1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements simple dominator construction algorithms for finding 11 // forward dominators. Postdominators are available in libanalysis, but are not 12 // included in libvmcore, because it's not needed. Forward dominators are 13 // needed to support the Verifier pass. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/IR/Dominators.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/PassManager.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/GenericDomTreeConstruction.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 using namespace llvm; 29 30 // Always verify dominfo if expensive checking is enabled. 31 #ifdef EXPENSIVE_CHECKS 32 bool llvm::VerifyDomInfo = true; 33 #else 34 bool llvm::VerifyDomInfo = false; 35 #endif 36 static cl::opt<bool,true> 37 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), 38 cl::desc("Verify dominator info (time consuming)")); 39 40 bool BasicBlockEdge::isSingleEdge() const { 41 const TerminatorInst *TI = Start->getTerminator(); 42 unsigned NumEdgesToEnd = 0; 43 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 44 if (TI->getSuccessor(i) == End) 45 ++NumEdgesToEnd; 46 if (NumEdgesToEnd >= 2) 47 return false; 48 } 49 assert(NumEdgesToEnd == 1); 50 return true; 51 } 52 53 //===----------------------------------------------------------------------===// 54 // DominatorTree Implementation 55 //===----------------------------------------------------------------------===// 56 // 57 // Provide public access to DominatorTree information. Implementation details 58 // can be found in Dominators.h, GenericDomTree.h, and 59 // GenericDomTreeConstruction.h. 60 // 61 //===----------------------------------------------------------------------===// 62 63 template class llvm::DomTreeNodeBase<BasicBlock>; 64 template class llvm::DominatorTreeBase<BasicBlock>; 65 66 template void llvm::Calculate<Function, BasicBlock *>( 67 DominatorTreeBase< 68 typename std::remove_pointer<GraphTraits<BasicBlock *>::NodeRef>::type> 69 &DT, 70 Function &F); 71 template void llvm::Calculate<Function, Inverse<BasicBlock *>>( 72 DominatorTreeBase<typename std::remove_pointer< 73 GraphTraits<Inverse<BasicBlock *>>::NodeRef>::type> &DT, 74 Function &F); 75 76 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, 77 FunctionAnalysisManager::Invalidator &) { 78 // Check whether the analysis, all analyses on functions, or the function's 79 // CFG have been preserved. 80 auto PAC = PA.getChecker<DominatorTreeAnalysis>(); 81 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 82 PAC.preservedSet<CFGAnalyses>()); 83 } 84 85 // dominates - Return true if Def dominates a use in User. This performs 86 // the special checks necessary if Def and User are in the same basic block. 87 // Note that Def doesn't dominate a use in Def itself! 88 bool DominatorTree::dominates(const Instruction *Def, 89 const Instruction *User) const { 90 const BasicBlock *UseBB = User->getParent(); 91 const BasicBlock *DefBB = Def->getParent(); 92 93 // Any unreachable use is dominated, even if Def == User. 94 if (!isReachableFromEntry(UseBB)) 95 return true; 96 97 // Unreachable definitions don't dominate anything. 98 if (!isReachableFromEntry(DefBB)) 99 return false; 100 101 // An instruction doesn't dominate a use in itself. 102 if (Def == User) 103 return false; 104 105 // The value defined by an invoke dominates an instruction only if it 106 // dominates every instruction in UseBB. 107 // A PHI is dominated only if the instruction dominates every possible use in 108 // the UseBB. 109 if (isa<InvokeInst>(Def) || isa<PHINode>(User)) 110 return dominates(Def, UseBB); 111 112 if (DefBB != UseBB) 113 return dominates(DefBB, UseBB); 114 115 // Loop through the basic block until we find Def or User. 116 BasicBlock::const_iterator I = DefBB->begin(); 117 for (; &*I != Def && &*I != User; ++I) 118 /*empty*/; 119 120 return &*I == Def; 121 } 122 123 // true if Def would dominate a use in any instruction in UseBB. 124 // note that dominates(Def, Def->getParent()) is false. 125 bool DominatorTree::dominates(const Instruction *Def, 126 const BasicBlock *UseBB) const { 127 const BasicBlock *DefBB = Def->getParent(); 128 129 // Any unreachable use is dominated, even if DefBB == UseBB. 