1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "ConstantFold.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 using namespace PatternMatch; 35 36 //===----------------------------------------------------------------------===// 37 // Constant Class 38 //===----------------------------------------------------------------------===// 39 40 bool Constant::isNegativeZeroValue() const { 41 // Floating point values have an explicit -0.0 value. 42 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 43 return CFP->isZero() && CFP->isNegative(); 44 45 // Equivalent for a vector of -0.0's. 46 if (getType()->isVectorTy()) 47 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 48 return SplatCFP->isNegativeZeroValue(); 49 50 // We've already handled true FP case; any other FP vectors can't represent -0.0. 51 if (getType()->isFPOrFPVectorTy()) 52 return false; 53 54 // Otherwise, just use +0.0. 55 return isNullValue(); 56 } 57 58 // Return true iff this constant is positive zero (floating point), negative 59 // zero (floating point), or a null value. 60 bool Constant::isZeroValue() const { 61 // Floating point values have an explicit -0.0 value. 62 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 63 return CFP->isZero(); 64 65 // Check for constant splat vectors of 1 values. 66 if (getType()->isVectorTy()) 67 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 68 return SplatCFP->isZero(); 69 70 // Otherwise, just use +0.0. 71 return isNullValue(); 72 } 73 74 bool Constant::isNullValue() const { 75 // 0 is null. 76 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 77 return CI->isZero(); 78 79 // +0.0 is null. 80 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 81 // ppc_fp128 determine isZero using high order double only 82 // Should check the bitwise value to make sure all bits are zero. 83 return CFP->isExactlyValue(+0.0); 84 85 // constant zero is zero for aggregates, cpnull is null for pointers, none for 86 // tokens. 87 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 88 isa<ConstantTokenNone>(this); 89 } 90 91 bool Constant::isAllOnesValue() const { 92 // Check for -1 integers 93 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 94 return CI->isMinusOne(); 95 96 // Check for FP which are bitcasted from -1 integers 97 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 98 return CFP->getValueAPF().bitcastToAPInt().isAllOnes(); 99 100 // Check for constant splat vectors of 1 values. 101 if (getType()->isVectorTy()) 102 if (const auto *SplatVal = getSplatValue()) 103 return SplatVal->isAllOnesValue(); 104 105 return false; 106 } 107 108 bool Constant::isOneValue() const { 109 // Check for 1 integers 110 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 111 return CI->isOne(); 112 113 // Check for FP which are bitcasted from 1 integers 114 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 115 return CFP->getValueAPF().bitcastToAPInt().isOne(); 116 117 // Check for constant splat vectors of 1 values. 118 if (getType()->isVectorTy()) 119 if (const auto *SplatVal = getSplatValue()) 120 return SplatVal->isOneValue(); 121 122 return false; 123 } 124 125 bool Constant::isNotOneValue() const { 126 // Check for 1 integers 127 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 128 return !CI->isOneValue(); 129 130 // Check for FP which are bitcasted from 1 integers 131 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 132 return !CFP->getValueAPF().bitcastToAPInt().isOne(); 133 134 // Check that vectors don't contain 1 135 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 136 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 137 Constant *Elt = getAggregateElement(I); 138 if (!Elt || !Elt->isNotOneValue()) 139 return false; 140 } 141 return true; 142 } 143 144 // Check for splats that don't contain 1 145 if (getType()->isVectorTy()) 146 if (const auto *SplatVal = getSplatValue()) 147 return SplatVal->isNotOneValue(); 148 149 // It *may* contain 1, we can't tell. 150 return false; 151 } 152 153 bool Constant::isMinSignedValue() const { 154 // Check for INT_MIN integers 155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 156 return CI->isMinValue(/*isSigned=*/true); 157 158 // Check for FP which are bitcasted from INT_MIN integers 159 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 160 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 161 162 // Check for splats of INT_MIN values. 163 if (getType()->isVectorTy()) 164 if (const auto *SplatVal = getSplatValue()) 165 return SplatVal->isMinSignedValue(); 166 167 return false; 168 } 169 170 bool Constant::isNotMinSignedValue() const { 171 // Check for INT_MIN integers 172 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 173 return !CI->isMinValue(/*isSigned=*/true); 174 175 // Check for FP which are bitcasted from INT_MIN integers 176 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 177 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 178 179 // Check that vectors don't contain INT_MIN 180 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 181 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 182 Constant *Elt = getAggregateElement(I); 183 if (!Elt || !Elt->isNotMinSignedValue()) 184 return false; 185 } 186 return true; 187 } 188 189 // Check for splats that aren't INT_MIN 190 if (getType()->isVectorTy()) 191 if (const auto *SplatVal = getSplatValue()) 192 return SplatVal->isNotMinSignedValue(); 193 194 // It *may* contain INT_MIN, we can't tell. 195 return false; 196 } 197 198 bool Constant::isFiniteNonZeroFP() const { 199 if (auto *CFP = dyn_cast<ConstantFP>(this)) 200 return CFP->getValueAPF().isFiniteNonZero(); 201 202 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 203 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 204 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 205 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 206 return false; 207 } 208 return true; 209 } 210 211 if (getType()->isVectorTy()) 212 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 213 return SplatCFP->isFiniteNonZeroFP(); 214 215 // It *may* contain finite non-zero, we can't tell. 216 return false; 217 } 218 219 bool Constant::isNormalFP() const { 220 if (auto *CFP = dyn_cast<ConstantFP>(this)) 221 return CFP->getValueAPF().isNormal(); 222 223 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 224 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 225 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 226 if (!CFP || !CFP->getValueAPF().isNormal()) 227 return false; 228 } 229 return true; 230 } 231 232 if (getType()->isVectorTy()) 233 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 234 return SplatCFP->isNormalFP(); 235 236 // It *may* contain a normal fp value, we can't tell. 237 return false; 238 } 239 240 bool Constant::hasExactInverseFP() const { 241 if (auto *CFP = dyn_cast<ConstantFP>(this)) 242 return CFP->getValueAPF().getExactInverse(nullptr); 243 244 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 245 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 246 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 247 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 248 return false; 249 } 250 return true; 251 } 252 253 if (getType()->isVectorTy()) 254 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 255 return SplatCFP->hasExactInverseFP(); 256 257 // It *may* have an exact inverse fp value, we can't tell. 258 return false; 259 } 260 261 bool Constant::isNaN() const { 262 if (auto *CFP = dyn_cast<ConstantFP>(this)) 263 return CFP->isNaN(); 264 265 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 266 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 267 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 268 if (!CFP || !CFP->isNaN()) 269 return false; 270 } 271 return true; 272 } 273 274 if (getType()->isVectorTy()) 275 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 276 return SplatCFP->isNaN(); 277 278 // It *may* be NaN, we can't tell. 279 return false; 280 } 281 282 bool Constant::isElementWiseEqual(Value *Y) const { 283 // Are they fully identical? 284 if (this == Y) 285 return true; 286 287 // The input value must be a vector constant with the same type. 288 auto *VTy = dyn_cast<VectorType>(getType()); 289 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) 290 return false; 291 292 // TODO: Compare pointer constants? 293 if (!(VTy->getElementType()->isIntegerTy() || 294 VTy->getElementType()->isFloatingPointTy())) 295 return false; 296 297 // They may still be identical element-wise (if they have `undef`s). 298 // Bitcast to integer to allow exact bitwise comparison for all types. 299 Type *IntTy = VectorType::getInteger(VTy); 300 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); 301 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); 302 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); 303 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); 304 } 305 306 static bool 307 containsUndefinedElement(const Constant *C, 308 function_ref<bool(const Constant *)> HasFn) { 309 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 310 if (HasFn(C)) 311 return true; 312 if (isa<ConstantAggregateZero>(C)) 313 return false; 314 if (isa<ScalableVectorType>(C->getType())) 315 return false; 316 317 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements(); 318 i != e; ++i) { 319 if (Constant *Elem = C->getAggregateElement(i)) 320 if (HasFn(Elem)) 321 return true; 322 } 323 } 324 325 return false; 326 } 327 328 bool Constant::containsUndefOrPoisonElement() const { 329 return containsUndefinedElement( 330 this, [&](const auto *C) { return isa<UndefValue>(C); }); 331 } 332 333 bool Constant::containsPoisonElement() const { 334 return containsUndefinedElement( 335 this, [&](const auto *C) { return isa<PoisonValue>(C); }); 336 } 337 338 bool Constant::containsConstantExpression() const { 339 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 340 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 341 if (isa<ConstantExpr>(getAggregateElement(i))) 342 return true; 343 } 344 return false; 345 } 346 347 /// Constructor to create a '0' constant of arbitrary type. 348 Constant *Constant::getNullValue(Type *Ty) { 349 switch (Ty->getTypeID()) { 350 case Type::IntegerTyID: 351 return ConstantInt::get(Ty, 0); 352 case Type::HalfTyID: 353 return ConstantFP::get(Ty->getContext(), 354 APFloat::getZero(APFloat::IEEEhalf())); 355 case Type::BFloatTyID: 356 return ConstantFP::get(Ty->getContext(), 357 APFloat::getZero(APFloat::BFloat())); 358 case Type::FloatTyID: 359 return ConstantFP::get(Ty->getContext(), 360 APFloat::getZero(APFloat::IEEEsingle())); 361 case Type::DoubleTyID: 362 return ConstantFP::get(Ty->getContext(), 363 APFloat::getZero(APFloat::IEEEdouble())); 364 case Type::X86_FP80TyID: 365 return ConstantFP::get(Ty->getContext(), 366 APFloat::getZero(APFloat::x87DoubleExtended())); 367 case Type::FP128TyID: 368 return ConstantFP::get(Ty->getContext(), 369 APFloat::getZero(APFloat::IEEEquad())); 370 case Type::PPC_FP128TyID: 371 return ConstantFP::get(Ty->getContext(), APFloat(APFloat::PPCDoubleDouble(), 372 APInt::getZero(128))); 373 case Type::PointerTyID: 374 return ConstantPointerNull::get(cast<PointerType>(Ty)); 375 case Type::StructTyID: 376 case Type::ArrayTyID: 377 case Type::FixedVectorTyID: 378 case Type::ScalableVectorTyID: 379 return ConstantAggregateZero::get(Ty); 380 case Type::TokenTyID: 381 return ConstantTokenNone::get(Ty->getContext()); 382 default: 383 // Function, Label, or Opaque type? 384 llvm_unreachable("Cannot create a null constant of that type!"); 385 } 386 } 387 388 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 389 Type *ScalarTy = Ty->getScalarType(); 390 391 // Create the base integer constant. 392 Constant *C = ConstantInt::get(Ty->getContext(), V); 393 394 // Convert an integer to a pointer, if necessary. 395 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 396 C = ConstantExpr::getIntToPtr(C, PTy); 397 398 // Broadcast a scalar to a vector, if necessary. 399 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 400 C = ConstantVector::getSplat(VTy->getElementCount(), C); 401 402 return C; 403 } 404 405 Constant *Constant::getAllOnesValue(Type *Ty) { 406 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 407 return ConstantInt::get(Ty->getContext(), 408 APInt::getAllOnes(ITy->getBitWidth())); 409 410 if (Ty->isFloatingPointTy()) { 411 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics()); 412 return ConstantFP::get(Ty->getContext(), FL); 413 } 414 415 VectorType *VTy = cast<VectorType>(Ty); 416 return ConstantVector::getSplat(VTy->getElementCount(), 417 getAllOnesValue(VTy->getElementType())); 418 } 419 420 Constant *Constant::getAggregateElement(unsigned Elt) const { 421 assert((getType()->isAggregateType() || getType()->isVectorTy()) && 422 "Must be an aggregate/vector constant"); 423 424 if (const auto *CC = dyn_cast<ConstantAggregate>(this)) 425 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 426 427 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this)) 428 return Elt < CAZ->getElementCount().getKnownMinValue() 429 ? CAZ->getElementValue(Elt) 430 : nullptr; 431 432 // FIXME: getNumElements() will fail for non-fixed vector types. 433 if (isa<ScalableVectorType>(getType())) 434 return nullptr; 435 436 if (const auto *PV = dyn_cast<PoisonValue>(this)) 437 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; 438 439 if (const auto *UV = dyn_cast<UndefValue>(this)) 440 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 441 442 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this)) 443 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 444 : nullptr; 445 446 return nullptr; 447 } 448 449 Constant *Constant::getAggregateElement(Constant *Elt) const { 450 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 451 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 452 // Check if the constant fits into an uint64_t. 453 if (CI->getValue().getActiveBits() > 64) 454 return nullptr; 455 return getAggregateElement(CI->getZExtValue()); 456 } 457 return nullptr; 458 } 459 460 void Constant::destroyConstant() { 461 /// First call destroyConstantImpl on the subclass. This gives the subclass 462 /// a chance to remove the constant from any maps/pools it's contained in. 463 switch (getValueID()) { 464 default: 465 llvm_unreachable("Not a constant!"); 466 #define HANDLE_CONSTANT(Name) \ 467 case Value::Name##Val: \ 468 cast<Name>(this)->destroyConstantImpl(); \ 469 break; 470 #include "llvm/IR/Value.def" 471 } 472 473 // When a Constant is destroyed, there may be lingering 474 // references to the constant by other constants in the constant pool. These 475 // constants are implicitly dependent on the module that is being deleted, 476 // but they don't know that. Because we only find out when the CPV is 477 // deleted, we must now notify all of our users (that should only be 478 // Constants) that they are, in fact, invalid now and should be deleted. 