1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "ConstantFold.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 using namespace PatternMatch; 35 36 //===----------------------------------------------------------------------===// 37 // Constant Class 38 //===----------------------------------------------------------------------===// 39 40 bool Constant::isNegativeZeroValue() const { 41 // Floating point values have an explicit -0.0 value. 42 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 43 return CFP->isZero() && CFP->isNegative(); 44 45 // Equivalent for a vector of -0.0's. 46 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 47 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 48 if (CV->getElementAsAPFloat(0).isNegZero()) 49 return true; 50 51 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) 54 return true; 55 56 // We've already handled true FP case; any other FP vectors can't represent -0.0. 57 if (getType()->isFPOrFPVectorTy()) 58 return false; 59 60 // Otherwise, just use +0.0. 61 return isNullValue(); 62 } 63 64 // Return true iff this constant is positive zero (floating point), negative 65 // zero (floating point), or a null value. 66 bool Constant::isZeroValue() const { 67 // Floating point values have an explicit -0.0 value. 68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 69 return CFP->isZero(); 70 71 // Equivalent for a vector of -0.0's. 72 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 73 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 74 if (CV->getElementAsAPFloat(0).isZero()) 75 return true; 76 77 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 78 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 79 if (SplatCFP && SplatCFP->isZero()) 80 return true; 81 82 // Otherwise, just use +0.0. 83 return isNullValue(); 84 } 85 86 bool Constant::isNullValue() const { 87 // 0 is null. 88 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 89 return CI->isZero(); 90 91 // +0.0 is null. 92 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 93 return CFP->isZero() && !CFP->isNegative(); 94 95 // constant zero is zero for aggregates, cpnull is null for pointers, none for 96 // tokens. 97 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 98 isa<ConstantTokenNone>(this); 99 } 100 101 bool Constant::isAllOnesValue() const { 102 // Check for -1 integers 103 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 104 return CI->isMinusOne(); 105 106 // Check for FP which are bitcasted from -1 integers 107 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 108 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); 109 110 // Check for constant vectors which are splats of -1 values. 111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 112 if (Constant *Splat = CV->getSplatValue()) 113 return Splat->isAllOnesValue(); 114 115 // Check for constant vectors which are splats of -1 values. 116 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 117 if (CV->isSplat()) { 118 if (CV->getElementType()->isFloatingPointTy()) 119 return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue(); 120 return CV->getElementAsAPInt(0).isAllOnesValue(); 121 } 122 } 123 124 return false; 125 } 126 127 bool Constant::isOneValue() const { 128 // Check for 1 integers 129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 130 return CI->isOne(); 131 132 // Check for FP which are bitcasted from 1 integers 133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 134 return CFP->getValueAPF().bitcastToAPInt().isOneValue(); 135 136 // Check for constant vectors which are splats of 1 values. 137 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 138 if (Constant *Splat = CV->getSplatValue()) 139 return Splat->isOneValue(); 140 141 // Check for constant vectors which are splats of 1 values. 142 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 143 if (CV->isSplat()) { 144 if (CV->getElementType()->isFloatingPointTy()) 145 return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue(); 146 return CV->getElementAsAPInt(0).isOneValue(); 147 } 148 } 149 150 return false; 151 } 152 153 bool Constant::isNotOneValue() const { 154 // Check for 1 integers 155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 156 return !CI->isOneValue(); 157 158 // Check for FP which are bitcasted from 1 integers 159 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 160 return !CFP->getValueAPF().bitcastToAPInt().isOneValue(); 161 162 // Check that vectors don't contain 1 163 if (auto *VTy = dyn_cast<VectorType>(this->getType())) { 164 unsigned NumElts = VTy->getNumElements(); 165 for (unsigned i = 0; i != NumElts; ++i) { 166 Constant *Elt = this->getAggregateElement(i); 167 if (!Elt || !Elt->isNotOneValue()) 168 return false; 169 } 170 return true; 171 } 172 173 // It *may* contain 1, we can't tell. 174 return false; 175 } 176 177 bool Constant::isMinSignedValue() const { 178 // Check for INT_MIN integers 179 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 180 return CI->isMinValue(/*isSigned=*/true); 181 182 // Check for FP which are bitcasted from INT_MIN integers 183 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 184 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 185 186 // Check for constant vectors which are splats of INT_MIN values. 187 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 188 if (Constant *Splat = CV->getSplatValue()) 189 return Splat->isMinSignedValue(); 190 191 // Check for constant vectors which are splats of INT_MIN values. 192 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 193 if (CV->isSplat()) { 194 if (CV->getElementType()->isFloatingPointTy()) 195 return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue(); 196 return CV->getElementAsAPInt(0).isMinSignedValue(); 197 } 198 } 199 200 return false; 201 } 202 203 bool Constant::isNotMinSignedValue() const { 204 // Check for INT_MIN integers 205 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 206 return !CI->isMinValue(/*isSigned=*/true); 207 208 // Check for FP which are bitcasted from INT_MIN integers 209 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 210 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 211 212 // Check that vectors don't contain INT_MIN 213 if (auto *VTy = dyn_cast<VectorType>(this->getType())) { 214 unsigned NumElts = VTy->getNumElements(); 215 for (unsigned i = 0; i != NumElts; ++i) { 216 Constant *Elt = this->getAggregateElement(i); 217 if (!Elt || !Elt->isNotMinSignedValue()) 218 return false; 219 } 220 return true; 221 } 222 223 // It *may* contain INT_MIN, we can't tell. 224 return false; 225 } 226 227 bool Constant::isFiniteNonZeroFP() const { 228 if (auto *CFP = dyn_cast<ConstantFP>(this)) 229 return CFP->getValueAPF().isFiniteNonZero(); 230 auto *VTy = dyn_cast<VectorType>(getType()); 231 if (!VTy) 232 return false; 233 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 234 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 235 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 236 return false; 237 } 238 return true; 239 } 240 241 bool Constant::isNormalFP() const { 242 if (auto *CFP = dyn_cast<ConstantFP>(this)) 243 return CFP->getValueAPF().isNormal(); 244 auto *VTy = dyn_cast<FixedVectorType>(getType()); 245 if (!VTy) 246 return false; 247 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 248 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 249 if (!CFP || !CFP->getValueAPF().isNormal()) 250 return false; 251 } 252 return true; 253 } 254 255 bool Constant::hasExactInverseFP() const { 256 if (auto *CFP = dyn_cast<ConstantFP>(this)) 257 return CFP->getValueAPF().getExactInverse(nullptr); 258 auto *VTy = dyn_cast<FixedVectorType>(getType()); 259 if (!VTy) 260 return false; 261 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 262 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 263 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 264 return false; 265 } 266 return true; 267 } 268 269 bool Constant::isNaN() const { 270 if (auto *CFP = dyn_cast<ConstantFP>(this)) 271 return CFP->isNaN(); 272 auto *VTy = dyn_cast<FixedVectorType>(getType()); 273 if (!VTy) 274 return false; 275 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 276 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 277 if (!CFP || !CFP->isNaN()) 278 return false; 279 } 280 return true; 281 } 282 283 bool Constant::isElementWiseEqual(Value *Y) const { 284 // Are they fully identical? 285 if (this == Y) 286 return true; 287 288 // The input value must be a vector constant with the same type. 289 auto *VTy = dyn_cast<VectorType>(getType()); 290 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) 291 return false; 292 293 // TODO: Compare pointer constants? 294 if (!(VTy->getElementType()->isIntegerTy() || 295 VTy->getElementType()->isFloatingPointTy())) 296 return false; 297 298 // They may still be identical element-wise (if they have `undef`s). 299 // Bitcast to integer to allow exact bitwise comparison for all types. 300 Type *IntTy = VectorType::getInteger(VTy); 301 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); 302 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); 303 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); 304 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); 305 } 306 307 bool Constant::containsUndefElement() const { 308 if (auto *VTy = dyn_cast<VectorType>(getType())) { 309 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 310 if (isa<UndefValue>(getAggregateElement(i))) 311 return true; 312 } 313 314 return false; 315 } 316 317 bool Constant::containsConstantExpression() const { 318 if (auto *VTy = dyn_cast<VectorType>(getType())) { 319 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 320 if (isa<ConstantExpr>(getAggregateElement(i))) 321 return true; 322 } 323 324 return false; 325 } 326 327 /// Constructor to create a '0' constant of arbitrary type. 328 Constant *Constant::getNullValue(Type *Ty) { 329 switch (Ty->getTypeID()) { 330 case Type::IntegerTyID: 331 return ConstantInt::get(Ty, 0); 332 case Type::HalfTyID: 333 return ConstantFP::get(Ty->getContext(), 334 APFloat::getZero(APFloat::IEEEhalf())); 335 case Type::BFloatTyID: 336 return ConstantFP::get(Ty->getContext(), 337 APFloat::getZero(APFloat::BFloat())); 338 case Type::FloatTyID: 339 return ConstantFP::get(Ty->getContext(), 340 APFloat::getZero(APFloat::IEEEsingle())); 341 case Type::DoubleTyID: 342 return ConstantFP::get(Ty->getContext(), 343 APFloat::getZero(APFloat::IEEEdouble())); 344 case Type::X86_FP80TyID: 345 return ConstantFP::get(Ty->getContext(), 346 APFloat::getZero(APFloat::x87DoubleExtended())); 347 case Type::FP128TyID: 348 return ConstantFP::get(Ty->getContext(), 349 APFloat::getZero(APFloat::IEEEquad())); 350 case Type::PPC_FP128TyID: 351 return ConstantFP::get(Ty->getContext(), 352 APFloat(APFloat::PPCDoubleDouble(), 353 APInt::getNullValue(128))); 354 case Type::PointerTyID: 355 return ConstantPointerNull::get(cast<PointerType>(Ty)); 356 case Type::StructTyID: 357 case Type::ArrayTyID: 358 case Type::FixedVectorTyID: 359 case Type::ScalableVectorTyID: 360 return ConstantAggregateZero::get(Ty); 361 case Type::TokenTyID: 362 return ConstantTokenNone::get(Ty->getContext()); 363 default: 364 // Function, Label, or Opaque type? 365 llvm_unreachable("Cannot create a null constant of that type!"); 366 } 367 } 368 369 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 370 Type *ScalarTy = Ty->getScalarType(); 371 372 // Create the base integer constant. 373 Constant *C = ConstantInt::get(Ty->getContext(), V); 374 375 // Convert an integer to a pointer, if necessary. 376 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 377 C = ConstantExpr::getIntToPtr(C, PTy); 378 379 // Broadcast a scalar to a vector, if necessary. 380 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 381 C = ConstantVector::getSplat(VTy->getElementCount(), C); 382 383 return C; 384 } 385 386 Constant *Constant::getAllOnesValue(Type *Ty) { 387 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 388 return ConstantInt::get(Ty->getContext(), 389 APInt::getAllOnesValue(ITy->getBitWidth())); 390 391 if (Ty->isFloatingPointTy()) { 392 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(), 393 Ty->getPrimitiveSizeInBits()); 394 return ConstantFP::get(Ty->getContext(), FL); 395 } 396 397 VectorType *VTy = cast<VectorType>(Ty); 398 return ConstantVector::getSplat(VTy->getElementCount(), 399 getAllOnesValue(VTy->getElementType())); 400 } 401 402 Constant *Constant::getAggregateElement(unsigned Elt) const { 403 if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this)) 404 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 405 406 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this)) 407 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; 408 409 if (const UndefValue *UV = dyn_cast<UndefValue>(this)) 410 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 411 412 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) 413 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 414 : nullptr; 415 return nullptr; 416 } 417 418 Constant *Constant::getAggregateElement(Constant *Elt) const { 419 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 420 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 421 // Check if the constant fits into an uint64_t. 422 if (CI->getValue().getActiveBits() > 64) 423 return nullptr; 424 return getAggregateElement(CI->getZExtValue()); 425 } 426 return nullptr; 427 } 428 429 void Constant::destroyConstant() { 430 /// First call destroyConstantImpl on the subclass. This gives the subclass 431 /// a chance to remove the constant from any maps/pools it's contained in. 432 switch (getValueID()) { 433 default: 434 llvm_unreachable("Not a constant!"); 435 #define HANDLE_CONSTANT(Name) \ 436 case Value::Name##Val: \ 437 cast<Name>(this)->destroyConstantImpl(); \ 438 break; 439 #include "llvm/IR/Value.def" 440 } 441 442 // When a Constant is destroyed, there may be lingering 443 // references to the constant by other constants in the constant pool. These 444 // constants are implicitly dependent on the module that is being deleted, 445 // but they don't know that. Because we only find out when the CPV is 446 // deleted, we must now notify all of our users (that should only be 447 // Constants) that they are, in fact, invalid now and should be deleted. 