1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/GlobalIFunc.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 //===----------------------------------------------------------------------===//
39 //                              Constant Class
40 //===----------------------------------------------------------------------===//
41 
42 bool Constant::isNegativeZeroValue() const {
43   // Floating point values have an explicit -0.0 value.
44   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
45     return CFP->isZero() && CFP->isNegative();
46 
47   // Equivalent for a vector of -0.0's.
48   if (getType()->isVectorTy())
49     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
50       return SplatCFP->isNegativeZeroValue();
51 
52   // We've already handled true FP case; any other FP vectors can't represent -0.0.
53   if (getType()->isFPOrFPVectorTy())
54     return false;
55 
56   // Otherwise, just use +0.0.
57   return isNullValue();
58 }
59 
60 // Return true iff this constant is positive zero (floating point), negative
61 // zero (floating point), or a null value.
62 bool Constant::isZeroValue() const {
63   // Floating point values have an explicit -0.0 value.
64   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
65     return CFP->isZero();
66 
67   // Check for constant splat vectors of 1 values.
68   if (getType()->isVectorTy())
69     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
70       return SplatCFP->isZero();
71 
72   // Otherwise, just use +0.0.
73   return isNullValue();
74 }
75 
76 bool Constant::isNullValue() const {
77   // 0 is null.
78   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
79     return CI->isZero();
80 
81   // +0.0 is null.
82   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
83     // ppc_fp128 determine isZero using high order double only
84     // Should check the bitwise value to make sure all bits are zero.
85     return CFP->isExactlyValue(+0.0);
86 
87   // constant zero is zero for aggregates, cpnull is null for pointers, none for
88   // tokens.
89   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
90          isa<ConstantTokenNone>(this);
91 }
92 
93 bool Constant::isAllOnesValue() const {
94   // Check for -1 integers
95   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
96     return CI->isMinusOne();
97 
98   // Check for FP which are bitcasted from -1 integers
99   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
100     return CFP->getValueAPF().bitcastToAPInt().isAllOnes();
101 
102   // Check for constant splat vectors of 1 values.
103   if (getType()->isVectorTy())
104     if (const auto *SplatVal = getSplatValue())
105       return SplatVal->isAllOnesValue();
106 
107   return false;
108 }
109 
110 bool Constant::isOneValue() const {
111   // Check for 1 integers
112   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113     return CI->isOne();
114 
115   // Check for FP which are bitcasted from 1 integers
116   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117     return CFP->getValueAPF().bitcastToAPInt().isOne();
118 
119   // Check for constant splat vectors of 1 values.
120   if (getType()->isVectorTy())
121     if (const auto *SplatVal = getSplatValue())
122       return SplatVal->isOneValue();
123 
124   return false;
125 }
126 
127 bool Constant::isNotOneValue() const {
128   // Check for 1 integers
129   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130     return !CI->isOneValue();
131 
132   // Check for FP which are bitcasted from 1 integers
133   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134     return !CFP->getValueAPF().bitcastToAPInt().isOne();
135 
136   // Check that vectors don't contain 1
137   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
138     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
139       Constant *Elt = getAggregateElement(I);
140       if (!Elt || !Elt->isNotOneValue())
141         return false;
142     }
143     return true;
144   }
145 
146   // Check for splats that don't contain 1
147   if (getType()->isVectorTy())
148     if (const auto *SplatVal = getSplatValue())
149       return SplatVal->isNotOneValue();
150 
151   // It *may* contain 1, we can't tell.
152   return false;
153 }
154 
155 bool Constant::isMinSignedValue() const {
156   // Check for INT_MIN integers
157   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
158     return CI->isMinValue(/*isSigned=*/true);
159 
160   // Check for FP which are bitcasted from INT_MIN integers
161   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
162     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
163 
164   // Check for splats of INT_MIN values.
165   if (getType()->isVectorTy())
166     if (const auto *SplatVal = getSplatValue())
167       return SplatVal->isMinSignedValue();
168 
169   return false;
170 }
171 
172 bool Constant::isNotMinSignedValue() const {
173   // Check for INT_MIN integers
174   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
175     return !CI->isMinValue(/*isSigned=*/true);
176 
177   // Check for FP which are bitcasted from INT_MIN integers
178   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
179     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
180 
181   // Check that vectors don't contain INT_MIN
182   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
183     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
184       Constant *Elt = getAggregateElement(I);
185       if (!Elt || !Elt->isNotMinSignedValue())
186         return false;
187     }
188     return true;
189   }
190 
191   // Check for splats that aren't INT_MIN
192   if (getType()->isVectorTy())
193     if (const auto *SplatVal = getSplatValue())
194       return SplatVal->isNotMinSignedValue();
195 
196   // It *may* contain INT_MIN, we can't tell.
197   return false;
198 }
199 
200 bool Constant::isFiniteNonZeroFP() const {
201   if (auto *CFP = dyn_cast<ConstantFP>(this))
202     return CFP->getValueAPF().isFiniteNonZero();
203 
204   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
205     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
206       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
207       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
208         return false;
209     }
210     return true;
211   }
212 
213   if (getType()->isVectorTy())
214     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
215       return SplatCFP->isFiniteNonZeroFP();
216 
217   // It *may* contain finite non-zero, we can't tell.
218   return false;
219 }
220 
221 bool Constant::isNormalFP() const {
222   if (auto *CFP = dyn_cast<ConstantFP>(this))
223     return CFP->getValueAPF().isNormal();
224 
225   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
226     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
227       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
228       if (!CFP || !CFP->getValueAPF().isNormal())
229         return false;
230     }
231     return true;
232   }
233 
234   if (getType()->isVectorTy())
235     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
236       return SplatCFP->isNormalFP();
237 
238   // It *may* contain a normal fp value, we can't tell.
239   return false;
240 }
241 
242 bool Constant::hasExactInverseFP() const {
243   if (auto *CFP = dyn_cast<ConstantFP>(this))
244     return CFP->getValueAPF().getExactInverse(nullptr);
245 
246   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
247     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
248       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
249       if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
250         return false;
251     }
252     return true;
253   }
254 
255   if (getType()->isVectorTy())
256     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
257       return SplatCFP->hasExactInverseFP();
258 
259   // It *may* have an exact inverse fp value, we can't tell.
260   return false;
261 }
262 
263 bool Constant::isNaN() const {
264   if (auto *CFP = dyn_cast<ConstantFP>(this))
265     return CFP->isNaN();
266 
267   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
268     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
269       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
270       if (!CFP || !CFP->isNaN())
271         return false;
272     }
273     return true;
274   }
275 
276   if (getType()->isVectorTy())
277     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
278       return SplatCFP->isNaN();
279 
280   // It *may* be NaN, we can't tell.
281   return false;
282 }
283 
284 bool Constant::isElementWiseEqual(Value *Y) const {
285   // Are they fully identical?
286   if (this == Y)
287     return true;
288 
289   // The input value must be a vector constant with the same type.
290   auto *VTy = dyn_cast<VectorType>(getType());
291   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
292     return false;
293 
294   // TODO: Compare pointer constants?
295   if (!(VTy->getElementType()->isIntegerTy() ||
296         VTy->getElementType()->isFloatingPointTy()))
297     return false;
298 
299   // They may still be identical element-wise (if they have `undef`s).
300   // Bitcast to integer to allow exact bitwise comparison for all types.
301   Type *IntTy = VectorType::getInteger(VTy);
302   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
303   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
304   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
305   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
306 }
307 
308 static bool
309 containsUndefinedElement(const Constant *C,
310                          function_ref<bool(const Constant *)> HasFn) {
311   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
312     if (HasFn(C))
313       return true;
314     if (isa<ConstantAggregateZero>(C))
315       return false;
316     if (isa<ScalableVectorType>(C->getType()))
317       return false;
318 
319     for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements();
320          i != e; ++i) {
321       if (Constant *Elem = C->getAggregateElement(i))
322         if (HasFn(Elem))
323           return true;
324     }
325   }
326 
327   return false;
328 }
329 
330 bool Constant::containsUndefOrPoisonElement() const {
331   return containsUndefinedElement(
332       this, [&](const auto *C) { return isa<UndefValue>(C); });
333 }
334 
335 bool Constant::containsPoisonElement() const {
336   return containsUndefinedElement(
337       this, [&](const auto *C) { return isa<PoisonValue>(C); });
338 }
339 
340 bool Constant::containsConstantExpression() const {
341   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
342     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
343       if (isa<ConstantExpr>(getAggregateElement(i)))
344         return true;
345   }
346   return false;
347 }
348 
349 /// Constructor to create a '0' constant of arbitrary type.
350 Constant *Constant::getNullValue(Type *Ty) {
351   switch (Ty->getTypeID()) {
352   case Type::IntegerTyID:
353     return ConstantInt::get(Ty, 0);
354   case Type::HalfTyID:
355   case Type::BFloatTyID:
356   case Type::FloatTyID:
357   case Type::DoubleTyID:
358   case Type::X86_FP80TyID:
359   case Type::FP128TyID:
360   case Type::PPC_FP128TyID:
361     return ConstantFP::get(Ty->getContext(),
362                            APFloat::getZero(Ty->getFltSemantics()));
363   case Type::PointerTyID:
364     return ConstantPointerNull::get(cast<PointerType>(Ty));
365   case Type::StructTyID:
366   case Type::ArrayTyID:
367   case Type::FixedVectorTyID:
368   case Type::ScalableVectorTyID:
369     return ConstantAggregateZero::get(Ty);
370   case Type::TokenTyID:
371     return ConstantTokenNone::get(Ty->getContext());
372   default:
373     // Function, Label, or Opaque type?
374     llvm_unreachable("Cannot create a null constant of that type!");
375   }
376 }
377 
378 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
379   Type *ScalarTy = Ty->getScalarType();
380 
381   // Create the base integer constant.
382   Constant *C = ConstantInt::get(Ty->getContext(), V);
383 
384   // Convert an integer to a pointer, if necessary.
385   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
386     C = ConstantExpr::getIntToPtr(C, PTy);
387 
388   // Broadcast a scalar to a vector, if necessary.
389   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
390     C = ConstantVector::getSplat(VTy->getElementCount(), C);
391 
392   return C;
393 }
394 
395 Constant *Constant::getAllOnesValue(Type *Ty) {
396   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
397     return ConstantInt::get(Ty->getContext(),
398                             APInt::getAllOnes(ITy->getBitWidth()));
399 
400   if (Ty->isFloatingPointTy()) {
401     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics());
402     return ConstantFP::get(Ty->getContext(), FL);
403   }
404 
405   VectorType *VTy = cast<VectorType>(Ty);
406   return ConstantVector::getSplat(VTy->getElementCount(),
407                                   getAllOnesValue(VTy->getElementType()));
408 }
409 
410 Constant *Constant::getAggregateElement(unsigned Elt) const {
411   assert((getType()->isAggregateType() || getType()->isVectorTy()) &&
412          "Must be an aggregate/vector constant");
413 
414   if (const auto *CC = dyn_cast<ConstantAggregate>(this))
415     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
416 
417   if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this))
418     return Elt < CAZ->getElementCount().getKnownMinValue()
419                ? CAZ->getElementValue(Elt)
420                : nullptr;
421 
422   // FIXME: getNumElements() will fail for non-fixed vector types.
423   if (isa<ScalableVectorType>(getType()))
424     return nullptr;
425 
426   if (const auto *PV = dyn_cast<PoisonValue>(this))
427     return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr;
428 
429   if (const auto *UV = dyn_cast<UndefValue>(this))
430     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
431 
432   if (const auto *CDS = dyn_cast<ConstantDataSequential>(this))
433     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
434                                        : nullptr;
435 
436   return nullptr;
437 }
438 
439 Constant *Constant::getAggregateElement(Constant *Elt) const {
440   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
441   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
442     // Check if the constant fits into an uint64_t.
443     if (CI->getValue().getActiveBits() > 64)
444       return nullptr;
445     return getAggregateElement(CI->getZExtValue());
446   }
447   return nullptr;
448 }
449 
450 void Constant::destroyConstant() {
451   /// First call destroyConstantImpl on the subclass.  This gives the subclass
452   /// a chance to remove the constant from any maps/pools it's contained in.
453   switch (getValueID()) {
454   default:
455     llvm_unreachable("Not a constant!");
456 #define HANDLE_CONSTANT(Name)                                                  \
457   case Value::Name##Val:                                                       \
458     cast<Name>(this)->destroyConstantImpl();                                   \
459     break;
460 #include "llvm/IR/Value.def"
461   }
462 
463   // When a Constant is destroyed, there may be lingering
464   // references to the constant by other constants in the constant pool.  These
465   // constants are implicitly dependent on the module that is being deleted,
466   // but they don't know that.  Because we only find out when the CPV is
467   // deleted, we must now notify all of our users (that should only be
468   // Constants) that they are, in fact, invalid now and should be deleted.
469   //
470   while (!use_empty()) {
471     Value *V = user_back();
472 #ifndef NDEBUG // Only in -g mode...
473     if (!isa<Constant>(V)) {
474       dbgs() << "While deleting: " << *this
475              << "\n\nUse still stuck around after Def is destroyed: " << *V
476              << "\n\n";
477     }
478 #endif
479     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
480     cast<Constant>(V)->destroyConstant();
481 
482     // The constant should remove itself from our use list...
483     assert((use_empty() || user_back() != V) && "Constant not removed!");
484   }
485 
486   // Value has no outstanding references it is safe to delete it now...
