1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements simple dominator construction algorithms for finding 11 // forward dominators. Postdominators are available in libanalysis, but are not 12 // included in libvmcore, because it's not needed. Forward dominators are 13 // needed to support the Verifier pass. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/IR/Dominators.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/GenericDomTreeConstruction.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 using namespace llvm; 30 31 bool llvm::VerifyDomInfo = false; 32 static cl::opt<bool, true> 33 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, 34 cl::desc("Verify dominator info (time consuming)")); 35 36 #ifdef EXPENSIVE_CHECKS 37 static constexpr bool ExpensiveChecksEnabled = true; 38 #else 39 static constexpr bool ExpensiveChecksEnabled = false; 40 #endif 41 42 bool BasicBlockEdge::isSingleEdge() const { 43 const TerminatorInst *TI = Start->getTerminator(); 44 unsigned NumEdgesToEnd = 0; 45 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 46 if (TI->getSuccessor(i) == End) 47 ++NumEdgesToEnd; 48 if (NumEdgesToEnd >= 2) 49 return false; 50 } 51 assert(NumEdgesToEnd == 1); 52 return true; 53 } 54 55 //===----------------------------------------------------------------------===// 56 // DominatorTree Implementation 57 //===----------------------------------------------------------------------===// 58 // 59 // Provide public access to DominatorTree information. Implementation details 60 // can be found in Dominators.h, GenericDomTree.h, and 61 // GenericDomTreeConstruction.h. 62 // 63 //===----------------------------------------------------------------------===// 64 65 template class llvm::DomTreeNodeBase<BasicBlock>; 66 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase 67 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase 68 69 template struct llvm::DomTreeBuilder::Update<BasicBlock *>; 70 71 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( 72 DomTreeBuilder::BBDomTree &DT); 73 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( 74 DomTreeBuilder::BBPostDomTree &DT); 75 76 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( 77 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 78 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( 79 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 80 81 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( 82 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 83 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( 84 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 85 86 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( 87 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates); 88 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( 89 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates); 90 91 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( 92 const DomTreeBuilder::BBDomTree &DT, 93 DomTreeBuilder::BBDomTree::VerificationLevel VL); 94 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( 95 const DomTreeBuilder::BBPostDomTree &DT, 96 DomTreeBuilder::BBPostDomTree::VerificationLevel VL); 97 98 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, 99 FunctionAnalysisManager::Invalidator &) { 100 // Check whether the analysis, all analyses on functions, or the function's 101 // CFG have been preserved. 102 auto PAC = PA.getChecker<DominatorTreeAnalysis>(); 103 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 104 PAC.preservedSet<CFGAnalyses>()); 105 } 106 107 // dominates - Return true if Def dominates a use in User. This performs 108 // the special checks necessary if Def and User are in the same basic block. 109 // Note that Def doesn't dominate a use in Def itself! 110 bool DominatorTree::dominates(const Instruction *Def, 111 const Instruction *User) const { 112 const BasicBlock *UseBB = User->getParent(); 113 const BasicBlock *DefBB = Def->getParent(); 114 115 // Any unreachable use is dominated, even if Def == User. 116 if (!isReachableFromEntry(UseBB)) 117 return true; 118 119 // Unreachable definitions don't dominate anything. 