1 //===- DataLayout.cpp - Data size & alignment routines ---------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines layout properties related to datatype size/offset/alignment 11 // information. 12 // 13 // This structure should be created once, filled in if the defaults are not 14 // correct and then passed around by const&. None of the members functions 15 // require modification to the object. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <cstdlib> 37 #include <tuple> 38 #include <utility> 39 40 using namespace llvm; 41 42 //===----------------------------------------------------------------------===// 43 // Support for StructLayout 44 //===----------------------------------------------------------------------===// 45 46 StructLayout::StructLayout(StructType *ST, const DataLayout &DL) { 47 assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); 48 StructAlignment = 0; 49 StructSize = 0; 50 IsPadded = false; 51 NumElements = ST->getNumElements(); 52 53 // Loop over each of the elements, placing them in memory. 54 for (unsigned i = 0, e = NumElements; i != e; ++i) { 55 Type *Ty = ST->getElementType(i); 56 unsigned TyAlign = ST->isPacked() ? 1 : DL.getABITypeAlignment(Ty); 57 58 // Add padding if necessary to align the data element properly. 59 if ((StructSize & (TyAlign-1)) != 0) { 60 IsPadded = true; 61 StructSize = alignTo(StructSize, TyAlign); 62 } 63 64 // Keep track of maximum alignment constraint. 65 StructAlignment = std::max(TyAlign, StructAlignment); 66 67 MemberOffsets[i] = StructSize; 68 StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item 69 } 70 71 // Empty structures have alignment of 1 byte. 72 if (StructAlignment == 0) StructAlignment = 1; 73 74 // Add padding to the end of the struct so that it could be put in an array 75 // and all array elements would be aligned correctly. 76 if ((StructSize & (StructAlignment-1)) != 0) { 77 IsPadded = true; 78 StructSize = alignTo(StructSize, StructAlignment); 79 } 80 } 81 82 /// getElementContainingOffset - Given a valid offset into the structure, 83 /// return the structure index that contains it. 84 unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { 85 const uint64_t *SI = 86 std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset); 87 assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); 88 --SI; 89 assert(*SI <= Offset && "upper_bound didn't work"); 90 assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && 91 (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && 92 "Upper bound didn't work!"); 93 94 // Multiple fields can have the same offset if any of them are zero sized. 95 // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop 96 // at the i32 element, because it is the last element at that offset. This is 97 // the right one to return, because anything after it will have a higher 98 // offset, implying that this element is non-empty. 99 return SI-&MemberOffsets[0]; 100 } 101 102 //===----------------------------------------------------------------------===// 103 // LayoutAlignElem, LayoutAlign support 104 //===----------------------------------------------------------------------===// 105 106 LayoutAlignElem 107 LayoutAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, 108 unsigned pref_align, uint32_t bit_width) { 109 assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); 110 LayoutAlignElem retval; 111 retval.AlignType = align_type; 112 retval.ABIAlign = abi_align; 113 retval.PrefAlign = pref_align; 114 retval.TypeBitWidth = bit_width; 115 return retval; 116 } 117 118 bool 119 LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const { 120 return (AlignType == rhs.AlignType 121 && ABIAlign == rhs.ABIAlign 122 && PrefAlign == rhs.PrefAlign 123 && TypeBitWidth == rhs.TypeBitWidth); 124 } 125 126 //===----------------------------------------------------------------------===// 127 // PointerAlignElem, PointerAlign support 128 //===----------------------------------------------------------------------===// 129 130 PointerAlignElem 131 PointerAlignElem::get(uint32_t AddressSpace, unsigned ABIAlign, 132 unsigned PrefAlign, uint32_t TypeByteWidth, 133 uint32_t IndexWidth) { 134 assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!"); 135 PointerAlignElem retval; 136 retval.AddressSpace = AddressSpace; 137 retval.ABIAlign = ABIAlign; 138 retval.PrefAlign = PrefAlign; 139 retval.TypeByteWidth = TypeByteWidth; 140 retval.IndexWidth = IndexWidth; 141 return retval; 142 } 143 144 bool 145 PointerAlignElem::operator==(const PointerAlignElem &rhs) const { 146 return (ABIAlign == rhs.ABIAlign 147 && AddressSpace == rhs.AddressSpace 148 && PrefAlign == rhs.PrefAlign 149 && TypeByteWidth == rhs.TypeByteWidth 150 && IndexWidth == rhs.IndexWidth); 151 } 152 153 //===----------------------------------------------------------------------===// 154 // DataLayout Class Implementation 155 //===----------------------------------------------------------------------===// 156 157 const char *DataLayout::getManglingComponent(const Triple &T) { 158 if (T.isOSBinFormatMachO()) 159 return "-m:o"; 160 if (T.isOSWindows() && T.isOSBinFormatCOFF()) 161 return T.getArch() == Triple::x86 ? "-m:x" : "-m:w"; 162 return "-m:e"; 163 } 164 165 static const LayoutAlignElem DefaultAlignments[] = { 166 { INTEGER_ALIGN, 1, 1, 1 }, // i1 167 { INTEGER_ALIGN, 8, 1, 1 }, // i8 168 { INTEGER_ALIGN, 16, 2, 2 }, // i16 169 { INTEGER_ALIGN, 32, 4, 4 }, // i32 170 { INTEGER_ALIGN, 64, 4, 8 }, // i64 171 { FLOAT_ALIGN, 16, 2, 2 }, // half 172 { FLOAT_ALIGN, 32, 4, 4 }, // float 173 { FLOAT_ALIGN, 64, 8, 8 }, // double 174 { FLOAT_ALIGN, 128, 16, 16 }, // ppcf128, quad, ... 175 { VECTOR_ALIGN, 64, 8, 8 }, // v2i32, v1i64, ... 176 { VECTOR_ALIGN, 128, 16, 16 }, // v16i8, v8i16, v4i32, ... 177 { AGGREGATE_ALIGN, 0, 0, 8 } // struct 178 }; 179 180 void DataLayout::reset(StringRef Desc) { 181 clear(); 182 183 LayoutMap = nullptr; 184 BigEndian = false; 185 AllocaAddrSpace = 0; 186 StackNaturalAlign = 0; 187 ProgramAddrSpace = 0; 188 ManglingMode = MM_None; 189 NonIntegralAddressSpaces.clear(); 190 191 // Default alignments 192 for (const LayoutAlignElem &E : DefaultAlignments) { 193 setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign, E.PrefAlign, 194 E.TypeBitWidth); 195 } 196 setPointerAlignment(0, 8, 8, 8, 8); 197 198 parseSpecifier(Desc); 199 } 200 201 /// Checked version of split, to ensure mandatory subparts. 202 static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) { 203 assert(!Str.empty() && "parse error, string can't be empty here"); 204 std::pair<StringRef, StringRef> Split = Str.split(Separator); 205 if (Split.second.empty() && Split.first != Str) 206 report_fatal_error("Trailing separator in datalayout string"); 207 if (!Split.second.empty() && Split.first.empty()) 208 report_fatal_error("Expected token before separator in datalayout string"); 209 return Split; 210 } 211 212 /// Get an unsigned integer, including error checks. 213 static unsigned getInt(StringRef R) { 214 unsigned Result; 215 bool error = R.getAsInteger(10, Result); (void)error; 216 if (error) 217 report_fatal_error("not a number, or does not fit in an unsigned int"); 218 return Result; 219 } 220 221 /// Convert bits into bytes. Assert if not a byte width multiple. 