487   deleteConstant(this);
488 }
489 
490 void llvm::deleteConstant(Constant *C) {
491   switch (C->getValueID()) {
492   case Constant::ConstantIntVal:
493     delete static_cast<ConstantInt *>(C);
494     break;
495   case Constant::ConstantFPVal:
496     delete static_cast<ConstantFP *>(C);
497     break;
498   case Constant::ConstantAggregateZeroVal:
499     delete static_cast<ConstantAggregateZero *>(C);
500     break;
501   case Constant::ConstantArrayVal:
502     delete static_cast<ConstantArray *>(C);
503     break;
504   case Constant::ConstantStructVal:
505     delete static_cast<ConstantStruct *>(C);
506     break;
507   case Constant::ConstantVectorVal:
508     delete static_cast<ConstantVector *>(C);
509     break;
510   case Constant::ConstantPointerNullVal:
511     delete static_cast<ConstantPointerNull *>(C);
512     break;
513   case Constant::ConstantDataArrayVal:
514     delete static_cast<ConstantDataArray *>(C);
515     break;
516   case Constant::ConstantDataVectorVal:
517     delete static_cast<ConstantDataVector *>(C);
518     break;
519   case Constant::ConstantTokenNoneVal:
520     delete static_cast<ConstantTokenNone *>(C);
521     break;
522   case Constant::BlockAddressVal:
523     delete static_cast<BlockAddress *>(C);
524     break;
525   case Constant::DSOLocalEquivalentVal:
526     delete static_cast<DSOLocalEquivalent *>(C);
527     break;
528   case Constant::NoCFIValueVal:
529     delete static_cast<NoCFIValue *>(C);
530     break;
531   case Constant::UndefValueVal:
532     delete static_cast<UndefValue *>(C);
533     break;
534   case Constant::PoisonValueVal:
535     delete static_cast<PoisonValue *>(C);
536     break;
537   case Constant::ConstantExprVal:
538     if (isa<UnaryConstantExpr>(C))
539       delete static_cast<UnaryConstantExpr *>(C);
540     else if (isa<BinaryConstantExpr>(C))
541       delete static_cast<BinaryConstantExpr *>(C);
542     else if (isa<SelectConstantExpr>(C))
543       delete static_cast<SelectConstantExpr *>(C);
544     else if (isa<ExtractElementConstantExpr>(C))
545       delete static_cast<ExtractElementConstantExpr *>(C);
546     else if (isa<InsertElementConstantExpr>(C))
547       delete static_cast<InsertElementConstantExpr *>(C);
548     else if (isa<ShuffleVectorConstantExpr>(C))
549       delete static_cast<ShuffleVectorConstantExpr *>(C);
550     else if (isa<ExtractValueConstantExpr>(C))
551       delete static_cast<ExtractValueConstantExpr *>(C);
552     else if (isa<InsertValueConstantExpr>(C))
553       delete static_cast<InsertValueConstantExpr *>(C);
554     else if (isa<GetElementPtrConstantExpr>(C))
555       delete static_cast<GetElementPtrConstantExpr *>(C);
556     else if (isa<CompareConstantExpr>(C))
557       delete static_cast<CompareConstantExpr *>(C);
558     else
559       llvm_unreachable("Unexpected constant expr");
560     break;
561   default:
562     llvm_unreachable("Unexpected constant");
563   }
564 }
565 
566 static bool canTrapImpl(const Constant *C,
567                         SmallPtrSetImpl<const Constant *> &NonTrappingOps) {
568   assert(C->getType()->isFirstClassType() &&
569          "Cannot evaluate non-first-class types!");
570   // ConstantExpr or ConstantAggregate trap if any operands can trap.
571   if (isa<ConstantExpr>(C) || isa<ConstantAggregate>(C)) {
572     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
573       const Constant *Op = cast<Constant>(C->getOperand(i));
574       if (isa<ConstantExpr>(Op) || isa<ConstantAggregate>(Op)) {
575         if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
576           return true;
577       }
578     }
579   }
580 
581   // The only leafs that can trap are constant expressions.
582   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
583   if (!CE)
584     return false;
585 
586   // Otherwise, only specific operations can trap.
587   switch (CE->getOpcode()) {
588   default:
589     return false;
590   case Instruction::UDiv:
591   case Instruction::SDiv:
592   case Instruction::URem:
593   case Instruction::SRem:
594     // Div and rem can trap if the RHS is not known to be non-zero.
595     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
596       return true;
597     return false;
598   }
599 }
600 
601 bool Constant::canTrap() const {
602   SmallPtrSet<const Constant *, 4> NonTrappingOps;
603   return canTrapImpl(this, NonTrappingOps);
604 }
605 
606 /// Check if C contains a GlobalValue for which Predicate is true.
607 static bool
608 ConstHasGlobalValuePredicate(const Constant *C,
609                              bool (*Predicate)(const GlobalValue *)) {
610   SmallPtrSet<const Constant *, 8> Visited;
611   SmallVector<const Constant *, 8> WorkList;
612   WorkList.push_back(C);
613   Visited.insert(C);
614 
615   while (!WorkList.empty()) {
616     const Constant *WorkItem = WorkList.pop_back_val();
617     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
618       if (Predicate(GV))
619         return true;
620     for (const Value *Op : WorkItem->operands()) {
621       const Constant *ConstOp = dyn_cast<Constant>(Op);
622       if (!ConstOp)
623         continue;
624       if (Visited.insert(ConstOp).second)
625         WorkList.push_back(ConstOp);
626     }
627   }
628   return false;
629 }
630 
631 bool Constant::isThreadDependent() const {
632   auto DLLImportPredicate = [](const GlobalValue *GV) {
633     return GV->isThreadLocal();
634   };
635   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
636 }
637 
638 bool Constant::isDLLImportDependent() const {
639   auto DLLImportPredicate = [](const GlobalValue *GV) {
640     return GV->hasDLLImportStorageClass();
641   };
642   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
643 }
644 
645 bool Constant::isConstantUsed() const {
646   for (const User *U : users()) {
647     const Constant *UC = dyn_cast<Constant>(U);
648     if (!UC || isa<GlobalValue>(UC))
649       return true;
650 
651     if (UC->isConstantUsed())
652       return true;
653   }
654   return false;
655 }
656 
657 bool Constant::needsDynamicRelocation() const {
658   return getRelocationInfo() == GlobalRelocation;
659 }
660 
661 bool Constant::needsRelocation() const {
662   return getRelocationInfo() != NoRelocation;
663 }
664 
665 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
666   if (isa<GlobalValue>(this))
667     return GlobalRelocation; // Global reference.
668 
669   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
670     return BA->getFunction()->getRelocationInfo();
671 
672   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
673     if (CE->getOpcode() == Instruction::Sub) {
674       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
675       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
676       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
677           RHS->getOpcode() == Instruction::PtrToInt) {
678         Constant *LHSOp0 = LHS->getOperand(0);
679         Constant *RHSOp0 = RHS->getOperand(0);
680 
681         // While raw uses of blockaddress need to be relocated, differences
682         // between two of them don't when they are for labels in the same
683         // function.  This is a common idiom when creating a table for the
684         // indirect goto extension, so we handle it efficiently here.
685         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
686             cast<BlockAddress>(LHSOp0)->getFunction() ==
687                 cast<BlockAddress>(RHSOp0)->getFunction())
688           return NoRelocation;
689 
690         // Relative pointers do not need to be dynamically relocated.
691         if (auto *RHSGV =
692                 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) {
693           auto *LHS = LHSOp0->stripInBoundsConstantOffsets();
694           if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
695             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
696               return LocalRelocation;
697           } else if (isa<DSOLocalEquivalent>(LHS)) {
698             if (RHSGV->isDSOLocal())
699               return LocalRelocation;
700           }
701         }
702       }
703     }
704   }
705 
706   PossibleRelocationsTy Result = NoRelocation;
707   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
708     Result =
709         std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result);
710 
711   return Result;
712 }
713 
714 /// Return true if the specified constantexpr is dead. This involves
715 /// recursively traversing users of the constantexpr.
716 /// If RemoveDeadUsers is true, also remove dead users at the same time.
717 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) {
718   if (isa<GlobalValue>(C)) return false; // Cannot remove this
719 
720   Value::const_user_iterator I = C->user_begin(), E = C->user_end();
721   while (I != E) {
722     const Constant *User = dyn_cast<Constant>(*I);
723     if (!User) return false; // Non-constant usage;
724     if (!constantIsDead(User, RemoveDeadUsers))
725       return false; // Constant wasn't dead
726 
727     // Just removed User, so the iterator was invalidated.
728     // Since we return immediately upon finding a live user, we can always
729     // restart from user_begin().
730     if (RemoveDeadUsers)
731       I = C->user_begin();
732     else
733       ++I;
734   }
735 
736   if (RemoveDeadUsers) {
737     // If C is only used by metadata, it should not be preserved but should
738     // have its uses replaced.
739     ReplaceableMetadataImpl::SalvageDebugInfo(*C);
740     const_cast<Constant *>(C)->destroyConstant();
741   }
742 
743   return true;
744 }
745 
746 void Constant::removeDeadConstantUsers() const {
747   Value::const_user_iterator I = user_begin(), E = user_end();
748   Value::const_user_iterator LastNonDeadUser = E;
749   while (I != E) {
750     const Constant *User = dyn_cast<Constant>(*I);
751     if (!User) {
752       LastNonDeadUser = I;
753       ++I;
754       continue;
755     }
756 
757     if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) {
758       // If the constant wasn't dead, remember that this was the last live use
759       // and move on to the next constant.
760       LastNonDeadUser = I;
761       ++I;
762       continue;
763     }
764 
765     // If the constant was dead, then the iterator is invalidated.
766     if (LastNonDeadUser == E)
767       I = user_begin();
768     else
769       I = std::next(LastNonDeadUser);
770   }
771 }
772 
773 bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); }
774 
775 bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); }
776 
777 bool Constant::hasNLiveUses(unsigned N) const {
778   unsigned NumUses = 0;
779   for (const Use &U : uses()) {
780     const Constant *User = dyn_cast<Constant>(U.getUser());
781     if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) {
782       ++NumUses;
783 
784       if (NumUses > N)
785         return false;
786     }
787   }
788   return NumUses == N;
789 }
790 
791 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
792   assert(C && Replacement && "Expected non-nullptr constant arguments");
793   Type *Ty = C->getType();
794   if (match(C, m_Undef())) {
795     assert(Ty == Replacement->getType() && "Expected matching types");
796     return Replacement;
797   }
798 
799   // Don't know how to deal with this constant.
800   auto *VTy = dyn_cast<FixedVectorType>(Ty);
801   if (!VTy)
802     return C;
803 
804   unsigned NumElts = VTy->getNumElements();
805   SmallVector<Constant *, 32> NewC(NumElts);
806   for (unsigned i = 0; i != NumElts; ++i) {
807     Constant *EltC = C->getAggregateElement(i);
808     assert((!EltC || EltC->getType() == Replacement->getType()) &&
809            "Expected matching types");
810     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
811   }
812   return ConstantVector::get(NewC);
813 }
814 
815 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) {
816   assert(C && Other && "Expected non-nullptr constant arguments");
817   if (match(C, m_Undef()))
818     return C;
819 
820   Type *Ty = C->getType();
821   if (match(Other, m_Undef()))
822     return UndefValue::get(Ty);
823 
824   auto *VTy = dyn_cast<FixedVectorType>(Ty);
825   if (!VTy)
826     return C;
827 
828   Type *EltTy = VTy->getElementType();
829   unsigned NumElts = VTy->getNumElements();
830   assert(isa<FixedVectorType>(Other->getType()) &&
831          cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts &&
832          "Type mismatch");
833 
834   bool FoundExtraUndef = false;
835   SmallVector<Constant *, 32> NewC(NumElts);
836   for (unsigned I = 0; I != NumElts; ++I) {
837     NewC[I] = C->getAggregateElement(I);
838     Constant *OtherEltC = Other->getAggregateElement(I);
839     assert(NewC[I] && OtherEltC && "Unknown vector element");
840     if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) {
841       NewC[I] = UndefValue::get(EltTy);
842       FoundExtraUndef = true;
843     }
844   }
845   if (FoundExtraUndef)
846     return ConstantVector::get(NewC);
847   return C;
848 }
849 
850 bool Constant::isManifestConstant() const {
851   if (isa<ConstantData>(this))
852     return true;
853   if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) {
854     for (const Value *Op : operand_values())
855       if (!cast<Constant>(Op)->isManifestConstant())
856         return false;
857     return true;
858   }
859   return false;
860 }
861 
862 //===----------------------------------------------------------------------===//
863 //                                ConstantInt
864 //===----------------------------------------------------------------------===//
865 
866 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
867     : ConstantData(Ty, ConstantIntVal), Val(V) {
868   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
869 }
870 
871 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
872   LLVMContextImpl *pImpl = Context.pImpl;
873   if (!pImpl->TheTrueVal)
874     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
875   return pImpl->TheTrueVal;
876 }
877 
878 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
879   LLVMContextImpl *pImpl = Context.pImpl;
880   if (!pImpl->TheFalseVal)
881     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
882   return pImpl->TheFalseVal;
883 }
884 
885 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) {
886   return V ? getTrue(Context) : getFalse(Context);
887 }
888 
889 Constant *ConstantInt::getTrue(Type *Ty) {
890   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
891   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
892   if (auto *VTy = dyn_cast<VectorType>(Ty))
893     return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
894   return TrueC;
895 }
896 
897 Constant *ConstantInt::getFalse(Type *Ty) {
898   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
899   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
900   if (auto *VTy = dyn_cast<VectorType>(Ty))
901     return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
902   return FalseC;
903 }
904 
905 Constant *ConstantInt::getBool(Type *Ty, bool V) {
906   return V ? getTrue(Ty) : getFalse(Ty);
907 }
908 
909 // Get a ConstantInt from an APInt.