120 if (!isReachableFromEntry(DefBB)) 121 return false; 122 123 // An instruction doesn't dominate a use in itself. 124 if (Def == User) 125 return false; 126 127 // The value defined by an invoke dominates an instruction only if it 128 // dominates every instruction in UseBB. 129 // A PHI is dominated only if the instruction dominates every possible use in 130 // the UseBB. 131 if (isa<InvokeInst>(Def) || isa<PHINode>(User)) 132 return dominates(Def, UseBB); 133 134 if (DefBB != UseBB) 135 return dominates(DefBB, UseBB); 136 137 // Loop through the basic block until we find Def or User. 138 BasicBlock::const_iterator I = DefBB->begin(); 139 for (; &*I != Def && &*I != User; ++I) 140 /*empty*/; 141 142 return &*I == Def; 143 } 144 145 // true if Def would dominate a use in any instruction in UseBB. 146 // note that dominates(Def, Def->getParent()) is false. 147 bool DominatorTree::dominates(const Instruction *Def, 148 const BasicBlock *UseBB) const { 149 const BasicBlock *DefBB = Def->getParent(); 150 151 // Any unreachable use is dominated, even if DefBB == UseBB. 152 if (!isReachableFromEntry(UseBB)) 153 return true; 154 155 // Unreachable definitions don't dominate anything. 156 if (!isReachableFromEntry(DefBB)) 157 return false; 158 159 if (DefBB == UseBB) 160 return false; 161 162 // Invoke results are only usable in the normal destination, not in the 163 // exceptional destination. 164 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 165 BasicBlock *NormalDest = II->getNormalDest(); 166 BasicBlockEdge E(DefBB, NormalDest); 167 return dominates(E, UseBB); 168 } 169 170 return dominates(DefBB, UseBB); 171 } 172 173 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 174 const BasicBlock *UseBB) const { 175 // If the BB the edge ends in doesn't dominate the use BB, then the 176 // edge also doesn't. 177 const BasicBlock *Start = BBE.getStart(); 178 const BasicBlock *End = BBE.getEnd(); 179 if (!dominates(End, UseBB)) 180 return false; 181 182 // Simple case: if the end BB has a single predecessor, the fact that it 183 // dominates the use block implies that the edge also does. 184 if (End->getSinglePredecessor()) 185 return true; 186 187 // The normal edge from the invoke is critical. Conceptually, what we would 188 // like to do is split it and check if the new block dominates the use. 189 // With X being the new block, the graph would look like: 190 // 191 // DefBB 192 // /\ . . 193 // / \ . . 194 // / \ . . 195 // / \ | | 196 // A X B C 197 // | \ | / 198 // . \|/ 199 // . NormalDest 200 // . 201 // 202 // Given the definition of dominance, NormalDest is dominated by X iff X 203 // dominates all of NormalDest's predecessors (X, B, C in the example). X 204 // trivially dominates itself, so we only have to find if it dominates the 205 // other predecessors. Since the only way out of X is via NormalDest, X can 206 // only properly dominate a node if NormalDest dominates that node too. 207 int IsDuplicateEdge = 0; 208 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); 209 PI != E; ++PI) { 210 const BasicBlock *BB = *PI; 211 if (BB == Start) { 212 // If there are multiple edges between Start and End, by definition they 213 // can't dominate anything. 214 if (IsDuplicateEdge++) 215 return false; 216 continue; 217 } 218 219 if (!dominates(End, BB)) 220 return false; 221 } 222 return true; 223 } 224 225 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 226 Instruction *UserInst = cast<Instruction>(U.getUser()); 227 // A PHI in the end of the edge is dominated by it. 228 PHINode *PN = dyn_cast<PHINode>(UserInst); 229 if (PN && PN->getParent() == BBE.getEnd() && 230 PN->getIncomingBlock(U) == BBE.getStart()) 231 return true; 232 233 // Otherwise use the edge-dominates-block query, which 234 // handles the crazy critical edge cases properly. 