1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 
33 using namespace llvm;
34 using namespace PatternMatch;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Constant Class
38 //===----------------------------------------------------------------------===//
39 
40 bool Constant::isNegativeZeroValue() const {
41   // Floating point values have an explicit -0.0 value.
42   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
43     return CFP->isZero() && CFP->isNegative();
44 
45   // Equivalent for a vector of -0.0's.
46   if (getType()->isVectorTy())
47     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
48       return SplatCFP->isNegativeZeroValue();
49 
50   // We've already handled true FP case; any other FP vectors can't represent -0.0.
51   if (getType()->isFPOrFPVectorTy())
52     return false;
53 
54   // Otherwise, just use +0.0.
55   return isNullValue();
56 }
57 
58 // Return true iff this constant is positive zero (floating point), negative
59 // zero (floating point), or a null value.
60 bool Constant::isZeroValue() const {
61   // Floating point values have an explicit -0.0 value.
62   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
63     return CFP->isZero();
64 
65   // Check for constant splat vectors of 1 values.
66   if (getType()->isVectorTy())
67     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
68       return SplatCFP->isZero();
69 
70   // Otherwise, just use +0.0.
71   return isNullValue();
72 }
73 
74 bool Constant::isNullValue() const {
75   // 0 is null.
76   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
77     return CI->isZero();
78 
79   // +0.0 is null.
80   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
81     // ppc_fp128 determine isZero using high order double only
82     // Should check the bitwise value to make sure all bits are zero.
83     return CFP->isExactlyValue(+0.0);
84 
85   // constant zero is zero for aggregates, cpnull is null for pointers, none for
86   // tokens.
87   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
88          isa<ConstantTokenNone>(this);
89 }
90 
91 bool Constant::isAllOnesValue() const {
92   // Check for -1 integers
93   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94     return CI->isMinusOne();
95 
96   // Check for FP which are bitcasted from -1 integers
97   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98     return CFP->getValueAPF().bitcastToAPInt().isAllOnes();
99 
100   // Check for constant splat vectors of 1 values.
101   if (getType()->isVectorTy())
102     if (const auto *SplatVal = getSplatValue())
103       return SplatVal->isAllOnesValue();
104 
105   return false;
106 }
107 
108 bool Constant::isOneValue() const {
109   // Check for 1 integers
110   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
111     return CI->isOne();
112 
113   // Check for FP which are bitcasted from 1 integers
114   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
115     return CFP->getValueAPF().bitcastToAPInt().isOne();
116 
117   // Check for constant splat vectors of 1 values.
118   if (getType()->isVectorTy())
119     if (const auto *SplatVal = getSplatValue())
120       return SplatVal->isOneValue();
121 
122   return false;
123 }
124 
125 bool Constant::isNotOneValue() const {
126   // Check for 1 integers
127   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
128     return !CI->isOneValue();
129 
130   // Check for FP which are bitcasted from 1 integers
131   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
132     return !CFP->getValueAPF().bitcastToAPInt().isOne();
133 
134   // Check that vectors don't contain 1
135   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
136     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
137       Constant *Elt = getAggregateElement(I);
138       if (!Elt || !Elt->isNotOneValue())
139         return false;
140     }
141     return true;
142   }
143 
144   // Check for splats that don't contain 1
145   if (getType()->isVectorTy())
146     if (const auto *SplatVal = getSplatValue())
147       return SplatVal->isNotOneValue();
148 
149   // It *may* contain 1, we can't tell.
150   return false;
151 }
152 
153 bool Constant::isMinSignedValue() const {
154   // Check for INT_MIN integers
155   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
156     return CI->isMinValue(/*isSigned=*/true);
157 
158   // Check for FP which are bitcasted from INT_MIN integers
159   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
160     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
161 
162   // Check for splats of INT_MIN values.
163   if (getType()->isVectorTy())
164     if (const auto *SplatVal = getSplatValue())
165       return SplatVal->isMinSignedValue();
166 
167   return false;
168 }
169 
170 bool Constant::isNotMinSignedValue() const {
171   // Check for INT_MIN integers
172   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
173     return !CI->isMinValue(/*isSigned=*/true);
174 
175   // Check for FP which are bitcasted from INT_MIN integers
176   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
177     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
178 
179   // Check that vectors don't contain INT_MIN
180   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
181     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
182       Constant *Elt = getAggregateElement(I);
183       if (!Elt || !Elt->isNotMinSignedValue())
184         return false;
185     }
186     return true;
187   }
188 
189   // Check for splats that aren't INT_MIN
190   if (getType()->isVectorTy())
191     if (const auto *SplatVal = getSplatValue())
192       return SplatVal->isNotMinSignedValue();
193 
194   // It *may* contain INT_MIN, we can't tell.
195   return false;
196 }
197 
198 bool Constant::isFiniteNonZeroFP() const {
199   if (auto *CFP = dyn_cast<ConstantFP>(this))
200     return CFP->getValueAPF().isFiniteNonZero();
201 
202   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
203     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
204       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
205       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
206         return false;
207     }
208     return true;
209   }
210 
211   if (getType()->isVectorTy())
212     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
213       return SplatCFP->isFiniteNonZeroFP();
214 
215   // It *may* contain finite non-zero, we can't tell.
216   return false;
217 }
218 
219 bool Constant::isNormalFP() const {
220   if (auto *CFP = dyn_cast<ConstantFP>(this))
221     return CFP->getValueAPF().isNormal();
222 
223   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
224     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
225       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
226       if (!CFP || !CFP->getValueAPF().isNormal())
227         return false;
228     }
229     return true;
230   }
231 
232   if (getType()->isVectorTy())
233     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
234       return SplatCFP->isNormalFP();
235 
236   // It *may* contain a normal fp value, we can't tell.
237   return false;
238 }
239 
240 bool Constant::hasExactInverseFP() const {
241   if (auto *CFP = dyn_cast<ConstantFP>(this))
242     return CFP->getValueAPF().getExactInverse(nullptr);
243 
244   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
245     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
246       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
247       if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
248         return false;
249     }
250     return true;
251   }
252 
253   if (getType()->isVectorTy())
254     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
255       return SplatCFP->hasExactInverseFP();
256 
257   // It *may* have an exact inverse fp value, we can't tell.
258   return false;
259 }
260 
261 bool Constant::isNaN() const {
262   if (auto *CFP = dyn_cast<ConstantFP>(this))
263     return CFP->isNaN();
264 
265   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
266     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
267       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
268       if (!CFP || !CFP->isNaN())
269         return false;
270     }
271     return true;
272   }
273 
274   if (getType()->isVectorTy())
275     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
276       return SplatCFP->isNaN();
277 
278   // It *may* be NaN, we can't tell.
279   return false;
280 }
281 
282 bool Constant::isElementWiseEqual(Value *Y) const {
283   // Are they fully identical?
284   if (this == Y)
285     return true;
286 
287   // The input value must be a vector constant with the same type.
288   auto *VTy = dyn_cast<VectorType>(getType());
289   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
290     return false;
291 
292   // TODO: Compare pointer constants?
293   if (!(VTy->getElementType()->isIntegerTy() ||
294         VTy->getElementType()->isFloatingPointTy()))
295     return false;
296 
297   // They may still be identical element-wise (if they have `undef`s).
298   // Bitcast to integer to allow exact bitwise comparison for all types.
299   Type *IntTy = VectorType::getInteger(VTy);
300   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
301   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
302   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
303   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
304 }
305 
306 static bool
307 containsUndefinedElement(const Constant *C,
308                          function_ref<bool(const Constant *)> HasFn) {
309   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
310     if (HasFn(C))
311       return true;
312     if (isa<ConstantAggregateZero>(C))
313       return false;
314     if (isa<ScalableVectorType>(C->getType()))
315       return false;
316 
317     for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements();
318          i != e; ++i) {
319       if (Constant *Elem = C->getAggregateElement(i))
320         if (HasFn(Elem))
321           return true;
322     }
323   }
324 
325   return false;
326 }
327 
328 bool Constant::containsUndefOrPoisonElement() const {
329   return containsUndefinedElement(
330       this, [&](const auto *C) { return isa<UndefValue>(C); });
331 }
332 
333 bool Constant::containsPoisonElement() const {
334   return containsUndefinedElement(
335       this, [&](const auto *C) { return isa<PoisonValue>(C); });
336 }
337 
338 bool Constant::containsConstantExpression() const {
339   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
340     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
341       if (isa<ConstantExpr>(getAggregateElement(i)))
342         return true;
343   }
344   return false;
345 }
346 
347 /// Constructor to create a '0' constant of arbitrary type.
348 Constant *Constant::getNullValue(Type *Ty) {
349   switch (Ty->getTypeID()) {
350   case Type::IntegerTyID:
351     return ConstantInt::get(Ty, 0);
352   case Type::HalfTyID:
353     return ConstantFP::get(Ty->getContext(),
354                            APFloat::getZero(APFloat::IEEEhalf()));
355   case Type::BFloatTyID:
356     return ConstantFP::get(Ty->getContext(),
357                            APFloat::getZero(APFloat::BFloat()));
358   case Type::FloatTyID:
359     return ConstantFP::get(Ty->getContext(),
360                            APFloat::getZero(APFloat::IEEEsingle()));
361   case Type::DoubleTyID:
362     return ConstantFP::get(Ty->getContext(),
363                            APFloat::getZero(APFloat::IEEEdouble()));
364   case Type::X86_FP80TyID:
365     return ConstantFP::get(Ty->getContext(),
366                            APFloat::getZero(APFloat::x87DoubleExtended()));
367   case Type::FP128TyID:
368     return ConstantFP::get(Ty->getContext(),
369                            APFloat::getZero(APFloat::IEEEquad()));
370   case Type::PPC_FP128TyID:
371     return ConstantFP::get(Ty->getContext(), APFloat(APFloat::PPCDoubleDouble(),
372                                                      APInt::getZero(128)));
373   case Type::PointerTyID:
374     return ConstantPointerNull::get(cast<PointerType>(Ty));
375   case Type::StructTyID:
376   case Type::ArrayTyID:
377   case Type::FixedVectorTyID:
378   case Type::ScalableVectorTyID:
379     return ConstantAggregateZero::get(Ty);
380   case Type::TokenTyID:
381     return ConstantTokenNone::get(Ty->getContext());
382   default:
383     // Function, Label, or Opaque type?
384     llvm_unreachable("Cannot create a null constant of that type!");
385   }
386 }
387 
388 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
389   Type *ScalarTy = Ty->getScalarType();
390 
391   // Create the base integer constant.
392   Constant *C = ConstantInt::get(Ty->getContext(), V);
393 
394   // Convert an integer to a pointer, if necessary.
395   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
396     C = ConstantExpr::getIntToPtr(C, PTy);
397 
398   // Broadcast a scalar to a vector, if necessary.
399   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
400     C = ConstantVector::getSplat(VTy->getElementCount(), C);
401 
402   return C;
403 }
404 
405 Constant *Constant::getAllOnesValue(Type *Ty) {
406   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
407     return ConstantInt::get(Ty->getContext(),
408                             APInt::getAllOnes(ITy->getBitWidth()));
409 
410   if (Ty->isFloatingPointTy()) {
411     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics());
412     return ConstantFP::get(Ty->getContext(), FL);
413   }
414 
415   VectorType *VTy = cast<VectorType>(Ty);
416   return ConstantVector::getSplat(VTy->getElementCount(),
417                                   getAllOnesValue(VTy->getElementType()));
418 }
419 
420 Constant *Constant::getAggregateElement(unsigned Elt) const {
421   assert((getType()->isAggregateType() || getType()->isVectorTy()) &&
422          "Must be an aggregate/vector constant");
423 
424   if (const auto *CC = dyn_cast<ConstantAggregate>(this))
425     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
426 
427   if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this))
428     return Elt < CAZ->getElementCount().getKnownMinValue()
429                ? CAZ->getElementValue(Elt)
430                : nullptr;
431 
432   // FIXME: getNumElements() will fail for non-fixed vector types.
433   if (isa<ScalableVectorType>(getType()))
434     return nullptr;
435 
436   if (const auto *PV = dyn_cast<PoisonValue>(this))
437     return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr;
438 
439   if (const auto *UV = dyn_cast<UndefValue>(this))
440     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
441 
442   if (const auto *CDS = dyn_cast<ConstantDataSequential>(this))
443     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
444                                        : nullptr;
445 
446   return nullptr;
447 }
448 
449 Constant *Constant::getAggregateElement(Constant *Elt) const {
450   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
451   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
452     // Check if the constant fits into an uint64_t.
453     if (CI->getValue().getActiveBits() > 64)
454       return nullptr;
455     return getAggregateElement(CI->getZExtValue());
456   }
457   return nullptr;
458 }
459 
460 void Constant::destroyConstant() {
461   /// First call destroyConstantImpl on the subclass.  This gives the subclass
462   /// a chance to remove the constant from any maps/pools it's contained in.
463   switch (getValueID()) {
464   default:
465     llvm_unreachable("Not a constant!");
466 #define HANDLE_CONSTANT(Name)                                                  \
467   case Value::Name##Val:                                                       \
468     cast<Name>(this)->destroyConstantImpl();                                   \
469     break;
470 #include "llvm/IR/Value.def"
471   }
472 
473   // When a Constant is destroyed, there may be lingering
474   // references to the constant by other constants in the constant pool.  These
475   // constants are implicitly dependent on the module that is being deleted,
476   // but they don't know that.  Because we only find out when the CPV is
477   // deleted, we must now notify all of our users (that should only be
478   // Constants) that they are, in fact, invalid now and should be deleted.
479   //
480   while (!use_empty()) {
481     Value *V = user_back();
482 #ifndef NDEBUG // Only in -g mode...