910 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
911   // get an existing value or the insertion position
912   LLVMContextImpl *pImpl = Context.pImpl;
913   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
914   if (!Slot) {
915     // Get the corresponding integer type for the bit width of the value.
916     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
917     Slot.reset(new ConstantInt(ITy, V));
918   }
919   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
920   return Slot.get();
921 }
922 
923 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
924   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
925 
926   // For vectors, broadcast the value.
927   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
928     return ConstantVector::getSplat(VTy->getElementCount(), C);
929 
930   return C;
931 }
932 
933 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
934   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
935 }
936 
937 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
938   return get(Ty, V, true);
939 }
940 
941 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
942   return get(Ty, V, true);
943 }
944 
945 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
946   ConstantInt *C = get(Ty->getContext(), V);
947   assert(C->getType() == Ty->getScalarType() &&
948          "ConstantInt type doesn't match the type implied by its value!");
949 
950   // For vectors, broadcast the value.
951   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
952     return ConstantVector::getSplat(VTy->getElementCount(), C);
953 
954   return C;
955 }
956 
957 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
958   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
959 }
960 
961 /// Remove the constant from the constant table.
962 void ConstantInt::destroyConstantImpl() {
963   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
964 }
965 
966 //===----------------------------------------------------------------------===//
967 //                                ConstantFP
968 //===----------------------------------------------------------------------===//
969 
970 Constant *ConstantFP::get(Type *Ty, double V) {
971   LLVMContext &Context = Ty->getContext();
972 
973   APFloat FV(V);
974   bool ignored;
975   FV.convert(Ty->getScalarType()->getFltSemantics(),
976              APFloat::rmNearestTiesToEven, &ignored);
977   Constant *C = get(Context, FV);
978 
979   // For vectors, broadcast the value.
980   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
981     return ConstantVector::getSplat(VTy->getElementCount(), C);
982 
983   return C;
984 }
985 
986 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
987   ConstantFP *C = get(Ty->getContext(), V);
988   assert(C->getType() == Ty->getScalarType() &&
989          "ConstantFP type doesn't match the type implied by its value!");
990 
991   // For vectors, broadcast the value.
992   if (auto *VTy = dyn_cast<VectorType>(Ty))
993     return ConstantVector::getSplat(VTy->getElementCount(), C);
994 
995   return C;
996 }
997 
998 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
999   LLVMContext &Context = Ty->getContext();
1000 
1001   APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
1002   Constant *C = get(Context, FV);
1003 
1004   // For vectors, broadcast the value.
1005   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1006     return ConstantVector::getSplat(VTy->getElementCount(), C);
1007 
1008   return C;
1009 }
1010 
1011 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
1012   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1013   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
1014   Constant *C = get(Ty->getContext(), NaN);
1015 
1016   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1017     return ConstantVector::getSplat(VTy->getElementCount(), C);
1018 
1019   return C;
1020 }
1021 
1022 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
1023   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1024   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
1025   Constant *C = get(Ty->getContext(), NaN);
1026 
1027   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1028     return ConstantVector::getSplat(VTy->getElementCount(), C);
1029 
1030   return C;
1031 }
1032 
1033 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
1034   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1035   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
1036   Constant *C = get(Ty->getContext(), NaN);
1037 
1038   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1039     return ConstantVector::getSplat(VTy->getElementCount(), C);
1040 
1041   return C;
1042 }
1043 
1044 Constant *ConstantFP::getZero(Type *Ty, bool Negative) {
1045   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1046   APFloat NegZero = APFloat::getZero(Semantics, Negative);
1047   Constant *C = get(Ty->getContext(), NegZero);
1048 
1049   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1050     return ConstantVector::getSplat(VTy->getElementCount(), C);
1051 
1052   return C;
1053 }
1054 
1055 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
1056   if (Ty->isFPOrFPVectorTy())
1057     return getNegativeZero(Ty);
1058 
1059   return Constant::getNullValue(Ty);
1060 }
1061 
1062 
1063 // ConstantFP accessors.
1064 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
1065   LLVMContextImpl* pImpl = Context.pImpl;
1066 
1067   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
1068 
1069   if (!Slot) {
1070     Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics());
1071     Slot.reset(new ConstantFP(Ty, V));
1072   }
1073 
1074   return Slot.get();
1075 }
1076 
1077 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
1078   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1079   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
1080 
1081   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1082     return ConstantVector::getSplat(VTy->getElementCount(), C);
1083 
1084   return C;
1085 }
1086 
1087 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
1088     : ConstantData(Ty, ConstantFPVal), Val(V) {
1089   assert(&V.getSemantics() == &Ty->getFltSemantics() &&
1090          "FP type Mismatch");
1091 }
1092 
1093 bool ConstantFP::isExactlyValue(const APFloat &V) const {
1094   return Val.bitwiseIsEqual(V);
1095 }
1096 
1097 /// Remove the constant from the constant table.
1098 void ConstantFP::destroyConstantImpl() {
1099   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1100 }
1101 
1102 //===----------------------------------------------------------------------===//
1103 //                   ConstantAggregateZero Implementation
1104 //===----------------------------------------------------------------------===//
1105 
1106 Constant *ConstantAggregateZero::getSequentialElement() const {
1107   if (auto *AT = dyn_cast<ArrayType>(getType()))
1108     return Constant::getNullValue(AT->getElementType());
1109   return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1110 }
1111 
1112 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1113   return Constant::getNullValue(getType()->getStructElementType(Elt));
1114 }
1115 
1116 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1117   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1118     return getSequentialElement();
1119   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1120 }
1121 
1122 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1123   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1124     return getSequentialElement();
1125   return getStructElement(Idx);
1126 }
1127 
1128 ElementCount ConstantAggregateZero::getElementCount() const {
1129   Type *Ty = getType();
1130   if (auto *AT = dyn_cast<ArrayType>(Ty))
1131     return ElementCount::getFixed(AT->getNumElements());
1132   if (auto *VT = dyn_cast<VectorType>(Ty))
1133     return VT->getElementCount();
1134   return ElementCount::getFixed(Ty->getStructNumElements());
1135 }
1136 
1137 //===----------------------------------------------------------------------===//
1138 //                         UndefValue Implementation
1139 //===----------------------------------------------------------------------===//
1140 
1141 UndefValue *UndefValue::getSequentialElement() const {
1142   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1143     return UndefValue::get(ATy->getElementType());
1144   return UndefValue::get(cast<VectorType>(getType())->getElementType());
1145 }
1146 
1147 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1148   return UndefValue::get(getType()->getStructElementType(Elt));
1149 }
1150 
1151 UndefValue *UndefValue::getElementValue(Constant *C) const {
1152   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1153     return getSequentialElement();
1154   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1155 }
1156 
1157 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1158   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1159     return getSequentialElement();
1160   return getStructElement(Idx);
1161 }
1162 
1163 unsigned UndefValue::getNumElements() const {
1164   Type *Ty = getType();
1165   if (auto *AT = dyn_cast<ArrayType>(Ty))
1166     return AT->getNumElements();
1167   if (auto *VT = dyn_cast<VectorType>(Ty))
1168     return cast<FixedVectorType>(VT)->getNumElements();
1169   return Ty->getStructNumElements();
1170 }
1171 
1172 //===----------------------------------------------------------------------===//
1173 //                         PoisonValue Implementation
1174 //===----------------------------------------------------------------------===//
1175 
1176 PoisonValue *PoisonValue::getSequentialElement() const {
1177   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1178     return PoisonValue::get(ATy->getElementType());
1179   return PoisonValue::get(cast<VectorType>(getType())->getElementType());
1180 }
1181 
1182 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const {
1183   return PoisonValue::get(getType()->getStructElementType(Elt));
1184 }
1185 
1186 PoisonValue *PoisonValue::getElementValue(Constant *C) const {
1187   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1188     return getSequentialElement();
1189   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1190 }
1191 
1192 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const {
1193   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1194     return getSequentialElement();
1195   return getStructElement(Idx);
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 //                            ConstantXXX Classes
1200 //===----------------------------------------------------------------------===//
1201 
1202 template <typename ItTy, typename EltTy>
1203 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1204   for (; Start != End; ++Start)
1205     if (*Start != Elt)
1206       return false;
1207   return true;
1208 }
1209 
1210 template <typename SequentialTy, typename ElementTy>
1211 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1212   assert(!V.empty() && "Cannot get empty int sequence.");
1213 
1214   SmallVector<ElementTy, 16> Elts;
1215   for (Constant *C : V)
1216     if (auto *CI = dyn_cast<ConstantInt>(C))
1217       Elts.push_back(CI->getZExtValue());
1218     else
1219       return nullptr;
1220   return SequentialTy::get(V[0]->getContext(), Elts);
1221 }
1222 
1223 template <typename SequentialTy, typename ElementTy>
1224 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1225   assert(!V.empty() && "Cannot get empty FP sequence.");
1226 
1227   SmallVector<ElementTy, 16> Elts;
1228   for (Constant *C : V)
1229     if (auto *CFP = dyn_cast<ConstantFP>(C))
1230       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1231     else
1232       return nullptr;
1233   return SequentialTy::getFP(V[0]->getType(), Elts);
1234 }
1235 
1236 template <typename SequenceTy>
1237 static Constant *getSequenceIfElementsMatch(Constant *C,
1238                                             ArrayRef<Constant *> V) {
1239   // We speculatively build the elements here even if it turns out that there is
1240   // a constantexpr or something else weird, since it is so uncommon for that to
1241   // happen.
1242   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1243     if (CI->getType()->isIntegerTy(8))
1244       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1245     else if (CI->getType()->isIntegerTy(16))
1246       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1247     else if (CI->getType()->isIntegerTy(32))
1248       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1249     else if (CI->getType()->isIntegerTy(64))
1250       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1251   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1252     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1253       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1254     else if (CFP->getType()->isFloatTy())
1255       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1256     else if (CFP->getType()->isDoubleTy())
1257       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1258   }
1259 
1260   return nullptr;
1261 }
1262 
1263 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1264                                      ArrayRef<Constant *> V)
1265     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1266                V.size()) {
1267   llvm::copy(V, op_begin());
1268 
1269   // Check that types match, unless this is an opaque struct.
1270   if (auto *ST = dyn_cast<StructType>(T)) {
1271     if (ST->isOpaque())
1272       return;
1273     for (unsigned I = 0, E = V.size(); I != E; ++I)
1274       assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1275              "Initializer for struct element doesn't match!");
1276   }
1277 }
1278 
1279 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1280     : ConstantAggregate(T, ConstantArrayVal, V) {
1281   assert(V.size() == T->getNumElements() &&
1282          "Invalid initializer for constant array");
1283 }
1284 
1285 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1286   if (Constant *C = getImpl(Ty, V))
1287     return C;
1288   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1289 }
1290 
1291 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1292   // Empty arrays are canonicalized to ConstantAggregateZero.
1293   if (V.empty())
1294     return ConstantAggregateZero::get(Ty);
1295 
1296   for (Constant *C : V) {
1297     assert(C->getType() == Ty->getElementType() &&
1298            "Wrong type in array element initializer");
1299     (void)C;
1300   }
1301 
1302   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1303   // all undef, return an UndefValue, if "all simple", then return a
1304   // ConstantDataArray.
1305   Constant *C = V[0];
1306   if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1307     return PoisonValue::get(Ty);
1308 
1309   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1310     return UndefValue::get(Ty);
1311 
1312   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1313     return ConstantAggregateZero::get(Ty);
1314 
1315   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1316   // the element type is compatible with ConstantDataVector.  If so, use it.
1317   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1318     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1319 
1320   // Otherwise, we really do want to create a ConstantArray.
1321   return nullptr;
1322 }
1323 
1324 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1325                                                ArrayRef<Constant*> V,
1326                                                bool Packed) {
1327   unsigned VecSize = V.size();
1328   SmallVector<Type*, 16> EltTypes(VecSize);
1329   for (unsigned i = 0; i != VecSize; ++i)
1330     EltTypes[i] = V[i]->getType();
1331 
1332   return StructType::get(Context, EltTypes, Packed);
1333 }
1334 
1335 
1336 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1337                                                bool Packed) {
1338   assert(!V.empty() &&
1339          "ConstantStruct::getTypeForElements cannot be called on empty list");
1340   return getTypeForElements(V[0]->getContext(), V, Packed);
1341 }
1342 
1343 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1344     : ConstantAggregate(T, ConstantStructVal, V) {
1345   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1346          "Invalid initializer for constant struct");
1347 }
1348 
1349 // ConstantStruct accessors.
1350 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1351   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1352          "Incorrect # elements specified to ConstantStruct::get");
1353 
1354   // Create a ConstantAggregateZero value if all elements are zeros.
1355   bool isZero = true;
1356   bool isUndef = false;
1357   bool isPoison = false;
1358 
1359   if (!V.empty()) {
1360     isUndef = isa<UndefValue>(V[0]);
1361     isPoison = isa<PoisonValue>(V[0]);
1362     isZero = V[0]->isNullValue();
1363     // PoisonValue inherits UndefValue, so its check is not necessary.
1364     if (isUndef || isZero) {
1365       for (Constant *C : V) {
1366         if (!C->isNullValue())
1367           isZero = false;
1368         if (!isa<PoisonValue>(C))
1369           isPoison = false;
1370         if (isa<PoisonValue>(C) || !isa<UndefValue>(C))
1371           isUndef = false;
1372       }
1373     }
1374   }
1375   if (isZero)
1376     return ConstantAggregateZero::get(ST);
1377   if (isPoison)
1378     return PoisonValue::get(ST);
1379   if (isUndef)
1380     return UndefValue::get(ST);
1381 
1382   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1383 }
1384 
1385 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1386     : ConstantAggregate(T, ConstantVectorVal, V) {
1387   assert(V.size() == cast<FixedVectorType>(T)->getNumElements() &&
1388          "Invalid initializer for constant vector");
1389 }
1390 
1391 // ConstantVector accessors.
