1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators.  Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed.  Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GenericDomTreeConstruction.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 using namespace llvm;
29 
30 // Always verify dominfo if expensive checking is enabled.
31 #ifdef EXPENSIVE_CHECKS
32 bool llvm::VerifyDomInfo = true;
33 #else
34 bool llvm::VerifyDomInfo = false;
35 #endif
36 static cl::opt<bool,true>
37 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
38                cl::desc("Verify dominator info (time consuming)"));
39 
40 bool BasicBlockEdge::isSingleEdge() const {
41   const TerminatorInst *TI = Start->getTerminator();
42   unsigned NumEdgesToEnd = 0;
43   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
44     if (TI->getSuccessor(i) == End)
45       ++NumEdgesToEnd;
46     if (NumEdgesToEnd >= 2)
47       return false;
48   }
49   assert(NumEdgesToEnd == 1);
50   return true;
51 }
52 
53 //===----------------------------------------------------------------------===//
54 //  DominatorTree Implementation
55 //===----------------------------------------------------------------------===//
56 //
57 // Provide public access to DominatorTree information.  Implementation details
58 // can be found in Dominators.h, GenericDomTree.h, and
59 // GenericDomTreeConstruction.h.
60 //
61 //===----------------------------------------------------------------------===//
62 
63 template class llvm::DomTreeNodeBase<BasicBlock>;
64 template class llvm::DominatorTreeBase<BasicBlock>;
65 
66 template void llvm::Calculate<Function, BasicBlock *>(
67     DominatorTreeBase<
68         typename std::remove_pointer<GraphTraits<BasicBlock *>::NodeRef>::type>
69         &DT,
70     Function &F);
71 template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
72     DominatorTreeBase<typename std::remove_pointer<
73         GraphTraits<Inverse<BasicBlock *>>::NodeRef>::type> &DT,
74     Function &F);
75 
76 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
77                                FunctionAnalysisManager::Invalidator &) {
78   // Check whether the analysis, all analyses on functions, or the function's
79   // CFG have been preserved.
80   auto PAC = PA.getChecker<DominatorTreeAnalysis>();
81   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
82            PAC.preservedSet<CFGAnalyses>());
83 }
84 
85 // dominates - Return true if Def dominates a use in User. This performs
86 // the special checks necessary if Def and User are in the same basic block.
87 // Note that Def doesn't dominate a use in Def itself!
88 bool DominatorTree::dominates(const Instruction *Def,
89                               const Instruction *User) const {
90   const BasicBlock *UseBB = User->getParent();
91   const BasicBlock *DefBB = Def->getParent();
92 
93   // Any unreachable use is dominated, even if Def == User.
94   if (!isReachableFromEntry(UseBB))
95     return true;
96 
97   // Unreachable definitions don't dominate anything.
98   if (!isReachableFromEntry(DefBB))
99     return false;
100 
101   // An instruction doesn't dominate a use in itself.
102   if (Def == User)
103     return false;
104 
105   // The value defined by an invoke dominates an instruction only if it
106   // dominates every instruction in UseBB.
107   // A PHI is dominated only if the instruction dominates every possible use in
108   // the UseBB.
109   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
110     return dominates(Def, UseBB);
111 
112   if (DefBB != UseBB)
113     return dominates(DefBB, UseBB);
114 
115   // Loop through the basic block until we find Def or User.
116   BasicBlock::const_iterator I = DefBB->begin();
117   for (; &*I != Def && &*I != User; ++I)
118     /*empty*/;
119 
120   return &*I == Def;
121 }
122 
123 // true if Def would dominate a use in any instruction in UseBB.
124 // note that dominates(Def, Def->getParent()) is false.
125 bool DominatorTree::dominates(const Instruction *Def,
126                               const BasicBlock *UseBB) const {
127   const BasicBlock *DefBB = Def->getParent();
128 
129   // Any unreachable use is dominated, even if DefBB == UseBB.
130   if (!isReachableFromEntry(UseBB))
131     return true;
132 
133   // Unreachable definitions don't dominate anything.