479 // 480 while (!use_empty()) { 481 Value *V = user_back(); 482 #ifndef NDEBUG // Only in -g mode... 483 if (!isa<Constant>(V)) { 484 dbgs() << "While deleting: " << *this 485 << "\n\nUse still stuck around after Def is destroyed: " << *V 486 << "\n\n"; 487 } 488 #endif 489 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 490 cast<Constant>(V)->destroyConstant(); 491 492 // The constant should remove itself from our use list... 493 assert((use_empty() || user_back() != V) && "Constant not removed!"); 494 } 495 496 // Value has no outstanding references it is safe to delete it now... 497 deleteConstant(this); 498 } 499 500 void llvm::deleteConstant(Constant *C) { 501 switch (C->getValueID()) { 502 case Constant::ConstantIntVal: 503 delete static_cast<ConstantInt *>(C); 504 break; 505 case Constant::ConstantFPVal: 506 delete static_cast<ConstantFP *>(C); 507 break; 508 case Constant::ConstantAggregateZeroVal: 509 delete static_cast<ConstantAggregateZero *>(C); 510 break; 511 case Constant::ConstantArrayVal: 512 delete static_cast<ConstantArray *>(C); 513 break; 514 case Constant::ConstantStructVal: 515 delete static_cast<ConstantStruct *>(C); 516 break; 517 case Constant::ConstantVectorVal: 518 delete static_cast<ConstantVector *>(C); 519 break; 520 case Constant::ConstantPointerNullVal: 521 delete static_cast<ConstantPointerNull *>(C); 522 break; 523 case Constant::ConstantDataArrayVal: 524 delete static_cast<ConstantDataArray *>(C); 525 break; 526 case Constant::ConstantDataVectorVal: 527 delete static_cast<ConstantDataVector *>(C); 528 break; 529 case Constant::ConstantTokenNoneVal: 530 delete static_cast<ConstantTokenNone *>(C); 531 break; 532 case Constant::BlockAddressVal: 533 delete static_cast<BlockAddress *>(C); 534 break; 535 case Constant::DSOLocalEquivalentVal: 536 delete static_cast<DSOLocalEquivalent *>(C); 537 break; 538 case Constant::NoCFIValueVal: 539 delete static_cast<NoCFIValue *>(C); 540 break; 541 case Constant::UndefValueVal: 542 delete static_cast<UndefValue *>(C); 543 break; 544 case Constant::PoisonValueVal: 545 delete static_cast<PoisonValue *>(C); 546 break; 547 case Constant::ConstantExprVal: 548 if (isa<UnaryConstantExpr>(C)) 549 delete static_cast<UnaryConstantExpr *>(C); 550 else if (isa<BinaryConstantExpr>(C)) 551 delete static_cast<BinaryConstantExpr *>(C); 552 else if (isa<SelectConstantExpr>(C)) 553 delete static_cast<SelectConstantExpr *>(C); 554 else if (isa<ExtractElementConstantExpr>(C)) 555 delete static_cast<ExtractElementConstantExpr *>(C); 556 else if (isa<InsertElementConstantExpr>(C)) 557 delete static_cast<InsertElementConstantExpr *>(C); 558 else if (isa<ShuffleVectorConstantExpr>(C)) 559 delete static_cast<ShuffleVectorConstantExpr *>(C); 560 else if (isa<ExtractValueConstantExpr>(C)) 561 delete static_cast<ExtractValueConstantExpr *>(C); 562 else if (isa<InsertValueConstantExpr>(C)) 563 delete static_cast<InsertValueConstantExpr *>(C); 564 else if (isa<GetElementPtrConstantExpr>(C)) 565 delete static_cast<GetElementPtrConstantExpr *>(C); 566 else if (isa<CompareConstantExpr>(C)) 567 delete static_cast<CompareConstantExpr *>(C); 568 else 569 llvm_unreachable("Unexpected constant expr"); 570 break; 571 default: 572 llvm_unreachable("Unexpected constant"); 573 } 574 } 575 576 static bool canTrapImpl(const Constant *C, 577 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { 578 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 579 // The only thing that could possibly trap are constant exprs. 580 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 581 if (!CE) 582 return false; 583 584 // ConstantExpr traps if any operands can trap. 585 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 586 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { 587 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) 588 return true; 589 } 590 } 591 592 // Otherwise, only specific operations can trap. 593 switch (CE->getOpcode()) { 594 default: 595 return false; 596 case Instruction::UDiv: 597 case Instruction::SDiv: 598 case Instruction::URem: 599 case Instruction::SRem: 600 // Div and rem can trap if the RHS is not known to be non-zero. 601 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 602 return true; 603 return false; 604 } 605 } 606 607 bool Constant::canTrap() const { 608 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; 609 return canTrapImpl(this, NonTrappingOps); 610 } 611 612 /// Check if C contains a GlobalValue for which Predicate is true. 613 static bool 614 ConstHasGlobalValuePredicate(const Constant *C, 615 bool (*Predicate)(const GlobalValue *)) { 616 SmallPtrSet<const Constant *, 8> Visited; 617 SmallVector<const Constant *, 8> WorkList; 618 WorkList.push_back(C); 619 Visited.insert(C); 620 621 while (!WorkList.empty()) { 622 const Constant *WorkItem = WorkList.pop_back_val(); 623 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 624 if (Predicate(GV)) 625 return true; 626 for (const Value *Op : WorkItem->operands()) { 627 const Constant *ConstOp = dyn_cast<Constant>(Op); 628 if (!ConstOp) 629 continue; 630 if (Visited.insert(ConstOp).second) 631 WorkList.push_back(ConstOp); 632 } 633 } 634 return false; 635 } 636 637 bool Constant::isThreadDependent() const { 638 auto DLLImportPredicate = [](const GlobalValue *GV) { 639 return GV->isThreadLocal(); 640 }; 641 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 642 } 643 644 bool Constant::isDLLImportDependent() const { 645 auto DLLImportPredicate = [](const GlobalValue *GV) { 646 return GV->hasDLLImportStorageClass(); 647 }; 648 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 649 } 650 651 bool Constant::isConstantUsed() const { 652 for (const User *U : users()) { 653 const Constant *UC = dyn_cast<Constant>(U); 654 if (!UC || isa<GlobalValue>(UC)) 655 return true; 656 657 if (UC->isConstantUsed()) 658 return true; 659 } 660 return false; 661 } 662 663 bool Constant::needsDynamicRelocation() const { 664 return getRelocationInfo() == GlobalRelocation; 665 } 666 667 bool Constant::needsRelocation() const { 668 return getRelocationInfo() != NoRelocation; 669 } 670 671 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { 672 if (isa<GlobalValue>(this)) 673 return GlobalRelocation; // Global reference. 674 675 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 676 return BA->getFunction()->getRelocationInfo(); 677 678 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 679 if (CE->getOpcode() == Instruction::Sub) { 680 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 681 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 682 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 683 RHS->getOpcode() == Instruction::PtrToInt) { 684 Constant *LHSOp0 = LHS->getOperand(0); 685 Constant *RHSOp0 = RHS->getOperand(0); 686 687 // While raw uses of blockaddress need to be relocated, differences 688 // between two of them don't when they are for labels in the same 689 // function. This is a common idiom when creating a table for the 690 // indirect goto extension, so we handle it efficiently here. 691 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 692 cast<BlockAddress>(LHSOp0)->getFunction() == 693 cast<BlockAddress>(RHSOp0)->getFunction()) 694 return NoRelocation; 695 696 // Relative pointers do not need to be dynamically relocated. 697 if (auto *RHSGV = 698 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) { 699 auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); 700 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) { 701 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 702 return LocalRelocation; 703 } else if (isa<DSOLocalEquivalent>(LHS)) { 704 if (RHSGV->isDSOLocal()) 705 return LocalRelocation; 706 } 707 } 708 } 709 } 710 } 711 712 PossibleRelocationsTy Result = NoRelocation; 713 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 714 Result = 715 std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result); 716 717 return Result; 718 } 719 720 /// Return true if the specified constantexpr is dead. This involves 721 /// recursively traversing users of the constantexpr. 722 /// If RemoveDeadUsers is true, also remove dead users at the same time. 723 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) { 724 if (isa<GlobalValue>(C)) return false; // Cannot remove this 725 726 Value::const_user_iterator I = C->user_begin(), E = C->user_end(); 727 while (I != E) { 728 const Constant *User = dyn_cast<Constant>(*I); 729 if (!User) return false; // Non-constant usage; 730 if (!constantIsDead(User, RemoveDeadUsers)) 731 return false; // Constant wasn't dead 732 733 // Just removed User, so the iterator was invalidated. 734 // Since we return immediately upon finding a live user, we can always 735 // restart from user_begin(). 736 if (RemoveDeadUsers) 737 I = C->user_begin(); 738 else 739 ++I; 740 } 741 742 if (RemoveDeadUsers) { 743 // If C is only used by metadata, it should not be preserved but should 744 // have its uses replaced. 745 if (C->isUsedByMetadata()) { 746 const_cast<Constant *>(C)->replaceAllUsesWith( 747 UndefValue::get(C->getType())); 748 } 749 const_cast<Constant *>(C)->destroyConstant(); 750 } 751 752 return true; 753 } 754 755 void Constant::removeDeadConstantUsers() const { 756 Value::const_user_iterator I = user_begin(), E = user_end(); 757 Value::const_user_iterator LastNonDeadUser = E; 758 while (I != E) { 759 const Constant *User = dyn_cast<Constant>(*I); 760 if (!User) { 761 LastNonDeadUser = I; 762 ++I; 763 continue; 764 } 765 766 if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) { 767 // If the constant wasn't dead, remember that this was the last live use 768 // and move on to the next constant. 769 LastNonDeadUser = I; 770 ++I; 771 continue; 772 } 773 774 // If the constant was dead, then the iterator is invalidated. 775 if (LastNonDeadUser == E) 776 I = user_begin(); 777 else 778 I = std::next(LastNonDeadUser); 779 } 780 } 781 782 bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); } 783 784 bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); } 785 786 bool Constant::hasNLiveUses(unsigned N) const { 787 unsigned NumUses = 0; 788 for (const Use &U : uses()) { 789 const Constant *User = dyn_cast<Constant>(U.getUser()); 790 if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) { 791 ++NumUses; 792 793 if (NumUses > N) 794 return false; 795 } 796 } 797 return NumUses == N; 798 } 799 800 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 801 assert(C && Replacement && "Expected non-nullptr constant arguments"); 802 Type *Ty = C->getType(); 803 if (match(C, m_Undef())) { 804 assert(Ty == Replacement->getType() && "Expected matching types"); 805 return Replacement; 806 } 807 808 // Don't know how to deal with this constant. 809 auto *VTy = dyn_cast<FixedVectorType>(Ty); 810 if (!VTy) 811 return C; 812 813 unsigned NumElts = VTy->getNumElements(); 814 SmallVector<Constant *, 32> NewC(NumElts); 815 for (unsigned i = 0; i != NumElts; ++i) { 816 Constant *EltC = C->getAggregateElement(i); 817 assert((!EltC || EltC->getType() == Replacement->getType()) && 818 "Expected matching types"); 819 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 820 } 821 return ConstantVector::get(NewC); 822 } 823 824 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { 825 assert(C && Other && "Expected non-nullptr constant arguments"); 826 if (match(C, m_Undef())) 827 return C; 828 829 Type *Ty = C->getType(); 830 if (match(Other, m_Undef())) 831 return UndefValue::get(Ty); 832 833 auto *VTy = dyn_cast<FixedVectorType>(Ty); 834 if (!VTy) 835 return C; 836 837 Type *EltTy = VTy->getElementType(); 838 unsigned NumElts = VTy->getNumElements(); 839 assert(isa<FixedVectorType>(Other->getType()) && 840 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts && 841 "Type mismatch"); 842 843 bool FoundExtraUndef = false; 844 SmallVector<Constant *, 32> NewC(NumElts); 845 for (unsigned I = 0; I != NumElts; ++I) { 846 NewC[I] = C->getAggregateElement(I); 847 Constant *OtherEltC = Other->getAggregateElement(I); 848 assert(NewC[I] && OtherEltC && "Unknown vector element"); 849 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { 850 NewC[I] = UndefValue::get(EltTy); 851 FoundExtraUndef = true; 852 } 853 } 854 if (FoundExtraUndef) 855 return ConstantVector::get(NewC); 856 return C; 857 } 858 859 bool Constant::isManifestConstant() const { 860 if (isa<ConstantData>(this)) 861 return true; 862 if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) { 863 for (const Value *Op : operand_values()) 864 if (!cast<Constant>(Op)->isManifestConstant()) 865 return false; 866 return true; 867 } 868 return false; 869 } 870 871 //===----------------------------------------------------------------------===// 872 // ConstantInt 873 //===----------------------------------------------------------------------===// 874 875 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 876 : ConstantData(Ty, ConstantIntVal), Val(V) { 877 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 878 } 879 880 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 881 LLVMContextImpl *pImpl = Context.pImpl; 882 if (!pImpl->TheTrueVal) 883 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 884 return pImpl->TheTrueVal; 885 } 886 887 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 888 LLVMContextImpl *pImpl = Context.pImpl; 889 if (!pImpl->TheFalseVal) 890 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 891 return pImpl->TheFalseVal; 892 } 893 894 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) { 895 return V ? getTrue(Context) : getFalse(Context); 896 } 897 898 Constant *ConstantInt::getTrue(Type *Ty) { 899 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 900 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 901 if (auto *VTy = dyn_cast<VectorType>(Ty)) 902 return ConstantVector::getSplat(VTy->getElementCount(), TrueC); 903 return TrueC; 904 } 905 906 Constant *ConstantInt::getFalse(Type *Ty) { 907 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 908 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 909 if (auto *VTy = dyn_cast<VectorType>(Ty)) 910 return ConstantVector::getSplat(VTy->getElementCount(), FalseC); 911 return FalseC; 912 } 913 914 Constant *ConstantInt::getBool(Type *Ty, bool V) { 915 return V ? getTrue(Ty) : getFalse(Ty); 916 } 917 918 // Get a ConstantInt from an APInt. 919 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 920 // get an existing value or the insertion position 921 LLVMContextImpl *pImpl = Context.pImpl; 922 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 923 if (!Slot) { 924 // Get the corresponding integer type for the bit width of the value. 925 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 926 Slot.reset(new ConstantInt(ITy, V)); 927 } 928 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 929 return Slot.get(); 930 } 931 932 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 933 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 934 935 // For vectors, broadcast the value. 936 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 937 return ConstantVector::getSplat(VTy->getElementCount(), C); 938 939 return C; 940 } 941 942 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 943 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 944 } 945 946 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 947 return get(Ty, V, true); 948 } 949 950 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 951 return get(Ty, V, true); 952 } 953 954 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 955 ConstantInt *C = get(Ty->getContext(), V); 956 assert(C->getType() == Ty->getScalarType() && 957 "ConstantInt type doesn't match the type implied by its value!"); 958 959 // For vectors, broadcast the value. 960 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 961 return ConstantVector::getSplat(VTy->getElementCount(), C); 962 963 return C; 964 } 965 966 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 967 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 968 } 969 970 /// Remove the constant from the constant table. 