     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
981                   Instruction::CleanupRet,
982                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
983                   Values, InsertBefore) {
984   init(CleanupPad, UnwindBB);
985 }
986 
987 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
988                                      unsigned Values, BasicBlock *InsertAtEnd)
989     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
990                   Instruction::CleanupRet,
991                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
992                   Values, InsertAtEnd) {
993   init(CleanupPad, UnwindBB);
994 }
995 
996 //===----------------------------------------------------------------------===//
997 //                        CatchReturnInst Implementation
998 //===----------------------------------------------------------------------===//
999 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1000   Op<0>() = CatchPad;
1001   Op<1>() = BB;
1002 }
1003 
1004 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1005     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1006                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1007   Op<0>() = CRI.Op<0>();
1008   Op<1>() = CRI.Op<1>();
1009 }
1010 
1011 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1012                                  Instruction *InsertBefore)
1013     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1014                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1015                   InsertBefore) {
1016   init(CatchPad, BB);
1017 }
1018 
1019 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1020                                  BasicBlock *InsertAtEnd)
1021     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1022                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1023                   InsertAtEnd) {
1024   init(CatchPad, BB);
1025 }
1026 
1027 //===----------------------------------------------------------------------===//
1028 //                       CatchSwitchInst Implementation
1029 //===----------------------------------------------------------------------===//
1030 
1031 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1032                                  unsigned NumReservedValues,
1033                                  const Twine &NameStr,
1034                                  Instruction *InsertBefore)
1035     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1036                   InsertBefore) {
1037   if (UnwindDest)
1038     ++NumReservedValues;
1039   init(ParentPad, UnwindDest, NumReservedValues + 1);
1040   setName(NameStr);
1041 }
1042 
1043 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1044                                  unsigned NumReservedValues,
1045                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1046     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1047                   InsertAtEnd) {
1048   if (UnwindDest)
1049     ++NumReservedValues;
1050   init(ParentPad, UnwindDest, NumReservedValues + 1);
1051   setName(NameStr);
1052 }
1053 
1054 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1055     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1056                   CSI.getNumOperands()) {
1057   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1058   setNumHungOffUseOperands(ReservedSpace);
1059   Use *OL = getOperandList();
1060   const Use *InOL = CSI.getOperandList();
1061   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1062     OL[I] = InOL[I];
1063 }
1064 
1065 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1066                            unsigned NumReservedValues) {
1067   assert(ParentPad && NumReservedValues);
1068 
1069   ReservedSpace = NumReservedValues;
1070   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1071   allocHungoffUses(ReservedSpace);
1072 
1073   Op<0>() = ParentPad;
1074   if (UnwindDest) {
1075     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1076     setUnwindDest(UnwindDest);
1077   }
1078 }
1079 
1080 /// growOperands - grow operands - This grows the operand list in response to a
1081 /// push_back style of operation. This grows the number of ops by 2 times.
1082 void CatchSwitchInst::growOperands(unsigned Size) {
1083   unsigned NumOperands = getNumOperands();
1084   assert(NumOperands >= 1);
1085   if (ReservedSpace >= NumOperands + Size)
1086     return;
1087   ReservedSpace = (NumOperands + Size / 2) * 2;
1088   growHungoffUses(ReservedSpace);
1089 }
1090 
1091 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1092   unsigned OpNo = getNumOperands();
1093   growOperands(1);
1094   assert(OpNo < ReservedSpace && "Growing didn't work!");
1095   setNumHungOffUseOperands(getNumOperands() + 1);
1096   getOperandList()[OpNo] = Handler;
1097 }
1098 
1099 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1100   // Move all subsequent handlers up one.
1101   Use *EndDst = op_end() - 1;
1102   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1103     *CurDst = *(CurDst + 1);
1104   // Null out the last handler use.
1105   *EndDst = nullptr;
1106 
1107   setNumHungOffUseOperands(getNumOperands() - 1);
1108 }
1109 
1110 //===----------------------------------------------------------------------===//
1111 //                        FuncletPadInst Implementation
1112 //===----------------------------------------------------------------------===//
1113 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1114                           const Twine &NameStr) {
1115   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1116   llvm::copy(Args, op_begin());
1117   setParentPad(ParentPad);
1118   setName(NameStr);
1119 }
1120 
1121 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1122     : Instruction(FPI.getType(), FPI.getOpcode(),
1123                   OperandTraits<FuncletPadInst>::op_end(this) -
1124                       FPI.getNumOperands(),
1125                   FPI.getNumOperands()) {
1126   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1127   setParentPad(FPI.getParentPad());
1128 }
1129 
1130 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1131                                ArrayRef<Value *> Args, unsigned Values,
1132                                const Twine &NameStr, Instruction *InsertBefore)
1133     : Instruction(ParentPad->getType(), Op,
1134                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1135                   InsertBefore) {
1136   init(ParentPad, Args, NameStr);
1137 }
1138 
1139 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1140                                ArrayRef<Value *> Args, unsigned Values,
1141                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1142     : Instruction(ParentPad->getType(), Op,
1143                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1144                   InsertAtEnd) {
1145   init(ParentPad, Args, NameStr);
1146 }
1147 
1148 //===----------------------------------------------------------------------===//
1149 //                      UnreachableInst Implementation
1150 //===----------------------------------------------------------------------===//
1151 
1152 UnreachableInst::UnreachableInst(LLVMContext &Context,
1153                                  Instruction *InsertBefore)
1154     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1155                   0, InsertBefore) {}
1156 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1157     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1158                   0, InsertAtEnd) {}
1159 
1160 //===----------------------------------------------------------------------===//
1161 //                        BranchInst Implementation
1162 //===----------------------------------------------------------------------===//
1163 
1164 void BranchInst::AssertOK() {
1165   if (isConditional())
1166     assert(getCondition()->getType()->isIntegerTy(1) &&
1167            "May only branch on boolean predicates!");
1168 }
1169 
1170 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1171     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1172                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1173                   InsertBefore) {
1174   assert(IfTrue && "Branch destination may not be null!");
1175   Op<-1>() = IfTrue;
1176 }
1177 
1178 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1179                        Instruction *InsertBefore)
1180     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1181                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1182                   InsertBefore) {
1183   Op<-1>() = IfTrue;
1184   Op<-2>() = IfFalse;
1185   Op<-3>() = Cond;
1186 #ifndef NDEBUG
1187   AssertOK();
1188 #endif
1189 }
1190 
1191 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1192     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1193                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1194   assert(IfTrue && "Branch destination may not be null!");
1195   Op<-1>() = IfTrue;
1196 }
1197 
1198 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1199                        BasicBlock *InsertAtEnd)
1200     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1201                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1202   Op<-1>() = IfTrue;
1203   Op<-2>() = IfFalse;
1204   Op<-3>() = Cond;
1205 #ifndef NDEBUG
1206   AssertOK();
1207 #endif
1208 }
1209 
1210 BranchInst::BranchInst(const BranchInst &BI)
1211     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1212                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1213                   BI.getNumOperands()) {
1214   Op<-1>() = BI.Op<-1>();
1215   if (BI.getNumOperands() != 1) {
1216     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1217     Op<-3>() = BI.Op<-3>();
1218     Op<-2>() = BI.Op<-2>();
1219   }
1220   SubclassOptionalData = BI.SubclassOptionalData;
1221 }
1222 
1223 void BranchInst::swapSuccessors() {
1224   assert(isConditional() &&
1225          "Cannot swap successors of an unconditional branch");
1226   Op<-1>().swap(Op<-2>());
1227 
1228   // Update profile metadata if present and it matches our structural
1229   // expectations.
1230   swapProfMetadata();
1231 }
1232 
1233 //===----------------------------------------------------------------------===//
1234 //                        AllocaInst Implementation
1235 //===----------------------------------------------------------------------===//
1236 
1237 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1238   if (!Amt)
1239     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1240   else {
1241     assert(!isa<BasicBlock>(Amt) &&
1242            "Passed basic block into allocation size parameter! Use other ctor");
1243     assert(Amt->getType()->isIntegerTy() &&
1244            "Allocation array size is not an integer!");
1245   }
1246   return Amt;
1247 }
1248 
1249 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1250   const DataLayout &DL = BB->getModule()->getDataLayout();
1251   return DL.getPrefTypeAlign(Ty);
1252 }
1253 
1254 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1255   return computeAllocaDefaultAlign(Ty, I->getParent());
1256 }
1257 
1258 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1259                        Instruction *InsertBefore)
1260   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1261 
1262 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1263                        BasicBlock *InsertAtEnd)
1264   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1265 
1266 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1267                        const Twine &Name, Instruction *InsertBefore)
1268     : AllocaInst(Ty, AddrSpace, ArraySize,
1269                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1270                  InsertBefore) {}
1271 
1272 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1273                        const Twine &Name, BasicBlock *InsertAtEnd)
1274     : AllocaInst(Ty, AddrSpace, ArraySize,
1275                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1276                  InsertAtEnd) {}
1277 
1278 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1279                        Align Align, const Twine &Name,
1280                        Instruction *InsertBefore)
1281     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1282                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1283       AllocatedType(Ty) {
1284   setAlignment(Align);
1285   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1286   setName(Name);
1287 }
1288 
1289 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1290                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1291     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1292                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1293       AllocatedType(Ty) {
1294   setAlignment(Align);
1295   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1296   setName(Name);
1297 }
1298 
1299 void AllocaInst::setAlignment(Align Align) {
1300   assert(Align <= MaximumAlignment &&
1301          "Alignment is greater than MaximumAlignment!");
1302   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1303                              encode(Align));
1304   assert(getAlignment() == Align.value() && "Alignment representation error!");
1305 }
1306 
1307 bool AllocaInst::isArrayAllocation() const {
1308   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1309     return !CI->isOne();
1310   return true;
1311 }
1312 
1313 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1314 /// function and is a constant size.  If so, the code generator will fold it
1315 /// into the prolog/epilog code, so it is basically free.
1316 bool AllocaInst::isStaticAlloca() const {
1317   // Must be constant size.
1318   if (!isa<ConstantInt>(getArraySize())) return false;
1319 
1320   // Must be in the entry block.
