1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 
33 using namespace llvm;
34 using namespace PatternMatch;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Constant Class
38 //===----------------------------------------------------------------------===//
39 
40 bool Constant::isNegativeZeroValue() const {
41   // Floating point values have an explicit -0.0 value.
42   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
43     return CFP->isZero() && CFP->isNegative();
44 
45   // Equivalent for a vector of -0.0's.
46   if (getType()->isVectorTy())
47     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
48       return SplatCFP->isNegativeZeroValue();
49 
50   // We've already handled true FP case; any other FP vectors can't represent -0.0.
51   if (getType()->isFPOrFPVectorTy())
52     return false;
53 
54   // Otherwise, just use +0.0.
55   return isNullValue();
56 }
57 
58 // Return true iff this constant is positive zero (floating point), negative
59 // zero (floating point), or a null value.
60 bool Constant::isZeroValue() const {
61   // Floating point values have an explicit -0.0 value.
62   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
63     return CFP->isZero();
64 
65   // Check for constant splat vectors of 1 values.
66   if (getType()->isVectorTy())
67     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
68       return SplatCFP->isZero();
69 
70   // Otherwise, just use +0.0.
71   return isNullValue();
72 }
73 
74 bool Constant::isNullValue() const {
75   // 0 is null.
76   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
77     return CI->isZero();
78 
79   // +0.0 is null.
80   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
81     // ppc_fp128 determine isZero using high order double only
82     // Should check the bitwise value to make sure all bits are zero.
83     return CFP->isExactlyValue(+0.0);
84 
85   // constant zero is zero for aggregates, cpnull is null for pointers, none for
86   // tokens.
87   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
88          isa<ConstantTokenNone>(this);
89 }
90 
91 bool Constant::isAllOnesValue() const {
92   // Check for -1 integers
93   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94     return CI->isMinusOne();
95 
96   // Check for FP which are bitcasted from -1 integers
97   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
99 
100   // Check for constant splat vectors of 1 values.
101   if (getType()->isVectorTy())
102     if (const auto *SplatVal = getSplatValue())
103       return SplatVal->isAllOnesValue();
104 
105   return false;
106 }
107 
108 bool Constant::isOneValue() const {
109   // Check for 1 integers
110   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
111     return CI->isOne();
112 
113   // Check for FP which are bitcasted from 1 integers
114   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
115     return CFP->getValueAPF().bitcastToAPInt().isOneValue();
116 
117   // Check for constant splat vectors of 1 values.
118   if (getType()->isVectorTy())
119     if (const auto *SplatVal = getSplatValue())
120       return SplatVal->isOneValue();
121 
122   return false;
123 }
124 
125 bool Constant::isNotOneValue() const {
126   // Check for 1 integers
127   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
128     return !CI->isOneValue();
129 
130   // Check for FP which are bitcasted from 1 integers
131   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
132     return !CFP->getValueAPF().bitcastToAPInt().isOneValue();
133 
134   // Check that vectors don't contain 1
135   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
136     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
137       Constant *Elt = getAggregateElement(I);
138       if (!Elt || !Elt->isNotOneValue())
139         return false;
140     }
141     return true;
142   }
143 
144   // Check for splats that don't contain 1
145   if (getType()->isVectorTy())
146     if (const auto *SplatVal = getSplatValue())
147       return SplatVal->isNotOneValue();
148 
149   // It *may* contain 1, we can't tell.
150   return false;
151 }
152 
153 bool Constant::isMinSignedValue() const {
154   // Check for INT_MIN integers
155   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
156     return CI->isMinValue(/*isSigned=*/true);
157 
158   // Check for FP which are bitcasted from INT_MIN integers
159   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
160     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
161 
162   // Check for splats of INT_MIN values.
163   if (getType()->isVectorTy())
164     if (const auto *SplatVal = getSplatValue())
165       return SplatVal->isMinSignedValue();
166 
167   return false;
168 }
169 
170 bool Constant::isNotMinSignedValue() const {
171   // Check for INT_MIN integers
172   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
173     return !CI->isMinValue(/*isSigned=*/true);
174 
175   // Check for FP which are bitcasted from INT_MIN integers
176   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
177     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
178 
179   // Check that vectors don't contain INT_MIN
180   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
181     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
182       Constant *Elt = getAggregateElement(I);
183       if (!Elt || !Elt->isNotMinSignedValue())
184         return false;
185     }
186     return true;
187   }
188 
189   // Check for splats that aren't INT_MIN
190   if (getType()->isVectorTy())
191     if (const auto *SplatVal = getSplatValue())
192       return SplatVal->isNotMinSignedValue();
193 
194   // It *may* contain INT_MIN, we can't tell.
195   return false;
196 }
197 
198 bool Constant::isFiniteNonZeroFP() const {
199   if (auto *CFP = dyn_cast<ConstantFP>(this))
200     return CFP->getValueAPF().isFiniteNonZero();
201 
202   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
203     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
204       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
205       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
206         return false;
207     }
208     return true;
209   }
210 
211   if (getType()->isVectorTy())
212     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
213       return SplatCFP->isFiniteNonZeroFP();
214 
215   // It *may* contain finite non-zero, we can't tell.
216   return false;
217 }
218 
219 bool Constant::isNormalFP() const {
220   if (auto *CFP = dyn_cast<ConstantFP>(this))
221     return CFP->getValueAPF().isNormal();
222 
223   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
224     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
225       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
226       if (!CFP || !CFP->getValueAPF().isNormal())
227         return false;
228     }
229     return true;
230   }
231 
232   if (getType()->isVectorTy())
233     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
234       return SplatCFP->isNormalFP();
235 
236   // It *may* contain a normal fp value, we can't tell.
237   return false;
238 }
239 
240 bool Constant::hasExactInverseFP() const {
241   if (auto *CFP = dyn_cast<ConstantFP>(this))
242     return CFP->getValueAPF().getExactInverse(nullptr);
243 
244   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
245     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
246       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
247       if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
248         return false;
249     }
250     return true;
251   }
252 
253   if (getType()->isVectorTy())
254     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
255       return SplatCFP->hasExactInverseFP();
256 
257   // It *may* have an exact inverse fp value, we can't tell.
258   return false;
259 }
260 
261 bool Constant::isNaN() const {
262   if (auto *CFP = dyn_cast<ConstantFP>(this))
263     return CFP->isNaN();
264 
265   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
266     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
267       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
268       if (!CFP || !CFP->isNaN())
269         return false;
270     }
271     return true;
272   }
273 
274   if (getType()->isVectorTy())
275     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
276       return SplatCFP->isNaN();
277 
278   // It *may* be NaN, we can't tell.
279   return false;
280 }
281 
282 bool Constant::isElementWiseEqual(Value *Y) const {
283   // Are they fully identical?
284   if (this == Y)
285     return true;
286 
287   // The input value must be a vector constant with the same type.
288   auto *VTy = dyn_cast<VectorType>(getType());
289   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
290     return false;
291 
292   // TODO: Compare pointer constants?
293   if (!(VTy->getElementType()->isIntegerTy() ||
294         VTy->getElementType()->isFloatingPointTy()))
295     return false;
296 
297   // They may still be identical element-wise (if they have `undef`s).
298   // Bitcast to integer to allow exact bitwise comparison for all types.