971 void ConstantInt::destroyConstantImpl() { 972 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 973 } 974 975 //===----------------------------------------------------------------------===// 976 // ConstantFP 977 //===----------------------------------------------------------------------===// 978 979 Constant *ConstantFP::get(Type *Ty, double V) { 980 LLVMContext &Context = Ty->getContext(); 981 982 APFloat FV(V); 983 bool ignored; 984 FV.convert(Ty->getScalarType()->getFltSemantics(), 985 APFloat::rmNearestTiesToEven, &ignored); 986 Constant *C = get(Context, FV); 987 988 // For vectors, broadcast the value. 989 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 990 return ConstantVector::getSplat(VTy->getElementCount(), C); 991 992 return C; 993 } 994 995 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 996 ConstantFP *C = get(Ty->getContext(), V); 997 assert(C->getType() == Ty->getScalarType() && 998 "ConstantFP type doesn't match the type implied by its value!"); 999 1000 // For vectors, broadcast the value. 1001 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1002 return ConstantVector::getSplat(VTy->getElementCount(), C); 1003 1004 return C; 1005 } 1006 1007 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 1008 LLVMContext &Context = Ty->getContext(); 1009 1010 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); 1011 Constant *C = get(Context, FV); 1012 1013 // For vectors, broadcast the value. 1014 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1015 return ConstantVector::getSplat(VTy->getElementCount(), C); 1016 1017 return C; 1018 } 1019 1020 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 1021 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1022 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 1023 Constant *C = get(Ty->getContext(), NaN); 1024 1025 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1026 return ConstantVector::getSplat(VTy->getElementCount(), C); 1027 1028 return C; 1029 } 1030 1031 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 1032 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1033 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 1034 Constant *C = get(Ty->getContext(), NaN); 1035 1036 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1037 return ConstantVector::getSplat(VTy->getElementCount(), C); 1038 1039 return C; 1040 } 1041 1042 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 1043 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1044 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 1045 Constant *C = get(Ty->getContext(), NaN); 1046 1047 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1048 return ConstantVector::getSplat(VTy->getElementCount(), C); 1049 1050 return C; 1051 } 1052 1053 Constant *ConstantFP::getNegativeZero(Type *Ty) { 1054 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1055 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); 1056 Constant *C = get(Ty->getContext(), NegZero); 1057 1058 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1059 return ConstantVector::getSplat(VTy->getElementCount(), C); 1060 1061 return C; 1062 } 1063 1064 1065 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 1066 if (Ty->isFPOrFPVectorTy()) 1067 return getNegativeZero(Ty); 1068 1069 return Constant::getNullValue(Ty); 1070 } 1071 1072 1073 // ConstantFP accessors. 1074 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 1075 LLVMContextImpl* pImpl = Context.pImpl; 1076 1077 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 1078 1079 if (!Slot) { 1080 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); 1081 Slot.reset(new ConstantFP(Ty, V)); 1082 } 1083 1084 return Slot.get(); 1085 } 1086 1087 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 1088 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1089 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 1090 1091 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1092 return ConstantVector::getSplat(VTy->getElementCount(), C); 1093 1094 return C; 1095 } 1096 1097 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 1098 : ConstantData(Ty, ConstantFPVal), Val(V) { 1099 assert(&V.getSemantics() == &Ty->getFltSemantics() && 1100 "FP type Mismatch"); 1101 } 1102 1103 bool ConstantFP::isExactlyValue(const APFloat &V) const { 1104 return Val.bitwiseIsEqual(V); 1105 } 1106 1107 /// Remove the constant from the constant table. 1108 void ConstantFP::destroyConstantImpl() { 1109 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 1110 } 1111 1112 //===----------------------------------------------------------------------===// 1113 // ConstantAggregateZero Implementation 1114 //===----------------------------------------------------------------------===// 1115 1116 Constant *ConstantAggregateZero::getSequentialElement() const { 1117 if (auto *AT = dyn_cast<ArrayType>(getType())) 1118 return Constant::getNullValue(AT->getElementType()); 1119 return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); 1120 } 1121 1122 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 1123 return Constant::getNullValue(getType()->getStructElementType(Elt)); 1124 } 1125 1126 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 1127 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1128 return getSequentialElement(); 1129 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1130 } 1131 1132 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 1133 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1134 return getSequentialElement(); 1135 return getStructElement(Idx); 1136 } 1137 1138 ElementCount ConstantAggregateZero::getElementCount() const { 1139 Type *Ty = getType(); 1140 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1141 return ElementCount::getFixed(AT->getNumElements()); 1142 if (auto *VT = dyn_cast<VectorType>(Ty)) 1143 return VT->getElementCount(); 1144 return ElementCount::getFixed(Ty->getStructNumElements()); 1145 } 1146 1147 //===----------------------------------------------------------------------===// 1148 // UndefValue Implementation 1149 //===----------------------------------------------------------------------===// 1150 1151 UndefValue *UndefValue::getSequentialElement() const { 1152 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1153 return UndefValue::get(ATy->getElementType()); 1154 return UndefValue::get(cast<VectorType>(getType())->getElementType()); 1155 } 1156 1157 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 1158 return UndefValue::get(getType()->getStructElementType(Elt)); 1159 } 1160 1161 UndefValue *UndefValue::getElementValue(Constant *C) const { 1162 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1163 return getSequentialElement(); 1164 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1165 } 1166 1167 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 1168 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1169 return getSequentialElement(); 1170 return getStructElement(Idx); 1171 } 1172 1173 unsigned UndefValue::getNumElements() const { 1174 Type *Ty = getType(); 1175 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1176 return AT->getNumElements(); 1177 if (auto *VT = dyn_cast<VectorType>(Ty)) 1178 return cast<FixedVectorType>(VT)->getNumElements(); 1179 return Ty->getStructNumElements(); 1180 } 1181 1182 //===----------------------------------------------------------------------===// 1183 // PoisonValue Implementation 1184 //===----------------------------------------------------------------------===// 1185 1186 PoisonValue *PoisonValue::getSequentialElement() const { 1187 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1188 return PoisonValue::get(ATy->getElementType()); 1189 return PoisonValue::get(cast<VectorType>(getType())->getElementType()); 1190 } 1191 1192 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { 1193 return PoisonValue::get(getType()->getStructElementType(Elt)); 1194 } 1195 1196 PoisonValue *PoisonValue::getElementValue(Constant *C) const { 1197 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1198 return getSequentialElement(); 1199 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1200 } 1201 1202 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { 1203 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1204 return getSequentialElement(); 1205 return getStructElement(Idx); 1206 } 1207 1208 //===----------------------------------------------------------------------===// 1209 // ConstantXXX Classes 1210 //===----------------------------------------------------------------------===// 1211 1212 template <typename ItTy, typename EltTy> 1213 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 1214 for (; Start != End; ++Start) 1215 if (*Start != Elt) 1216 return false; 1217 return true; 1218 } 1219 1220 template <typename SequentialTy, typename ElementTy> 1221 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1222 assert(!V.empty() && "Cannot get empty int sequence."); 1223 1224 SmallVector<ElementTy, 16> Elts; 1225 for (Constant *C : V) 1226 if (auto *CI = dyn_cast<ConstantInt>(C)) 1227 Elts.push_back(CI->getZExtValue()); 1228 else 1229 return nullptr; 1230 return SequentialTy::get(V[0]->getContext(), Elts); 1231 } 1232 1233 template <typename SequentialTy, typename ElementTy> 1234 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1235 assert(!V.empty() && "Cannot get empty FP sequence."); 1236 1237 SmallVector<ElementTy, 16> Elts; 1238 for (Constant *C : V) 1239 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1240 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1241 else 1242 return nullptr; 1243 return SequentialTy::getFP(V[0]->getType(), Elts); 1244 } 1245 1246 template <typename SequenceTy> 1247 static Constant *getSequenceIfElementsMatch(Constant *C, 1248 ArrayRef<Constant *> V) { 1249 // We speculatively build the elements here even if it turns out that there is 1250 // a constantexpr or something else weird, since it is so uncommon for that to 1251 // happen. 1252 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1253 if (CI->getType()->isIntegerTy(8)) 1254 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1255 else if (CI->getType()->isIntegerTy(16)) 1256 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1257 else if (CI->getType()->isIntegerTy(32)) 1258 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1259 else if (CI->getType()->isIntegerTy(64)) 1260 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1261 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1262 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) 1263 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1264 else if (CFP->getType()->isFloatTy()) 1265 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1266 else if (CFP->getType()->isDoubleTy()) 1267 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1268 } 1269 1270 return nullptr; 1271 } 1272 1273 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, 1274 ArrayRef<Constant *> V) 1275 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1276 V.size()) { 1277 llvm::copy(V, op_begin()); 1278 1279 // Check that types match, unless this is an opaque struct. 1280 if (auto *ST = dyn_cast<StructType>(T)) { 1281 if (ST->isOpaque()) 1282 return; 1283 for (unsigned I = 0, E = V.size(); I != E; ++I) 1284 assert(V[I]->getType() == ST->getTypeAtIndex(I) && 1285 "Initializer for struct element doesn't match!"); 1286 } 1287 } 1288 1289 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1290 : ConstantAggregate(T, ConstantArrayVal, V) { 1291 assert(V.size() == T->getNumElements() && 1292 "Invalid initializer for constant array"); 1293 } 1294 1295 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1296 if (Constant *C = getImpl(Ty, V)) 1297 return C; 1298 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1299 } 1300 1301 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1302 // Empty arrays are canonicalized to ConstantAggregateZero. 1303 if (V.empty()) 1304 return ConstantAggregateZero::get(Ty); 1305 1306 for (Constant *C : V) { 1307 assert(C->getType() == Ty->getElementType() && 1308 "Wrong type in array element initializer"); 1309 (void)C; 1310 } 1311 1312 // If this is an all-zero array, return a ConstantAggregateZero object. If 1313 // all undef, return an UndefValue, if "all simple", then return a 1314 // ConstantDataArray. 1315 Constant *C = V[0]; 1316 if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1317 return PoisonValue::get(Ty); 1318 1319 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1320 return UndefValue::get(Ty); 1321 1322 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1323 return ConstantAggregateZero::get(Ty); 1324 1325 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1326 // the element type is compatible with ConstantDataVector. If so, use it. 1327 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1328 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1329 1330 // Otherwise, we really do want to create a ConstantArray. 1331 return nullptr; 1332 } 1333 1334 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1335 ArrayRef<Constant*> V, 1336 bool Packed) { 1337 unsigned VecSize = V.size(); 1338 SmallVector<Type*, 16> EltTypes(VecSize); 1339 for (unsigned i = 0; i != VecSize; ++i) 1340 EltTypes[i] = V[i]->getType(); 1341 1342 return StructType::get(Context, EltTypes, Packed); 1343 } 1344 1345 1346 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1347 bool Packed) { 1348 assert(!V.empty() && 1349 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1350 return getTypeForElements(V[0]->getContext(), V, Packed); 1351 } 1352 1353 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1354 : ConstantAggregate(T, ConstantStructVal, V) { 1355 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1356 "Invalid initializer for constant struct"); 1357 } 1358 1359 // ConstantStruct accessors. 1360 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1361 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1362 "Incorrect # elements specified to ConstantStruct::get"); 1363 1364 // Create a ConstantAggregateZero value if all elements are zeros. 1365 bool isZero = true; 1366 bool isUndef = false; 1367 bool isPoison = false; 1368 1369 if (!V.empty()) { 1370 isUndef = isa<UndefValue>(V[0]); 1371 isPoison = isa<PoisonValue>(V[0]); 1372 isZero = V[0]->isNullValue(); 1373 // PoisonValue inherits UndefValue, so its check is not necessary. 1374 if (isUndef || isZero) { 1375 for (Constant *C : V) { 1376 if (!C->isNullValue()) 1377 isZero = false; 1378 if (!isa<PoisonValue>(C)) 1379 isPoison = false; 1380 if (isa<PoisonValue>(C) || !isa<UndefValue>(C)) 1381 isUndef = false; 1382 } 1383 } 1384 } 1385 if (isZero) 1386 return ConstantAggregateZero::get(ST); 1387 if (isPoison) 1388 return PoisonValue::get(ST); 1389 if (isUndef) 1390 return UndefValue::get(ST); 1391 1392 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1393 } 1394 1395 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1396 : ConstantAggregate(T, ConstantVectorVal, V) { 1397 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() && 1398 "Invalid initializer for constant vector"); 1399 } 1400 1401 // ConstantVector accessors. 1402 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1403 if (Constant *C = getImpl(V)) 1404 return C; 1405 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); 1406 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1407 } 1408 1409 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1410 assert(!V.empty() && "Vectors can't be empty"); 1411 auto *T = FixedVectorType::get(V.front()->getType(), V.size()); 1412 1413 // If this is an all-undef or all-zero vector, return a 1414 // ConstantAggregateZero or UndefValue. 