448 // 449 while (!use_empty()) { 450 Value *V = user_back(); 451 #ifndef NDEBUG // Only in -g mode... 452 if (!isa<Constant>(V)) { 453 dbgs() << "While deleting: " << *this 454 << "\n\nUse still stuck around after Def is destroyed: " << *V 455 << "\n\n"; 456 } 457 #endif 458 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 459 cast<Constant>(V)->destroyConstant(); 460 461 // The constant should remove itself from our use list... 462 assert((use_empty() || user_back() != V) && "Constant not removed!"); 463 } 464 465 // Value has no outstanding references it is safe to delete it now... 466 delete this; 467 } 468 469 static bool canTrapImpl(const Constant *C, 470 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { 471 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 472 // The only thing that could possibly trap are constant exprs. 473 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 474 if (!CE) 475 return false; 476 477 // ConstantExpr traps if any operands can trap. 478 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 479 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { 480 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) 481 return true; 482 } 483 } 484 485 // Otherwise, only specific operations can trap. 486 switch (CE->getOpcode()) { 487 default: 488 return false; 489 case Instruction::UDiv: 490 case Instruction::SDiv: 491 case Instruction::URem: 492 case Instruction::SRem: 493 // Div and rem can trap if the RHS is not known to be non-zero. 494 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 495 return true; 496 return false; 497 } 498 } 499 500 bool Constant::canTrap() const { 501 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; 502 return canTrapImpl(this, NonTrappingOps); 503 } 504 505 /// Check if C contains a GlobalValue for which Predicate is true. 506 static bool 507 ConstHasGlobalValuePredicate(const Constant *C, 508 bool (*Predicate)(const GlobalValue *)) { 509 SmallPtrSet<const Constant *, 8> Visited; 510 SmallVector<const Constant *, 8> WorkList; 511 WorkList.push_back(C); 512 Visited.insert(C); 513 514 while (!WorkList.empty()) { 515 const Constant *WorkItem = WorkList.pop_back_val(); 516 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 517 if (Predicate(GV)) 518 return true; 519 for (const Value *Op : WorkItem->operands()) { 520 const Constant *ConstOp = dyn_cast<Constant>(Op); 521 if (!ConstOp) 522 continue; 523 if (Visited.insert(ConstOp).second) 524 WorkList.push_back(ConstOp); 525 } 526 } 527 return false; 528 } 529 530 bool Constant::isThreadDependent() const { 531 auto DLLImportPredicate = [](const GlobalValue *GV) { 532 return GV->isThreadLocal(); 533 }; 534 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 535 } 536 537 bool Constant::isDLLImportDependent() const { 538 auto DLLImportPredicate = [](const GlobalValue *GV) { 539 return GV->hasDLLImportStorageClass(); 540 }; 541 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 542 } 543 544 bool Constant::isConstantUsed() const { 545 for (const User *U : users()) { 546 const Constant *UC = dyn_cast<Constant>(U); 547 if (!UC || isa<GlobalValue>(UC)) 548 return true; 549 550 if (UC->isConstantUsed()) 551 return true; 552 } 553 return false; 554 } 555 556 bool Constant::needsRelocation() const { 557 if (isa<GlobalValue>(this)) 558 return true; // Global reference. 559 560 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 561 return BA->getFunction()->needsRelocation(); 562 563 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 564 if (CE->getOpcode() == Instruction::Sub) { 565 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 566 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 567 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 568 RHS->getOpcode() == Instruction::PtrToInt) { 569 Constant *LHSOp0 = LHS->getOperand(0); 570 Constant *RHSOp0 = RHS->getOperand(0); 571 572 // While raw uses of blockaddress need to be relocated, differences 573 // between two of them don't when they are for labels in the same 574 // function. This is a common idiom when creating a table for the 575 // indirect goto extension, so we handle it efficiently here. 576 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 577 cast<BlockAddress>(LHSOp0)->getFunction() == 578 cast<BlockAddress>(RHSOp0)->getFunction()) 579 return false; 580 581 // Relative pointers do not need to be dynamically relocated. 582 if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts())) 583 if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts())) 584 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 585 return false; 586 } 587 } 588 } 589 590 bool Result = false; 591 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 592 Result |= cast<Constant>(getOperand(i))->needsRelocation(); 593 594 return Result; 595 } 596 597 /// If the specified constantexpr is dead, remove it. This involves recursively 598 /// eliminating any dead users of the constantexpr. 599 static bool removeDeadUsersOfConstant(const Constant *C) { 600 if (isa<GlobalValue>(C)) return false; // Cannot remove this 601 602 while (!C->use_empty()) { 603 const Constant *User = dyn_cast<Constant>(C->user_back()); 604 if (!User) return false; // Non-constant usage; 605 if (!removeDeadUsersOfConstant(User)) 606 return false; // Constant wasn't dead 607 } 608 609 const_cast<Constant*>(C)->destroyConstant(); 610 return true; 611 } 612 613 614 void Constant::removeDeadConstantUsers() const { 615 Value::const_user_iterator I = user_begin(), E = user_end(); 616 Value::const_user_iterator LastNonDeadUser = E; 617 while (I != E) { 618 const Constant *User = dyn_cast<Constant>(*I); 619 if (!User) { 620 LastNonDeadUser = I; 621 ++I; 622 continue; 623 } 624 625 if (!removeDeadUsersOfConstant(User)) { 626 // If the constant wasn't dead, remember that this was the last live use 627 // and move on to the next constant. 628 LastNonDeadUser = I; 629 ++I; 630 continue; 631 } 632 633 // If the constant was dead, then the iterator is invalidated. 634 if (LastNonDeadUser == E) 635 I = user_begin(); 636 else 637 I = std::next(LastNonDeadUser); 638 } 639 } 640 641 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 642 assert(C && Replacement && "Expected non-nullptr constant arguments"); 643 Type *Ty = C->getType(); 644 if (match(C, m_Undef())) { 645 assert(Ty == Replacement->getType() && "Expected matching types"); 646 return Replacement; 647 } 648 649 // Don't know how to deal with this constant. 650 auto *VTy = dyn_cast<FixedVectorType>(Ty); 651 if (!VTy) 652 return C; 653 654 unsigned NumElts = VTy->getNumElements(); 655 SmallVector<Constant *, 32> NewC(NumElts); 656 for (unsigned i = 0; i != NumElts; ++i) { 657 Constant *EltC = C->getAggregateElement(i); 658 assert((!EltC || EltC->getType() == Replacement->getType()) && 659 "Expected matching types"); 660 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 661 } 662 return ConstantVector::get(NewC); 663 } 664 665 666 //===----------------------------------------------------------------------===// 667 // ConstantInt 668 //===----------------------------------------------------------------------===// 669 670 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 671 : ConstantData(Ty, ConstantIntVal), Val(V) { 672 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 673 } 674 675 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 676 LLVMContextImpl *pImpl = Context.pImpl; 677 if (!pImpl->TheTrueVal) 678 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 679 return pImpl->TheTrueVal; 680 } 681 682 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 683 LLVMContextImpl *pImpl = Context.pImpl; 684 if (!pImpl->TheFalseVal) 685 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 686 return pImpl->TheFalseVal; 687 } 688 689 Constant *ConstantInt::getTrue(Type *Ty) { 690 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 691 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 692 if (auto *VTy = dyn_cast<VectorType>(Ty)) 693 return ConstantVector::getSplat(VTy->getElementCount(), TrueC); 694 return TrueC; 695 } 696 697 Constant *ConstantInt::getFalse(Type *Ty) { 698 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 699 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 700 if (auto *VTy = dyn_cast<VectorType>(Ty)) 701 return ConstantVector::getSplat(VTy->getElementCount(), FalseC); 702 return FalseC; 703 } 704 705 // Get a ConstantInt from an APInt. 706 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 707 // get an existing value or the insertion position 708 LLVMContextImpl *pImpl = Context.pImpl; 709 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 710 if (!Slot) { 711 // Get the corresponding integer type for the bit width of the value. 712 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 713 Slot.reset(new ConstantInt(ITy, V)); 714 } 715 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 716 return Slot.get(); 717 } 718 719 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 720 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 721 722 // For vectors, broadcast the value. 723 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 724 return ConstantVector::getSplat(VTy->getElementCount(), C); 725 726 return C; 727 } 728 729 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 730 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 731 } 732 733 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 734 return get(Ty, V, true); 735 } 736 737 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 738 return get(Ty, V, true); 739 } 740 741 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 742 ConstantInt *C = get(Ty->getContext(), V); 743 assert(C->getType() == Ty->getScalarType() && 744 "ConstantInt type doesn't match the type implied by its value!"); 745 746 // For vectors, broadcast the value. 747 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 748 return ConstantVector::getSplat(VTy->getElementCount(), C); 749 750 return C; 751 } 752 753 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 754 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 755 } 756 757 /// Remove the constant from the constant table. 758 void ConstantInt::destroyConstantImpl() { 759 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 760 } 761 762 //===----------------------------------------------------------------------===// 763 // ConstantFP 764 //===----------------------------------------------------------------------===// 765 766 static const fltSemantics *TypeToFloatSemantics(Type *Ty) { 767 if (Ty->isHalfTy()) 768 return &APFloat::IEEEhalf(); 769 if (Ty->isBFloatTy()) 770 return &APFloat::BFloat(); 771 if (Ty->isFloatTy()) 772 return &APFloat::IEEEsingle(); 773 if (Ty->isDoubleTy()) 774 return &APFloat::IEEEdouble(); 775 if (Ty->isX86_FP80Ty()) 776 return &APFloat::x87DoubleExtended(); 777 else if (Ty->isFP128Ty()) 778 return &APFloat::IEEEquad(); 779 780 assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); 781 return &APFloat::PPCDoubleDouble(); 782 } 783 784 Constant *ConstantFP::get(Type *Ty, double V) { 785 LLVMContext &Context = Ty->getContext(); 786 787 APFloat FV(V); 788 bool ignored; 789 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), 790 APFloat::rmNearestTiesToEven, &ignored); 791 Constant *C = get(Context, FV); 792 793 // For vectors, broadcast the value. 794 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 795 return ConstantVector::getSplat(VTy->getElementCount(), C); 796 797 return C; 798 } 799 800 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 801 ConstantFP *C = get(Ty->getContext(), V); 802 assert(C->getType() == Ty->getScalarType() && 803 "ConstantFP type doesn't match the type implied by its value!"); 804 805 // For vectors, broadcast the value. 806 if (auto *VTy = dyn_cast<VectorType>(Ty)) 807 return ConstantVector::getSplat(VTy->getElementCount(), C); 808 809 return C; 810 } 811 812 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 813 LLVMContext &Context = Ty->getContext(); 814 815 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); 816 Constant *C = get(Context, FV); 817 818 // For vectors, broadcast the value. 819 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 820 return ConstantVector::getSplat(VTy->getElementCount(), C); 821 822 return C; 823 } 824 825 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 826 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 827 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 828 Constant *C = get(Ty->getContext(), NaN); 829 830 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 831 return ConstantVector::getSplat(VTy->getElementCount(), C); 832 833 return C; 834 } 835 836 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 837 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 838 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 839 Constant *C = get(Ty->getContext(), NaN); 840 841 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 842 return ConstantVector::getSplat(VTy->getElementCount(), C); 843 844 return C; 845 } 846 847 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 848 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 849 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 850 Constant *C = get(Ty->getContext(), NaN); 851 852 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 853 return ConstantVector::getSplat(VTy->getElementCount(), C); 854 855 return C; 856 } 857 858 Constant *ConstantFP::getNegativeZero(Type *Ty) { 859 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 860 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); 861 Constant *C = get(Ty->getContext(), NegZero); 862 863 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 864 return ConstantVector::getSplat(VTy->getElementCount(), C); 865 866 return C; 867 } 868 869 870 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 871 if (Ty->isFPOrFPVectorTy()) 872 return getNegativeZero(Ty); 873 874 return Constant::getNullValue(Ty); 875 } 876 877 878 // ConstantFP accessors. 