483     if (!isa<Constant>(V)) {
484       dbgs() << "While deleting: " << *this
485              << "\n\nUse still stuck around after Def is destroyed: " << *V
486              << "\n\n";
487     }
488 #endif
489     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
490     cast<Constant>(V)->destroyConstant();
491 
492     // The constant should remove itself from our use list...
493     assert((use_empty() || user_back() != V) && "Constant not removed!");
494   }
495 
496   // Value has no outstanding references it is safe to delete it now...
497   deleteConstant(this);
498 }
499 
500 void llvm::deleteConstant(Constant *C) {
501   switch (C->getValueID()) {
502   case Constant::ConstantIntVal:
503     delete static_cast<ConstantInt *>(C);
504     break;
505   case Constant::ConstantFPVal:
506     delete static_cast<ConstantFP *>(C);
507     break;
508   case Constant::ConstantAggregateZeroVal:
509     delete static_cast<ConstantAggregateZero *>(C);
510     break;
511   case Constant::ConstantArrayVal:
512     delete static_cast<ConstantArray *>(C);
513     break;
514   case Constant::ConstantStructVal:
515     delete static_cast<ConstantStruct *>(C);
516     break;
517   case Constant::ConstantVectorVal:
518     delete static_cast<ConstantVector *>(C);
519     break;
520   case Constant::ConstantPointerNullVal:
521     delete static_cast<ConstantPointerNull *>(C);
522     break;
523   case Constant::ConstantDataArrayVal:
524     delete static_cast<ConstantDataArray *>(C);
525     break;
526   case Constant::ConstantDataVectorVal:
527     delete static_cast<ConstantDataVector *>(C);
528     break;
529   case Constant::ConstantTokenNoneVal:
530     delete static_cast<ConstantTokenNone *>(C);
531     break;
532   case Constant::BlockAddressVal:
533     delete static_cast<BlockAddress *>(C);
534     break;
535   case Constant::DSOLocalEquivalentVal:
536     delete static_cast<DSOLocalEquivalent *>(C);
537     break;
538   case Constant::NoCFIValueVal:
539     delete static_cast<NoCFIValue *>(C);
540     break;
541   case Constant::UndefValueVal:
542     delete static_cast<UndefValue *>(C);
543     break;
544   case Constant::PoisonValueVal:
545     delete static_cast<PoisonValue *>(C);
546     break;
547   case Constant::ConstantExprVal:
548     if (isa<UnaryConstantExpr>(C))
549       delete static_cast<UnaryConstantExpr *>(C);
550     else if (isa<BinaryConstantExpr>(C))
551       delete static_cast<BinaryConstantExpr *>(C);
552     else if (isa<SelectConstantExpr>(C))
553       delete static_cast<SelectConstantExpr *>(C);
554     else if (isa<ExtractElementConstantExpr>(C))
555       delete static_cast<ExtractElementConstantExpr *>(C);
556     else if (isa<InsertElementConstantExpr>(C))
557       delete static_cast<InsertElementConstantExpr *>(C);
558     else if (isa<ShuffleVectorConstantExpr>(C))
559       delete static_cast<ShuffleVectorConstantExpr *>(C);
560     else if (isa<ExtractValueConstantExpr>(C))
561       delete static_cast<ExtractValueConstantExpr *>(C);
562     else if (isa<InsertValueConstantExpr>(C))
563       delete static_cast<InsertValueConstantExpr *>(C);
564     else if (isa<GetElementPtrConstantExpr>(C))
565       delete static_cast<GetElementPtrConstantExpr *>(C);
566     else if (isa<CompareConstantExpr>(C))
567       delete static_cast<CompareConstantExpr *>(C);
568     else
569       llvm_unreachable("Unexpected constant expr");
570     break;
571   default:
572     llvm_unreachable("Unexpected constant");
573   }
574 }
575 
576 static bool canTrapImpl(const Constant *C,
577                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
578   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
579   // The only thing that could possibly trap are constant exprs.
580   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
581   if (!CE)
582     return false;
583 
584   // ConstantExpr traps if any operands can trap.
585   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
586     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
587       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
588         return true;
589     }
590   }
591 
592   // Otherwise, only specific operations can trap.
593   switch (CE->getOpcode()) {
594   default:
595     return false;
596   case Instruction::UDiv:
597   case Instruction::SDiv:
598   case Instruction::URem:
599   case Instruction::SRem:
600     // Div and rem can trap if the RHS is not known to be non-zero.
601     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
602       return true;
603     return false;
604   }
605 }
606 
607 bool Constant::canTrap() const {
608   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
609   return canTrapImpl(this, NonTrappingOps);
610 }
611 
612 /// Check if C contains a GlobalValue for which Predicate is true.
613 static bool
614 ConstHasGlobalValuePredicate(const Constant *C,
615                              bool (*Predicate)(const GlobalValue *)) {
616   SmallPtrSet<const Constant *, 8> Visited;
617   SmallVector<const Constant *, 8> WorkList;
618   WorkList.push_back(C);
619   Visited.insert(C);
620 
621   while (!WorkList.empty()) {
622     const Constant *WorkItem = WorkList.pop_back_val();
623     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
624       if (Predicate(GV))
625         return true;
626     for (const Value *Op : WorkItem->operands()) {
627       const Constant *ConstOp = dyn_cast<Constant>(Op);
628       if (!ConstOp)
629         continue;
630       if (Visited.insert(ConstOp).second)
631         WorkList.push_back(ConstOp);
632     }
633   }
634   return false;
635 }
636 
637 bool Constant::isThreadDependent() const {
638   auto DLLImportPredicate = [](const GlobalValue *GV) {
639     return GV->isThreadLocal();
640   };
641   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
642 }
643 
644 bool Constant::isDLLImportDependent() const {
645   auto DLLImportPredicate = [](const GlobalValue *GV) {
646     return GV->hasDLLImportStorageClass();
647   };
648   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
649 }
650 
651 bool Constant::isConstantUsed() const {
652   for (const User *U : users()) {
653     const Constant *UC = dyn_cast<Constant>(U);
654     if (!UC || isa<GlobalValue>(UC))
655       return true;
656 
657     if (UC->isConstantUsed())
658       return true;
659   }
660   return false;
661 }
662 
663 bool Constant::needsDynamicRelocation() const {
664   return getRelocationInfo() == GlobalRelocation;
665 }
666 
667 bool Constant::needsRelocation() const {
668   return getRelocationInfo() != NoRelocation;
669 }
670 
671 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
672   if (isa<GlobalValue>(this))
673     return GlobalRelocation; // Global reference.
674 
675   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
676     return BA->getFunction()->getRelocationInfo();
677 
678   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
679     if (CE->getOpcode() == Instruction::Sub) {
680       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
681       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
682       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
683           RHS->getOpcode() == Instruction::PtrToInt) {
684         Constant *LHSOp0 = LHS->getOperand(0);
685         Constant *RHSOp0 = RHS->getOperand(0);
686 
687         // While raw uses of blockaddress need to be relocated, differences
688         // between two of them don't when they are for labels in the same
689         // function.  This is a common idiom when creating a table for the
690         // indirect goto extension, so we handle it efficiently here.
691         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
692             cast<BlockAddress>(LHSOp0)->getFunction() ==
693                 cast<BlockAddress>(RHSOp0)->getFunction())
694           return NoRelocation;
695 
696         // Relative pointers do not need to be dynamically relocated.
697         if (auto *RHSGV =
698                 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) {
699           auto *LHS = LHSOp0->stripInBoundsConstantOffsets();
700           if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
701             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
702               return LocalRelocation;
703           } else if (isa<DSOLocalEquivalent>(LHS)) {
704             if (RHSGV->isDSOLocal())
705               return LocalRelocation;
706           }
707         }
708       }
709     }
710   }
711 
712   PossibleRelocationsTy Result = NoRelocation;
713   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
714     Result =
715         std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result);
716 
717   return Result;
718 }
719 
720 /// Return true if the specified constantexpr is dead. This involves
721 /// recursively traversing users of the constantexpr.
722 /// If RemoveDeadUsers is true, also remove dead users at the same time.
723 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) {
724   if (isa<GlobalValue>(C)) return false; // Cannot remove this
725 
726   Value::const_user_iterator I = C->user_begin(), E = C->user_end();
727   while (I != E) {
728     const Constant *User = dyn_cast<Constant>(*I);
729     if (!User) return false; // Non-constant usage;
730     if (!constantIsDead(User, RemoveDeadUsers))
731       return false; // Constant wasn't dead
732 
733     // Just removed User, so the iterator was invalidated.
734     // Since we return immediately upon finding a live user, we can always
735     // restart from user_begin().
736     if (RemoveDeadUsers)
737       I = C->user_begin();
738     else
739       ++I;
740   }
741 
742   if (RemoveDeadUsers) {
743     // If C is only used by metadata, it should not be preserved but should
744     // have its uses replaced.
745     if (C->isUsedByMetadata()) {
746       const_cast<Constant *>(C)->replaceAllUsesWith(
747           UndefValue::get(C->getType()));
748     }
749     const_cast<Constant *>(C)->destroyConstant();
750   }
751 
752   return true;
753 }
754 
755 void Constant::removeDeadConstantUsers() const {
756   Value::const_user_iterator I = user_begin(), E = user_end();
757   Value::const_user_iterator LastNonDeadUser = E;
758   while (I != E) {
759     const Constant *User = dyn_cast<Constant>(*I);
760     if (!User) {
761       LastNonDeadUser = I;
762       ++I;
763       continue;
764     }
765 
766     if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) {
767       // If the constant wasn't dead, remember that this was the last live use
768       // and move on to the next constant.
769       LastNonDeadUser = I;
770       ++I;
771       continue;
772     }
773 
774     // If the constant was dead, then the iterator is invalidated.
775     if (LastNonDeadUser == E)
776       I = user_begin();
777     else
778       I = std::next(LastNonDeadUser);
779   }
780 }
781 
782 bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); }
783 
784 bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); }
785 
786 bool Constant::hasNLiveUses(unsigned N) const {
787   unsigned NumUses = 0;
788   for (const Use &U : uses()) {
789     const Constant *User = dyn_cast<Constant>(U.getUser());
790     if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) {
791       ++NumUses;
792 
793       if (NumUses > N)
794         return false;
795     }
796   }
797   return NumUses == N;
798 }
799 
800 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
801   assert(C && Replacement && "Expected non-nullptr constant arguments");
802   Type *Ty = C->getType();
803   if (match(C, m_Undef())) {
804     assert(Ty == Replacement->getType() && "Expected matching types");
805     return Replacement;
806   }
807 
808   // Don't know how to deal with this constant.
809   auto *VTy = dyn_cast<FixedVectorType>(Ty);
810   if (!VTy)
811     return C;
812 
813   unsigned NumElts = VTy->getNumElements();
814   SmallVector<Constant *, 32> NewC(NumElts);
815   for (unsigned i = 0; i != NumElts; ++i) {
816     Constant *EltC = C->getAggregateElement(i);
817     assert((!EltC || EltC->getType() == Replacement->getType()) &&
818            "Expected matching types");
819     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
820   }
821   return ConstantVector::get(NewC);
822 }
823 
824 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) {
825   assert(C && Other && "Expected non-nullptr constant arguments");
826   if (match(C, m_Undef()))
827     return C;
828 
829   Type *Ty = C->getType();
830   if (match(Other, m_Undef()))
831     return UndefValue::get(Ty);
832 
833   auto *VTy = dyn_cast<FixedVectorType>(Ty);
834   if (!VTy)
835     return C;
836 
837   Type *EltTy = VTy->getElementType();
838   unsigned NumElts = VTy->getNumElements();
839   assert(isa<FixedVectorType>(Other->getType()) &&
840          cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts &&
841          "Type mismatch");
842 
843   bool FoundExtraUndef = false;
844   SmallVector<Constant *, 32> NewC(NumElts);
845   for (unsigned I = 0; I != NumElts; ++I) {
846     NewC[I] = C->getAggregateElement(I);
847     Constant *OtherEltC = Other->getAggregateElement(I);
848     assert(NewC[I] && OtherEltC && "Unknown vector element");
849     if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) {
850       NewC[I] = UndefValue::get(EltTy);
851       FoundExtraUndef = true;
852     }
853   }
854   if (FoundExtraUndef)
855     return ConstantVector::get(NewC);
856   return C;
857 }
858 
859 bool Constant::isManifestConstant() const {
860   if (isa<ConstantData>(this))
861     return true;
862   if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) {
863     for (const Value *Op : operand_values())
864       if (!cast<Constant>(Op)->isManifestConstant())
865         return false;
866     return true;
867   }
868   return false;
869 }
870 
871 //===----------------------------------------------------------------------===//
872 //                                ConstantInt
873 //===----------------------------------------------------------------------===//
874 
875 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
876     : ConstantData(Ty, ConstantIntVal), Val(V) {
877   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
878 }
879 
880 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
881   LLVMContextImpl *pImpl = Context.pImpl;
882   if (!pImpl->TheTrueVal)
883     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
884   return pImpl->TheTrueVal;
885 }
886 
887 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
888   LLVMContextImpl *pImpl = Context.pImpl;
889   if (!pImpl->TheFalseVal)
890     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
891   return pImpl->TheFalseVal;
892 }
893 
894 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) {
895   return V ? getTrue(Context) : getFalse(Context);
896 }
897 
898 Constant *ConstantInt::getTrue(Type *Ty) {
899   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
900   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
901   if (auto *VTy = dyn_cast<VectorType>(Ty))
902     return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
903   return TrueC;
904 }
905 
906 Constant *ConstantInt::getFalse(Type *Ty) {
907   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
908   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
909   if (auto *VTy = dyn_cast<VectorType>(Ty))
910     return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
911   return FalseC;
912 }
913 
914 Constant *ConstantInt::getBool(Type *Ty, bool V) {
915   return V ? getTrue(Ty) : getFalse(Ty);
916 }
917 
918 // Get a ConstantInt from an APInt.