235 const BasicBlock *UseBB; 236 if (PN) 237 UseBB = PN->getIncomingBlock(U); 238 else 239 UseBB = UserInst->getParent(); 240 return dominates(BBE, UseBB); 241 } 242 243 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { 244 Instruction *UserInst = cast<Instruction>(U.getUser()); 245 const BasicBlock *DefBB = Def->getParent(); 246 247 // Determine the block in which the use happens. PHI nodes use 248 // their operands on edges; simulate this by thinking of the use 249 // happening at the end of the predecessor block. 250 const BasicBlock *UseBB; 251 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 252 UseBB = PN->getIncomingBlock(U); 253 else 254 UseBB = UserInst->getParent(); 255 256 // Any unreachable use is dominated, even if Def == User. 257 if (!isReachableFromEntry(UseBB)) 258 return true; 259 260 // Unreachable definitions don't dominate anything. 261 if (!isReachableFromEntry(DefBB)) 262 return false; 263 264 // Invoke instructions define their return values on the edges to their normal 265 // successors, so we have to handle them specially. 266 // Among other things, this means they don't dominate anything in 267 // their own block, except possibly a phi, so we don't need to 268 // walk the block in any case. 269 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 270 BasicBlock *NormalDest = II->getNormalDest(); 271 BasicBlockEdge E(DefBB, NormalDest); 272 return dominates(E, U); 273 } 274 275 // If the def and use are in different blocks, do a simple CFG dominator 276 // tree query. 277 if (DefBB != UseBB) 278 return dominates(DefBB, UseBB); 279 280 // Ok, def and use are in the same block. If the def is an invoke, it 281 // doesn't dominate anything in the block. If it's a PHI, it dominates 282 // everything in the block. 283 if (isa<PHINode>(UserInst)) 284 return true; 285 286 // Otherwise, just loop through the basic block until we find Def or User. 287 BasicBlock::const_iterator I = DefBB->begin(); 288 for (; &*I != Def && &*I != UserInst; ++I) 289 /*empty*/; 290 291 return &*I != UserInst; 292 } 293 294 bool DominatorTree::isReachableFromEntry(const Use &U) const { 295 Instruction *I = dyn_cast<Instruction>(U.getUser()); 296 297 // ConstantExprs aren't really reachable from the entry block, but they 298 // don't need to be treated like unreachable code either. 299 if (!I) return true; 300 301 // PHI nodes use their operands on their incoming edges. 302 if (PHINode *PN = dyn_cast<PHINode>(I)) 303 return isReachableFromEntry(PN->getIncomingBlock(U)); 304 305 // Everything else uses their operands in their own block. 306 return isReachableFromEntry(I->getParent()); 307 } 308 309 //===----------------------------------------------------------------------===// 310 // DominatorTreeAnalysis and related pass implementations 311 //===----------------------------------------------------------------------===// 312 // 313 // This implements the DominatorTreeAnalysis which is used with the new pass 314 // manager. It also implements some methods from utility passes. 315 // 316 //===----------------------------------------------------------------------===// 317 318 DominatorTree DominatorTreeAnalysis::run(Function &F, 319 FunctionAnalysisManager &) { 320 DominatorTree DT; 321 DT.recalculate(F); 322 return DT; 323 } 324 325 AnalysisKey DominatorTreeAnalysis::Key; 326 327 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 328 329 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 330 FunctionAnalysisManager &AM) { 331 OS << "DominatorTree for function: " << F.getName() << "\n"; 332 AM.getResult<DominatorTreeAnalysis>(F).print(OS); 333 334 return PreservedAnalyses::all(); 335 } 336 337 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 338 FunctionAnalysisManager &AM) { 339 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 340 assert(DT.verify()); 341 (void)DT; 342 return PreservedAnalyses::all(); 343 } 344 345 //===----------------------------------------------------------------------===// 346 // DominatorTreeWrapperPass Implementation 347 //===----------------------------------------------------------------------===// 348 // 349 // The implementation details of the wrapper pass that holds a DominatorTree 350 // suitable for use with the legacy pass manager. 