1415 Constant *C = V[0]; 1416 bool isZero = C->isNullValue(); 1417 bool isUndef = isa<UndefValue>(C); 1418 bool isPoison = isa<PoisonValue>(C); 1419 1420 if (isZero || isUndef) { 1421 for (unsigned i = 1, e = V.size(); i != e; ++i) 1422 if (V[i] != C) { 1423 isZero = isUndef = isPoison = false; 1424 break; 1425 } 1426 } 1427 1428 if (isZero) 1429 return ConstantAggregateZero::get(T); 1430 if (isPoison) 1431 return PoisonValue::get(T); 1432 if (isUndef) 1433 return UndefValue::get(T); 1434 1435 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1436 // the element type is compatible with ConstantDataVector. If so, use it. 1437 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1438 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1439 1440 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1441 // the operand list contains a ConstantExpr or something else strange. 1442 return nullptr; 1443 } 1444 1445 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { 1446 if (!EC.isScalable()) { 1447 // If this splat is compatible with ConstantDataVector, use it instead of 1448 // ConstantVector. 1449 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1450 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1451 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); 1452 1453 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V); 1454 return get(Elts); 1455 } 1456 1457 Type *VTy = VectorType::get(V->getType(), EC); 1458 1459 if (V->isNullValue()) 1460 return ConstantAggregateZero::get(VTy); 1461 else if (isa<UndefValue>(V)) 1462 return UndefValue::get(VTy); 1463 1464 Type *I32Ty = Type::getInt32Ty(VTy->getContext()); 1465 1466 // Move scalar into vector. 1467 Constant *PoisonV = PoisonValue::get(VTy); 1468 V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(I32Ty, 0)); 1469 // Build shuffle mask to perform the splat. 1470 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0); 1471 // Splat. 1472 return ConstantExpr::getShuffleVector(V, PoisonV, Zeros); 1473 } 1474 1475 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1476 LLVMContextImpl *pImpl = Context.pImpl; 1477 if (!pImpl->TheNoneToken) 1478 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1479 return pImpl->TheNoneToken.get(); 1480 } 1481 1482 /// Remove the constant from the constant table. 1483 void ConstantTokenNone::destroyConstantImpl() { 1484 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1485 } 1486 1487 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1488 // can't be inline because we don't want to #include Instruction.h into 1489 // Constant.h 1490 bool ConstantExpr::isCast() const { 1491 return Instruction::isCast(getOpcode()); 1492 } 1493 1494 bool ConstantExpr::isCompare() const { 1495 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1496 } 1497 1498 bool ConstantExpr::hasIndices() const { 1499 return getOpcode() == Instruction::ExtractValue || 1500 getOpcode() == Instruction::InsertValue; 1501 } 1502 1503 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1504 if (const ExtractValueConstantExpr *EVCE = 1505 dyn_cast<ExtractValueConstantExpr>(this)) 1506 return EVCE->Indices; 1507 1508 return cast<InsertValueConstantExpr>(this)->Indices; 1509 } 1510 1511 unsigned ConstantExpr::getPredicate() const { 1512 return cast<CompareConstantExpr>(this)->predicate; 1513 } 1514 1515 ArrayRef<int> ConstantExpr::getShuffleMask() const { 1516 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; 1517 } 1518 1519 Constant *ConstantExpr::getShuffleMaskForBitcode() const { 1520 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; 1521 } 1522 1523 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1524 bool OnlyIfReduced, Type *SrcTy) const { 1525 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1526 1527 // If no operands changed return self. 1528 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1529 return const_cast<ConstantExpr*>(this); 1530 1531 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1532 switch (getOpcode()) { 1533 case Instruction::Trunc: 1534 case Instruction::ZExt: 1535 case Instruction::SExt: 1536 case Instruction::FPTrunc: 1537 case Instruction::FPExt: 1538 case Instruction::UIToFP: 1539 case Instruction::SIToFP: 1540 case Instruction::FPToUI: 1541 case Instruction::FPToSI: 1542 case Instruction::PtrToInt: 1543 case Instruction::IntToPtr: 1544 case Instruction::BitCast: 1545 case Instruction::AddrSpaceCast: 1546 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1547 case Instruction::Select: 1548 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1549 case Instruction::InsertElement: 1550 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1551 OnlyIfReducedTy); 1552 case Instruction::ExtractElement: 1553 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1554 case Instruction::InsertValue: 1555 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), 1556 OnlyIfReducedTy); 1557 case Instruction::ExtractValue: 1558 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); 1559 case Instruction::FNeg: 1560 return ConstantExpr::getFNeg(Ops[0]); 1561 case Instruction::ShuffleVector: 1562 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), 1563 OnlyIfReducedTy); 1564 case Instruction::GetElementPtr: { 1565 auto *GEPO = cast<GEPOperator>(this); 1566 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1567 return ConstantExpr::getGetElementPtr( 1568 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1569 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1570 } 1571 case Instruction::ICmp: 1572 case Instruction::FCmp: 1573 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1574 OnlyIfReducedTy); 1575 default: 1576 assert(getNumOperands() == 2 && "Must be binary operator?"); 1577 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1578 OnlyIfReducedTy); 1579 } 1580 } 1581 1582 1583 //===----------------------------------------------------------------------===// 1584 // isValueValidForType implementations 1585 1586 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1587 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1588 if (Ty->isIntegerTy(1)) 1589 return Val == 0 || Val == 1; 1590 return isUIntN(NumBits, Val); 1591 } 1592 1593 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1594 unsigned NumBits = Ty->getIntegerBitWidth(); 1595 if (Ty->isIntegerTy(1)) 1596 return Val == 0 || Val == 1 || Val == -1; 1597 return isIntN(NumBits, Val); 1598 } 1599 1600 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1601 // convert modifies in place, so make a copy. 1602 APFloat Val2 = APFloat(Val); 1603 bool losesInfo; 1604 switch (Ty->getTypeID()) { 1605 default: 1606 return false; // These can't be represented as floating point! 1607 1608 // FIXME rounding mode needs to be more flexible 1609 case Type::HalfTyID: { 1610 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1611 return true; 1612 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1613 return !losesInfo; 1614 } 1615 case Type::BFloatTyID: { 1616 if (&Val2.getSemantics() == &APFloat::BFloat()) 1617 return true; 1618 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); 1619 return !losesInfo; 1620 } 1621 case Type::FloatTyID: { 1622 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1623 return true; 1624 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1625 return !losesInfo; 1626 } 1627 case Type::DoubleTyID: { 1628 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1629 &Val2.getSemantics() == &APFloat::BFloat() || 1630 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1631 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1632 return true; 1633 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1634 return !losesInfo; 1635 } 1636 case Type::X86_FP80TyID: 1637 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1638 &Val2.getSemantics() == &APFloat::BFloat() || 1639 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1640 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1641 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1642 case Type::FP128TyID: 1643 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1644 &Val2.getSemantics() == &APFloat::BFloat() || 1645 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1646 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1647 &Val2.getSemantics() == &APFloat::IEEEquad(); 1648 case Type::PPC_FP128TyID: 1649 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1650 &Val2.getSemantics() == &APFloat::BFloat() || 1651 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1652 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1653 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1654 } 1655 } 1656 1657 1658 //===----------------------------------------------------------------------===// 1659 // Factory Function Implementation 1660 1661 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1662 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1663 "Cannot create an aggregate zero of non-aggregate type!"); 1664 1665 std::unique_ptr<ConstantAggregateZero> &Entry = 1666 Ty->getContext().pImpl->CAZConstants[Ty]; 1667 if (!Entry) 1668 Entry.reset(new ConstantAggregateZero(Ty)); 1669 1670 return Entry.get(); 1671 } 1672 1673 /// Remove the constant from the constant table. 1674 void ConstantAggregateZero::destroyConstantImpl() { 1675 getContext().pImpl->CAZConstants.erase(getType()); 1676 } 1677 1678 /// Remove the constant from the constant table. 1679 void ConstantArray::destroyConstantImpl() { 1680 getType()->getContext().pImpl->ArrayConstants.remove(this); 1681 } 1682 1683 1684 //---- ConstantStruct::get() implementation... 1685 // 1686 1687 /// Remove the constant from the constant table. 1688 void ConstantStruct::destroyConstantImpl() { 1689 getType()->getContext().pImpl->StructConstants.remove(this); 1690 } 1691 1692 /// Remove the constant from the constant table. 1693 void ConstantVector::destroyConstantImpl() { 1694 getType()->getContext().pImpl->VectorConstants.remove(this); 1695 } 1696 1697 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1698 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1699 if (isa<ConstantAggregateZero>(this)) 1700 return getNullValue(cast<VectorType>(getType())->getElementType()); 1701 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1702 return CV->getSplatValue(); 1703 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1704 return CV->getSplatValue(AllowUndefs); 1705 1706 // Check if this is a constant expression splat of the form returned by 1707 // ConstantVector::getSplat() 1708 const auto *Shuf = dyn_cast<ConstantExpr>(this); 1709 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && 1710 isa<UndefValue>(Shuf->getOperand(1))) { 1711 1712 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0)); 1713 if (IElt && IElt->getOpcode() == Instruction::InsertElement && 1714 isa<UndefValue>(IElt->getOperand(0))) { 1715 1716 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1717 Constant *SplatVal = IElt->getOperand(1); 1718 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2)); 1719 1720 if (Index && Index->getValue() == 0 && 1721 llvm::all_of(Mask, [](int I) { return I == 0; })) 1722 return SplatVal; 1723 } 1724 } 1725 1726 return nullptr; 1727 } 1728 1729 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1730 // Check out first element. 1731 Constant *Elt = getOperand(0); 1732 // Then make sure all remaining elements point to the same value. 1733 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1734 Constant *OpC = getOperand(I); 1735 if (OpC == Elt) 1736 continue; 1737 1738 // Strict mode: any mismatch is not a splat. 1739 if (!AllowUndefs) 1740 return nullptr; 1741 1742 // Allow undefs mode: ignore undefined elements. 1743 if (isa<UndefValue>(OpC)) 1744 continue; 1745 1746 // If we do not have a defined element yet, use the current operand. 1747 if (isa<UndefValue>(Elt)) 1748 Elt = OpC; 1749 1750 if (OpC != Elt) 1751 return nullptr; 1752 } 1753 return Elt; 1754 } 1755 1756 const APInt &Constant::getUniqueInteger() const { 1757 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1758 return CI->getValue(); 1759 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1760 const Constant *C = this->getAggregateElement(0U); 1761 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1762 return cast<ConstantInt>(C)->getValue(); 1763 } 1764 1765 //---- ConstantPointerNull::get() implementation. 1766 // 1767 1768 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1769 std::unique_ptr<ConstantPointerNull> &Entry = 1770 Ty->getContext().pImpl->CPNConstants[Ty]; 1771 if (!Entry) 1772 Entry.reset(new ConstantPointerNull(Ty)); 1773 1774 return Entry.get(); 1775 } 1776 1777 /// Remove the constant from the constant table. 1778 void ConstantPointerNull::destroyConstantImpl() { 1779 getContext().pImpl->CPNConstants.erase(getType()); 1780 } 1781 1782 UndefValue *UndefValue::get(Type *Ty) { 1783 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1784 if (!Entry) 1785 Entry.reset(new UndefValue(Ty)); 1786 1787 return Entry.get(); 1788 } 1789 1790 /// Remove the constant from the constant table. 1791 void UndefValue::destroyConstantImpl() { 1792 // Free the constant and any dangling references to it. 1793 if (getValueID() == UndefValueVal) { 1794 getContext().pImpl->UVConstants.erase(getType()); 1795 } else if (getValueID() == PoisonValueVal) { 1796 getContext().pImpl->PVConstants.erase(getType()); 1797 } 1798 llvm_unreachable("Not a undef or a poison!"); 1799 } 1800 1801 PoisonValue *PoisonValue::get(Type *Ty) { 1802 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty]; 1803 if (!Entry) 1804 Entry.reset(new PoisonValue(Ty)); 1805 1806 return Entry.get(); 1807 } 1808 1809 /// Remove the constant from the constant table. 1810 void PoisonValue::destroyConstantImpl() { 1811 // Free the constant and any dangling references to it. 1812 getContext().pImpl->PVConstants.erase(getType()); 1813 } 1814 1815 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1816 assert(BB->getParent() && "Block must have a parent"); 1817 return get(BB->getParent(), BB); 1818 } 1819 1820 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1821 BlockAddress *&BA = 1822 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1823 if (!BA) 1824 BA = new BlockAddress(F, BB); 1825 1826 assert(BA->getFunction() == F && "Basic block moved between functions"); 1827 return BA; 1828 } 1829 1830 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1831 : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()), 1832 Value::BlockAddressVal, &Op<0>(), 2) { 1833 setOperand(0, F); 1834 setOperand(1, BB); 1835 BB->AdjustBlockAddressRefCount(1); 1836 } 1837 1838 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1839 if (!BB->hasAddressTaken()) 1840 return nullptr; 1841 1842 const Function *F = BB->getParent(); 1843 assert(F && "Block must have a parent"); 1844 BlockAddress *BA = 1845 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1846 assert(BA && "Refcount and block address map disagree!"); 1847 return BA; 1848 } 1849 1850 /// Remove the constant from the constant table. 1851 void BlockAddress::destroyConstantImpl() { 1852 getFunction()->getType()->getContext().pImpl 1853 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1854 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1855 } 1856 1857 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1858 // This could be replacing either the Basic Block or the Function. In either 1859 // case, we have to remove the map entry. 1860 Function *NewF = getFunction(); 1861 BasicBlock *NewBB = getBasicBlock(); 1862 1863 if (From == NewF) 1864 NewF = cast<Function>(To->stripPointerCasts()); 1865 else { 1866 assert(From == NewBB && "From does not match any operand"); 1867 NewBB = cast<BasicBlock>(To); 1868 } 1869 1870 // See if the 'new' entry already exists, if not, just update this in place 1871 // and return early. 