1321   const BasicBlock *Parent = getParent();
1322   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1323 }
1324 
1325 //===----------------------------------------------------------------------===//
1326 //                           LoadInst Implementation
1327 //===----------------------------------------------------------------------===//
1328 
1329 void LoadInst::AssertOK() {
1330   assert(getOperand(0)->getType()->isPointerTy() &&
1331          "Ptr must have pointer type.");
1332   assert(!(isAtomic() && getAlignment() == 0) &&
1333          "Alignment required for atomic load");
1334 }
1335 
1336 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1337   const DataLayout &DL = BB->getModule()->getDataLayout();
1338   return DL.getABITypeAlign(Ty);
1339 }
1340 
1341 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1342   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1343 }
1344 
1345 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1346                    Instruction *InsertBef)
1347     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1348 
1349 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1350                    BasicBlock *InsertAE)
1351     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1352 
1353 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1354                    Instruction *InsertBef)
1355     : LoadInst(Ty, Ptr, Name, isVolatile,
1356                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1357 
1358 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1359                    BasicBlock *InsertAE)
1360     : LoadInst(Ty, Ptr, Name, isVolatile,
1361                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1362 
1363 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1364                    Align Align, Instruction *InsertBef)
1365     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1366                SyncScope::System, InsertBef) {}
1367 
1368 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1369                    Align Align, BasicBlock *InsertAE)
1370     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1371                SyncScope::System, InsertAE) {}
1372 
1373 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1374                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1375                    Instruction *InsertBef)
1376     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1377   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1378   setVolatile(isVolatile);
1379   setAlignment(Align);
1380   setAtomic(Order, SSID);
1381   AssertOK();
1382   setName(Name);
1383 }
1384 
1385 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1386                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1387                    BasicBlock *InsertAE)
1388     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1389   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1390   setVolatile(isVolatile);
1391   setAlignment(Align);
1392   setAtomic(Order, SSID);
1393   AssertOK();
1394   setName(Name);
1395 }
1396 
1397 void LoadInst::setAlignment(Align Align) {
1398   assert(Align <= MaximumAlignment &&
1399          "Alignment is greater than MaximumAlignment!");
1400   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1401                              (encode(Align) << 1));
1402   assert(getAlign() == Align && "Alignment representation error!");
1403 }
1404 
1405 //===----------------------------------------------------------------------===//
1406 //                           StoreInst Implementation
1407 //===----------------------------------------------------------------------===//
1408 
1409 void StoreInst::AssertOK() {
1410   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1411   assert(getOperand(1)->getType()->isPointerTy() &&
1412          "Ptr must have pointer type!");
1413   assert(getOperand(0)->getType() ==
1414                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1415          && "Ptr must be a pointer to Val type!");
1416   assert(!(isAtomic() && getAlignment() == 0) &&
1417          "Alignment required for atomic store");
1418 }
1419 
1420 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1421     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1422 
1423 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1424     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1425 
1426 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1427                      Instruction *InsertBefore)
1428     : StoreInst(val, addr, isVolatile,
1429                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1430                 InsertBefore) {}
1431 
1432 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1433                      BasicBlock *InsertAtEnd)
1434     : StoreInst(val, addr, isVolatile,
1435                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1436                 InsertAtEnd) {}
1437 
1438 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1439                      Instruction *InsertBefore)
1440     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1441                 SyncScope::System, InsertBefore) {}
1442 
1443 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1444                      BasicBlock *InsertAtEnd)
1445     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1446                 SyncScope::System, InsertAtEnd) {}
1447 
1448 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1449                      AtomicOrdering Order, SyncScope::ID SSID,
1450                      Instruction *InsertBefore)
1451     : Instruction(Type::getVoidTy(val->getContext()), Store,
1452                   OperandTraits<StoreInst>::op_begin(this),
1453                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1454   Op<0>() = val;
1455   Op<1>() = addr;
1456   setVolatile(isVolatile);
1457   setAlignment(Align);
1458   setAtomic(Order, SSID);
1459   AssertOK();
1460 }
1461 
1462 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1463                      AtomicOrdering Order, SyncScope::ID SSID,
1464                      BasicBlock *InsertAtEnd)
1465     : Instruction(Type::getVoidTy(val->getContext()), Store,
1466                   OperandTraits<StoreInst>::op_begin(this),
1467                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1468   Op<0>() = val;
1469   Op<1>() = addr;
1470   setVolatile(isVolatile);
1471   setAlignment(Align);
1472   setAtomic(Order, SSID);
1473   AssertOK();
1474 }
1475 
1476 void StoreInst::setAlignment(Align Alignment) {
1477   assert(Alignment <= MaximumAlignment &&
1478          "Alignment is greater than MaximumAlignment!");
1479   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1480                              (encode(Alignment) << 1));
1481   assert(getAlign() == Alignment && "Alignment representation error!");
1482 }
1483 
1484 //===----------------------------------------------------------------------===//
1485 //                       AtomicCmpXchgInst Implementation
1486 //===----------------------------------------------------------------------===//
1487 
1488 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1489                              AtomicOrdering SuccessOrdering,
1490                              AtomicOrdering FailureOrdering,
1491                              SyncScope::ID SSID) {
1492   Op<0>() = Ptr;
1493   Op<1>() = Cmp;
1494   Op<2>() = NewVal;
1495   setSuccessOrdering(SuccessOrdering);
1496   setFailureOrdering(FailureOrdering);
1497   setSyncScopeID(SSID);
1498 
1499   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1500          "All operands must be non-null!");
1501   assert(getOperand(0)->getType()->isPointerTy() &&
1502          "Ptr must have pointer type!");
1503   assert(getOperand(1)->getType() ==
1504                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1505          && "Ptr must be a pointer to Cmp type!");
1506   assert(getOperand(2)->getType() ==
1507                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1508          && "Ptr must be a pointer to NewVal type!");
1509   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1510          "AtomicCmpXchg instructions must be atomic!");
1511   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1512          "AtomicCmpXchg instructions must be atomic!");
1513   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1514          "AtomicCmpXchg failure argument shall be no stronger than the success "
1515          "argument");
1516   assert(FailureOrdering != AtomicOrdering::Release &&
1517          FailureOrdering != AtomicOrdering::AcquireRelease &&
1518          "AtomicCmpXchg failure ordering cannot include release semantics");
1519 }
1520 
1521 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1522                                      AtomicOrdering SuccessOrdering,
1523                                      AtomicOrdering FailureOrdering,
1524                                      SyncScope::ID SSID,
1525                                      Instruction *InsertBefore)
1526     : Instruction(
1527           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1528           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1529           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1530   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1531 }
1532 
1533 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1534                                      AtomicOrdering SuccessOrdering,
1535                                      AtomicOrdering FailureOrdering,
1536                                      SyncScope::ID SSID,
1537                                      BasicBlock *InsertAtEnd)
1538     : Instruction(
1539           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1540           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1541           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1542   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1543 }
1544 
1545 //===----------------------------------------------------------------------===//
1546 //                       AtomicRMWInst Implementation
1547 //===----------------------------------------------------------------------===//
1548 
1549 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1550                          AtomicOrdering Ordering,
1551                          SyncScope::ID SSID) {
1552   Op<0>() = Ptr;
1553   Op<1>() = Val;
1554   setOperation(Operation);
1555   setOrdering(Ordering);
1556   setSyncScopeID(SSID);
1557 
1558   assert(getOperand(0) && getOperand(1) &&
1559          "All operands must be non-null!");
1560   assert(getOperand(0)->getType()->isPointerTy() &&
1561          "Ptr must have pointer type!");
1562   assert(getOperand(1)->getType() ==
1563          cast<PointerType>(getOperand(0)->getType())->getElementType()
1564          && "Ptr must be a pointer to Val type!");
1565   assert(Ordering != AtomicOrdering::NotAtomic &&
1566          "AtomicRMW instructions must be atomic!");
1567 }
1568 
1569 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1570                              AtomicOrdering Ordering,
1571                              SyncScope::ID SSID,
1572                              Instruction *InsertBefore)
1573   : Instruction(Val->getType(), AtomicRMW,
1574                 OperandTraits<AtomicRMWInst>::op_begin(this),
1575                 OperandTraits<AtomicRMWInst>::operands(this),
1576                 InsertBefore) {
1577   Init(Operation, Ptr, Val, Ordering, SSID);
1578 }
1579 
1580 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1581                              AtomicOrdering Ordering,
1582                              SyncScope::ID SSID,
1583                              BasicBlock *InsertAtEnd)
1584   : Instruction(Val->getType(), AtomicRMW,
1585                 OperandTraits<AtomicRMWInst>::op_begin(this),
1586                 OperandTraits<AtomicRMWInst>::operands(this),
1587                 InsertAtEnd) {
1588   Init(Operation, Ptr, Val, Ordering, SSID);
1589 }
1590 
1591 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1592   switch (Op) {
1593   case AtomicRMWInst::Xchg:
1594     return "xchg";
1595   case AtomicRMWInst::Add:
1596     return "add";
1597   case AtomicRMWInst::Sub:
1598     return "sub";
1599   case AtomicRMWInst::And:
1600     return "and";
1601   case AtomicRMWInst::Nand:
1602     return "nand";
1603   case AtomicRMWInst::Or:
1604     return "or";
1605   case AtomicRMWInst::Xor:
1606     return "xor";
1607   case AtomicRMWInst::Max:
1608     return "max";
1609   case AtomicRMWInst::Min:
1610     return "min";
1611   case AtomicRMWInst::UMax:
1612     return "umax";
1613   case AtomicRMWInst::UMin:
1614     return "umin";
1615   case AtomicRMWInst::FAdd:
1616     return "fadd";
1617   case AtomicRMWInst::FSub:
1618     return "fsub";
1619   case AtomicRMWInst::BAD_BINOP:
1620     return "<invalid operation>";
1621   }
1622 
1623   llvm_unreachable("invalid atomicrmw operation");
1624 }
1625 
1626 //===----------------------------------------------------------------------===//
1627 //                       FenceInst Implementation
1628 //===----------------------------------------------------------------------===//
1629 
1630 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1631                      SyncScope::ID SSID,
1632                      Instruction *InsertBefore)
1633   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1634   setOrdering(Ordering);
1635   setSyncScopeID(SSID);
1636 }
1637 
1638 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1639                      SyncScope::ID SSID,
1640                      BasicBlock *InsertAtEnd)
1641   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1642   setOrdering(Ordering);
1643   setSyncScopeID(SSID);
1644 }
1645 
1646 //===----------------------------------------------------------------------===//
1647 //                       GetElementPtrInst Implementation
1648 //===----------------------------------------------------------------------===//
1649 
1650 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1651                              const Twine &Name) {
1652   assert(getNumOperands() == 1 + IdxList.size() &&
1653          "NumOperands not initialized?");
1654   Op<0>() = Ptr;
1655   llvm::copy(IdxList, op_begin() + 1);
1656   setName(Name);
1657 }
1658 
1659 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1660     : Instruction(GEPI.getType(), GetElementPtr,
1661                   OperandTraits<GetElementPtrInst>::op_end(this) -
1662                       GEPI.getNumOperands(),
1663                   GEPI.getNumOperands()),
1664       SourceElementType(GEPI.SourceElementType),
1665       ResultElementType(GEPI.ResultElementType) {
1666   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1667   SubclassOptionalData = GEPI.SubclassOptionalData;
1668 }
1669 
1670 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1671   if (auto Struct = dyn_cast<StructType>(Ty)) {
1672     if (!Struct->indexValid(Idx))
1673       return nullptr;
1674     return Struct->getTypeAtIndex(Idx);
1675   }
1676   if (!Idx->getType()->isIntOrIntVectorTy())
1677     return nullptr;
1678   if (auto Array = dyn_cast<ArrayType>(Ty))
1679     return Array->getElementType();
1680   if (auto Vector = dyn_cast<VectorType>(Ty))
1681     return Vector->getElementType();
1682   return nullptr;
1683 }
1684 
1685 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1686   if (auto Struct = dyn_cast<StructType>(Ty)) {
1687     if (Idx >= Struct->getNumElements())
1688       return nullptr;
1689     return Struct->getElementType(Idx);
1690   }
1691   if (auto Array = dyn_cast<ArrayType>(Ty))
1692     return Array->getElementType();
1693   if (auto Vector = dyn_cast<VectorType>(Ty))
1694     return Vector->getElementType();
1695   return nullptr;
1696 }
1697 
1698 template <typename IndexTy>
1699 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1700   if (IdxList.empty())
1701     return Ty;
1702   for (IndexTy V : IdxList.slice(1)) {
1703     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1704     if (!Ty)
1705       return Ty;
1706   }
1707   return Ty;
1708 }
1709 
1710 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1711   return getIndexedTypeInternal(Ty, IdxList);
1712 }
1713 
1714 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1715                                         ArrayRef<Constant *> IdxList) {
1716   return getIndexedTypeInternal(Ty, IdxList);
1717 }
1718 
1719 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1720   return getIndexedTypeInternal(Ty, IdxList);
1721 }
1722 
1723 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1724 /// zeros.  If so, the result pointer and the first operand have the same
1725 /// value, just potentially different types.
1726 bool GetElementPtrInst::hasAllZeroIndices() const {
1727   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1728     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1729       if (!CI->isZero()) return false;
1730     } else {
1731       return false;
1732     }
1733   }
1734   return true;
1735 }
1736 
1737 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1738 /// constant integers.  If so, the result pointer and the first operand have
1739 /// a constant offset between them.
1740 bool GetElementPtrInst::hasAllConstantIndices() const {
1741   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1742     if (!isa<ConstantInt>(getOperand(i)))
1743       return false;
1744   }
1745   return true;
1746 }
1747 
1748 void GetElementPtrInst::setIsInBounds(bool B) {
1749   cast<GEPOperator>(this)->setIsInBounds(B);
1750 }
1751 
1752 bool GetElementPtrInst::isInBounds() const {
1753   return cast<GEPOperator>(this)->isInBounds();
1754 }
1755 
1756 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1757                                                  APInt &Offset) const {
1758   // Delegate to the generic GEPOperator implementation.
1759   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1760 }
1761 
1762 //===----------------------------------------------------------------------===//
1763 //                           ExtractElementInst Implementation
1764 //===----------------------------------------------------------------------===//
1765 
1766 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1767                                        const Twine &Name,
1768                                        Instruction *InsertBef)
1769   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1770                 ExtractElement,
1771                 OperandTraits<ExtractElementInst>::op_begin(this),
1772                 2, InsertBef) {
1773   assert(isValidOperands(Val, Index) &&
1774          "Invalid extractelement instruction operands!");
1775   Op<0>() = Val;
1776   Op<1>() = Index;
1777   setName(Name);
1778 }
1779 
1780 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1781                                        const Twine &Name,
1782                                        BasicBlock *InsertAE)
1783   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1784                 ExtractElement,
1785                 OperandTraits<ExtractElementInst>::op_begin(this),
1786                 2, InsertAE) {
1787   assert(isValidOperands(Val, Index) &&
1788          "Invalid extractelement instruction operands!");
1789 
1790   Op<0>() = Val;
1791   Op<1>() = Index;
1792   setName(Name);
1793 }
1794 
1795 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1796   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1797     return false;
1798   return true;
1799 }
1800 
1801 //===----------------------------------------------------------------------===//
1802 //                           InsertElementInst Implementation
1803 //===----------------------------------------------------------------------===//
1804 
1805 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1806                                      const Twine &Name,
1807                                      Instruction *InsertBef)
1808   : Instruction(Vec->getType(), InsertElement,
1809                 OperandTraits<InsertElementInst>::op_begin(this),
1810                 3, InsertBef) {
1811   assert(isValidOperands(Vec, Elt, Index) &&
1812          "Invalid insertelement instruction operands!");
1813   Op<0>() = Vec;
1814   Op<1>() = Elt;
1815   Op<2>() = Index;
1816   setName(Name);
1817 }
1818 
1819 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1820                                      const Twine &Name,
1821                                      BasicBlock *InsertAE)
1822   : Instruction(Vec->getType(), InsertElement,
1823                 OperandTraits<InsertElementInst>::op_begin(this),
1824                 3, InsertAE) {
1825   assert(isValidOperands(Vec, Elt, Index) &&
1826          "Invalid insertelement instruction operands!");
1827 
1828   Op<0>() = Vec;
1829   Op<1>() = Elt;
1830   Op<2>() = Index;
1831   setName(Name);
1832 }
1833 
1834 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1835                                         const Value *Index) {
1836   if (!Vec->getType()->isVectorTy())
1837     return false;   // First operand of insertelement must be vector type.