919 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
920   // get an existing value or the insertion position
921   LLVMContextImpl *pImpl = Context.pImpl;
922   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
923   if (!Slot) {
924     // Get the corresponding integer type for the bit width of the value.
925     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
926     Slot.reset(new ConstantInt(ITy, V));
927   }
928   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
929   return Slot.get();
930 }
931 
932 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
933   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
934 
935   // For vectors, broadcast the value.
936   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
937     return ConstantVector::getSplat(VTy->getElementCount(), C);
938 
939   return C;
940 }
941 
942 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
943   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
944 }
945 
946 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
947   return get(Ty, V, true);
948 }
949 
950 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
951   return get(Ty, V, true);
952 }
953 
954 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
955   ConstantInt *C = get(Ty->getContext(), V);
956   assert(C->getType() == Ty->getScalarType() &&
957          "ConstantInt type doesn't match the type implied by its value!");
958 
959   // For vectors, broadcast the value.
960   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
961     return ConstantVector::getSplat(VTy->getElementCount(), C);
962 
963   return C;
964 }
965 
966 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
967   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
968 }
969 
970 /// Remove the constant from the constant table.
971 void ConstantInt::destroyConstantImpl() {
972   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
973 }
974 
975 //===----------------------------------------------------------------------===//
976 //                                ConstantFP
977 //===----------------------------------------------------------------------===//
978 
979 Constant *ConstantFP::get(Type *Ty, double V) {
980   LLVMContext &Context = Ty->getContext();
981 
982   APFloat FV(V);
983   bool ignored;
984   FV.convert(Ty->getScalarType()->getFltSemantics(),
985              APFloat::rmNearestTiesToEven, &ignored);
986   Constant *C = get(Context, FV);
987 
988   // For vectors, broadcast the value.
989   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
990     return ConstantVector::getSplat(VTy->getElementCount(), C);
991 
992   return C;
993 }
994 
995 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
996   ConstantFP *C = get(Ty->getContext(), V);
997   assert(C->getType() == Ty->getScalarType() &&
998          "ConstantFP type doesn't match the type implied by its value!");
999 
1000   // For vectors, broadcast the value.
1001   if (auto *VTy = dyn_cast<VectorType>(Ty))
1002     return ConstantVector::getSplat(VTy->getElementCount(), C);
1003 
1004   return C;
1005 }
1006 
1007 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
1008   LLVMContext &Context = Ty->getContext();
1009 
1010   APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
1011   Constant *C = get(Context, FV);
1012 
1013   // For vectors, broadcast the value.
1014   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1015     return ConstantVector::getSplat(VTy->getElementCount(), C);
1016 
1017   return C;
1018 }
1019 
1020 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
1021   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1022   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
1023   Constant *C = get(Ty->getContext(), NaN);
1024 
1025   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1026     return ConstantVector::getSplat(VTy->getElementCount(), C);
1027 
1028   return C;
1029 }
1030 
1031 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
1032   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1033   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
1034   Constant *C = get(Ty->getContext(), NaN);
1035 
1036   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1037     return ConstantVector::getSplat(VTy->getElementCount(), C);
1038 
1039   return C;
1040 }
1041 
1042 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
1043   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1044   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
1045   Constant *C = get(Ty->getContext(), NaN);
1046 
1047   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1048     return ConstantVector::getSplat(VTy->getElementCount(), C);
1049 
1050   return C;
1051 }
1052 
1053 Constant *ConstantFP::getNegativeZero(Type *Ty) {
1054   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1055   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
1056   Constant *C = get(Ty->getContext(), NegZero);
1057 
1058   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1059     return ConstantVector::getSplat(VTy->getElementCount(), C);
1060 
1061   return C;
1062 }
1063 
1064 
1065 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
1066   if (Ty->isFPOrFPVectorTy())
1067     return getNegativeZero(Ty);
1068 
1069   return Constant::getNullValue(Ty);
1070 }
1071 
1072 
1073 // ConstantFP accessors.
1074 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
1075   LLVMContextImpl* pImpl = Context.pImpl;
1076 
1077   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
1078 
1079   if (!Slot) {
1080     Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics());
1081     Slot.reset(new ConstantFP(Ty, V));
1082   }
1083 
1084   return Slot.get();
1085 }
1086 
1087 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
1088   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1089   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
1090 
1091   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1092     return ConstantVector::getSplat(VTy->getElementCount(), C);
1093 
1094   return C;
1095 }
1096 
1097 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
1098     : ConstantData(Ty, ConstantFPVal), Val(V) {
1099   assert(&V.getSemantics() == &Ty->getFltSemantics() &&
1100          "FP type Mismatch");
1101 }
1102 
1103 bool ConstantFP::isExactlyValue(const APFloat &V) const {
1104   return Val.bitwiseIsEqual(V);
1105 }
1106 
1107 /// Remove the constant from the constant table.
1108 void ConstantFP::destroyConstantImpl() {
1109   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1110 }
1111 
1112 //===----------------------------------------------------------------------===//
1113 //                   ConstantAggregateZero Implementation
1114 //===----------------------------------------------------------------------===//
1115 
1116 Constant *ConstantAggregateZero::getSequentialElement() const {
1117   if (auto *AT = dyn_cast<ArrayType>(getType()))
1118     return Constant::getNullValue(AT->getElementType());
1119   return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1120 }
1121 
1122 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1123   return Constant::getNullValue(getType()->getStructElementType(Elt));
1124 }
1125 
1126 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1127   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1128     return getSequentialElement();
1129   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1130 }
1131 
1132 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1133   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1134     return getSequentialElement();
1135   return getStructElement(Idx);
1136 }
1137 
1138 ElementCount ConstantAggregateZero::getElementCount() const {
1139   Type *Ty = getType();
1140   if (auto *AT = dyn_cast<ArrayType>(Ty))
1141     return ElementCount::getFixed(AT->getNumElements());
1142   if (auto *VT = dyn_cast<VectorType>(Ty))
1143     return VT->getElementCount();
1144   return ElementCount::getFixed(Ty->getStructNumElements());
1145 }
1146 
1147 //===----------------------------------------------------------------------===//
1148 //                         UndefValue Implementation
1149 //===----------------------------------------------------------------------===//
1150 
1151 UndefValue *UndefValue::getSequentialElement() const {
1152   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1153     return UndefValue::get(ATy->getElementType());
1154   return UndefValue::get(cast<VectorType>(getType())->getElementType());
1155 }
1156 
1157 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1158   return UndefValue::get(getType()->getStructElementType(Elt));
1159 }
1160 
1161 UndefValue *UndefValue::getElementValue(Constant *C) const {
1162   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1163     return getSequentialElement();
1164   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1165 }
1166 
1167 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1168   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1169     return getSequentialElement();
1170   return getStructElement(Idx);
1171 }
1172 
1173 unsigned UndefValue::getNumElements() const {
1174   Type *Ty = getType();
1175   if (auto *AT = dyn_cast<ArrayType>(Ty))
1176     return AT->getNumElements();
1177   if (auto *VT = dyn_cast<VectorType>(Ty))
1178     return cast<FixedVectorType>(VT)->getNumElements();
1179   return Ty->getStructNumElements();
1180 }
1181 
1182 //===----------------------------------------------------------------------===//
1183 //                         PoisonValue Implementation
1184 //===----------------------------------------------------------------------===//
1185 
1186 PoisonValue *PoisonValue::getSequentialElement() const {
1187   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1188     return PoisonValue::get(ATy->getElementType());
1189   return PoisonValue::get(cast<VectorType>(getType())->getElementType());
1190 }
1191 
1192 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const {
1193   return PoisonValue::get(getType()->getStructElementType(Elt));
1194 }
1195 
1196 PoisonValue *PoisonValue::getElementValue(Constant *C) const {
1197   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1198     return getSequentialElement();
1199   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1200 }
1201 
1202 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const {
1203   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1204     return getSequentialElement();
1205   return getStructElement(Idx);
1206 }
1207 
1208 //===----------------------------------------------------------------------===//
1209 //                            ConstantXXX Classes
1210 //===----------------------------------------------------------------------===//
1211 
1212 template <typename ItTy, typename EltTy>
1213 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1214   for (; Start != End; ++Start)
1215     if (*Start != Elt)
1216       return false;
1217   return true;
1218 }
1219 
1220 template <typename SequentialTy, typename ElementTy>
1221 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1222   assert(!V.empty() && "Cannot get empty int sequence.");
1223 
1224   SmallVector<ElementTy, 16> Elts;
1225   for (Constant *C : V)
1226     if (auto *CI = dyn_cast<ConstantInt>(C))
1227       Elts.push_back(CI->getZExtValue());
1228     else
1229       return nullptr;
1230   return SequentialTy::get(V[0]->getContext(), Elts);
1231 }
1232 
1233 template <typename SequentialTy, typename ElementTy>
1234 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1235   assert(!V.empty() && "Cannot get empty FP sequence.");
1236 
1237   SmallVector<ElementTy, 16> Elts;
1238   for (Constant *C : V)
1239     if (auto *CFP = dyn_cast<ConstantFP>(C))
1240       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1241     else
1242       return nullptr;
1243   return SequentialTy::getFP(V[0]->getType(), Elts);
1244 }
1245 
1246 template <typename SequenceTy>
1247 static Constant *getSequenceIfElementsMatch(Constant *C,
1248                                             ArrayRef<Constant *> V) {
1249   // We speculatively build the elements here even if it turns out that there is
1250   // a constantexpr or something else weird, since it is so uncommon for that to
1251   // happen.
1252   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1253     if (CI->getType()->isIntegerTy(8))
1254       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1255     else if (CI->getType()->isIntegerTy(16))
1256       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1257     else if (CI->getType()->isIntegerTy(32))
1258       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1259     else if (CI->getType()->isIntegerTy(64))
1260       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1261   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1262     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1263       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1264     else if (CFP->getType()->isFloatTy())
1265       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1266     else if (CFP->getType()->isDoubleTy())
1267       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1268   }
1269 
1270   return nullptr;
1271 }
1272 
1273 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1274                                      ArrayRef<Constant *> V)
1275     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1276                V.size()) {
1277   llvm::copy(V, op_begin());
1278 
1279   // Check that types match, unless this is an opaque struct.
1280   if (auto *ST = dyn_cast<StructType>(T)) {
1281     if (ST->isOpaque())
1282       return;
1283     for (unsigned I = 0, E = V.size(); I != E; ++I)
1284       assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1285              "Initializer for struct element doesn't match!");
1286   }
1287 }
1288 
1289 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1290     : ConstantAggregate(T, ConstantArrayVal, V) {
1291   assert(V.size() == T->getNumElements() &&
1292          "Invalid initializer for constant array");
1293 }
1294 
1295 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1296   if (Constant *C = getImpl(Ty, V))
1297     return C;
1298   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1299 }
1300 
1301 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1302   // Empty arrays are canonicalized to ConstantAggregateZero.
1303   if (V.empty())
1304     return ConstantAggregateZero::get(Ty);
1305 
1306   for (Constant *C : V) {
1307     assert(C->getType() == Ty->getElementType() &&
1308            "Wrong type in array element initializer");
1309     (void)C;
1310   }
1311 
1312   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1313   // all undef, return an UndefValue, if "all simple", then return a
1314   // ConstantDataArray.
1315   Constant *C = V[0];
1316   if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1317     return PoisonValue::get(Ty);
1318 
1319   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1320     return UndefValue::get(Ty);
1321 
1322   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1323     return ConstantAggregateZero::get(Ty);
1324 
1325   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1326   // the element type is compatible with ConstantDataVector.  If so, use it.
1327   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1328     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1329 
1330   // Otherwise, we really do want to create a ConstantArray.
1331   return nullptr;
1332 }
1333 
1334 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1335                                                ArrayRef<Constant*> V,
1336                                                bool Packed) {
1337   unsigned VecSize = V.size();
1338   SmallVector<Type*, 16> EltTypes(VecSize);
1339   for (unsigned i = 0; i != VecSize; ++i)
1340     EltTypes[i] = V[i]->getType();
1341 
1342   return StructType::get(Context, EltTypes, Packed);
1343 }
1344 
1345 
1346 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1347                                                bool Packed) {
1348   assert(!V.empty() &&
1349          "ConstantStruct::getTypeForElements cannot be called on empty list");
1350   return getTypeForElements(V[0]->getContext(), V, Packed);
1351 }
1352 
1353 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1354     : ConstantAggregate(T, ConstantStructVal, V) {
1355   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1356          "Invalid initializer for constant struct");
1357 }
1358 
1359 // ConstantStruct accessors.
1360 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1361   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1362          "Incorrect # elements specified to ConstantStruct::get");
1363 
1364   // Create a ConstantAggregateZero value if all elements are zeros.
1365   bool isZero = true;
1366   bool isUndef = false;
1367   bool isPoison = false;
1368 
1369   if (!V.empty()) {
1370     isUndef = isa<UndefValue>(V[0]);
1371     isPoison = isa<PoisonValue>(V[0]);
1372     isZero = V[0]->isNullValue();
1373     // PoisonValue inherits UndefValue, so its check is not necessary.