879 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 880 LLVMContextImpl* pImpl = Context.pImpl; 881 882 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 883 884 if (!Slot) { 885 Type *Ty; 886 if (&V.getSemantics() == &APFloat::IEEEhalf()) 887 Ty = Type::getHalfTy(Context); 888 else if (&V.getSemantics() == &APFloat::BFloat()) 889 Ty = Type::getBFloatTy(Context); 890 else if (&V.getSemantics() == &APFloat::IEEEsingle()) 891 Ty = Type::getFloatTy(Context); 892 else if (&V.getSemantics() == &APFloat::IEEEdouble()) 893 Ty = Type::getDoubleTy(Context); 894 else if (&V.getSemantics() == &APFloat::x87DoubleExtended()) 895 Ty = Type::getX86_FP80Ty(Context); 896 else if (&V.getSemantics() == &APFloat::IEEEquad()) 897 Ty = Type::getFP128Ty(Context); 898 else { 899 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() && 900 "Unknown FP format"); 901 Ty = Type::getPPC_FP128Ty(Context); 902 } 903 Slot.reset(new ConstantFP(Ty, V)); 904 } 905 906 return Slot.get(); 907 } 908 909 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 910 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 911 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 912 913 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 914 return ConstantVector::getSplat(VTy->getElementCount(), C); 915 916 return C; 917 } 918 919 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 920 : ConstantData(Ty, ConstantFPVal), Val(V) { 921 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && 922 "FP type Mismatch"); 923 } 924 925 bool ConstantFP::isExactlyValue(const APFloat &V) const { 926 return Val.bitwiseIsEqual(V); 927 } 928 929 /// Remove the constant from the constant table. 930 void ConstantFP::destroyConstantImpl() { 931 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 932 } 933 934 //===----------------------------------------------------------------------===// 935 // ConstantAggregateZero Implementation 936 //===----------------------------------------------------------------------===// 937 938 Constant *ConstantAggregateZero::getSequentialElement() const { 939 if (auto *AT = dyn_cast<ArrayType>(getType())) 940 return Constant::getNullValue(AT->getElementType()); 941 return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); 942 } 943 944 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 945 return Constant::getNullValue(getType()->getStructElementType(Elt)); 946 } 947 948 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 949 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 950 return getSequentialElement(); 951 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 952 } 953 954 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 955 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 956 return getSequentialElement(); 957 return getStructElement(Idx); 958 } 959 960 unsigned ConstantAggregateZero::getNumElements() const { 961 Type *Ty = getType(); 962 if (auto *AT = dyn_cast<ArrayType>(Ty)) 963 return AT->getNumElements(); 964 if (auto *VT = dyn_cast<VectorType>(Ty)) 965 return VT->getNumElements(); 966 return Ty->getStructNumElements(); 967 } 968 969 //===----------------------------------------------------------------------===// 970 // UndefValue Implementation 971 //===----------------------------------------------------------------------===// 972 973 UndefValue *UndefValue::getSequentialElement() const { 974 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 975 return UndefValue::get(ATy->getElementType()); 976 return UndefValue::get(cast<VectorType>(getType())->getElementType()); 977 } 978 979 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 980 return UndefValue::get(getType()->getStructElementType(Elt)); 981 } 982 983 UndefValue *UndefValue::getElementValue(Constant *C) const { 984 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 985 return getSequentialElement(); 986 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 987 } 988 989 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 990 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 991 return getSequentialElement(); 992 return getStructElement(Idx); 993 } 994 995 unsigned UndefValue::getNumElements() const { 996 Type *Ty = getType(); 997 if (auto *AT = dyn_cast<ArrayType>(Ty)) 998 return AT->getNumElements(); 999 if (auto *VT = dyn_cast<VectorType>(Ty)) 1000 return VT->getNumElements(); 1001 return Ty->getStructNumElements(); 1002 } 1003 1004 //===----------------------------------------------------------------------===// 1005 // ConstantXXX Classes 1006 //===----------------------------------------------------------------------===// 1007 1008 template <typename ItTy, typename EltTy> 1009 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 1010 for (; Start != End; ++Start) 1011 if (*Start != Elt) 1012 return false; 1013 return true; 1014 } 1015 1016 template <typename SequentialTy, typename ElementTy> 1017 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1018 assert(!V.empty() && "Cannot get empty int sequence."); 1019 1020 SmallVector<ElementTy, 16> Elts; 1021 for (Constant *C : V) 1022 if (auto *CI = dyn_cast<ConstantInt>(C)) 1023 Elts.push_back(CI->getZExtValue()); 1024 else 1025 return nullptr; 1026 return SequentialTy::get(V[0]->getContext(), Elts); 1027 } 1028 1029 template <typename SequentialTy, typename ElementTy> 1030 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1031 assert(!V.empty() && "Cannot get empty FP sequence."); 1032 1033 SmallVector<ElementTy, 16> Elts; 1034 for (Constant *C : V) 1035 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1036 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1037 else 1038 return nullptr; 1039 return SequentialTy::getFP(V[0]->getType(), Elts); 1040 } 1041 1042 template <typename SequenceTy> 1043 static Constant *getSequenceIfElementsMatch(Constant *C, 1044 ArrayRef<Constant *> V) { 1045 // We speculatively build the elements here even if it turns out that there is 1046 // a constantexpr or something else weird, since it is so uncommon for that to 1047 // happen. 1048 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1049 if (CI->getType()->isIntegerTy(8)) 1050 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1051 else if (CI->getType()->isIntegerTy(16)) 1052 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1053 else if (CI->getType()->isIntegerTy(32)) 1054 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1055 else if (CI->getType()->isIntegerTy(64)) 1056 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1057 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1058 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) 1059 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1060 else if (CFP->getType()->isFloatTy()) 1061 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1062 else if (CFP->getType()->isDoubleTy()) 1063 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1064 } 1065 1066 return nullptr; 1067 } 1068 1069 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, 1070 ArrayRef<Constant *> V) 1071 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1072 V.size()) { 1073 llvm::copy(V, op_begin()); 1074 1075 // Check that types match, unless this is an opaque struct. 1076 if (auto *ST = dyn_cast<StructType>(T)) { 1077 if (ST->isOpaque()) 1078 return; 1079 for (unsigned I = 0, E = V.size(); I != E; ++I) 1080 assert(V[I]->getType() == ST->getTypeAtIndex(I) && 1081 "Initializer for struct element doesn't match!"); 1082 } 1083 } 1084 1085 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1086 : ConstantAggregate(T, ConstantArrayVal, V) { 1087 assert(V.size() == T->getNumElements() && 1088 "Invalid initializer for constant array"); 1089 } 1090 1091 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1092 if (Constant *C = getImpl(Ty, V)) 1093 return C; 1094 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1095 } 1096 1097 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1098 // Empty arrays are canonicalized to ConstantAggregateZero. 1099 if (V.empty()) 1100 return ConstantAggregateZero::get(Ty); 1101 1102 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1103 assert(V[i]->getType() == Ty->getElementType() && 1104 "Wrong type in array element initializer"); 1105 } 1106 1107 // If this is an all-zero array, return a ConstantAggregateZero object. If 1108 // all undef, return an UndefValue, if "all simple", then return a 1109 // ConstantDataArray. 1110 Constant *C = V[0]; 1111 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1112 return UndefValue::get(Ty); 1113 1114 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1115 return ConstantAggregateZero::get(Ty); 1116 1117 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1118 // the element type is compatible with ConstantDataVector. If so, use it. 1119 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1120 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1121 1122 // Otherwise, we really do want to create a ConstantArray. 1123 return nullptr; 1124 } 1125 1126 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1127 ArrayRef<Constant*> V, 1128 bool Packed) { 1129 unsigned VecSize = V.size(); 1130 SmallVector<Type*, 16> EltTypes(VecSize); 1131 for (unsigned i = 0; i != VecSize; ++i) 1132 EltTypes[i] = V[i]->getType(); 1133 1134 return StructType::get(Context, EltTypes, Packed); 1135 } 1136 1137 1138 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1139 bool Packed) { 1140 assert(!V.empty() && 1141 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1142 return getTypeForElements(V[0]->getContext(), V, Packed); 1143 } 1144 1145 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1146 : ConstantAggregate(T, ConstantStructVal, V) { 1147 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1148 "Invalid initializer for constant struct"); 1149 } 1150 1151 // ConstantStruct accessors. 1152 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1153 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1154 "Incorrect # elements specified to ConstantStruct::get"); 1155 1156 // Create a ConstantAggregateZero value if all elements are zeros. 1157 bool isZero = true; 1158 bool isUndef = false; 1159 1160 if (!V.empty()) { 1161 isUndef = isa<UndefValue>(V[0]); 1162 isZero = V[0]->isNullValue(); 1163 if (isUndef || isZero) { 1164 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1165 if (!V[i]->isNullValue()) 1166 isZero = false; 1167 if (!isa<UndefValue>(V[i])) 1168 isUndef = false; 1169 } 1170 } 1171 } 1172 if (isZero) 1173 return ConstantAggregateZero::get(ST); 1174 if (isUndef) 1175 return UndefValue::get(ST); 1176 1177 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1178 } 1179 1180 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1181 : ConstantAggregate(T, ConstantVectorVal, V) { 1182 assert(V.size() == T->getNumElements() && 1183 "Invalid initializer for constant vector"); 1184 } 1185 1186 // ConstantVector accessors. 1187 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1188 if (Constant *C = getImpl(V)) 1189 return C; 1190 VectorType *Ty = VectorType::get(V.front()->getType(), V.size()); 1191 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1192 } 1193 1194 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1195 assert(!V.empty() && "Vectors can't be empty"); 1196 VectorType *T = VectorType::get(V.front()->getType(), V.size()); 1197 1198 // If this is an all-undef or all-zero vector, return a 1199 // ConstantAggregateZero or UndefValue. 1200 Constant *C = V[0]; 1201 bool isZero = C->isNullValue(); 1202 bool isUndef = isa<UndefValue>(C); 1203 1204 if (isZero || isUndef) { 1205 for (unsigned i = 1, e = V.size(); i != e; ++i) 1206 if (V[i] != C) { 1207 isZero = isUndef = false; 1208 break; 1209 } 1210 } 1211 1212 if (isZero) 1213 return ConstantAggregateZero::get(T); 1214 if (isUndef) 1215 return UndefValue::get(T); 1216 1217 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1218 // the element type is compatible with ConstantDataVector. If so, use it. 1219 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1220 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1221 1222 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1223 // the operand list contains a ConstantExpr or something else strange. 1224 return nullptr; 1225 } 1226 1227 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { 1228 if (!EC.Scalable) { 1229 // If this splat is compatible with ConstantDataVector, use it instead of 1230 // ConstantVector. 1231 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1232 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1233 return ConstantDataVector::getSplat(EC.Min, V); 1234 1235 SmallVector<Constant *, 32> Elts(EC.Min, V); 1236 return get(Elts); 1237 } 1238 1239 Type *VTy = VectorType::get(V->getType(), EC); 1240 1241 if (V->isNullValue()) 1242 return ConstantAggregateZero::get(VTy); 1243 else if (isa<UndefValue>(V)) 1244 return UndefValue::get(VTy); 1245 1246 Type *I32Ty = Type::getInt32Ty(VTy->getContext()); 1247 1248 // Move scalar into vector. 1249 Constant *UndefV = UndefValue::get(VTy); 1250 V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0)); 1251 // Build shuffle mask to perform the splat. 1252 SmallVector<int, 8> Zeros(EC.Min, 0); 1253 // Splat. 1254 return ConstantExpr::getShuffleVector(V, UndefV, Zeros); 1255 } 1256 1257 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1258 LLVMContextImpl *pImpl = Context.pImpl; 1259 if (!pImpl->TheNoneToken) 1260 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1261 return pImpl->TheNoneToken.get(); 1262 } 1263 1264 /// Remove the constant from the constant table. 