1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements simple dominator construction algorithms for finding 10 // forward dominators. Postdominators are available in libanalysis, but are not 11 // included in libvmcore, because it's not needed. Forward dominators are 12 // needed to support the Verifier pass. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/IR/Dominators.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Config/llvm-config.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/GenericDomTreeConstruction.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 bool llvm::VerifyDomInfo = false; 33 static cl::opt<bool, true> 34 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, 35 cl::desc("Verify dominator info (time consuming)")); 36 37 #ifdef EXPENSIVE_CHECKS 38 static constexpr bool ExpensiveChecksEnabled = true; 39 #else 40 static constexpr bool ExpensiveChecksEnabled = false; 41 #endif 42 43 bool BasicBlockEdge::isSingleEdge() const { 44 const Instruction *TI = Start->getTerminator(); 45 unsigned NumEdgesToEnd = 0; 46 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 47 if (TI->getSuccessor(i) == End) 48 ++NumEdgesToEnd; 49 if (NumEdgesToEnd >= 2) 50 return false; 51 } 52 assert(NumEdgesToEnd == 1); 53 return true; 54 } 55 56 //===----------------------------------------------------------------------===// 57 // DominatorTree Implementation 58 //===----------------------------------------------------------------------===// 59 // 60 // Provide public access to DominatorTree information. Implementation details 61 // can be found in Dominators.h, GenericDomTree.h, and 62 // GenericDomTreeConstruction.h. 63 // 64 //===----------------------------------------------------------------------===// 65 66 template class llvm::DomTreeNodeBase<BasicBlock>; 67 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase 68 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase 69 70 template class llvm::cfg::Update<BasicBlock *>; 71 72 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( 73 DomTreeBuilder::BBDomTree &DT); 74 template void 75 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>( 76 DomTreeBuilder::BBDomTree &DT, BBUpdates U); 77 78 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( 79 DomTreeBuilder::BBPostDomTree &DT); 80 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises. 81 82 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( 83 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 84 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( 85 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 86 87 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( 88 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 89 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( 90 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 91 92 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( 93 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates); 94 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( 95 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates); 96 97 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( 98 const DomTreeBuilder::BBDomTree &DT, 99 DomTreeBuilder::BBDomTree::VerificationLevel VL); 100 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( 101 const DomTreeBuilder::BBPostDomTree &DT, 102 DomTreeBuilder::BBPostDomTree::VerificationLevel VL); 103 104 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, 105 FunctionAnalysisManager::Invalidator &) { 106 // Check whether the analysis, all analyses on functions, or the function's 107 // CFG have been preserved. 108 auto PAC = PA.getChecker<DominatorTreeAnalysis>(); 109 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 110 PAC.preservedSet<CFGAnalyses>()); 111 } 112 113 // dominates - Return true if Def dominates a use in User. This performs 114 // the special checks necessary if Def and User are in the same basic block. 115 // Note that Def doesn't dominate a use in Def itself! 116 bool DominatorTree::dominates(const Instruction *Def, 117 const Instruction *User) const { 118 const BasicBlock *UseBB = User->getParent(); 119 const BasicBlock *DefBB = Def->getParent(); 120 121 // Any unreachable use is dominated, even if Def == User. 122 if (!isReachableFromEntry(UseBB)) 123 return true; 124 125 // Unreachable definitions don't dominate anything. 126 if (!isReachableFromEntry(DefBB)) 127 return false; 128 129 // An instruction doesn't dominate a use in itself. 130 if (Def == User) 131 return false; 132 133 // The value defined by an invoke dominates an instruction only if it 134 // dominates every instruction in UseBB. 135 // A PHI is dominated only if the instruction dominates every possible use in 136 // the UseBB. 137 if (isa<InvokeInst>(Def) || isa<PHINode>(User)) 138 return dominates(Def, UseBB); 139 140 if (DefBB != UseBB) 141 return dominates(DefBB, UseBB); 142 143 return Def->comesBefore(User); 144 } 145 146 // true if Def would dominate a use in any instruction in UseBB. 147 // note that dominates(Def, Def->getParent()) is false. 148 bool DominatorTree::dominates(const Instruction *Def, 149 const BasicBlock *UseBB) const { 150 const BasicBlock *DefBB = Def->getParent(); 151 152 // Any unreachable use is dominated, even if DefBB == UseBB. 153 if (!isReachableFromEntry(UseBB)) 154 return true; 155 156 // Unreachable definitions don't dominate anything. 157 if (!isReachableFromEntry(DefBB)) 158 return false; 159 160 if (DefBB == UseBB) 161 return false; 162 163 // Invoke results are only usable in the normal destination, not in the 164 // exceptional destination. 165 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 166 BasicBlock *NormalDest = II->getNormalDest(); 167 BasicBlockEdge E(DefBB, NormalDest); 168 return dominates(E, UseBB); 169 } 170 171 return dominates(DefBB, UseBB); 172 } 173 174 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 175 const BasicBlock *UseBB) const { 176 // If the BB the edge ends in doesn't dominate the use BB, then the 177 // edge also doesn't. 178 const BasicBlock *Start = BBE.getStart(); 179 const BasicBlock *End = BBE.getEnd(); 180 if (!dominates(End, UseBB)) 181 return false; 182 183 // Simple case: if the end BB has a single predecessor, the fact that it 184 // dominates the use block implies that the edge also does. 185 if (End->getSinglePredecessor()) 186 return true; 187 188 // The normal edge from the invoke is critical. Conceptually, what we would 189 // like to do is split it and check if the new block dominates the use. 190 // With X being the new block, the graph would look like: 191 // 192 // DefBB 193 // /\ . . 