1374     if (isUndef || isZero) {
1375       for (Constant *C : V) {
1376         if (!C->isNullValue())
1377           isZero = false;
1378         if (!isa<PoisonValue>(C))
1379           isPoison = false;
1380         if (isa<PoisonValue>(C) || !isa<UndefValue>(C))
1381           isUndef = false;
1382       }
1383     }
1384   }
1385   if (isZero)
1386     return ConstantAggregateZero::get(ST);
1387   if (isPoison)
1388     return PoisonValue::get(ST);
1389   if (isUndef)
1390     return UndefValue::get(ST);
1391 
1392   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1393 }
1394 
1395 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1396     : ConstantAggregate(T, ConstantVectorVal, V) {
1397   assert(V.size() == cast<FixedVectorType>(T)->getNumElements() &&
1398          "Invalid initializer for constant vector");
1399 }
1400 
1401 // ConstantVector accessors.
1402 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1403   if (Constant *C = getImpl(V))
1404     return C;
1405   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1406   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1407 }
1408 
1409 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1410   assert(!V.empty() && "Vectors can't be empty");
1411   auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1412 
1413   // If this is an all-undef or all-zero vector, return a
1414   // ConstantAggregateZero or UndefValue.
1415   Constant *C = V[0];
1416   bool isZero = C->isNullValue();
1417   bool isUndef = isa<UndefValue>(C);
1418   bool isPoison = isa<PoisonValue>(C);
1419 
1420   if (isZero || isUndef) {
1421     for (unsigned i = 1, e = V.size(); i != e; ++i)
1422       if (V[i] != C) {
1423         isZero = isUndef = isPoison = false;
1424         break;
1425       }
1426   }
1427 
1428   if (isZero)
1429     return ConstantAggregateZero::get(T);
1430   if (isPoison)
1431     return PoisonValue::get(T);
1432   if (isUndef)
1433     return UndefValue::get(T);
1434 
1435   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1436   // the element type is compatible with ConstantDataVector.  If so, use it.
1437   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1438     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1439 
1440   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1441   // the operand list contains a ConstantExpr or something else strange.
1442   return nullptr;
1443 }
1444 
1445 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1446   if (!EC.isScalable()) {
1447     // If this splat is compatible with ConstantDataVector, use it instead of
1448     // ConstantVector.
1449     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1450         ConstantDataSequential::isElementTypeCompatible(V->getType()))
1451       return ConstantDataVector::getSplat(EC.getKnownMinValue(), V);
1452 
1453     SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V);
1454     return get(Elts);
1455   }
1456 
1457   Type *VTy = VectorType::get(V->getType(), EC);
1458 
1459   if (V->isNullValue())
1460     return ConstantAggregateZero::get(VTy);
1461   else if (isa<UndefValue>(V))
1462     return UndefValue::get(VTy);
1463 
1464   Type *I32Ty = Type::getInt32Ty(VTy->getContext());
1465 
1466   // Move scalar into vector.
1467   Constant *PoisonV = PoisonValue::get(VTy);
1468   V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(I32Ty, 0));
1469   // Build shuffle mask to perform the splat.
1470   SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0);
1471   // Splat.
1472   return ConstantExpr::getShuffleVector(V, PoisonV, Zeros);
1473 }
1474 
1475 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1476   LLVMContextImpl *pImpl = Context.pImpl;
1477   if (!pImpl->TheNoneToken)
1478     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1479   return pImpl->TheNoneToken.get();
1480 }
1481 
1482 /// Remove the constant from the constant table.
1483 void ConstantTokenNone::destroyConstantImpl() {
1484   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1485 }
1486 
1487 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1488 // can't be inline because we don't want to #include Instruction.h into
1489 // Constant.h
1490 bool ConstantExpr::isCast() const {
1491   return Instruction::isCast(getOpcode());
1492 }
1493 
1494 bool ConstantExpr::isCompare() const {
1495   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1496 }
1497 
1498 bool ConstantExpr::hasIndices() const {
1499   return getOpcode() == Instruction::ExtractValue ||
1500          getOpcode() == Instruction::InsertValue;
1501 }
1502 
1503 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1504   if (const ExtractValueConstantExpr *EVCE =
1505         dyn_cast<ExtractValueConstantExpr>(this))
1506     return EVCE->Indices;
1507 
1508   return cast<InsertValueConstantExpr>(this)->Indices;
1509 }
1510 
1511 unsigned ConstantExpr::getPredicate() const {
1512   return cast<CompareConstantExpr>(this)->predicate;
1513 }
1514 
1515 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1516   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1517 }
1518 
1519 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1520   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1521 }
1522 
1523 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1524                                         bool OnlyIfReduced, Type *SrcTy) const {
1525   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1526 
1527   // If no operands changed return self.
1528   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1529     return const_cast<ConstantExpr*>(this);
1530 
1531   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1532   switch (getOpcode()) {
1533   case Instruction::Trunc:
1534   case Instruction::ZExt:
1535   case Instruction::SExt:
1536   case Instruction::FPTrunc:
1537   case Instruction::FPExt:
1538   case Instruction::UIToFP:
1539   case Instruction::SIToFP:
1540   case Instruction::FPToUI:
1541   case Instruction::FPToSI:
1542   case Instruction::PtrToInt:
1543   case Instruction::IntToPtr:
1544   case Instruction::BitCast:
1545   case Instruction::AddrSpaceCast:
1546     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1547   case Instruction::Select:
1548     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1549   case Instruction::InsertElement:
1550     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1551                                           OnlyIfReducedTy);
1552   case Instruction::ExtractElement:
1553     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1554   case Instruction::InsertValue:
1555     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1556                                         OnlyIfReducedTy);
1557   case Instruction::ExtractValue:
1558     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1559   case Instruction::FNeg:
1560     return ConstantExpr::getFNeg(Ops[0]);
1561   case Instruction::ShuffleVector:
1562     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1563                                           OnlyIfReducedTy);
1564   case Instruction::GetElementPtr: {
1565     auto *GEPO = cast<GEPOperator>(this);
1566     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1567     return ConstantExpr::getGetElementPtr(
1568         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1569         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1570   }
1571   case Instruction::ICmp:
1572   case Instruction::FCmp:
1573     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1574                                     OnlyIfReducedTy);
1575   default:
1576     assert(getNumOperands() == 2 && "Must be binary operator?");
1577     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1578                              OnlyIfReducedTy);
1579   }
1580 }
1581 
1582 
1583 //===----------------------------------------------------------------------===//
1584 //                      isValueValidForType implementations
1585 
1586 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1587   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1588   if (Ty->isIntegerTy(1))
1589     return Val == 0 || Val == 1;
1590   return isUIntN(NumBits, Val);
1591 }
1592 
1593 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1594   unsigned NumBits = Ty->getIntegerBitWidth();
1595   if (Ty->isIntegerTy(1))
1596     return Val == 0 || Val == 1 || Val == -1;
1597   return isIntN(NumBits, Val);
1598 }
1599 
1600 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1601   // convert modifies in place, so make a copy.
1602   APFloat Val2 = APFloat(Val);
1603   bool losesInfo;
1604   switch (Ty->getTypeID()) {
1605   default:
1606     return false;         // These can't be represented as floating point!
1607 
1608   // FIXME rounding mode needs to be more flexible
1609   case Type::HalfTyID: {
1610     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1611       return true;
1612     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1613     return !losesInfo;
1614   }
1615   case Type::BFloatTyID: {
1616     if (&Val2.getSemantics() == &APFloat::BFloat())
1617       return true;
1618     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1619     return !losesInfo;
1620   }
1621   case Type::FloatTyID: {
1622     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1623       return true;
1624     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1625     return !losesInfo;
1626   }
1627   case Type::DoubleTyID: {
1628     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1629         &Val2.getSemantics() == &APFloat::BFloat() ||
1630         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1631         &Val2.getSemantics() == &APFloat::IEEEdouble())
1632       return true;
1633     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1634     return !losesInfo;
1635   }
1636   case Type::X86_FP80TyID:
1637     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1638            &Val2.getSemantics() == &APFloat::BFloat() ||
1639            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1640            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1641            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1642   case Type::FP128TyID:
1643     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1644            &Val2.getSemantics() == &APFloat::BFloat() ||
1645            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1646            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1647            &Val2.getSemantics() == &APFloat::IEEEquad();
1648   case Type::PPC_FP128TyID:
1649     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1650            &Val2.getSemantics() == &APFloat::BFloat() ||
1651            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1652            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1653            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1654   }
1655 }
1656 
1657 
1658 //===----------------------------------------------------------------------===//
1659 //                      Factory Function Implementation
1660 
1661 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1662   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1663          "Cannot create an aggregate zero of non-aggregate type!");
1664 
1665   std::unique_ptr<ConstantAggregateZero> &Entry =
1666       Ty->getContext().pImpl->CAZConstants[Ty];
1667   if (!Entry)
1668     Entry.reset(new ConstantAggregateZero(Ty));
1669 
1670   return Entry.get();
1671 }
1672 
1673 /// Remove the constant from the constant table.
1674 void ConstantAggregateZero::destroyConstantImpl() {
1675   getContext().pImpl->CAZConstants.erase(getType());
1676 }
1677 
1678 /// Remove the constant from the constant table.
1679 void ConstantArray::destroyConstantImpl() {
1680   getType()->getContext().pImpl->ArrayConstants.remove(this);
1681 }
1682 
1683 
1684 //---- ConstantStruct::get() implementation...
1685 //
1686 
1687 /// Remove the constant from the constant table.
1688 void ConstantStruct::destroyConstantImpl() {
1689   getType()->getContext().pImpl->StructConstants.remove(this);
1690 }
1691 
1692 /// Remove the constant from the constant table.
1693 void ConstantVector::destroyConstantImpl() {
1694   getType()->getContext().pImpl->VectorConstants.remove(this);
1695 }
1696 
1697 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1698   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1699   if (isa<ConstantAggregateZero>(this))
1700     return getNullValue(cast<VectorType>(getType())->getElementType());
1701   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1702     return CV->getSplatValue();
1703   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1704     return CV->getSplatValue(AllowUndefs);
1705 
1706   // Check if this is a constant expression splat of the form returned by
1707   // ConstantVector::getSplat()
1708   const auto *Shuf = dyn_cast<ConstantExpr>(this);
1709   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1710       isa<UndefValue>(Shuf->getOperand(1))) {
1711 
1712     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1713     if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1714         isa<UndefValue>(IElt->getOperand(0))) {
1715 
1716       ArrayRef<int> Mask = Shuf->getShuffleMask();
1717       Constant *SplatVal = IElt->getOperand(1);
1718       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1719 
1720       if (Index && Index->getValue() == 0 &&
1721           llvm::all_of(Mask, [](int I) { return I == 0; }))
1722         return SplatVal;
1723     }
1724   }
1725 
1726   return nullptr;
1727 }
1728 
1729 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1730   // Check out first element.
1731   Constant *Elt = getOperand(0);
1732   // Then make sure all remaining elements point to the same value.
1733   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1734     Constant *OpC = getOperand(I);
1735     if (OpC == Elt)
1736       continue;
1737 
1738     // Strict mode: any mismatch is not a splat.
1739     if (!AllowUndefs)
1740       return nullptr;
1741 
1742     // Allow undefs mode: ignore undefined elements.
1743     if (isa<UndefValue>(OpC))
1744       continue;
1745 
1746     // If we do not have a defined element yet, use the current operand.
1747     if (isa<UndefValue>(Elt))
1748       Elt = OpC;
1749 
1750     if (OpC != Elt)
1751       return nullptr;
1752   }
1753   return Elt;
1754 }
1755 
1756 const APInt &Constant::getUniqueInteger() const {
1757   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1758     return CI->getValue();
1759   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1760   const Constant *C = this->getAggregateElement(0U);
1761   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1762   return cast<ConstantInt>(C)->getValue();
1763 }
1764 
1765 //---- ConstantPointerNull::get() implementation.
1766 //
1767 
1768 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1769   std::unique_ptr<ConstantPointerNull> &Entry =
1770       Ty->getContext().pImpl->CPNConstants[Ty];
1771   if (!Entry)
1772     Entry.reset(new ConstantPointerNull(Ty));
1773 
1774   return Entry.get();
1775 }
1776 
1777 /// Remove the constant from the constant table.
1778 void ConstantPointerNull::destroyConstantImpl() {
1779   getContext().pImpl->CPNConstants.erase(getType());
1780 }
1781 
1782 UndefValue *UndefValue::get(Type *Ty) {
1783   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1784   if (!Entry)
1785     Entry.reset(new UndefValue(Ty));
1786 
1787   return Entry.get();
1788 }
1789 
1790 /// Remove the constant from the constant table.
1791 void UndefValue::destroyConstantImpl() {
1792   // Free the constant and any dangling references to it.
1793   if (getValueID() == UndefValueVal) {
1794     getContext().pImpl->UVConstants.erase(getType());
1795   } else if (getValueID() == PoisonValueVal) {
1796     getContext().pImpl->PVConstants.erase(getType());
1797   }
1798   llvm_unreachable("Not a undef or a poison!");
1799 }
1800 
1801 PoisonValue *PoisonValue::get(Type *Ty) {
1802   std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty];
1803   if (!Entry)
1804     Entry.reset(new PoisonValue(Ty));
1805 
1806   return Entry.get();
1807 }
1808 
1809 /// Remove the constant from the constant table.
1810 void PoisonValue::destroyConstantImpl() {
1811   // Free the constant and any dangling references to it.