1392 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1393   if (Constant *C = getImpl(V))
1394     return C;
1395   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1396   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1397 }
1398 
1399 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1400   assert(!V.empty() && "Vectors can't be empty");
1401   auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1402 
1403   // If this is an all-undef or all-zero vector, return a
1404   // ConstantAggregateZero or UndefValue.
1405   Constant *C = V[0];
1406   bool isZero = C->isNullValue();
1407   bool isUndef = isa<UndefValue>(C);
1408   bool isPoison = isa<PoisonValue>(C);
1409 
1410   if (isZero || isUndef) {
1411     for (unsigned i = 1, e = V.size(); i != e; ++i)
1412       if (V[i] != C) {
1413         isZero = isUndef = isPoison = false;
1414         break;
1415       }
1416   }
1417 
1418   if (isZero)
1419     return ConstantAggregateZero::get(T);
1420   if (isPoison)
1421     return PoisonValue::get(T);
1422   if (isUndef)
1423     return UndefValue::get(T);
1424 
1425   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1426   // the element type is compatible with ConstantDataVector.  If so, use it.
1427   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1428     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1429 
1430   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1431   // the operand list contains a ConstantExpr or something else strange.
1432   return nullptr;
1433 }
1434 
1435 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1436   if (!EC.isScalable()) {
1437     // If this splat is compatible with ConstantDataVector, use it instead of
1438     // ConstantVector.
1439     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1440         ConstantDataSequential::isElementTypeCompatible(V->getType()))
1441       return ConstantDataVector::getSplat(EC.getKnownMinValue(), V);
1442 
1443     SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V);
1444     return get(Elts);
1445   }
1446 
1447   Type *VTy = VectorType::get(V->getType(), EC);
1448 
1449   if (V->isNullValue())
1450     return ConstantAggregateZero::get(VTy);
1451   else if (isa<UndefValue>(V))
1452     return UndefValue::get(VTy);
1453 
1454   Type *I32Ty = Type::getInt32Ty(VTy->getContext());
1455 
1456   // Move scalar into vector.
1457   Constant *PoisonV = PoisonValue::get(VTy);
1458   V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(I32Ty, 0));
1459   // Build shuffle mask to perform the splat.
1460   SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0);
1461   // Splat.
1462   return ConstantExpr::getShuffleVector(V, PoisonV, Zeros);
1463 }
1464 
1465 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1466   LLVMContextImpl *pImpl = Context.pImpl;
1467   if (!pImpl->TheNoneToken)
1468     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1469   return pImpl->TheNoneToken.get();
1470 }
1471 
1472 /// Remove the constant from the constant table.
1473 void ConstantTokenNone::destroyConstantImpl() {
1474   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1475 }
1476 
1477 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1478 // can't be inline because we don't want to #include Instruction.h into
1479 // Constant.h
1480 bool ConstantExpr::isCast() const {
1481   return Instruction::isCast(getOpcode());
1482 }
1483 
1484 bool ConstantExpr::isCompare() const {
1485   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1486 }
1487 
1488 bool ConstantExpr::hasIndices() const {
1489   return getOpcode() == Instruction::ExtractValue ||
1490          getOpcode() == Instruction::InsertValue;
1491 }
1492 
1493 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1494   if (const ExtractValueConstantExpr *EVCE =
1495         dyn_cast<ExtractValueConstantExpr>(this))
1496     return EVCE->Indices;
1497 
1498   return cast<InsertValueConstantExpr>(this)->Indices;
1499 }
1500 
1501 unsigned ConstantExpr::getPredicate() const {
1502   return cast<CompareConstantExpr>(this)->predicate;
1503 }
1504 
1505 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1506   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1507 }
1508 
1509 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1510   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1511 }
1512 
1513 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1514                                         bool OnlyIfReduced, Type *SrcTy) const {
1515   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1516 
1517   // If no operands changed return self.
1518   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1519     return const_cast<ConstantExpr*>(this);
1520 
1521   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1522   switch (getOpcode()) {
1523   case Instruction::Trunc:
1524   case Instruction::ZExt:
1525   case Instruction::SExt:
1526   case Instruction::FPTrunc:
1527   case Instruction::FPExt:
1528   case Instruction::UIToFP:
1529   case Instruction::SIToFP:
1530   case Instruction::FPToUI:
1531   case Instruction::FPToSI:
1532   case Instruction::PtrToInt:
1533   case Instruction::IntToPtr:
1534   case Instruction::BitCast:
1535   case Instruction::AddrSpaceCast:
1536     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1537   case Instruction::Select:
1538     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1539   case Instruction::InsertElement:
1540     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1541                                           OnlyIfReducedTy);
1542   case Instruction::ExtractElement:
1543     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1544   case Instruction::InsertValue:
1545     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1546                                         OnlyIfReducedTy);
1547   case Instruction::ExtractValue:
1548     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1549   case Instruction::FNeg:
1550     return ConstantExpr::getFNeg(Ops[0]);
1551   case Instruction::ShuffleVector:
1552     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1553                                           OnlyIfReducedTy);
1554   case Instruction::GetElementPtr: {
1555     auto *GEPO = cast<GEPOperator>(this);
1556     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1557     return ConstantExpr::getGetElementPtr(
1558         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1559         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1560   }
1561   case Instruction::ICmp:
1562   case Instruction::FCmp:
1563     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1564                                     OnlyIfReducedTy);
1565   default:
1566     assert(getNumOperands() == 2 && "Must be binary operator?");
1567     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1568                              OnlyIfReducedTy);
1569   }
1570 }
1571 
1572 
1573 //===----------------------------------------------------------------------===//
1574 //                      isValueValidForType implementations
1575 
1576 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1577   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1578   if (Ty->isIntegerTy(1))
1579     return Val == 0 || Val == 1;
1580   return isUIntN(NumBits, Val);
1581 }
1582 
1583 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1584   unsigned NumBits = Ty->getIntegerBitWidth();
1585   if (Ty->isIntegerTy(1))
1586     return Val == 0 || Val == 1 || Val == -1;
1587   return isIntN(NumBits, Val);
1588 }
1589 
1590 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1591   // convert modifies in place, so make a copy.
1592   APFloat Val2 = APFloat(Val);
1593   bool losesInfo;
1594   switch (Ty->getTypeID()) {
1595   default:
1596     return false;         // These can't be represented as floating point!
1597 
1598   // FIXME rounding mode needs to be more flexible
1599   case Type::HalfTyID: {
1600     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1601       return true;
1602     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1603     return !losesInfo;
1604   }
1605   case Type::BFloatTyID: {
1606     if (&Val2.getSemantics() == &APFloat::BFloat())
1607       return true;
1608     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1609     return !losesInfo;
1610   }
1611   case Type::FloatTyID: {
1612     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1613       return true;
1614     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1615     return !losesInfo;
1616   }
1617   case Type::DoubleTyID: {
1618     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1619         &Val2.getSemantics() == &APFloat::BFloat() ||
1620         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1621         &Val2.getSemantics() == &APFloat::IEEEdouble())
1622       return true;
1623     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1624     return !losesInfo;
1625   }
1626   case Type::X86_FP80TyID:
1627     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1628            &Val2.getSemantics() == &APFloat::BFloat() ||
1629            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1630            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1631            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1632   case Type::FP128TyID:
1633     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1634            &Val2.getSemantics() == &APFloat::BFloat() ||
1635            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1636            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1637            &Val2.getSemantics() == &APFloat::IEEEquad();
1638   case Type::PPC_FP128TyID:
1639     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1640            &Val2.getSemantics() == &APFloat::BFloat() ||
1641            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1642            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1643            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1644   }
1645 }
1646 
1647 
1648 //===----------------------------------------------------------------------===//
1649 //                      Factory Function Implementation
1650 
1651 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1652   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1653          "Cannot create an aggregate zero of non-aggregate type!");
1654 
1655   std::unique_ptr<ConstantAggregateZero> &Entry =
1656       Ty->getContext().pImpl->CAZConstants[Ty];
1657   if (!Entry)
1658     Entry.reset(new ConstantAggregateZero(Ty));
1659 
1660   return Entry.get();
1661 }
1662 
1663 /// Remove the constant from the constant table.
1664 void ConstantAggregateZero::destroyConstantImpl() {
1665   getContext().pImpl->CAZConstants.erase(getType());
1666 }
1667 
1668 /// Remove the constant from the constant table.
1669 void ConstantArray::destroyConstantImpl() {
1670   getType()->getContext().pImpl->ArrayConstants.remove(this);
1671 }
1672 
1673 
1674 //---- ConstantStruct::get() implementation...
1675 //
1676 
1677 /// Remove the constant from the constant table.
1678 void ConstantStruct::destroyConstantImpl() {
1679   getType()->getContext().pImpl->StructConstants.remove(this);
1680 }
1681 
1682 /// Remove the constant from the constant table.
1683 void ConstantVector::destroyConstantImpl() {
1684   getType()->getContext().pImpl->VectorConstants.remove(this);
1685 }
1686 
1687 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1688   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1689   if (isa<ConstantAggregateZero>(this))
1690     return getNullValue(cast<VectorType>(getType())->getElementType());
1691   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1692     return CV->getSplatValue();
1693   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1694     return CV->getSplatValue(AllowUndefs);
1695 
1696   // Check if this is a constant expression splat of the form returned by
1697   // ConstantVector::getSplat()
1698   const auto *Shuf = dyn_cast<ConstantExpr>(this);
1699   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1700       isa<UndefValue>(Shuf->getOperand(1))) {
1701 
1702     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1703     if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1704         isa<UndefValue>(IElt->getOperand(0))) {
1705 
1706       ArrayRef<int> Mask = Shuf->getShuffleMask();
1707       Constant *SplatVal = IElt->getOperand(1);
1708       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1709 
1710       if (Index && Index->getValue() == 0 &&
1711           llvm::all_of(Mask, [](int I) { return I == 0; }))
1712         return SplatVal;
1713     }
1714   }
1715 
1716   return nullptr;
1717 }
1718 
1719 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1720   // Check out first element.
1721   Constant *Elt = getOperand(0);
1722   // Then make sure all remaining elements point to the same value.
1723   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1724     Constant *OpC = getOperand(I);
1725     if (OpC == Elt)
1726       continue;
1727 
1728     // Strict mode: any mismatch is not a splat.
1729     if (!AllowUndefs)
1730       return nullptr;
1731 
1732     // Allow undefs mode: ignore undefined elements.
1733     if (isa<UndefValue>(OpC))
1734       continue;
1735 
1736     // If we do not have a defined element yet, use the current operand.
1737     if (isa<UndefValue>(Elt))
1738       Elt = OpC;
1739 
1740     if (OpC != Elt)
1741       return nullptr;
1742   }
1743   return Elt;
1744 }
1745 
1746 const APInt &Constant::getUniqueInteger() const {
1747   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1748     return CI->getValue();
1749   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1750   const Constant *C = this->getAggregateElement(0U);
1751   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1752   return cast<ConstantInt>(C)->getValue();
1753 }
1754 
1755 //---- ConstantPointerNull::get() implementation.
1756 //
1757 
1758 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1759   std::unique_ptr<ConstantPointerNull> &Entry =
1760       Ty->getContext().pImpl->CPNConstants[Ty];
1761   if (!Entry)
1762     Entry.reset(new ConstantPointerNull(Ty));
1763 
1764   return Entry.get();
1765 }
1766 
1767 /// Remove the constant from the constant table.
1768 void ConstantPointerNull::destroyConstantImpl() {
1769   getContext().pImpl->CPNConstants.erase(getType());
1770 }
1771 
1772 UndefValue *UndefValue::get(Type *Ty) {
1773   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1774   if (!Entry)
1775     Entry.reset(new UndefValue(Ty));
1776 
1777   return Entry.get();
1778 }
1779 
1780 /// Remove the constant from the constant table.
1781 void UndefValue::destroyConstantImpl() {
1782   // Free the constant and any dangling references to it.
1783   if (getValueID() == UndefValueVal) {
1784     getContext().pImpl->UVConstants.erase(getType());
1785   } else if (getValueID() == PoisonValueVal) {
1786     getContext().pImpl->PVConstants.erase(getType());
1787   }
1788   llvm_unreachable("Not a undef or a poison!");
1789 }
1790 
1791 PoisonValue *PoisonValue::get(Type *Ty) {
1792   std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty];
1793   if (!Entry)
1794     Entry.reset(new PoisonValue(Ty));
1795 
1796   return Entry.get();
1797 }
1798 
1799 /// Remove the constant from the constant table.
1800 void PoisonValue::destroyConstantImpl() {
1801   // Free the constant and any dangling references to it.
1802   getContext().pImpl->PVConstants.erase(getType());
1803 }
1804 
1805 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1806   assert(BB->getParent() && "Block must have a parent");
1807   return get(BB->getParent(), BB);
1808 }
1809 
1810 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1811   BlockAddress *&BA =
1812     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1813   if (!BA)
1814     BA = new BlockAddress(F, BB);
1815 
1816   assert(BA->getFunction() == F && "Basic block moved between functions");
1817   return BA;
1818 }
1819 
1820 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1821     : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()),
1822                Value::BlockAddressVal, &Op<0>(), 2) {
1823   setOperand(0, F);
1824   setOperand(1, BB);
1825   BB->AdjustBlockAddressRefCount(1);
1826 }
1827 
1828 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1829   if (!BB->hasAddressTaken())
1830     return nullptr;
1831 
1832   const Function *F = BB->getParent();
1833   assert(F && "Block must have a parent");
1834   BlockAddress *BA =
1835       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1836   assert(BA && "Refcount and block address map disagree!");
1837   return BA;
1838 }
1839 
1840 /// Remove the constant from the constant table.