1838 
1839   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1840     return false;// Second operand of insertelement must be vector element type.
1841 
1842   if (!Index->getType()->isIntegerTy())
1843     return false;  // Third operand of insertelement must be i32.
1844   return true;
1845 }
1846 
1847 //===----------------------------------------------------------------------===//
1848 //                      ShuffleVectorInst Implementation
1849 //===----------------------------------------------------------------------===//
1850 
1851 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1852                                      const Twine &Name,
1853                                      Instruction *InsertBefore)
1854     : Instruction(
1855           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1856                           cast<VectorType>(Mask->getType())->getElementCount()),
1857           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1858           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1859   assert(isValidOperands(V1, V2, Mask) &&
1860          "Invalid shuffle vector instruction operands!");
1861 
1862   Op<0>() = V1;
1863   Op<1>() = V2;
1864   SmallVector<int, 16> MaskArr;
1865   getShuffleMask(cast<Constant>(Mask), MaskArr);
1866   setShuffleMask(MaskArr);
1867   setName(Name);
1868 }
1869 
1870 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1871                                      const Twine &Name, BasicBlock *InsertAtEnd)
1872     : Instruction(
1873           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1874                           cast<VectorType>(Mask->getType())->getElementCount()),
1875           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1876           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1877   assert(isValidOperands(V1, V2, Mask) &&
1878          "Invalid shuffle vector instruction operands!");
1879 
1880   Op<0>() = V1;
1881   Op<1>() = V2;
1882   SmallVector<int, 16> MaskArr;
1883   getShuffleMask(cast<Constant>(Mask), MaskArr);
1884   setShuffleMask(MaskArr);
1885   setName(Name);
1886 }
1887 
1888 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1889                                      const Twine &Name,
1890                                      Instruction *InsertBefore)
1891     : Instruction(
1892           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1893                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1894           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1895           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1896   assert(isValidOperands(V1, V2, Mask) &&
1897          "Invalid shuffle vector instruction operands!");
1898   Op<0>() = V1;
1899   Op<1>() = V2;
1900   setShuffleMask(Mask);
1901   setName(Name);
1902 }
1903 
1904 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1905                                      const Twine &Name, BasicBlock *InsertAtEnd)
1906     : Instruction(
1907           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1908                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1909           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1910           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1911   assert(isValidOperands(V1, V2, Mask) &&
1912          "Invalid shuffle vector instruction operands!");
1913 
1914   Op<0>() = V1;
1915   Op<1>() = V2;
1916   setShuffleMask(Mask);
1917   setName(Name);
1918 }
1919 
1920 void ShuffleVectorInst::commute() {
1921   int NumOpElts = cast<VectorType>(Op<0>()->getType())->getNumElements();
1922   int NumMaskElts = ShuffleMask.size();
1923   SmallVector<int, 16> NewMask(NumMaskElts);
1924   for (int i = 0; i != NumMaskElts; ++i) {
1925     int MaskElt = getMaskValue(i);
1926     if (MaskElt == UndefMaskElem) {
1927       NewMask[i] = UndefMaskElem;
1928       continue;
1929     }
1930     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1931     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1932     NewMask[i] = MaskElt;
1933   }
1934   setShuffleMask(NewMask);
1935   Op<0>().swap(Op<1>());
1936 }
1937 
1938 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1939                                         ArrayRef<int> Mask) {
1940   // V1 and V2 must be vectors of the same type.
1941   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1942     return false;
1943 
1944   // Make sure the mask elements make sense.
1945   int V1Size = cast<VectorType>(V1->getType())->getElementCount().Min;
1946   for (int Elem : Mask)
1947     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
1948       return false;
1949 
1950   if (isa<ScalableVectorType>(V1->getType()))
1951     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
1952       return false;
1953 
1954   return true;
1955 }
1956 
1957 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1958                                         const Value *Mask) {
1959   // V1 and V2 must be vectors of the same type.
1960   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1961     return false;
1962 
1963   // Mask must be vector of i32, and must be the same kind of vector as the
1964   // input vectors
1965   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1966   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1967       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
1968     return false;
1969 
1970   // Check to see if Mask is valid.
1971   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1972     return true;
1973 
1974   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1975     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1976     for (Value *Op : MV->operands()) {
1977       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1978         if (CI->uge(V1Size*2))
1979           return false;
1980       } else if (!isa<UndefValue>(Op)) {
1981         return false;
1982       }
1983     }
1984     return true;
1985   }
1986 
1987   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1988     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1989     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1990       if (CDS->getElementAsInteger(i) >= V1Size*2)
1991         return false;
1992     return true;
1993   }
1994 
1995   return false;
1996 }
1997 
1998 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1999                                        SmallVectorImpl<int> &Result) {
2000   unsigned NumElts = cast<VectorType>(Mask->getType())->getElementCount().Min;
2001   if (isa<ConstantAggregateZero>(Mask)) {
2002     Result.resize(NumElts, 0);
2003     return;
2004   }
2005   Result.reserve(NumElts);
2006   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2007     for (unsigned i = 0; i != NumElts; ++i)
2008       Result.push_back(CDS->getElementAsInteger(i));
2009     return;
2010   }
2011   for (unsigned i = 0; i != NumElts; ++i) {
2012     Constant *C = Mask->getAggregateElement(i);
2013     Result.push_back(isa<UndefValue>(C) ? -1 :
2014                      cast<ConstantInt>(C)->getZExtValue());
2015   }
2016 }
2017 
2018 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2019   ShuffleMask.assign(Mask.begin(), Mask.end());
2020   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2021 }
2022 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2023                                                           Type *ResultTy) {
2024   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2025   if (isa<ScalableVectorType>(ResultTy)) {
2026     assert(is_splat(Mask) && "Unexpected shuffle");
2027     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2028     if (Mask[0] == 0)
2029       return Constant::getNullValue(VecTy);
2030     return UndefValue::get(VecTy);
2031   }
2032   SmallVector<Constant *, 16> MaskConst;
2033   for (int Elem : Mask) {
2034     if (Elem == UndefMaskElem)
2035       MaskConst.push_back(UndefValue::get(Int32Ty));
2036     else
2037       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2038   }
2039   return ConstantVector::get(MaskConst);
2040 }
2041 
2042 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2043   assert(!Mask.empty() && "Shuffle mask must contain elements");
2044   bool UsesLHS = false;
2045   bool UsesRHS = false;
2046   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2047     if (Mask[i] == -1)
2048       continue;
2049     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
2050            "Out-of-bounds shuffle mask element");
2051     UsesLHS |= (Mask[i] < NumOpElts);
2052     UsesRHS |= (Mask[i] >= NumOpElts);
2053     if (UsesLHS && UsesRHS)
2054       return false;
2055   }
2056   // Allow for degenerate case: completely undef mask means neither source is used.
2057   return UsesLHS || UsesRHS;
2058 }
2059 
2060 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2061   // We don't have vector operand size information, so assume operands are the
2062   // same size as the mask.
2063   return isSingleSourceMaskImpl(Mask, Mask.size());
2064 }
2065 
2066 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2067   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2068     return false;
2069   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2070     if (Mask[i] == -1)
2071       continue;
2072     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2073       return false;
2074   }
2075   return true;
2076 }
2077 
2078 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2079   // We don't have vector operand size information, so assume operands are the
2080   // same size as the mask.
2081   return isIdentityMaskImpl(Mask, Mask.size());
2082 }
2083 
2084 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2085   if (!isSingleSourceMask(Mask))
2086     return false;
2087   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2088     if (Mask[i] == -1)
2089       continue;
2090     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2091       return false;
2092   }
2093   return true;
2094 }
2095 
2096 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2097   if (!isSingleSourceMask(Mask))
2098     return false;
2099   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2100     if (Mask[i] == -1)
2101       continue;
2102     if (Mask[i] != 0 && Mask[i] != NumElts)
2103       return false;
2104   }
2105   return true;
2106 }
2107 
2108 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2109   // Select is differentiated from identity. It requires using both sources.
2110   if (isSingleSourceMask(Mask))
2111     return false;
2112   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2113     if (Mask[i] == -1)
2114       continue;
2115     if (Mask[i] != i && Mask[i] != (NumElts + i))
2116       return false;
2117   }
2118   return true;
2119 }
2120 
2121 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2122   // Example masks that will return true:
2123   // v1 = <a, b, c, d>
2124   // v2 = <e, f, g, h>
2125   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2126   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2127 
2128   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2129   int NumElts = Mask.size();
2130   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2131     return false;
2132 
2133   // 2. The first element of the mask must be either a 0 or a 1.
2134   if (Mask[0] != 0 && Mask[0] != 1)
2135     return false;
2136 
2137   // 3. The difference between the first 2 elements must be equal to the
2138   // number of elements in the mask.
2139   if ((Mask[1] - Mask[0]) != NumElts)
2140     return false;
2141 
2142   // 4. The difference between consecutive even-numbered and odd-numbered
2143   // elements must be equal to 2.
2144   for (int i = 2; i < NumElts; ++i) {
2145     int MaskEltVal = Mask[i];
2146     if (MaskEltVal == -1)
2147       return false;
2148     int MaskEltPrevVal = Mask[i - 2];
2149     if (MaskEltVal - MaskEltPrevVal != 2)
2150       return false;
2151   }
2152   return true;
2153 }
2154 
2155 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2156                                                int NumSrcElts, int &Index) {
2157   // Must extract from a single source.
2158   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2159     return false;
2160 
2161   // Must be smaller (else this is an Identity shuffle).
2162   if (NumSrcElts <= (int)Mask.size())
2163     return false;
2164 
2165   // Find start of extraction, accounting that we may start with an UNDEF.
2166   int SubIndex = -1;
2167   for (int i = 0, e = Mask.size(); i != e; ++i) {
2168     int M = Mask[i];
2169     if (M < 0)
2170       continue;
2171     int Offset = (M % NumSrcElts) - i;
2172     if (0 <= SubIndex && SubIndex != Offset)
2173       return false;
2174     SubIndex = Offset;
2175   }
2176 
2177   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2178     Index = SubIndex;
2179     return true;
2180   }
2181   return false;
2182 }
2183 
2184 bool ShuffleVectorInst::isIdentityWithPadding() const {
2185   if (isa<UndefValue>(Op<2>()))
2186     return false;
2187   int NumOpElts = cast<VectorType>(Op<0>()->getType())->getNumElements();
2188   int NumMaskElts = cast<VectorType>(getType())->getNumElements();
2189   if (NumMaskElts <= NumOpElts)
2190     return false;
2191 
2192   // The first part of the mask must choose elements from exactly 1 source op.
2193   ArrayRef<int> Mask = getShuffleMask();
2194   if (!isIdentityMaskImpl(Mask, NumOpElts))
2195     return false;
2196 
2197   // All extending must be with undef elements.
2198   for (int i = NumOpElts; i < NumMaskElts; ++i)
2199     if (Mask[i] != -1)
2200       return false;
2201 
2202   return true;
2203 }
2204 
2205 bool ShuffleVectorInst::isIdentityWithExtract() const {
2206   if (isa<UndefValue>(Op<2>()))
2207     return false;
2208   int NumOpElts = cast<VectorType>(Op<0>()->getType())->getNumElements();
2209   int NumMaskElts = getType()->getNumElements();
2210   if (NumMaskElts >= NumOpElts)
2211     return false;
2212 
2213   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2214 }
2215 
2216 bool ShuffleVectorInst::isConcat() const {
2217   // Vector concatenation is differentiated from identity with padding.
2218   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2219       isa<UndefValue>(Op<2>()))
2220     return false;
2221 
2222   int NumOpElts = cast<VectorType>(Op<0>()->getType())->getNumElements();
2223   int NumMaskElts = getType()->getNumElements();
2224   if (NumMaskElts != NumOpElts * 2)
2225     return false;
2226 
2227   // Use the mask length rather than the operands' vector lengths here. We
2228   // already know that the shuffle returns a vector twice as long as the inputs,
2229   // and neither of the inputs are undef vectors. If the mask picks consecutive
2230   // elements from both inputs, then this is a concatenation of the inputs.
2231   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2232 }
2233 
2234 //===----------------------------------------------------------------------===//
2235 //                             InsertValueInst Class
2236 //===----------------------------------------------------------------------===//
2237 
2238 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2239                            const Twine &Name) {
2240   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2241 
2242   // There's no fundamental reason why we require at least one index
2243   // (other than weirdness with &*IdxBegin being invalid; see
2244   // getelementptr's init routine for example). But there's no
2245   // present need to support it.