1265 void ConstantTokenNone::destroyConstantImpl() { 1266 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1267 } 1268 1269 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1270 // can't be inline because we don't want to #include Instruction.h into 1271 // Constant.h 1272 bool ConstantExpr::isCast() const { 1273 return Instruction::isCast(getOpcode()); 1274 } 1275 1276 bool ConstantExpr::isCompare() const { 1277 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1278 } 1279 1280 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { 1281 if (getOpcode() != Instruction::GetElementPtr) return false; 1282 1283 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); 1284 User::const_op_iterator OI = std::next(this->op_begin()); 1285 1286 // The remaining indices may be compile-time known integers within the bounds 1287 // of the corresponding notional static array types. 1288 for (; GEPI != E; ++GEPI, ++OI) { 1289 if (isa<UndefValue>(*OI)) 1290 continue; 1291 auto *CI = dyn_cast<ConstantInt>(*OI); 1292 if (!CI || (GEPI.isBoundedSequential() && 1293 (CI->getValue().getActiveBits() > 64 || 1294 CI->getZExtValue() >= GEPI.getSequentialNumElements()))) 1295 return false; 1296 } 1297 1298 // All the indices checked out. 1299 return true; 1300 } 1301 1302 bool ConstantExpr::hasIndices() const { 1303 return getOpcode() == Instruction::ExtractValue || 1304 getOpcode() == Instruction::InsertValue; 1305 } 1306 1307 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1308 if (const ExtractValueConstantExpr *EVCE = 1309 dyn_cast<ExtractValueConstantExpr>(this)) 1310 return EVCE->Indices; 1311 1312 return cast<InsertValueConstantExpr>(this)->Indices; 1313 } 1314 1315 unsigned ConstantExpr::getPredicate() const { 1316 return cast<CompareConstantExpr>(this)->predicate; 1317 } 1318 1319 ArrayRef<int> ConstantExpr::getShuffleMask() const { 1320 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; 1321 } 1322 1323 Constant *ConstantExpr::getShuffleMaskForBitcode() const { 1324 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; 1325 } 1326 1327 Constant * 1328 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { 1329 assert(Op->getType() == getOperand(OpNo)->getType() && 1330 "Replacing operand with value of different type!"); 1331 if (getOperand(OpNo) == Op) 1332 return const_cast<ConstantExpr*>(this); 1333 1334 SmallVector<Constant*, 8> NewOps; 1335 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1336 NewOps.push_back(i == OpNo ? Op : getOperand(i)); 1337 1338 return getWithOperands(NewOps); 1339 } 1340 1341 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1342 bool OnlyIfReduced, Type *SrcTy) const { 1343 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1344 1345 // If no operands changed return self. 1346 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1347 return const_cast<ConstantExpr*>(this); 1348 1349 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1350 switch (getOpcode()) { 1351 case Instruction::Trunc: 1352 case Instruction::ZExt: 1353 case Instruction::SExt: 1354 case Instruction::FPTrunc: 1355 case Instruction::FPExt: 1356 case Instruction::UIToFP: 1357 case Instruction::SIToFP: 1358 case Instruction::FPToUI: 1359 case Instruction::FPToSI: 1360 case Instruction::PtrToInt: 1361 case Instruction::IntToPtr: 1362 case Instruction::BitCast: 1363 case Instruction::AddrSpaceCast: 1364 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1365 case Instruction::Select: 1366 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1367 case Instruction::InsertElement: 1368 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1369 OnlyIfReducedTy); 1370 case Instruction::ExtractElement: 1371 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1372 case Instruction::InsertValue: 1373 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), 1374 OnlyIfReducedTy); 1375 case Instruction::ExtractValue: 1376 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); 1377 case Instruction::ShuffleVector: 1378 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), 1379 OnlyIfReducedTy); 1380 case Instruction::GetElementPtr: { 1381 auto *GEPO = cast<GEPOperator>(this); 1382 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1383 return ConstantExpr::getGetElementPtr( 1384 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1385 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1386 } 1387 case Instruction::ICmp: 1388 case Instruction::FCmp: 1389 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1390 OnlyIfReducedTy); 1391 default: 1392 assert(getNumOperands() == 2 && "Must be binary operator?"); 1393 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1394 OnlyIfReducedTy); 1395 } 1396 } 1397 1398 1399 //===----------------------------------------------------------------------===// 1400 // isValueValidForType implementations 1401 1402 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1403 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1404 if (Ty->isIntegerTy(1)) 1405 return Val == 0 || Val == 1; 1406 return isUIntN(NumBits, Val); 1407 } 1408 1409 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1410 unsigned NumBits = Ty->getIntegerBitWidth(); 1411 if (Ty->isIntegerTy(1)) 1412 return Val == 0 || Val == 1 || Val == -1; 1413 return isIntN(NumBits, Val); 1414 } 1415 1416 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1417 // convert modifies in place, so make a copy. 1418 APFloat Val2 = APFloat(Val); 1419 bool losesInfo; 1420 switch (Ty->getTypeID()) { 1421 default: 1422 return false; // These can't be represented as floating point! 1423 1424 // FIXME rounding mode needs to be more flexible 1425 case Type::HalfTyID: { 1426 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1427 return true; 1428 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1429 return !losesInfo; 1430 } 1431 case Type::BFloatTyID: { 1432 if (&Val2.getSemantics() == &APFloat::BFloat()) 1433 return true; 1434 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); 1435 return !losesInfo; 1436 } 1437 case Type::FloatTyID: { 1438 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1439 return true; 1440 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1441 return !losesInfo; 1442 } 1443 case Type::DoubleTyID: { 1444 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1445 &Val2.getSemantics() == &APFloat::BFloat() || 1446 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1447 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1448 return true; 1449 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1450 return !losesInfo; 1451 } 1452 case Type::X86_FP80TyID: 1453 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1454 &Val2.getSemantics() == &APFloat::BFloat() || 1455 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1456 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1457 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1458 case Type::FP128TyID: 1459 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1460 &Val2.getSemantics() == &APFloat::BFloat() || 1461 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1462 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1463 &Val2.getSemantics() == &APFloat::IEEEquad(); 1464 case Type::PPC_FP128TyID: 1465 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1466 &Val2.getSemantics() == &APFloat::BFloat() || 1467 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1468 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1469 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1470 } 1471 } 1472 1473 1474 //===----------------------------------------------------------------------===// 1475 // Factory Function Implementation 1476 1477 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1478 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1479 "Cannot create an aggregate zero of non-aggregate type!"); 1480 1481 std::unique_ptr<ConstantAggregateZero> &Entry = 1482 Ty->getContext().pImpl->CAZConstants[Ty]; 1483 if (!Entry) 1484 Entry.reset(new ConstantAggregateZero(Ty)); 1485 1486 return Entry.get(); 1487 } 1488 1489 /// Remove the constant from the constant table. 1490 void ConstantAggregateZero::destroyConstantImpl() { 1491 getContext().pImpl->CAZConstants.erase(getType()); 1492 } 1493 1494 /// Remove the constant from the constant table. 1495 void ConstantArray::destroyConstantImpl() { 1496 getType()->getContext().pImpl->ArrayConstants.remove(this); 1497 } 1498 1499 1500 //---- ConstantStruct::get() implementation... 1501 // 1502 1503 /// Remove the constant from the constant table. 1504 void ConstantStruct::destroyConstantImpl() { 1505 getType()->getContext().pImpl->StructConstants.remove(this); 1506 } 1507 1508 /// Remove the constant from the constant table. 1509 void ConstantVector::destroyConstantImpl() { 1510 getType()->getContext().pImpl->VectorConstants.remove(this); 1511 } 1512 1513 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1514 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1515 if (isa<ConstantAggregateZero>(this)) 1516 return getNullValue(cast<VectorType>(getType())->getElementType()); 1517 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1518 return CV->getSplatValue(); 1519 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1520 return CV->getSplatValue(AllowUndefs); 1521 return nullptr; 1522 } 1523 1524 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1525 // Check out first element. 1526 Constant *Elt = getOperand(0); 1527 // Then make sure all remaining elements point to the same value. 1528 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1529 Constant *OpC = getOperand(I); 1530 if (OpC == Elt) 1531 continue; 1532 1533 // Strict mode: any mismatch is not a splat. 1534 if (!AllowUndefs) 1535 return nullptr; 1536 1537 // Allow undefs mode: ignore undefined elements. 1538 if (isa<UndefValue>(OpC)) 1539 continue; 1540 1541 // If we do not have a defined element yet, use the current operand. 1542 if (isa<UndefValue>(Elt)) 1543 Elt = OpC; 1544 1545 if (OpC != Elt) 1546 return nullptr; 1547 } 1548 return Elt; 1549 } 1550 1551 const APInt &Constant::getUniqueInteger() const { 1552 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1553 return CI->getValue(); 1554 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1555 const Constant *C = this->getAggregateElement(0U); 1556 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1557 return cast<ConstantInt>(C)->getValue(); 1558 } 1559 1560 //---- ConstantPointerNull::get() implementation. 1561 // 1562 1563 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1564 std::unique_ptr<ConstantPointerNull> &Entry = 1565 Ty->getContext().pImpl->CPNConstants[Ty]; 1566 if (!Entry) 1567 Entry.reset(new ConstantPointerNull(Ty)); 1568 1569 return Entry.get(); 1570 } 1571 1572 /// Remove the constant from the constant table. 1573 void ConstantPointerNull::destroyConstantImpl() { 1574 getContext().pImpl->CPNConstants.erase(getType()); 1575 } 1576 1577 UndefValue *UndefValue::get(Type *Ty) { 1578 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1579 if (!Entry) 1580 Entry.reset(new UndefValue(Ty)); 1581 1582 return Entry.get(); 1583 } 1584 1585 /// Remove the constant from the constant table. 1586 void UndefValue::destroyConstantImpl() { 1587 // Free the constant and any dangling references to it. 1588 getContext().pImpl->UVConstants.erase(getType()); 1589 } 1590 1591 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1592 assert(BB->getParent() && "Block must have a parent"); 1593 return get(BB->getParent(), BB); 1594 } 1595 1596 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1597 BlockAddress *&BA = 1598 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1599 if (!BA) 1600 BA = new BlockAddress(F, BB); 1601 1602 assert(BA->getFunction() == F && "Basic block moved between functions"); 1603 return BA; 1604 } 1605 1606 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1607 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, 1608 &Op<0>(), 2) { 1609 setOperand(0, F); 1610 setOperand(1, BB); 1611 BB->AdjustBlockAddressRefCount(1); 1612 } 1613 1614 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1615 if (!BB->hasAddressTaken()) 1616 return nullptr; 1617 1618 const Function *F = BB->getParent(); 1619 assert(F && "Block must have a parent"); 1620 BlockAddress *BA = 1621 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1622 assert(BA && "Refcount and block address map disagree!"); 1623 return BA; 1624 } 1625 1626 /// Remove the constant from the constant table. 1627 void BlockAddress::destroyConstantImpl() { 1628 getFunction()->getType()->getContext().pImpl 1629 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1630 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1631 } 1632 1633 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1634 // This could be replacing either the Basic Block or the Function. In either 1635 // case, we have to remove the map entry. 1636 Function *NewF = getFunction(); 1637 BasicBlock *NewBB = getBasicBlock(); 1638 1639 if (From == NewF) 1640 NewF = cast<Function>(To->stripPointerCasts()); 1641 else { 1642 assert(From == NewBB && "From does not match any operand"); 1643 NewBB = cast<BasicBlock>(To); 1644 } 1645 1646 // See if the 'new' entry already exists, if not, just update this in place 1647 // and return early. 1648 BlockAddress *&NewBA = 1649 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1650 if (NewBA) 1651 return NewBA; 1652 1653 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1654 1655 // Remove the old entry, this can't cause the map to rehash (just a 1656 // tombstone will get added). 1657 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1658 getBasicBlock())); 1659 NewBA = this; 1660 setOperand(0, NewF); 1661 setOperand(1, NewBB); 1662 getBasicBlock()->AdjustBlockAddressRefCount(1); 1663 1664 // If we just want to keep the existing value, then return null. 1665 // Callers know that this means we shouldn't delete this value. 1666 return nullptr; 1667 } 1668 1669 //---- ConstantExpr::get() implementations. 1670 // 1671 1672 /// This is a utility function to handle folding of casts and lookup of the 1673 /// cast in the ExprConstants map. It is used by the various get* methods below. 