222 static unsigned inBytes(unsigned Bits) { 223 if (Bits % 8) 224 report_fatal_error("number of bits must be a byte width multiple"); 225 return Bits / 8; 226 } 227 228 static unsigned getAddrSpace(StringRef R) { 229 unsigned AddrSpace = getInt(R); 230 if (!isUInt<24>(AddrSpace)) 231 report_fatal_error("Invalid address space, must be a 24-bit integer"); 232 return AddrSpace; 233 } 234 235 void DataLayout::parseSpecifier(StringRef Desc) { 236 StringRepresentation = Desc; 237 while (!Desc.empty()) { 238 // Split at '-'. 239 std::pair<StringRef, StringRef> Split = split(Desc, '-'); 240 Desc = Split.second; 241 242 // Split at ':'. 243 Split = split(Split.first, ':'); 244 245 // Aliases used below. 246 StringRef &Tok = Split.first; // Current token. 247 StringRef &Rest = Split.second; // The rest of the string. 248 249 if (Tok == "ni") { 250 do { 251 Split = split(Rest, ':'); 252 Rest = Split.second; 253 unsigned AS = getInt(Split.first); 254 if (AS == 0) 255 report_fatal_error("Address space 0 can never be non-integral"); 256 NonIntegralAddressSpaces.push_back(AS); 257 } while (!Rest.empty()); 258 259 continue; 260 } 261 262 char Specifier = Tok.front(); 263 Tok = Tok.substr(1); 264 265 switch (Specifier) { 266 case 's': 267 // Ignored for backward compatibility. 268 // FIXME: remove this on LLVM 4.0. 269 break; 270 case 'E': 271 BigEndian = true; 272 break; 273 case 'e': 274 BigEndian = false; 275 break; 276 case 'p': { 277 // Address space. 278 unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok); 279 if (!isUInt<24>(AddrSpace)) 280 report_fatal_error("Invalid address space, must be a 24bit integer"); 281 282 // Size. 283 if (Rest.empty()) 284 report_fatal_error( 285 "Missing size specification for pointer in datalayout string"); 286 Split = split(Rest, ':'); 287 unsigned PointerMemSize = inBytes(getInt(Tok)); 288 if (!PointerMemSize) 289 report_fatal_error("Invalid pointer size of 0 bytes"); 290 291 // ABI alignment. 292 if (Rest.empty()) 293 report_fatal_error( 294 "Missing alignment specification for pointer in datalayout string"); 295 Split = split(Rest, ':'); 296 unsigned PointerABIAlign = inBytes(getInt(Tok)); 297 if (!isPowerOf2_64(PointerABIAlign)) 298 report_fatal_error( 299 "Pointer ABI alignment must be a power of 2"); 300 301 // Size of index used in GEP for address calculation. 302 // The parameter is optional. By default it is equal to size of pointer. 303 unsigned IndexSize = PointerMemSize; 304 305 // Preferred alignment. 306 unsigned PointerPrefAlign = PointerABIAlign; 307 if (!Rest.empty()) { 308 Split = split(Rest, ':'); 309 PointerPrefAlign = inBytes(getInt(Tok)); 310 if (!isPowerOf2_64(PointerPrefAlign)) 311 report_fatal_error( 312 "Pointer preferred alignment must be a power of 2"); 313 314 // Now read the index. It is the second optional parameter here. 315 if (!Rest.empty()) { 316 Split = split(Rest, ':'); 317 IndexSize = inBytes(getInt(Tok)); 318 if (!IndexSize) 319 report_fatal_error("Invalid index size of 0 bytes"); 320 } 321 } 322 setPointerAlignment(AddrSpace, PointerABIAlign, PointerPrefAlign, 323 PointerMemSize, IndexSize); 324 break; 325 } 326 case 'i': 327 case 'v': 328 case 'f': 329 case 'a': { 330 AlignTypeEnum AlignType; 331 switch (Specifier) { 332 default: llvm_unreachable("Unexpected specifier!"); 333 case 'i': AlignType = INTEGER_ALIGN; break; 334 case 'v': AlignType = VECTOR_ALIGN; break; 335 case 'f': AlignType = FLOAT_ALIGN; break; 336 case 'a': AlignType = AGGREGATE_ALIGN; break; 337 } 338 339 // Bit size. 340 unsigned Size = Tok.empty() ? 