1841 void BlockAddress::destroyConstantImpl() {
1842   getFunction()->getType()->getContext().pImpl
1843     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1844   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1845 }
1846 
1847 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1848   // This could be replacing either the Basic Block or the Function.  In either
1849   // case, we have to remove the map entry.
1850   Function *NewF = getFunction();
1851   BasicBlock *NewBB = getBasicBlock();
1852 
1853   if (From == NewF)
1854     NewF = cast<Function>(To->stripPointerCasts());
1855   else {
1856     assert(From == NewBB && "From does not match any operand");
1857     NewBB = cast<BasicBlock>(To);
1858   }
1859 
1860   // See if the 'new' entry already exists, if not, just update this in place
1861   // and return early.
1862   BlockAddress *&NewBA =
1863     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1864   if (NewBA)
1865     return NewBA;
1866 
1867   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1868 
1869   // Remove the old entry, this can't cause the map to rehash (just a
1870   // tombstone will get added).
1871   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1872                                                           getBasicBlock()));
1873   NewBA = this;
1874   setOperand(0, NewF);
1875   setOperand(1, NewBB);
1876   getBasicBlock()->AdjustBlockAddressRefCount(1);
1877 
1878   // If we just want to keep the existing value, then return null.
1879   // Callers know that this means we shouldn't delete this value.
1880   return nullptr;
1881 }
1882 
1883 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) {
1884   DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV];
1885   if (!Equiv)
1886     Equiv = new DSOLocalEquivalent(GV);
1887 
1888   assert(Equiv->getGlobalValue() == GV &&
1889          "DSOLocalFunction does not match the expected global value");
1890   return Equiv;
1891 }
1892 
1893 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV)
1894     : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) {
1895   setOperand(0, GV);
1896 }
1897 
1898 /// Remove the constant from the constant table.
1899 void DSOLocalEquivalent::destroyConstantImpl() {
1900   const GlobalValue *GV = getGlobalValue();
1901   GV->getContext().pImpl->DSOLocalEquivalents.erase(GV);
1902 }
1903 
1904 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) {
1905   assert(From == getGlobalValue() && "Changing value does not match operand.");
1906   assert(isa<Constant>(To) && "Can only replace the operands with a constant");
1907 
1908   // The replacement is with another global value.
1909   if (const auto *ToObj = dyn_cast<GlobalValue>(To)) {
1910     DSOLocalEquivalent *&NewEquiv =
1911         getContext().pImpl->DSOLocalEquivalents[ToObj];
1912     if (NewEquiv)
1913       return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1914   }
1915 
1916   // If the argument is replaced with a null value, just replace this constant
1917   // with a null value.
1918   if (cast<Constant>(To)->isNullValue())
1919     return To;
1920 
1921   // The replacement could be a bitcast or an alias to another function. We can
1922   // replace it with a bitcast to the dso_local_equivalent of that function.
1923   auto *Func = cast<Function>(To->stripPointerCastsAndAliases());
1924   DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func];
1925   if (NewEquiv)
1926     return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1927 
1928   // Replace this with the new one.
1929   getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue());
1930   NewEquiv = this;
1931   setOperand(0, Func);
1932 
1933   if (Func->getType() != getType()) {
1934     // It is ok to mutate the type here because this constant should always
1935     // reflect the type of the function it's holding.
1936     mutateType(Func->getType());
1937   }
1938   return nullptr;
1939 }
1940 
1941 NoCFIValue *NoCFIValue::get(GlobalValue *GV) {
1942   NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV];
1943   if (!NC)
1944     NC = new NoCFIValue(GV);
1945 
1946   assert(NC->getGlobalValue() == GV &&
1947          "NoCFIValue does not match the expected global value");
1948   return NC;
1949 }
1950 
1951 NoCFIValue::NoCFIValue(GlobalValue *GV)
1952     : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) {
1953   setOperand(0, GV);
1954 }
1955 
1956 /// Remove the constant from the constant table.
1957 void NoCFIValue::destroyConstantImpl() {
1958   const GlobalValue *GV = getGlobalValue();
1959   GV->getContext().pImpl->NoCFIValues.erase(GV);
1960 }
1961 
1962 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) {
1963   assert(From == getGlobalValue() && "Changing value does not match operand.");
1964 
1965   GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts());
1966   assert(GV && "Can only replace the operands with a global value");
1967 
1968   NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV];
1969   if (NewNC)
1970     return llvm::ConstantExpr::getBitCast(NewNC, getType());
1971 
1972   getContext().pImpl->NoCFIValues.erase(getGlobalValue());
1973   NewNC = this;
1974   setOperand(0, GV);
1975 
1976   if (GV->getType() != getType())
1977     mutateType(GV->getType());
1978 
1979   return nullptr;
1980 }
1981 
1982 //---- ConstantExpr::get() implementations.
1983 //
1984 
1985 /// This is a utility function to handle folding of casts and lookup of the
1986 /// cast in the ExprConstants map. It is used by the various get* methods below.
1987 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1988                                bool OnlyIfReduced = false) {
1989   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1990   // Fold a few common cases
1991   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1992     return FC;
1993 
1994   if (OnlyIfReduced)
1995     return nullptr;
1996 
1997   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1998 
1999   // Look up the constant in the table first to ensure uniqueness.
2000   ConstantExprKeyType Key(opc, C);
2001 
2002   return pImpl->ExprConstants.getOrCreate(Ty, Key);
2003 }
2004 
2005 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
2006                                 bool OnlyIfReduced) {
2007   Instruction::CastOps opc = Instruction::CastOps(oc);
2008   assert(Instruction::isCast(opc) && "opcode out of range");
2009   assert(C && Ty && "Null arguments to getCast");
2010   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
2011 
2012   switch (opc) {
2013   default:
2014     llvm_unreachable("Invalid cast opcode");
2015   case Instruction::Trunc:
2016     return getTrunc(C, Ty, OnlyIfReduced);
2017   case Instruction::ZExt:
2018     return getZExt(C, Ty, OnlyIfReduced);
2019   case Instruction::SExt:
2020     return getSExt(C, Ty, OnlyIfReduced);
2021   case Instruction::FPTrunc:
2022     return getFPTrunc(C, Ty, OnlyIfReduced);
2023   case Instruction::FPExt:
2024     return getFPExtend(C, Ty, OnlyIfReduced);
2025   case Instruction::UIToFP:
2026     return getUIToFP(C, Ty, OnlyIfReduced);
2027   case Instruction::SIToFP:
2028     return getSIToFP(C, Ty, OnlyIfReduced);
2029   case Instruction::FPToUI:
2030     return getFPToUI(C, Ty, OnlyIfReduced);
2031   case Instruction::FPToSI:
2032     return getFPToSI(C, Ty, OnlyIfReduced);
2033   case Instruction::PtrToInt:
2034     return getPtrToInt(C, Ty, OnlyIfReduced);
2035   case Instruction::IntToPtr:
2036     return getIntToPtr(C, Ty, OnlyIfReduced);
2037   case Instruction::BitCast:
2038     return getBitCast(C, Ty, OnlyIfReduced);
2039   case Instruction::AddrSpaceCast:
2040     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
2041   }
2042 }
2043 
2044 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
2045   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2046     return getBitCast(C, Ty);
2047   return getZExt(C, Ty);
2048 }
2049 
2050 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
2051   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2052     return getBitCast(C, Ty);
2053   return getSExt(C, Ty);
2054 }
2055 
2056 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
2057   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2058     return getBitCast(C, Ty);
2059   return getTrunc(C, Ty);
2060 }
2061 
2062 Constant *ConstantExpr::getSExtOrTrunc(Constant *C, Type *Ty) {
2063   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2064          "Can only sign extend/truncate integers!");
2065   Type *CTy = C->getType();
2066   if (CTy->getScalarSizeInBits() < Ty->getScalarSizeInBits())
2067     return getSExt(C, Ty);
2068   if (CTy->getScalarSizeInBits() > Ty->getScalarSizeInBits())
2069     return getTrunc(C, Ty);
2070   return C;
2071 }
2072 
2073 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
2074   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2075   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2076           "Invalid cast");
2077 
2078   if (Ty->isIntOrIntVectorTy())
2079     return getPtrToInt(S, Ty);
2080 
2081   unsigned SrcAS = S->getType()->getPointerAddressSpace();
2082   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2083     return getAddrSpaceCast(S, Ty);
2084 
2085   return getBitCast(S, Ty);
2086 }
2087 
2088 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
2089                                                          Type *Ty) {
2090   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2091   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2092 
2093   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2094     return getAddrSpaceCast(S, Ty);
2095 
2096   return getBitCast(S, Ty);
2097 }
2098 
2099 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
2100   assert(C->getType()->isIntOrIntVectorTy() &&
2101          Ty->isIntOrIntVectorTy() && "Invalid cast");
2102   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2103   unsigned DstBits = Ty->getScalarSizeInBits();
2104   Instruction::CastOps opcode =
2105     (SrcBits == DstBits ? Instruction::BitCast :
2106      (SrcBits > DstBits ? Instruction::Trunc :
2107       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2108   return getCast(opcode, C, Ty);
2109 }
2110 
2111 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
2112   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2113          "Invalid cast");
2114   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2115   unsigned DstBits = Ty->getScalarSizeInBits();
2116   if (SrcBits == DstBits)
2117     return C; // Avoid a useless cast
2118   Instruction::CastOps opcode =
2119     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
2120   return getCast(opcode, C, Ty);
2121 }
2122 
2123 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2124 #ifndef NDEBUG
2125   bool fromVec = isa<VectorType>(C->getType());
2126   bool toVec = isa<VectorType>(Ty);
2127 #endif
2128   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2129   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
2130   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
2131   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2132          "SrcTy must be larger than DestTy for Trunc!");
2133 
2134   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
2135 }
2136 
2137 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2138 #ifndef NDEBUG
2139   bool fromVec = isa<VectorType>(C->getType());
2140   bool toVec = isa<VectorType>(Ty);
2141 #endif
2142   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2143   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
2144   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
2145   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2146          "SrcTy must be smaller than DestTy for SExt!");
2147 
2148   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
2149 }
2150 
2151 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2152 #ifndef NDEBUG
2153   bool fromVec = isa<VectorType>(C->getType());
2154   bool toVec = isa<VectorType>(Ty);
2155 #endif
2156   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2157   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
2158   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
2159   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2160          "SrcTy must be smaller than DestTy for ZExt!");
2161 
2162   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
2163 }
2164 
2165 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2166 #ifndef NDEBUG
2167   bool fromVec = isa<VectorType>(C->getType());
2168   bool toVec = isa<VectorType>(Ty);
2169 #endif
2170   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2171   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2172          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2173          "This is an illegal floating point truncation!");
2174   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
2175 }
2176 
2177 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
2178 #ifndef NDEBUG
2179   bool fromVec = isa<VectorType>(C->getType());
2180   bool toVec = isa<VectorType>(Ty);
2181 #endif
2182   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2183   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2184          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2185          "This is an illegal floating point extension!");
2186   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
2187 }
2188 
2189 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2190 #ifndef NDEBUG
2191   bool fromVec = isa<VectorType>(C->getType());
2192   bool toVec = isa<VectorType>(Ty);
2193 #endif
2194   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2195   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2196          "This is an illegal uint to floating point cast!");
2197   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
2198 }
2199 
2200 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2201 #ifndef NDEBUG
2202   bool fromVec = isa<VectorType>(C->getType());
2203   bool toVec = isa<VectorType>(Ty);
2204 #endif
2205   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2206   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2207          "This is an illegal sint to floating point cast!");
2208   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
2209 }
2210 
2211 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2212 #ifndef NDEBUG
2213   bool fromVec = isa<VectorType>(C->getType());
2214   bool toVec = isa<VectorType>(Ty);
2215 #endif
2216   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2217   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2218          "This is an illegal floating point to uint cast!");
2219   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
2220 }
2221 
2222 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2223 #ifndef NDEBUG
2224   bool fromVec = isa<VectorType>(C->getType());
2225   bool toVec = isa<VectorType>(Ty);
2226 #endif
2227   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2228   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2229          "This is an illegal floating point to sint cast!");
2230   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
2231 }
2232 
2233 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2234                                     bool OnlyIfReduced) {
2235   assert(C->getType()->isPtrOrPtrVectorTy() &&
2236          "PtrToInt source must be pointer or pointer vector");
2237   assert(DstTy->isIntOrIntVectorTy() &&
2238          "PtrToInt destination must be integer or integer vector");
2239   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2240   if (isa<VectorType>(C->getType()))
2241     assert(cast<VectorType>(C->getType())->getElementCount() ==
2242                cast<VectorType>(DstTy)->getElementCount() &&
2243            "Invalid cast between a different number of vector elements");
2244   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2245 }
2246 
2247 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2248                                     bool OnlyIfReduced) {
2249   assert(C->getType()->isIntOrIntVectorTy() &&
2250          "IntToPtr source must be integer or integer vector");
2251   assert(DstTy->isPtrOrPtrVectorTy() &&
2252          "IntToPtr destination must be a pointer or pointer vector");
2253   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2254   if (isa<VectorType>(C->getType()))
2255     assert(cast<VectorType>(C->getType())->getElementCount() ==
2256                cast<VectorType>(DstTy)->getElementCount() &&
2257            "Invalid cast between a different number of vector elements");
2258   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2259 }
2260 
2261 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2262                                    bool OnlyIfReduced) {
2263   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2264          "Invalid constantexpr bitcast!");
2265 
2266   // It is common to ask for a bitcast of a value to its own type, handle this
2267   // speedily.