1812   getContext().pImpl->PVConstants.erase(getType());
1813 }
1814 
1815 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1816   assert(BB->getParent() && "Block must have a parent");
1817   return get(BB->getParent(), BB);
1818 }
1819 
1820 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1821   BlockAddress *&BA =
1822     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1823   if (!BA)
1824     BA = new BlockAddress(F, BB);
1825 
1826   assert(BA->getFunction() == F && "Basic block moved between functions");
1827   return BA;
1828 }
1829 
1830 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1831     : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()),
1832                Value::BlockAddressVal, &Op<0>(), 2) {
1833   setOperand(0, F);
1834   setOperand(1, BB);
1835   BB->AdjustBlockAddressRefCount(1);
1836 }
1837 
1838 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1839   if (!BB->hasAddressTaken())
1840     return nullptr;
1841 
1842   const Function *F = BB->getParent();
1843   assert(F && "Block must have a parent");
1844   BlockAddress *BA =
1845       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1846   assert(BA && "Refcount and block address map disagree!");
1847   return BA;
1848 }
1849 
1850 /// Remove the constant from the constant table.
1851 void BlockAddress::destroyConstantImpl() {
1852   getFunction()->getType()->getContext().pImpl
1853     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1854   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1855 }
1856 
1857 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1858   // This could be replacing either the Basic Block or the Function.  In either
1859   // case, we have to remove the map entry.
1860   Function *NewF = getFunction();
1861   BasicBlock *NewBB = getBasicBlock();
1862 
1863   if (From == NewF)
1864     NewF = cast<Function>(To->stripPointerCasts());
1865   else {
1866     assert(From == NewBB && "From does not match any operand");
1867     NewBB = cast<BasicBlock>(To);
1868   }
1869 
1870   // See if the 'new' entry already exists, if not, just update this in place
1871   // and return early.
1872   BlockAddress *&NewBA =
1873     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1874   if (NewBA)
1875     return NewBA;
1876 
1877   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1878 
1879   // Remove the old entry, this can't cause the map to rehash (just a
1880   // tombstone will get added).
1881   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1882                                                           getBasicBlock()));
1883   NewBA = this;
1884   setOperand(0, NewF);
1885   setOperand(1, NewBB);
1886   getBasicBlock()->AdjustBlockAddressRefCount(1);
1887 
1888   // If we just want to keep the existing value, then return null.
1889   // Callers know that this means we shouldn't delete this value.
1890   return nullptr;
1891 }
1892 
1893 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) {
1894   DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV];
1895   if (!Equiv)
1896     Equiv = new DSOLocalEquivalent(GV);
1897 
1898   assert(Equiv->getGlobalValue() == GV &&
1899          "DSOLocalFunction does not match the expected global value");
1900   return Equiv;
1901 }
1902 
1903 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV)
1904     : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) {
1905   setOperand(0, GV);
1906 }
1907 
1908 /// Remove the constant from the constant table.
1909 void DSOLocalEquivalent::destroyConstantImpl() {
1910   const GlobalValue *GV = getGlobalValue();
1911   GV->getContext().pImpl->DSOLocalEquivalents.erase(GV);
1912 }
1913 
1914 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) {
1915   assert(From == getGlobalValue() && "Changing value does not match operand.");
1916   assert(isa<Constant>(To) && "Can only replace the operands with a constant");
1917 
1918   // The replacement is with another global value.
1919   if (const auto *ToObj = dyn_cast<GlobalValue>(To)) {
1920     DSOLocalEquivalent *&NewEquiv =
1921         getContext().pImpl->DSOLocalEquivalents[ToObj];
1922     if (NewEquiv)
1923       return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1924   }
1925 
1926   // If the argument is replaced with a null value, just replace this constant
1927   // with a null value.
1928   if (cast<Constant>(To)->isNullValue())
1929     return To;
1930 
1931   // The replacement could be a bitcast or an alias to another function. We can
1932   // replace it with a bitcast to the dso_local_equivalent of that function.
1933   auto *Func = cast<Function>(To->stripPointerCastsAndAliases());
1934   DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func];
1935   if (NewEquiv)
1936     return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1937 
1938   // Replace this with the new one.
1939   getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue());
1940   NewEquiv = this;
1941   setOperand(0, Func);
1942 
1943   if (Func->getType() != getType()) {
1944     // It is ok to mutate the type here because this constant should always
1945     // reflect the type of the function it's holding.
1946     mutateType(Func->getType());
1947   }
1948   return nullptr;
1949 }
1950 
1951 NoCFIValue *NoCFIValue::get(GlobalValue *GV) {
1952   NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV];
1953   if (!NC)
1954     NC = new NoCFIValue(GV);
1955 
1956   assert(NC->getGlobalValue() == GV &&
1957          "NoCFIValue does not match the expected global value");
1958   return NC;
1959 }
1960 
1961 NoCFIValue::NoCFIValue(GlobalValue *GV)
1962     : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) {
1963   setOperand(0, GV);
1964 }
1965 
1966 /// Remove the constant from the constant table.
1967 void NoCFIValue::destroyConstantImpl() {
1968   const GlobalValue *GV = getGlobalValue();
1969   GV->getContext().pImpl->NoCFIValues.erase(GV);
1970 }
1971 
1972 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) {
1973   assert(From == getGlobalValue() && "Changing value does not match operand.");
1974 
1975   GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts());
1976   assert(GV && "Can only replace the operands with a global value");
1977 
1978   NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV];
1979   if (NewNC)
1980     return llvm::ConstantExpr::getBitCast(NewNC, getType());
1981 
1982   getContext().pImpl->NoCFIValues.erase(getGlobalValue());
1983   NewNC = this;
1984   setOperand(0, GV);
1985 
1986   if (GV->getType() != getType())
1987     mutateType(GV->getType());
1988 
1989   return nullptr;
1990 }
1991 
1992 //---- ConstantExpr::get() implementations.
1993 //
1994 
1995 /// This is a utility function to handle folding of casts and lookup of the
1996 /// cast in the ExprConstants map. It is used by the various get* methods below.
1997 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1998                                bool OnlyIfReduced = false) {
1999   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
2000   // Fold a few common cases
2001   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
2002     return FC;
2003 
2004   if (OnlyIfReduced)
2005     return nullptr;
2006 
2007   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
2008 
2009   // Look up the constant in the table first to ensure uniqueness.
2010   ConstantExprKeyType Key(opc, C);
2011 
2012   return pImpl->ExprConstants.getOrCreate(Ty, Key);
2013 }
2014 
2015 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
2016                                 bool OnlyIfReduced) {
2017   Instruction::CastOps opc = Instruction::CastOps(oc);
2018   assert(Instruction::isCast(opc) && "opcode out of range");
2019   assert(C && Ty && "Null arguments to getCast");
2020   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
2021 
2022   switch (opc) {
2023   default:
2024     llvm_unreachable("Invalid cast opcode");
2025   case Instruction::Trunc:
2026     return getTrunc(C, Ty, OnlyIfReduced);
2027   case Instruction::ZExt:
2028     return getZExt(C, Ty, OnlyIfReduced);
2029   case Instruction::SExt:
2030     return getSExt(C, Ty, OnlyIfReduced);
2031   case Instruction::FPTrunc:
2032     return getFPTrunc(C, Ty, OnlyIfReduced);
2033   case Instruction::FPExt:
2034     return getFPExtend(C, Ty, OnlyIfReduced);
2035   case Instruction::UIToFP:
2036     return getUIToFP(C, Ty, OnlyIfReduced);
2037   case Instruction::SIToFP:
2038     return getSIToFP(C, Ty, OnlyIfReduced);
2039   case Instruction::FPToUI:
2040     return getFPToUI(C, Ty, OnlyIfReduced);
2041   case Instruction::FPToSI:
2042     return getFPToSI(C, Ty, OnlyIfReduced);
2043   case Instruction::PtrToInt:
2044     return getPtrToInt(C, Ty, OnlyIfReduced);
2045   case Instruction::IntToPtr:
2046     return getIntToPtr(C, Ty, OnlyIfReduced);
2047   case Instruction::BitCast:
2048     return getBitCast(C, Ty, OnlyIfReduced);
2049   case Instruction::AddrSpaceCast:
2050     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
2051   }
2052 }
2053 
2054 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
2055   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2056     return getBitCast(C, Ty);
2057   return getZExt(C, Ty);
2058 }
2059 
2060 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
2061   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2062     return getBitCast(C, Ty);
2063   return getSExt(C, Ty);
2064 }
2065 
2066 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
2067   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2068     return getBitCast(C, Ty);
2069   return getTrunc(C, Ty);
2070 }
2071 
2072 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
2073   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2074   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2075           "Invalid cast");
2076 
2077   if (Ty->isIntOrIntVectorTy())
2078     return getPtrToInt(S, Ty);
2079 
2080   unsigned SrcAS = S->getType()->getPointerAddressSpace();
2081   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2082     return getAddrSpaceCast(S, Ty);
2083 
2084   return getBitCast(S, Ty);
2085 }
2086 
2087 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
2088                                                          Type *Ty) {
2089   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2090   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2091 
2092   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2093     return getAddrSpaceCast(S, Ty);
2094 
2095   return getBitCast(S, Ty);
2096 }
2097 
2098 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
2099   assert(C->getType()->isIntOrIntVectorTy() &&
2100          Ty->isIntOrIntVectorTy() && "Invalid cast");
2101   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2102   unsigned DstBits = Ty->getScalarSizeInBits();
2103   Instruction::CastOps opcode =
2104     (SrcBits == DstBits ? Instruction::BitCast :
2105      (SrcBits > DstBits ? Instruction::Trunc :
2106       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2107   return getCast(opcode, C, Ty);
2108 }
2109 
2110 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
2111   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2112          "Invalid cast");
2113   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2114   unsigned DstBits = Ty->getScalarSizeInBits();
2115   if (SrcBits == DstBits)
2116     return C; // Avoid a useless cast
2117   Instruction::CastOps opcode =
2118     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
2119   return getCast(opcode, C, Ty);
2120 }
2121 
2122 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2123 #ifndef NDEBUG
2124   bool fromVec = isa<VectorType>(C->getType());
2125   bool toVec = isa<VectorType>(Ty);
2126 #endif
2127   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2128   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
2129   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
2130   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2131          "SrcTy must be larger than DestTy for Trunc!");
2132 
2133   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
2134 }
2135 
2136 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2137 #ifndef NDEBUG
2138   bool fromVec = isa<VectorType>(C->getType());
2139   bool toVec = isa<VectorType>(Ty);
2140 #endif
2141   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2142   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
2143   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
2144   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2145          "SrcTy must be smaller than DestTy for SExt!");
2146 
2147   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
2148 }
2149 
2150 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2151 #ifndef NDEBUG
2152   bool fromVec = isa<VectorType>(C->getType());
2153   bool toVec = isa<VectorType>(Ty);
2154 #endif
2155   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2156   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
2157   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
2158   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2159          "SrcTy must be smaller than DestTy for ZExt!");
2160 
2161   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
2162 }
2163 
2164 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2165 #ifndef NDEBUG
2166   bool fromVec = isa<VectorType>(C->getType());
2167   bool toVec = isa<VectorType>(Ty);
2168 #endif
2169   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2170   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2171          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2172          "This is an illegal floating point truncation!");
2173   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
2174 }
2175 
2176 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
2177 #ifndef NDEBUG
2178   bool fromVec = isa<VectorType>(C->getType());
2179   bool toVec = isa<VectorType>(Ty);
2180 #endif
2181   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2182   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2183          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2184          "This is an illegal floating point extension!");
2185   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
2186 }
2187 
2188 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2189 #ifndef NDEBUG
2190   bool fromVec = isa<VectorType>(C->getType());
2191   bool toVec = isa<VectorType>(Ty);
2192 #endif
2193   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2194   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2195          "This is an illegal uint to floating point cast!");
2196   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
2197 }
2198 
2199 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2200 #ifndef NDEBUG
2201   bool fromVec = isa<VectorType>(C->getType());
2202   bool toVec = isa<VectorType>(Ty);
2203 #endif
2204   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2205   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2206          "This is an illegal sint to floating point cast!");
2207   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
2208 }
2209 
2210 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2211 #ifndef NDEBUG
2212   bool fromVec = isa<VectorType>(C->getType());
2213   bool toVec = isa<VectorType>(Ty);
2214 #endif
2215   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2216   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2217          "This is an illegal floating point to uint cast!");
2218   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
2219 }
2220 
2221 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2222 #ifndef NDEBUG
2223   bool fromVec = isa<VectorType>(C->getType());
2224   bool toVec = isa<VectorType>(Ty);
2225 #endif
2226   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2227   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2228          "This is an illegal floating point to sint cast!");
2229   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
2230 }
2231 
2232 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2233                                     bool OnlyIfReduced) {
2234   assert(C->getType()->isPtrOrPtrVectorTy() &&
2235          "PtrToInt source must be pointer or pointer vector");
2236   assert(DstTy->isIntOrIntVectorTy() &&
2237          "PtrToInt destination must be integer or integer vector");
2238   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2239   if (isa<VectorType>(C->getType()))
2240     assert(cast<FixedVectorType>(C->getType())->getNumElements() ==
2241                cast<FixedVectorType>(DstTy)->getNumElements() &&
2242            "Invalid cast between a different number of vector elements");
2243   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2244 }
2245 
2246 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2247                                     bool OnlyIfReduced) {
2248   assert(C->getType()->isIntOrIntVectorTy() &&
2249          "IntToPtr source must be integer or integer vector");
2250   assert(DstTy->isPtrOrPtrVectorTy() &&
2251          "IntToPtr destination must be a pointer or pointer vector");
2252   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2253   if (isa<VectorType>(C->getType()))
2254     assert(cast<VectorType>(C->getType())->getElementCount() ==
2255                cast<VectorType>(DstTy)->getElementCount() &&
2256            "Invalid cast between a different number of vector elements");
2257   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2258 }
2259 
2260 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2261                                    bool OnlyIfReduced) {
2262   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2263          "Invalid constantexpr bitcast!");
2264 
2265   // It is common to ask for a bitcast of a value to its own type, handle this
2266   // speedily.