0 : getInt(Tok); 341 342 if (AlignType == AGGREGATE_ALIGN && Size != 0) 343 report_fatal_error( 344 "Sized aggregate specification in datalayout string"); 345 346 // ABI alignment. 347 if (Rest.empty()) 348 report_fatal_error( 349 "Missing alignment specification in datalayout string"); 350 Split = split(Rest, ':'); 351 unsigned ABIAlign = inBytes(getInt(Tok)); 352 if (AlignType != AGGREGATE_ALIGN && !ABIAlign) 353 report_fatal_error( 354 "ABI alignment specification must be >0 for non-aggregate types"); 355 356 // Preferred alignment. 357 unsigned PrefAlign = ABIAlign; 358 if (!Rest.empty()) { 359 Split = split(Rest, ':'); 360 PrefAlign = inBytes(getInt(Tok)); 361 } 362 363 setAlignment(AlignType, ABIAlign, PrefAlign, Size); 364 365 break; 366 } 367 case 'n': // Native integer types. 368 while (true) { 369 unsigned Width = getInt(Tok); 370 if (Width == 0) 371 report_fatal_error( 372 "Zero width native integer type in datalayout string"); 373 LegalIntWidths.push_back(Width); 374 if (Rest.empty()) 375 break; 376 Split = split(Rest, ':'); 377 } 378 break; 379 case 'S': { // Stack natural alignment. 380 StackNaturalAlign = inBytes(getInt(Tok)); 381 break; 382 } 383 case 'P': { // Function address space. 384 ProgramAddrSpace = getAddrSpace(Tok); 385 break; 386 } 387 case 'A': { // Default stack/alloca address space. 388 AllocaAddrSpace = getAddrSpace(Tok); 389 break; 390 } 391 case 'm': 392 if (!Tok.empty()) 393 report_fatal_error("Unexpected trailing characters after mangling specifier in datalayout string"); 394 if (Rest.empty()) 395 report_fatal_error("Expected mangling specifier in datalayout string"); 396 if (Rest.size() > 1) 397 report_fatal_error("Unknown mangling specifier in datalayout string"); 398 switch(Rest[0]) { 399 default: 400 report_fatal_error("Unknown mangling in datalayout string"); 401 case 'e': 402 ManglingMode = MM_ELF; 403 break; 404 case 'o': 405 ManglingMode = MM_MachO; 406 break; 407 case 'm': 408 ManglingMode = MM_Mips; 409 break; 410 case 'w': 411 ManglingMode = MM_WinCOFF; 412 break; 413 case 'x': 414 ManglingMode = MM_WinCOFFX86; 415 break; 416 } 417 break; 418 default: 419 report_fatal_error("Unknown specifier in datalayout string"); 420 break; 421 } 422 } 423 } 424 425 DataLayout::DataLayout(const Module *M) { 426 init(M); 427 } 428 429 void DataLayout::init(const Module *M) { *this = M->getDataLayout(); } 430 431 bool DataLayout::operator==(const DataLayout &Other) const { 432 bool Ret = BigEndian == Other.BigEndian && 433 AllocaAddrSpace == Other.AllocaAddrSpace && 434 StackNaturalAlign == Other.StackNaturalAlign && 435 ProgramAddrSpace == Other.ProgramAddrSpace && 436 ManglingMode == Other.ManglingMode && 437 LegalIntWidths == Other.LegalIntWidths && 438 Alignments == Other.Alignments && Pointers == Other.Pointers; 439 // Note: getStringRepresentation() might differs, it is not canonicalized 440 return Ret; 441 } 442 443 DataLayout::AlignmentsTy::iterator 444 DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType, 445 uint32_t BitWidth) { 446 auto Pair = std::make_pair((unsigned)AlignType, BitWidth); 447 return std::lower_bound(Alignments.begin(), Alignments.end(), Pair, 448 [](const LayoutAlignElem &LHS, 449 const std::pair<unsigned, uint32_t> &RHS) { 450 return std::tie(LHS.AlignType, LHS.TypeBitWidth) < 451 std::tie(RHS.first, RHS.second); 452 }); 453 } 454 455 void 456 DataLayout::setAlignment(AlignTypeEnum align_type, unsigned abi_align, 457 unsigned pref_align, uint32_t bit_width) { 458 if (!isUInt<24>(bit_width)) 