1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements simple dominator construction algorithms for finding 11 // forward dominators. Postdominators are available in libanalysis, but are not 12 // included in libvmcore, because it's not needed. Forward dominators are 13 // needed to support the Verifier pass. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/IR/Dominators.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Config/llvm-config.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/GenericDomTreeConstruction.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 bool llvm::VerifyDomInfo = false; 33 static cl::opt<bool, true> 34 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, 35 cl::desc("Verify dominator info (time consuming)")); 36 37 #ifdef EXPENSIVE_CHECKS 38 static constexpr bool ExpensiveChecksEnabled = true; 39 #else 40 static constexpr bool ExpensiveChecksEnabled = false; 41 #endif 42 43 bool BasicBlockEdge::isSingleEdge() const { 44 const TerminatorInst *TI = Start->getTerminator(); 45 unsigned NumEdgesToEnd = 0; 46 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 47 if (TI->getSuccessor(i) == End) 48 ++NumEdgesToEnd; 49 if (NumEdgesToEnd >= 2) 50 return false; 51 } 52 assert(NumEdgesToEnd == 1); 53 return true; 54 } 55 56 //===----------------------------------------------------------------------===// 57 // DominatorTree Implementation 58 //===----------------------------------------------------------------------===// 59 // 60 // Provide public access to DominatorTree information. Implementation details 61 // can be found in Dominators.h, GenericDomTree.h, and 62 // GenericDomTreeConstruction.h. 63 // 64 //===----------------------------------------------------------------------===// 65 66 template class llvm::DomTreeNodeBase<BasicBlock>; 67 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase 68 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase 69 70 template struct llvm::DomTreeBuilder::Update<BasicBlock *>; 71 72 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( 73 DomTreeBuilder::BBDomTree &DT); 74 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( 75 DomTreeBuilder::BBPostDomTree &DT); 76 77 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( 78 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 79 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( 80 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 81 82 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( 83 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 84 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( 85 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 86 87 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( 88 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates); 89 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( 90 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates); 91 92 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( 93 const DomTreeBuilder::BBDomTree &DT, 94 DomTreeBuilder::BBDomTree::VerificationLevel VL); 95 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( 96 const DomTreeBuilder::BBPostDomTree &DT, 97 DomTreeBuilder::BBPostDomTree::VerificationLevel VL); 98 99 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, 100 FunctionAnalysisManager::Invalidator &) { 101 // Check whether the analysis, all analyses on functions, or the function's 102 // CFG have been preserved. 103 auto PAC = PA.getChecker<DominatorTreeAnalysis>(); 104 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 105 PAC.preservedSet<CFGAnalyses>()); 106 } 107 108 // dominates - Return true if Def dominates a use in User. This performs 109 // the special checks necessary if Def and User are in the same basic block. 110 // Note that Def doesn't dominate a use in Def itself! 111 bool DominatorTree::dominates(const Instruction *Def, 112 const Instruction *User) const { 113 const BasicBlock *UseBB = User->getParent(); 114 const BasicBlock *DefBB = Def->getParent(); 115 116 // Any unreachable use is dominated, even if Def == User. 117 if (!isReachableFromEntry(UseBB)) 118 return true; 119 120 // Unreachable definitions don't dominate anything. 