1674 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1675 bool OnlyIfReduced = false) { 1676 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1677 // Fold a few common cases 1678 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1679 return FC; 1680 1681 if (OnlyIfReduced) 1682 return nullptr; 1683 1684 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1685 1686 // Look up the constant in the table first to ensure uniqueness. 1687 ConstantExprKeyType Key(opc, C); 1688 1689 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1690 } 1691 1692 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1693 bool OnlyIfReduced) { 1694 Instruction::CastOps opc = Instruction::CastOps(oc); 1695 assert(Instruction::isCast(opc) && "opcode out of range"); 1696 assert(C && Ty && "Null arguments to getCast"); 1697 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1698 1699 switch (opc) { 1700 default: 1701 llvm_unreachable("Invalid cast opcode"); 1702 case Instruction::Trunc: 1703 return getTrunc(C, Ty, OnlyIfReduced); 1704 case Instruction::ZExt: 1705 return getZExt(C, Ty, OnlyIfReduced); 1706 case Instruction::SExt: 1707 return getSExt(C, Ty, OnlyIfReduced); 1708 case Instruction::FPTrunc: 1709 return getFPTrunc(C, Ty, OnlyIfReduced); 1710 case Instruction::FPExt: 1711 return getFPExtend(C, Ty, OnlyIfReduced); 1712 case Instruction::UIToFP: 1713 return getUIToFP(C, Ty, OnlyIfReduced); 1714 case Instruction::SIToFP: 1715 return getSIToFP(C, Ty, OnlyIfReduced); 1716 case Instruction::FPToUI: 1717 return getFPToUI(C, Ty, OnlyIfReduced); 1718 case Instruction::FPToSI: 1719 return getFPToSI(C, Ty, OnlyIfReduced); 1720 case Instruction::PtrToInt: 1721 return getPtrToInt(C, Ty, OnlyIfReduced); 1722 case Instruction::IntToPtr: 1723 return getIntToPtr(C, Ty, OnlyIfReduced); 1724 case Instruction::BitCast: 1725 return getBitCast(C, Ty, OnlyIfReduced); 1726 case Instruction::AddrSpaceCast: 1727 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 1728 } 1729 } 1730 1731 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 1732 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1733 return getBitCast(C, Ty); 1734 return getZExt(C, Ty); 1735 } 1736 1737 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 1738 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1739 return getBitCast(C, Ty); 1740 return getSExt(C, Ty); 1741 } 1742 1743 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1744 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1745 return getBitCast(C, Ty); 1746 return getTrunc(C, Ty); 1747 } 1748 1749 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 1750 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1751 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 1752 "Invalid cast"); 1753 1754 if (Ty->isIntOrIntVectorTy()) 1755 return getPtrToInt(S, Ty); 1756 1757 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 1758 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 1759 return getAddrSpaceCast(S, Ty); 1760 1761 return getBitCast(S, Ty); 1762 } 1763 1764 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 1765 Type *Ty) { 1766 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1767 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 1768 1769 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 1770 return getAddrSpaceCast(S, Ty); 1771 1772 return getBitCast(S, Ty); 1773 } 1774 1775 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 1776 assert(C->getType()->isIntOrIntVectorTy() && 1777 Ty->isIntOrIntVectorTy() && "Invalid cast"); 1778 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1779 unsigned DstBits = Ty->getScalarSizeInBits(); 1780 Instruction::CastOps opcode = 1781 (SrcBits == DstBits ? Instruction::BitCast : 1782 (SrcBits > DstBits ? Instruction::Trunc : 1783 (isSigned ? Instruction::SExt : Instruction::ZExt))); 1784 return getCast(opcode, C, Ty); 1785 } 1786 1787 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 1788 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1789 "Invalid cast"); 1790 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1791 unsigned DstBits = Ty->getScalarSizeInBits(); 1792 if (SrcBits == DstBits) 1793 return C; // Avoid a useless cast 1794 Instruction::CastOps opcode = 1795 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 1796 return getCast(opcode, C, Ty); 1797 } 1798 1799 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 1800 #ifndef NDEBUG 1801 bool fromVec = isa<VectorType>(C->getType()); 1802 bool toVec = isa<VectorType>(Ty); 1803 #endif 1804 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1805 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 1806 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 1807 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1808 "SrcTy must be larger than DestTy for Trunc!"); 1809 1810 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 1811 } 1812 1813 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 1814 #ifndef NDEBUG 1815 bool fromVec = isa<VectorType>(C->getType()); 1816 bool toVec = isa<VectorType>(Ty); 1817 #endif 1818 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1819 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 1820 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 1821 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1822 "SrcTy must be smaller than DestTy for SExt!"); 1823 1824 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 1825 } 1826 1827 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 1828 #ifndef NDEBUG 1829 bool fromVec = isa<VectorType>(C->getType()); 1830 bool toVec = isa<VectorType>(Ty); 1831 #endif 1832 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1833 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 1834 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 1835 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1836 "SrcTy must be smaller than DestTy for ZExt!"); 1837 1838 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 1839 } 1840 1841 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 1842 #ifndef NDEBUG 1843 bool fromVec = isa<VectorType>(C->getType()); 1844 bool toVec = isa<VectorType>(Ty); 1845 #endif 1846 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1847 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1848 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1849 "This is an illegal floating point truncation!"); 1850 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 1851 } 1852 1853 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 1854 #ifndef NDEBUG 1855 bool fromVec = isa<VectorType>(C->getType()); 1856 bool toVec = isa<VectorType>(Ty); 1857 #endif 1858 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1859 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1860 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1861 "This is an illegal floating point extension!"); 1862 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 1863 } 1864 1865 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 1866 #ifndef NDEBUG 1867 bool fromVec = isa<VectorType>(C->getType()); 1868 bool toVec = isa<VectorType>(Ty); 1869 #endif 1870 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1871 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1872 "This is an illegal uint to floating point cast!"); 1873 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 1874 } 1875 1876 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 1877 #ifndef NDEBUG 1878 bool fromVec = isa<VectorType>(C->getType()); 1879 bool toVec = isa<VectorType>(Ty); 1880 #endif 1881 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1882 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1883 "This is an illegal sint to floating point cast!"); 1884 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 1885 } 1886 1887 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 1888 #ifndef NDEBUG 1889 bool fromVec = isa<VectorType>(C->getType()); 1890 bool toVec = isa<VectorType>(Ty); 1891 #endif 1892 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1893 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1894 "This is an illegal floating point to uint cast!"); 1895 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 1896 } 1897 1898 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 1899 #ifndef NDEBUG 1900 bool fromVec = isa<VectorType>(C->getType()); 1901 bool toVec = isa<VectorType>(Ty); 1902 #endif 1903 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1904 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1905 "This is an illegal floating point to sint cast!"); 1906 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 1907 } 1908 1909 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 1910 bool OnlyIfReduced) { 1911 assert(C->getType()->isPtrOrPtrVectorTy() && 1912 "PtrToInt source must be pointer or pointer vector"); 1913 assert(DstTy->isIntOrIntVectorTy() && 1914 "PtrToInt destination must be integer or integer vector"); 1915 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1916 if (isa<VectorType>(C->getType())) 1917 assert(cast<VectorType>(C->getType())->getNumElements() == 1918 cast<VectorType>(DstTy)->getNumElements() && 1919 "Invalid cast between a different number of vector elements"); 1920 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 1921 } 1922 1923 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 1924 bool OnlyIfReduced) { 1925 assert(C->getType()->isIntOrIntVectorTy() && 1926 "IntToPtr source must be integer or integer vector"); 1927 assert(DstTy->isPtrOrPtrVectorTy() && 1928 "IntToPtr destination must be a pointer or pointer vector"); 1929 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1930 if (isa<VectorType>(C->getType())) 1931 assert(cast<VectorType>(C->getType())->getNumElements() == 1932 cast<VectorType>(DstTy)->getNumElements() && 1933 "Invalid cast between a different number of vector elements"); 1934 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 1935 } 1936 1937 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 1938 bool OnlyIfReduced) { 1939 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 1940 "Invalid constantexpr bitcast!"); 1941 1942 // It is common to ask for a bitcast of a value to its own type, handle this 1943 // speedily. 1944 if (C->getType() == DstTy) return C; 1945 1946 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 1947 } 1948 1949 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 1950 bool OnlyIfReduced) { 1951 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 1952 "Invalid constantexpr addrspacecast!"); 1953 1954 // Canonicalize addrspacecasts between different pointer types by first 1955 // bitcasting the pointer type and then converting the address space. 1956 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 1957 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 1958 Type *DstElemTy = DstScalarTy->getElementType(); 1959 if (SrcScalarTy->getElementType() != DstElemTy) { 1960 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace()); 1961 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 1962 // Handle vectors of pointers. 1963 MidTy = VectorType::get(MidTy, VT->getNumElements()); 1964 } 1965 C = getBitCast(C, MidTy); 1966 } 1967 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 1968 } 1969 1970 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, 1971 Type *OnlyIfReducedTy) { 1972 // Check the operands for consistency first. 1973 assert(Instruction::isUnaryOp(Opcode) && 1974 "Invalid opcode in unary constant expression"); 1975 1976 #ifndef NDEBUG 1977 switch (Opcode) { 1978 case Instruction::FNeg: 1979 assert(C->getType()->isFPOrFPVectorTy() && 1980 "Tried to create a floating-point operation on a " 1981 "non-floating-point type!"); 1982 break; 1983 default: 1984 break; 1985 } 1986 #endif 1987 1988 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) 1989 return FC; 1990 1991 if (OnlyIfReducedTy == C->getType()) 1992 return nullptr; 1993 1994 Constant *ArgVec[] = { C }; 1995 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 1996 1997 LLVMContextImpl *pImpl = C->getContext().pImpl; 1998 return pImpl->ExprConstants.getOrCreate(C->getType(), Key); 1999 } 2000 2001 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 2002 unsigned Flags, Type *OnlyIfReducedTy) { 2003 // Check the operands for consistency first. 2004 assert(Instruction::isBinaryOp(Opcode) && 2005 "Invalid opcode in binary constant expression"); 2006 assert(C1->getType() == C2->getType() && 2007 "Operand types in binary constant expression should match"); 2008 2009 #ifndef NDEBUG 2010 switch (Opcode) { 2011 case Instruction::Add: 2012 case Instruction::Sub: 2013 case Instruction::Mul: 2014 case Instruction::UDiv: 2015 case Instruction::SDiv: 2016 case Instruction::URem: 2017 case Instruction::SRem: 2018 assert(C1->getType()->isIntOrIntVectorTy() && 2019 "Tried to create an integer operation on a non-integer type!"); 2020 break; 2021 case Instruction::FAdd: 2022 case Instruction::FSub: 2023 case Instruction::FMul: 2024 case Instruction::FDiv: 2025 case Instruction::FRem: 2026 assert(C1->getType()->isFPOrFPVectorTy() && 2027 "Tried to create a floating-point operation on a " 2028 "non-floating-point type!"); 2029 break; 2030 case Instruction::And: 2031 case Instruction::Or: 2032 case Instruction::Xor: 2033 assert(C1->getType()->isIntOrIntVectorTy() && 2034 "Tried to create a logical operation on a non-integral type!"); 2035 break; 2036 case Instruction::Shl: 2037 case Instruction::LShr: 2038 case Instruction::AShr: 2039 assert(C1->getType()->isIntOrIntVectorTy() && 2040 "Tried to create a shift operation on a non-integer type!"); 2041 break; 2042 default: 2043 break; 2044 } 2045 #endif 2046 2047 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 2048 return FC; 2049 2050 if (OnlyIfReducedTy == C1->getType()) 2051 return nullptr; 2052 2053 Constant *ArgVec[] = { C1, C2 }; 2054 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2055 2056 LLVMContextImpl *pImpl = C1->getContext().pImpl; 2057 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 2058 } 2059 2060 Constant *ConstantExpr::getSizeOf(Type* Ty) { 2061 // sizeof is implemented as: (i64) gep (Ty*)null, 1 2062 // Note that a non-inbounds gep is used, as null isn't within any object. 