2267   if (C->getType() == DstTy) return C;
2268 
2269   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2270 }
2271 
2272 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2273                                          bool OnlyIfReduced) {
2274   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2275          "Invalid constantexpr addrspacecast!");
2276 
2277   // Canonicalize addrspacecasts between different pointer types by first
2278   // bitcasting the pointer type and then converting the address space.
2279   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
2280   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
2281   if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) {
2282     Type *MidTy = PointerType::getWithSamePointeeType(
2283         DstScalarTy, SrcScalarTy->getAddressSpace());
2284     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
2285       // Handle vectors of pointers.
2286       MidTy = FixedVectorType::get(MidTy,
2287                                    cast<FixedVectorType>(VT)->getNumElements());
2288     }
2289     C = getBitCast(C, MidTy);
2290   }
2291   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2292 }
2293 
2294 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
2295                             Type *OnlyIfReducedTy) {
2296   // Check the operands for consistency first.
2297   assert(Instruction::isUnaryOp(Opcode) &&
2298          "Invalid opcode in unary constant expression");
2299 
2300 #ifndef NDEBUG
2301   switch (Opcode) {
2302   case Instruction::FNeg:
2303     assert(C->getType()->isFPOrFPVectorTy() &&
2304            "Tried to create a floating-point operation on a "
2305            "non-floating-point type!");
2306     break;
2307   default:
2308     break;
2309   }
2310 #endif
2311 
2312   if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
2313     return FC;
2314 
2315   if (OnlyIfReducedTy == C->getType())
2316     return nullptr;
2317 
2318   Constant *ArgVec[] = { C };
2319   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2320 
2321   LLVMContextImpl *pImpl = C->getContext().pImpl;
2322   return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
2323 }
2324 
2325 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2326                             unsigned Flags, Type *OnlyIfReducedTy) {
2327   // Check the operands for consistency first.
2328   assert(Instruction::isBinaryOp(Opcode) &&
2329          "Invalid opcode in binary constant expression");
2330   assert(C1->getType() == C2->getType() &&
2331          "Operand types in binary constant expression should match");
2332 
2333 #ifndef NDEBUG
2334   switch (Opcode) {
2335   case Instruction::Add:
2336   case Instruction::Sub:
2337   case Instruction::Mul:
2338   case Instruction::UDiv:
2339   case Instruction::SDiv:
2340   case Instruction::URem:
2341   case Instruction::SRem:
2342     assert(C1->getType()->isIntOrIntVectorTy() &&
2343            "Tried to create an integer operation on a non-integer type!");
2344     break;
2345   case Instruction::FAdd:
2346   case Instruction::FSub:
2347   case Instruction::FMul:
2348   case Instruction::FDiv:
2349   case Instruction::FRem:
2350     assert(C1->getType()->isFPOrFPVectorTy() &&
2351            "Tried to create a floating-point operation on a "
2352            "non-floating-point type!");
2353     break;
2354   case Instruction::And:
2355   case Instruction::Or:
2356   case Instruction::Xor:
2357     assert(C1->getType()->isIntOrIntVectorTy() &&
2358            "Tried to create a logical operation on a non-integral type!");
2359     break;
2360   case Instruction::Shl:
2361   case Instruction::LShr:
2362   case Instruction::AShr:
2363     assert(C1->getType()->isIntOrIntVectorTy() &&
2364            "Tried to create a shift operation on a non-integer type!");
2365     break;
2366   default:
2367     break;
2368   }
2369 #endif
2370 
2371   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2372     return FC;
2373 
2374   if (OnlyIfReducedTy == C1->getType())
2375     return nullptr;
2376 
2377   Constant *ArgVec[] = { C1, C2 };
2378   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2379 
2380   LLVMContextImpl *pImpl = C1->getContext().pImpl;
2381   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2382 }
2383 
2384 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2385   // sizeof is implemented as: (i64) gep (Ty*)null, 1
2386   // Note that a non-inbounds gep is used, as null isn't within any object.
2387   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2388   Constant *GEP = getGetElementPtr(
2389       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2390   return getPtrToInt(GEP,
2391                      Type::getInt64Ty(Ty->getContext()));
2392 }
2393 
2394 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2395   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2396   // Note that a non-inbounds gep is used, as null isn't within any object.
2397   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2398   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2399   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2400   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2401   Constant *Indices[2] = { Zero, One };
2402   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2403   return getPtrToInt(GEP,
2404                      Type::getInt64Ty(Ty->getContext()));
2405 }
2406 
2407 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2408   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2409                                            FieldNo));
2410 }
2411 
2412 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2413   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2414   // Note that a non-inbounds gep is used, as null isn't within any object.
2415   Constant *GEPIdx[] = {
2416     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2417     FieldNo
2418   };
2419   Constant *GEP = getGetElementPtr(
2420       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2421   return getPtrToInt(GEP,
2422                      Type::getInt64Ty(Ty->getContext()));
2423 }
2424 
2425 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2426                                    Constant *C2, bool OnlyIfReduced) {
2427   assert(C1->getType() == C2->getType() && "Op types should be identical!");
2428 
2429   switch (Predicate) {
2430   default: llvm_unreachable("Invalid CmpInst predicate");
2431   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2432   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2433   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2434   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2435   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2436   case CmpInst::FCMP_TRUE:
2437     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2438 
2439   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2440   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2441   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2442   case CmpInst::ICMP_SLE:
2443     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2444   }
2445 }
2446 
2447 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2448                                   Type *OnlyIfReducedTy) {
2449   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2450 
2451   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2452     return SC;        // Fold common cases
2453 
2454   if (OnlyIfReducedTy == V1->getType())
2455     return nullptr;
2456 
2457   Constant *ArgVec[] = { C, V1, V2 };
2458   ConstantExprKeyType Key(Instruction::Select, ArgVec);
2459 
2460   LLVMContextImpl *pImpl = C->getContext().pImpl;
2461   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2462 }
2463 
2464 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2465                                          ArrayRef<Value *> Idxs, bool InBounds,
2466                                          Optional<unsigned> InRangeIndex,
2467                                          Type *OnlyIfReducedTy) {
2468   PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType());
2469   assert(Ty && "Must specify element type");
2470   assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty));
2471 
2472   if (Constant *FC =
2473           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2474     return FC;          // Fold a few common cases.
2475 
2476   // Get the result type of the getelementptr!
2477   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2478   assert(DestTy && "GEP indices invalid!");
2479   unsigned AS = OrigPtrTy->getAddressSpace();
2480   Type *ReqTy = OrigPtrTy->isOpaque()
2481       ? PointerType::get(OrigPtrTy->getContext(), AS)
2482       : DestTy->getPointerTo(AS);
2483 
2484   auto EltCount = ElementCount::getFixed(0);
2485   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2486     EltCount = VecTy->getElementCount();
2487   else
2488     for (auto Idx : Idxs)
2489       if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
2490         EltCount = VecTy->getElementCount();
2491 
2492   if (EltCount.isNonZero())
2493     ReqTy = VectorType::get(ReqTy, EltCount);
2494 
2495   if (OnlyIfReducedTy == ReqTy)
2496     return nullptr;
2497 
2498   // Look up the constant in the table first to ensure uniqueness
2499   std::vector<Constant*> ArgVec;
2500   ArgVec.reserve(1 + Idxs.size());
2501   ArgVec.push_back(C);
2502   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2503   for (; GTI != GTE; ++GTI) {
2504     auto *Idx = cast<Constant>(GTI.getOperand());
2505     assert(
2506         (!isa<VectorType>(Idx->getType()) ||
2507          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2508         "getelementptr index type missmatch");
2509 
2510     if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2511       Idx = Idx->getSplatValue();
2512     } else if (GTI.isSequential() && EltCount.isNonZero() &&
2513                !Idx->getType()->isVectorTy()) {
2514       Idx = ConstantVector::getSplat(EltCount, Idx);
2515     }
2516     ArgVec.push_back(Idx);
2517   }
2518 
2519   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2520   if (InRangeIndex && *InRangeIndex < 63)
2521     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2522   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2523                                 SubClassOptionalData, None, None, Ty);
2524 
2525   LLVMContextImpl *pImpl = C->getContext().pImpl;
2526   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2527 }
2528 
2529 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2530                                 Constant *RHS, bool OnlyIfReduced) {
2531   auto Predicate = static_cast<CmpInst::Predicate>(pred);
2532   assert(LHS->getType() == RHS->getType());
2533   assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate");
2534 
2535   if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS))
2536     return FC;          // Fold a few common cases...
2537 
2538   if (OnlyIfReduced)
2539     return nullptr;
2540 
2541   // Look up the constant in the table first to ensure uniqueness
2542   Constant *ArgVec[] = { LHS, RHS };
2543   // Get the key type with both the opcode and predicate
2544   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate);
2545 
2546   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2547   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2548     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2549 
2550   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2551   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2552 }
2553 
2554 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2555                                 Constant *RHS, bool OnlyIfReduced) {
2556   auto Predicate = static_cast<CmpInst::Predicate>(pred);
2557   assert(LHS->getType() == RHS->getType());
2558   assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate");
2559 
2560   if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS))
2561     return FC;          // Fold a few common cases...
2562 
2563   if (OnlyIfReduced)
2564     return nullptr;
2565 
2566   // Look up the constant in the table first to ensure uniqueness
2567   Constant *ArgVec[] = { LHS, RHS };
2568   // Get the key type with both the opcode and predicate
2569   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate);
2570 
2571   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2572   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2573     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2574 
2575   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2576   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2577 }
2578 
2579 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2580                                           Type *OnlyIfReducedTy) {
2581   assert(Val->getType()->isVectorTy() &&
2582          "Tried to create extractelement operation on non-vector type!");
2583   assert(Idx->getType()->isIntegerTy() &&
2584          "Extractelement index must be an integer type!");
2585 
2586   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2587     return FC;          // Fold a few common cases.
2588 
2589   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2590   if (OnlyIfReducedTy == ReqTy)
2591     return nullptr;
2592 
2593   // Look up the constant in the table first to ensure uniqueness
2594   Constant *ArgVec[] = { Val, Idx };
2595   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2596 
2597   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2598   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2599 }
2600 
2601 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2602                                          Constant *Idx, Type *OnlyIfReducedTy) {
2603   assert(Val->getType()->isVectorTy() &&
2604          "Tried to create insertelement operation on non-vector type!");
2605   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2606          "Insertelement types must match!");
2607   assert(Idx->getType()->isIntegerTy() &&
2608          "Insertelement index must be i32 type!");
2609 
2610   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2611     return FC;          // Fold a few common cases.
2612 
2613   if (OnlyIfReducedTy == Val->getType())
2614     return nullptr;
2615 
2616   // Look up the constant in the table first to ensure uniqueness
2617   Constant *ArgVec[] = { Val, Elt, Idx };
2618   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2619 
2620   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2621   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2622 }
2623 
2624 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2625                                          ArrayRef<int> Mask,
2626                                          Type *OnlyIfReducedTy) {
2627   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2628          "Invalid shuffle vector constant expr operands!");
2629 
2630   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2631     return FC;          // Fold a few common cases.