121 if (!isReachableFromEntry(DefBB)) 122 return false; 123 124 // An instruction doesn't dominate a use in itself. 125 if (Def == User) 126 return false; 127 128 // The value defined by an invoke dominates an instruction only if it 129 // dominates every instruction in UseBB. 130 // A PHI is dominated only if the instruction dominates every possible use in 131 // the UseBB. 132 if (isa<InvokeInst>(Def) || isa<PHINode>(User)) 133 return dominates(Def, UseBB); 134 135 if (DefBB != UseBB) 136 return dominates(DefBB, UseBB); 137 138 // Loop through the basic block until we find Def or User. 139 BasicBlock::const_iterator I = DefBB->begin(); 140 for (; &*I != Def && &*I != User; ++I) 141 /*empty*/; 142 143 return &*I == Def; 144 } 145 146 // true if Def would dominate a use in any instruction in UseBB. 147 // note that dominates(Def, Def->getParent()) is false. 148 bool DominatorTree::dominates(const Instruction *Def, 149 const BasicBlock *UseBB) const { 150 const BasicBlock *DefBB = Def->getParent(); 151 152 // Any unreachable use is dominated, even if DefBB == UseBB. 153 if (!isReachableFromEntry(UseBB)) 154 return true; 155 156 // Unreachable definitions don't dominate anything. 157 if (!isReachableFromEntry(DefBB)) 158 return false; 159 160 if (DefBB == UseBB) 161 return false; 162 163 // Invoke results are only usable in the normal destination, not in the 164 // exceptional destination. 165 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 166 BasicBlock *NormalDest = II->getNormalDest(); 167 BasicBlockEdge E(DefBB, NormalDest); 168 return dominates(E, UseBB); 169 } 170 171 return dominates(DefBB, UseBB); 172 } 173 174 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 175 const BasicBlock *UseBB) const { 176 // If the BB the edge ends in doesn't dominate the use BB, then the 177 // edge also doesn't. 178 const BasicBlock *Start = BBE.getStart(); 179 const BasicBlock *End = BBE.getEnd(); 180 if (!dominates(End, UseBB)) 181 return false; 182 183 // Simple case: if the end BB has a single predecessor, the fact that it 184 // dominates the use block implies that the edge also does. 185 if (End->getSinglePredecessor()) 186 return true; 187 188 // The normal edge from the invoke is critical. Conceptually, what we would 189 // like to do is split it and check if the new block dominates the use. 190 // With X being the new block, the graph would look like: 191 // 192 // DefBB 193 // /\ . . 194 // / \ . . 195 // / \ . . 196 // / \ | | 197 // A X B C 198 // | \ | / 199 // . \|/ 200 // . NormalDest 201 // . 202 // 203 // Given the definition of dominance, NormalDest is dominated by X iff X 204 // dominates all of NormalDest's predecessors (X, B, C in the example). X 205 // trivially dominates itself, so we only have to find if it dominates the 206 // other predecessors. Since the only way out of X is via NormalDest, X can 207 // only properly dominate a node if NormalDest dominates that node too. 208 int IsDuplicateEdge = 0; 209 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); 210 PI != E; ++PI) { 211 const BasicBlock *BB = *PI; 212 if (BB == Start) { 213 // If there are multiple edges between Start and End, by definition they 214 // can't dominate anything. 215 if (IsDuplicateEdge++) 216 return false; 217 continue; 218 } 219 220 if (!dominates(End, BB)) 221 return false; 222 } 223 return true; 224 } 225 226 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 227 Instruction *UserInst = cast<Instruction>(U.getUser()); 228 // A PHI in the end of the edge is dominated by it. 229 PHINode *PN = dyn_cast<PHINode>(UserInst); 230 if (PN && PN->getParent() == BBE.getEnd() && 231 PN->getIncomingBlock(U) == BBE.getStart()) 232 return true; 233 234 // Otherwise use the edge-dominates-block query, which 235 // handles the crazy critical edge cases properly. 