1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements simple dominator construction algorithms for finding 10 // forward dominators. Postdominators are available in libanalysis, but are not 11 // included in libvmcore, because it's not needed. Forward dominators are 12 // needed to support the Verifier pass. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/IR/Dominators.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Config/llvm-config.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/GenericDomTreeConstruction.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 bool llvm::VerifyDomInfo = false; 33 static cl::opt<bool, true> 34 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, 35 cl::desc("Verify dominator info (time consuming)")); 36 37 #ifdef EXPENSIVE_CHECKS 38 static constexpr bool ExpensiveChecksEnabled = true; 39 #else 40 static constexpr bool ExpensiveChecksEnabled = false; 41 #endif 42 43 bool BasicBlockEdge::isSingleEdge() const { 44 const Instruction *TI = Start->getTerminator(); 45 unsigned NumEdgesToEnd = 0; 46 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 47 if (TI->getSuccessor(i) == End) 48 ++NumEdgesToEnd; 49 if (NumEdgesToEnd >= 2) 50 return false; 51 } 52 assert(NumEdgesToEnd == 1); 53 return true; 54 } 55 56 //===----------------------------------------------------------------------===// 57 // DominatorTree Implementation 58 //===----------------------------------------------------------------------===// 59 // 60 // Provide public access to DominatorTree information. Implementation details 61 // can be found in Dominators.h, GenericDomTree.h, and 62 // GenericDomTreeConstruction.h. 63 // 64 //===----------------------------------------------------------------------===// 65 66 template class llvm::DomTreeNodeBase<BasicBlock>; 67 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase 68 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase 69 70 template class llvm::cfg::Update<BasicBlock *>; 71 72 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( 73 DomTreeBuilder::BBDomTree &DT); 74 template void 75 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>( 76 DomTreeBuilder::BBDomTree &DT, BBUpdates U); 77 78 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( 79 DomTreeBuilder::BBPostDomTree &DT); 80 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises. 81 82 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( 83 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 84 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( 85 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 86 87 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( 88 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 89 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( 90 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 91 92 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( 93 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTreeGraphDiff &, 94 DomTreeBuilder::BBDomTreeGraphDiff *); 95 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( 96 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTreeGraphDiff &, 97 DomTreeBuilder::BBPostDomTreeGraphDiff *); 98 99 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( 100 const DomTreeBuilder::BBDomTree &DT, 101 DomTreeBuilder::BBDomTree::VerificationLevel VL); 102 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( 103 const DomTreeBuilder::BBPostDomTree &DT, 104 DomTreeBuilder::BBPostDomTree::VerificationLevel VL); 105 106 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, 107 FunctionAnalysisManager::Invalidator &) { 108 // Check whether the analysis, all analyses on functions, or the function's 109 // CFG have been preserved. 110 auto PAC = PA.getChecker<DominatorTreeAnalysis>(); 111 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 112 PAC.preservedSet<CFGAnalyses>()); 113 } 114 115 // dominates - Return true if Def dominates a use in User. This performs 116 // the special checks necessary if Def and User are in the same basic block. 117 // Note that Def doesn't dominate a use in Def itself! 118 bool DominatorTree::dominates(const Instruction *Def, 119 const Instruction *User) const { 120 const BasicBlock *UseBB = User->getParent(); 121 const BasicBlock *DefBB = Def->getParent(); 122 123 // Any unreachable use is dominated, even if Def == User. 124 if (!isReachableFromEntry(UseBB)) 125 return true; 126 127 // Unreachable definitions don't dominate anything. 128 if (!isReachableFromEntry(DefBB)) 129 return false; 130 131 // An instruction doesn't dominate a use in itself. 