459 report_fatal_error("Invalid bit width, must be a 24bit integer"); 460 if (!isUInt<16>(abi_align)) 461 report_fatal_error("Invalid ABI alignment, must be a 16bit integer"); 462 if (!isUInt<16>(pref_align)) 463 report_fatal_error("Invalid preferred alignment, must be a 16bit integer"); 464 if (abi_align != 0 && !isPowerOf2_64(abi_align)) 465 report_fatal_error("Invalid ABI alignment, must be a power of 2"); 466 if (pref_align != 0 && !isPowerOf2_64(pref_align)) 467 report_fatal_error("Invalid preferred alignment, must be a power of 2"); 468 469 if (pref_align < abi_align) 470 report_fatal_error( 471 "Preferred alignment cannot be less than the ABI alignment"); 472 473 AlignmentsTy::iterator I = findAlignmentLowerBound(align_type, bit_width); 474 if (I != Alignments.end() && 475 I->AlignType == (unsigned)align_type && I->TypeBitWidth == bit_width) { 476 // Update the abi, preferred alignments. 477 I->ABIAlign = abi_align; 478 I->PrefAlign = pref_align; 479 } else { 480 // Insert before I to keep the vector sorted. 481 Alignments.insert(I, LayoutAlignElem::get(align_type, abi_align, 482 pref_align, bit_width)); 483 } 484 } 485 486 DataLayout::PointersTy::iterator 487 DataLayout::findPointerLowerBound(uint32_t AddressSpace) { 488 return std::lower_bound(Pointers.begin(), Pointers.end(), AddressSpace, 489 [](const PointerAlignElem &A, uint32_t AddressSpace) { 490 return A.AddressSpace < AddressSpace; 491 }); 492 } 493 494 void DataLayout::setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign, 495 unsigned PrefAlign, uint32_t TypeByteWidth, 496 uint32_t IndexWidth) { 497 if (PrefAlign < ABIAlign) 498 report_fatal_error( 499 "Preferred alignment cannot be less than the ABI alignment"); 500 501 PointersTy::iterator I = findPointerLowerBound(AddrSpace); 502 if (I == Pointers.end() || I->AddressSpace != AddrSpace) { 503 Pointers.insert(I, PointerAlignElem::get(AddrSpace, ABIAlign, PrefAlign, 504 TypeByteWidth, IndexWidth)); 505 } else { 506 I->ABIAlign = ABIAlign; 507 I->PrefAlign = PrefAlign; 508 I->TypeByteWidth = TypeByteWidth; 509 I->IndexWidth = IndexWidth; 510 } 511 } 512 513 /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or 514 /// preferred if ABIInfo = false) the layout wants for the specified datatype. 515 unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType, 516 uint32_t BitWidth, bool ABIInfo, 517 Type *Ty) const { 518 AlignmentsTy::const_iterator I = findAlignmentLowerBound(AlignType, BitWidth); 519 // See if we found an exact match. Of if we are looking for an integer type, 520 // but don't have an exact match take the next largest integer. This is where 521 // the lower_bound will point to when it fails an exact match. 522 if (I != Alignments.end() && I->AlignType == (unsigned)AlignType && 523 (I->TypeBitWidth == BitWidth || AlignType == INTEGER_ALIGN)) 524 return ABIInfo ? I->ABIAlign : I->PrefAlign; 525 526 if (AlignType == INTEGER_ALIGN) { 527 // If we didn't have a larger value try the largest value we have. 528 if (I != Alignments.begin()) { 529 --I; // Go to the previous entry and see if its an integer. 530 if (I->AlignType == INTEGER_ALIGN) 531 return ABIInfo ? I->ABIAlign : I->PrefAlign; 532 } 533 } else if (AlignType == VECTOR_ALIGN) { 534 // By default, use natural alignment for vector types. This is consistent 535 // with what clang and llvm-gcc do. 536 unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType()); 537 Align *= cast<VectorType>(Ty)->getNumElements(); 538 Align = PowerOf2Ceil(Align); 539 return Align; 540 } 541 542 // If we still couldn't find a reasonable default alignment, fall back 543 // to a simple heuristic that the alignment is the first power of two 544 // greater-or-equal to the store size of the type. This is a reasonable 545 // approximation of reality, and if the user wanted something less 546 // less conservative, they should have specified it explicitly in the data 547 // layout. 