2268   if (C->getType() == DstTy) return C;
2269 
2270   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2271 }
2272 
2273 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2274                                          bool OnlyIfReduced) {
2275   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2276          "Invalid constantexpr addrspacecast!");
2277 
2278   // Canonicalize addrspacecasts between different pointer types by first
2279   // bitcasting the pointer type and then converting the address space.
2280   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
2281   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
2282   if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) {
2283     Type *MidTy = PointerType::getWithSamePointeeType(
2284         DstScalarTy, SrcScalarTy->getAddressSpace());
2285     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
2286       // Handle vectors of pointers.
2287       MidTy = FixedVectorType::get(MidTy,
2288                                    cast<FixedVectorType>(VT)->getNumElements());
2289     }
2290     C = getBitCast(C, MidTy);
2291   }
2292   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2293 }
2294 
2295 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
2296                             Type *OnlyIfReducedTy) {
2297   // Check the operands for consistency first.
2298   assert(Instruction::isUnaryOp(Opcode) &&
2299          "Invalid opcode in unary constant expression");
2300 
2301 #ifndef NDEBUG
2302   switch (Opcode) {
2303   case Instruction::FNeg:
2304     assert(C->getType()->isFPOrFPVectorTy() &&
2305            "Tried to create a floating-point operation on a "
2306            "non-floating-point type!");
2307     break;
2308   default:
2309     break;
2310   }
2311 #endif
2312 
2313   if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
2314     return FC;
2315 
2316   if (OnlyIfReducedTy == C->getType())
2317     return nullptr;
2318 
2319   Constant *ArgVec[] = { C };
2320   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2321 
2322   LLVMContextImpl *pImpl = C->getContext().pImpl;
2323   return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
2324 }
2325 
2326 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2327                             unsigned Flags, Type *OnlyIfReducedTy) {
2328   // Check the operands for consistency first.
2329   assert(Instruction::isBinaryOp(Opcode) &&
2330          "Invalid opcode in binary constant expression");
2331   assert(C1->getType() == C2->getType() &&
2332          "Operand types in binary constant expression should match");
2333 
2334 #ifndef NDEBUG
2335   switch (Opcode) {
2336   case Instruction::Add:
2337   case Instruction::Sub:
2338   case Instruction::Mul:
2339   case Instruction::UDiv:
2340   case Instruction::SDiv:
2341   case Instruction::URem:
2342   case Instruction::SRem:
2343     assert(C1->getType()->isIntOrIntVectorTy() &&
2344            "Tried to create an integer operation on a non-integer type!");
2345     break;
2346   case Instruction::FAdd:
2347   case Instruction::FSub:
2348   case Instruction::FMul:
2349   case Instruction::FDiv:
2350   case Instruction::FRem:
2351     assert(C1->getType()->isFPOrFPVectorTy() &&
2352            "Tried to create a floating-point operation on a "
2353            "non-floating-point type!");
2354     break;
2355   case Instruction::And:
2356   case Instruction::Or:
2357   case Instruction::Xor:
2358     assert(C1->getType()->isIntOrIntVectorTy() &&
2359            "Tried to create a logical operation on a non-integral type!");
2360     break;
2361   case Instruction::Shl:
2362   case Instruction::LShr:
2363   case Instruction::AShr:
2364     assert(C1->getType()->isIntOrIntVectorTy() &&
2365            "Tried to create a shift operation on a non-integer type!");
2366     break;
2367   default:
2368     break;
2369   }
2370 #endif
2371 
2372   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2373     return FC;
2374 
2375   if (OnlyIfReducedTy == C1->getType())
2376     return nullptr;
2377 
2378   Constant *ArgVec[] = { C1, C2 };
2379   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2380 
2381   LLVMContextImpl *pImpl = C1->getContext().pImpl;
2382   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2383 }
2384 
2385 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2386   // sizeof is implemented as: (i64) gep (Ty*)null, 1
2387   // Note that a non-inbounds gep is used, as null isn't within any object.
2388   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2389   Constant *GEP = getGetElementPtr(
2390       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2391   return getPtrToInt(GEP,
2392                      Type::getInt64Ty(Ty->getContext()));
2393 }
2394 
2395 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2396   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2397   // Note that a non-inbounds gep is used, as null isn't within any object.
2398   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2399   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2400   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2401   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2402   Constant *Indices[2] = { Zero, One };
2403   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2404   return getPtrToInt(GEP,
2405                      Type::getInt64Ty(Ty->getContext()));
2406 }
2407 
2408 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2409   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2410                                            FieldNo));
2411 }
2412 
2413 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2414   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2415   // Note that a non-inbounds gep is used, as null isn't within any object.
2416   Constant *GEPIdx[] = {
2417     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2418     FieldNo
2419   };
2420   Constant *GEP = getGetElementPtr(
2421       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2422   return getPtrToInt(GEP,
2423                      Type::getInt64Ty(Ty->getContext()));
2424 }
2425 
2426 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2427                                    Constant *C2, bool OnlyIfReduced) {
2428   assert(C1->getType() == C2->getType() && "Op types should be identical!");
2429 
2430   switch (Predicate) {
2431   default: llvm_unreachable("Invalid CmpInst predicate");
2432   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2433   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2434   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2435   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2436   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2437   case CmpInst::FCMP_TRUE:
2438     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2439 
2440   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2441   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2442   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2443   case CmpInst::ICMP_SLE:
2444     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2445   }
2446 }
2447 
2448 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2449                                   Type *OnlyIfReducedTy) {
2450   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2451 
2452   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2453     return SC;        // Fold common cases
2454 
2455   if (OnlyIfReducedTy == V1->getType())
2456     return nullptr;
2457 
2458   Constant *ArgVec[] = { C, V1, V2 };
2459   ConstantExprKeyType Key(Instruction::Select, ArgVec);
2460 
2461   LLVMContextImpl *pImpl = C->getContext().pImpl;
2462   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2463 }
2464 
2465 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2466                                          ArrayRef<Value *> Idxs, bool InBounds,
2467                                          Optional<unsigned> InRangeIndex,
2468                                          Type *OnlyIfReducedTy) {
2469   PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType());
2470   assert(Ty && "Must specify element type");
2471   assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty));
2472 
2473   if (Constant *FC =
2474           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2475     return FC;          // Fold a few common cases.
2476 
2477   // Get the result type of the getelementptr!
2478   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2479   assert(DestTy && "GEP indices invalid!");
2480   unsigned AS = OrigPtrTy->getAddressSpace();
2481   Type *ReqTy = OrigPtrTy->isOpaque()
2482       ? PointerType::get(OrigPtrTy->getContext(), AS)
2483       : DestTy->getPointerTo(AS);
2484 
2485   auto EltCount = ElementCount::getFixed(0);
2486   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2487     EltCount = VecTy->getElementCount();
2488   else
2489     for (auto Idx : Idxs)
2490       if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
2491         EltCount = VecTy->getElementCount();
2492 
2493   if (EltCount.isNonZero())
2494     ReqTy = VectorType::get(ReqTy, EltCount);
2495 
2496   if (OnlyIfReducedTy == ReqTy)
2497     return nullptr;
2498 
2499   // Look up the constant in the table first to ensure uniqueness
2500   std::vector<Constant*> ArgVec;
2501   ArgVec.reserve(1 + Idxs.size());
2502   ArgVec.push_back(C);
2503   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2504   for (; GTI != GTE; ++GTI) {
2505     auto *Idx = cast<Constant>(GTI.getOperand());
2506     assert(
2507         (!isa<VectorType>(Idx->getType()) ||
2508          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2509         "getelementptr index type missmatch");
2510 
2511     if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2512       Idx = Idx->getSplatValue();
2513     } else if (GTI.isSequential() && EltCount.isNonZero() &&
2514                !Idx->getType()->isVectorTy()) {
2515       Idx = ConstantVector::getSplat(EltCount, Idx);
2516     }
2517     ArgVec.push_back(Idx);
2518   }
2519 
2520   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2521   if (InRangeIndex && *InRangeIndex < 63)
2522     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2523   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2524                                 SubClassOptionalData, None, None, Ty);
2525 
2526   LLVMContextImpl *pImpl = C->getContext().pImpl;
2527   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2528 }
2529 
2530 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2531                                 Constant *RHS, bool OnlyIfReduced) {
2532   auto Predicate = static_cast<CmpInst::Predicate>(pred);
2533   assert(LHS->getType() == RHS->getType());
2534   assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate");
2535 
2536   if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS))
2537     return FC;          // Fold a few common cases...
2538 
2539   if (OnlyIfReduced)
2540     return nullptr;
2541 
2542   // Look up the constant in the table first to ensure uniqueness
2543   Constant *ArgVec[] = { LHS, RHS };
2544   // Get the key type with both the opcode and predicate
2545   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate);
2546 
2547   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2548   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2549     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2550 
2551   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2552   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2553 }
2554 
2555 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2556                                 Constant *RHS, bool OnlyIfReduced) {
2557   auto Predicate = static_cast<CmpInst::Predicate>(pred);
2558   assert(LHS->getType() == RHS->getType());
2559   assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate");
2560 
2561   if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS))
2562     return FC;          // Fold a few common cases...
2563 
2564   if (OnlyIfReduced)
2565     return nullptr;
2566 
2567   // Look up the constant in the table first to ensure uniqueness
2568   Constant *ArgVec[] = { LHS, RHS };
2569   // Get the key type with both the opcode and predicate
2570   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate);
2571 
2572   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2573   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2574     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2575 
2576   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2577   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2578 }
2579 
2580 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2581                                           Type *OnlyIfReducedTy) {
2582   assert(Val->getType()->isVectorTy() &&
2583          "Tried to create extractelement operation on non-vector type!");
2584   assert(Idx->getType()->isIntegerTy() &&
2585          "Extractelement index must be an integer type!");
2586 
2587   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2588     return FC;          // Fold a few common cases.
2589 
2590   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2591   if (OnlyIfReducedTy == ReqTy)
2592     return nullptr;
2593 
2594   // Look up the constant in the table first to ensure uniqueness
2595   Constant *ArgVec[] = { Val, Idx };
2596   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2597 
2598   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2599   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2600 }
2601 
2602 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2603                                          Constant *Idx, Type *OnlyIfReducedTy) {
2604   assert(Val->getType()->isVectorTy() &&
2605          "Tried to create insertelement operation on non-vector type!");
2606   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2607          "Insertelement types must match!");
2608   assert(Idx->getType()->isIntegerTy() &&
2609          "Insertelement index must be i32 type!");
2610 
2611   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2612     return FC;          // Fold a few common cases.
2613 
2614   if (OnlyIfReducedTy == Val->getType())
2615     return nullptr;
2616 
2617   // Look up the constant in the table first to ensure uniqueness
2618   Constant *ArgVec[] = { Val, Elt, Idx };
2619   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2620 
2621   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2622   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2623 }
2624 
2625 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2626                                          ArrayRef<int> Mask,
2627                                          Type *OnlyIfReducedTy) {
2628   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2629          "Invalid shuffle vector constant expr operands!");
2630 
2631   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2632     return FC;          // Fold a few common cases.