236 const BasicBlock *UseBB; 237 if (PN) 238 UseBB = PN->getIncomingBlock(U); 239 else 240 UseBB = UserInst->getParent(); 241 return dominates(BBE, UseBB); 242 } 243 244 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { 245 Instruction *UserInst = cast<Instruction>(U.getUser()); 246 const BasicBlock *DefBB = Def->getParent(); 247 248 // Determine the block in which the use happens. PHI nodes use 249 // their operands on edges; simulate this by thinking of the use 250 // happening at the end of the predecessor block. 251 const BasicBlock *UseBB; 252 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 253 UseBB = PN->getIncomingBlock(U); 254 else 255 UseBB = UserInst->getParent(); 256 257 // Any unreachable use is dominated, even if Def == User. 258 if (!isReachableFromEntry(UseBB)) 259 return true; 260 261 // Unreachable definitions don't dominate anything. 262 if (!isReachableFromEntry(DefBB)) 263 return false; 264 265 // Invoke instructions define their return values on the edges to their normal 266 // successors, so we have to handle them specially. 267 // Among other things, this means they don't dominate anything in 268 // their own block, except possibly a phi, so we don't need to 269 // walk the block in any case. 270 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 271 BasicBlock *NormalDest = II->getNormalDest(); 272 BasicBlockEdge E(DefBB, NormalDest); 273 return dominates(E, U); 274 } 275 276 // If the def and use are in different blocks, do a simple CFG dominator 277 // tree query. 278 if (DefBB != UseBB) 279 return dominates(DefBB, UseBB); 280 281 // Ok, def and use are in the same block. If the def is an invoke, it 282 // doesn't dominate anything in the block. If it's a PHI, it dominates 283 // everything in the block. 284 if (isa<PHINode>(UserInst)) 285 return true; 286 287 // Otherwise, just loop through the basic block until we find Def or User. 288 BasicBlock::const_iterator I = DefBB->begin(); 289 for (; &*I != Def && &*I != UserInst; ++I) 290 /*empty*/; 291 292 return &*I != UserInst; 293 } 294 295 bool DominatorTree::isReachableFromEntry(const Use &U) const { 296 Instruction *I = dyn_cast<Instruction>(U.getUser()); 297 298 // ConstantExprs aren't really reachable from the entry block, but they 299 // don't need to be treated like unreachable code either. 300 if (!I) return true; 301 302 // PHI nodes use their operands on their incoming edges. 303 if (PHINode *PN = dyn_cast<PHINode>(I)) 304 return isReachableFromEntry(PN->getIncomingBlock(U)); 305 306 // Everything else uses their operands in their own block. 307 return isReachableFromEntry(I->getParent()); 308 } 309 310 //===----------------------------------------------------------------------===// 311 // DominatorTreeAnalysis and related pass implementations 312 //===----------------------------------------------------------------------===// 313 // 314 // This implements the DominatorTreeAnalysis which is used with the new pass 315 // manager. It also implements some methods from utility passes. 316 // 317 //===----------------------------------------------------------------------===// 318 319 DominatorTree DominatorTreeAnalysis::run(Function &F, 320 FunctionAnalysisManager &) { 321 DominatorTree DT; 322 DT.recalculate(F); 323 return DT; 324 } 325 326 AnalysisKey DominatorTreeAnalysis::Key; 327 328 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 329 330 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 331 FunctionAnalysisManager &AM) { 332 OS << "DominatorTree for function: " << F.getName() << "\n"; 333 AM.getResult<DominatorTreeAnalysis>(F).print(OS); 334 335 return PreservedAnalyses::all(); 336 } 337 338 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 339 FunctionAnalysisManager &AM) { 340 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 341 assert(DT.verify()); 342 (void)DT; 343 return PreservedAnalyses::all(); 344 } 345 346 //===----------------------------------------------------------------------===// 347 // DominatorTreeWrapperPass Implementation 348 //===----------------------------------------------------------------------===// 349 // 350 // The implementation details of the wrapper pass that holds a DominatorTree 351 // suitable for use with the legacy pass manager. 