130 if (!isReachableFromEntry(UseBB)) 131 return true; 132 133 // Unreachable definitions don't dominate anything. 134 if (!isReachableFromEntry(DefBB)) 135 return false; 136 137 if (DefBB == UseBB) 138 return false; 139 140 // Invoke results are only usable in the normal destination, not in the 141 // exceptional destination. 142 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 143 BasicBlock *NormalDest = II->getNormalDest(); 144 BasicBlockEdge E(DefBB, NormalDest); 145 return dominates(E, UseBB); 146 } 147 148 return dominates(DefBB, UseBB); 149 } 150 151 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 152 const BasicBlock *UseBB) const { 153 // Assert that we have a single edge. We could handle them by simply 154 // returning false, but since isSingleEdge is linear on the number of 155 // edges, the callers can normally handle them more efficiently. 156 assert(BBE.isSingleEdge() && 157 "This function is not efficient in handling multiple edges"); 158 159 // If the BB the edge ends in doesn't dominate the use BB, then the 160 // edge also doesn't. 161 const BasicBlock *Start = BBE.getStart(); 162 const BasicBlock *End = BBE.getEnd(); 163 if (!dominates(End, UseBB)) 164 return false; 165 166 // Simple case: if the end BB has a single predecessor, the fact that it 167 // dominates the use block implies that the edge also does. 168 if (End->getSinglePredecessor()) 169 return true; 170 171 // The normal edge from the invoke is critical. Conceptually, what we would 172 // like to do is split it and check if the new block dominates the use. 173 // With X being the new block, the graph would look like: 174 // 175 // DefBB 176 // /\ . . 177 // / \ . . 178 // / \ . . 179 // / \ | | 180 // A X B C 181 // | \ | / 182 // . \|/ 183 // . NormalDest 184 // . 185 // 186 // Given the definition of dominance, NormalDest is dominated by X iff X 187 // dominates all of NormalDest's predecessors (X, B, C in the example). X 188 // trivially dominates itself, so we only have to find if it dominates the 189 // other predecessors. Since the only way out of X is via NormalDest, X can 190 // only properly dominate a node if NormalDest dominates that node too. 191 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); 192 PI != E; ++PI) { 193 const BasicBlock *BB = *PI; 194 if (BB == Start) 195 continue; 196 197 if (!dominates(End, BB)) 198 return false; 199 } 200 return true; 201 } 202 203 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 204 // Assert that we have a single edge. We could handle them by simply 205 // returning false, but since isSingleEdge is linear on the number of 206 // edges, the callers can normally handle them more efficiently. 207 assert(BBE.isSingleEdge() && 208 "This function is not efficient in handling multiple edges"); 209 210 Instruction *UserInst = cast<Instruction>(U.getUser()); 211 // A PHI in the end of the edge is dominated by it. 212 PHINode *PN = dyn_cast<PHINode>(UserInst); 213 if (PN && PN->getParent() == BBE.getEnd() && 214 PN->getIncomingBlock(U) == BBE.getStart()) 215 return true; 216 217 // Otherwise use the edge-dominates-block query, which 218 // handles the crazy critical edge cases properly. 219 const BasicBlock *UseBB; 220 if (PN) 221 UseBB = PN->getIncomingBlock(U); 222 else 223 UseBB = UserInst->getParent(); 224 return dominates(BBE, UseBB); 225 } 226 227 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { 228 Instruction *UserInst = cast<Instruction>(U.getUser()); 229 const BasicBlock *DefBB = Def->getParent(); 230 231 // Determine the block in which the use happens. PHI nodes use 232 // their operands on edges; simulate this by thinking of the use 233 // happening at the end of the predecessor block. 234 const BasicBlock *UseBB; 235 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 236 UseBB = PN->getIncomingBlock(U); 237 else 238 UseBB = UserInst->getParent(); 239 240 // Any unreachable use is dominated, even if Def == User. 241 if (!isReachableFromEntry(UseBB)) 242 return true; 243 244 // Unreachable definitions don't dominate anything. 