2633 
2634   unsigned NElts = Mask.size();
2635   auto V1VTy = cast<VectorType>(V1->getType());
2636   Type *EltTy = V1VTy->getElementType();
2637   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2638   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2639 
2640   if (OnlyIfReducedTy == ShufTy)
2641     return nullptr;
2642 
2643   // Look up the constant in the table first to ensure uniqueness
2644   Constant *ArgVec[] = {V1, V2};
2645   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
2646 
2647   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2648   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2649 }
2650 
2651 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2652                                        ArrayRef<unsigned> Idxs,
2653                                        Type *OnlyIfReducedTy) {
2654   assert(Agg->getType()->isFirstClassType() &&
2655          "Non-first-class type for constant insertvalue expression");
2656 
2657   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2658                                           Idxs) == Val->getType() &&
2659          "insertvalue indices invalid!");
2660   Type *ReqTy = Val->getType();
2661 
2662   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2663     return FC;
2664 
2665   if (OnlyIfReducedTy == ReqTy)
2666     return nullptr;
2667 
2668   Constant *ArgVec[] = { Agg, Val };
2669   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2670 
2671   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2672   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2673 }
2674 
2675 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2676                                         Type *OnlyIfReducedTy) {
2677   assert(Agg->getType()->isFirstClassType() &&
2678          "Tried to create extractelement operation on non-first-class type!");
2679 
2680   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2681   (void)ReqTy;
2682   assert(ReqTy && "extractvalue indices invalid!");
2683 
2684   assert(Agg->getType()->isFirstClassType() &&
2685          "Non-first-class type for constant extractvalue expression");
2686   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2687     return FC;
2688 
2689   if (OnlyIfReducedTy == ReqTy)
2690     return nullptr;
2691 
2692   Constant *ArgVec[] = { Agg };
2693   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2694 
2695   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2696   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2697 }
2698 
2699 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2700   assert(C->getType()->isIntOrIntVectorTy() &&
2701          "Cannot NEG a nonintegral value!");
2702   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2703                 C, HasNUW, HasNSW);
2704 }
2705 
2706 Constant *ConstantExpr::getFNeg(Constant *C) {
2707   assert(C->getType()->isFPOrFPVectorTy() &&
2708          "Cannot FNEG a non-floating-point value!");
2709   return get(Instruction::FNeg, C);
2710 }
2711 
2712 Constant *ConstantExpr::getNot(Constant *C) {
2713   assert(C->getType()->isIntOrIntVectorTy() &&
2714          "Cannot NOT a nonintegral value!");
2715   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2716 }
2717 
2718 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2719                                bool HasNUW, bool HasNSW) {
2720   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2721                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2722   return get(Instruction::Add, C1, C2, Flags);
2723 }
2724 
2725 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2726   return get(Instruction::FAdd, C1, C2);
2727 }
2728 
2729 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2730                                bool HasNUW, bool HasNSW) {
2731   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2732                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2733   return get(Instruction::Sub, C1, C2, Flags);
2734 }
2735 
2736 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2737   return get(Instruction::FSub, C1, C2);
2738 }
2739 
2740 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2741                                bool HasNUW, bool HasNSW) {
2742   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2743                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2744   return get(Instruction::Mul, C1, C2, Flags);
2745 }
2746 
2747 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2748   return get(Instruction::FMul, C1, C2);
2749 }
2750 
2751 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2752   return get(Instruction::UDiv, C1, C2,
2753              isExact ? PossiblyExactOperator::IsExact : 0);
2754 }
2755 
2756 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2757   return get(Instruction::SDiv, C1, C2,
2758              isExact ? PossiblyExactOperator::IsExact : 0);
2759 }
2760 
2761 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2762   return get(Instruction::FDiv, C1, C2);
2763 }
2764 
2765 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2766   return get(Instruction::URem, C1, C2);
2767 }
2768 
2769 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2770   return get(Instruction::SRem, C1, C2);
2771 }
2772 
2773 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2774   return get(Instruction::FRem, C1, C2);
2775 }
2776 
2777 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2778   return get(Instruction::And, C1, C2);
2779 }
2780 
2781 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2782   return get(Instruction::Or, C1, C2);
2783 }
2784 
2785 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2786   return get(Instruction::Xor, C1, C2);
2787 }
2788 
2789 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) {
2790   Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2);
2791   return getSelect(Cmp, C1, C2);
2792 }
2793 
2794 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2795                                bool HasNUW, bool HasNSW) {
2796   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2797                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2798   return get(Instruction::Shl, C1, C2, Flags);
2799 }
2800 
2801 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2802   return get(Instruction::LShr, C1, C2,
2803              isExact ? PossiblyExactOperator::IsExact : 0);
2804 }
2805 
2806 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2807   return get(Instruction::AShr, C1, C2,
2808              isExact ? PossiblyExactOperator::IsExact : 0);
2809 }
2810 
2811 Constant *ConstantExpr::getExactLogBase2(Constant *C) {
2812   Type *Ty = C->getType();
2813   const APInt *IVal;
2814   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
2815     return ConstantInt::get(Ty, IVal->logBase2());
2816 
2817   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
2818   auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2819   if (!VecTy)
2820     return nullptr;
2821 
2822   SmallVector<Constant *, 4> Elts;
2823   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
2824     Constant *Elt = C->getAggregateElement(I);
2825     if (!Elt)
2826       return nullptr;
2827     // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
2828     if (isa<UndefValue>(Elt)) {
2829       Elts.push_back(Constant::getNullValue(Ty->getScalarType()));
2830       continue;
2831     }
2832     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
2833       return nullptr;
2834     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
2835   }
2836 
2837   return ConstantVector::get(Elts);
2838 }
2839 
2840 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2841                                          bool AllowRHSConstant, bool NSZ) {
2842   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2843 
2844   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2845   if (Instruction::isCommutative(Opcode)) {
2846     switch (Opcode) {
2847       case Instruction::Add: // X + 0 = X
2848       case Instruction::Or:  // X | 0 = X
2849       case Instruction::Xor: // X ^ 0 = X
2850         return Constant::getNullValue(Ty);
2851       case Instruction::Mul: // X * 1 = X
2852         return ConstantInt::get(Ty, 1);
2853       case Instruction::And: // X & -1 = X
2854         return Constant::getAllOnesValue(Ty);
2855       case Instruction::FAdd: // X + -0.0 = X
2856         return ConstantFP::getZero(Ty, !NSZ);
2857       case Instruction::FMul: // X * 1.0 = X
2858         return ConstantFP::get(Ty, 1.0);
2859       default:
2860         llvm_unreachable("Every commutative binop has an identity constant");
2861     }
2862   }
2863 
2864   // Non-commutative opcodes: AllowRHSConstant must be set.
2865   if (!AllowRHSConstant)
2866     return nullptr;
2867 
2868   switch (Opcode) {
2869     case Instruction::Sub:  // X - 0 = X
2870     case Instruction::Shl:  // X << 0 = X
2871     case Instruction::LShr: // X >>u 0 = X
2872     case Instruction::AShr: // X >> 0 = X
2873     case Instruction::FSub: // X - 0.0 = X
2874       return Constant::getNullValue(Ty);
2875     case Instruction::SDiv: // X / 1 = X
2876     case Instruction::UDiv: // X /u 1 = X
2877       return ConstantInt::get(Ty, 1);
2878     case Instruction::FDiv: // X / 1.0 = X
2879       return ConstantFP::get(Ty, 1.0);
2880     default:
2881       return nullptr;
2882   }
2883 }
2884 
2885 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2886   switch (Opcode) {
2887   default:
2888     // Doesn't have an absorber.
2889     return nullptr;
2890 
2891   case Instruction::Or:
2892     return Constant::getAllOnesValue(Ty);
2893 
2894   case Instruction::And:
2895   case Instruction::Mul:
2896     return Constant::getNullValue(Ty);
2897   }
2898 }
2899 
2900 /// Remove the constant from the constant table.
2901 void ConstantExpr::destroyConstantImpl() {
2902   getType()->getContext().pImpl->ExprConstants.remove(this);
2903 }
2904 
2905 const char *ConstantExpr::getOpcodeName() const {
2906   return Instruction::getOpcodeName(getOpcode());
2907 }
2908 
2909 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2910     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2911     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2912                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2913                        (IdxList.size() + 1),
2914                    IdxList.size() + 1),
2915       SrcElementTy(SrcElementTy),
2916       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2917   Op<0>() = C;
2918   Use *OperandList = getOperandList();
2919   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2920     OperandList[i+1] = IdxList[i];
2921 }
2922 
2923 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2924   return SrcElementTy;
2925 }
2926 
2927 Type *GetElementPtrConstantExpr::getResultElementType() const {
2928   return ResElementTy;
2929 }
2930 
2931 //===----------------------------------------------------------------------===//
2932 //                       ConstantData* implementations
2933 
2934 Type *ConstantDataSequential::getElementType() const {
2935   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2936     return ATy->getElementType();
2937   return cast<VectorType>(getType())->getElementType();
2938 }
2939 
2940 StringRef ConstantDataSequential::getRawDataValues() const {
2941   return StringRef(DataElements, getNumElements()*getElementByteSize());
2942 }
2943 
2944 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2945   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2946     return true;
2947   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2948     switch (IT->getBitWidth()) {
2949     case 8:
2950     case 16:
2951     case 32:
2952     case 64:
2953       return true;
2954     default: break;
2955     }
2956   }
2957   return false;
2958 }
2959 
2960 unsigned ConstantDataSequential::getNumElements() const {
2961   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2962     return AT->getNumElements();
2963   return cast<FixedVectorType>(getType())->getNumElements();
2964 }
2965 
2966 
2967 uint64_t ConstantDataSequential::getElementByteSize() const {
2968   return getElementType()->getPrimitiveSizeInBits()/8;
2969 }
2970 
2971 /// Return the start of the specified element.
2972 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2973   assert(Elt < getNumElements() && "Invalid Elt");
2974   return DataElements+Elt*getElementByteSize();
2975 }
2976 
2977 
2978 /// Return true if the array is empty or all zeros.
2979 static bool isAllZeros(StringRef Arr) {
2980   for (char I : Arr)
2981     if (I != 0)
2982       return false;
2983   return true;
2984 }
2985 
2986 /// This is the underlying implementation of all of the
2987 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2988 /// the correct element type.  We take the bytes in as a StringRef because
2989 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2990 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2991 #ifndef NDEBUG
2992   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2993     assert(isElementTypeCompatible(ATy->getElementType()));
2994   else
2995     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2996 #endif
2997   // If the elements are all zero or there are no elements, return a CAZ, which
2998   // is more dense and canonical.
2999   if (isAllZeros(Elements))
3000     return ConstantAggregateZero::get(Ty);
3001 
3002   // Do a lookup to see if we have already formed one of these.
3003   auto &Slot =
3004       *Ty->getContext()
3005            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
3006            .first;
3007 
3008   // The bucket can point to a linked list of different CDS's that have the same
3009   // body but different types.  For example, 0,0,0,1 could be a 4 element array
3010   // of i8, or a 1-element array of i32.  They'll both end up in the same
3011   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
3012   std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
3013   for (; *Entry; Entry = &(*Entry)->Next)
3014     if ((*Entry)->getType() == Ty)
3015       return Entry->get();
3016 
3017   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
3018   // and return it.
3019   if (isa<ArrayType>(Ty)) {
3020     // Use reset because std::make_unique can't access the constructor.
3021     Entry->reset(new ConstantDataArray(Ty, Slot.first().data()));
3022     return Entry->get();
3023   }
3024 
3025   assert(isa<VectorType>(Ty));
3026   // Use reset because std::make_unique can't access the constructor.
3027   Entry->reset(new ConstantDataVector(Ty, Slot.first().data()));
3028   return Entry->get();
3029 }
3030 
3031 void ConstantDataSequential::destroyConstantImpl() {
3032   // Remove the constant from the StringMap.
3033   StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants =
3034       getType()->getContext().pImpl->CDSConstants;
3035 
3036   auto Slot = CDSConstants.find(getRawDataValues());
3037 
3038   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
3039 
3040   std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
3041 
3042   // Remove the entry from the hash table.
3043   if (!(*Entry)->Next) {
3044     // If there is only one value in the bucket (common case) it must be this
3045     // entry, and removing the entry should remove the bucket completely.
3046     assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential");
3047     getContext().pImpl->CDSConstants.erase(Slot);
3048     return;
3049   }
3050 
3051   // Otherwise, there are multiple entries linked off the bucket, unlink the
3052   // node we care about but keep the bucket around.
3053   while (true) {
3054     std::unique_ptr<ConstantDataSequential> &Node = *Entry;
3055     assert(Node && "Didn't find entry in its uniquing hash table!");
3056     // If we found our entry, unlink it from the list and we're done.
3057     if (Node.get() == this) {
3058       Node = std::move(Node->Next);
3059       return;
3060     }
3061 
3062     Entry = &Node->Next;
3063   }
3064 }
3065 
3066 /// getFP() constructors - Return a constant of array type with a float
3067 /// element type taken from argument `ElementType', and count taken from
3068 /// argument `Elts'.  The amount of bits of the contained type must match the
3069 /// number of bits of the type contained in the passed in ArrayRef.
3070 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3071 /// that this can return a ConstantAggregateZero object.
3072 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
3073   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3074          "Element type is not a 16-bit float type");
3075   Type *Ty = ArrayType::get(ElementType, Elts.size());
3076   const char *Data = reinterpret_cast<const char *>(Elts.data());
3077   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3078 }
3079 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
3080   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3081   Type *Ty = ArrayType::get(ElementType, Elts.size());
3082   const char *Data = reinterpret_cast<const char *>(Elts.data());
3083   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3084 }
3085 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
3086   assert(ElementType->isDoubleTy() &&
3087          "Element type is not a 64-bit float type");
3088   Type *Ty = ArrayType::get(ElementType, Elts.size());
3089   const char *Data = reinterpret_cast<const char *>(Elts.data());
3090   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3091 }
3092 
3093 Constant *ConstantDataArray::getString(LLVMContext &Context,
3094                                        StringRef Str, bool AddNull) {
3095   if (!AddNull) {
3096     const uint8_t *Data = Str.bytes_begin();
3097     return get(Context, makeArrayRef(Data, Str.size()));
3098   }
3099 
3100   SmallVector<uint8_t, 64> ElementVals;
3101   ElementVals.append(Str.begin(), Str.end());
3102   ElementVals.push_back(0);
3103   return get(Context, ElementVals);
3104 }
3105 
3106 /// get() constructors - Return a constant with vector type with an element
3107 /// count and element type matching the ArrayRef passed in.  Note that this
3108 /// can return a ConstantAggregateZero object.
3109 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
3110   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
3111   const char *Data = reinterpret_cast<const char *>(Elts.data());
3112   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
3113 }
3114 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
3115   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
3116   const char *Data = reinterpret_cast<const char *>(Elts.data());
3117   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3118 }
3119 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
3120   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
3121   const char *Data = reinterpret_cast<const char *>(Elts.data());
3122   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3123 }
3124 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
3125   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
3126   const char *Data = reinterpret_cast<const char *>(Elts.data());
3127   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3128 }
3129 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
3130   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
3131   const char *Data = reinterpret_cast<const char *>(Elts.data());
3132   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3133 }
3134 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
3135   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
3136   const char *Data = reinterpret_cast<const char *>(Elts.data());
3137   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3138 }
3139 
3140 /// getFP() constructors - Return a constant of vector type with a float
3141 /// element type taken from argument `ElementType', and count taken from
3142 /// argument `Elts'.  The amount of bits of the contained type must match the
3143 /// number of bits of the type contained in the passed in ArrayRef.
3144 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3145 /// that this can return a ConstantAggregateZero object.