132 if (Def == User) 133 return false; 134 135 // The value defined by an invoke dominates an instruction only if it 136 // dominates every instruction in UseBB. 137 // A PHI is dominated only if the instruction dominates every possible use in 138 // the UseBB. 139 if (isa<InvokeInst>(Def) || isa<CallBrInst>(Def) || isa<PHINode>(User)) 140 return dominates(Def, UseBB); 141 142 if (DefBB != UseBB) 143 return dominates(DefBB, UseBB); 144 145 return Def->comesBefore(User); 146 } 147 148 // true if Def would dominate a use in any instruction in UseBB. 149 // note that dominates(Def, Def->getParent()) is false. 150 bool DominatorTree::dominates(const Instruction *Def, 151 const BasicBlock *UseBB) const { 152 const BasicBlock *DefBB = Def->getParent(); 153 154 // Any unreachable use is dominated, even if DefBB == UseBB. 155 if (!isReachableFromEntry(UseBB)) 156 return true; 157 158 // Unreachable definitions don't dominate anything. 159 if (!isReachableFromEntry(DefBB)) 160 return false; 161 162 if (DefBB == UseBB) 163 return false; 164 165 // Invoke results are only usable in the normal destination, not in the 166 // exceptional destination. 167 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 168 BasicBlock *NormalDest = II->getNormalDest(); 169 BasicBlockEdge E(DefBB, NormalDest); 170 return dominates(E, UseBB); 171 } 172 173 // Callbr results are similarly only usable in the default destination. 174 if (const auto *CBI = dyn_cast<CallBrInst>(Def)) { 175 BasicBlock *NormalDest = CBI->getDefaultDest(); 176 BasicBlockEdge E(DefBB, NormalDest); 177 return dominates(E, UseBB); 178 } 179 180 return dominates(DefBB, UseBB); 181 } 182 183 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 184 const BasicBlock *UseBB) const { 185 // If the BB the edge ends in doesn't dominate the use BB, then the 186 // edge also doesn't. 187 const BasicBlock *Start = BBE.getStart(); 188 const BasicBlock *End = BBE.getEnd(); 189 if (!dominates(End, UseBB)) 190 return false; 191 192 // Simple case: if the end BB has a single predecessor, the fact that it 193 // dominates the use block implies that the edge also does. 194 if (End->getSinglePredecessor()) 195 return true; 196 197 // The normal edge from the invoke is critical. Conceptually, what we would 198 // like to do is split it and check if the new block dominates the use. 199 // With X being the new block, the graph would look like: 200 // 201 // DefBB 202 // /\ . . 203 // / \ . . 204 // / \ . . 205 // / \ | | 206 // A X B C 207 // | \ | / 208 // . \|/ 209 // . NormalDest 210 // . 211 // 212 // Given the definition of dominance, NormalDest is dominated by X iff X 213 // dominates all of NormalDest's predecessors (X, B, C in the example). X 214 // trivially dominates itself, so we only have to find if it dominates the 215 // other predecessors. Since the only way out of X is via NormalDest, X can 216 // only properly dominate a node if NormalDest dominates that node too. 217 int IsDuplicateEdge = 0; 218 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); 219 PI != E; ++PI) { 220 const BasicBlock *BB = *PI; 221 if (BB == Start) { 222 // If there are multiple edges between Start and End, by definition they 223 // can't dominate anything. 224 if (IsDuplicateEdge++) 225 return false; 226 continue; 227 } 228 229 if (!dominates(End, BB)) 230 return false; 231 } 232 return true; 233 } 234 235 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 236 Instruction *UserInst = cast<Instruction>(U.getUser()); 237 // A PHI in the end of the edge is dominated by it. 238 PHINode *PN = dyn_cast<PHINode>(UserInst); 239 if (PN && PN->getParent() == BBE.getEnd() && 240 PN->getIncomingBlock(U) == BBE.getStart()) 241 return true; 242 243 // Otherwise use the edge-dominates-block query, which 244 // handles the crazy critical edge cases properly. 245 const BasicBlock *UseBB; 246 if (PN) 247 UseBB = PN->getIncomingBlock(U); 248 else 249 UseBB = UserInst->getParent(); 250 return dominates(BBE, UseBB); 251 } 252 253 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { 254 Instruction *UserInst = cast<Instruction>(U.getUser()); 255 const BasicBlock *DefBB = Def->getParent(); 256 257 // Determine the block in which the use happens. PHI nodes use 258 // their operands on edges; simulate this by thinking of the use 259 // happening at the end of the predecessor block. 260 const BasicBlock *UseBB; 261 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 262 UseBB = PN->getIncomingBlock(U); 263 else 264 UseBB = UserInst->getParent(); 265 266 // Any unreachable use is dominated, even if Def == User. 267 if (!isReachableFromEntry(UseBB)) 268 return true; 269 270 // Unreachable definitions don't dominate anything. 