1872 BlockAddress *&NewBA = 1873 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1874 if (NewBA) 1875 return NewBA; 1876 1877 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1878 1879 // Remove the old entry, this can't cause the map to rehash (just a 1880 // tombstone will get added). 1881 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1882 getBasicBlock())); 1883 NewBA = this; 1884 setOperand(0, NewF); 1885 setOperand(1, NewBB); 1886 getBasicBlock()->AdjustBlockAddressRefCount(1); 1887 1888 // If we just want to keep the existing value, then return null. 1889 // Callers know that this means we shouldn't delete this value. 1890 return nullptr; 1891 } 1892 1893 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { 1894 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; 1895 if (!Equiv) 1896 Equiv = new DSOLocalEquivalent(GV); 1897 1898 assert(Equiv->getGlobalValue() == GV && 1899 "DSOLocalFunction does not match the expected global value"); 1900 return Equiv; 1901 } 1902 1903 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) 1904 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { 1905 setOperand(0, GV); 1906 } 1907 1908 /// Remove the constant from the constant table. 1909 void DSOLocalEquivalent::destroyConstantImpl() { 1910 const GlobalValue *GV = getGlobalValue(); 1911 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); 1912 } 1913 1914 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { 1915 assert(From == getGlobalValue() && "Changing value does not match operand."); 1916 assert(isa<Constant>(To) && "Can only replace the operands with a constant"); 1917 1918 // The replacement is with another global value. 1919 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) { 1920 DSOLocalEquivalent *&NewEquiv = 1921 getContext().pImpl->DSOLocalEquivalents[ToObj]; 1922 if (NewEquiv) 1923 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1924 } 1925 1926 // If the argument is replaced with a null value, just replace this constant 1927 // with a null value. 1928 if (cast<Constant>(To)->isNullValue()) 1929 return To; 1930 1931 // The replacement could be a bitcast or an alias to another function. We can 1932 // replace it with a bitcast to the dso_local_equivalent of that function. 1933 auto *Func = cast<Function>(To->stripPointerCastsAndAliases()); 1934 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; 1935 if (NewEquiv) 1936 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1937 1938 // Replace this with the new one. 1939 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); 1940 NewEquiv = this; 1941 setOperand(0, Func); 1942 1943 if (Func->getType() != getType()) { 1944 // It is ok to mutate the type here because this constant should always 1945 // reflect the type of the function it's holding. 1946 mutateType(Func->getType()); 1947 } 1948 return nullptr; 1949 } 1950 1951 NoCFIValue *NoCFIValue::get(GlobalValue *GV) { 1952 NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV]; 1953 if (!NC) 1954 NC = new NoCFIValue(GV); 1955 1956 assert(NC->getGlobalValue() == GV && 1957 "NoCFIValue does not match the expected global value"); 1958 return NC; 1959 } 1960 1961 NoCFIValue::NoCFIValue(GlobalValue *GV) 1962 : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) { 1963 setOperand(0, GV); 1964 } 1965 1966 /// Remove the constant from the constant table. 1967 void NoCFIValue::destroyConstantImpl() { 1968 const GlobalValue *GV = getGlobalValue(); 1969 GV->getContext().pImpl->NoCFIValues.erase(GV); 1970 } 1971 1972 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) { 1973 assert(From == getGlobalValue() && "Changing value does not match operand."); 1974 1975 GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts()); 1976 assert(GV && "Can only replace the operands with a global value"); 1977 1978 NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV]; 1979 if (NewNC) 1980 return llvm::ConstantExpr::getBitCast(NewNC, getType()); 1981 1982 getContext().pImpl->NoCFIValues.erase(getGlobalValue()); 1983 NewNC = this; 1984 setOperand(0, GV); 1985 1986 if (GV->getType() != getType()) 1987 mutateType(GV->getType()); 1988 1989 return nullptr; 1990 } 1991 1992 //---- ConstantExpr::get() implementations. 1993 // 1994 1995 /// This is a utility function to handle folding of casts and lookup of the 1996 /// cast in the ExprConstants map. It is used by the various get* methods below. 1997 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1998 bool OnlyIfReduced = false) { 1999 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 2000 // Fold a few common cases 2001 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 2002 return FC; 2003 2004 if (OnlyIfReduced) 2005 return nullptr; 2006 2007 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 2008 2009 // Look up the constant in the table first to ensure uniqueness. 2010 ConstantExprKeyType Key(opc, C); 2011 2012 return pImpl->ExprConstants.getOrCreate(Ty, Key); 2013 } 2014 2015 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 2016 bool OnlyIfReduced) { 2017 Instruction::CastOps opc = Instruction::CastOps(oc); 2018 assert(Instruction::isCast(opc) && "opcode out of range"); 2019 assert(C && Ty && "Null arguments to getCast"); 2020 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 2021 2022 switch (opc) { 2023 default: 2024 llvm_unreachable("Invalid cast opcode"); 2025 case Instruction::Trunc: 2026 return getTrunc(C, Ty, OnlyIfReduced); 2027 case Instruction::ZExt: 2028 return getZExt(C, Ty, OnlyIfReduced); 2029 case Instruction::SExt: 2030 return getSExt(C, Ty, OnlyIfReduced); 2031 case Instruction::FPTrunc: 2032 return getFPTrunc(C, Ty, OnlyIfReduced); 2033 case Instruction::FPExt: 2034 return getFPExtend(C, Ty, OnlyIfReduced); 2035 case Instruction::UIToFP: 2036 return getUIToFP(C, Ty, OnlyIfReduced); 2037 case Instruction::SIToFP: 2038 return getSIToFP(C, Ty, OnlyIfReduced); 2039 case Instruction::FPToUI: 2040 return getFPToUI(C, Ty, OnlyIfReduced); 2041 case Instruction::FPToSI: 2042 return getFPToSI(C, Ty, OnlyIfReduced); 2043 case Instruction::PtrToInt: 2044 return getPtrToInt(C, Ty, OnlyIfReduced); 2045 case Instruction::IntToPtr: 2046 return getIntToPtr(C, Ty, OnlyIfReduced); 2047 case Instruction::BitCast: 2048 return getBitCast(C, Ty, OnlyIfReduced); 2049 case Instruction::AddrSpaceCast: 2050 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 2051 } 2052 } 2053 2054 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 2055 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2056 return getBitCast(C, Ty); 2057 return getZExt(C, Ty); 2058 } 2059 2060 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 2061 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2062 return getBitCast(C, Ty); 2063 return getSExt(C, Ty); 2064 } 2065 2066 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 2067 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2068 return getBitCast(C, Ty); 2069 return getTrunc(C, Ty); 2070 } 2071 2072 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 2073 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2074 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2075 "Invalid cast"); 2076 2077 if (Ty->isIntOrIntVectorTy()) 2078 return getPtrToInt(S, Ty); 2079 2080 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 2081 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 2082 return getAddrSpaceCast(S, Ty); 2083 2084 return getBitCast(S, Ty); 2085 } 2086 2087 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 2088 Type *Ty) { 2089 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2090 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2091 2092 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2093 return getAddrSpaceCast(S, Ty); 2094 2095 return getBitCast(S, Ty); 2096 } 2097 2098 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 2099 assert(C->getType()->isIntOrIntVectorTy() && 2100 Ty->isIntOrIntVectorTy() && "Invalid cast"); 2101 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2102 unsigned DstBits = Ty->getScalarSizeInBits(); 2103 Instruction::CastOps opcode = 2104 (SrcBits == DstBits ? Instruction::BitCast : 2105 (SrcBits > DstBits ? Instruction::Trunc : 2106 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2107 return getCast(opcode, C, Ty); 2108 } 2109 2110 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 2111 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2112 "Invalid cast"); 2113 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2114 unsigned DstBits = Ty->getScalarSizeInBits(); 2115 if (SrcBits == DstBits) 2116 return C; // Avoid a useless cast 2117 Instruction::CastOps opcode = 2118 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 2119 return getCast(opcode, C, Ty); 2120 } 2121 2122 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2123 #ifndef NDEBUG 2124 bool fromVec = isa<VectorType>(C->getType()); 2125 bool toVec = isa<VectorType>(Ty); 2126 #endif 2127 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2128 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 2129 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 2130 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2131 "SrcTy must be larger than DestTy for Trunc!"); 2132 2133 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 2134 } 2135 2136 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2137 #ifndef NDEBUG 2138 bool fromVec = isa<VectorType>(C->getType()); 2139 bool toVec = isa<VectorType>(Ty); 2140 #endif 2141 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2142 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 2143 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 2144 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2145 "SrcTy must be smaller than DestTy for SExt!"); 2146 2147 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 2148 } 2149 2150 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2151 #ifndef NDEBUG 2152 bool fromVec = isa<VectorType>(C->getType()); 2153 bool toVec = isa<VectorType>(Ty); 2154 #endif 2155 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2156 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 2157 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 2158 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2159 "SrcTy must be smaller than DestTy for ZExt!"); 2160 2161 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 2162 } 2163 2164 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2165 #ifndef NDEBUG 2166 bool fromVec = isa<VectorType>(C->getType()); 2167 bool toVec = isa<VectorType>(Ty); 2168 #endif 2169 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2170 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2171 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2172 "This is an illegal floating point truncation!"); 2173 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 2174 } 2175 2176 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 2177 #ifndef NDEBUG 2178 bool fromVec = isa<VectorType>(C->getType()); 2179 bool toVec = isa<VectorType>(Ty); 2180 #endif 2181 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2182 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2183 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2184 "This is an illegal floating point extension!"); 2185 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 2186 } 2187 2188 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2189 #ifndef NDEBUG 2190 bool fromVec = isa<VectorType>(C->getType()); 2191 bool toVec = isa<VectorType>(Ty); 2192 #endif 2193 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2194 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2195 "This is an illegal uint to floating point cast!"); 2196 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 2197 } 2198 2199 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2200 #ifndef NDEBUG 2201 bool fromVec = isa<VectorType>(C->getType()); 2202 bool toVec = isa<VectorType>(Ty); 2203 #endif 2204 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2205 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2206 "This is an illegal sint to floating point cast!"); 2207 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 2208 } 2209 2210 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2211 #ifndef NDEBUG 2212 bool fromVec = isa<VectorType>(C->getType()); 2213 bool toVec = isa<VectorType>(Ty); 2214 #endif 2215 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2216 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2217 "This is an illegal floating point to uint cast!"); 2218 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 2219 } 2220 2221 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2222 #ifndef NDEBUG 2223 bool fromVec = isa<VectorType>(C->getType()); 2224 bool toVec = isa<VectorType>(Ty); 2225 #endif 2226 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2227 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2228 "This is an illegal floating point to sint cast!"); 2229 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 2230 } 2231 2232 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 2233 bool OnlyIfReduced) { 2234 assert(C->getType()->isPtrOrPtrVectorTy() && 2235 "PtrToInt source must be pointer or pointer vector"); 2236 assert(DstTy->isIntOrIntVectorTy() && 2237 "PtrToInt destination must be integer or integer vector"); 2238 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2239 if (isa<VectorType>(C->getType())) 2240 assert(cast<FixedVectorType>(C->getType())->getNumElements() == 2241 cast<FixedVectorType>(DstTy)->getNumElements() && 2242 "Invalid cast between a different number of vector elements"); 2243 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 2244 } 2245 2246 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 2247 bool OnlyIfReduced) { 2248 assert(C->getType()->isIntOrIntVectorTy() && 2249 "IntToPtr source must be integer or integer vector"); 2250 assert(DstTy->isPtrOrPtrVectorTy() && 2251 "IntToPtr destination must be a pointer or pointer vector"); 2252 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2253 if (isa<VectorType>(C->getType())) 2254 assert(cast<VectorType>(C->getType())->getElementCount() == 2255 cast<VectorType>(DstTy)->getElementCount() && 2256 "Invalid cast between a different number of vector elements"); 2257 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 2258 } 2259 2260 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 2261 bool OnlyIfReduced) { 2262 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 2263 "Invalid constantexpr bitcast!"); 2264 2265 // It is common to ask for a bitcast of a value to its own type, handle this 2266 // speedily. 2267 if (C->getType() == DstTy) return C; 2268 2269 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 2270 } 2271 2272 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 2273 bool OnlyIfReduced) { 2274 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 2275 "Invalid constantexpr addrspacecast!"); 2276 2277 // Canonicalize addrspacecasts between different pointer types by first 2278 // bitcasting the pointer type and then converting the address space. 2279 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 2280 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 2281 if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) { 2282 Type *MidTy = PointerType::getWithSamePointeeType( 2283 DstScalarTy, SrcScalarTy->getAddressSpace()); 2284 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 2285 // Handle vectors of pointers. 