1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements simple dominator construction algorithms for finding 11 // forward dominators. Postdominators are available in libanalysis, but are not 12 // included in libvmcore, because it's not needed. Forward dominators are 13 // needed to support the Verifier pass. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/IR/Dominators.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Compiler.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/GenericDomTreeConstruction.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 // Always verify dominfo if expensive checking is enabled. 33 #ifdef XDEBUG 34 static bool VerifyDomInfo = true; 35 #else 36 static bool VerifyDomInfo = false; 37 #endif 38 static cl::opt<bool,true> 39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), 40 cl::desc("Verify dominator info (time consuming)")); 41 42 bool BasicBlockEdge::isSingleEdge() const { 43 const TerminatorInst *TI = Start->getTerminator(); 44 unsigned NumEdgesToEnd = 0; 45 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 46 if (TI->getSuccessor(i) == End) 47 ++NumEdgesToEnd; 48 if (NumEdgesToEnd >= 2) 49 return false; 50 } 51 assert(NumEdgesToEnd == 1); 52 return true; 53 } 54 55 //===----------------------------------------------------------------------===// 56 // DominatorTree Implementation 57 //===----------------------------------------------------------------------===// 58 // 59 // Provide public access to DominatorTree information. Implementation details 60 // can be found in Dominators.h, GenericDomTree.h, and 61 // GenericDomTreeConstruction.h. 62 // 63 //===----------------------------------------------------------------------===// 64 65 template class llvm::DomTreeNodeBase<BasicBlock>; 66 template class llvm::DominatorTreeBase<BasicBlock>; 67 68 template void llvm::Calculate<Function, BasicBlock *>( 69 DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F); 70 template void llvm::Calculate<Function, Inverse<BasicBlock *>>( 71 DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT, 72 Function &F); 73 74 // dominates - Return true if Def dominates a use in User. This performs 75 // the special checks necessary if Def and User are in the same basic block. 76 // Note that Def doesn't dominate a use in Def itself! 77 bool DominatorTree::dominates(const Instruction *Def, 78 const Instruction *User) const { 79 const BasicBlock *UseBB = User->getParent(); 80 const BasicBlock *DefBB = Def->getParent(); 81 82 // Any unreachable use is dominated, even if Def == User. 83 if (!isReachableFromEntry(UseBB)) 84 return true; 85 86 // Unreachable definitions don't dominate anything. 87 if (!isReachableFromEntry(DefBB)) 88 return false; 89 90 // An instruction doesn't dominate a use in itself. 91 if (Def == User) 92 return false; 93 94 // The value defined by an invoke/catchpad dominates an instruction only if 95 // it dominates every instruction in UseBB. 96 // A PHI is dominated only if the instruction dominates every possible use 97 // in the UseBB. 98 if (isa<InvokeInst>(Def) || isa<CatchPadInst>(Def) || isa<PHINode>(User)) 99 return dominates(Def, UseBB); 100 101 if (DefBB != UseBB) 102 return dominates(DefBB, UseBB); 103 104 // Loop through the basic block until we find Def or User. 105 BasicBlock::const_iterator I = DefBB->begin(); 106 for (; &*I != Def && &*I != User; ++I) 107 /*empty*/; 108 109 return &*I == Def; 110 } 111 112 // true if Def would dominate a use in any instruction in UseBB. 113 // note that dominates(Def, Def->getParent()) is false. 114 bool DominatorTree::dominates(const Instruction *Def, 115 const BasicBlock *UseBB) const { 116 const BasicBlock *DefBB = Def->getParent(); 117 118 // Any unreachable use is dominated, even if DefBB == UseBB. 119 if (!isReachableFromEntry(UseBB)) 120 return true; 121 122 // Unreachable definitions don't dominate anything. 123 if (!isReachableFromEntry(DefBB)) 124 return false; 125 126 if (DefBB == UseBB) 127 return false; 128 129 // Invoke/CatchPad results are only usable in the normal destination, not in 130 // the exceptional destination. 