245 if (!isReachableFromEntry(DefBB)) 246 return false; 247 248 // Invoke instructions define their return values on the edges to their normal 249 // successors, so we have to handle them specially. 250 // Among other things, this means they don't dominate anything in 251 // their own block, except possibly a phi, so we don't need to 252 // walk the block in any case. 253 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 254 BasicBlock *NormalDest = II->getNormalDest(); 255 BasicBlockEdge E(DefBB, NormalDest); 256 return dominates(E, U); 257 } 258 259 // If the def and use are in different blocks, do a simple CFG dominator 260 // tree query. 261 if (DefBB != UseBB) 262 return dominates(DefBB, UseBB); 263 264 // Ok, def and use are in the same block. If the def is an invoke, it 265 // doesn't dominate anything in the block. If it's a PHI, it dominates 266 // everything in the block. 267 if (isa<PHINode>(UserInst)) 268 return true; 269 270 // Otherwise, just loop through the basic block until we find Def or User. 271 BasicBlock::const_iterator I = DefBB->begin(); 272 for (; &*I != Def && &*I != UserInst; ++I) 273 /*empty*/; 274 275 return &*I != UserInst; 276 } 277 278 bool DominatorTree::isReachableFromEntry(const Use &U) const { 279 Instruction *I = dyn_cast<Instruction>(U.getUser()); 280 281 // ConstantExprs aren't really reachable from the entry block, but they 282 // don't need to be treated like unreachable code either. 283 if (!I) return true; 284 285 // PHI nodes use their operands on their incoming edges. 286 if (PHINode *PN = dyn_cast<PHINode>(I)) 287 return isReachableFromEntry(PN->getIncomingBlock(U)); 288 289 // Everything else uses their operands in their own block. 290 return isReachableFromEntry(I->getParent()); 291 } 292 293 void DominatorTree::verifyDomTree() const { 294 Function &F = *getRoot()->getParent(); 295 296 DominatorTree OtherDT; 297 OtherDT.recalculate(F); 298 if (compare(OtherDT)) { 299 errs() << "DominatorTree is not up to date!\nComputed:\n"; 300 print(errs()); 301 errs() << "\nActual:\n"; 302 OtherDT.print(errs()); 303 abort(); 304 } 305 } 306 307 //===----------------------------------------------------------------------===// 308 // DominatorTreeAnalysis and related pass implementations 309 //===----------------------------------------------------------------------===// 310 // 311 // This implements the DominatorTreeAnalysis which is used with the new pass 312 // manager. It also implements some methods from utility passes. 313 // 314 //===----------------------------------------------------------------------===// 315 316 DominatorTree DominatorTreeAnalysis::run(Function &F, 317 FunctionAnalysisManager &) { 318 DominatorTree DT; 319 DT.recalculate(F); 320 return DT; 321 } 322 323 AnalysisKey DominatorTreeAnalysis::Key; 324 325 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 326 327 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 328 FunctionAnalysisManager &AM) { 329 OS << "DominatorTree for function: " << F.getName() << "\n"; 330 AM.getResult<DominatorTreeAnalysis>(F).print(OS); 331 332 return PreservedAnalyses::all(); 333 } 334 335 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 336 FunctionAnalysisManager &AM) { 337 AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree(); 338 339 return PreservedAnalyses::all(); 340 } 341 342 //===----------------------------------------------------------------------===// 343 // DominatorTreeWrapperPass Implementation 344 //===----------------------------------------------------------------------===// 345 // 346 // The implementation details of the wrapper pass that holds a DominatorTree 347 // suitable for use with the legacy pass manager. 348 // 349 //===----------------------------------------------------------------------===// 350 351 char DominatorTreeWrapperPass::ID = 0; 352 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 353 "Dominator Tree Construction", true, true) 354 355 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 356 DT.recalculate(F); 357 return false; 358 } 359 360 void DominatorTreeWrapperPass::verifyAnalysis() const { 361 if (VerifyDomInfo) 362 DT.verifyDomTree(); 363 } 364 365 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 366 DT.print(OS); 367 } 368 369