548 unsigned Align = getTypeStoreSize(Ty); 549 Align = PowerOf2Ceil(Align); 550 return Align; 551 } 552 553 namespace { 554 555 class StructLayoutMap { 556 using LayoutInfoTy = DenseMap<StructType*, StructLayout*>; 557 LayoutInfoTy LayoutInfo; 558 559 public: 560 ~StructLayoutMap() { 561 // Remove any layouts. 562 for (const auto &I : LayoutInfo) { 563 StructLayout *Value = I.second; 564 Value->~StructLayout(); 565 free(Value); 566 } 567 } 568 569 StructLayout *&operator[](StructType *STy) { 570 return LayoutInfo[STy]; 571 } 572 }; 573 574 } // end anonymous namespace 575 576 void DataLayout::clear() { 577 LegalIntWidths.clear(); 578 Alignments.clear(); 579 Pointers.clear(); 580 delete static_cast<StructLayoutMap *>(LayoutMap); 581 LayoutMap = nullptr; 582 } 583 584 DataLayout::~DataLayout() { 585 clear(); 586 } 587 588 const StructLayout *DataLayout::getStructLayout(StructType *Ty) const { 589 if (!LayoutMap) 590 LayoutMap = new StructLayoutMap(); 591 592 StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap); 593 StructLayout *&SL = (*STM)[Ty]; 594 if (SL) return SL; 595 596 // Otherwise, create the struct layout. Because it is variable length, we 597 // malloc it, then use placement new. 598 int NumElts = Ty->getNumElements(); 599 StructLayout *L = (StructLayout *) 600 safe_malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); 601 602 // Set SL before calling StructLayout's ctor. The ctor could cause other 603 // entries to be added to TheMap, invalidating our reference. 604 SL = L; 605 606 new (L) StructLayout(Ty, *this); 607 608 return L; 609 } 610 611 unsigned DataLayout::getPointerABIAlignment(unsigned AS) const { 612 PointersTy::const_iterator I = findPointerLowerBound(AS); 613 if (I == Pointers.end() || I->AddressSpace != AS) { 614 I = findPointerLowerBound(0); 615 assert(I->AddressSpace == 0); 616 } 617 return I->ABIAlign; 618 } 619 620 unsigned DataLayout::getPointerPrefAlignment(unsigned AS) const { 621 PointersTy::const_iterator I = findPointerLowerBound(AS); 622 if (I == Pointers.end() || I->AddressSpace != AS) { 623 I = findPointerLowerBound(0); 624 assert(I->AddressSpace == 0); 625 } 626 return I->PrefAlign; 627 } 628 629 unsigned DataLayout::getPointerSize(unsigned AS) const { 630 PointersTy::const_iterator I = findPointerLowerBound(AS); 631 if (I == Pointers.end() || I->AddressSpace != AS) { 632 I = findPointerLowerBound(0); 633 assert(I->AddressSpace == 0); 634 } 635 return I->TypeByteWidth; 636 } 637 638 unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const { 639 assert(Ty->isPtrOrPtrVectorTy() && 640 "This should only be called with a pointer or pointer vector type"); 641 Ty = Ty->getScalarType(); 642 return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace()); 643 } 644 645 unsigned DataLayout::getIndexSize(unsigned AS) const { 646 PointersTy::const_iterator I = findPointerLowerBound(AS); 647 if (I == Pointers.end() || I->AddressSpace != AS) { 648 I = findPointerLowerBound(0); 649 assert(I->AddressSpace == 0); 650 } 651 return I->IndexWidth; 652 } 653 654 unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const { 655 assert(Ty->isPtrOrPtrVectorTy() && 656 "This should only be called with a pointer or pointer vector type"); 657 Ty = Ty->getScalarType(); 658 return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace()); 659 } 660 661 /*! 