299   Type *IntTy = VectorType::getInteger(VTy);
300   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
301   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
302   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
303   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
304 }
305 
306 static bool
307 containsUndefinedElement(const Constant *C,
308                          function_ref<bool(const Constant *)> HasFn) {
309   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
310     if (HasFn(C))
311       return true;
312     if (isa<ConstantAggregateZero>(C))
313       return false;
314     if (isa<ScalableVectorType>(C->getType()))
315       return false;
316 
317     for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements();
318          i != e; ++i) {
319       if (Constant *Elem = C->getAggregateElement(i))
320         if (HasFn(Elem))
321           return true;
322     }
323   }
324 
325   return false;
326 }
327 
328 bool Constant::containsUndefOrPoisonElement() const {
329   return containsUndefinedElement(
330       this, [&](const auto *C) { return isa<UndefValue>(C); });
331 }
332 
333 bool Constant::containsPoisonElement() const {
334   return containsUndefinedElement(
335       this, [&](const auto *C) { return isa<PoisonValue>(C); });
336 }
337 
338 bool Constant::containsConstantExpression() const {
339   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
340     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
341       if (isa<ConstantExpr>(getAggregateElement(i)))
342         return true;
343   }
344   return false;
345 }
346 
347 /// Constructor to create a '0' constant of arbitrary type.
348 Constant *Constant::getNullValue(Type *Ty) {
349   switch (Ty->getTypeID()) {
350   case Type::IntegerTyID:
351     return ConstantInt::get(Ty, 0);
352   case Type::HalfTyID:
353     return ConstantFP::get(Ty->getContext(),
354                            APFloat::getZero(APFloat::IEEEhalf()));
355   case Type::BFloatTyID:
356     return ConstantFP::get(Ty->getContext(),
357                            APFloat::getZero(APFloat::BFloat()));
358   case Type::FloatTyID:
359     return ConstantFP::get(Ty->getContext(),
360                            APFloat::getZero(APFloat::IEEEsingle()));
361   case Type::DoubleTyID:
362     return ConstantFP::get(Ty->getContext(),
363                            APFloat::getZero(APFloat::IEEEdouble()));
364   case Type::X86_FP80TyID:
365     return ConstantFP::get(Ty->getContext(),
366                            APFloat::getZero(APFloat::x87DoubleExtended()));
367   case Type::FP128TyID:
368     return ConstantFP::get(Ty->getContext(),
369                            APFloat::getZero(APFloat::IEEEquad()));
370   case Type::PPC_FP128TyID:
371     return ConstantFP::get(Ty->getContext(), APFloat(APFloat::PPCDoubleDouble(),
372                                                      APInt::getZero(128)));
373   case Type::PointerTyID:
374     return ConstantPointerNull::get(cast<PointerType>(Ty));
375   case Type::StructTyID:
376   case Type::ArrayTyID:
377   case Type::FixedVectorTyID:
378   case Type::ScalableVectorTyID:
379     return ConstantAggregateZero::get(Ty);
380   case Type::TokenTyID:
381     return ConstantTokenNone::get(Ty->getContext());
382   default:
383     // Function, Label, or Opaque type?
384     llvm_unreachable("Cannot create a null constant of that type!");
385   }
386 }
387 
388 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
389   Type *ScalarTy = Ty->getScalarType();
390 
391   // Create the base integer constant.
392   Constant *C = ConstantInt::get(Ty->getContext(), V);
393 
394   // Convert an integer to a pointer, if necessary.
395   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
396     C = ConstantExpr::getIntToPtr(C, PTy);
397 
398   // Broadcast a scalar to a vector, if necessary.
399   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
400     C = ConstantVector::getSplat(VTy->getElementCount(), C);
401 
402   return C;
403 }
404 
405 Constant *Constant::getAllOnesValue(Type *Ty) {
406   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
407     return ConstantInt::get(Ty->getContext(),
408                             APInt::getAllOnes(ITy->getBitWidth()));
409 
410   if (Ty->isFloatingPointTy()) {
411     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(),
412                                           Ty->getPrimitiveSizeInBits());
413     return ConstantFP::get(Ty->getContext(), FL);
414   }
415 
416   VectorType *VTy = cast<VectorType>(Ty);
417   return ConstantVector::getSplat(VTy->getElementCount(),
418                                   getAllOnesValue(VTy->getElementType()));
419 }
420 
421 Constant *Constant::getAggregateElement(unsigned Elt) const {
422   assert((getType()->isAggregateType() || getType()->isVectorTy()) &&
423          "Must be an aggregate/vector constant");
424 
425   if (const auto *CC = dyn_cast<ConstantAggregate>(this))
426     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
427 
428   if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this))
429     return Elt < CAZ->getElementCount().getKnownMinValue()
430                ? CAZ->getElementValue(Elt)
431                : nullptr;
432 
433   // FIXME: getNumElements() will fail for non-fixed vector types.
434   if (isa<ScalableVectorType>(getType()))
435     return nullptr;
436 
437   if (const auto *PV = dyn_cast<PoisonValue>(this))
438     return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr;
439 
440   if (const auto *UV = dyn_cast<UndefValue>(this))
441     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
442 
443   if (const auto *CDS = dyn_cast<ConstantDataSequential>(this))
444     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
445                                        : nullptr;
446 
447   return nullptr;
448 }
449 
450 Constant *Constant::getAggregateElement(Constant *Elt) const {
451   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
452   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
453     // Check if the constant fits into an uint64_t.
454     if (CI->getValue().getActiveBits() > 64)
455       return nullptr;
456     return getAggregateElement(CI->getZExtValue());
457   }
458   return nullptr;
459 }
460 
461 void Constant::destroyConstant() {
462   /// First call destroyConstantImpl on the subclass.  This gives the subclass
463   /// a chance to remove the constant from any maps/pools it's contained in.
464   switch (getValueID()) {
465   default:
466     llvm_unreachable("Not a constant!");
467 #define HANDLE_CONSTANT(Name)                                                  \
468   case Value::Name##Val:                                                       \
469     cast<Name>(this)->destroyConstantImpl();                                   \
470     break;
471 #include "llvm/IR/Value.def"
472   }
473 
474   // When a Constant is destroyed, there may be lingering
475   // references to the constant by other constants in the constant pool.  These
476   // constants are implicitly dependent on the module that is being deleted,
477   // but they don't know that.  Because we only find out when the CPV is
478   // deleted, we must now notify all of our users (that should only be
479   // Constants) that they are, in fact, invalid now and should be deleted.
480   //
481   while (!use_empty()) {
482     Value *V = user_back();
483 #ifndef NDEBUG // Only in -g mode...
484     if (!isa<Constant>(V)) {
485       dbgs() << "While deleting: " << *this
486              << "\n\nUse still stuck around after Def is destroyed: " << *V
487              << "\n\n";
488     }
489 #endif
490     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
491     cast<Constant>(V)->destroyConstant();
492 
493     // The constant should remove itself from our use list...
494     assert((use_empty() || user_back() != V) && "Constant not removed!");
495   }
496 
497   // Value has no outstanding references it is safe to delete it now...