271 if (!isReachableFromEntry(DefBB)) 272 return false; 273 274 // Invoke instructions define their return values on the edges to their normal 275 // successors, so we have to handle them specially. 276 // Among other things, this means they don't dominate anything in 277 // their own block, except possibly a phi, so we don't need to 278 // walk the block in any case. 279 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 280 BasicBlock *NormalDest = II->getNormalDest(); 281 BasicBlockEdge E(DefBB, NormalDest); 282 return dominates(E, U); 283 } 284 285 // Callbr results are similarly only usable in the default destination. 286 if (const auto *CBI = dyn_cast<CallBrInst>(Def)) { 287 BasicBlock *NormalDest = CBI->getDefaultDest(); 288 BasicBlockEdge E(DefBB, NormalDest); 289 return dominates(E, U); 290 } 291 292 // If the def and use are in different blocks, do a simple CFG dominator 293 // tree query. 294 if (DefBB != UseBB) 295 return dominates(DefBB, UseBB); 296 297 // Ok, def and use are in the same block. If the def is an invoke, it 298 // doesn't dominate anything in the block. If it's a PHI, it dominates 299 // everything in the block. 300 if (isa<PHINode>(UserInst)) 301 return true; 302 303 return Def->comesBefore(UserInst); 304 } 305 306 bool DominatorTree::isReachableFromEntry(const Use &U) const { 307 Instruction *I = dyn_cast<Instruction>(U.getUser()); 308 309 // ConstantExprs aren't really reachable from the entry block, but they 310 // don't need to be treated like unreachable code either. 311 if (!I) return true; 312 313 // PHI nodes use their operands on their incoming edges. 314 if (PHINode *PN = dyn_cast<PHINode>(I)) 315 return isReachableFromEntry(PN->getIncomingBlock(U)); 316 317 // Everything else uses their operands in their own block. 318 return isReachableFromEntry(I->getParent()); 319 } 320 321 // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2. 322 bool DominatorTree::dominates(const BasicBlockEdge &BBE1, 323 const BasicBlockEdge &BBE2) const { 324 if (BBE1.getStart() == BBE2.getStart() && BBE1.getEnd() == BBE2.getEnd()) 325 return true; 326 return dominates(BBE1, BBE2.getStart()); 327 } 328 329 //===----------------------------------------------------------------------===// 330 // DominatorTreeAnalysis and related pass implementations 331 //===----------------------------------------------------------------------===// 332 // 333 // This implements the DominatorTreeAnalysis which is used with the new pass 334 // manager. It also implements some methods from utility passes. 335 // 336 //===----------------------------------------------------------------------===// 337 338 DominatorTree DominatorTreeAnalysis::run(Function &F, 339 FunctionAnalysisManager &) { 340 DominatorTree DT; 341 DT.recalculate(F); 342 return DT; 343 } 344 345 AnalysisKey DominatorTreeAnalysis::Key; 346 347 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 348 349 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 350 FunctionAnalysisManager &AM) { 351 OS << "DominatorTree for function: " << F.getName() << "\n"; 352 AM.getResult<DominatorTreeAnalysis>(F).print(OS); 353 354 return PreservedAnalyses::all(); 355 } 356 357 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 358 FunctionAnalysisManager &AM) { 359 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 360 assert(DT.verify()); 361 (void)DT; 362 return PreservedAnalyses::all(); 363 } 364 365 //===----------------------------------------------------------------------===// 366 // DominatorTreeWrapperPass Implementation 367 //===----------------------------------------------------------------------===// 368 // 369 // The implementation details of the wrapper pass that holds a DominatorTree 370 // suitable for use with the legacy pass manager. 371 // 372 //===----------------------------------------------------------------------===// 373 374 char DominatorTreeWrapperPass::ID = 0; 375 376 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) { 377 initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry()); 378 } 379 380 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 381 "Dominator Tree Construction", true, true) 382 383 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 384 DT.recalculate(F); 385 return false; 386 } 387 388 void DominatorTreeWrapperPass::verifyAnalysis() const { 389 if (VerifyDomInfo) 390 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 391 else if (ExpensiveChecksEnabled) 392 assert(DT.verify(DominatorTree::VerificationLevel::Basic)); 393 } 394 395 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 396 DT.print(OS); 397 } 398