3146 Constant *ConstantDataVector::getFP(Type *ElementType,
3147                                     ArrayRef<uint16_t> Elts) {
3148   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3149          "Element type is not a 16-bit float type");
3150   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3151   const char *Data = reinterpret_cast<const char *>(Elts.data());
3152   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3153 }
3154 Constant *ConstantDataVector::getFP(Type *ElementType,
3155                                     ArrayRef<uint32_t> Elts) {
3156   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3157   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3158   const char *Data = reinterpret_cast<const char *>(Elts.data());
3159   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3160 }
3161 Constant *ConstantDataVector::getFP(Type *ElementType,
3162                                     ArrayRef<uint64_t> Elts) {
3163   assert(ElementType->isDoubleTy() &&
3164          "Element type is not a 64-bit float type");
3165   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3166   const char *Data = reinterpret_cast<const char *>(Elts.data());
3167   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3168 }
3169 
3170 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
3171   assert(isElementTypeCompatible(V->getType()) &&
3172          "Element type not compatible with ConstantData");
3173   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3174     if (CI->getType()->isIntegerTy(8)) {
3175       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
3176       return get(V->getContext(), Elts);
3177     }
3178     if (CI->getType()->isIntegerTy(16)) {
3179       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
3180       return get(V->getContext(), Elts);
3181     }
3182     if (CI->getType()->isIntegerTy(32)) {
3183       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
3184       return get(V->getContext(), Elts);
3185     }
3186     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
3187     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
3188     return get(V->getContext(), Elts);
3189   }
3190 
3191   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3192     if (CFP->getType()->isHalfTy()) {
3193       SmallVector<uint16_t, 16> Elts(
3194           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3195       return getFP(V->getType(), Elts);
3196     }
3197     if (CFP->getType()->isBFloatTy()) {
3198       SmallVector<uint16_t, 16> Elts(
3199           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3200       return getFP(V->getType(), Elts);
3201     }
3202     if (CFP->getType()->isFloatTy()) {
3203       SmallVector<uint32_t, 16> Elts(
3204           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3205       return getFP(V->getType(), Elts);
3206     }
3207     if (CFP->getType()->isDoubleTy()) {
3208       SmallVector<uint64_t, 16> Elts(
3209           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3210       return getFP(V->getType(), Elts);
3211     }
3212   }
3213   return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V);
3214 }
3215 
3216 
3217 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
3218   assert(isa<IntegerType>(getElementType()) &&
3219          "Accessor can only be used when element is an integer");
3220   const char *EltPtr = getElementPointer(Elt);
3221 
3222   // The data is stored in host byte order, make sure to cast back to the right
3223   // type to load with the right endianness.
3224   switch (getElementType()->getIntegerBitWidth()) {
3225   default: llvm_unreachable("Invalid bitwidth for CDS");
3226   case 8:
3227     return *reinterpret_cast<const uint8_t *>(EltPtr);
3228   case 16:
3229     return *reinterpret_cast<const uint16_t *>(EltPtr);
3230   case 32:
3231     return *reinterpret_cast<const uint32_t *>(EltPtr);
3232   case 64:
3233     return *reinterpret_cast<const uint64_t *>(EltPtr);
3234   }
3235 }
3236 
3237 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
3238   assert(isa<IntegerType>(getElementType()) &&
3239          "Accessor can only be used when element is an integer");
3240   const char *EltPtr = getElementPointer(Elt);
3241 
3242   // The data is stored in host byte order, make sure to cast back to the right
3243   // type to load with the right endianness.
3244   switch (getElementType()->getIntegerBitWidth()) {
3245   default: llvm_unreachable("Invalid bitwidth for CDS");
3246   case 8: {
3247     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
3248     return APInt(8, EltVal);
3249   }
3250   case 16: {
3251     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3252     return APInt(16, EltVal);
3253   }
3254   case 32: {
3255     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3256     return APInt(32, EltVal);
3257   }
3258   case 64: {
3259     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3260     return APInt(64, EltVal);
3261   }
3262   }
3263 }
3264 
3265 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
3266   const char *EltPtr = getElementPointer(Elt);
3267 
3268   switch (getElementType()->getTypeID()) {
3269   default:
3270     llvm_unreachable("Accessor can only be used when element is float/double!");
3271   case Type::HalfTyID: {
3272     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3273     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3274   }
3275   case Type::BFloatTyID: {
3276     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3277     return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3278   }
3279   case Type::FloatTyID: {
3280     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3281     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3282   }
3283   case Type::DoubleTyID: {
3284     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3285     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3286   }
3287   }
3288 }
3289 
3290 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3291   assert(getElementType()->isFloatTy() &&
3292          "Accessor can only be used when element is a 'float'");
3293   return *reinterpret_cast<const float *>(getElementPointer(Elt));
3294 }
3295 
3296 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3297   assert(getElementType()->isDoubleTy() &&
3298          "Accessor can only be used when element is a 'float'");
3299   return *reinterpret_cast<const double *>(getElementPointer(Elt));
3300 }
3301 
3302 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3303   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3304       getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3305     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3306 
3307   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3308 }
3309 
3310 bool ConstantDataSequential::isString(unsigned CharSize) const {
3311   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3312 }
3313 
3314 bool ConstantDataSequential::isCString() const {
3315   if (!isString())
3316     return false;
3317 
3318   StringRef Str = getAsString();
3319 
3320   // The last value must be nul.
3321   if (Str.back() != 0) return false;
3322 
3323   // Other elements must be non-nul.
3324   return !Str.drop_back().contains(0);
3325 }
3326 
3327 bool ConstantDataVector::isSplatData() const {
3328   const char *Base = getRawDataValues().data();
3329 
3330   // Compare elements 1+ to the 0'th element.
3331   unsigned EltSize = getElementByteSize();
3332   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3333     if (memcmp(Base, Base+i*EltSize, EltSize))
3334       return false;
3335 
3336   return true;
3337 }
3338 
3339 bool ConstantDataVector::isSplat() const {
3340   if (!IsSplatSet) {
3341     IsSplatSet = true;
3342     IsSplat = isSplatData();
3343   }
3344   return IsSplat;
3345 }
3346 
3347 Constant *ConstantDataVector::getSplatValue() const {
3348   // If they're all the same, return the 0th one as a representative.
3349   return isSplat() ? getElementAsConstant(0) : nullptr;
3350 }
3351 
3352 //===----------------------------------------------------------------------===//
3353 //                handleOperandChange implementations
3354 
3355 /// Update this constant array to change uses of
3356 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
3357 /// etc.
3358 ///
3359 /// Note that we intentionally replace all uses of From with To here.  Consider
3360 /// a large array that uses 'From' 1000 times.  By handling this case all here,
3361 /// ConstantArray::handleOperandChange is only invoked once, and that
3362 /// single invocation handles all 1000 uses.  Handling them one at a time would
3363 /// work, but would be really slow because it would have to unique each updated
3364 /// array instance.
3365 ///
3366 void Constant::handleOperandChange(Value *From, Value *To) {
3367   Value *Replacement = nullptr;
3368   switch (getValueID()) {
3369   default:
3370     llvm_unreachable("Not a constant!");
3371 #define HANDLE_CONSTANT(Name)                                                  \
3372   case Value::Name##Val:                                                       \
3373     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
3374     break;
3375 #include "llvm/IR/Value.def"
3376   }
3377 
3378   // If handleOperandChangeImpl returned nullptr, then it handled
3379   // replacing itself and we don't want to delete or replace anything else here.
3380   if (!Replacement)
3381     return;
3382 
3383   // I do need to replace this with an existing value.
3384   assert(Replacement != this && "I didn't contain From!");
3385 
3386   // Everyone using this now uses the replacement.
3387   replaceAllUsesWith(Replacement);
3388 
3389   // Delete the old constant!
3390   destroyConstant();
3391 }
3392 
3393 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3394   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3395   Constant *ToC = cast<Constant>(To);
3396 
3397   SmallVector<Constant*, 8> Values;
3398   Values.reserve(getNumOperands());  // Build replacement array.
3399 
3400   // Fill values with the modified operands of the constant array.  Also,
3401   // compute whether this turns into an all-zeros array.
3402   unsigned NumUpdated = 0;
3403 
3404   // Keep track of whether all the values in the array are "ToC".
3405   bool AllSame = true;
3406   Use *OperandList = getOperandList();
3407   unsigned OperandNo = 0;
3408   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3409     Constant *Val = cast<Constant>(O->get());
3410     if (Val == From) {
3411       OperandNo = (O - OperandList);
3412       Val = ToC;
3413       ++NumUpdated;
3414     }
3415     Values.push_back(Val);
3416     AllSame &= Val == ToC;
3417   }
3418 
3419   if (AllSame && ToC->isNullValue())
3420     return ConstantAggregateZero::get(getType());
3421 
3422   if (AllSame && isa<UndefValue>(ToC))
3423     return UndefValue::get(getType());
3424 
3425   // Check for any other type of constant-folding.
3426   if (Constant *C = getImpl(getType(), Values))
3427     return C;
3428 
3429   // Update to the new value.
3430   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3431       Values, this, From, ToC, NumUpdated, OperandNo);
3432 }
3433 
3434 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3435   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3436   Constant *ToC = cast<Constant>(To);
3437 
3438   Use *OperandList = getOperandList();
3439 
3440   SmallVector<Constant*, 8> Values;
3441   Values.reserve(getNumOperands());  // Build replacement struct.
3442 
3443   // Fill values with the modified operands of the constant struct.  Also,
3444   // compute whether this turns into an all-zeros struct.
3445   unsigned NumUpdated = 0;
3446   bool AllSame = true;
3447   unsigned OperandNo = 0;
3448   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3449     Constant *Val = cast<Constant>(O->get());
3450     if (Val == From) {
3451       OperandNo = (O - OperandList);
3452       Val = ToC;
3453       ++NumUpdated;
3454     }
3455     Values.push_back(Val);
3456     AllSame &= Val == ToC;
3457   }
3458 
3459   if (AllSame && ToC->isNullValue())
3460     return ConstantAggregateZero::get(getType());
3461 
3462   if (AllSame && isa<UndefValue>(ToC))
3463     return UndefValue::get(getType());
3464 
3465   // Update to the new value.
3466   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3467       Values, this, From, ToC, NumUpdated, OperandNo);
3468 }
3469 
3470 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3471   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3472   Constant *ToC = cast<Constant>(To);
3473 
3474   SmallVector<Constant*, 8> Values;
3475   Values.reserve(getNumOperands());  // Build replacement array...
3476   unsigned NumUpdated = 0;
3477   unsigned OperandNo = 0;
3478   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3479     Constant *Val = getOperand(i);
3480     if (Val == From) {
3481       OperandNo = i;
3482       ++NumUpdated;
3483       Val = ToC;
3484     }
3485     Values.push_back(Val);
3486   }
3487 
3488   if (Constant *C = getImpl(Values))
3489     return C;
3490 
3491   // Update to the new value.
3492   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3493       Values, this, From, ToC, NumUpdated, OperandNo);
3494 }
3495 
3496 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3497   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3498   Constant *To = cast<Constant>(ToV);
3499 
3500   SmallVector<Constant*, 8> NewOps;
3501   unsigned NumUpdated = 0;
3502   unsigned OperandNo = 0;
3503   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3504     Constant *Op = getOperand(i);
3505     if (Op == From) {
3506       OperandNo = i;
3507       ++NumUpdated;
3508       Op = To;
3509     }
3510     NewOps.push_back(Op);
3511   }
3512   assert(NumUpdated && "I didn't contain From!");
3513 
3514   if (Constant *C = getWithOperands(NewOps, getType(), true))
3515     return C;
3516 
3517   // Update to the new value.
3518   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3519       NewOps, this, From, To, NumUpdated, OperandNo);
3520 }
3521 
3522 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const {
3523   SmallVector<Value *, 4> ValueOperands(operands());
3524   ArrayRef<Value*> Ops(ValueOperands);
3525 
3526   switch (getOpcode()) {
3527   case Instruction::Trunc:
3528   case Instruction::ZExt:
3529   case Instruction::SExt:
3530   case Instruction::FPTrunc:
3531   case Instruction::FPExt:
3532   case Instruction::UIToFP:
3533   case Instruction::SIToFP:
3534   case Instruction::FPToUI:
3535   case Instruction::FPToSI:
3536   case Instruction::PtrToInt:
3537   case Instruction::IntToPtr:
3538   case Instruction::BitCast:
3539   case Instruction::AddrSpaceCast:
3540     return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0],
3541                             getType(), "", InsertBefore);
3542   case Instruction::Select:
3543     return SelectInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore);
3544   case Instruction::InsertElement:
3545     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore);
3546   case Instruction::ExtractElement:
3547     return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore);
3548   case Instruction::InsertValue:
3549     return InsertValueInst::Create(Ops[0], Ops[1], getIndices(), "",
3550                                    InsertBefore);
3551   case Instruction::ExtractValue:
3552     return ExtractValueInst::Create(Ops[0], getIndices(), "", InsertBefore);
3553   case Instruction::ShuffleVector:
3554     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "",
3555                                  InsertBefore);
3556 
3557   case Instruction::GetElementPtr: {
3558     const auto *GO = cast<GEPOperator>(this);
3559     if (GO->isInBounds())
3560       return GetElementPtrInst::CreateInBounds(
3561           GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore);
3562     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3563                                      Ops.slice(1), "", InsertBefore);
3564   }
3565   case Instruction::ICmp:
3566   case Instruction::FCmp:
3567     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3568                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1],
3569                            "", InsertBefore);
3570   case Instruction::FNeg:
3571     return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0], "",
3572                                  InsertBefore);
3573   default:
3574     assert(getNumOperands() == 2 && "Must be binary operator?");
3575     BinaryOperator *BO = BinaryOperator::Create(
3576         (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore);
3577     if (isa<OverflowingBinaryOperator>(BO)) {
3578       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3579                                OverflowingBinaryOperator::NoUnsignedWrap);
3580       BO->setHasNoSignedWrap(SubclassOptionalData &
3581                              OverflowingBinaryOperator::NoSignedWrap);
3582     }
3583     if (isa<PossiblyExactOperator>(BO))
3584       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3585     return BO;
3586   }
3587 }
3588