498   deleteConstant(this);
499 }
500 
501 void llvm::deleteConstant(Constant *C) {
502   switch (C->getValueID()) {
503   case Constant::ConstantIntVal:
504     delete static_cast<ConstantInt *>(C);
505     break;
506   case Constant::ConstantFPVal:
507     delete static_cast<ConstantFP *>(C);
508     break;
509   case Constant::ConstantAggregateZeroVal:
510     delete static_cast<ConstantAggregateZero *>(C);
511     break;
512   case Constant::ConstantArrayVal:
513     delete static_cast<ConstantArray *>(C);
514     break;
515   case Constant::ConstantStructVal:
516     delete static_cast<ConstantStruct *>(C);
517     break;
518   case Constant::ConstantVectorVal:
519     delete static_cast<ConstantVector *>(C);
520     break;
521   case Constant::ConstantPointerNullVal:
522     delete static_cast<ConstantPointerNull *>(C);
523     break;
524   case Constant::ConstantDataArrayVal:
525     delete static_cast<ConstantDataArray *>(C);
526     break;
527   case Constant::ConstantDataVectorVal:
528     delete static_cast<ConstantDataVector *>(C);
529     break;
530   case Constant::ConstantTokenNoneVal:
531     delete static_cast<ConstantTokenNone *>(C);
532     break;
533   case Constant::BlockAddressVal:
534     delete static_cast<BlockAddress *>(C);
535     break;
536   case Constant::DSOLocalEquivalentVal:
537     delete static_cast<DSOLocalEquivalent *>(C);
538     break;
539   case Constant::UndefValueVal:
540     delete static_cast<UndefValue *>(C);
541     break;
542   case Constant::PoisonValueVal:
543     delete static_cast<PoisonValue *>(C);
544     break;
545   case Constant::ConstantExprVal:
546     if (isa<UnaryConstantExpr>(C))
547       delete static_cast<UnaryConstantExpr *>(C);
548     else if (isa<BinaryConstantExpr>(C))
549       delete static_cast<BinaryConstantExpr *>(C);
550     else if (isa<SelectConstantExpr>(C))
551       delete static_cast<SelectConstantExpr *>(C);
552     else if (isa<ExtractElementConstantExpr>(C))
553       delete static_cast<ExtractElementConstantExpr *>(C);
554     else if (isa<InsertElementConstantExpr>(C))
555       delete static_cast<InsertElementConstantExpr *>(C);
556     else if (isa<ShuffleVectorConstantExpr>(C))
557       delete static_cast<ShuffleVectorConstantExpr *>(C);
558     else if (isa<ExtractValueConstantExpr>(C))
559       delete static_cast<ExtractValueConstantExpr *>(C);
560     else if (isa<InsertValueConstantExpr>(C))
561       delete static_cast<InsertValueConstantExpr *>(C);
562     else if (isa<GetElementPtrConstantExpr>(C))
563       delete static_cast<GetElementPtrConstantExpr *>(C);
564     else if (isa<CompareConstantExpr>(C))
565       delete static_cast<CompareConstantExpr *>(C);
566     else
567       llvm_unreachable("Unexpected constant expr");
568     break;
569   default:
570     llvm_unreachable("Unexpected constant");
571   }
572 }
573 
574 static bool canTrapImpl(const Constant *C,
575                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
576   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
577   // The only thing that could possibly trap are constant exprs.
578   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
579   if (!CE)
580     return false;
581 
582   // ConstantExpr traps if any operands can trap.
583   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
584     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
585       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
586         return true;
587     }
588   }
589 
590   // Otherwise, only specific operations can trap.
591   switch (CE->getOpcode()) {
592   default:
593     return false;
594   case Instruction::UDiv:
595   case Instruction::SDiv:
596   case Instruction::URem:
597   case Instruction::SRem:
598     // Div and rem can trap if the RHS is not known to be non-zero.
599     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
600       return true;
601     return false;
602   }
603 }
604 
605 bool Constant::canTrap() const {
606   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
607   return canTrapImpl(this, NonTrappingOps);
608 }
609 
610 /// Check if C contains a GlobalValue for which Predicate is true.
611 static bool
612 ConstHasGlobalValuePredicate(const Constant *C,
613                              bool (*Predicate)(const GlobalValue *)) {
614   SmallPtrSet<const Constant *, 8> Visited;
615   SmallVector<const Constant *, 8> WorkList;
616   WorkList.push_back(C);
617   Visited.insert(C);
618 
619   while (!WorkList.empty()) {
620     const Constant *WorkItem = WorkList.pop_back_val();
621     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
622       if (Predicate(GV))
623         return true;
624     for (const Value *Op : WorkItem->operands()) {
625       const Constant *ConstOp = dyn_cast<Constant>(Op);
626       if (!ConstOp)
627         continue;
628       if (Visited.insert(ConstOp).second)
629         WorkList.push_back(ConstOp);
630     }
631   }
632   return false;
633 }
634 
635 bool Constant::isThreadDependent() const {
636   auto DLLImportPredicate = [](const GlobalValue *GV) {
637     return GV->isThreadLocal();
638   };
639   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
640 }
641 
642 bool Constant::isDLLImportDependent() const {
643   auto DLLImportPredicate = [](const GlobalValue *GV) {
644     return GV->hasDLLImportStorageClass();
645   };
646   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
647 }
648 
649 bool Constant::isConstantUsed() const {
650   for (const User *U : users()) {
651     const Constant *UC = dyn_cast<Constant>(U);
652     if (!UC || isa<GlobalValue>(UC))
653       return true;
654 
655     if (UC->isConstantUsed())
656       return true;
657   }
658   return false;
659 }
660 
661 bool Constant::needsDynamicRelocation() const {
662   return getRelocationInfo() == GlobalRelocation;
663 }
664 
665 bool Constant::needsRelocation() const {
666   return getRelocationInfo() != NoRelocation;
667 }
668 
669 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
670   if (isa<GlobalValue>(this))
671     return GlobalRelocation; // Global reference.
672 
673   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
674     return BA->getFunction()->getRelocationInfo();
675 
676   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
677     if (CE->getOpcode() == Instruction::Sub) {
678       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
679       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
680       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
681           RHS->getOpcode() == Instruction::PtrToInt) {
682         Constant *LHSOp0 = LHS->getOperand(0);
683         Constant *RHSOp0 = RHS->getOperand(0);
684 
685         // While raw uses of blockaddress need to be relocated, differences
686         // between two of them don't when they are for labels in the same
687         // function.  This is a common idiom when creating a table for the
688         // indirect goto extension, so we handle it efficiently here.
689         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
690             cast<BlockAddress>(LHSOp0)->getFunction() ==
691                 cast<BlockAddress>(RHSOp0)->getFunction())
692           return NoRelocation;
693 
694         // Relative pointers do not need to be dynamically relocated.
695         if (auto *RHSGV =
696                 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) {
697           auto *LHS = LHSOp0->stripInBoundsConstantOffsets();
698           if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
699             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
700               return LocalRelocation;
701           } else if (isa<DSOLocalEquivalent>(LHS)) {
702             if (RHSGV->isDSOLocal())
703               return LocalRelocation;
704           }
705         }
706       }
707     }
708   }
709 
710   PossibleRelocationsTy Result = NoRelocation;
711   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
712     Result =
713         std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result);
714 
715   return Result;
716 }
717 
718 /// If the specified constantexpr is dead, remove it. This involves recursively
719 /// eliminating any dead users of the constantexpr.
720 static bool removeDeadUsersOfConstant(const Constant *C) {
721   if (isa<GlobalValue>(C)) return false; // Cannot remove this
722 
723   while (!C->use_empty()) {
724     const Constant *User = dyn_cast<Constant>(C->user_back());
725     if (!User) return false; // Non-constant usage;
726     if (!removeDeadUsersOfConstant(User))
727       return false; // Constant wasn't dead
728   }
729 
730   // If C is only used by metadata, it should not be preserved but should have
731   // its uses replaced.