2063 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2064 Constant *GEP = getGetElementPtr( 2065 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2066 return getPtrToInt(GEP, 2067 Type::getInt64Ty(Ty->getContext())); 2068 } 2069 2070 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2071 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2072 // Note that a non-inbounds gep is used, as null isn't within any object. 2073 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2074 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 2075 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2076 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2077 Constant *Indices[2] = { Zero, One }; 2078 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2079 return getPtrToInt(GEP, 2080 Type::getInt64Ty(Ty->getContext())); 2081 } 2082 2083 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 2084 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 2085 FieldNo)); 2086 } 2087 2088 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 2089 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 2090 // Note that a non-inbounds gep is used, as null isn't within any object. 2091 Constant *GEPIdx[] = { 2092 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 2093 FieldNo 2094 }; 2095 Constant *GEP = getGetElementPtr( 2096 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2097 return getPtrToInt(GEP, 2098 Type::getInt64Ty(Ty->getContext())); 2099 } 2100 2101 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2102 Constant *C2, bool OnlyIfReduced) { 2103 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2104 2105 switch (Predicate) { 2106 default: llvm_unreachable("Invalid CmpInst predicate"); 2107 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2108 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2109 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2110 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2111 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2112 case CmpInst::FCMP_TRUE: 2113 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2114 2115 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2116 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2117 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2118 case CmpInst::ICMP_SLE: 2119 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2120 } 2121 } 2122 2123 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 2124 Type *OnlyIfReducedTy) { 2125 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 2126 2127 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 2128 return SC; // Fold common cases 2129 2130 if (OnlyIfReducedTy == V1->getType()) 2131 return nullptr; 2132 2133 Constant *ArgVec[] = { C, V1, V2 }; 2134 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2135 2136 LLVMContextImpl *pImpl = C->getContext().pImpl; 2137 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2138 } 2139 2140 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2141 ArrayRef<Value *> Idxs, bool InBounds, 2142 Optional<unsigned> InRangeIndex, 2143 Type *OnlyIfReducedTy) { 2144 if (!Ty) 2145 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType(); 2146 else 2147 assert(Ty == 2148 cast<PointerType>(C->getType()->getScalarType())->getElementType()); 2149 2150 if (Constant *FC = 2151 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2152 return FC; // Fold a few common cases. 2153 2154 // Get the result type of the getelementptr! 2155 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2156 assert(DestTy && "GEP indices invalid!"); 2157 unsigned AS = C->getType()->getPointerAddressSpace(); 2158 Type *ReqTy = DestTy->getPointerTo(AS); 2159 2160 ElementCount EltCount = {0, false}; 2161 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) 2162 EltCount = VecTy->getElementCount(); 2163 else 2164 for (auto Idx : Idxs) 2165 if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType())) 2166 EltCount = VecTy->getElementCount(); 2167 2168 if (EltCount.Min != 0) 2169 ReqTy = VectorType::get(ReqTy, EltCount); 2170 2171 if (OnlyIfReducedTy == ReqTy) 2172 return nullptr; 2173 2174 // Look up the constant in the table first to ensure uniqueness 2175 std::vector<Constant*> ArgVec; 2176 ArgVec.reserve(1 + Idxs.size()); 2177 ArgVec.push_back(C); 2178 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2179 assert( 2180 (!isa<VectorType>(Idxs[i]->getType()) || 2181 cast<VectorType>(Idxs[i]->getType())->getElementCount() == EltCount) && 2182 "getelementptr index type missmatch"); 2183 2184 Constant *Idx = cast<Constant>(Idxs[i]); 2185 if (EltCount.Min != 0 && !Idxs[i]->getType()->isVectorTy()) 2186 Idx = ConstantVector::getSplat(EltCount, Idx); 2187 ArgVec.push_back(Idx); 2188 } 2189 2190 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2191 if (InRangeIndex && *InRangeIndex < 63) 2192 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2193 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2194 SubClassOptionalData, None, None, Ty); 2195 2196 LLVMContextImpl *pImpl = C->getContext().pImpl; 2197 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2198 } 2199 2200 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2201 Constant *RHS, bool OnlyIfReduced) { 2202 assert(LHS->getType() == RHS->getType()); 2203 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) && 2204 "Invalid ICmp Predicate"); 2205 2206 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2207 return FC; // Fold a few common cases... 2208 2209 if (OnlyIfReduced) 2210 return nullptr; 2211 2212 // Look up the constant in the table first to ensure uniqueness 2213 Constant *ArgVec[] = { LHS, RHS }; 2214 // Get the key type with both the opcode and predicate 2215 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); 2216 2217 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2218 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2219 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2220 2221 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2222 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2223 } 2224 2225 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2226 Constant *RHS, bool OnlyIfReduced) { 2227 assert(LHS->getType() == RHS->getType()); 2228 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) && 2229 "Invalid FCmp Predicate"); 2230 2231 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2232 return FC; // Fold a few common cases... 2233 2234 if (OnlyIfReduced) 2235 return nullptr; 2236 2237 // Look up the constant in the table first to ensure uniqueness 2238 Constant *ArgVec[] = { LHS, RHS }; 2239 // Get the key type with both the opcode and predicate 2240 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); 2241 2242 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2243 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2244 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2245 2246 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2247 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2248 } 2249 2250 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2251 Type *OnlyIfReducedTy) { 2252 assert(Val->getType()->isVectorTy() && 2253 "Tried to create extractelement operation on non-vector type!"); 2254 assert(Idx->getType()->isIntegerTy() && 2255 "Extractelement index must be an integer type!"); 2256 2257 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2258 return FC; // Fold a few common cases. 2259 2260 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); 2261 if (OnlyIfReducedTy == ReqTy) 2262 return nullptr; 2263 2264 // Look up the constant in the table first to ensure uniqueness 2265 Constant *ArgVec[] = { Val, Idx }; 2266 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2267 2268 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2269 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2270 } 2271 2272 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2273 Constant *Idx, Type *OnlyIfReducedTy) { 2274 assert(Val->getType()->isVectorTy() && 2275 "Tried to create insertelement operation on non-vector type!"); 2276 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && 2277 "Insertelement types must match!"); 2278 assert(Idx->getType()->isIntegerTy() && 2279 "Insertelement index must be i32 type!"); 2280 2281 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2282 return FC; // Fold a few common cases. 2283 2284 if (OnlyIfReducedTy == Val->getType()) 2285 return nullptr; 2286 2287 // Look up the constant in the table first to ensure uniqueness 2288 Constant *ArgVec[] = { Val, Elt, Idx }; 2289 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2290 2291 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2292 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2293 } 2294 2295 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2296 ArrayRef<int> Mask, 2297 Type *OnlyIfReducedTy) { 2298 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2299 "Invalid shuffle vector constant expr operands!"); 2300 2301 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2302 return FC; // Fold a few common cases. 2303 2304 unsigned NElts = Mask.size(); 2305 auto V1VTy = cast<VectorType>(V1->getType()); 2306 Type *EltTy = V1VTy->getElementType(); 2307 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); 2308 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); 2309 2310 if (OnlyIfReducedTy == ShufTy) 2311 return nullptr; 2312 2313 // Look up the constant in the table first to ensure uniqueness 2314 Constant *ArgVec[] = {V1, V2}; 2315 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask); 2316 2317 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2318 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2319 } 2320 2321 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 2322 ArrayRef<unsigned> Idxs, 2323 Type *OnlyIfReducedTy) { 2324 assert(Agg->getType()->isFirstClassType() && 2325 "Non-first-class type for constant insertvalue expression"); 2326 2327 assert(ExtractValueInst::getIndexedType(Agg->getType(), 2328 Idxs) == Val->getType() && 2329 "insertvalue indices invalid!"); 2330 Type *ReqTy = Val->getType(); 2331 2332 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) 2333 return FC; 2334 2335 if (OnlyIfReducedTy == ReqTy) 2336 return nullptr; 2337 2338 Constant *ArgVec[] = { Agg, Val }; 2339 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); 2340 2341 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2342 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2343 } 2344 2345 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 2346 Type *OnlyIfReducedTy) { 2347 assert(Agg->getType()->isFirstClassType() && 2348 "Tried to create extractelement operation on non-first-class type!"); 2349 2350 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 2351 (void)ReqTy; 2352 assert(ReqTy && "extractvalue indices invalid!"); 2353 2354 assert(Agg->getType()->isFirstClassType() && 2355 "Non-first-class type for constant extractvalue expression"); 2356 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) 2357 return FC; 2358 2359 if (OnlyIfReducedTy == ReqTy) 2360 return nullptr; 2361 2362 Constant *ArgVec[] = { Agg }; 2363 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); 2364 2365 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2366 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2367 } 2368 2369 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2370 assert(C->getType()->isIntOrIntVectorTy() && 2371 "Cannot NEG a nonintegral value!"); 2372 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2373 C, HasNUW, HasNSW); 2374 } 2375 2376 Constant *ConstantExpr::getFNeg(Constant *C) { 2377 assert(C->getType()->isFPOrFPVectorTy() && 2378 "Cannot FNEG a non-floating-point value!"); 2379 return get(Instruction::FNeg, C); 2380 } 2381 2382 Constant *ConstantExpr::getNot(Constant *C) { 2383 assert(C->getType()->isIntOrIntVectorTy() && 2384 "Cannot NOT a nonintegral value!"); 2385 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2386 } 2387 2388 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2389 bool HasNUW, bool HasNSW) { 2390 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2391 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2392 return get(Instruction::Add, C1, C2, Flags); 2393 } 2394 2395 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 2396 return get(Instruction::FAdd, C1, C2); 2397 } 2398 2399 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2400 bool HasNUW, bool HasNSW) { 2401 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2402 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2403 return get(Instruction::Sub, C1, C2, Flags); 2404 } 2405 2406 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 2407 return get(Instruction::FSub, C1, C2); 2408 } 2409 2410 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2411 bool HasNUW, bool HasNSW) { 2412 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2413 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2414 return get(Instruction::Mul, C1, C2, Flags); 2415 } 2416 2417 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 2418 return get(Instruction::FMul, C1, C2); 2419 } 2420 2421 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 2422 return get(Instruction::UDiv, C1, C2, 2423 isExact ? PossiblyExactOperator::IsExact : 0); 2424 } 2425 2426 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 2427 return get(Instruction::SDiv, C1, C2, 2428 isExact ? PossiblyExactOperator::IsExact : 0); 2429 } 2430 2431 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 2432 return get(Instruction::FDiv, C1, C2); 2433 } 2434 2435 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 2436 return get(Instruction::URem, C1, C2); 2437 } 2438 2439 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 2440 return get(Instruction::SRem, C1, C2); 2441 } 2442 2443 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 2444 return get(Instruction::FRem, C1, C2); 2445 } 2446 2447 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2448 return get(Instruction::And, C1, C2); 2449 } 2450 2451 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2452 return get(Instruction::Or, C1, C2); 2453 } 2454 2455 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2456 return get(Instruction::Xor, C1, C2); 2457 } 2458 2459 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2460 bool HasNUW, bool HasNSW) { 2461 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2462 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2463 return get(Instruction::Shl, C1, C2, Flags); 2464 } 2465 2466 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2467 return get(Instruction::LShr, C1, C2, 2468 isExact ? PossiblyExactOperator::IsExact : 0); 2469 } 2470 2471 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2472 return get(Instruction::AShr, C1, C2, 2473 isExact ? PossiblyExactOperator::IsExact : 0); 2474 } 2475 2476 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2477 bool AllowRHSConstant) { 2478 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2479 2480 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2481 if (Instruction::isCommutative(Opcode)) { 2482 switch (Opcode) { 2483 case Instruction::Add: // X + 0 = X 2484 case Instruction::Or: // X | 0 = X 2485 case Instruction::Xor: // X ^ 0 = X 2486 return Constant::getNullValue(Ty); 2487 case Instruction::Mul: // X * 1 = X 2488 return ConstantInt::get(Ty, 1); 2489 case Instruction::And: // X & -1 = X 2490 return Constant::getAllOnesValue(Ty); 2491 case Instruction::FAdd: // X + -0.0 = X 2492 // TODO: If the fadd has 'nsz', should we return +0.0? 