662 \param abi_or_pref Flag that determines which alignment is returned. true 663 returns the ABI alignment, false returns the preferred alignment. 664 \param Ty The underlying type for which alignment is determined. 665 666 Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref 667 == false) for the requested type \a Ty. 668 */ 669 unsigned DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const { 670 AlignTypeEnum AlignType; 671 672 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); 673 switch (Ty->getTypeID()) { 674 // Early escape for the non-numeric types. 675 case Type::LabelTyID: 676 return (abi_or_pref 677 ? getPointerABIAlignment(0) 678 : getPointerPrefAlignment(0)); 679 case Type::PointerTyID: { 680 unsigned AS = cast<PointerType>(Ty)->getAddressSpace(); 681 return (abi_or_pref 682 ? getPointerABIAlignment(AS) 683 : getPointerPrefAlignment(AS)); 684 } 685 case Type::ArrayTyID: 686 return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref); 687 688 case Type::StructTyID: { 689 // Packed structure types always have an ABI alignment of one. 690 if (cast<StructType>(Ty)->isPacked() && abi_or_pref) 691 return 1; 692 693 // Get the layout annotation... which is lazily created on demand. 694 const StructLayout *Layout = getStructLayout(cast<StructType>(Ty)); 695 unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); 696 return std::max(Align, Layout->getAlignment()); 697 } 698 case Type::IntegerTyID: 699 AlignType = INTEGER_ALIGN; 700 break; 701 case Type::HalfTyID: 702 case Type::FloatTyID: 703 case Type::DoubleTyID: 704 // PPC_FP128TyID and FP128TyID have different data contents, but the 705 // same size and alignment, so they look the same here. 706 case Type::PPC_FP128TyID: 707 case Type::FP128TyID: 708 case Type::X86_FP80TyID: 709 AlignType = FLOAT_ALIGN; 710 break; 711 case Type::X86_MMXTyID: 712 case Type::VectorTyID: 713 AlignType = VECTOR_ALIGN; 714 break; 715 default: 716 llvm_unreachable("Bad type for getAlignment!!!"); 717 } 718 719 return getAlignmentInfo(AlignType, getTypeSizeInBits(Ty), abi_or_pref, Ty); 720 } 721 722 unsigned DataLayout::getABITypeAlignment(Type *Ty) const { 723 return getAlignment(Ty, true); 724 } 725 726 /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for 727 /// an integer type of the specified bitwidth. 728 unsigned DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const { 729 return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, nullptr); 730 } 731 732 unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const { 733 return getAlignment(Ty, false); 734 } 735 736 unsigned DataLayout::getPreferredTypeAlignmentShift(Type *Ty) const { 737 unsigned Align = getPrefTypeAlignment(Ty); 738 assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); 739 return Log2_32(Align); 740 } 741 742 IntegerType *DataLayout::getIntPtrType(LLVMContext &C, 743 unsigned AddressSpace) const { 744 return IntegerType::get(C, getIndexSizeInBits(AddressSpace)); 745 } 746 747 Type *DataLayout::getIntPtrType(Type *Ty) const { 748 assert(Ty->isPtrOrPtrVectorTy() && 749 "Expected a pointer or pointer vector type."); 750 unsigned NumBits = getIndexTypeSizeInBits(Ty); 751 IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits); 752 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) 753 return VectorType::get(IntTy, VecTy->getNumElements()); 754 return IntTy; 755 } 756 757 Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const { 758 for (unsigned LegalIntWidth : LegalIntWidths) 