2632 
2633   unsigned NElts = Mask.size();
2634   auto V1VTy = cast<VectorType>(V1->getType());
2635   Type *EltTy = V1VTy->getElementType();
2636   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2637   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2638 
2639   if (OnlyIfReducedTy == ShufTy)
2640     return nullptr;
2641 
2642   // Look up the constant in the table first to ensure uniqueness
2643   Constant *ArgVec[] = {V1, V2};
2644   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
2645 
2646   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2647   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2648 }
2649 
2650 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2651                                        ArrayRef<unsigned> Idxs,
2652                                        Type *OnlyIfReducedTy) {
2653   assert(Agg->getType()->isFirstClassType() &&
2654          "Non-first-class type for constant insertvalue expression");
2655 
2656   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2657                                           Idxs) == Val->getType() &&
2658          "insertvalue indices invalid!");
2659   Type *ReqTy = Val->getType();
2660 
2661   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2662     return FC;
2663 
2664   if (OnlyIfReducedTy == ReqTy)
2665     return nullptr;
2666 
2667   Constant *ArgVec[] = { Agg, Val };
2668   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2669 
2670   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2671   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2672 }
2673 
2674 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2675                                         Type *OnlyIfReducedTy) {
2676   assert(Agg->getType()->isFirstClassType() &&
2677          "Tried to create extractelement operation on non-first-class type!");
2678 
2679   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2680   (void)ReqTy;
2681   assert(ReqTy && "extractvalue indices invalid!");
2682 
2683   assert(Agg->getType()->isFirstClassType() &&
2684          "Non-first-class type for constant extractvalue expression");
2685   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2686     return FC;
2687 
2688   if (OnlyIfReducedTy == ReqTy)
2689     return nullptr;
2690 
2691   Constant *ArgVec[] = { Agg };
2692   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2693 
2694   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2695   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2696 }
2697 
2698 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2699   assert(C->getType()->isIntOrIntVectorTy() &&
2700          "Cannot NEG a nonintegral value!");
2701   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2702                 C, HasNUW, HasNSW);
2703 }
2704 
2705 Constant *ConstantExpr::getFNeg(Constant *C) {
2706   assert(C->getType()->isFPOrFPVectorTy() &&
2707          "Cannot FNEG a non-floating-point value!");
2708   return get(Instruction::FNeg, C);
2709 }
2710 
2711 Constant *ConstantExpr::getNot(Constant *C) {
2712   assert(C->getType()->isIntOrIntVectorTy() &&
2713          "Cannot NOT a nonintegral value!");
2714   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2715 }
2716 
2717 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2718                                bool HasNUW, bool HasNSW) {
2719   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2720                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2721   return get(Instruction::Add, C1, C2, Flags);
2722 }
2723 
2724 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2725   return get(Instruction::FAdd, C1, C2);
2726 }
2727 
2728 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2729                                bool HasNUW, bool HasNSW) {
2730   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2731                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2732   return get(Instruction::Sub, C1, C2, Flags);
2733 }
2734 
2735 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2736   return get(Instruction::FSub, C1, C2);
2737 }
2738 
2739 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2740                                bool HasNUW, bool HasNSW) {
2741   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2742                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2743   return get(Instruction::Mul, C1, C2, Flags);
2744 }
2745 
2746 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2747   return get(Instruction::FMul, C1, C2);
2748 }
2749 
2750 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2751   return get(Instruction::UDiv, C1, C2,
2752              isExact ? PossiblyExactOperator::IsExact : 0);
2753 }
2754 
2755 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2756   return get(Instruction::SDiv, C1, C2,
2757              isExact ? PossiblyExactOperator::IsExact : 0);
2758 }
2759 
2760 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2761   return get(Instruction::FDiv, C1, C2);
2762 }
2763 
2764 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2765   return get(Instruction::URem, C1, C2);
2766 }
2767 
2768 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2769   return get(Instruction::SRem, C1, C2);
2770 }
2771 
2772 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2773   return get(Instruction::FRem, C1, C2);
2774 }
2775 
2776 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2777   return get(Instruction::And, C1, C2);
2778 }
2779 
2780 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2781   return get(Instruction::Or, C1, C2);
2782 }
2783 
2784 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2785   return get(Instruction::Xor, C1, C2);
2786 }
2787 
2788 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) {
2789   Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2);
2790   return getSelect(Cmp, C1, C2);
2791 }
2792 
2793 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2794                                bool HasNUW, bool HasNSW) {
2795   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2796                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2797   return get(Instruction::Shl, C1, C2, Flags);
2798 }
2799 
2800 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2801   return get(Instruction::LShr, C1, C2,
2802              isExact ? PossiblyExactOperator::IsExact : 0);
2803 }
2804 
2805 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2806   return get(Instruction::AShr, C1, C2,
2807              isExact ? PossiblyExactOperator::IsExact : 0);
2808 }
2809 
2810 Constant *ConstantExpr::getExactLogBase2(Constant *C) {
2811   Type *Ty = C->getType();
2812   const APInt *IVal;
2813   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
2814     return ConstantInt::get(Ty, IVal->logBase2());
2815 
2816   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
2817   auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2818   if (!VecTy)
2819     return nullptr;
2820 
2821   SmallVector<Constant *, 4> Elts;
2822   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
2823     Constant *Elt = C->getAggregateElement(I);
2824     if (!Elt)
2825       return nullptr;
2826     // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
2827     if (isa<UndefValue>(Elt)) {
2828       Elts.push_back(Constant::getNullValue(Ty->getScalarType()));
2829       continue;
2830     }
2831     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
2832       return nullptr;
2833     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
2834   }
2835 
2836   return ConstantVector::get(Elts);
2837 }
2838 
2839 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2840                                          bool AllowRHSConstant) {
2841   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2842 
2843   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2844   if (Instruction::isCommutative(Opcode)) {
2845     switch (Opcode) {
2846       case Instruction::Add: // X + 0 = X
2847       case Instruction::Or:  // X | 0 = X
2848       case Instruction::Xor: // X ^ 0 = X
2849         return Constant::getNullValue(Ty);
2850       case Instruction::Mul: // X * 1 = X
2851         return ConstantInt::get(Ty, 1);
2852       case Instruction::And: // X & -1 = X
2853         return Constant::getAllOnesValue(Ty);
2854       case Instruction::FAdd: // X + -0.0 = X
2855         // TODO: If the fadd has 'nsz', should we return +0.0?
2856         return ConstantFP::getNegativeZero(Ty);
2857       case Instruction::FMul: // X * 1.0 = X
2858         return ConstantFP::get(Ty, 1.0);
2859       default:
2860         llvm_unreachable("Every commutative binop has an identity constant");
2861     }
2862   }
2863 
2864   // Non-commutative opcodes: AllowRHSConstant must be set.
2865   if (!AllowRHSConstant)
2866     return nullptr;
2867 
2868   switch (Opcode) {
2869     case Instruction::Sub:  // X - 0 = X
2870     case Instruction::Shl:  // X << 0 = X
2871     case Instruction::LShr: // X >>u 0 = X
2872     case Instruction::AShr: // X >> 0 = X
2873     case Instruction::FSub: // X - 0.0 = X
2874       return Constant::getNullValue(Ty);
2875     case Instruction::SDiv: // X / 1 = X
2876     case Instruction::UDiv: // X /u 1 = X
2877       return ConstantInt::get(Ty, 1);
2878     case Instruction::FDiv: // X / 1.0 = X
2879       return ConstantFP::get(Ty, 1.0);
2880     default:
2881       return nullptr;
2882   }
2883 }
2884 
2885 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2886   switch (Opcode) {
2887   default:
2888     // Doesn't have an absorber.
2889     return nullptr;
2890 
2891   case Instruction::Or:
2892     return Constant::getAllOnesValue(Ty);
2893 
2894   case Instruction::And:
2895   case Instruction::Mul:
2896     return Constant::getNullValue(Ty);
2897   }
2898 }
2899 
2900 /// Remove the constant from the constant table.
2901 void ConstantExpr::destroyConstantImpl() {
2902   getType()->getContext().pImpl->ExprConstants.remove(this);
2903 }
2904 
2905 const char *ConstantExpr::getOpcodeName() const {
2906   return Instruction::getOpcodeName(getOpcode());
2907 }
2908 
2909 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2910     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2911     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2912                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2913                        (IdxList.size() + 1),
2914                    IdxList.size() + 1),
2915       SrcElementTy(SrcElementTy),
2916       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2917   Op<0>() = C;
2918   Use *OperandList = getOperandList();
2919   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2920     OperandList[i+1] = IdxList[i];
2921 }
2922 
2923 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2924   return SrcElementTy;
2925 }
2926 
2927 Type *GetElementPtrConstantExpr::getResultElementType() const {
2928   return ResElementTy;
2929 }
2930 
2931 //===----------------------------------------------------------------------===//
2932 //                       ConstantData* implementations
2933 
2934 Type *ConstantDataSequential::getElementType() const {
2935   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2936     return ATy->getElementType();
2937   return cast<VectorType>(getType())->getElementType();
2938 }
2939 
2940 StringRef ConstantDataSequential::getRawDataValues() const {
2941   return StringRef(DataElements, getNumElements()*getElementByteSize());
2942 }
2943 
2944 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2945   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2946     return true;
2947   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2948     switch (IT->getBitWidth()) {
2949     case 8:
2950     case 16:
2951     case 32:
2952     case 64:
2953       return true;
2954     default: break;
2955     }
2956   }
2957   return false;
2958 }
2959 
2960 unsigned ConstantDataSequential::getNumElements() const {
2961   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2962     return AT->getNumElements();
2963   return cast<FixedVectorType>(getType())->getNumElements();
2964 }
2965 
2966 
2967 uint64_t ConstantDataSequential::getElementByteSize() const {
2968   return getElementType()->getPrimitiveSizeInBits()/8;
2969 }
2970 
2971 /// Return the start of the specified element.
2972 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2973   assert(Elt < getNumElements() && "Invalid Elt");
2974   return DataElements+Elt*getElementByteSize();
2975 }
2976 
2977 
2978 /// Return true if the array is empty or all zeros.
2979 static bool isAllZeros(StringRef Arr) {
2980   for (char I : Arr)
2981     if (I != 0)
2982       return false;
2983   return true;
2984 }
2985 
2986 /// This is the underlying implementation of all of the
2987 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2988 /// the correct element type.  We take the bytes in as a StringRef because
2989 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2990 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2991 #ifndef NDEBUG
2992   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2993     assert(isElementTypeCompatible(ATy->getElementType()));
2994   else
2995     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2996 #endif
2997   // If the elements are all zero or there are no elements, return a CAZ, which
2998   // is more dense and canonical.
2999   if (isAllZeros(Elements))
3000     return ConstantAggregateZero::get(Ty);
3001 
3002   // Do a lookup to see if we have already formed one of these.
3003   auto &Slot =
3004       *Ty->getContext()
3005            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
3006            .first;
3007 
3008   // The bucket can point to a linked list of different CDS's that have the same
3009   // body but different types.  For example, 0,0,0,1 could be a 4 element array
3010   // of i8, or a 1-element array of i32.  They'll both end up in the same
3011   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
3012   std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
3013   for (; *Entry; Entry = &(*Entry)->Next)
3014     if ((*Entry)->getType() == Ty)
3015       return Entry->get();
3016 
3017   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
3018   // and return it.
3019   if (isa<ArrayType>(Ty)) {
3020     // Use reset because std::make_unique can't access the constructor.
3021     Entry->reset(new ConstantDataArray(Ty, Slot.first().data()));
3022     return Entry->get();
3023   }
3024 
3025   assert(isa<VectorType>(Ty));
3026   // Use reset because std::make_unique can't access the constructor.
3027   Entry->reset(new ConstantDataVector(Ty, Slot.first().data()));
3028   return Entry->get();
3029 }
3030 
3031 void ConstantDataSequential::destroyConstantImpl() {
3032   // Remove the constant from the StringMap.
3033   StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants =
3034       getType()->getContext().pImpl->CDSConstants;
3035 
3036   auto Slot = CDSConstants.find(getRawDataValues());
3037 
3038   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
3039 
3040   std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
3041 
3042   // Remove the entry from the hash table.
3043   if (!(*Entry)->Next) {
3044     // If there is only one value in the bucket (common case) it must be this
3045     // entry, and removing the entry should remove the bucket completely.
3046     assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential");
3047     getContext().pImpl->CDSConstants.erase(Slot);
3048     return;
3049   }
3050 
3051   // Otherwise, there are multiple entries linked off the bucket, unlink the
3052   // node we care about but keep the bucket around.
3053   while (true) {
3054     std::unique_ptr<ConstantDataSequential> &Node = *Entry;
3055     assert(Node && "Didn't find entry in its uniquing hash table!");
3056     // If we found our entry, unlink it from the list and we're done.
3057     if (Node.get() == this) {
3058       Node = std::move(Node->Next);
3059       return;
3060     }
3061 
3062     Entry = &Node->Next;
3063   }
3064 }
3065 
3066 /// getFP() constructors - Return a constant of array type with a float
3067 /// element type taken from argument `ElementType', and count taken from
3068 /// argument `Elts'.  The amount of bits of the contained type must match the
3069 /// number of bits of the type contained in the passed in ArrayRef.
3070 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3071 /// that this can return a ConstantAggregateZero object.
3072 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
3073   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3074          "Element type is not a 16-bit float type");
3075   Type *Ty = ArrayType::get(ElementType, Elts.size());
3076   const char *Data = reinterpret_cast<const char *>(Elts.data());
3077   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3078 }
3079 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
3080   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3081   Type *Ty = ArrayType::get(ElementType, Elts.size());
3082   const char *Data = reinterpret_cast<const char *>(Elts.data());
3083   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3084 }
3085 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
3086   assert(ElementType->isDoubleTy() &&
3087          "Element type is not a 64-bit float type");
3088   Type *Ty = ArrayType::get(ElementType, Elts.size());
3089   const char *Data = reinterpret_cast<const char *>(Elts.data());
3090   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3091 }
3092 
3093 Constant *ConstantDataArray::getString(LLVMContext &Context,
3094                                        StringRef Str, bool AddNull) {
3095   if (!AddNull) {
3096     const uint8_t *Data = Str.bytes_begin();
3097     return get(Context, makeArrayRef(Data, Str.size()));
3098   }
3099 
3100   SmallVector<uint8_t, 64> ElementVals;
3101   ElementVals.append(Str.begin(), Str.end());
3102   ElementVals.push_back(0);
3103   return get(Context, ElementVals);
3104 }
3105 
3106 /// get() constructors - Return a constant with vector type with an element
3107 /// count and element type matching the ArrayRef passed in.  Note that this
3108 /// can return a ConstantAggregateZero object.
3109 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
3110   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
3111   const char *Data = reinterpret_cast<const char *>(Elts.data());
3112   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
3113 }
3114 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
3115   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
3116   const char *Data = reinterpret_cast<const char *>(Elts.data());
3117   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3118 }
3119 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
3120   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
3121   const char *Data = reinterpret_cast<const char *>(Elts.data());
3122   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3123 }
3124 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
3125   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
3126   const char *Data = reinterpret_cast<const char *>(Elts.data());
3127   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3128 }
3129 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
3130   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
3131   const char *Data = reinterpret_cast<const char *>(Elts.data());
3132   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3133 }
3134 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
3135   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
3136   const char *Data = reinterpret_cast<const char *>(Elts.data());
3137   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3138 }
3139 
3140 /// getFP() constructors - Return a constant of vector type with a float
3141 /// element type taken from argument `ElementType', and count taken from
3142 /// argument `Elts'.  The amount of bits of the contained type must match the
3143 /// number of bits of the type contained in the passed in ArrayRef.
3144 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3145 /// that this can return a ConstantAggregateZero object.