131 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 132 BasicBlock *NormalDest = II->getNormalDest(); 133 BasicBlockEdge E(DefBB, NormalDest); 134 return dominates(E, UseBB); 135 } 136 if (const auto *CPI = dyn_cast<CatchPadInst>(Def)) { 137 BasicBlock *NormalDest = CPI->getNormalDest(); 138 BasicBlockEdge E(DefBB, NormalDest); 139 return dominates(E, UseBB); 140 } 141 142 return dominates(DefBB, UseBB); 143 } 144 145 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 146 const BasicBlock *UseBB) const { 147 // Assert that we have a single edge. We could handle them by simply 148 // returning false, but since isSingleEdge is linear on the number of 149 // edges, the callers can normally handle them more efficiently. 150 assert(BBE.isSingleEdge() && 151 "This function is not efficient in handling multiple edges"); 152 153 // If the BB the edge ends in doesn't dominate the use BB, then the 154 // edge also doesn't. 155 const BasicBlock *Start = BBE.getStart(); 156 const BasicBlock *End = BBE.getEnd(); 157 if (!dominates(End, UseBB)) 158 return false; 159 160 // Simple case: if the end BB has a single predecessor, the fact that it 161 // dominates the use block implies that the edge also does. 162 if (End->getSinglePredecessor()) 163 return true; 164 165 // The normal edge from the invoke is critical. Conceptually, what we would 166 // like to do is split it and check if the new block dominates the use. 167 // With X being the new block, the graph would look like: 168 // 169 // DefBB 170 // /\ . . 171 // / \ . . 172 // / \ . . 173 // / \ | | 174 // A X B C 175 // | \ | / 176 // . \|/ 177 // . NormalDest 178 // . 179 // 180 // Given the definition of dominance, NormalDest is dominated by X iff X 181 // dominates all of NormalDest's predecessors (X, B, C in the example). X 182 // trivially dominates itself, so we only have to find if it dominates the 183 // other predecessors. Since the only way out of X is via NormalDest, X can 184 // only properly dominate a node if NormalDest dominates that node too. 185 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); 186 PI != E; ++PI) { 187 const BasicBlock *BB = *PI; 188 if (BB == Start) 189 continue; 190 191 if (!dominates(End, BB)) 192 return false; 193 } 194 return true; 195 } 196 197 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 198 // Assert that we have a single edge. We could handle them by simply 199 // returning false, but since isSingleEdge is linear on the number of 200 // edges, the callers can normally handle them more efficiently. 201 assert(BBE.isSingleEdge() && 202 "This function is not efficient in handling multiple edges"); 203 204 Instruction *UserInst = cast<Instruction>(U.getUser()); 205 // A PHI in the end of the edge is dominated by it. 206 PHINode *PN = dyn_cast<PHINode>(UserInst); 207 if (PN && PN->getParent() == BBE.getEnd() && 208 PN->getIncomingBlock(U) == BBE.getStart()) 209 return true; 210 211 // Otherwise use the edge-dominates-block query, which 212 // handles the crazy critical edge cases properly. 213 const BasicBlock *UseBB; 214 if (PN) 215 UseBB = PN->getIncomingBlock(U); 216 else 217 UseBB = UserInst->getParent(); 218 return dominates(BBE, UseBB); 219 } 220 221 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { 222 Instruction *UserInst = cast<Instruction>(U.getUser()); 223 const BasicBlock *DefBB = Def->getParent(); 224 225 // Determine the block in which the use happens. PHI nodes use 226 // their operands on edges; simulate this by thinking of the use 227 // happening at the end of the predecessor block. 228 const BasicBlock *UseBB; 229 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 230 UseBB = PN->getIncomingBlock(U); 231 else 232 UseBB = UserInst->getParent(); 233 234 // Any unreachable use is dominated, even if Def == User. 235 if (!isReachableFromEntry(UseBB)) 236 return true; 237 238 // Unreachable definitions don't dominate anything. 239 if (!isReachableFromEntry(DefBB)) 240 return false; 241 242 // Invoke/CatchPad instructions define their return values on the edges 243 // to their normal successors, so we have to handle them specially. 