2246   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2247 
2248   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2249          Val->getType() && "Inserted value must match indexed type!");
2250   Op<0>() = Agg;
2251   Op<1>() = Val;
2252 
2253   Indices.append(Idxs.begin(), Idxs.end());
2254   setName(Name);
2255 }
2256 
2257 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2258   : Instruction(IVI.getType(), InsertValue,
2259                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2260     Indices(IVI.Indices) {
2261   Op<0>() = IVI.getOperand(0);
2262   Op<1>() = IVI.getOperand(1);
2263   SubclassOptionalData = IVI.SubclassOptionalData;
2264 }
2265 
2266 //===----------------------------------------------------------------------===//
2267 //                             ExtractValueInst Class
2268 //===----------------------------------------------------------------------===//
2269 
2270 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2271   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2272 
2273   // There's no fundamental reason why we require at least one index.
2274   // But there's no present need to support it.
2275   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2276 
2277   Indices.append(Idxs.begin(), Idxs.end());
2278   setName(Name);
2279 }
2280 
2281 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2282   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2283     Indices(EVI.Indices) {
2284   SubclassOptionalData = EVI.SubclassOptionalData;
2285 }
2286 
2287 // getIndexedType - Returns the type of the element that would be extracted
2288 // with an extractvalue instruction with the specified parameters.
2289 //
2290 // A null type is returned if the indices are invalid for the specified
2291 // pointer type.
2292 //
2293 Type *ExtractValueInst::getIndexedType(Type *Agg,
2294                                        ArrayRef<unsigned> Idxs) {
2295   for (unsigned Index : Idxs) {
2296     // We can't use CompositeType::indexValid(Index) here.
2297     // indexValid() always returns true for arrays because getelementptr allows
2298     // out-of-bounds indices. Since we don't allow those for extractvalue and
2299     // insertvalue we need to check array indexing manually.
2300     // Since the only other types we can index into are struct types it's just
2301     // as easy to check those manually as well.
2302     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2303       if (Index >= AT->getNumElements())
2304         return nullptr;
2305       Agg = AT->getElementType();
2306     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2307       if (Index >= ST->getNumElements())
2308         return nullptr;
2309       Agg = ST->getElementType(Index);
2310     } else {
2311       // Not a valid type to index into.
2312       return nullptr;
2313     }
2314   }
2315   return const_cast<Type*>(Agg);
2316 }
2317 
2318 //===----------------------------------------------------------------------===//
2319 //                             UnaryOperator Class
2320 //===----------------------------------------------------------------------===//
2321 
2322 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2323                              Type *Ty, const Twine &Name,
2324                              Instruction *InsertBefore)
2325   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2326   Op<0>() = S;
2327   setName(Name);
2328   AssertOK();
2329 }
2330 
2331 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2332                              Type *Ty, const Twine &Name,
2333                              BasicBlock *InsertAtEnd)
2334   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2335   Op<0>() = S;
2336   setName(Name);
2337   AssertOK();
2338 }
2339 
2340 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2341                                      const Twine &Name,
2342                                      Instruction *InsertBefore) {
2343   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2344 }
2345 
2346 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2347                                      const Twine &Name,
2348                                      BasicBlock *InsertAtEnd) {
2349   UnaryOperator *Res = Create(Op, S, Name);
2350   InsertAtEnd->getInstList().push_back(Res);
2351   return Res;
2352 }
2353 
2354 void UnaryOperator::AssertOK() {
2355   Value *LHS = getOperand(0);
2356   (void)LHS; // Silence warnings.
2357 #ifndef NDEBUG
2358   switch (getOpcode()) {
2359   case FNeg:
2360     assert(getType() == LHS->getType() &&
2361            "Unary operation should return same type as operand!");
2362     assert(getType()->isFPOrFPVectorTy() &&
2363            "Tried to create a floating-point operation on a "
2364            "non-floating-point type!");
2365     break;
2366   default: llvm_unreachable("Invalid opcode provided");
2367   }
2368 #endif
2369 }
2370 
2371 //===----------------------------------------------------------------------===//
2372 //                             BinaryOperator Class
2373 //===----------------------------------------------------------------------===//
2374 
2375 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2376                                Type *Ty, const Twine &Name,
2377                                Instruction *InsertBefore)
2378   : Instruction(Ty, iType,
2379                 OperandTraits<BinaryOperator>::op_begin(this),
2380                 OperandTraits<BinaryOperator>::operands(this),
2381                 InsertBefore) {
2382   Op<0>() = S1;
2383   Op<1>() = S2;
2384   setName(Name);
2385   AssertOK();
2386 }
2387 
2388 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2389                                Type *Ty, const Twine &Name,
2390                                BasicBlock *InsertAtEnd)
2391   : Instruction(Ty, iType,
2392                 OperandTraits<BinaryOperator>::op_begin(this),
2393                 OperandTraits<BinaryOperator>::operands(this),
2394                 InsertAtEnd) {
2395   Op<0>() = S1;
2396   Op<1>() = S2;
2397   setName(Name);
2398   AssertOK();
2399 }
2400 
2401 void BinaryOperator::AssertOK() {
2402   Value *LHS = getOperand(0), *RHS = getOperand(1);
2403   (void)LHS; (void)RHS; // Silence warnings.
2404   assert(LHS->getType() == RHS->getType() &&
2405          "Binary operator operand types must match!");
2406 #ifndef NDEBUG
2407   switch (getOpcode()) {
2408   case Add: case Sub:
2409   case Mul:
2410     assert(getType() == LHS->getType() &&
2411            "Arithmetic operation should return same type as operands!");
2412     assert(getType()->isIntOrIntVectorTy() &&
2413            "Tried to create an integer operation on a non-integer type!");
2414     break;
2415   case FAdd: case FSub:
2416   case FMul:
2417     assert(getType() == LHS->getType() &&
2418            "Arithmetic operation should return same type as operands!");
2419     assert(getType()->isFPOrFPVectorTy() &&
2420            "Tried to create a floating-point operation on a "
2421            "non-floating-point type!");
2422     break;
2423   case UDiv:
2424   case SDiv:
2425     assert(getType() == LHS->getType() &&
2426            "Arithmetic operation should return same type as operands!");
2427     assert(getType()->isIntOrIntVectorTy() &&
2428            "Incorrect operand type (not integer) for S/UDIV");
2429     break;
2430   case FDiv:
2431     assert(getType() == LHS->getType() &&
2432            "Arithmetic operation should return same type as operands!");
2433     assert(getType()->isFPOrFPVectorTy() &&
2434            "Incorrect operand type (not floating point) for FDIV");
2435     break;
2436   case URem:
2437   case SRem:
2438     assert(getType() == LHS->getType() &&
2439            "Arithmetic operation should return same type as operands!");
2440     assert(getType()->isIntOrIntVectorTy() &&
2441            "Incorrect operand type (not integer) for S/UREM");
2442     break;
2443   case FRem:
2444     assert(getType() == LHS->getType() &&
2445            "Arithmetic operation should return same type as operands!");
2446     assert(getType()->isFPOrFPVectorTy() &&
2447            "Incorrect operand type (not floating point) for FREM");
2448     break;
2449   case Shl:
2450   case LShr:
2451   case AShr:
2452     assert(getType() == LHS->getType() &&
2453            "Shift operation should return same type as operands!");
2454     assert(getType()->isIntOrIntVectorTy() &&
2455            "Tried to create a shift operation on a non-integral type!");
2456     break;
2457   case And: case Or:
2458   case Xor:
2459     assert(getType() == LHS->getType() &&
2460            "Logical operation should return same type as operands!");
2461     assert(getType()->isIntOrIntVectorTy() &&
2462            "Tried to create a logical operation on a non-integral type!");
2463     break;
2464   default: llvm_unreachable("Invalid opcode provided");
2465   }
2466 #endif
2467 }
2468 
2469 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2470                                        const Twine &Name,
2471                                        Instruction *InsertBefore) {
2472   assert(S1->getType() == S2->getType() &&
2473          "Cannot create binary operator with two operands of differing type!");
2474   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2475 }
2476 
2477 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2478                                        const Twine &Name,
2479                                        BasicBlock *InsertAtEnd) {
2480   BinaryOperator *Res = Create(Op, S1, S2, Name);
2481   InsertAtEnd->getInstList().push_back(Res);
2482   return Res;
2483 }
2484 
2485 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2486                                           Instruction *InsertBefore) {
2487   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2488   return new BinaryOperator(Instruction::Sub,
2489                             zero, Op,
2490                             Op->getType(), Name, InsertBefore);
2491 }
2492 
2493 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2494                                           BasicBlock *InsertAtEnd) {
2495   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2496   return new BinaryOperator(Instruction::Sub,
2497                             zero, Op,
2498                             Op->getType(), Name, InsertAtEnd);
2499 }
2500 
2501 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2502                                              Instruction *InsertBefore) {
2503   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2504   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2505 }
2506 
2507 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2508                                              BasicBlock *InsertAtEnd) {
2509   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2510   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2511 }
2512 
2513 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2514                                              Instruction *InsertBefore) {
2515   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2516   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2517 }
2518 
2519 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2520                                              BasicBlock *InsertAtEnd) {
2521   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2522   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2523 }
2524 
2525 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2526                                           Instruction *InsertBefore) {
2527   Constant *C = Constant::getAllOnesValue(Op->getType());
2528   return new BinaryOperator(Instruction::Xor, Op, C,
2529                             Op->getType(), Name, InsertBefore);
2530 }
2531 
2532 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2533                                           BasicBlock *InsertAtEnd) {
2534   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2535   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2536                             Op->getType(), Name, InsertAtEnd);
2537 }
2538 
2539 // Exchange the two operands to this instruction. This instruction is safe to
2540 // use on any binary instruction and does not modify the semantics of the
2541 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2542 // is changed.
2543 bool BinaryOperator::swapOperands() {
2544   if (!isCommutative())
2545     return true; // Can't commute operands
2546   Op<0>().swap(Op<1>());
2547   return false;
2548 }
2549 
2550 //===----------------------------------------------------------------------===//
2551 //                             FPMathOperator Class
2552 //===----------------------------------------------------------------------===//
2553 
2554 float FPMathOperator::getFPAccuracy() const {
2555   const MDNode *MD =
2556       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2557   if (!MD)
2558     return 0.0;
2559   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2560   return Accuracy->getValueAPF().convertToFloat();
2561 }
2562 
2563 //===----------------------------------------------------------------------===//
2564 //                                CastInst Class
2565 //===----------------------------------------------------------------------===//
2566 
2567 // Just determine if this cast only deals with integral->integral conversion.
2568 bool CastInst::isIntegerCast() const {
2569   switch (getOpcode()) {
2570     default: return false;
2571     case Instruction::ZExt:
2572     case Instruction::SExt:
2573     case Instruction::Trunc:
2574       return true;
2575     case Instruction::BitCast:
2576       return getOperand(0)->getType()->isIntegerTy() &&
2577         getType()->isIntegerTy();
2578   }
2579 }
2580 
2581 bool CastInst::isLosslessCast() const {
2582   // Only BitCast can be lossless, exit fast if we're not BitCast
2583   if (getOpcode() != Instruction::BitCast)
2584     return false;
2585 
2586   // Identity cast is always lossless
2587   Type *SrcTy = getOperand(0)->getType();
2588   Type *DstTy = getType();
2589   if (SrcTy == DstTy)
2590     return true;
2591 
2592   // Pointer to pointer is always lossless.
2593   if (SrcTy->isPointerTy())
2594     return DstTy->isPointerTy();
2595   return false;  // Other types have no identity values
2596 }
2597 
2598 /// This function determines if the CastInst does not require any bits to be
2599 /// changed in order to effect the cast. Essentially, it identifies cases where
2600 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2601 /// example, the following are all no-op casts:
2602 /// # bitcast i32* %x to i8*
2603 /// # bitcast <2 x i32> %x to <4 x i16>
2604 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2605 /// Determine if the described cast is a no-op.
2606 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2607                           Type *SrcTy,
2608                           Type *DestTy,
2609                           const DataLayout &DL) {
2610   switch (Opcode) {
2611     default: llvm_unreachable("Invalid CastOp");
2612     case Instruction::Trunc:
2613     case Instruction::ZExt:
2614     case Instruction::SExt:
2615     case Instruction::FPTrunc:
2616     case Instruction::FPExt:
2617     case Instruction::UIToFP:
2618     case Instruction::SIToFP:
2619     case Instruction::FPToUI:
2620     case Instruction::FPToSI:
2621     case Instruction::AddrSpaceCast:
2622       // TODO: Target informations may give a more accurate answer here.
2623       return false;
2624     case Instruction::BitCast:
2625       return true;  // BitCast never modifies bits.
2626     case Instruction::PtrToInt:
2627       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2628              DestTy->getScalarSizeInBits();
2629     case Instruction::IntToPtr:
2630       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2631              SrcTy->getScalarSizeInBits();
2632   }
2633 }
2634 
2635 bool CastInst::isNoopCast(const DataLayout &DL) const {
2636   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2637 }
2638 
2639 /// This function determines if a pair of casts can be eliminated and what
2640 /// opcode should be used in the elimination. This assumes that there are two
2641 /// instructions like this:
2642 /// *  %F = firstOpcode SrcTy %x to MidTy
2643 /// *  %S = secondOpcode MidTy %F to DstTy
2644 /// The function returns a resultOpcode so these two casts can be replaced with:
2645 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2646 /// If no such cast is permitted, the function returns 0.