194 // / \ . . 195 // / \ . . 196 // / \ | | 197 // A X B C 198 // | \ | / 199 // . \|/ 200 // . NormalDest 201 // . 202 // 203 // Given the definition of dominance, NormalDest is dominated by X iff X 204 // dominates all of NormalDest's predecessors (X, B, C in the example). X 205 // trivially dominates itself, so we only have to find if it dominates the 206 // other predecessors. Since the only way out of X is via NormalDest, X can 207 // only properly dominate a node if NormalDest dominates that node too. 208 int IsDuplicateEdge = 0; 209 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); 210 PI != E; ++PI) { 211 const BasicBlock *BB = *PI; 212 if (BB == Start) { 213 // If there are multiple edges between Start and End, by definition they 214 // can't dominate anything. 215 if (IsDuplicateEdge++) 216 return false; 217 continue; 218 } 219 220 if (!dominates(End, BB)) 221 return false; 222 } 223 return true; 224 } 225 226 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 227 Instruction *UserInst = cast<Instruction>(U.getUser()); 228 // A PHI in the end of the edge is dominated by it. 229 PHINode *PN = dyn_cast<PHINode>(UserInst); 230 if (PN && PN->getParent() == BBE.getEnd() && 231 PN->getIncomingBlock(U) == BBE.getStart()) 232 return true; 233 234 // Otherwise use the edge-dominates-block query, which 235 // handles the crazy critical edge cases properly. 236 const BasicBlock *UseBB; 237 if (PN) 238 UseBB = PN->getIncomingBlock(U); 239 else 240 UseBB = UserInst->getParent(); 241 return dominates(BBE, UseBB); 242 } 243 244 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { 245 Instruction *UserInst = cast<Instruction>(U.getUser()); 246 const BasicBlock *DefBB = Def->getParent(); 247 248 // Determine the block in which the use happens. PHI nodes use 249 // their operands on edges; simulate this by thinking of the use 250 // happening at the end of the predecessor block. 251 const BasicBlock *UseBB; 252 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 253 UseBB = PN->getIncomingBlock(U); 254 else 255 UseBB = UserInst->getParent(); 256 257 // Any unreachable use is dominated, even if Def == User. 258 if (!isReachableFromEntry(UseBB)) 259 return true; 260 261 // Unreachable definitions don't dominate anything. 262 if (!isReachableFromEntry(DefBB)) 263 return false; 264 265 // Invoke instructions define their return values on the edges to their normal 266 // successors, so we have to handle them specially. 267 // Among other things, this means they don't dominate anything in 268 // their own block, except possibly a phi, so we don't need to 269 // walk the block in any case. 270 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 271 BasicBlock *NormalDest = II->getNormalDest(); 272 BasicBlockEdge E(DefBB, NormalDest); 273 return dominates(E, U); 274 } 275 276 // If the def and use are in different blocks, do a simple CFG dominator 277 // tree query. 278 if (DefBB != UseBB) 279 return dominates(DefBB, UseBB); 280 281 // Ok, def and use are in the same block. If the def is an invoke, it 282 // doesn't dominate anything in the block. If it's a PHI, it dominates 283 // everything in the block. 284 if (isa<PHINode>(UserInst)) 285 return true; 286 287 return Def->comesBefore(UserInst); 288 } 289 290 bool DominatorTree::isReachableFromEntry(const Use &U) const { 291 Instruction *I = dyn_cast<Instruction>(U.getUser()); 292 293 // ConstantExprs aren't really reachable from the entry block, but they 294 // don't need to be treated like unreachable code either. 295 if (!I) return true; 296 297 // PHI nodes use their operands on their incoming edges. 298 if (PHINode *PN = dyn_cast<PHINode>(I)) 299 return isReachableFromEntry(PN->getIncomingBlock(U)); 300 301 // Everything else uses their operands in their own block. 302 return isReachableFromEntry(I->getParent()); 303 } 304 305 //===----------------------------------------------------------------------===// 306 // DominatorTreeAnalysis and related pass implementations 307 //===----------------------------------------------------------------------===// 308 // 309 // This implements the DominatorTreeAnalysis which is used with the new pass 310 // manager. It also implements some methods from utility passes. 311 // 312 //===----------------------------------------------------------------------===// 313 314 DominatorTree DominatorTreeAnalysis::run(Function &F, 315 FunctionAnalysisManager &) { 316 DominatorTree DT; 317 DT.recalculate(F); 318 return DT; 319 } 320 321 AnalysisKey DominatorTreeAnalysis::Key; 322 323 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 324 325 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 326 FunctionAnalysisManager &AM) { 327 OS << "DominatorTree for function: " << F.getName() << "\n"; 328 AM.getResult<DominatorTreeAnalysis>(F).print(OS); 329 330 return PreservedAnalyses::all(); 331 } 332 333 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 334 FunctionAnalysisManager &AM) { 335 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 336 assert(DT.verify()); 337 (void)DT; 338 return PreservedAnalyses::all(); 339 } 340 341 //===----------------------------------------------------------------------===// 342 // DominatorTreeWrapperPass Implementation 343 //===----------------------------------------------------------------------===// 344 // 345 // The implementation details of the wrapper pass that holds a DominatorTree 346 // suitable for use with the legacy pass manager. 347 // 348 //===----------------------------------------------------------------------===// 349 350 char DominatorTreeWrapperPass::ID = 0; 351 352 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) { 353 initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry()); 354 } 355 356 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 357 "Dominator Tree Construction", true, true) 358 359 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 360 DT.recalculate(F); 361 return false; 362 } 363 364 void DominatorTreeWrapperPass::verifyAnalysis() const { 365 if (VerifyDomInfo) 366 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 367 else if (ExpensiveChecksEnabled) 368 assert(DT.verify(DominatorTree::VerificationLevel::Basic)); 369 } 370 371 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 372 DT.print(OS); 373 } 374 375