732   if (C->isUsedByMetadata()) {
733     const_cast<Constant *>(C)->replaceAllUsesWith(
734         UndefValue::get(C->getType()));
735   }
736   const_cast<Constant*>(C)->destroyConstant();
737   return true;
738 }
739 
740 
741 void Constant::removeDeadConstantUsers() const {
742   Value::const_user_iterator I = user_begin(), E = user_end();
743   Value::const_user_iterator LastNonDeadUser = E;
744   while (I != E) {
745     const Constant *User = dyn_cast<Constant>(*I);
746     if (!User) {
747       LastNonDeadUser = I;
748       ++I;
749       continue;
750     }
751 
752     if (!removeDeadUsersOfConstant(User)) {
753       // If the constant wasn't dead, remember that this was the last live use
754       // and move on to the next constant.
755       LastNonDeadUser = I;
756       ++I;
757       continue;
758     }
759 
760     // If the constant was dead, then the iterator is invalidated.
761     if (LastNonDeadUser == E)
762       I = user_begin();
763     else
764       I = std::next(LastNonDeadUser);
765   }
766 }
767 
768 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
769   assert(C && Replacement && "Expected non-nullptr constant arguments");
770   Type *Ty = C->getType();
771   if (match(C, m_Undef())) {
772     assert(Ty == Replacement->getType() && "Expected matching types");
773     return Replacement;
774   }
775 
776   // Don't know how to deal with this constant.
777   auto *VTy = dyn_cast<FixedVectorType>(Ty);
778   if (!VTy)
779     return C;
780 
781   unsigned NumElts = VTy->getNumElements();
782   SmallVector<Constant *, 32> NewC(NumElts);
783   for (unsigned i = 0; i != NumElts; ++i) {
784     Constant *EltC = C->getAggregateElement(i);
785     assert((!EltC || EltC->getType() == Replacement->getType()) &&
786            "Expected matching types");
787     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
788   }
789   return ConstantVector::get(NewC);
790 }
791 
792 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) {
793   assert(C && Other && "Expected non-nullptr constant arguments");
794   if (match(C, m_Undef()))
795     return C;
796 
797   Type *Ty = C->getType();
798   if (match(Other, m_Undef()))
799     return UndefValue::get(Ty);
800 
801   auto *VTy = dyn_cast<FixedVectorType>(Ty);
802   if (!VTy)
803     return C;
804 
805   Type *EltTy = VTy->getElementType();
806   unsigned NumElts = VTy->getNumElements();
807   assert(isa<FixedVectorType>(Other->getType()) &&
808          cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts &&
809          "Type mismatch");
810 
811   bool FoundExtraUndef = false;
812   SmallVector<Constant *, 32> NewC(NumElts);
813   for (unsigned I = 0; I != NumElts; ++I) {
814     NewC[I] = C->getAggregateElement(I);
815     Constant *OtherEltC = Other->getAggregateElement(I);
816     assert(NewC[I] && OtherEltC && "Unknown vector element");
817     if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) {
818       NewC[I] = UndefValue::get(EltTy);
819       FoundExtraUndef = true;
820     }
821   }
822   if (FoundExtraUndef)
823     return ConstantVector::get(NewC);
824   return C;
825 }
826 
827 bool Constant::isManifestConstant() const {
828   if (isa<ConstantData>(this))
829     return true;
830   if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) {
831     for (const Value *Op : operand_values())
832       if (!cast<Constant>(Op)->isManifestConstant())
833         return false;
834     return true;
835   }
836   return false;
837 }
838 
839 //===----------------------------------------------------------------------===//
840 //                                ConstantInt
841 //===----------------------------------------------------------------------===//
842 
843 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
844     : ConstantData(Ty, ConstantIntVal), Val(V) {
845   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
846 }
847 
848 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
849   LLVMContextImpl *pImpl = Context.pImpl;
850   if (!pImpl->TheTrueVal)
851     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
852   return pImpl->TheTrueVal;
853 }
854 
855 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
856   LLVMContextImpl *pImpl = Context.pImpl;
857   if (!pImpl->TheFalseVal)
858     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
859   return pImpl->TheFalseVal;
860 }
861 
862 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) {
863   return V ? getTrue(Context) : getFalse(Context);
864 }
865 
866 Constant *ConstantInt::getTrue(Type *Ty) {
867   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
868   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
869   if (auto *VTy = dyn_cast<VectorType>(Ty))
870     return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
871   return TrueC;
872 }
873 
874 Constant *ConstantInt::getFalse(Type *Ty) {
875   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
876   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
877   if (auto *VTy = dyn_cast<VectorType>(Ty))
878     return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
879   return FalseC;
880 }
881 
882 Constant *ConstantInt::getBool(Type *Ty, bool V) {
883   return V ? getTrue(Ty) : getFalse(Ty);
884 }
885 
886 // Get a ConstantInt from an APInt.
887 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
888   // get an existing value or the insertion position
889   LLVMContextImpl *pImpl = Context.pImpl;
890   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
891   if (!Slot) {
892     // Get the corresponding integer type for the bit width of the value.
893     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
894     Slot.reset(new ConstantInt(ITy, V));
895   }
896   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
897   return Slot.get();
898 }
899 
900 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
901   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
902 
903   // For vectors, broadcast the value.
904   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
905     return ConstantVector::getSplat(VTy->getElementCount(), C);
906 
907   return C;
908 }
909 
910 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
911   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
912 }
913 
914 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
915   return get(Ty, V, true);
916 }
917 
918 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
919   return get(Ty, V, true);
920 }
921 
922 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
923   ConstantInt *C = get(Ty->getContext(), V);
924   assert(C->getType() == Ty->getScalarType() &&
925          "ConstantInt type doesn't match the type implied by its value!");
926 
927   // For vectors, broadcast the value.
928   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
929     return ConstantVector::getSplat(VTy->getElementCount(), C);
930 
931   return C;
932 }
933 
934 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
935   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
936 }
937 
938 /// Remove the constant from the constant table.
939 void ConstantInt::destroyConstantImpl() {
940   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
941 }
942 
943 //===----------------------------------------------------------------------===//
944 //                                ConstantFP
945 //===----------------------------------------------------------------------===//
946 
947 Constant *ConstantFP::get(Type *Ty, double V) {
948   LLVMContext &Context = Ty->getContext();
949 
950   APFloat FV(V);
951   bool ignored;
952   FV.convert(Ty->getScalarType()->getFltSemantics(),
953              APFloat::rmNearestTiesToEven, &ignored);
954   Constant *C = get(Context, FV);
955 
956   // For vectors, broadcast the value.
957   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
958     return ConstantVector::getSplat(VTy->getElementCount(), C);
959 
960   return C;
961 }
962 
963 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
964   ConstantFP *C = get(Ty->getContext(), V);
965   assert(C->getType() == Ty->getScalarType() &&
966          "ConstantFP type doesn't match the type implied by its value!");
967 
968   // For vectors, broadcast the value.
969   if (auto *VTy = dyn_cast<VectorType>(Ty))
970     return ConstantVector::getSplat(VTy->getElementCount(), C);
971 
972   return C;
973 }
974 
975 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
976   LLVMContext &Context = Ty->getContext();
977 
978   APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
979   Constant *C = get(Context, FV);
980 
981   // For vectors, broadcast the value.