352 // 353 //===----------------------------------------------------------------------===// 354 355 char DominatorTreeWrapperPass::ID = 0; 356 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 357 "Dominator Tree Construction", true, true) 358 359 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 360 DT.recalculate(F); 361 return false; 362 } 363 364 void DominatorTreeWrapperPass::verifyAnalysis() const { 365 if (VerifyDomInfo) 366 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 367 else if (ExpensiveChecksEnabled) 368 assert(DT.verify(DominatorTree::VerificationLevel::Basic)); 369 } 370 371 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 372 DT.print(OS); 373 } 374 375 //===----------------------------------------------------------------------===// 376 // DeferredDominance Implementation 377 //===----------------------------------------------------------------------===// 378 // 379 // The implementation details of the DeferredDominance class which allows 380 // one to queue updates to a DominatorTree. 381 // 382 //===----------------------------------------------------------------------===// 383 384 /// Queues multiple updates and discards duplicates. 385 void DeferredDominance::applyUpdates( 386 ArrayRef<DominatorTree::UpdateType> Updates) { 387 SmallVector<DominatorTree::UpdateType, 8> Seen; 388 for (auto U : Updates) 389 // Avoid duplicates to applyUpdate() to save on analysis. 390 if (std::none_of(Seen.begin(), Seen.end(), 391 [U](DominatorTree::UpdateType S) { return S == U; })) { 392 Seen.push_back(U); 393 applyUpdate(U.getKind(), U.getFrom(), U.getTo()); 394 } 395 } 396 397 /// Helper method for a single edge insertion. It's almost always better 398 /// to batch updates and call applyUpdates to quickly remove duplicate edges. 399 /// This is best used when there is only a single insertion needed to update 400 /// Dominators. 401 void DeferredDominance::insertEdge(BasicBlock *From, BasicBlock *To) { 402 applyUpdate(DominatorTree::Insert, From, To); 403 } 404 405 /// Helper method for a single edge deletion. It's almost always better 406 /// to batch updates and call applyUpdates to quickly remove duplicate edges. 407 /// This is best used when there is only a single deletion needed to update 408 /// Dominators. 409 void DeferredDominance::deleteEdge(BasicBlock *From, BasicBlock *To) { 410 applyUpdate(DominatorTree::Delete, From, To); 411 } 412 413 /// Delays the deletion of a basic block until a flush() event. 414 void DeferredDominance::deleteBB(BasicBlock *DelBB) { 415 assert(DelBB && "Invalid push_back of nullptr DelBB."); 416 assert(pred_empty(DelBB) && "DelBB has one or more predecessors."); 417 // DelBB is unreachable and all its instructions are dead. 418 while (!DelBB->empty()) { 419 Instruction &I = DelBB->back(); 420 // Replace used instructions with an arbitrary value (undef). 421 if (!I.use_empty()) 422 I.replaceAllUsesWith(llvm::UndefValue::get(I.getType())); 423 DelBB->getInstList().pop_back(); 424 } 425 // Make sure DelBB has a valid terminator instruction. As long as DelBB is a 426 // Child of Function F it must contain valid IR. 427 new UnreachableInst(DelBB->getContext(), DelBB); 428 DeletedBBs.insert(DelBB); 429 } 430 431 /// Returns true if DelBB is awaiting deletion at a flush() event. 432 bool DeferredDominance::pendingDeletedBB(BasicBlock *DelBB) { 433 if (DeletedBBs.empty()) 434 return false; 435 return DeletedBBs.count(DelBB) != 0; 436 } 437 438 /// Returns true if pending DT updates are queued for a flush() event. 439 bool DeferredDominance::pending() { return !PendUpdates.empty(); } 440 441 /// Flushes all pending updates and block deletions. Returns a 442 /// correct DominatorTree reference to be used by the caller for analysis. 443 DominatorTree &DeferredDominance::flush() { 444 // Updates to DT must happen before blocks are deleted below. Otherwise the 445 // DT traversal will encounter badref blocks and assert. 