3146 Constant *ConstantDataVector::getFP(Type *ElementType,
3147                                     ArrayRef<uint16_t> Elts) {
3148   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3149          "Element type is not a 16-bit float type");
3150   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3151   const char *Data = reinterpret_cast<const char *>(Elts.data());
3152   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3153 }
3154 Constant *ConstantDataVector::getFP(Type *ElementType,
3155                                     ArrayRef<uint32_t> Elts) {
3156   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3157   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3158   const char *Data = reinterpret_cast<const char *>(Elts.data());
3159   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3160 }
3161 Constant *ConstantDataVector::getFP(Type *ElementType,
3162                                     ArrayRef<uint64_t> Elts) {
3163   assert(ElementType->isDoubleTy() &&
3164          "Element type is not a 64-bit float type");
3165   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3166   const char *Data = reinterpret_cast<const char *>(Elts.data());
3167   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3168 }
3169 
3170 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
3171   assert(isElementTypeCompatible(V->getType()) &&
3172          "Element type not compatible with ConstantData");
3173   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3174     if (CI->getType()->isIntegerTy(8)) {
3175       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
3176       return get(V->getContext(), Elts);
3177     }
3178     if (CI->getType()->isIntegerTy(16)) {
3179       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
3180       return get(V->getContext(), Elts);
3181     }
3182     if (CI->getType()->isIntegerTy(32)) {
3183       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
3184       return get(V->getContext(), Elts);
3185     }
3186     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
3187     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
3188     return get(V->getContext(), Elts);
3189   }
3190 
3191   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3192     if (CFP->getType()->isHalfTy()) {
3193       SmallVector<uint16_t, 16> Elts(
3194           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3195       return getFP(V->getType(), Elts);
3196     }
3197     if (CFP->getType()->isBFloatTy()) {
3198       SmallVector<uint16_t, 16> Elts(
3199           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3200       return getFP(V->getType(), Elts);
3201     }
3202     if (CFP->getType()->isFloatTy()) {
3203       SmallVector<uint32_t, 16> Elts(
3204           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3205       return getFP(V->getType(), Elts);
3206     }
3207     if (CFP->getType()->isDoubleTy()) {
3208       SmallVector<uint64_t, 16> Elts(
3209           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3210       return getFP(V->getType(), Elts);
3211     }
3212   }
3213   return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V);
3214 }
3215 
3216 
3217 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
3218   assert(isa<IntegerType>(getElementType()) &&
3219          "Accessor can only be used when element is an integer");
3220   const char *EltPtr = getElementPointer(Elt);
3221 
3222   // The data is stored in host byte order, make sure to cast back to the right
3223   // type to load with the right endianness.
3224   switch (getElementType()->getIntegerBitWidth()) {
3225   default: llvm_unreachable("Invalid bitwidth for CDS");
3226   case 8:
3227     return *reinterpret_cast<const uint8_t *>(EltPtr);
3228   case 16:
3229     return *reinterpret_cast<const uint16_t *>(EltPtr);
3230   case 32:
3231     return *reinterpret_cast<const uint32_t *>(EltPtr);
3232   case 64:
3233     return *reinterpret_cast<const uint64_t *>(EltPtr);
3234   }
3235 }
3236 
3237 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
3238   assert(isa<IntegerType>(getElementType()) &&
3239          "Accessor can only be used when element is an integer");
3240   const char *EltPtr = getElementPointer(Elt);
3241 
3242   // The data is stored in host byte order, make sure to cast back to the right
3243   // type to load with the right endianness.
3244   switch (getElementType()->getIntegerBitWidth()) {
3245   default: llvm_unreachable("Invalid bitwidth for CDS");
3246   case 8: {
3247     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
3248     return APInt(8, EltVal);
3249   }
3250   case 16: {
3251     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3252     return APInt(16, EltVal);
3253   }
3254   case 32: {
3255     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3256     return APInt(32, EltVal);
3257   }
3258   case 64: {
3259     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3260     return APInt(64, EltVal);
3261   }
3262   }
3263 }
3264 
3265 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
3266   const char *EltPtr = getElementPointer(Elt);
3267 
3268   switch (getElementType()->getTypeID()) {
3269   default:
3270     llvm_unreachable("Accessor can only be used when element is float/double!");
3271   case Type::HalfTyID: {
3272     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3273     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3274   }
3275   case Type::BFloatTyID: {
3276     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3277     return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3278   }
3279   case Type::FloatTyID: {
3280     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3281     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3282   }
3283   case Type::DoubleTyID: {
3284     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3285     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3286   }
3287   }
3288 }
3289 
3290 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3291   assert(getElementType()->isFloatTy() &&
3292          "Accessor can only be used when element is a 'float'");
3293   return *reinterpret_cast<const float *>(getElementPointer(Elt));
3294 }
3295 
3296 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3297   assert(getElementType()->isDoubleTy() &&
3298          "Accessor can only be used when element is a 'float'");
3299   return *reinterpret_cast<const double *>(getElementPointer(Elt));
3300 }
3301 
3302 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3303   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3304       getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3305     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3306 
3307   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3308 }
3309 
3310 bool ConstantDataSequential::isString(unsigned CharSize) const {
3311   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3312 }
3313 
3314 bool ConstantDataSequential::isCString() const {
3315   if (!isString())
3316     return false;
3317 
3318   StringRef Str = getAsString();
3319 
3320   // The last value must be nul.
3321   if (Str.back() != 0) return false;
3322 
3323   // Other elements must be non-nul.
3324   return !Str.drop_back().contains(0);
3325 }
3326 
3327 bool ConstantDataVector::isSplatData() const {
3328   const char *Base = getRawDataValues().data();
3329 
3330   // Compare elements 1+ to the 0'th element.
3331   unsigned EltSize = getElementByteSize();
3332   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3333     if (memcmp(Base, Base+i*EltSize, EltSize))
3334       return false;
3335 
3336   return true;
3337 }
3338 
3339 bool ConstantDataVector::isSplat() const {
3340   if (!IsSplatSet) {
3341     IsSplatSet = true;
3342     IsSplat = isSplatData();
3343   }
3344   return IsSplat;
3345 }
3346 
3347 Constant *ConstantDataVector::getSplatValue() const {
3348   // If they're all the same, return the 0th one as a representative.
3349   return isSplat() ? getElementAsConstant(0) : nullptr;
3350 }
3351 
3352 //===----------------------------------------------------------------------===//
3353 //                handleOperandChange implementations
3354 
3355 /// Update this constant array to change uses of
3356 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
3357 /// etc.
3358 ///
3359 /// Note that we intentionally replace all uses of From with To here.  Consider
3360 /// a large array that uses 'From' 1000 times.  By handling this case all here,
3361 /// ConstantArray::handleOperandChange is only invoked once, and that
3362 /// single invocation handles all 1000 uses.  Handling them one at a time would
3363 /// work, but would be really slow because it would have to unique each updated
3364 /// array instance.
3365 ///
3366 void Constant::handleOperandChange(Value *From, Value *To) {
3367   Value *Replacement = nullptr;
3368   switch (getValueID()) {
3369   default:
3370     llvm_unreachable("Not a constant!");
3371 #define HANDLE_CONSTANT(Name)                                                  \
3372   case Value::Name##Val:                                                       \
3373     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
3374     break;
3375 #include "llvm/IR/Value.def"
3376   }
3377 
3378   // If handleOperandChangeImpl returned nullptr, then it handled
3379   // replacing itself and we don't want to delete or replace anything else here.
3380   if (!Replacement)
3381     return;
3382 
3383   // I do need to replace this with an existing value.
3384   assert(Replacement != this && "I didn't contain From!");
3385 
3386   // Everyone using this now uses the replacement.
3387   replaceAllUsesWith(Replacement);
3388 
3389   // Delete the old constant!
3390   destroyConstant();
3391 }
3392 
3393 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3394   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3395   Constant *ToC = cast<Constant>(To);
3396 
3397   SmallVector<Constant*, 8> Values;
3398   Values.reserve(getNumOperands());  // Build replacement array.
3399 
3400   // Fill values with the modified operands of the constant array.  Also,
3401   // compute whether this turns into an all-zeros array.
3402   unsigned NumUpdated = 0;
3403 
3404   // Keep track of whether all the values in the array are "ToC".
3405   bool AllSame = true;
3406   Use *OperandList = getOperandList();
3407   unsigned OperandNo = 0;
3408   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3409     Constant *Val = cast<Constant>(O->get());
3410     if (Val == From) {
3411       OperandNo = (O - OperandList);
3412       Val = ToC;
3413       ++NumUpdated;
3414     }
3415     Values.push_back(Val);
3416     AllSame &= Val == ToC;
3417   }
3418 
3419   if (AllSame && ToC->isNullValue())
3420     return ConstantAggregateZero::get(getType());
3421 
3422   if (AllSame && isa<UndefValue>(ToC))
3423     return UndefValue::get(getType());
3424 
3425   // Check for any other type of constant-folding.
3426   if (Constant *C = getImpl(getType(), Values))
3427     return C;
3428 
3429   // Update to the new value.
3430   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3431       Values, this, From, ToC, NumUpdated, OperandNo);
3432 }
3433 
3434 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3435   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3436   Constant *ToC = cast<Constant>(To);
3437 
3438   Use *OperandList = getOperandList();
3439 
3440   SmallVector<Constant*, 8> Values;
3441   Values.reserve(getNumOperands());  // Build replacement struct.
3442 
3443   // Fill values with the modified operands of the constant struct.  Also,
3444   // compute whether this turns into an all-zeros struct.
3445   unsigned NumUpdated = 0;
3446   bool AllSame = true;
3447   unsigned OperandNo = 0;
3448   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3449     Constant *Val = cast<Constant>(O->get());
3450     if (Val == From) {
3451       OperandNo = (O - OperandList);
3452       Val = ToC;
3453       ++NumUpdated;
3454     }
3455     Values.push_back(Val);
3456     AllSame &= Val == ToC;
3457   }
3458 
3459   if (AllSame && ToC->isNullValue())
3460     return ConstantAggregateZero::get(getType());
3461 
3462   if (AllSame && isa<UndefValue>(ToC))
3463     return UndefValue::get(getType());
3464 
3465   // Update to the new value.
3466   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3467       Values, this, From, ToC, NumUpdated, OperandNo);
3468 }
3469 
3470 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3471   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3472   Constant *ToC = cast<Constant>(To);
3473 
3474   SmallVector<Constant*, 8> Values;
3475   Values.reserve(getNumOperands());  // Build replacement array...
3476   unsigned NumUpdated = 0;
3477   unsigned OperandNo = 0;
3478   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3479     Constant *Val = getOperand(i);
3480     if (Val == From) {
3481       OperandNo = i;
3482       ++NumUpdated;
3483       Val = ToC;
3484     }
3485     Values.push_back(Val);
3486   }
3487 
3488   if (Constant *C = getImpl(Values))
3489     return C;
3490 
3491   // Update to the new value.
3492   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3493       Values, this, From, ToC, NumUpdated, OperandNo);
3494 }
3495 
3496 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3497   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3498   Constant *To = cast<Constant>(ToV);
3499 
3500   SmallVector<Constant*, 8> NewOps;
3501   unsigned NumUpdated = 0;
3502   unsigned OperandNo = 0;
3503   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3504     Constant *Op = getOperand(i);
3505     if (Op == From) {
3506       OperandNo = i;
3507       ++NumUpdated;
3508       Op = To;
3509     }
3510     NewOps.push_back(Op);
3511   }
3512   assert(NumUpdated && "I didn't contain From!");
3513 
3514   if (Constant *C = getWithOperands(NewOps, getType(), true))
3515     return C;
3516 
3517   // Update to the new value.
3518   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3519       NewOps, this, From, To, NumUpdated, OperandNo);
3520 }
3521 
3522 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const {
3523   SmallVector<Value *, 4> ValueOperands(operands());
3524   ArrayRef<Value*> Ops(ValueOperands);
3525 
3526   switch (getOpcode()) {
3527   case Instruction::Trunc:
3528   case Instruction::ZExt:
3529   case Instruction::SExt:
3530   case Instruction::FPTrunc:
3531   case Instruction::FPExt:
3532   case Instruction::UIToFP:
3533   case Instruction::SIToFP:
3534   case Instruction::FPToUI:
3535   case Instruction::FPToSI:
3536   case Instruction::PtrToInt:
3537   case Instruction::IntToPtr:
3538   case Instruction::BitCast:
3539   case Instruction::AddrSpaceCast:
3540     return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0],
3541                             getType(), "", InsertBefore);
3542   case Instruction::Select:
3543     return SelectInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore);
3544   case Instruction::InsertElement:
3545     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore);
3546   case Instruction::ExtractElement:
3547     return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore);
3548   case Instruction::InsertValue:
3549     return InsertValueInst::Create(Ops[0], Ops[1], getIndices(), "",
3550                                    InsertBefore);
3551   case Instruction::ExtractValue:
3552     return ExtractValueInst::Create(Ops[0], getIndices(), "", InsertBefore);
3553   case Instruction::ShuffleVector:
3554     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "",
3555                                  InsertBefore);
3556 
3557   case Instruction::GetElementPtr: {
3558     const auto *GO = cast<GEPOperator>(this);
3559     if (GO->isInBounds())
3560       return GetElementPtrInst::CreateInBounds(
3561           GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore);
3562     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3563                                      Ops.slice(1), "", InsertBefore);
3564   }
3565   case Instruction::ICmp:
3566   case Instruction::FCmp:
3567     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3568                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1],
3569                            "", InsertBefore);
3570   case Instruction::FNeg:
3571     return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0], "",
3572                                  InsertBefore);
3573   default:
3574     assert(getNumOperands() == 2 && "Must be binary operator?");
3575     BinaryOperator *BO = BinaryOperator::Create(
3576         (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore);
3577     if (isa<OverflowingBinaryOperator>(BO)) {
3578       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3579                                OverflowingBinaryOperator::NoUnsignedWrap);
3580       BO->setHasNoSignedWrap(SubclassOptionalData &
3581                              OverflowingBinaryOperator::NoSignedWrap);
3582     }
3583     if (isa<PossiblyExactOperator>(BO))
3584       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3585     return BO;
3586   }
3587 }
3588