134   if (!isReachableFromEntry(DefBB))
135     return false;
136 
137   if (DefBB == UseBB)
138     return false;
139 
140   // Invoke results are only usable in the normal destination, not in the
141   // exceptional destination.
142   if (const auto *II = dyn_cast<InvokeInst>(Def)) {
143     BasicBlock *NormalDest = II->getNormalDest();
144     BasicBlockEdge E(DefBB, NormalDest);
145     return dominates(E, UseBB);
146   }
147 
148   return dominates(DefBB, UseBB);
149 }
150 
151 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
152                               const BasicBlock *UseBB) const {
153   // Assert that we have a single edge. We could handle them by simply
154   // returning false, but since isSingleEdge is linear on the number of
155   // edges, the callers can normally handle them more efficiently.
156   assert(BBE.isSingleEdge() &&
157          "This function is not efficient in handling multiple edges");
158 
159   // If the BB the edge ends in doesn't dominate the use BB, then the
160   // edge also doesn't.
161   const BasicBlock *Start = BBE.getStart();
162   const BasicBlock *End = BBE.getEnd();
163   if (!dominates(End, UseBB))
164     return false;
165 
166   // Simple case: if the end BB has a single predecessor, the fact that it
167   // dominates the use block implies that the edge also does.
168   if (End->getSinglePredecessor())
169     return true;
170 
171   // The normal edge from the invoke is critical. Conceptually, what we would
172   // like to do is split it and check if the new block dominates the use.
173   // With X being the new block, the graph would look like:
174   //
175   //        DefBB
176   //          /\      .  .
177   //         /  \     .  .
178   //        /    \    .  .
179   //       /      \   |  |
180   //      A        X  B  C
181   //      |         \ | /
182   //      .          \|/
183   //      .      NormalDest
184   //      .
185   //
186   // Given the definition of dominance, NormalDest is dominated by X iff X
187   // dominates all of NormalDest's predecessors (X, B, C in the example). X
188   // trivially dominates itself, so we only have to find if it dominates the
189   // other predecessors. Since the only way out of X is via NormalDest, X can
190   // only properly dominate a node if NormalDest dominates that node too.
191   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
192        PI != E; ++PI) {
193     const BasicBlock *BB = *PI;
194     if (BB == Start)
195       continue;
196 
197     if (!dominates(End, BB))
198       return false;
199   }
200   return true;
201 }
202 
203 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
204   // Assert that we have a single edge. We could handle them by simply
205   // returning false, but since isSingleEdge is linear on the number of
206   // edges, the callers can normally handle them more efficiently.
207   assert(BBE.isSingleEdge() &&
208          "This function is not efficient in handling multiple edges");
209 
210   Instruction *UserInst = cast<Instruction>(U.getUser());
211   // A PHI in the end of the edge is dominated by it.
212   PHINode *PN = dyn_cast<PHINode>(UserInst);
213   if (PN && PN->getParent() == BBE.getEnd() &&
214       PN->getIncomingBlock(U) == BBE.getStart())
215     return true;
216 
217   // Otherwise use the edge-dominates-block query, which
218   // handles the crazy critical edge cases properly.
219   const BasicBlock *UseBB;
220   if (PN)
221     UseBB = PN->getIncomingBlock(U);
222   else
223     UseBB = UserInst->getParent();
224   return dominates(BBE, UseBB);
225 }
226 
227 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
228   Instruction *UserInst = cast<Instruction>(U.getUser());
229   const BasicBlock *DefBB = Def->getParent();
230 
231   // Determine the block in which the use happens. PHI nodes use
232   // their operands on edges; simulate this by thinking of the use
233   // happening at the end of the predecessor block.
234   const BasicBlock *UseBB;
235   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
236     UseBB = PN->getIncomingBlock(U);
237   else
238     UseBB = UserInst->getParent();
239 
240   // Any unreachable use is dominated, even if Def == User.
241   if (!isReachableFromEntry(UseBB))
242     return true;
243 
244   // Unreachable definitions don't dominate anything.