2286 MidTy = FixedVectorType::get(MidTy, 2287 cast<FixedVectorType>(VT)->getNumElements()); 2288 } 2289 C = getBitCast(C, MidTy); 2290 } 2291 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 2292 } 2293 2294 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, 2295 Type *OnlyIfReducedTy) { 2296 // Check the operands for consistency first. 2297 assert(Instruction::isUnaryOp(Opcode) && 2298 "Invalid opcode in unary constant expression"); 2299 2300 #ifndef NDEBUG 2301 switch (Opcode) { 2302 case Instruction::FNeg: 2303 assert(C->getType()->isFPOrFPVectorTy() && 2304 "Tried to create a floating-point operation on a " 2305 "non-floating-point type!"); 2306 break; 2307 default: 2308 break; 2309 } 2310 #endif 2311 2312 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) 2313 return FC; 2314 2315 if (OnlyIfReducedTy == C->getType()) 2316 return nullptr; 2317 2318 Constant *ArgVec[] = { C }; 2319 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2320 2321 LLVMContextImpl *pImpl = C->getContext().pImpl; 2322 return pImpl->ExprConstants.getOrCreate(C->getType(), Key); 2323 } 2324 2325 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 2326 unsigned Flags, Type *OnlyIfReducedTy) { 2327 // Check the operands for consistency first. 2328 assert(Instruction::isBinaryOp(Opcode) && 2329 "Invalid opcode in binary constant expression"); 2330 assert(C1->getType() == C2->getType() && 2331 "Operand types in binary constant expression should match"); 2332 2333 #ifndef NDEBUG 2334 switch (Opcode) { 2335 case Instruction::Add: 2336 case Instruction::Sub: 2337 case Instruction::Mul: 2338 case Instruction::UDiv: 2339 case Instruction::SDiv: 2340 case Instruction::URem: 2341 case Instruction::SRem: 2342 assert(C1->getType()->isIntOrIntVectorTy() && 2343 "Tried to create an integer operation on a non-integer type!"); 2344 break; 2345 case Instruction::FAdd: 2346 case Instruction::FSub: 2347 case Instruction::FMul: 2348 case Instruction::FDiv: 2349 case Instruction::FRem: 2350 assert(C1->getType()->isFPOrFPVectorTy() && 2351 "Tried to create a floating-point operation on a " 2352 "non-floating-point type!"); 2353 break; 2354 case Instruction::And: 2355 case Instruction::Or: 2356 case Instruction::Xor: 2357 assert(C1->getType()->isIntOrIntVectorTy() && 2358 "Tried to create a logical operation on a non-integral type!"); 2359 break; 2360 case Instruction::Shl: 2361 case Instruction::LShr: 2362 case Instruction::AShr: 2363 assert(C1->getType()->isIntOrIntVectorTy() && 2364 "Tried to create a shift operation on a non-integer type!"); 2365 break; 2366 default: 2367 break; 2368 } 2369 #endif 2370 2371 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 2372 return FC; 2373 2374 if (OnlyIfReducedTy == C1->getType()) 2375 return nullptr; 2376 2377 Constant *ArgVec[] = { C1, C2 }; 2378 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2379 2380 LLVMContextImpl *pImpl = C1->getContext().pImpl; 2381 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 2382 } 2383 2384 Constant *ConstantExpr::getSizeOf(Type* Ty) { 2385 // sizeof is implemented as: (i64) gep (Ty*)null, 1 2386 // Note that a non-inbounds gep is used, as null isn't within any object. 2387 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2388 Constant *GEP = getGetElementPtr( 2389 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2390 return getPtrToInt(GEP, 2391 Type::getInt64Ty(Ty->getContext())); 2392 } 2393 2394 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2395 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2396 // Note that a non-inbounds gep is used, as null isn't within any object. 2397 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2398 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 2399 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2400 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2401 Constant *Indices[2] = { Zero, One }; 2402 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2403 return getPtrToInt(GEP, 2404 Type::getInt64Ty(Ty->getContext())); 2405 } 2406 2407 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 2408 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 2409 FieldNo)); 2410 } 2411 2412 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 2413 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 2414 // Note that a non-inbounds gep is used, as null isn't within any object. 2415 Constant *GEPIdx[] = { 2416 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 2417 FieldNo 2418 }; 2419 Constant *GEP = getGetElementPtr( 2420 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2421 return getPtrToInt(GEP, 2422 Type::getInt64Ty(Ty->getContext())); 2423 } 2424 2425 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2426 Constant *C2, bool OnlyIfReduced) { 2427 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2428 2429 switch (Predicate) { 2430 default: llvm_unreachable("Invalid CmpInst predicate"); 2431 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2432 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2433 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2434 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2435 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2436 case CmpInst::FCMP_TRUE: 2437 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2438 2439 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2440 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2441 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2442 case CmpInst::ICMP_SLE: 2443 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2444 } 2445 } 2446 2447 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 2448 Type *OnlyIfReducedTy) { 2449 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 2450 2451 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 2452 return SC; // Fold common cases 2453 2454 if (OnlyIfReducedTy == V1->getType()) 2455 return nullptr; 2456 2457 Constant *ArgVec[] = { C, V1, V2 }; 2458 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2459 2460 LLVMContextImpl *pImpl = C->getContext().pImpl; 2461 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2462 } 2463 2464 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2465 ArrayRef<Value *> Idxs, bool InBounds, 2466 Optional<unsigned> InRangeIndex, 2467 Type *OnlyIfReducedTy) { 2468 PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType()); 2469 assert(Ty && "Must specify element type"); 2470 assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty)); 2471 2472 if (Constant *FC = 2473 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2474 return FC; // Fold a few common cases. 2475 2476 // Get the result type of the getelementptr! 2477 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2478 assert(DestTy && "GEP indices invalid!"); 2479 unsigned AS = OrigPtrTy->getAddressSpace(); 2480 Type *ReqTy = OrigPtrTy->isOpaque() 2481 ? PointerType::get(OrigPtrTy->getContext(), AS) 2482 : DestTy->getPointerTo(AS); 2483 2484 auto EltCount = ElementCount::getFixed(0); 2485 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) 2486 EltCount = VecTy->getElementCount(); 2487 else 2488 for (auto Idx : Idxs) 2489 if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType())) 2490 EltCount = VecTy->getElementCount(); 2491 2492 if (EltCount.isNonZero()) 2493 ReqTy = VectorType::get(ReqTy, EltCount); 2494 2495 if (OnlyIfReducedTy == ReqTy) 2496 return nullptr; 2497 2498 // Look up the constant in the table first to ensure uniqueness 2499 std::vector<Constant*> ArgVec; 2500 ArgVec.reserve(1 + Idxs.size()); 2501 ArgVec.push_back(C); 2502 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); 2503 for (; GTI != GTE; ++GTI) { 2504 auto *Idx = cast<Constant>(GTI.getOperand()); 2505 assert( 2506 (!isa<VectorType>(Idx->getType()) || 2507 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) && 2508 "getelementptr index type missmatch"); 2509 2510 if (GTI.isStruct() && Idx->getType()->isVectorTy()) { 2511 Idx = Idx->getSplatValue(); 2512 } else if (GTI.isSequential() && EltCount.isNonZero() && 2513 !Idx->getType()->isVectorTy()) { 2514 Idx = ConstantVector::getSplat(EltCount, Idx); 2515 } 2516 ArgVec.push_back(Idx); 2517 } 2518 2519 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2520 if (InRangeIndex && *InRangeIndex < 63) 2521 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2522 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2523 SubClassOptionalData, None, None, Ty); 2524 2525 LLVMContextImpl *pImpl = C->getContext().pImpl; 2526 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2527 } 2528 2529 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2530 Constant *RHS, bool OnlyIfReduced) { 2531 auto Predicate = static_cast<CmpInst::Predicate>(pred); 2532 assert(LHS->getType() == RHS->getType()); 2533 assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate"); 2534 2535 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) 2536 return FC; // Fold a few common cases... 2537 2538 if (OnlyIfReduced) 2539 return nullptr; 2540 2541 // Look up the constant in the table first to ensure uniqueness 2542 Constant *ArgVec[] = { LHS, RHS }; 2543 // Get the key type with both the opcode and predicate 2544 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate); 2545 2546 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2547 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2548 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2549 2550 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2551 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2552 } 2553 2554 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2555 Constant *RHS, bool OnlyIfReduced) { 2556 auto Predicate = static_cast<CmpInst::Predicate>(pred); 2557 assert(LHS->getType() == RHS->getType()); 2558 assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate"); 2559 2560 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) 2561 return FC; // Fold a few common cases... 2562 2563 if (OnlyIfReduced) 2564 return nullptr; 2565 2566 // Look up the constant in the table first to ensure uniqueness 2567 Constant *ArgVec[] = { LHS, RHS }; 2568 // Get the key type with both the opcode and predicate 2569 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate); 2570 2571 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2572 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2573 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2574 2575 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2576 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2577 } 2578 2579 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2580 Type *OnlyIfReducedTy) { 2581 assert(Val->getType()->isVectorTy() && 2582 "Tried to create extractelement operation on non-vector type!"); 2583 assert(Idx->getType()->isIntegerTy() && 2584 "Extractelement index must be an integer type!"); 2585 2586 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2587 return FC; // Fold a few common cases. 2588 2589 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); 2590 if (OnlyIfReducedTy == ReqTy) 2591 return nullptr; 2592 2593 // Look up the constant in the table first to ensure uniqueness 2594 Constant *ArgVec[] = { Val, Idx }; 2595 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2596 2597 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2598 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2599 } 2600 2601 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2602 Constant *Idx, Type *OnlyIfReducedTy) { 2603 assert(Val->getType()->isVectorTy() && 2604 "Tried to create insertelement operation on non-vector type!"); 2605 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && 2606 "Insertelement types must match!"); 2607 assert(Idx->getType()->isIntegerTy() && 2608 "Insertelement index must be i32 type!"); 2609 2610 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2611 return FC; // Fold a few common cases. 2612 2613 if (OnlyIfReducedTy == Val->getType()) 2614 return nullptr; 2615 2616 // Look up the constant in the table first to ensure uniqueness 2617 Constant *ArgVec[] = { Val, Elt, Idx }; 2618 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2619 2620 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2621 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2622 } 2623 2624 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2625 ArrayRef<int> Mask, 2626 Type *OnlyIfReducedTy) { 2627 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2628 "Invalid shuffle vector constant expr operands!"); 2629 2630 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2631 return FC; // Fold a few common cases. 2632 2633 unsigned NElts = Mask.size(); 2634 auto V1VTy = cast<VectorType>(V1->getType()); 2635 Type *EltTy = V1VTy->getElementType(); 2636 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); 2637 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); 2638 2639 if (OnlyIfReducedTy == ShufTy) 2640 return nullptr; 2641 2642 // Look up the constant in the table first to ensure uniqueness 2643 Constant *ArgVec[] = {V1, V2}; 2644 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask); 2645 2646 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2647 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2648 } 2649 2650 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 2651 ArrayRef<unsigned> Idxs, 2652 Type *OnlyIfReducedTy) { 2653 assert(Agg->getType()->isFirstClassType() && 2654 "Non-first-class type for constant insertvalue expression"); 2655 2656 assert(ExtractValueInst::getIndexedType(Agg->getType(), 2657 Idxs) == Val->getType() && 2658 "insertvalue indices invalid!"); 2659 Type *ReqTy = Val->getType(); 2660 2661 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) 2662 return FC; 2663 2664 if (OnlyIfReducedTy == ReqTy) 2665 return nullptr; 2666 2667 Constant *ArgVec[] = { Agg, Val }; 2668 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); 2669 2670 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2671 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2672 } 2673 2674 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 2675 Type *OnlyIfReducedTy) { 2676 assert(Agg->getType()->isFirstClassType() && 2677 "Tried to create extractelement operation on non-first-class type!"); 2678 2679 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 2680 (void)ReqTy; 2681 assert(ReqTy && "extractvalue indices invalid!"); 2682 2683 assert(Agg->getType()->isFirstClassType() && 2684 "Non-first-class type for constant extractvalue expression"); 2685 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) 2686 return FC; 2687 2688 if (OnlyIfReducedTy == ReqTy) 2689 return nullptr; 2690 2691 Constant *ArgVec[] = { Agg }; 2692 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); 2693 2694 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2695 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2696 } 2697 2698 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2699 assert(C->getType()->isIntOrIntVectorTy() && 2700 "Cannot NEG a nonintegral value!"); 2701 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2702 C, HasNUW, HasNSW); 2703 } 2704 2705 Constant *ConstantExpr::getFNeg(Constant *C) { 2706 assert(C->getType()->isFPOrFPVectorTy() && 2707 "Cannot FNEG a non-floating-point value!"); 2708 return get(Instruction::FNeg, C); 2709 } 2710 2711 Constant *ConstantExpr::getNot(Constant *C) { 2712 assert(C->getType()->isIntOrIntVectorTy() && 2713 "Cannot NOT a nonintegral value!"); 2714 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2715 } 2716 2717 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2718 bool HasNUW, bool HasNSW) { 2719 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2720 