446 if (!PendUpdates.empty()) { 447 DT.applyUpdates(PendUpdates); 448 PendUpdates.clear(); 449 } 450 flushDelBB(); 451 return DT; 452 } 453 454 /// Drops all internal state and forces a (slow) recalculation of the 455 /// DominatorTree based on the current state of the LLVM IR in F. This should 456 /// only be used in corner cases such as the Entry block of F being deleted. 457 void DeferredDominance::recalculate(Function &F) { 458 // flushDelBB must be flushed before the recalculation. The state of the IR 459 // must be consistent before the DT traversal algorithm determines the 460 // actual DT. 461 if (flushDelBB() || !PendUpdates.empty()) { 462 DT.recalculate(F); 463 PendUpdates.clear(); 464 } 465 } 466 467 /// Debug method to help view the state of pending updates. 468 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 469 LLVM_DUMP_METHOD void DeferredDominance::dump() const { 470 raw_ostream &OS = llvm::dbgs(); 471 OS << "PendUpdates:\n"; 472 int I = 0; 473 for (auto U : PendUpdates) { 474 OS << " " << I << " : "; 475 ++I; 476 if (U.getKind() == DominatorTree::Insert) 477 OS << "Insert, "; 478 else 479 OS << "Delete, "; 480 BasicBlock *From = U.getFrom(); 481 if (From) { 482 auto S = From->getName(); 483 if (!From->hasName()) 484 S = "(no name)"; 485 OS << S << "(" << From << "), "; 486 } else { 487 OS << "(badref), "; 488 } 489 BasicBlock *To = U.getTo(); 490 if (To) { 491 auto S = To->getName(); 492 if (!To->hasName()) 493 S = "(no_name)"; 494 OS << S << "(" << To << ")\n"; 495 } else { 496 OS << "(badref)\n"; 497 } 498 } 499 OS << "DeletedBBs:\n"; 500 I = 0; 501 for (auto BB : DeletedBBs) { 502 OS << " " << I << " : "; 503 ++I; 504 if (BB->hasName()) 505 OS << BB->getName() << "("; 506 else 507 OS << "(no_name)("; 508 OS << BB << ")\n"; 509 } 510 } 511 #endif 512 513 /// Apply an update (Kind, From, To) to the internal queued updates. The 514 /// update is only added when determined to be necessary. Checks for 515 /// self-domination, unnecessary updates, duplicate requests, and balanced 516 /// pairs of requests are all performed. Returns true if the update is 517 /// queued and false if it is discarded. 518 bool DeferredDominance::applyUpdate(DominatorTree::UpdateKind Kind, 519 BasicBlock *From, BasicBlock *To) { 520 if (From == To) 521 return false; // Cannot dominate self; discard update. 522 523 // Discard updates by inspecting the current state of successors of From. 524 // Since applyUpdate() must be called *after* the Terminator of From is 525 // altered we can determine if the update is unnecessary. 526 bool HasEdge = std::any_of(succ_begin(From), succ_end(From), 527 [To](BasicBlock *B) { return B == To; }); 528 if (Kind == DominatorTree::Insert && !HasEdge) 529 return false; // Unnecessary Insert: edge does not exist in IR. 530 if (Kind == DominatorTree::Delete && HasEdge) 531 return false; // Unnecessary Delete: edge still exists in IR. 532 533 // Analyze pending updates to determine if the update is unnecessary. 534 DominatorTree::UpdateType Update = {Kind, From, To}; 535 DominatorTree::UpdateType Invert = {Kind != DominatorTree::Insert 536 ? DominatorTree::Insert 537 : DominatorTree::Delete, 538 From, To}; 539 for (auto I = PendUpdates.begin(), E = PendUpdates.end(); I != E; ++I) { 540 if (Update == *I) 541 return false; // Discard duplicate updates. 542 if (Invert == *I) { 543 // Update and Invert are both valid (equivalent to a no-op). Remove 544 // Invert from PendUpdates and discard the Update. 545 PendUpdates.erase(I); 546 return false; 547 } 548 } 549 PendUpdates.push_back(Update); // Save the valid update. 550 return true; 551 } 552 553 /// Performs all pending basic block deletions. We have to defer the deletion 554 /// of these blocks until after the DominatorTree updates are applied. The 555 /// internal workings of the DominatorTree code expect every update's From 556 /// and To blocks to exist and to be a member of the same Function. 557 bool DeferredDominance::flushDelBB() { 558 if (DeletedBBs.empty()) 559 return false; 560 for (auto *BB : DeletedBBs) 561 BB->eraseFromParent(); 562 DeletedBBs.clear(); 563 return true; 564 } 565