244 // Among other things, this means they don't dominate anything in 245 // their own block, except possibly a phi, so we don't need to 246 // walk the block in any case. 247 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 248 BasicBlock *NormalDest = II->getNormalDest(); 249 BasicBlockEdge E(DefBB, NormalDest); 250 return dominates(E, U); 251 } 252 if (const auto *CPI = dyn_cast<CatchPadInst>(Def)) { 253 BasicBlock *NormalDest = CPI->getNormalDest(); 254 BasicBlockEdge E(DefBB, NormalDest); 255 return dominates(E, U); 256 } 257 258 // If the def and use are in different blocks, do a simple CFG dominator 259 // tree query. 260 if (DefBB != UseBB) 261 return dominates(DefBB, UseBB); 262 263 // Ok, def and use are in the same block. If the def is an invoke, it 264 // doesn't dominate anything in the block. If it's a PHI, it dominates 265 // everything in the block. 266 if (isa<PHINode>(UserInst)) 267 return true; 268 269 // Otherwise, just loop through the basic block until we find Def or User. 270 BasicBlock::const_iterator I = DefBB->begin(); 271 for (; &*I != Def && &*I != UserInst; ++I) 272 /*empty*/; 273 274 return &*I != UserInst; 275 } 276 277 bool DominatorTree::isReachableFromEntry(const Use &U) const { 278 Instruction *I = dyn_cast<Instruction>(U.getUser()); 279 280 // ConstantExprs aren't really reachable from the entry block, but they 281 // don't need to be treated like unreachable code either. 282 if (!I) return true; 283 284 // PHI nodes use their operands on their incoming edges. 285 if (PHINode *PN = dyn_cast<PHINode>(I)) 286 return isReachableFromEntry(PN->getIncomingBlock(U)); 287 288 // Everything else uses their operands in their own block. 289 return isReachableFromEntry(I->getParent()); 290 } 291 292 void DominatorTree::verifyDomTree() const { 293 Function &F = *getRoot()->getParent(); 294 295 DominatorTree OtherDT; 296 OtherDT.recalculate(F); 297 if (compare(OtherDT)) { 298 errs() << "DominatorTree is not up to date!\nComputed:\n"; 299 print(errs()); 300 errs() << "\nActual:\n"; 301 OtherDT.print(errs()); 302 abort(); 303 } 304 } 305 306 //===----------------------------------------------------------------------===// 307 // DominatorTreeAnalysis and related pass implementations 308 //===----------------------------------------------------------------------===// 309 // 310 // This implements the DominatorTreeAnalysis which is used with the new pass 311 // manager. It also implements some methods from utility passes. 312 // 313 //===----------------------------------------------------------------------===// 314 315 DominatorTree DominatorTreeAnalysis::run(Function &F) { 316 DominatorTree DT; 317 DT.recalculate(F); 318 return DT; 319 } 320 321 char DominatorTreeAnalysis::PassID; 322 323 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 324 325 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 326 FunctionAnalysisManager *AM) { 327 OS << "DominatorTree for function: " << F.getName() << "\n"; 328 AM->getResult<DominatorTreeAnalysis>(F).print(OS); 329 330 return PreservedAnalyses::all(); 331 } 332 333 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 334 FunctionAnalysisManager *AM) { 335 AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree(); 336 337 return PreservedAnalyses::all(); 338 } 339 340 //===----------------------------------------------------------------------===// 341 // DominatorTreeWrapperPass Implementation 342 //===----------------------------------------------------------------------===// 343 // 344 // The implementation details of the wrapper pass that holds a DominatorTree 345 // suitable for use with the legacy pass manager. 346 // 347 //===----------------------------------------------------------------------===// 348 349 char DominatorTreeWrapperPass::ID = 0; 350 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 351 "Dominator Tree Construction", true, true) 352 353 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 354 DT.recalculate(F); 355 return false; 356 } 357 358 void DominatorTreeWrapperPass::verifyAnalysis() const { 359 if (VerifyDomInfo) 360 DT.verifyDomTree(); 361 } 362 363 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 364 DT.print(OS); 365 } 366 367