2647 unsigned CastInst::isEliminableCastPair(
2648   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2649   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2650   Type *DstIntPtrTy) {
2651   // Define the 144 possibilities for these two cast instructions. The values
2652   // in this matrix determine what to do in a given situation and select the
2653   // case in the switch below.  The rows correspond to firstOp, the columns
2654   // correspond to secondOp.  In looking at the table below, keep in mind
2655   // the following cast properties:
2656   //
2657   //          Size Compare       Source               Destination
2658   // Operator  Src ? Size   Type       Sign         Type       Sign
2659   // -------- ------------ -------------------   ---------------------
2660   // TRUNC         >       Integer      Any        Integral     Any
2661   // ZEXT          <       Integral   Unsigned     Integer      Any
2662   // SEXT          <       Integral    Signed      Integer      Any
2663   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2664   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2665   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2666   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2667   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2668   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2669   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2670   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2671   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2672   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2673   //
2674   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2675   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2676   // into "fptoui double to i64", but this loses information about the range
2677   // of the produced value (we no longer know the top-part is all zeros).
2678   // Further this conversion is often much more expensive for typical hardware,
2679   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2680   // same reason.
2681   const unsigned numCastOps =
2682     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2683   static const uint8_t CastResults[numCastOps][numCastOps] = {
2684     // T        F  F  U  S  F  F  P  I  B  A  -+
2685     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2686     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2687     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2688     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2689     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2690     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2691     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2692     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2693     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2694     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2695     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2696     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2697     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2698     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2699     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2700     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2701     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2702   };
2703 
2704   // TODO: This logic could be encoded into the table above and handled in the
2705   // switch below.
2706   // If either of the casts are a bitcast from scalar to vector, disallow the
2707   // merging. However, any pair of bitcasts are allowed.
2708   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2709   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2710   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2711 
2712   // Check if any of the casts convert scalars <-> vectors.
2713   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2714       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2715     if (!AreBothBitcasts)
2716       return 0;
2717 
2718   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2719                             [secondOp-Instruction::CastOpsBegin];
2720   switch (ElimCase) {
2721     case 0:
2722       // Categorically disallowed.
2723       return 0;
2724     case 1:
2725       // Allowed, use first cast's opcode.
2726       return firstOp;
2727     case 2:
2728       // Allowed, use second cast's opcode.
2729       return secondOp;
2730     case 3:
2731       // No-op cast in second op implies firstOp as long as the DestTy
2732       // is integer and we are not converting between a vector and a
2733       // non-vector type.
2734       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2735         return firstOp;
2736       return 0;
2737     case 4:
2738       // No-op cast in second op implies firstOp as long as the DestTy
2739       // is floating point.
2740       if (DstTy->isFloatingPointTy())
2741         return firstOp;
2742       return 0;
2743     case 5:
2744       // No-op cast in first op implies secondOp as long as the SrcTy
2745       // is an integer.
2746       if (SrcTy->isIntegerTy())
2747         return secondOp;
2748       return 0;
2749     case 6:
2750       // No-op cast in first op implies secondOp as long as the SrcTy
2751       // is a floating point.
2752       if (SrcTy->isFloatingPointTy())
2753         return secondOp;
2754       return 0;
2755     case 7: {
2756       // Cannot simplify if address spaces are different!
2757       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2758         return 0;
2759 
2760       unsigned MidSize = MidTy->getScalarSizeInBits();
2761       // We can still fold this without knowing the actual sizes as long we
2762       // know that the intermediate pointer is the largest possible
2763       // pointer size.
2764       // FIXME: Is this always true?
2765       if (MidSize == 64)
2766         return Instruction::BitCast;
2767 
2768       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2769       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2770         return 0;
2771       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2772       if (MidSize >= PtrSize)
2773         return Instruction::BitCast;
2774       return 0;
2775     }
2776     case 8: {
2777       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2778       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2779       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2780       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2781       unsigned DstSize = DstTy->getScalarSizeInBits();
2782       if (SrcSize == DstSize)
2783         return Instruction::BitCast;
2784       else if (SrcSize < DstSize)
2785         return firstOp;
2786       return secondOp;
2787     }
2788     case 9:
2789       // zext, sext -> zext, because sext can't sign extend after zext
2790       return Instruction::ZExt;
2791     case 11: {
2792       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2793       if (!MidIntPtrTy)
2794         return 0;
2795       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2796       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2797       unsigned DstSize = DstTy->getScalarSizeInBits();
2798       if (SrcSize <= PtrSize && SrcSize == DstSize)
2799         return Instruction::BitCast;
2800       return 0;
2801     }
2802     case 12:
2803       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2804       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2805       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2806         return Instruction::AddrSpaceCast;
2807       return Instruction::BitCast;
2808     case 13:
2809       // FIXME: this state can be merged with (1), but the following assert
2810       // is useful to check the correcteness of the sequence due to semantic
2811       // change of bitcast.
2812       assert(
2813         SrcTy->isPtrOrPtrVectorTy() &&
2814         MidTy->isPtrOrPtrVectorTy() &&
2815         DstTy->isPtrOrPtrVectorTy() &&
2816         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2817         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2818         "Illegal addrspacecast, bitcast sequence!");
2819       // Allowed, use first cast's opcode
2820       return firstOp;
2821     case 14:
2822       // bitcast, addrspacecast -> addrspacecast if the element type of
2823       // bitcast's source is the same as that of addrspacecast's destination.
2824       if (SrcTy->getScalarType()->getPointerElementType() ==
2825           DstTy->getScalarType()->getPointerElementType())
2826         return Instruction::AddrSpaceCast;
2827       return 0;
2828     case 15:
2829       // FIXME: this state can be merged with (1), but the following assert
2830       // is useful to check the correcteness of the sequence due to semantic
2831       // change of bitcast.
2832       assert(
2833         SrcTy->isIntOrIntVectorTy() &&
2834         MidTy->isPtrOrPtrVectorTy() &&
2835         DstTy->isPtrOrPtrVectorTy() &&
2836         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2837         "Illegal inttoptr, bitcast sequence!");
2838       // Allowed, use first cast's opcode
2839       return firstOp;
2840     case 16:
2841       // FIXME: this state can be merged with (2), but the following assert
2842       // is useful to check the correcteness of the sequence due to semantic
2843       // change of bitcast.
2844       assert(
2845         SrcTy->isPtrOrPtrVectorTy() &&
2846         MidTy->isPtrOrPtrVectorTy() &&
2847         DstTy->isIntOrIntVectorTy() &&
2848         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2849         "Illegal bitcast, ptrtoint sequence!");
2850       // Allowed, use second cast's opcode
2851       return secondOp;
2852     case 17:
2853       // (sitofp (zext x)) -> (uitofp x)
2854       return Instruction::UIToFP;
2855     case 99:
2856       // Cast combination can't happen (error in input). This is for all cases
2857       // where the MidTy is not the same for the two cast instructions.
2858       llvm_unreachable("Invalid Cast Combination");
2859     default:
2860       llvm_unreachable("Error in CastResults table!!!");
2861   }
2862 }
2863 
2864 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2865   const Twine &Name, Instruction *InsertBefore) {
2866   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2867   // Construct and return the appropriate CastInst subclass
2868   switch (op) {
2869   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2870   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2871   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2872   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2873   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2874   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2875   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2876   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2877   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2878   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2879   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2880   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2881   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2882   default: llvm_unreachable("Invalid opcode provided");
2883   }
2884 }
2885 
2886 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2887   const Twine &Name, BasicBlock *InsertAtEnd) {
2888   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2889   // Construct and return the appropriate CastInst subclass
2890   switch (op) {
2891   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2892   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2893   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2894   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2895   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2896   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2897   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2898   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2899   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2900   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2901   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2902   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2903   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2904   default: llvm_unreachable("Invalid opcode provided");
2905   }
2906 }
2907 
2908 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2909                                         const Twine &Name,
2910                                         Instruction *InsertBefore) {
2911   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2912     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2913   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2914 }
2915 
2916 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2917                                         const Twine &Name,
2918                                         BasicBlock *InsertAtEnd) {
2919   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2920     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2921   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2922 }
2923 
2924 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2925                                         const Twine &Name,
2926                                         Instruction *InsertBefore) {
2927   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2928     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2929   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2930 }
2931 
2932 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2933                                         const Twine &Name,
2934                                         BasicBlock *InsertAtEnd) {
2935   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2936     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2937   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2938 }
2939 
2940 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2941                                          const Twine &Name,
2942                                          Instruction *InsertBefore) {
2943   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2944     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2945   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2946 }
2947 
2948 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2949                                          const Twine &Name,
2950                                          BasicBlock *InsertAtEnd) {
2951   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2952     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2953   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2954 }
2955 
2956 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2957                                       const Twine &Name,
2958                                       BasicBlock *InsertAtEnd) {
2959   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2960   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2961          "Invalid cast");
2962   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2963   assert((!Ty->isVectorTy() ||
2964           cast<VectorType>(Ty)->getNumElements() ==
2965               cast<VectorType>(S->getType())->getNumElements()) &&
2966          "Invalid cast");
2967 
2968   if (Ty->isIntOrIntVectorTy())
2969     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2970 
2971   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2972 }
2973 
2974 /// Create a BitCast or a PtrToInt cast instruction
2975 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2976                                       const Twine &Name,
2977                                       Instruction *InsertBefore) {
2978   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2979   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2980          "Invalid cast");
2981   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2982   assert((!Ty->isVectorTy() ||
2983           cast<VectorType>(Ty)->getNumElements() ==
2984               cast<VectorType>(S->getType())->getNumElements()) &&
2985          "Invalid cast");
2986 
2987   if (Ty->isIntOrIntVectorTy())
2988     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2989 
2990   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2991 }
2992 
2993 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2994   Value *S, Type *Ty,
2995   const Twine &Name,
2996   BasicBlock *InsertAtEnd) {
2997   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2998   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2999 
3000   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3001     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3002 
3003   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3004 }
3005 
3006 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3007   Value *S, Type *Ty,
3008   const Twine &Name,
3009   Instruction *InsertBefore) {
3010   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3011   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3012 
3013   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3014     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3015 
3016   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3017 }
3018 
3019 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3020                                            const Twine &Name,
3021                                            Instruction *InsertBefore) {
3022   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3023     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3024   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3025     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3026 
3027   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3028 }
3029 
3030 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3031                                       bool isSigned, const Twine &Name,
3032                                       Instruction *InsertBefore) {
3033   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3034          "Invalid integer cast");
3035   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3036   unsigned DstBits = Ty->getScalarSizeInBits();
3037   Instruction::CastOps opcode =
3038     (SrcBits == DstBits ? Instruction::BitCast :
3039      (SrcBits > DstBits ? Instruction::Trunc :
3040       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3041   return Create(opcode, C, Ty, Name, InsertBefore);
3042 }
3043 
3044 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3045                                       bool isSigned, const Twine &Name,
3046                                       BasicBlock *InsertAtEnd) {
3047   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3048          "Invalid cast");
3049   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3050   unsigned DstBits = Ty->getScalarSizeInBits();
3051   Instruction::CastOps opcode =
3052     (SrcBits == DstBits ? Instruction::BitCast :
3053      (SrcBits > DstBits ? Instruction::Trunc :
3054       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3055   return Create(opcode, C, Ty, Name, InsertAtEnd);
3056 }
3057 
3058 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3059                                  const Twine &Name,
3060                                  Instruction *InsertBefore) {
3061   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3062          "Invalid cast");
3063   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3064   unsigned DstBits = Ty->getScalarSizeInBits();
3065   Instruction::CastOps opcode =
3066     (SrcBits == DstBits ? Instruction::BitCast :
3067      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3068   return Create(opcode, C, Ty, Name, InsertBefore);
3069 }
3070 
3071 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3072                                  const Twine &Name,
3073                                  BasicBlock *InsertAtEnd) {
3074   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3075          "Invalid cast");
3076   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3077   unsigned DstBits = Ty->getScalarSizeInBits();
3078   Instruction::CastOps opcode =
3079     (SrcBits == DstBits ? Instruction::BitCast :
3080      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3081   return Create(opcode, C, Ty, Name, InsertAtEnd);
3082 }
3083 
3084 // Check whether it is valid to call getCastOpcode for these types.
3085 // This routine must be kept in sync with getCastOpcode.
3086 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
3087   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3088     return false;
3089 
3090   if (SrcTy == DestTy)
3091     return true;
3092 
3093   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3094     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3095       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3096         // An element by element cast.  Valid if casting the elements is valid.
3097         SrcTy = SrcVecTy->getElementType();
3098         DestTy = DestVecTy->getElementType();
3099       }
3100 
3101   // Get the bit sizes, we'll need these
3102   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3103   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3104 
3105   // Run through the possibilities ...