759 if (Width <= LegalIntWidth) 760 return Type::getIntNTy(C, LegalIntWidth); 761 return nullptr; 762 } 763 764 unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const { 765 auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end()); 766 return Max != LegalIntWidths.end() ? *Max : 0; 767 } 768 769 Type *DataLayout::getIndexType(Type *Ty) const { 770 assert(Ty->isPtrOrPtrVectorTy() && 771 "Expected a pointer or pointer vector type."); 772 unsigned NumBits = getIndexTypeSizeInBits(Ty); 773 IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits); 774 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) 775 return VectorType::get(IntTy, VecTy->getNumElements()); 776 return IntTy; 777 } 778 779 int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy, 780 ArrayRef<Value *> Indices) const { 781 int64_t Result = 0; 782 783 generic_gep_type_iterator<Value* const*> 784 GTI = gep_type_begin(ElemTy, Indices), 785 GTE = gep_type_end(ElemTy, Indices); 786 for (; GTI != GTE; ++GTI) { 787 Value *Idx = GTI.getOperand(); 788 if (StructType *STy = GTI.getStructTypeOrNull()) { 789 assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx"); 790 unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue(); 791 792 // Get structure layout information... 793 const StructLayout *Layout = getStructLayout(STy); 794 795 // Add in the offset, as calculated by the structure layout info... 796 Result += Layout->getElementOffset(FieldNo); 797 } else { 798 // Get the array index and the size of each array element. 799 if (int64_t arrayIdx = cast<ConstantInt>(Idx)->getSExtValue()) 800 Result += arrayIdx * getTypeAllocSize(GTI.getIndexedType()); 801 } 802 } 803 804 return Result; 805 } 806 807 /// getPreferredAlignment - Return the preferred alignment of the specified 808 /// global. This includes an explicitly requested alignment (if the global 809 /// has one). 810 unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const { 811 unsigned GVAlignment = GV->getAlignment(); 812 // If a section is specified, always precisely honor explicit alignment, 813 // so we don't insert padding into a section we don't control. 814 if (GVAlignment && GV->hasSection()) 815 return GVAlignment; 816 817 // If no explicit alignment is specified, compute the alignment based on 818 // the IR type. If an alignment is specified, increase it to match the ABI 819 // alignment of the IR type. 820 // 821 // FIXME: Not sure it makes sense to use the alignment of the type if 822 // there's already an explicit alignment specification. 823 Type *ElemType = GV->getValueType(); 824 unsigned Alignment = getPrefTypeAlignment(ElemType); 825 if (GVAlignment >= Alignment) { 826 Alignment = GVAlignment; 827 } else if (GVAlignment != 0) { 828 Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); 829 } 830 831 // If no explicit alignment is specified, and the global is large, increase 832 // the alignment to 16. 833 // FIXME: Why 16, specifically? 834 if (GV->hasInitializer() && GVAlignment == 0) { 835 if (Alignment < 16) { 836 // If the global is not external, see if it is large. If so, give it a 837 // larger alignment. 838 if (getTypeSizeInBits(ElemType) > 128) 839 Alignment = 16; // 16-byte alignment. 840 } 841 } 842 return Alignment; 843 } 844 845 /// getPreferredAlignmentLog - Return the preferred alignment of the 846 /// specified global, returned in log form. This includes an explicitly 847 /// requested alignment (if the global has one). 848 unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const { 849 return Log2_32(getPreferredAlignment(GV)); 850 } 851