351 // 352 //===----------------------------------------------------------------------===// 353 354 char DominatorTreeWrapperPass::ID = 0; 355 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 356 "Dominator Tree Construction", true, true) 357 358 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 359 DT.recalculate(F); 360 return false; 361 } 362 363 void DominatorTreeWrapperPass::verifyAnalysis() const { 364 if (VerifyDomInfo) 365 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 366 else if (ExpensiveChecksEnabled) 367 assert(DT.verify(DominatorTree::VerificationLevel::Basic)); 368 } 369 370 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 371 DT.print(OS); 372 } 373 374 //===----------------------------------------------------------------------===// 375 // DeferredDominance Implementation 376 //===----------------------------------------------------------------------===// 377 // 378 // The implementation details of the DeferredDominance class which allows 379 // one to queue updates to a DominatorTree. 380 // 381 //===----------------------------------------------------------------------===// 382 383 /// \brief Queues multiple updates and discards duplicates. 384 void DeferredDominance::applyUpdates( 385 ArrayRef<DominatorTree::UpdateType> Updates) { 386 SmallVector<DominatorTree::UpdateType, 8> Seen; 387 for (auto U : Updates) 388 // Avoid duplicates to applyUpdate() to save on analysis. 389 if (std::none_of(Seen.begin(), Seen.end(), 390 [U](DominatorTree::UpdateType S) { return S == U; })) { 391 Seen.push_back(U); 392 applyUpdate(U.getKind(), U.getFrom(), U.getTo()); 393 } 394 } 395 396 /// \brief Helper method for a single edge insertion. It's almost always better 397 /// to batch updates and call applyUpdates to quickly remove duplicate edges. 398 /// This is best used when there is only a single insertion needed to update 399 /// Dominators. 400 void DeferredDominance::insertEdge(BasicBlock *From, BasicBlock *To) { 401 applyUpdate(DominatorTree::Insert, From, To); 402 } 403 404 /// \brief Helper method for a single edge deletion. It's almost always better 405 /// to batch updates and call applyUpdates to quickly remove duplicate edges. 406 /// This is best used when there is only a single deletion needed to update 407 /// Dominators. 408 void DeferredDominance::deleteEdge(BasicBlock *From, BasicBlock *To) { 409 applyUpdate(DominatorTree::Delete, From, To); 410 } 411 412 /// \brief Delays the deletion of a basic block until a flush() event. 413 void DeferredDominance::deleteBB(BasicBlock *DelBB) { 414 assert(DelBB && "Invalid push_back of nullptr DelBB."); 415 assert(pred_empty(DelBB) && "DelBB has one or more predecessors."); 416 // DelBB is unreachable and all its instructions are dead. 417 while (!DelBB->empty()) { 418 Instruction &I = DelBB->back(); 419 // Replace used instructions with an arbitrary value (undef). 420 if (!I.use_empty()) 421 I.replaceAllUsesWith(llvm::UndefValue::get(I.getType())); 422 DelBB->getInstList().pop_back(); 423 } 424 // Make sure DelBB has a valid terminator instruction. As long as DelBB is a 425 // Child of Function F it must contain valid IR. 426 new UnreachableInst(DelBB->getContext(), DelBB); 427 DeletedBBs.insert(DelBB); 428 } 429 430 /// \brief Returns true if DelBB is awaiting deletion at a flush() event. 431 bool DeferredDominance::pendingDeletedBB(BasicBlock *DelBB) { 432 if (DeletedBBs.empty()) 433 return false; 434 return DeletedBBs.count(DelBB) != 0; 435 } 436 437 /// \brief Returns true if pending DT updates are queued for a flush() event. 438 bool DeferredDominance::pending() { return !PendUpdates.empty(); } 439 440 /// \brief Flushes all pending updates and block deletions. Returns a 441 /// correct DominatorTree reference to be used by the caller for analysis. 442 DominatorTree &DeferredDominance::flush() { 443 // Updates to DT must happen before blocks are deleted below. Otherwise the 444 // DT traversal will encounter badref blocks and assert. 