3106   if (DestTy->isIntegerTy()) {               // Casting to integral
3107     if (SrcTy->isIntegerTy())                // Casting from integral
3108         return true;
3109     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
3110       return true;
3111     if (SrcTy->isVectorTy())          // Casting from vector
3112       return DestBits == SrcBits;
3113                                       // Casting from something else
3114     return SrcTy->isPointerTy();
3115   }
3116   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
3117     if (SrcTy->isIntegerTy())                // Casting from integral
3118       return true;
3119     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
3120       return true;
3121     if (SrcTy->isVectorTy())          // Casting from vector
3122       return DestBits == SrcBits;
3123                                     // Casting from something else
3124     return false;
3125   }
3126   if (DestTy->isVectorTy())         // Casting to vector
3127     return DestBits == SrcBits;
3128   if (DestTy->isPointerTy()) {        // Casting to pointer
3129     if (SrcTy->isPointerTy())                // Casting from pointer
3130       return true;
3131     return SrcTy->isIntegerTy();             // Casting from integral
3132   }
3133   if (DestTy->isX86_MMXTy()) {
3134     if (SrcTy->isVectorTy())
3135       return DestBits == SrcBits;       // 64-bit vector to MMX
3136     return false;
3137   }                                    // Casting to something else
3138   return false;
3139 }
3140 
3141 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3142   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3143     return false;
3144 
3145   if (SrcTy == DestTy)
3146     return true;
3147 
3148   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3149     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3150       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3151         // An element by element cast. Valid if casting the elements is valid.
3152         SrcTy = SrcVecTy->getElementType();
3153         DestTy = DestVecTy->getElementType();
3154       }
3155     }
3156   }
3157 
3158   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3159     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3160       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3161     }
3162   }
3163 
3164   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3165   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3166 
3167   // Could still have vectors of pointers if the number of elements doesn't
3168   // match
3169   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3170     return false;
3171 
3172   if (SrcBits != DestBits)
3173     return false;
3174 
3175   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3176     return false;
3177 
3178   return true;
3179 }
3180 
3181 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3182                                           const DataLayout &DL) {
3183   // ptrtoint and inttoptr are not allowed on non-integral pointers
3184   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3185     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3186       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3187               !DL.isNonIntegralPointerType(PtrTy));
3188   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3189     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3190       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3191               !DL.isNonIntegralPointerType(PtrTy));
3192 
3193   return isBitCastable(SrcTy, DestTy);
3194 }
3195 
3196 // Provide a way to get a "cast" where the cast opcode is inferred from the
3197 // types and size of the operand. This, basically, is a parallel of the
3198 // logic in the castIsValid function below.  This axiom should hold:
3199 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3200 // should not assert in castIsValid. In other words, this produces a "correct"
3201 // casting opcode for the arguments passed to it.
3202 // This routine must be kept in sync with isCastable.
3203 Instruction::CastOps
3204 CastInst::getCastOpcode(
3205   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3206   Type *SrcTy = Src->getType();
3207 
3208   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3209          "Only first class types are castable!");
3210 
3211   if (SrcTy == DestTy)
3212     return BitCast;
3213 
3214   // FIXME: Check address space sizes here
3215   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3216     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3217       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3218         // An element by element cast.  Find the appropriate opcode based on the
3219         // element types.
3220         SrcTy = SrcVecTy->getElementType();
3221         DestTy = DestVecTy->getElementType();
3222       }
3223 
3224   // Get the bit sizes, we'll need these
3225   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3226   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3227 
3228   // Run through the possibilities ...
3229   if (DestTy->isIntegerTy()) {                      // Casting to integral
3230     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3231       if (DestBits < SrcBits)
3232         return Trunc;                               // int -> smaller int
3233       else if (DestBits > SrcBits) {                // its an extension
3234         if (SrcIsSigned)
3235           return SExt;                              // signed -> SEXT
3236         else
3237           return ZExt;                              // unsigned -> ZEXT
3238       } else {
3239         return BitCast;                             // Same size, No-op cast
3240       }
3241     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3242       if (DestIsSigned)
3243         return FPToSI;                              // FP -> sint
3244       else
3245         return FPToUI;                              // FP -> uint
3246     } else if (SrcTy->isVectorTy()) {
3247       assert(DestBits == SrcBits &&
3248              "Casting vector to integer of different width");
3249       return BitCast;                             // Same size, no-op cast
3250     } else {
3251       assert(SrcTy->isPointerTy() &&
3252              "Casting from a value that is not first-class type");
3253       return PtrToInt;                              // ptr -> int
3254     }
3255   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3256     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3257       if (SrcIsSigned)
3258         return SIToFP;                              // sint -> FP
3259       else
3260         return UIToFP;                              // uint -> FP
3261     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3262       if (DestBits < SrcBits) {
3263         return FPTrunc;                             // FP -> smaller FP
3264       } else if (DestBits > SrcBits) {
3265         return FPExt;                               // FP -> larger FP
3266       } else  {
3267         return BitCast;                             // same size, no-op cast
3268       }
3269     } else if (SrcTy->isVectorTy()) {
3270       assert(DestBits == SrcBits &&
3271              "Casting vector to floating point of different width");
3272       return BitCast;                             // same size, no-op cast
3273     }
3274     llvm_unreachable("Casting pointer or non-first class to float");
3275   } else if (DestTy->isVectorTy()) {
3276     assert(DestBits == SrcBits &&
3277            "Illegal cast to vector (wrong type or size)");
3278     return BitCast;
3279   } else if (DestTy->isPointerTy()) {
3280     if (SrcTy->isPointerTy()) {
3281       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3282         return AddrSpaceCast;
3283       return BitCast;                               // ptr -> ptr
3284     } else if (SrcTy->isIntegerTy()) {
3285       return IntToPtr;                              // int -> ptr
3286     }
3287     llvm_unreachable("Casting pointer to other than pointer or int");
3288   } else if (DestTy->isX86_MMXTy()) {
3289     if (SrcTy->isVectorTy()) {
3290       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3291       return BitCast;                               // 64-bit vector to MMX
3292     }
3293     llvm_unreachable("Illegal cast to X86_MMX");
3294   }
3295   llvm_unreachable("Casting to type that is not first-class");
3296 }
3297 
3298 //===----------------------------------------------------------------------===//
3299 //                    CastInst SubClass Constructors
3300 //===----------------------------------------------------------------------===//
3301 
3302 /// Check that the construction parameters for a CastInst are correct. This
3303 /// could be broken out into the separate constructors but it is useful to have
3304 /// it in one place and to eliminate the redundant code for getting the sizes
3305 /// of the types involved.
3306 bool
3307 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3308   // Check for type sanity on the arguments
3309   Type *SrcTy = S->getType();
3310 
3311   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3312       SrcTy->isAggregateType() || DstTy->isAggregateType())
3313     return false;
3314 
3315   // Get the size of the types in bits, and whether we are dealing
3316   // with vector types, we'll need this later.
3317   bool SrcIsVec = isa<VectorType>(SrcTy);
3318   bool DstIsVec = isa<VectorType>(DstTy);
3319   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3320   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3321 
3322   // If these are vector types, get the lengths of the vectors (using zero for
3323   // scalar types means that checking that vector lengths match also checks that
3324   // scalars are not being converted to vectors or vectors to scalars).
3325   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3326                                 : ElementCount(0, false);
3327   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3328                                 : ElementCount(0, false);
3329 
3330   // Switch on the opcode provided
3331   switch (op) {
3332   default: return false; // This is an input error
3333   case Instruction::Trunc:
3334     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3335            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3336   case Instruction::ZExt:
3337     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3338            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3339   case Instruction::SExt:
3340     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3341            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3342   case Instruction::FPTrunc:
3343     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3344            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3345   case Instruction::FPExt:
3346     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3347            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3348   case Instruction::UIToFP:
3349   case Instruction::SIToFP:
3350     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3351            SrcEC == DstEC;
3352   case Instruction::FPToUI:
3353   case Instruction::FPToSI:
3354     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3355            SrcEC == DstEC;
3356   case Instruction::PtrToInt:
3357     if (SrcEC != DstEC)
3358       return false;
3359     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3360   case Instruction::IntToPtr:
3361     if (SrcEC != DstEC)
3362       return false;
3363     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3364   case Instruction::BitCast: {
3365     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3366     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3367 
3368     // BitCast implies a no-op cast of type only. No bits change.
3369     // However, you can't cast pointers to anything but pointers.
3370     if (!SrcPtrTy != !DstPtrTy)
3371       return false;
3372 
3373     // For non-pointer cases, the cast is okay if the source and destination bit
3374     // widths are identical.
3375     if (!SrcPtrTy)
3376       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3377 
3378     // If both are pointers then the address spaces must match.
3379     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3380       return false;
3381 
3382     // A vector of pointers must have the same number of elements.
3383     if (SrcIsVec && DstIsVec)
3384       return SrcEC == DstEC;
3385     if (SrcIsVec)
3386       return SrcEC == ElementCount(1, false);
3387     if (DstIsVec)
3388       return DstEC == ElementCount(1, false);
3389 
3390     return true;
3391   }
3392   case Instruction::AddrSpaceCast: {
3393     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3394     if (!SrcPtrTy)
3395       return false;
3396 
3397     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3398     if (!DstPtrTy)
3399       return false;
3400 
3401     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3402       return false;
3403 
3404     return SrcEC == DstEC;
3405   }
3406   }
3407 }
3408 
3409 TruncInst::TruncInst(
3410   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3411 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3412   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3413 }
3414 
3415 TruncInst::TruncInst(
3416   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3417 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3418   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3419 }
3420 
3421 ZExtInst::ZExtInst(
3422   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3423 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3424   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3425 }
3426 
3427 ZExtInst::ZExtInst(
3428   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3429 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3430   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3431 }
3432 SExtInst::SExtInst(
3433   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3434 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3435   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3436 }
3437 
3438 SExtInst::SExtInst(
3439   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3440 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3441   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3442 }
3443 
3444 FPTruncInst::FPTruncInst(
3445   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3446 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3447   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3448 }
3449 
3450 FPTruncInst::FPTruncInst(
3451   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3452 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3453   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3454 }
3455 
3456 FPExtInst::FPExtInst(
3457   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3458 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3459   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3460 }
3461 
3462 FPExtInst::FPExtInst(
3463   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3464 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3465   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3466 }
3467 
3468 UIToFPInst::UIToFPInst(
3469   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3470 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3471   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3472 }
3473 
3474 UIToFPInst::UIToFPInst(
3475   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3476 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3477   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3478 }
3479 
3480 SIToFPInst::SIToFPInst(
3481   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3482 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3483   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3484 }
3485 
3486 SIToFPInst::SIToFPInst(
3487   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3488 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3489   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3490 }
3491 
3492 FPToUIInst::FPToUIInst(
3493   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3494 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3495   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3496 }
3497 
3498 FPToUIInst::FPToUIInst(
3499   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3500 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3501   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3502 }
3503 
3504 FPToSIInst::FPToSIInst(
3505   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3506 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3507   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3508 }
3509 
3510 FPToSIInst::FPToSIInst(
3511   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3512 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3513   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3514 }
3515 