245   if (!isReachableFromEntry(DefBB))
246     return false;
247 
248   // Invoke instructions define their return values on the edges to their normal
249   // successors, so we have to handle them specially.
250   // Among other things, this means they don't dominate anything in
251   // their own block, except possibly a phi, so we don't need to
252   // walk the block in any case.
253   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
254     BasicBlock *NormalDest = II->getNormalDest();
255     BasicBlockEdge E(DefBB, NormalDest);
256     return dominates(E, U);
257   }
258 
259   // If the def and use are in different blocks, do a simple CFG dominator
260   // tree query.
261   if (DefBB != UseBB)
262     return dominates(DefBB, UseBB);
263 
264   // Ok, def and use are in the same block. If the def is an invoke, it
265   // doesn't dominate anything in the block. If it's a PHI, it dominates
266   // everything in the block.
267   if (isa<PHINode>(UserInst))
268     return true;
269 
270   // Otherwise, just loop through the basic block until we find Def or User.
271   BasicBlock::const_iterator I = DefBB->begin();
272   for (; &*I != Def && &*I != UserInst; ++I)
273     /*empty*/;
274 
275   return &*I != UserInst;
276 }
277 
278 bool DominatorTree::isReachableFromEntry(const Use &U) const {
279   Instruction *I = dyn_cast<Instruction>(U.getUser());
280 
281   // ConstantExprs aren't really reachable from the entry block, but they
282   // don't need to be treated like unreachable code either.
283   if (!I) return true;
284 
285   // PHI nodes use their operands on their incoming edges.
286   if (PHINode *PN = dyn_cast<PHINode>(I))
287     return isReachableFromEntry(PN->getIncomingBlock(U));
288 
289   // Everything else uses their operands in their own block.
290   return isReachableFromEntry(I->getParent());
291 }
292 
293 void DominatorTree::verifyDomTree() const {
294   Function &F = *getRoot()->getParent();
295 
296   DominatorTree OtherDT;
297   OtherDT.recalculate(F);
298   if (compare(OtherDT)) {
299     errs() << "DominatorTree is not up to date!\nComputed:\n";
300     print(errs());
301     errs() << "\nActual:\n";
302     OtherDT.print(errs());
303     abort();
304   }
305 }
306 
307 //===----------------------------------------------------------------------===//
308 //  DominatorTreeAnalysis and related pass implementations
309 //===----------------------------------------------------------------------===//
310 //
311 // This implements the DominatorTreeAnalysis which is used with the new pass
312 // manager. It also implements some methods from utility passes.
313 //
314 //===----------------------------------------------------------------------===//
315 
316 DominatorTree DominatorTreeAnalysis::run(Function &F,
317                                          FunctionAnalysisManager &) {
318   DominatorTree DT;
319   DT.recalculate(F);
320   return DT;
321 }
322 
323 AnalysisKey DominatorTreeAnalysis::Key;
324 
325 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
326 
327 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
328                                                 FunctionAnalysisManager &AM) {
329   OS << "DominatorTree for function: " << F.getName() << "\n";
330   AM.getResult<DominatorTreeAnalysis>(F).print(OS);
331 
332   return PreservedAnalyses::all();
333 }
334 
335 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
336                                                  FunctionAnalysisManager &AM) {
337   AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
338 
339   return PreservedAnalyses::all();
340 }
341 
342 //===----------------------------------------------------------------------===//
343 //  DominatorTreeWrapperPass Implementation
344 //===----------------------------------------------------------------------===//
345 //
346 // The implementation details of the wrapper pass that holds a DominatorTree
347 // suitable for use with the legacy pass manager.
348 //
349 //===----------------------------------------------------------------------===//
350 
351 char DominatorTreeWrapperPass::ID = 0;
352 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
353                 "Dominator Tree Construction", true, true)
354 
355 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
356   DT.recalculate(F);
357   return false;
358 }
359 
360 void DominatorTreeWrapperPass::verifyAnalysis() const {
361     if (VerifyDomInfo)
362       DT.verifyDomTree();
363 }
364 
365 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
366   DT.print(OS);
367 }
368 
369