982   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
983     return ConstantVector::getSplat(VTy->getElementCount(), C);
984 
985   return C;
986 }
987 
988 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
989   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
990   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
991   Constant *C = get(Ty->getContext(), NaN);
992 
993   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
994     return ConstantVector::getSplat(VTy->getElementCount(), C);
995 
996   return C;
997 }
998 
999 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
1000   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1001   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
1002   Constant *C = get(Ty->getContext(), NaN);
1003 
1004   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1005     return ConstantVector::getSplat(VTy->getElementCount(), C);
1006 
1007   return C;
1008 }
1009 
1010 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
1011   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1012   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
1013   Constant *C = get(Ty->getContext(), NaN);
1014 
1015   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1016     return ConstantVector::getSplat(VTy->getElementCount(), C);
1017 
1018   return C;
1019 }
1020 
1021 Constant *ConstantFP::getNegativeZero(Type *Ty) {
1022   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1023   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
1024   Constant *C = get(Ty->getContext(), NegZero);
1025 
1026   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1027     return ConstantVector::getSplat(VTy->getElementCount(), C);
1028 
1029   return C;
1030 }
1031 
1032 
1033 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
1034   if (Ty->isFPOrFPVectorTy())
1035     return getNegativeZero(Ty);
1036 
1037   return Constant::getNullValue(Ty);
1038 }
1039 
1040 
1041 // ConstantFP accessors.
1042 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
1043   LLVMContextImpl* pImpl = Context.pImpl;
1044 
1045   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
1046 
1047   if (!Slot) {
1048     Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics());
1049     Slot.reset(new ConstantFP(Ty, V));
1050   }
1051 
1052   return Slot.get();
1053 }
1054 
1055 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
1056   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1057   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
1058 
1059   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1060     return ConstantVector::getSplat(VTy->getElementCount(), C);
1061 
1062   return C;
1063 }
1064 
1065 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
1066     : ConstantData(Ty, ConstantFPVal), Val(V) {
1067   assert(&V.getSemantics() == &Ty->getFltSemantics() &&
1068          "FP type Mismatch");
1069 }
1070 
1071 bool ConstantFP::isExactlyValue(const APFloat &V) const {
1072   return Val.bitwiseIsEqual(V);
1073 }
1074 
1075 /// Remove the constant from the constant table.
1076 void ConstantFP::destroyConstantImpl() {
1077   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1078 }
1079 
1080 //===----------------------------------------------------------------------===//
1081 //                   ConstantAggregateZero Implementation
1082 //===----------------------------------------------------------------------===//
1083 
1084 Constant *ConstantAggregateZero::getSequentialElement() const {
1085   if (auto *AT = dyn_cast<ArrayType>(getType()))
1086     return Constant::getNullValue(AT->getElementType());
1087   return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1088 }
1089 
1090 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1091   return Constant::getNullValue(getType()->getStructElementType(Elt));
1092 }
1093 
1094 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1095   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1096     return getSequentialElement();
1097   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1098 }
1099 
1100 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1101   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1102     return getSequentialElement();
1103   return getStructElement(Idx);
1104 }
1105 
1106 ElementCount ConstantAggregateZero::getElementCount() const {
1107   Type *Ty = getType();
1108   if (auto *AT = dyn_cast<ArrayType>(Ty))
1109     return ElementCount::getFixed(AT->getNumElements());
1110   if (auto *VT = dyn_cast<VectorType>(Ty))
1111     return VT->getElementCount();
1112   return ElementCount::getFixed(Ty->getStructNumElements());
1113 }
1114 
1115 //===----------------------------------------------------------------------===//
1116 //                         UndefValue Implementation
1117 //===----------------------------------------------------------------------===//
1118 
1119 UndefValue *UndefValue::getSequentialElement() const {
1120   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1121     return UndefValue::get(ATy->getElementType());
1122   return UndefValue::get(cast<VectorType>(getType())->getElementType());
1123 }
1124 
1125 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1126   return UndefValue::get(getType()->getStructElementType(Elt));
1127 }
1128 
1129 UndefValue *UndefValue::getElementValue(Constant *C) const {
1130   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1131     return getSequentialElement();
1132   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1133 }
1134 
1135 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1136   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1137     return getSequentialElement();
1138   return getStructElement(Idx);
1139 }
1140 
1141 unsigned UndefValue::getNumElements() const {
1142   Type *Ty = getType();
1143   if (auto *AT = dyn_cast<ArrayType>(Ty))
1144     return AT->getNumElements();
1145   if (auto *VT = dyn_cast<VectorType>(Ty))
1146     return cast<FixedVectorType>(VT)->getNumElements();
1147   return Ty->getStructNumElements();
1148 }
1149 
1150 //===----------------------------------------------------------------------===//
1151 //                         PoisonValue Implementation
1152 //===----------------------------------------------------------------------===//
1153 
1154 PoisonValue *PoisonValue::getSequentialElement() const {
1155   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1156     return PoisonValue::get(ATy->getElementType());
1157   return PoisonValue::get(cast<VectorType>(getType())->getElementType());
1158 }
1159 
1160 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const {
1161   return PoisonValue::get(getType()->getStructElementType(Elt));
1162 }
1163 
1164 PoisonValue *PoisonValue::getElementValue(Constant *C) const {
1165   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1166     return getSequentialElement();
1167   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1168 }
1169 
1170 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const {
1171   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1172     return getSequentialElement();
1173   return getStructElement(Idx);
1174 }
1175 
1176 //===----------------------------------------------------------------------===//
1177 //                            ConstantXXX Classes
1178 //===----------------------------------------------------------------------===//
1179 
1180 template <typename ItTy, typename EltTy>
1181 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1182   for (; Start != End; ++Start)
1183     if (*Start != Elt)
1184       return false;
1185   return true;
1186 }
1187 
1188 template <typename SequentialTy, typename ElementTy>
1189 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1190   assert(!V.empty() && "Cannot get empty int sequence.");
1191 
1192   SmallVector<ElementTy, 16> Elts;
1193   for (Constant *C : V)
1194     if (auto *CI = dyn_cast<ConstantInt>(C))
1195       Elts.push_back(CI->getZExtValue());
1196     else
1197       return nullptr;
1198   return SequentialTy::get(V[0]->getContext(), Elts);
1199 }
1200 
1201 template <typename SequentialTy, typename ElementTy>
1202 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1203   assert(!V.empty() && "Cannot get empty FP sequence.");
1204 
1205   SmallVector<ElementTy, 16> Elts;
1206   for (Constant *C : V)
1207     if (auto *CFP = dyn_cast<ConstantFP>(C))
1208       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1209     else
1210       return nullptr;
1211   return SequentialTy::getFP(V[0]->getType(), Elts);
1212 }
1213 
1214 template <typename SequenceTy>
1215 static Constant *getSequenceIfElementsMatch(Constant *C,
1216                                             ArrayRef<Constant *> V) {
1217   // We speculatively build the elements here even if it turns out that there is
1218   // a constantexpr or something else weird, since it is so uncommon for that to
1219   // happen.