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2721 return get(Instruction::Add, C1, C2, Flags); 2722 } 2723 2724 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 2725 return get(Instruction::FAdd, C1, C2); 2726 } 2727 2728 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2729 bool HasNUW, bool HasNSW) { 2730 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2731 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2732 return get(Instruction::Sub, C1, C2, Flags); 2733 } 2734 2735 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 2736 return get(Instruction::FSub, C1, C2); 2737 } 2738 2739 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2740 bool HasNUW, bool HasNSW) { 2741 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2742 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2743 return get(Instruction::Mul, C1, C2, Flags); 2744 } 2745 2746 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 2747 return get(Instruction::FMul, C1, C2); 2748 } 2749 2750 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 2751 return get(Instruction::UDiv, C1, C2, 2752 isExact ? PossiblyExactOperator::IsExact : 0); 2753 } 2754 2755 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 2756 return get(Instruction::SDiv, C1, C2, 2757 isExact ? PossiblyExactOperator::IsExact : 0); 2758 } 2759 2760 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 2761 return get(Instruction::FDiv, C1, C2); 2762 } 2763 2764 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 2765 return get(Instruction::URem, C1, C2); 2766 } 2767 2768 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 2769 return get(Instruction::SRem, C1, C2); 2770 } 2771 2772 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 2773 return get(Instruction::FRem, C1, C2); 2774 } 2775 2776 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2777 return get(Instruction::And, C1, C2); 2778 } 2779 2780 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2781 return get(Instruction::Or, C1, C2); 2782 } 2783 2784 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2785 return get(Instruction::Xor, C1, C2); 2786 } 2787 2788 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) { 2789 Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2); 2790 return getSelect(Cmp, C1, C2); 2791 } 2792 2793 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2794 bool HasNUW, bool HasNSW) { 2795 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2796 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2797 return get(Instruction::Shl, C1, C2, Flags); 2798 } 2799 2800 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2801 return get(Instruction::LShr, C1, C2, 2802 isExact ? PossiblyExactOperator::IsExact : 0); 2803 } 2804 2805 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2806 return get(Instruction::AShr, C1, C2, 2807 isExact ? PossiblyExactOperator::IsExact : 0); 2808 } 2809 2810 Constant *ConstantExpr::getExactLogBase2(Constant *C) { 2811 Type *Ty = C->getType(); 2812 const APInt *IVal; 2813 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 2814 return ConstantInt::get(Ty, IVal->logBase2()); 2815 2816 // FIXME: We can extract pow of 2 of splat constant for scalable vectors. 2817 auto *VecTy = dyn_cast<FixedVectorType>(Ty); 2818 if (!VecTy) 2819 return nullptr; 2820 2821 SmallVector<Constant *, 4> Elts; 2822 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 2823 Constant *Elt = C->getAggregateElement(I); 2824 if (!Elt) 2825 return nullptr; 2826 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. 2827 if (isa<UndefValue>(Elt)) { 2828 Elts.push_back(Constant::getNullValue(Ty->getScalarType())); 2829 continue; 2830 } 2831 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 2832 return nullptr; 2833 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 2834 } 2835 2836 return ConstantVector::get(Elts); 2837 } 2838 2839 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2840 bool AllowRHSConstant) { 2841 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2842 2843 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2844 if (Instruction::isCommutative(Opcode)) { 2845 switch (Opcode) { 2846 case Instruction::Add: // X + 0 = X 2847 case Instruction::Or: // X | 0 = X 2848 case Instruction::Xor: // X ^ 0 = X 2849 return Constant::getNullValue(Ty); 2850 case Instruction::Mul: // X * 1 = X 2851 return ConstantInt::get(Ty, 1); 2852 case Instruction::And: // X & -1 = X 2853 return Constant::getAllOnesValue(Ty); 2854 case Instruction::FAdd: // X + -0.0 = X 2855 // TODO: If the fadd has 'nsz', should we return +0.0? 2856 return ConstantFP::getNegativeZero(Ty); 2857 case Instruction::FMul: // X * 1.0 = X 2858 return ConstantFP::get(Ty, 1.0); 2859 default: 2860 llvm_unreachable("Every commutative binop has an identity constant"); 2861 } 2862 } 2863 2864 // Non-commutative opcodes: AllowRHSConstant must be set. 2865 if (!AllowRHSConstant) 2866 return nullptr; 2867 2868 switch (Opcode) { 2869 case Instruction::Sub: // X - 0 = X 2870 case Instruction::Shl: // X << 0 = X 2871 case Instruction::LShr: // X >>u 0 = X 2872 case Instruction::AShr: // X >> 0 = X 2873 case Instruction::FSub: // X - 0.0 = X 2874 return Constant::getNullValue(Ty); 2875 case Instruction::SDiv: // X / 1 = X 2876 case Instruction::UDiv: // X /u 1 = X 2877 return ConstantInt::get(Ty, 1); 2878 case Instruction::FDiv: // X / 1.0 = X 2879 return ConstantFP::get(Ty, 1.0); 2880 default: 2881 return nullptr; 2882 } 2883 } 2884 2885 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2886 switch (Opcode) { 2887 default: 2888 // Doesn't have an absorber. 2889 return nullptr; 2890 2891 case Instruction::Or: 2892 return Constant::getAllOnesValue(Ty); 2893 2894 case Instruction::And: 2895 case Instruction::Mul: 2896 return Constant::getNullValue(Ty); 2897 } 2898 } 2899 2900 /// Remove the constant from the constant table. 2901 void ConstantExpr::destroyConstantImpl() { 2902 getType()->getContext().pImpl->ExprConstants.remove(this); 2903 } 2904 2905 const char *ConstantExpr::getOpcodeName() const { 2906 return Instruction::getOpcodeName(getOpcode()); 2907 } 2908 2909 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2910 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2911 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2912 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2913 (IdxList.size() + 1), 2914 IdxList.size() + 1), 2915 SrcElementTy(SrcElementTy), 2916 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2917 Op<0>() = C; 2918 Use *OperandList = getOperandList(); 2919 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2920 OperandList[i+1] = IdxList[i]; 2921 } 2922 2923 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2924 return SrcElementTy; 2925 } 2926 2927 Type *GetElementPtrConstantExpr::getResultElementType() const { 2928 return ResElementTy; 2929 } 2930 2931 //===----------------------------------------------------------------------===// 2932 // ConstantData* implementations 2933 2934 Type *ConstantDataSequential::getElementType() const { 2935 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 2936 return ATy->getElementType(); 2937 return cast<VectorType>(getType())->getElementType(); 2938 } 2939 2940 StringRef ConstantDataSequential::getRawDataValues() const { 2941 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2942 } 2943 2944 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2945 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2946 return true; 2947 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2948 switch (IT->getBitWidth()) { 2949 case 8: 2950 case 16: 2951 case 32: 2952 case 64: 2953 return true; 2954 default: break; 2955 } 2956 } 2957 return false; 2958 } 2959 2960 unsigned ConstantDataSequential::getNumElements() const { 2961 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2962 return AT->getNumElements(); 2963 return cast<FixedVectorType>(getType())->getNumElements(); 2964 } 2965 2966 2967 uint64_t ConstantDataSequential::getElementByteSize() const { 2968 return getElementType()->getPrimitiveSizeInBits()/8; 2969 } 2970 2971 /// Return the start of the specified element. 2972 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2973 assert(Elt < getNumElements() && "Invalid Elt"); 2974 return DataElements+Elt*getElementByteSize(); 2975 } 2976 2977 2978 /// Return true if the array is empty or all zeros. 2979 static bool isAllZeros(StringRef Arr) { 2980 for (char I : Arr) 2981 if (I != 0) 2982 return false; 2983 return true; 2984 } 2985 2986 /// This is the underlying implementation of all of the 2987 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2988 /// the correct element type. We take the bytes in as a StringRef because 2989 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2990 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2991 #ifndef NDEBUG 2992 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 2993 assert(isElementTypeCompatible(ATy->getElementType())); 2994 else 2995 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); 2996 #endif 2997 // If the elements are all zero or there are no elements, return a CAZ, which 2998 // is more dense and canonical. 2999 if (isAllZeros(Elements)) 3000 return ConstantAggregateZero::get(Ty); 3001 3002 // Do a lookup to see if we have already formed one of these. 3003 auto &Slot = 3004 *Ty->getContext() 3005 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 3006 .first; 3007 3008 // The bucket can point to a linked list of different CDS's that have the same 3009 // body but different types. For example, 0,0,0,1 could be a 4 element array 3010 // of i8, or a 1-element array of i32. They'll both end up in the same 3011 /// StringMap bucket, linked up by their Next pointers. Walk the list. 3012 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second; 3013 for (; *Entry; Entry = &(*Entry)->Next) 3014 if ((*Entry)->getType() == Ty) 3015 return Entry->get(); 3016 3017 // Okay, we didn't get a hit. Create a node of the right class, link it in, 3018 // and return it. 3019 if (isa<ArrayType>(Ty)) { 3020 // Use reset because std::make_unique can't access the constructor. 3021 Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); 3022 return Entry->get(); 3023 } 3024 3025 assert(isa<VectorType>(Ty)); 3026 // Use reset because std::make_unique can't access the constructor. 3027 Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); 3028 return Entry->get(); 3029 } 3030 3031 void ConstantDataSequential::destroyConstantImpl() { 3032 // Remove the constant from the StringMap. 3033 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants = 3034 getType()->getContext().pImpl->CDSConstants; 3035 3036 auto Slot = CDSConstants.find(getRawDataValues()); 3037 3038 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 3039 3040 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue(); 3041 3042 // Remove the entry from the hash table. 3043 if (!(*Entry)->Next) { 3044 // If there is only one value in the bucket (common case) it must be this 3045 // entry, and removing the entry should remove the bucket completely. 3046 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); 3047 getContext().pImpl->CDSConstants.erase(Slot); 3048 return; 3049 } 3050 3051 // Otherwise, there are multiple entries linked off the bucket, unlink the 3052 // node we care about but keep the bucket around. 3053 while (true) { 3054 std::unique_ptr<ConstantDataSequential> &Node = *Entry; 3055 assert(Node && "Didn't find entry in its uniquing hash table!"); 3056 // If we found our entry, unlink it from the list and we're done. 3057 if (Node.get() == this) { 3058 Node = std::move(Node->Next); 3059 return; 3060 } 3061 3062 Entry = &Node->Next; 3063 } 3064 } 3065 3066 /// getFP() constructors - Return a constant of array type with a float 3067 /// element type taken from argument `ElementType', and count taken from 3068 /// argument `Elts'. The amount of bits of the contained type must match the 3069 /// number of bits of the type contained in the passed in ArrayRef. 3070 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 3071 /// that this can return a ConstantAggregateZero object. 3072 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { 3073 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 3074 "Element type is not a 16-bit float type"); 3075 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3076 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3077 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3078 } 3079 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { 3080 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3081 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3082 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3083 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3084 } 3085 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { 3086 assert(ElementType->isDoubleTy() && 3087 "Element type is not a 64-bit float type"); 3088 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3089 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3090 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3091 } 3092 3093 Constant *ConstantDataArray::getString(LLVMContext &Context, 3094 StringRef Str, bool AddNull) { 3095 if (!AddNull) { 3096 const uint8_t *Data = Str.bytes_begin(); 3097 return get(Context, makeArrayRef(Data, Str.size())); 3098 } 3099 3100 SmallVector<uint8_t, 64> ElementVals; 3101 ElementVals.append(Str.begin(), Str.end()); 3102 ElementVals.push_back(0); 3103 return get(Context, ElementVals); 3104 } 3105 3106 /// get() constructors - Return a constant with vector type with an element 3107 /// count and element type matching the ArrayRef passed in. Note that this 3108 /// can return a ConstantAggregateZero object. 3109 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 3110 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); 3111 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3112 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 3113 } 3114 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 3115 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); 3116 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3117 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3118 } 3119 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 3120 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); 3121 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3122 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3123 } 3124 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 3125 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); 3126 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3127 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3128 } 3129 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 3130 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); 3131 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3132 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3133 } 3134 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 3135 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); 3136 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3137 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3138 } 3139 3140 /// getFP() constructors - Return a constant of vector type with a float 3141 /// element type taken from argument `ElementType', and count taken from 3142 /// argument `Elts'. The amount of bits of the contained type must match the 3143 /// number of bits of the type contained in the passed in ArrayRef. 3144 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 3145 /// that this can return a ConstantAggregateZero object. 