3516 PtrToIntInst::PtrToIntInst(
3517   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3518 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3519   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3520 }
3521 
3522 PtrToIntInst::PtrToIntInst(
3523   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3524 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3525   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3526 }
3527 
3528 IntToPtrInst::IntToPtrInst(
3529   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3530 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3531   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3532 }
3533 
3534 IntToPtrInst::IntToPtrInst(
3535   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3536 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3537   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3538 }
3539 
3540 BitCastInst::BitCastInst(
3541   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3542 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3543   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3544 }
3545 
3546 BitCastInst::BitCastInst(
3547   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3548 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3549   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3550 }
3551 
3552 AddrSpaceCastInst::AddrSpaceCastInst(
3553   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3554 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3555   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3556 }
3557 
3558 AddrSpaceCastInst::AddrSpaceCastInst(
3559   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3560 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3561   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3562 }
3563 
3564 //===----------------------------------------------------------------------===//
3565 //                               CmpInst Classes
3566 //===----------------------------------------------------------------------===//
3567 
3568 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3569                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3570                  Instruction *FlagsSource)
3571   : Instruction(ty, op,
3572                 OperandTraits<CmpInst>::op_begin(this),
3573                 OperandTraits<CmpInst>::operands(this),
3574                 InsertBefore) {
3575   Op<0>() = LHS;
3576   Op<1>() = RHS;
3577   setPredicate((Predicate)predicate);
3578   setName(Name);
3579   if (FlagsSource)
3580     copyIRFlags(FlagsSource);
3581 }
3582 
3583 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3584                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3585   : Instruction(ty, op,
3586                 OperandTraits<CmpInst>::op_begin(this),
3587                 OperandTraits<CmpInst>::operands(this),
3588                 InsertAtEnd) {
3589   Op<0>() = LHS;
3590   Op<1>() = RHS;
3591   setPredicate((Predicate)predicate);
3592   setName(Name);
3593 }
3594 
3595 CmpInst *
3596 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3597                 const Twine &Name, Instruction *InsertBefore) {
3598   if (Op == Instruction::ICmp) {
3599     if (InsertBefore)
3600       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3601                           S1, S2, Name);
3602     else
3603       return new ICmpInst(CmpInst::Predicate(predicate),
3604                           S1, S2, Name);
3605   }
3606 
3607   if (InsertBefore)
3608     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3609                         S1, S2, Name);
3610   else
3611     return new FCmpInst(CmpInst::Predicate(predicate),
3612                         S1, S2, Name);
3613 }
3614 
3615 CmpInst *
3616 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3617                 const Twine &Name, BasicBlock *InsertAtEnd) {
3618   if (Op == Instruction::ICmp) {
3619     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3620                         S1, S2, Name);
3621   }
3622   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3623                       S1, S2, Name);
3624 }
3625 
3626 void CmpInst::swapOperands() {
3627   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3628     IC->swapOperands();
3629   else
3630     cast<FCmpInst>(this)->swapOperands();
3631 }
3632 
3633 bool CmpInst::isCommutative() const {
3634   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3635     return IC->isCommutative();
3636   return cast<FCmpInst>(this)->isCommutative();
3637 }
3638 
3639 bool CmpInst::isEquality() const {
3640   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3641     return IC->isEquality();
3642   return cast<FCmpInst>(this)->isEquality();
3643 }
3644 
3645 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3646   switch (pred) {
3647     default: llvm_unreachable("Unknown cmp predicate!");
3648     case ICMP_EQ: return ICMP_NE;
3649     case ICMP_NE: return ICMP_EQ;
3650     case ICMP_UGT: return ICMP_ULE;
3651     case ICMP_ULT: return ICMP_UGE;
3652     case ICMP_UGE: return ICMP_ULT;
3653     case ICMP_ULE: return ICMP_UGT;
3654     case ICMP_SGT: return ICMP_SLE;
3655     case ICMP_SLT: return ICMP_SGE;
3656     case ICMP_SGE: return ICMP_SLT;
3657     case ICMP_SLE: return ICMP_SGT;
3658 
3659     case FCMP_OEQ: return FCMP_UNE;
3660     case FCMP_ONE: return FCMP_UEQ;
3661     case FCMP_OGT: return FCMP_ULE;
3662     case FCMP_OLT: return FCMP_UGE;
3663     case FCMP_OGE: return FCMP_ULT;
3664     case FCMP_OLE: return FCMP_UGT;
3665     case FCMP_UEQ: return FCMP_ONE;
3666     case FCMP_UNE: return FCMP_OEQ;
3667     case FCMP_UGT: return FCMP_OLE;
3668     case FCMP_ULT: return FCMP_OGE;
3669     case FCMP_UGE: return FCMP_OLT;
3670     case FCMP_ULE: return FCMP_OGT;
3671     case FCMP_ORD: return FCMP_UNO;
3672     case FCMP_UNO: return FCMP_ORD;
3673     case FCMP_TRUE: return FCMP_FALSE;
3674     case FCMP_FALSE: return FCMP_TRUE;
3675   }
3676 }
3677 
3678 StringRef CmpInst::getPredicateName(Predicate Pred) {
3679   switch (Pred) {
3680   default:                   return "unknown";
3681   case FCmpInst::FCMP_FALSE: return "false";
3682   case FCmpInst::FCMP_OEQ:   return "oeq";
3683   case FCmpInst::FCMP_OGT:   return "ogt";
3684   case FCmpInst::FCMP_OGE:   return "oge";
3685   case FCmpInst::FCMP_OLT:   return "olt";
3686   case FCmpInst::FCMP_OLE:   return "ole";
3687   case FCmpInst::FCMP_ONE:   return "one";
3688   case FCmpInst::FCMP_ORD:   return "ord";
3689   case FCmpInst::FCMP_UNO:   return "uno";
3690   case FCmpInst::FCMP_UEQ:   return "ueq";
3691   case FCmpInst::FCMP_UGT:   return "ugt";
3692   case FCmpInst::FCMP_UGE:   return "uge";
3693   case FCmpInst::FCMP_ULT:   return "ult";
3694   case FCmpInst::FCMP_ULE:   return "ule";
3695   case FCmpInst::FCMP_UNE:   return "une";
3696   case FCmpInst::FCMP_TRUE:  return "true";
3697   case ICmpInst::ICMP_EQ:    return "eq";
3698   case ICmpInst::ICMP_NE:    return "ne";
3699   case ICmpInst::ICMP_SGT:   return "sgt";
3700   case ICmpInst::ICMP_SGE:   return "sge";
3701   case ICmpInst::ICMP_SLT:   return "slt";
3702   case ICmpInst::ICMP_SLE:   return "sle";
3703   case ICmpInst::ICMP_UGT:   return "ugt";
3704   case ICmpInst::ICMP_UGE:   return "uge";
3705   case ICmpInst::ICMP_ULT:   return "ult";
3706   case ICmpInst::ICMP_ULE:   return "ule";
3707   }
3708 }
3709 
3710 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3711   switch (pred) {
3712     default: llvm_unreachable("Unknown icmp predicate!");
3713     case ICMP_EQ: case ICMP_NE:
3714     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3715        return pred;
3716     case ICMP_UGT: return ICMP_SGT;
3717     case ICMP_ULT: return ICMP_SLT;
3718     case ICMP_UGE: return ICMP_SGE;
3719     case ICMP_ULE: return ICMP_SLE;
3720   }
3721 }
3722 
3723 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3724   switch (pred) {
3725     default: llvm_unreachable("Unknown icmp predicate!");
3726     case ICMP_EQ: case ICMP_NE:
3727     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3728        return pred;
3729     case ICMP_SGT: return ICMP_UGT;
3730     case ICMP_SLT: return ICMP_ULT;
3731     case ICMP_SGE: return ICMP_UGE;
3732     case ICMP_SLE: return ICMP_ULE;
3733   }
3734 }
3735 
3736 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3737   switch (pred) {
3738     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3739     case ICMP_SGT: return ICMP_SGE;
3740     case ICMP_SLT: return ICMP_SLE;
3741     case ICMP_SGE: return ICMP_SGT;
3742     case ICMP_SLE: return ICMP_SLT;
3743     case ICMP_UGT: return ICMP_UGE;
3744     case ICMP_ULT: return ICMP_ULE;
3745     case ICMP_UGE: return ICMP_UGT;
3746     case ICMP_ULE: return ICMP_ULT;
3747 
3748     case FCMP_OGT: return FCMP_OGE;
3749     case FCMP_OLT: return FCMP_OLE;
3750     case FCMP_OGE: return FCMP_OGT;
3751     case FCMP_OLE: return FCMP_OLT;
3752     case FCMP_UGT: return FCMP_UGE;
3753     case FCMP_ULT: return FCMP_ULE;
3754     case FCMP_UGE: return FCMP_UGT;
3755     case FCMP_ULE: return FCMP_ULT;
3756   }
3757 }
3758 
3759 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3760   switch (pred) {
3761     default: llvm_unreachable("Unknown cmp predicate!");
3762     case ICMP_EQ: case ICMP_NE:
3763       return pred;
3764     case ICMP_SGT: return ICMP_SLT;
3765     case ICMP_SLT: return ICMP_SGT;
3766     case ICMP_SGE: return ICMP_SLE;
3767     case ICMP_SLE: return ICMP_SGE;
3768     case ICMP_UGT: return ICMP_ULT;
3769     case ICMP_ULT: return ICMP_UGT;
3770     case ICMP_UGE: return ICMP_ULE;
3771     case ICMP_ULE: return ICMP_UGE;
3772 
3773     case FCMP_FALSE: case FCMP_TRUE:
3774     case FCMP_OEQ: case FCMP_ONE:
3775     case FCMP_UEQ: case FCMP_UNE:
3776     case FCMP_ORD: case FCMP_UNO:
3777       return pred;
3778     case FCMP_OGT: return FCMP_OLT;
3779     case FCMP_OLT: return FCMP_OGT;
3780     case FCMP_OGE: return FCMP_OLE;
3781     case FCMP_OLE: return FCMP_OGE;
3782     case FCMP_UGT: return FCMP_ULT;
3783     case FCMP_ULT: return FCMP_UGT;
3784     case FCMP_UGE: return FCMP_ULE;
3785     case FCMP_ULE: return FCMP_UGE;
3786   }
3787 }
3788 
3789 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3790   switch (pred) {
3791   case ICMP_SGT: return ICMP_SGE;
3792   case ICMP_SLT: return ICMP_SLE;
3793   case ICMP_UGT: return ICMP_UGE;
3794   case ICMP_ULT: return ICMP_ULE;
3795   case FCMP_OGT: return FCMP_OGE;
3796   case FCMP_OLT: return FCMP_OLE;
3797   case FCMP_UGT: return FCMP_UGE;
3798   case FCMP_ULT: return FCMP_ULE;
3799   default: return pred;
3800   }
3801 }
3802 
3803 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3804   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3805 
3806   switch (pred) {
3807   default:
3808     llvm_unreachable("Unknown predicate!");
3809   case CmpInst::ICMP_ULT:
3810     return CmpInst::ICMP_SLT;
3811   case CmpInst::ICMP_ULE:
3812     return CmpInst::ICMP_SLE;
3813   case CmpInst::ICMP_UGT:
3814     return CmpInst::ICMP_SGT;
3815   case CmpInst::ICMP_UGE:
3816     return CmpInst::ICMP_SGE;
3817   }
3818 }
3819 
3820 bool CmpInst::isUnsigned(Predicate predicate) {
3821   switch (predicate) {
3822     default: return false;
3823     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3824     case ICmpInst::ICMP_UGE: return true;
3825   }
3826 }
3827 
3828 bool CmpInst::isSigned(Predicate predicate) {
3829   switch (predicate) {
3830     default: return false;
3831     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3832     case ICmpInst::ICMP_SGE: return true;
3833   }
3834 }
3835 
3836 bool CmpInst::isOrdered(Predicate predicate) {
3837   switch (predicate) {
3838     default: return false;
3839     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3840     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3841     case FCmpInst::FCMP_ORD: return true;
3842   }
3843 }
3844 
3845 bool CmpInst::isUnordered(Predicate predicate) {
3846   switch (predicate) {
3847     default: return false;
3848     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3849     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3850     case FCmpInst::FCMP_UNO: return true;
3851   }
3852 }
3853 
3854 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3855   switch(predicate) {
3856     default: return false;
3857     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3858     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3859   }
3860 }
3861 
3862 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3863   switch(predicate) {
3864   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3865   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3866   default: return false;
3867   }
3868 }
3869 
3870 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3871   // If the predicates match, then we know the first condition implies the
3872   // second is true.
3873   if (Pred1 == Pred2)
3874     return true;
3875 
3876   switch (Pred1) {
3877   default:
3878     break;
3879   case ICMP_EQ:
3880     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3881     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3882            Pred2 == ICMP_SLE;
3883   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3884     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3885   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3886     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3887   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3888     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3889   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3890     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3891   }
3892   return false;
3893 }
3894 
3895 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3896   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3897 }
3898 
3899 //===----------------------------------------------------------------------===//
3900 //                        SwitchInst Implementation
3901 //===----------------------------------------------------------------------===//
3902 
3903 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3904   assert(Value && Default && NumReserved);
3905   ReservedSpace = NumReserved;
3906   setNumHungOffUseOperands(2);
3907   allocHungoffUses(ReservedSpace);
3908 
3909   Op<0>() = Value;
3910   Op<1>() = Default;
3911 }
3912 
3913 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3914 /// switch on and a default destination.  The number of additional cases can
3915 /// be specified here to make memory allocation more efficient.  This
3916 /// constructor can also autoinsert before another instruction.
3917 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3918                        Instruction *InsertBefore)
3919     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3920                   nullptr, 0, InsertBefore) {
3921   init(Value, Default, 2+NumCases*2);
3922 }
3923 
3924 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3925 /// switch on and a default destination.  The number of additional cases can
3926 /// be specified here to make memory allocation more efficient.  This
3927 /// constructor also autoinserts at the end of the specified BasicBlock.
3928 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3929                        BasicBlock *InsertAtEnd)
3930     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3931                   nullptr, 0, InsertAtEnd) {
3932   init(Value, Default, 2+NumCases*2);
3933 }
3934 
3935 SwitchInst::SwitchInst(const SwitchInst &SI)
3936     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3937   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3938   setNumHungOffUseOperands(SI.getNumOperands());
3939   Use *OL = getOperandList();
3940   const Use *InOL = SI.getOperandList();
3941   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3942     OL[i] = InOL[i];
3943     OL[i+1] = InOL[i+1];
3944   }
3945   SubclassOptionalData = SI.SubclassOptionalData;
3946 }
3947 
3948 /// addCase - Add an entry to the switch instruction...
3949 ///
3950 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3951   unsigned NewCaseIdx = getNumCases();
3952   unsigned OpNo = getNumOperands();
3953   if (OpNo+2 > ReservedSpace)
3954     growOperands();  // Get more space!
3955   // Initialize some new operands.
3956   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3957   setNumHungOffUseOperands(OpNo+2);
3958   CaseHandle Case(this, NewCaseIdx);
3959   Case.setValue(OnVal);
3960   Case.setSuccessor(Dest);
3961 }
3962 
3963 /// removeCase - This method removes the specified case and its successor
3964 /// from the switch instruction.
3965 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3966   unsigned idx = I->getCaseIndex();
3967 
3968   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3969 
3970   unsigned NumOps = getNumOperands();
3971   Use *OL = getOperandList();
3972 
3973   // Overwrite this case with the end of the list.
3974   if (2 + (idx + 1) * 2 != NumOps) {
3975     OL[2 + idx * 2] = OL[NumOps - 2];
3976     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3977   }
3978 
3979   // Nuke the last value.