1220   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1221     if (CI->getType()->isIntegerTy(8))
1222       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1223     else if (CI->getType()->isIntegerTy(16))
1224       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1225     else if (CI->getType()->isIntegerTy(32))
1226       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1227     else if (CI->getType()->isIntegerTy(64))
1228       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1229   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1230     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1231       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1232     else if (CFP->getType()->isFloatTy())
1233       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1234     else if (CFP->getType()->isDoubleTy())
1235       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1236   }
1237 
1238   return nullptr;
1239 }
1240 
1241 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1242                                      ArrayRef<Constant *> V)
1243     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1244                V.size()) {
1245   llvm::copy(V, op_begin());
1246 
1247   // Check that types match, unless this is an opaque struct.
1248   if (auto *ST = dyn_cast<StructType>(T)) {
1249     if (ST->isOpaque())
1250       return;
1251     for (unsigned I = 0, E = V.size(); I != E; ++I)
1252       assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1253              "Initializer for struct element doesn't match!");
1254   }
1255 }
1256 
1257 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1258     : ConstantAggregate(T, ConstantArrayVal, V) {
1259   assert(V.size() == T->getNumElements() &&
1260          "Invalid initializer for constant array");
1261 }
1262 
1263 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1264   if (Constant *C = getImpl(Ty, V))
1265     return C;
1266   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1267 }
1268 
1269 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1270   // Empty arrays are canonicalized to ConstantAggregateZero.
1271   if (V.empty())
1272     return ConstantAggregateZero::get(Ty);
1273 
1274   for (unsigned i = 0, e = V.size(); i != e; ++i) {
1275     assert(V[i]->getType() == Ty->getElementType() &&
1276            "Wrong type in array element initializer");
1277   }
1278 
1279   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1280   // all undef, return an UndefValue, if "all simple", then return a
1281   // ConstantDataArray.
1282   Constant *C = V[0];
1283   if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1284     return PoisonValue::get(Ty);
1285 
1286   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1287     return UndefValue::get(Ty);
1288 
1289   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1290     return ConstantAggregateZero::get(Ty);
1291 
1292   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1293   // the element type is compatible with ConstantDataVector.  If so, use it.
1294   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1295     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1296 
1297   // Otherwise, we really do want to create a ConstantArray.
1298   return nullptr;
1299 }
1300 
1301 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1302                                                ArrayRef<Constant*> V,
1303                                                bool Packed) {
1304   unsigned VecSize = V.size();
1305   SmallVector<Type*, 16> EltTypes(VecSize);
1306   for (unsigned i = 0; i != VecSize; ++i)
1307     EltTypes[i] = V[i]->getType();
1308 
1309   return StructType::get(Context, EltTypes, Packed);
1310 }
1311 
1312 
1313 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1314                                                bool Packed) {
1315   assert(!V.empty() &&
1316          "ConstantStruct::getTypeForElements cannot be called on empty list");
1317   return getTypeForElements(V[0]->getContext(), V, Packed);
1318 }
1319 
1320 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1321     : ConstantAggregate(T, ConstantStructVal, V) {
1322   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1323          "Invalid initializer for constant struct");
1324 }
1325 
1326 // ConstantStruct accessors.
1327 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1328   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1329          "Incorrect # elements specified to ConstantStruct::get");
1330 
1331   // Create a ConstantAggregateZero value if all elements are zeros.
1332   bool isZero = true;
1333   bool isUndef = false;
1334   bool isPoison = false;
1335 
1336   if (!V.empty()) {
1337     isUndef = isa<UndefValue>(V[0]);
1338     isPoison = isa<PoisonValue>(V[0]);
1339     isZero = V[0]->isNullValue();
1340     // PoisonValue inherits UndefValue, so its check is not necessary.
1341     if (isUndef || isZero) {
1342       for (unsigned i = 0, e = V.size(); i != e; ++i) {
1343         if (!V[i]->isNullValue())
1344           isZero = false;
1345         if (!isa<PoisonValue>(V[i]))
1346           isPoison = false;
1347         if (isa<PoisonValue>(V[i]) || !isa<UndefValue>(V[i]))
1348           isUndef = false;
1349       }
1350     }
1351   }
1352   if (isZero)
1353     return ConstantAggregateZero::get(ST);
1354   if (isPoison)
1355     return PoisonValue::get(ST);
1356   if (isUndef)
1357     return UndefValue::get(ST);
1358 
1359   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1360 }
1361 
1362 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1363     : ConstantAggregate(T, ConstantVectorVal, V) {
1364   assert(V.size() == cast<FixedVectorType>(T)->getNumElements() &&
1365          "Invalid initializer for constant vector");
1366 }
1367 
1368 // ConstantVector accessors.
1369 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1370   if (Constant *C = getImpl(V))
1371     return C;
1372   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1373   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1374 }
1375 
1376 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1377   assert(!V.empty() && "Vectors can't be empty");
1378   auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1379 
1380   // If this is an all-undef or all-zero vector, return a
1381   // ConstantAggregateZero or UndefValue.
1382   Constant *C = V[0];
1383   bool isZero = C->isNullValue();
1384   bool isUndef = isa<UndefValue>(C);
1385   bool isPoison = isa<PoisonValue>(C);
1386 
1387   if (isZero || isUndef) {
1388     for (unsigned i = 1, e = V.size(); i != e; ++i)
1389       if (V[i] != C) {
1390         isZero = isUndef = isPoison = false;
1391         break;
1392       }
1393   }
1394 
1395   if (isZero)
1396     return ConstantAggregateZero::get(T);
1397   if (isPoison)
1398     return PoisonValue::get(T);
1399   if (isUndef)
1400     return UndefValue::get(T);
1401 
1402   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1403   // the element type is compatible with ConstantDataVector.  If so, use it.
1404   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1405     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1406 
1407   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1408   // the operand list contains a ConstantExpr or something else strange.
1409   return nullptr;
1410 }
1411 
1412 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1413   if (!EC.isScalable()) {
1414     // If this splat is compatible with ConstantDataVector, use it instead of
1415     // ConstantVector.
1416     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1417         ConstantDataSequential::isElementTypeCompatible(V->getType()))
1418       return ConstantDataVector::getSplat(EC.getKnownMinValue(), V);
1419 
1420     SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V);
1421     return get(Elts);
1422   }
1423 
1424   Type *VTy = VectorType::get(V->getType(), EC);
1425 
1426   if (V->isNullValue())
1427     return ConstantAggregateZero::get(VTy);
1428   else if (isa<UndefValue>(V))
1429     return UndefValue::get(VTy);
1430 
1431   Type *I32Ty = Type::getInt32Ty(VTy->getContext());
1432 
1433   // Move scalar into vector.
1434   Constant *PoisonV = PoisonValue::get(VTy);
1435   V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(I32Ty, 0));
1436   // Build shuffle mask to perform the splat.
1437   SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0);
1438   // Splat.
1439   return ConstantExpr::getShuffleVector(V, PoisonV, Zeros);
1440 }
1441 
1442 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1443   LLVMContextImpl *pImpl = Context.pImpl;
1444   if (!pImpl->TheNoneToken)
1445     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1446   return pImpl->TheNoneToken.get();
1447 }
1448 
1449 /// Remove the constant from the constant table.
1450 void ConstantTokenNone::destroyConstantImpl() {
1451   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1452 }
1453 
1454 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1455 // can't be inline because we don't want to #include Instruction.h into
1456 // Constant.h
1457 bool ConstantExpr::isCast() const {
1458   return Instruction::isCast(getOpcode());
1459 }
1460 
1461 bool ConstantExpr::isCompare() const {
1462   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1463 }
1464 
1465 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1466   if (getOpcode() != Instruction::GetElementPtr) return false;
1467 
1468   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1469   User::const_op_iterator OI = std::next(this->op_begin());
1470 
1471   // The remaining indices may be compile-time known integers within the bounds
1472   // of the corresponding notional static array types.