2493 return ConstantFP::getNegativeZero(Ty); 2494 case Instruction::FMul: // X * 1.0 = X 2495 return ConstantFP::get(Ty, 1.0); 2496 default: 2497 llvm_unreachable("Every commutative binop has an identity constant"); 2498 } 2499 } 2500 2501 // Non-commutative opcodes: AllowRHSConstant must be set. 2502 if (!AllowRHSConstant) 2503 return nullptr; 2504 2505 switch (Opcode) { 2506 case Instruction::Sub: // X - 0 = X 2507 case Instruction::Shl: // X << 0 = X 2508 case Instruction::LShr: // X >>u 0 = X 2509 case Instruction::AShr: // X >> 0 = X 2510 case Instruction::FSub: // X - 0.0 = X 2511 return Constant::getNullValue(Ty); 2512 case Instruction::SDiv: // X / 1 = X 2513 case Instruction::UDiv: // X /u 1 = X 2514 return ConstantInt::get(Ty, 1); 2515 case Instruction::FDiv: // X / 1.0 = X 2516 return ConstantFP::get(Ty, 1.0); 2517 default: 2518 return nullptr; 2519 } 2520 } 2521 2522 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2523 switch (Opcode) { 2524 default: 2525 // Doesn't have an absorber. 2526 return nullptr; 2527 2528 case Instruction::Or: 2529 return Constant::getAllOnesValue(Ty); 2530 2531 case Instruction::And: 2532 case Instruction::Mul: 2533 return Constant::getNullValue(Ty); 2534 } 2535 } 2536 2537 /// Remove the constant from the constant table. 2538 void ConstantExpr::destroyConstantImpl() { 2539 getType()->getContext().pImpl->ExprConstants.remove(this); 2540 } 2541 2542 const char *ConstantExpr::getOpcodeName() const { 2543 return Instruction::getOpcodeName(getOpcode()); 2544 } 2545 2546 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2547 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2548 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2549 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2550 (IdxList.size() + 1), 2551 IdxList.size() + 1), 2552 SrcElementTy(SrcElementTy), 2553 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2554 Op<0>() = C; 2555 Use *OperandList = getOperandList(); 2556 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2557 OperandList[i+1] = IdxList[i]; 2558 } 2559 2560 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2561 return SrcElementTy; 2562 } 2563 2564 Type *GetElementPtrConstantExpr::getResultElementType() const { 2565 return ResElementTy; 2566 } 2567 2568 //===----------------------------------------------------------------------===// 2569 // ConstantData* implementations 2570 2571 Type *ConstantDataSequential::getElementType() const { 2572 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 2573 return ATy->getElementType(); 2574 return cast<VectorType>(getType())->getElementType(); 2575 } 2576 2577 StringRef ConstantDataSequential::getRawDataValues() const { 2578 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2579 } 2580 2581 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2582 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2583 return true; 2584 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2585 switch (IT->getBitWidth()) { 2586 case 8: 2587 case 16: 2588 case 32: 2589 case 64: 2590 return true; 2591 default: break; 2592 } 2593 } 2594 return false; 2595 } 2596 2597 unsigned ConstantDataSequential::getNumElements() const { 2598 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2599 return AT->getNumElements(); 2600 return cast<VectorType>(getType())->getNumElements(); 2601 } 2602 2603 2604 uint64_t ConstantDataSequential::getElementByteSize() const { 2605 return getElementType()->getPrimitiveSizeInBits()/8; 2606 } 2607 2608 /// Return the start of the specified element. 2609 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2610 assert(Elt < getNumElements() && "Invalid Elt"); 2611 return DataElements+Elt*getElementByteSize(); 2612 } 2613 2614 2615 /// Return true if the array is empty or all zeros. 2616 static bool isAllZeros(StringRef Arr) { 2617 for (char I : Arr) 2618 if (I != 0) 2619 return false; 2620 return true; 2621 } 2622 2623 /// This is the underlying implementation of all of the 2624 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2625 /// the correct element type. We take the bytes in as a StringRef because 2626 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2627 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2628 #ifndef NDEBUG 2629 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 2630 assert(isElementTypeCompatible(ATy->getElementType())); 2631 else 2632 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); 2633 #endif 2634 // If the elements are all zero or there are no elements, return a CAZ, which 2635 // is more dense and canonical. 2636 if (isAllZeros(Elements)) 2637 return ConstantAggregateZero::get(Ty); 2638 2639 // Do a lookup to see if we have already formed one of these. 2640 auto &Slot = 2641 *Ty->getContext() 2642 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2643 .first; 2644 2645 // The bucket can point to a linked list of different CDS's that have the same 2646 // body but different types. For example, 0,0,0,1 could be a 4 element array 2647 // of i8, or a 1-element array of i32. They'll both end up in the same 2648 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2649 ConstantDataSequential **Entry = &Slot.second; 2650 for (ConstantDataSequential *Node = *Entry; Node; 2651 Entry = &Node->Next, Node = *Entry) 2652 if (Node->getType() == Ty) 2653 return Node; 2654 2655 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2656 // and return it. 2657 if (isa<ArrayType>(Ty)) 2658 return *Entry = new ConstantDataArray(Ty, Slot.first().data()); 2659 2660 assert(isa<VectorType>(Ty)); 2661 return *Entry = new ConstantDataVector(Ty, Slot.first().data()); 2662 } 2663 2664 void ConstantDataSequential::destroyConstantImpl() { 2665 // Remove the constant from the StringMap. 2666 StringMap<ConstantDataSequential*> &CDSConstants = 2667 getType()->getContext().pImpl->CDSConstants; 2668 2669 StringMap<ConstantDataSequential*>::iterator Slot = 2670 CDSConstants.find(getRawDataValues()); 2671 2672 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2673 2674 ConstantDataSequential **Entry = &Slot->getValue(); 2675 2676 // Remove the entry from the hash table. 2677 if (!(*Entry)->Next) { 2678 // If there is only one value in the bucket (common case) it must be this 2679 // entry, and removing the entry should remove the bucket completely. 2680 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); 2681 getContext().pImpl->CDSConstants.erase(Slot); 2682 } else { 2683 // Otherwise, there are multiple entries linked off the bucket, unlink the 2684 // node we care about but keep the bucket around. 2685 for (ConstantDataSequential *Node = *Entry; ; 2686 Entry = &Node->Next, Node = *Entry) { 2687 assert(Node && "Didn't find entry in its uniquing hash table!"); 2688 // If we found our entry, unlink it from the list and we're done. 2689 if (Node == this) { 2690 *Entry = Node->Next; 2691 break; 2692 } 2693 } 2694 } 2695 2696 // If we were part of a list, make sure that we don't delete the list that is 2697 // still owned by the uniquing map. 2698 Next = nullptr; 2699 } 2700 2701 /// getFP() constructors - Return a constant of array type with a float 2702 /// element type taken from argument `ElementType', and count taken from 2703 /// argument `Elts'. The amount of bits of the contained type must match the 2704 /// number of bits of the type contained in the passed in ArrayRef. 2705 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 2706 /// that this can return a ConstantAggregateZero object. 2707 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { 2708 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 2709 "Element type is not a 16-bit float type"); 2710 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2711 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2712 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2713 } 2714 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { 2715 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 2716 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2717 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2718 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2719 } 2720 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { 2721 assert(ElementType->isDoubleTy() && 2722 "Element type is not a 64-bit float type"); 2723 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2724 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2725 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2726 } 2727 2728 Constant *ConstantDataArray::getString(LLVMContext &Context, 2729 StringRef Str, bool AddNull) { 2730 if (!AddNull) { 2731 const uint8_t *Data = Str.bytes_begin(); 2732 return get(Context, makeArrayRef(Data, Str.size())); 2733 } 2734 2735 SmallVector<uint8_t, 64> ElementVals; 2736 ElementVals.append(Str.begin(), Str.end()); 2737 ElementVals.push_back(0); 2738 return get(Context, ElementVals); 2739 } 2740 2741 /// get() constructors - Return a constant with vector type with an element 2742 /// count and element type matching the ArrayRef passed in. Note that this 2743 /// can return a ConstantAggregateZero object. 2744 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 2745 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); 2746 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2747 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 2748 } 2749 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 2750 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); 2751 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2752 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2753 } 2754 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 2755 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); 2756 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2757 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2758 } 2759 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 2760 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); 2761 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2762 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2763 } 2764 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 2765 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); 2766 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2767 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2768 } 2769 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 2770 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); 2771 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2772 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2773 } 2774 2775 /// getFP() constructors - Return a constant of vector type with a float 2776 /// element type taken from argument `ElementType', and count taken from 2777 /// argument `Elts'. The amount of bits of the contained type must match the 2778 /// number of bits of the type contained in the passed in ArrayRef. 2779 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 2780 /// that this can return a ConstantAggregateZero object. 