3980   OL[NumOps-2].set(nullptr);
3981   OL[NumOps-2+1].set(nullptr);
3982   setNumHungOffUseOperands(NumOps-2);
3983 
3984   return CaseIt(this, idx);
3985 }
3986 
3987 /// growOperands - grow operands - This grows the operand list in response
3988 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3989 ///
3990 void SwitchInst::growOperands() {
3991   unsigned e = getNumOperands();
3992   unsigned NumOps = e*3;
3993 
3994   ReservedSpace = NumOps;
3995   growHungoffUses(ReservedSpace);
3996 }
3997 
3998 MDNode *
3999 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4000   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4001     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4002       if (MDName->getString() == "branch_weights")
4003         return ProfileData;
4004   return nullptr;
4005 }
4006 
4007 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4008   assert(Changed && "called only if metadata has changed");
4009 
4010   if (!Weights)
4011     return nullptr;
4012 
4013   assert(SI.getNumSuccessors() == Weights->size() &&
4014          "num of prof branch_weights must accord with num of successors");
4015 
4016   bool AllZeroes =
4017       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4018 
4019   if (AllZeroes || Weights.getValue().size() < 2)
4020     return nullptr;
4021 
4022   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4023 }
4024 
4025 void SwitchInstProfUpdateWrapper::init() {
4026   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4027   if (!ProfileData)
4028     return;
4029 
4030   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4031     llvm_unreachable("number of prof branch_weights metadata operands does "
4032                      "not correspond to number of succesors");
4033   }
4034 
4035   SmallVector<uint32_t, 8> Weights;
4036   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4037     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4038     uint32_t CW = C->getValue().getZExtValue();
4039     Weights.push_back(CW);
4040   }
4041   this->Weights = std::move(Weights);
4042 }
4043 
4044 SwitchInst::CaseIt
4045 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4046   if (Weights) {
4047     assert(SI.getNumSuccessors() == Weights->size() &&
4048            "num of prof branch_weights must accord with num of successors");
4049     Changed = true;
4050     // Copy the last case to the place of the removed one and shrink.
4051     // This is tightly coupled with the way SwitchInst::removeCase() removes
4052     // the cases in SwitchInst::removeCase(CaseIt).
4053     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4054     Weights.getValue().pop_back();
4055   }
4056   return SI.removeCase(I);
4057 }
4058 
4059 void SwitchInstProfUpdateWrapper::addCase(
4060     ConstantInt *OnVal, BasicBlock *Dest,
4061     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4062   SI.addCase(OnVal, Dest);
4063 
4064   if (!Weights && W && *W) {
4065     Changed = true;
4066     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4067     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4068   } else if (Weights) {
4069     Changed = true;
4070     Weights.getValue().push_back(W ? *W : 0);
4071   }
4072   if (Weights)
4073     assert(SI.getNumSuccessors() == Weights->size() &&
4074            "num of prof branch_weights must accord with num of successors");
4075 }
4076 
4077 SymbolTableList<Instruction>::iterator
4078 SwitchInstProfUpdateWrapper::eraseFromParent() {
4079   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4080   Changed = false;
4081   if (Weights)
4082     Weights->resize(0);
4083   return SI.eraseFromParent();
4084 }
4085 
4086 SwitchInstProfUpdateWrapper::CaseWeightOpt
4087 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4088   if (!Weights)
4089     return None;
4090   return Weights.getValue()[idx];
4091 }
4092 
4093 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4094     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4095   if (!W)
4096     return;
4097 
4098   if (!Weights && *W)
4099     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4100 
4101   if (Weights) {
4102     auto &OldW = Weights.getValue()[idx];
4103     if (*W != OldW) {
4104       Changed = true;
4105       OldW = *W;
4106     }
4107   }
4108 }
4109 
4110 SwitchInstProfUpdateWrapper::CaseWeightOpt
4111 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4112                                                 unsigned idx) {
4113   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4114     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4115       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4116           ->getValue()
4117           .getZExtValue();
4118 
4119   return None;
4120 }
4121 
4122 //===----------------------------------------------------------------------===//
4123 //                        IndirectBrInst Implementation
4124 //===----------------------------------------------------------------------===//
4125 
4126 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4127   assert(Address && Address->getType()->isPointerTy() &&
4128          "Address of indirectbr must be a pointer");
4129   ReservedSpace = 1+NumDests;
4130   setNumHungOffUseOperands(1);
4131   allocHungoffUses(ReservedSpace);
4132 
4133   Op<0>() = Address;
4134 }
4135 
4136 
4137 /// growOperands - grow operands - This grows the operand list in response
4138 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4139 ///
4140 void IndirectBrInst::growOperands() {
4141   unsigned e = getNumOperands();
4142   unsigned NumOps = e*2;
4143 
4144   ReservedSpace = NumOps;
4145   growHungoffUses(ReservedSpace);
4146 }
4147 
4148 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4149                                Instruction *InsertBefore)
4150     : Instruction(Type::getVoidTy(Address->getContext()),
4151                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4152   init(Address, NumCases);
4153 }
4154 
4155 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4156                                BasicBlock *InsertAtEnd)
4157     : Instruction(Type::getVoidTy(Address->getContext()),
4158                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4159   init(Address, NumCases);
4160 }
4161 
4162 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4163     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4164                   nullptr, IBI.getNumOperands()) {
4165   allocHungoffUses(IBI.getNumOperands());
4166   Use *OL = getOperandList();
4167   const Use *InOL = IBI.getOperandList();
4168   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4169     OL[i] = InOL[i];
4170   SubclassOptionalData = IBI.SubclassOptionalData;
4171 }
4172 
4173 /// addDestination - Add a destination.
4174 ///
4175 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4176   unsigned OpNo = getNumOperands();
4177   if (OpNo+1 > ReservedSpace)
4178     growOperands();  // Get more space!
4179   // Initialize some new operands.
4180   assert(OpNo < ReservedSpace && "Growing didn't work!");
4181   setNumHungOffUseOperands(OpNo+1);
4182   getOperandList()[OpNo] = DestBB;
4183 }
4184 
4185 /// removeDestination - This method removes the specified successor from the
4186 /// indirectbr instruction.
4187 void IndirectBrInst::removeDestination(unsigned idx) {
4188   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4189 
4190   unsigned NumOps = getNumOperands();
4191   Use *OL = getOperandList();
4192 
4193   // Replace this value with the last one.
4194   OL[idx+1] = OL[NumOps-1];
4195 
4196   // Nuke the last value.
4197   OL[NumOps-1].set(nullptr);
4198   setNumHungOffUseOperands(NumOps-1);
4199 }
4200 
4201 //===----------------------------------------------------------------------===//
4202 //                            FreezeInst Implementation
4203 //===----------------------------------------------------------------------===//
4204 
4205 FreezeInst::FreezeInst(Value *S,
4206                        const Twine &Name, Instruction *InsertBefore)
4207     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4208   setName(Name);
4209 }
4210 
4211 FreezeInst::FreezeInst(Value *S,
4212                        const Twine &Name, BasicBlock *InsertAtEnd)
4213     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4214   setName(Name);
4215 }
4216 
4217 //===----------------------------------------------------------------------===//
4218 //                           cloneImpl() implementations
4219 //===----------------------------------------------------------------------===//
4220 
4221 // Define these methods here so vtables don't get emitted into every translation
4222 // unit that uses these classes.
4223 
4224 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4225   return new (getNumOperands()) GetElementPtrInst(*this);
4226 }
4227 
4228 UnaryOperator *UnaryOperator::cloneImpl() const {
4229   return Create(getOpcode(), Op<0>());
4230 }
4231 
4232 BinaryOperator *BinaryOperator::cloneImpl() const {
4233   return Create(getOpcode(), Op<0>(), Op<1>());
4234 }
4235 
4236 FCmpInst *FCmpInst::cloneImpl() const {
4237   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4238 }
4239 
4240 ICmpInst *ICmpInst::cloneImpl() const {
4241   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4242 }
4243 
4244 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4245   return new ExtractValueInst(*this);
4246 }
4247 
4248 InsertValueInst *InsertValueInst::cloneImpl() const {
4249   return new InsertValueInst(*this);
4250 }
4251 
4252 AllocaInst *AllocaInst::cloneImpl() const {
4253   AllocaInst *Result =
4254       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4255                      getOperand(0), getAlign());
4256   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4257   Result->setSwiftError(isSwiftError());
4258   return Result;
4259 }
4260 
4261 LoadInst *LoadInst::cloneImpl() const {
4262   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4263                       getAlign(), getOrdering(), getSyncScopeID());
4264 }
4265 
4266 StoreInst *StoreInst::cloneImpl() const {
4267   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4268                        getOrdering(), getSyncScopeID());
4269 }
4270 
4271 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4272   AtomicCmpXchgInst *Result =
4273     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4274                           getSuccessOrdering(), getFailureOrdering(),
4275                           getSyncScopeID());
4276   Result->setVolatile(isVolatile());
4277   Result->setWeak(isWeak());
4278   return Result;
4279 }
4280 
4281 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4282   AtomicRMWInst *Result =
4283     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4284                       getOrdering(), getSyncScopeID());
4285   Result->setVolatile(isVolatile());
4286   return Result;
4287 }
4288 
4289 FenceInst *FenceInst::cloneImpl() const {
4290   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4291 }
4292 
4293 TruncInst *TruncInst::cloneImpl() const {
4294   return new TruncInst(getOperand(0), getType());
4295 }
4296 
4297 ZExtInst *ZExtInst::cloneImpl() const {
4298   return new ZExtInst(getOperand(0), getType());
4299 }
4300 
4301 SExtInst *SExtInst::cloneImpl() const {
4302   return new SExtInst(getOperand(0), getType());
4303 }
4304 
4305 FPTruncInst *FPTruncInst::cloneImpl() const {
4306   return new FPTruncInst(getOperand(0), getType());
4307 }
4308 
4309 FPExtInst *FPExtInst::cloneImpl() const {
4310   return new FPExtInst(getOperand(0), getType());
4311 }
4312 
4313 UIToFPInst *UIToFPInst::cloneImpl() const {
4314   return new UIToFPInst(getOperand(0), getType());
4315 }
4316 
4317 SIToFPInst *SIToFPInst::cloneImpl() const {
4318   return new SIToFPInst(getOperand(0), getType());
4319 }
4320 
4321 FPToUIInst *FPToUIInst::cloneImpl() const {
4322   return new FPToUIInst(getOperand(0), getType());
4323 }
4324 
4325 FPToSIInst *FPToSIInst::cloneImpl() const {
4326   return new FPToSIInst(getOperand(0), getType());
4327 }
4328 
4329 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4330   return new PtrToIntInst(getOperand(0), getType());
4331 }
4332 
4333 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4334   return new IntToPtrInst(getOperand(0), getType());
4335 }
4336 
4337 BitCastInst *BitCastInst::cloneImpl() const {
4338   return new BitCastInst(getOperand(0), getType());
4339 }
4340 
4341 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4342   return new AddrSpaceCastInst(getOperand(0), getType());
4343 }
4344 
4345 CallInst *CallInst::cloneImpl() const {
4346   if (hasOperandBundles()) {
4347     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4348     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4349   }
4350   return  new(getNumOperands()) CallInst(*this);
4351 }
4352 
4353 SelectInst *SelectInst::cloneImpl() const {
4354   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4355 }
4356 
4357 VAArgInst *VAArgInst::cloneImpl() const {
4358   return new VAArgInst(getOperand(0), getType());
4359 }
4360 
4361 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4362   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4363 }
4364 
4365 InsertElementInst *InsertElementInst::cloneImpl() const {
4366   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4367 }
4368 
4369 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4370   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4371 }
4372 
4373 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4374 
4375 LandingPadInst *LandingPadInst::cloneImpl() const {
4376   return new LandingPadInst(*this);
4377 }
4378 
4379 ReturnInst *ReturnInst::cloneImpl() const {
4380   return new(getNumOperands()) ReturnInst(*this);
4381 }
4382 
4383 BranchInst *BranchInst::cloneImpl() const {
4384   return new(getNumOperands()) BranchInst(*this);
4385 }
4386 
4387 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4388 
4389 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4390   return new IndirectBrInst(*this);
4391 }
4392 
4393 InvokeInst *InvokeInst::cloneImpl() const {
4394   if (hasOperandBundles()) {
4395     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4396     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4397   }
4398   return new(getNumOperands()) InvokeInst(*this);
4399 }
4400 
4401 CallBrInst *CallBrInst::cloneImpl() const {
4402   if (hasOperandBundles()) {
4403     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4404     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4405   }
4406   return new (getNumOperands()) CallBrInst(*this);
4407 }
4408 
4409 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4410 
4411 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4412   return new (getNumOperands()) CleanupReturnInst(*this);
4413 }
4414 
4415 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4416   return new (getNumOperands()) CatchReturnInst(*this);
4417 }
4418 
4419 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4420   return new CatchSwitchInst(*this);
4421 }
4422 
4423 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4424   return new (getNumOperands()) FuncletPadInst(*this);
4425 }
4426 
4427 UnreachableInst *UnreachableInst::cloneImpl() const {
4428   LLVMContext &Context = getContext();
4429   return new UnreachableInst(Context);
4430 }
4431 
4432 FreezeInst *FreezeInst::cloneImpl() const {
4433   return new FreezeInst(getOperand(0));
4434 }
4435