3146 Constant *ConstantDataVector::getFP(Type *ElementType, 3147 ArrayRef<uint16_t> Elts) { 3148 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 3149 "Element type is not a 16-bit float type"); 3150 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3151 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3152 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3153 } 3154 Constant *ConstantDataVector::getFP(Type *ElementType, 3155 ArrayRef<uint32_t> Elts) { 3156 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3157 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3158 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3159 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3160 } 3161 Constant *ConstantDataVector::getFP(Type *ElementType, 3162 ArrayRef<uint64_t> Elts) { 3163 assert(ElementType->isDoubleTy() && 3164 "Element type is not a 64-bit float type"); 3165 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3166 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3167 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3168 } 3169 3170 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 3171 assert(isElementTypeCompatible(V->getType()) && 3172 "Element type not compatible with ConstantData"); 3173 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3174 if (CI->getType()->isIntegerTy(8)) { 3175 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 3176 return get(V->getContext(), Elts); 3177 } 3178 if (CI->getType()->isIntegerTy(16)) { 3179 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 3180 return get(V->getContext(), Elts); 3181 } 3182 if (CI->getType()->isIntegerTy(32)) { 3183 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 3184 return get(V->getContext(), Elts); 3185 } 3186 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 3187 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 3188 return get(V->getContext(), Elts); 3189 } 3190 3191 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3192 if (CFP->getType()->isHalfTy()) { 3193 SmallVector<uint16_t, 16> Elts( 3194 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3195 return getFP(V->getType(), Elts); 3196 } 3197 if (CFP->getType()->isBFloatTy()) { 3198 SmallVector<uint16_t, 16> Elts( 3199 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3200 return getFP(V->getType(), Elts); 3201 } 3202 if (CFP->getType()->isFloatTy()) { 3203 SmallVector<uint32_t, 16> Elts( 3204 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3205 return getFP(V->getType(), Elts); 3206 } 3207 if (CFP->getType()->isDoubleTy()) { 3208 SmallVector<uint64_t, 16> Elts( 3209 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3210 return getFP(V->getType(), Elts); 3211 } 3212 } 3213 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); 3214 } 3215 3216 3217 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 3218 assert(isa<IntegerType>(getElementType()) && 3219 "Accessor can only be used when element is an integer"); 3220 const char *EltPtr = getElementPointer(Elt); 3221 3222 // The data is stored in host byte order, make sure to cast back to the right 3223 // type to load with the right endianness. 3224 switch (getElementType()->getIntegerBitWidth()) { 3225 default: llvm_unreachable("Invalid bitwidth for CDS"); 3226 case 8: 3227 return *reinterpret_cast<const uint8_t *>(EltPtr); 3228 case 16: 3229 return *reinterpret_cast<const uint16_t *>(EltPtr); 3230 case 32: 3231 return *reinterpret_cast<const uint32_t *>(EltPtr); 3232 case 64: 3233 return *reinterpret_cast<const uint64_t *>(EltPtr); 3234 } 3235 } 3236 3237 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 3238 assert(isa<IntegerType>(getElementType()) && 3239 "Accessor can only be used when element is an integer"); 3240 const char *EltPtr = getElementPointer(Elt); 3241 3242 // The data is stored in host byte order, make sure to cast back to the right 3243 // type to load with the right endianness. 3244 switch (getElementType()->getIntegerBitWidth()) { 3245 default: llvm_unreachable("Invalid bitwidth for CDS"); 3246 case 8: { 3247 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 3248 return APInt(8, EltVal); 3249 } 3250 case 16: { 3251 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3252 return APInt(16, EltVal); 3253 } 3254 case 32: { 3255 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3256 return APInt(32, EltVal); 3257 } 3258 case 64: { 3259 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3260 return APInt(64, EltVal); 3261 } 3262 } 3263 } 3264 3265 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 3266 const char *EltPtr = getElementPointer(Elt); 3267 3268 switch (getElementType()->getTypeID()) { 3269 default: 3270 llvm_unreachable("Accessor can only be used when element is float/double!"); 3271 case Type::HalfTyID: { 3272 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3273 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 3274 } 3275 case Type::BFloatTyID: { 3276 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3277 return APFloat(APFloat::BFloat(), APInt(16, EltVal)); 3278 } 3279 case Type::FloatTyID: { 3280 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3281 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 3282 } 3283 case Type::DoubleTyID: { 3284 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3285 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 3286 } 3287 } 3288 } 3289 3290 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 3291 assert(getElementType()->isFloatTy() && 3292 "Accessor can only be used when element is a 'float'"); 3293 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 3294 } 3295 3296 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 3297 assert(getElementType()->isDoubleTy() && 3298 "Accessor can only be used when element is a 'float'"); 3299 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 3300 } 3301 3302 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 3303 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || 3304 getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 3305 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 3306 3307 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 3308 } 3309 3310 bool ConstantDataSequential::isString(unsigned CharSize) const { 3311 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 3312 } 3313 3314 bool ConstantDataSequential::isCString() const { 3315 if (!isString()) 3316 return false; 3317 3318 StringRef Str = getAsString(); 3319 3320 // The last value must be nul. 3321 if (Str.back() != 0) return false; 3322 3323 // Other elements must be non-nul. 3324 return !Str.drop_back().contains(0); 3325 } 3326 3327 bool ConstantDataVector::isSplatData() const { 3328 const char *Base = getRawDataValues().data(); 3329 3330 // Compare elements 1+ to the 0'th element. 3331 unsigned EltSize = getElementByteSize(); 3332 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 3333 if (memcmp(Base, Base+i*EltSize, EltSize)) 3334 return false; 3335 3336 return true; 3337 } 3338 3339 bool ConstantDataVector::isSplat() const { 3340 if (!IsSplatSet) { 3341 IsSplatSet = true; 3342 IsSplat = isSplatData(); 3343 } 3344 return IsSplat; 3345 } 3346 3347 Constant *ConstantDataVector::getSplatValue() const { 3348 // If they're all the same, return the 0th one as a representative. 3349 return isSplat() ? getElementAsConstant(0) : nullptr; 3350 } 3351 3352 //===----------------------------------------------------------------------===// 3353 // handleOperandChange implementations 3354 3355 /// Update this constant array to change uses of 3356 /// 'From' to be uses of 'To'. This must update the uniquing data structures 3357 /// etc. 3358 /// 3359 /// Note that we intentionally replace all uses of From with To here. Consider 3360 /// a large array that uses 'From' 1000 times. By handling this case all here, 3361 /// ConstantArray::handleOperandChange is only invoked once, and that 3362 /// single invocation handles all 1000 uses. Handling them one at a time would 3363 /// work, but would be really slow because it would have to unique each updated 3364 /// array instance. 3365 /// 3366 void Constant::handleOperandChange(Value *From, Value *To) { 3367 Value *Replacement = nullptr; 3368 switch (getValueID()) { 3369 default: 3370 llvm_unreachable("Not a constant!"); 3371 #define HANDLE_CONSTANT(Name) \ 3372 case Value::Name##Val: \ 3373 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 3374 break; 3375 #include "llvm/IR/Value.def" 3376 } 3377 3378 // If handleOperandChangeImpl returned nullptr, then it handled 3379 // replacing itself and we don't want to delete or replace anything else here. 3380 if (!Replacement) 3381 return; 3382 3383 // I do need to replace this with an existing value. 3384 assert(Replacement != this && "I didn't contain From!"); 3385 3386 // Everyone using this now uses the replacement. 3387 replaceAllUsesWith(Replacement); 3388 3389 // Delete the old constant! 3390 destroyConstant(); 3391 } 3392 3393 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 3394 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3395 Constant *ToC = cast<Constant>(To); 3396 3397 SmallVector<Constant*, 8> Values; 3398 Values.reserve(getNumOperands()); // Build replacement array. 3399 3400 // Fill values with the modified operands of the constant array. Also, 3401 // compute whether this turns into an all-zeros array. 3402 unsigned NumUpdated = 0; 3403 3404 // Keep track of whether all the values in the array are "ToC". 3405 bool AllSame = true; 3406 Use *OperandList = getOperandList(); 3407 unsigned OperandNo = 0; 3408 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 3409 Constant *Val = cast<Constant>(O->get()); 3410 if (Val == From) { 3411 OperandNo = (O - OperandList); 3412 Val = ToC; 3413 ++NumUpdated; 3414 } 3415 Values.push_back(Val); 3416 AllSame &= Val == ToC; 3417 } 3418 3419 if (AllSame && ToC->isNullValue()) 3420 return ConstantAggregateZero::get(getType()); 3421 3422 if (AllSame && isa<UndefValue>(ToC)) 3423 return UndefValue::get(getType()); 3424 3425 // Check for any other type of constant-folding. 3426 if (Constant *C = getImpl(getType(), Values)) 3427 return C; 3428 3429 // Update to the new value. 3430 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 3431 Values, this, From, ToC, NumUpdated, OperandNo); 3432 } 3433 3434 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 3435 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3436 Constant *ToC = cast<Constant>(To); 3437 3438 Use *OperandList = getOperandList(); 3439 3440 SmallVector<Constant*, 8> Values; 3441 Values.reserve(getNumOperands()); // Build replacement struct. 3442 3443 // Fill values with the modified operands of the constant struct. Also, 3444 // compute whether this turns into an all-zeros struct. 3445 unsigned NumUpdated = 0; 3446 bool AllSame = true; 3447 unsigned OperandNo = 0; 3448 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 3449 Constant *Val = cast<Constant>(O->get()); 3450 if (Val == From) { 3451 OperandNo = (O - OperandList); 3452 Val = ToC; 3453 ++NumUpdated; 3454 } 3455 Values.push_back(Val); 3456 AllSame &= Val == ToC; 3457 } 3458 3459 if (AllSame && ToC->isNullValue()) 3460 return ConstantAggregateZero::get(getType()); 3461 3462 if (AllSame && isa<UndefValue>(ToC)) 3463 return UndefValue::get(getType()); 3464 3465 // Update to the new value. 3466 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 3467 Values, this, From, ToC, NumUpdated, OperandNo); 3468 } 3469 3470 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3471 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3472 Constant *ToC = cast<Constant>(To); 3473 3474 SmallVector<Constant*, 8> Values; 3475 Values.reserve(getNumOperands()); // Build replacement array... 3476 unsigned NumUpdated = 0; 3477 unsigned OperandNo = 0; 3478 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3479 Constant *Val = getOperand(i); 3480 if (Val == From) { 3481 OperandNo = i; 3482 ++NumUpdated; 3483 Val = ToC; 3484 } 3485 Values.push_back(Val); 3486 } 3487 3488 if (Constant *C = getImpl(Values)) 3489 return C; 3490 3491 // Update to the new value. 3492 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3493 Values, this, From, ToC, NumUpdated, OperandNo); 3494 } 3495 3496 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3497 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3498 Constant *To = cast<Constant>(ToV); 3499 3500 SmallVector<Constant*, 8> NewOps; 3501 unsigned NumUpdated = 0; 3502 unsigned OperandNo = 0; 3503 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3504 Constant *Op = getOperand(i); 3505 if (Op == From) { 3506 OperandNo = i; 3507 ++NumUpdated; 3508 Op = To; 3509 } 3510 NewOps.push_back(Op); 3511 } 3512 assert(NumUpdated && "I didn't contain From!"); 3513 3514 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3515 return C; 3516 3517 // Update to the new value. 3518 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3519 NewOps, this, From, To, NumUpdated, OperandNo); 3520 } 3521 3522 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const { 3523 SmallVector<Value *, 4> ValueOperands(operands()); 3524 ArrayRef<Value*> Ops(ValueOperands); 3525 3526 switch (getOpcode()) { 3527 case Instruction::Trunc: 3528 case Instruction::ZExt: 3529 case Instruction::SExt: 3530 case Instruction::FPTrunc: 3531 case Instruction::FPExt: 3532 case Instruction::UIToFP: 3533 case Instruction::SIToFP: 3534 case Instruction::FPToUI: 3535 case Instruction::FPToSI: 3536 case Instruction::PtrToInt: 3537 case Instruction::IntToPtr: 3538 case Instruction::BitCast: 3539 case Instruction::AddrSpaceCast: 3540 return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0], 3541 getType(), "", InsertBefore); 3542 case Instruction::Select: 3543 return SelectInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3544 case Instruction::InsertElement: 3545 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3546 case Instruction::ExtractElement: 3547 return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore); 3548 case Instruction::InsertValue: 3549 return InsertValueInst::Create(Ops[0], Ops[1], getIndices(), "", 3550 InsertBefore); 3551 case Instruction::ExtractValue: 3552 return ExtractValueInst::Create(Ops[0], getIndices(), "", InsertBefore); 3553 case Instruction::ShuffleVector: 3554 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "", 3555 InsertBefore); 3556 3557 case Instruction::GetElementPtr: { 3558 const auto *GO = cast<GEPOperator>(this); 3559 if (GO->isInBounds()) 3560 return GetElementPtrInst::CreateInBounds( 3561 GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore); 3562 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3563 Ops.slice(1), "", InsertBefore); 3564 } 3565 case Instruction::ICmp: 3566 case Instruction::FCmp: 3567 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3568 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1], 3569 "", InsertBefore); 3570 case Instruction::FNeg: 3571 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0], "", 3572 InsertBefore); 3573 default: 3574 assert(getNumOperands() == 2 && "Must be binary operator?"); 3575 BinaryOperator *BO = BinaryOperator::Create( 3576 (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore); 3577 if (isa<OverflowingBinaryOperator>(BO)) { 3578 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3579 OverflowingBinaryOperator::NoUnsignedWrap); 3580 BO->setHasNoSignedWrap(SubclassOptionalData & 3581 OverflowingBinaryOperator::NoSignedWrap); 3582 } 3583 if (isa<PossiblyExactOperator>(BO)) 3584 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3585 return BO; 3586 } 3587 } 3588