1473   for (; GEPI != E; ++GEPI, ++OI) {
1474     if (isa<UndefValue>(*OI))
1475       continue;
1476     auto *CI = dyn_cast<ConstantInt>(*OI);
1477     if (!CI || (GEPI.isBoundedSequential() &&
1478                 (CI->getValue().getActiveBits() > 64 ||
1479                  CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1480       return false;
1481   }
1482 
1483   // All the indices checked out.
1484   return true;
1485 }
1486 
1487 bool ConstantExpr::hasIndices() const {
1488   return getOpcode() == Instruction::ExtractValue ||
1489          getOpcode() == Instruction::InsertValue;
1490 }
1491 
1492 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1493   if (const ExtractValueConstantExpr *EVCE =
1494         dyn_cast<ExtractValueConstantExpr>(this))
1495     return EVCE->Indices;
1496 
1497   return cast<InsertValueConstantExpr>(this)->Indices;
1498 }
1499 
1500 unsigned ConstantExpr::getPredicate() const {
1501   return cast<CompareConstantExpr>(this)->predicate;
1502 }
1503 
1504 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1505   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1506 }
1507 
1508 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1509   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1510 }
1511 
1512 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1513                                         bool OnlyIfReduced, Type *SrcTy) const {
1514   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1515 
1516   // If no operands changed return self.
1517   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1518     return const_cast<ConstantExpr*>(this);
1519 
1520   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1521   switch (getOpcode()) {
1522   case Instruction::Trunc:
1523   case Instruction::ZExt:
1524   case Instruction::SExt:
1525   case Instruction::FPTrunc:
1526   case Instruction::FPExt:
1527   case Instruction::UIToFP:
1528   case Instruction::SIToFP:
1529   case Instruction::FPToUI:
1530   case Instruction::FPToSI:
1531   case Instruction::PtrToInt:
1532   case Instruction::IntToPtr:
1533   case Instruction::BitCast:
1534   case Instruction::AddrSpaceCast:
1535     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1536   case Instruction::Select:
1537     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1538   case Instruction::InsertElement:
1539     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1540                                           OnlyIfReducedTy);
1541   case Instruction::ExtractElement:
1542     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1543   case Instruction::InsertValue:
1544     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1545                                         OnlyIfReducedTy);
1546   case Instruction::ExtractValue:
1547     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1548   case Instruction::FNeg:
1549     return ConstantExpr::getFNeg(Ops[0]);
1550   case Instruction::ShuffleVector:
1551     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1552                                           OnlyIfReducedTy);
1553   case Instruction::GetElementPtr: {
1554     auto *GEPO = cast<GEPOperator>(this);
1555     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1556     return ConstantExpr::getGetElementPtr(
1557         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1558         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1559   }
1560   case Instruction::ICmp:
1561   case Instruction::FCmp:
1562     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1563                                     OnlyIfReducedTy);
1564   default:
1565     assert(getNumOperands() == 2 && "Must be binary operator?");
1566     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1567                              OnlyIfReducedTy);
1568   }
1569 }
1570 
1571 
1572 //===----------------------------------------------------------------------===//
1573 //                      isValueValidForType implementations
1574 
1575 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1576   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1577   if (Ty->isIntegerTy(1))
1578     return Val == 0 || Val == 1;
1579   return isUIntN(NumBits, Val);
1580 }
1581 
1582 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1583   unsigned NumBits = Ty->getIntegerBitWidth();
1584   if (Ty->isIntegerTy(1))
1585     return Val == 0 || Val == 1 || Val == -1;
1586   return isIntN(NumBits, Val);
1587 }
1588 
1589 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1590   // convert modifies in place, so make a copy.
1591   APFloat Val2 = APFloat(Val);
1592   bool losesInfo;
1593   switch (Ty->getTypeID()) {
1594   default:
1595     return false;         // These can't be represented as floating point!
1596 
1597   // FIXME rounding mode needs to be more flexible
1598   case Type::HalfTyID: {
1599     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1600       return true;
1601     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1602     return !losesInfo;
1603   }
1604   case Type::BFloatTyID: {
1605     if (&Val2.getSemantics() == &APFloat::BFloat())
1606       return true;
1607     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1608     return !losesInfo;
1609   }
1610   case Type::FloatTyID: {
1611     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1612       return true;
1613     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1614     return !losesInfo;
1615   }
1616   case Type::DoubleTyID: {
1617     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1618         &Val2.getSemantics() == &APFloat::BFloat() ||
1619         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1620         &Val2.getSemantics() == &APFloat::IEEEdouble())
1621       return true;
1622     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1623     return !losesInfo;
1624   }
1625   case Type::X86_FP80TyID:
1626     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1627            &Val2.getSemantics() == &APFloat::BFloat() ||
1628            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1629            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1630            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1631   case Type::FP128TyID:
1632     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1633            &Val2.getSemantics() == &APFloat::BFloat() ||
1634            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1635            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1636            &Val2.getSemantics() == &APFloat::IEEEquad();
1637   case Type::PPC_FP128TyID:
1638     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1639            &Val2.getSemantics() == &APFloat::BFloat() ||
1640            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1641            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1642            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1643   }
1644 }
1645 
1646 
1647 //===----------------------------------------------------------------------===//
1648 //                      Factory Function Implementation
1649 
1650 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1651   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1652          "Cannot create an aggregate zero of non-aggregate type!");
1653 
1654   std::unique_ptr<ConstantAggregateZero> &Entry =
1655       Ty->getContext().pImpl->CAZConstants[Ty];
1656   if (!Entry)
1657     Entry.reset(new ConstantAggregateZero(Ty));
1658 
1659   return Entry.get();
1660 }
1661 
1662 /// Remove the constant from the constant table.
1663 void ConstantAggregateZero::destroyConstantImpl() {
1664   getContext().pImpl->CAZConstants.erase(getType());
1665 }
1666 
1667 /// Remove the constant from the constant table.
1668 void ConstantArray::destroyConstantImpl() {
1669   getType()->getContext().pImpl->ArrayConstants.remove(this);
1670 }
1671 
1672 
1673 //---- ConstantStruct::get() implementation...
1674 //
1675 
1676 /// Remove the constant from the constant table.
1677 void ConstantStruct::destroyConstantImpl() {
1678   getType()->getContext().pImpl->StructConstants.remove(this);
1679 }
1680 
1681 /// Remove the constant from the constant table.
1682 void ConstantVector::destroyConstantImpl() {
1683   getType()->getContext().pImpl->VectorConstants.remove(this);
1684 }
1685 
1686 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1687   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1688   if (isa<ConstantAggregateZero>(this))
1689     return getNullValue(cast<VectorType>(getType())->getElementType());
1690   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1691     return CV->getSplatValue();
1692   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1693     return CV->getSplatValue(AllowUndefs);
1694 
1695   // Check if this is a constant expression splat of the form returned by
1696   // ConstantVector::getSplat()
1697   const auto *Shuf = dyn_cast<ConstantExpr>(this);
1698   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1699       isa<UndefValue>(Shuf->getOperand(1))) {
1700 
1701     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1702     if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1703         isa<UndefValue>(IElt->getOperand(0))) {
1704 
1705       ArrayRef<int> Mask = Shuf->getShuffleMask();
1706       Constant *SplatVal = IElt->getOperand(1);
1707       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1708 
1709       if (Index && Index->getValue() == 0 &&
1710           llvm::all_of(Mask, [](int I) { return I == 0; }))
1711         return SplatVal;
1712     }
1713   }
1714 
1715   return nullptr;
1716 }
1717 
1718 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1719   // Check out first element.