445 if (!PendUpdates.empty()) { 446 DT.applyUpdates(PendUpdates); 447 PendUpdates.clear(); 448 } 449 flushDelBB(); 450 return DT; 451 } 452 453 /// \brief Drops all internal state and forces a (slow) recalculation of the 454 /// DominatorTree based on the current state of the LLVM IR in F. This should 455 /// only be used in corner cases such as the Entry block of F being deleted. 456 void DeferredDominance::recalculate(Function &F) { 457 // flushDelBB must be flushed before the recalculation. The state of the IR 458 // must be consistent before the DT traversal algorithm determines the 459 // actual DT. 460 if (flushDelBB() || !PendUpdates.empty()) { 461 DT.recalculate(F); 462 PendUpdates.clear(); 463 } 464 } 465 466 /// \brief Debug method to help view the state of pending updates. 467 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 468 LLVM_DUMP_METHOD void DeferredDominance::dump() const { 469 raw_ostream &OS = llvm::dbgs(); 470 OS << "PendUpdates:\n"; 471 int I = 0; 472 for (auto U : PendUpdates) { 473 OS << " " << I << " : "; 474 ++I; 475 if (U.getKind() == DominatorTree::Insert) 476 OS << "Insert, "; 477 else 478 OS << "Delete, "; 479 BasicBlock *From = U.getFrom(); 480 if (From) { 481 auto S = From->getName(); 482 if (!From->hasName()) 483 S = "(no name)"; 484 OS << S << "(" << From << "), "; 485 } else { 486 OS << "(badref), "; 487 } 488 BasicBlock *To = U.getTo(); 489 if (To) { 490 auto S = To->getName(); 491 if (!To->hasName()) 492 S = "(no_name)"; 493 OS << S << "(" << To << ")\n"; 494 } else { 495 OS << "(badref)\n"; 496 } 497 } 498 OS << "DeletedBBs:\n"; 499 I = 0; 500 for (auto BB : DeletedBBs) { 501 OS << " " << I << " : "; 502 ++I; 503 if (BB->hasName()) 504 OS << BB->getName() << "("; 505 else 506 OS << "(no_name)("; 507 OS << BB << ")\n"; 508 } 509 } 510 #endif 511 512 /// Apply an update (Kind, From, To) to the internal queued updates. The 513 /// update is only added when determined to be necessary. Checks for 514 /// self-domination, unnecessary updates, duplicate requests, and balanced 515 /// pairs of requests are all performed. Returns true if the update is 516 /// queued and false if it is discarded. 517 bool DeferredDominance::applyUpdate(DominatorTree::UpdateKind Kind, 518 BasicBlock *From, BasicBlock *To) { 519 if (From == To) 520 return false; // Cannot dominate self; discard update. 521 522 // Discard updates by inspecting the current state of successors of From. 523 // Since applyUpdate() must be called *after* the Terminator of From is 524 // altered we can determine if the update is unnecessary. 525 bool HasEdge = std::any_of(succ_begin(From), succ_end(From), 526 [To](BasicBlock *B) { return B == To; }); 527 if (Kind == DominatorTree::Insert && !HasEdge) 528 return false; // Unnecessary Insert: edge does not exist in IR. 529 if (Kind == DominatorTree::Delete && HasEdge) 530 return false; // Unnecessary Delete: edge still exists in IR. 531 532 // Analyze pending updates to determine if the update is unnecessary. 533 DominatorTree::UpdateType Update = {Kind, From, To}; 534 DominatorTree::UpdateType Invert = {Kind != DominatorTree::Insert 535 ? DominatorTree::Insert 536 : DominatorTree::Delete, 537 From, To}; 538 for (auto I = PendUpdates.begin(), E = PendUpdates.end(); I != E; ++I) { 539 if (Update == *I) 540 return false; // Discard duplicate updates. 541 if (Invert == *I) { 542 // Update and Invert are both valid (equivalent to a no-op). Remove 543 // Invert from PendUpdates and discard the Update. 544 PendUpdates.erase(I); 545 return false; 546 } 547 } 548 PendUpdates.push_back(Update); // Save the valid update. 549 return true; 550 } 551 552 /// Performs all pending basic block deletions. We have to defer the deletion 553 /// of these blocks until after the DominatorTree updates are applied. The 554 /// internal workings of the DominatorTree code expect every update's From 555 /// and To blocks to exist and to be a member of the same Function. 556 bool DeferredDominance::flushDelBB() { 557 if (DeletedBBs.empty()) 558 return false; 559 for (auto *BB : DeletedBBs) 560 BB->eraseFromParent(); 561 DeletedBBs.clear(); 562 return true; 563 } 564