2781 Constant *ConstantDataVector::getFP(Type *ElementType, 2782 ArrayRef<uint16_t> Elts) { 2783 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 2784 "Element type is not a 16-bit float type"); 2785 Type *Ty = VectorType::get(ElementType, Elts.size()); 2786 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2787 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2788 } 2789 Constant *ConstantDataVector::getFP(Type *ElementType, 2790 ArrayRef<uint32_t> Elts) { 2791 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 2792 Type *Ty = VectorType::get(ElementType, Elts.size()); 2793 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2794 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2795 } 2796 Constant *ConstantDataVector::getFP(Type *ElementType, 2797 ArrayRef<uint64_t> Elts) { 2798 assert(ElementType->isDoubleTy() && 2799 "Element type is not a 64-bit float type"); 2800 Type *Ty = VectorType::get(ElementType, Elts.size()); 2801 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2802 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2803 } 2804 2805 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 2806 assert(isElementTypeCompatible(V->getType()) && 2807 "Element type not compatible with ConstantData"); 2808 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2809 if (CI->getType()->isIntegerTy(8)) { 2810 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 2811 return get(V->getContext(), Elts); 2812 } 2813 if (CI->getType()->isIntegerTy(16)) { 2814 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 2815 return get(V->getContext(), Elts); 2816 } 2817 if (CI->getType()->isIntegerTy(32)) { 2818 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 2819 return get(V->getContext(), Elts); 2820 } 2821 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 2822 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 2823 return get(V->getContext(), Elts); 2824 } 2825 2826 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2827 if (CFP->getType()->isHalfTy()) { 2828 SmallVector<uint16_t, 16> Elts( 2829 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2830 return getFP(V->getType(), Elts); 2831 } 2832 if (CFP->getType()->isBFloatTy()) { 2833 SmallVector<uint16_t, 16> Elts( 2834 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2835 return getFP(V->getType(), Elts); 2836 } 2837 if (CFP->getType()->isFloatTy()) { 2838 SmallVector<uint32_t, 16> Elts( 2839 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2840 return getFP(V->getType(), Elts); 2841 } 2842 if (CFP->getType()->isDoubleTy()) { 2843 SmallVector<uint64_t, 16> Elts( 2844 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2845 return getFP(V->getType(), Elts); 2846 } 2847 } 2848 return ConstantVector::getSplat({NumElts, false}, V); 2849 } 2850 2851 2852 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 2853 assert(isa<IntegerType>(getElementType()) && 2854 "Accessor can only be used when element is an integer"); 2855 const char *EltPtr = getElementPointer(Elt); 2856 2857 // The data is stored in host byte order, make sure to cast back to the right 2858 // type to load with the right endianness. 2859 switch (getElementType()->getIntegerBitWidth()) { 2860 default: llvm_unreachable("Invalid bitwidth for CDS"); 2861 case 8: 2862 return *reinterpret_cast<const uint8_t *>(EltPtr); 2863 case 16: 2864 return *reinterpret_cast<const uint16_t *>(EltPtr); 2865 case 32: 2866 return *reinterpret_cast<const uint32_t *>(EltPtr); 2867 case 64: 2868 return *reinterpret_cast<const uint64_t *>(EltPtr); 2869 } 2870 } 2871 2872 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 2873 assert(isa<IntegerType>(getElementType()) && 2874 "Accessor can only be used when element is an integer"); 2875 const char *EltPtr = getElementPointer(Elt); 2876 2877 // The data is stored in host byte order, make sure to cast back to the right 2878 // type to load with the right endianness. 2879 switch (getElementType()->getIntegerBitWidth()) { 2880 default: llvm_unreachable("Invalid bitwidth for CDS"); 2881 case 8: { 2882 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 2883 return APInt(8, EltVal); 2884 } 2885 case 16: { 2886 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2887 return APInt(16, EltVal); 2888 } 2889 case 32: { 2890 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2891 return APInt(32, EltVal); 2892 } 2893 case 64: { 2894 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2895 return APInt(64, EltVal); 2896 } 2897 } 2898 } 2899 2900 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 2901 const char *EltPtr = getElementPointer(Elt); 2902 2903 switch (getElementType()->getTypeID()) { 2904 default: 2905 llvm_unreachable("Accessor can only be used when element is float/double!"); 2906 case Type::HalfTyID: { 2907 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2908 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 2909 } 2910 case Type::BFloatTyID: { 2911 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2912 return APFloat(APFloat::BFloat(), APInt(16, EltVal)); 2913 } 2914 case Type::FloatTyID: { 2915 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2916 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 2917 } 2918 case Type::DoubleTyID: { 2919 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2920 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 2921 } 2922 } 2923 } 2924 2925 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 2926 assert(getElementType()->isFloatTy() && 2927 "Accessor can only be used when element is a 'float'"); 2928 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 2929 } 2930 2931 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 2932 assert(getElementType()->isDoubleTy() && 2933 "Accessor can only be used when element is a 'float'"); 2934 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 2935 } 2936 2937 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 2938 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || 2939 getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 2940 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 2941 2942 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 2943 } 2944 2945 bool ConstantDataSequential::isString(unsigned CharSize) const { 2946 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 2947 } 2948 2949 bool ConstantDataSequential::isCString() const { 2950 if (!isString()) 2951 return false; 2952 2953 StringRef Str = getAsString(); 2954 2955 // The last value must be nul. 2956 if (Str.back() != 0) return false; 2957 2958 // Other elements must be non-nul. 2959 return Str.drop_back().find(0) == StringRef::npos; 2960 } 2961 2962 bool ConstantDataVector::isSplatData() const { 2963 const char *Base = getRawDataValues().data(); 2964 2965 // Compare elements 1+ to the 0'th element. 2966 unsigned EltSize = getElementByteSize(); 2967 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 2968 if (memcmp(Base, Base+i*EltSize, EltSize)) 2969 return false; 2970 2971 return true; 2972 } 2973 2974 bool ConstantDataVector::isSplat() const { 2975 if (!IsSplatSet) { 2976 IsSplatSet = true; 2977 IsSplat = isSplatData(); 2978 } 2979 return IsSplat; 2980 } 2981 2982 Constant *ConstantDataVector::getSplatValue() const { 2983 // If they're all the same, return the 0th one as a representative. 2984 return isSplat() ? getElementAsConstant(0) : nullptr; 2985 } 2986 2987 //===----------------------------------------------------------------------===// 2988 // handleOperandChange implementations 2989 2990 /// Update this constant array to change uses of 2991 /// 'From' to be uses of 'To'. This must update the uniquing data structures 2992 /// etc. 2993 /// 2994 /// Note that we intentionally replace all uses of From with To here. Consider 2995 /// a large array that uses 'From' 1000 times. By handling this case all here, 2996 /// ConstantArray::handleOperandChange is only invoked once, and that 2997 /// single invocation handles all 1000 uses. Handling them one at a time would 2998 /// work, but would be really slow because it would have to unique each updated 2999 /// array instance. 3000 /// 3001 void Constant::handleOperandChange(Value *From, Value *To) { 3002 Value *Replacement = nullptr; 3003 switch (getValueID()) { 3004 default: 3005 llvm_unreachable("Not a constant!"); 3006 #define HANDLE_CONSTANT(Name) \ 3007 case Value::Name##Val: \ 3008 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 3009 break; 3010 #include "llvm/IR/Value.def" 3011 } 3012 3013 // If handleOperandChangeImpl returned nullptr, then it handled 3014 // replacing itself and we don't want to delete or replace anything else here. 3015 if (!Replacement) 3016 return; 3017 3018 // I do need to replace this with an existing value. 3019 assert(Replacement != this && "I didn't contain From!"); 3020 3021 // Everyone using this now uses the replacement. 3022 replaceAllUsesWith(Replacement); 3023 3024 // Delete the old constant! 3025 destroyConstant(); 3026 } 3027 3028 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 3029 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3030 Constant *ToC = cast<Constant>(To); 3031 3032 SmallVector<Constant*, 8> Values; 3033 Values.reserve(getNumOperands()); // Build replacement array. 3034 3035 // Fill values with the modified operands of the constant array. Also, 3036 // compute whether this turns into an all-zeros array. 3037 unsigned NumUpdated = 0; 3038 3039 // Keep track of whether all the values in the array are "ToC". 3040 bool AllSame = true; 3041 Use *OperandList = getOperandList(); 3042 unsigned OperandNo = 0; 3043 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 3044 Constant *Val = cast<Constant>(O->get()); 3045 if (Val == From) { 3046 OperandNo = (O - OperandList); 3047 Val = ToC; 3048 ++NumUpdated; 3049 } 3050 Values.push_back(Val); 3051 AllSame &= Val == ToC; 3052 } 3053 3054 if (AllSame && ToC->isNullValue()) 3055 return ConstantAggregateZero::get(getType()); 3056 3057 if (AllSame && isa<UndefValue>(ToC)) 3058 return UndefValue::get(getType()); 3059 3060 // Check for any other type of constant-folding. 3061 if (Constant *C = getImpl(getType(), Values)) 3062 return C; 3063 3064 // Update to the new value. 3065 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 3066 Values, this, From, ToC, NumUpdated, OperandNo); 3067 } 3068 3069 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 3070 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3071 Constant *ToC = cast<Constant>(To); 3072 3073 Use *OperandList = getOperandList(); 3074 3075 SmallVector<Constant*, 8> Values; 3076 Values.reserve(getNumOperands()); // Build replacement struct. 3077 3078 // Fill values with the modified operands of the constant struct. Also, 3079 // compute whether this turns into an all-zeros struct. 3080 unsigned NumUpdated = 0; 3081 bool AllSame = true; 3082 unsigned OperandNo = 0; 3083 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 3084 Constant *Val = cast<Constant>(O->get()); 3085 if (Val == From) { 3086 OperandNo = (O - OperandList); 3087 Val = ToC; 3088 ++NumUpdated; 3089 } 3090 Values.push_back(Val); 3091 AllSame &= Val == ToC; 3092 } 3093 3094 if (AllSame && ToC->isNullValue()) 3095 return ConstantAggregateZero::get(getType()); 3096 3097 if (AllSame && isa<UndefValue>(ToC)) 3098 return UndefValue::get(getType()); 3099 3100 // Update to the new value. 3101 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 3102 Values, this, From, ToC, NumUpdated, OperandNo); 3103 } 3104 3105 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3106 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3107 Constant *ToC = cast<Constant>(To); 3108 3109 SmallVector<Constant*, 8> Values; 3110 Values.reserve(getNumOperands()); // Build replacement array... 3111 unsigned NumUpdated = 0; 3112 unsigned OperandNo = 0; 3113 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3114 Constant *Val = getOperand(i); 3115 if (Val == From) { 3116 OperandNo = i; 3117 ++NumUpdated; 3118 Val = ToC; 3119 } 3120 Values.push_back(Val); 3121 } 3122 3123 if (Constant *C = getImpl(Values)) 3124 return C; 3125 3126 // Update to the new value. 3127 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3128 Values, this, From, ToC, NumUpdated, OperandNo); 3129 } 3130 3131 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3132 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3133 Constant *To = cast<Constant>(ToV); 3134 3135 SmallVector<Constant*, 8> NewOps; 3136 unsigned NumUpdated = 0; 3137 unsigned OperandNo = 0; 3138 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3139 Constant *Op = getOperand(i); 3140 if (Op == From) { 3141 OperandNo = i; 3142 ++NumUpdated; 3143 Op = To; 3144 } 3145 NewOps.push_back(Op); 3146 } 3147 assert(NumUpdated && "I didn't contain From!"); 3148 3149 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3150 return C; 3151 3152 // Update to the new value. 3153 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3154 NewOps, this, From, To, NumUpdated, OperandNo); 3155 } 3156 3157 Instruction *ConstantExpr::getAsInstruction() const { 3158 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end()); 3159 ArrayRef<Value*> Ops(ValueOperands); 3160 3161 switch (getOpcode()) { 3162 case Instruction::Trunc: 3163 case Instruction::ZExt: 3164 case Instruction::SExt: 3165 case Instruction::FPTrunc: 3166 case Instruction::FPExt: 3167 case Instruction::UIToFP: 3168 case Instruction::SIToFP: 3169 case Instruction::FPToUI: 3170 case Instruction::FPToSI: 3171 case Instruction::PtrToInt: 3172 case Instruction::IntToPtr: 3173 case Instruction::BitCast: 3174 case Instruction::AddrSpaceCast: 3175 return CastInst::Create((Instruction::CastOps)getOpcode(), 3176 Ops[0], getType()); 3177 case Instruction::Select: 3178 return SelectInst::Create(Ops[0], Ops[1], Ops[2]); 3179 case Instruction::InsertElement: 3180 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); 3181 case Instruction::ExtractElement: 3182 return ExtractElementInst::Create(Ops[0], Ops[1]); 3183 case Instruction::InsertValue: 3184 return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); 3185 case Instruction::ExtractValue: 3186 return ExtractValueInst::Create(Ops[0], getIndices()); 3187 case Instruction::ShuffleVector: 3188 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask()); 3189 3190 case Instruction::GetElementPtr: { 3191 const auto *GO = cast<GEPOperator>(this); 3192 if (GO->isInBounds()) 3193 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), 3194 Ops[0], Ops.slice(1)); 3195 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3196 Ops.slice(1)); 3197 } 3198 case Instruction::ICmp: 3199 case Instruction::FCmp: 3200 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3201 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]); 3202 case Instruction::FNeg: 3203 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]); 3204 default: 3205 assert(getNumOperands() == 2 && "Must be binary operator?"); 3206 BinaryOperator *BO = 3207 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), 3208 Ops[0], Ops[1]); 3209 if (isa<OverflowingBinaryOperator>(BO)) { 3210 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3211 OverflowingBinaryOperator::NoUnsignedWrap); 3212 BO->setHasNoSignedWrap(SubclassOptionalData & 3213 OverflowingBinaryOperator::NoSignedWrap); 3214 } 3215 if (isa<PossiblyExactOperator>(BO)) 3216 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3217 return BO; 3218 } 3219 } 3220