1720   Constant *Elt = getOperand(0);
1721   // Then make sure all remaining elements point to the same value.
1722   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1723     Constant *OpC = getOperand(I);
1724     if (OpC == Elt)
1725       continue;
1726 
1727     // Strict mode: any mismatch is not a splat.
1728     if (!AllowUndefs)
1729       return nullptr;
1730 
1731     // Allow undefs mode: ignore undefined elements.
1732     if (isa<UndefValue>(OpC))
1733       continue;
1734 
1735     // If we do not have a defined element yet, use the current operand.
1736     if (isa<UndefValue>(Elt))
1737       Elt = OpC;
1738 
1739     if (OpC != Elt)
1740       return nullptr;
1741   }
1742   return Elt;
1743 }
1744 
1745 const APInt &Constant::getUniqueInteger() const {
1746   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1747     return CI->getValue();
1748   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1749   const Constant *C = this->getAggregateElement(0U);
1750   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1751   return cast<ConstantInt>(C)->getValue();
1752 }
1753 
1754 //---- ConstantPointerNull::get() implementation.
1755 //
1756 
1757 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1758   std::unique_ptr<ConstantPointerNull> &Entry =
1759       Ty->getContext().pImpl->CPNConstants[Ty];
1760   if (!Entry)
1761     Entry.reset(new ConstantPointerNull(Ty));
1762 
1763   return Entry.get();
1764 }
1765 
1766 /// Remove the constant from the constant table.
1767 void ConstantPointerNull::destroyConstantImpl() {
1768   getContext().pImpl->CPNConstants.erase(getType());
1769 }
1770 
1771 UndefValue *UndefValue::get(Type *Ty) {
1772   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1773   if (!Entry)
1774     Entry.reset(new UndefValue(Ty));
1775 
1776   return Entry.get();
1777 }
1778 
1779 /// Remove the constant from the constant table.
1780 void UndefValue::destroyConstantImpl() {
1781   // Free the constant and any dangling references to it.
1782   if (getValueID() == UndefValueVal) {
1783     getContext().pImpl->UVConstants.erase(getType());
1784   } else if (getValueID() == PoisonValueVal) {
1785     getContext().pImpl->PVConstants.erase(getType());
1786   }
1787   llvm_unreachable("Not a undef or a poison!");
1788 }
1789 
1790 PoisonValue *PoisonValue::get(Type *Ty) {
1791   std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty];
1792   if (!Entry)
1793     Entry.reset(new PoisonValue(Ty));
1794 
1795   return Entry.get();
1796 }
1797 
1798 /// Remove the constant from the constant table.
1799 void PoisonValue::destroyConstantImpl() {
1800   // Free the constant and any dangling references to it.
1801   getContext().pImpl->PVConstants.erase(getType());
1802 }
1803 
1804 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1805   assert(BB->getParent() && "Block must have a parent");
1806   return get(BB->getParent(), BB);
1807 }
1808 
1809 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1810   BlockAddress *&BA =
1811     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1812   if (!BA)
1813     BA = new BlockAddress(F, BB);
1814 
1815   assert(BA->getFunction() == F && "Basic block moved between functions");
1816   return BA;
1817 }
1818 
1819 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1820     : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()),
1821                Value::BlockAddressVal, &Op<0>(), 2) {
1822   setOperand(0, F);
1823   setOperand(1, BB);
1824   BB->AdjustBlockAddressRefCount(1);
1825 }
1826 
1827 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1828   if (!BB->hasAddressTaken())
1829     return nullptr;
1830 
1831   const Function *F = BB->getParent();
1832   assert(F && "Block must have a parent");
1833   BlockAddress *BA =
1834       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1835   assert(BA && "Refcount and block address map disagree!");
1836   return BA;
1837 }
1838 
1839 /// Remove the constant from the constant table.
1840 void BlockAddress::destroyConstantImpl() {
1841   getFunction()->getType()->getContext().pImpl
1842     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1843   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1844 }
1845 
1846 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1847   // This could be replacing either the Basic Block or the Function.  In either
1848   // case, we have to remove the map entry.
1849   Function *NewF = getFunction();
1850   BasicBlock *NewBB = getBasicBlock();
1851 
1852   if (From == NewF)
1853     NewF = cast<Function>(To->stripPointerCasts());
1854   else {
1855     assert(From == NewBB && "From does not match any operand");
1856     NewBB = cast<BasicBlock>(To);
1857   }
1858 
1859   // See if the 'new' entry already exists, if not, just update this in place
1860   // and return early.
1861   BlockAddress *&NewBA =
1862     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1863   if (NewBA)
1864     return NewBA;
1865 
1866   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1867 
1868   // Remove the old entry, this can't cause the map to rehash (just a
1869   // tombstone will get added).
1870   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1871                                                           getBasicBlock()));
1872   NewBA = this;
1873   setOperand(0, NewF);
1874   setOperand(1, NewBB);
1875   getBasicBlock()->AdjustBlockAddressRefCount(1);
1876 
1877   // If we just want to keep the existing value, then return null.
1878   // Callers know that this means we shouldn't delete this value.
1879   return nullptr;
1880 }
1881 
1882 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) {
1883   DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV];
1884   if (!Equiv)
1885     Equiv = new DSOLocalEquivalent(GV);
1886 
1887   assert(Equiv->getGlobalValue() == GV &&
1888          "DSOLocalFunction does not match the expected global value");
1889   return Equiv;
1890 }
1891 
1892 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV)
1893     : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) {
1894   setOperand(0, GV);
1895 }
1896 
1897 /// Remove the constant from the constant table.
1898 void DSOLocalEquivalent::destroyConstantImpl() {
1899   const GlobalValue *GV = getGlobalValue();
1900   GV->getContext().pImpl->DSOLocalEquivalents.erase(GV);
1901 }
1902 
1903 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) {
1904   assert(From == getGlobalValue() && "Changing value does not match operand.");
1905   assert(isa<Constant>(To) && "Can only replace the operands with a constant");
1906 
1907   // The replacement is with another global value.
1908   if (const auto *ToObj = dyn_cast<GlobalValue>(To)) {
1909     DSOLocalEquivalent *&NewEquiv =
1910         getContext().pImpl->DSOLocalEquivalents[ToObj];
1911     if (NewEquiv)
1912       return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1913   }
1914 
1915   // If the argument is replaced with a null value, just replace this constant
1916   // with a null value.
1917   if (cast<Constant>(To)->isNullValue())
1918     return To;
1919 
1920   // The replacement could be a bitcast or an alias to another function. We can
1921   // replace it with a bitcast to the dso_local_equivalent of that function.
1922   auto *Func = cast<Function>(To->stripPointerCastsAndAliases());
1923   DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func];
1924   if (NewEquiv)
1925     return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1926 
1927   // Replace this with the new one.
1928   getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue());
1929   NewEquiv = this;
1930   setOperand(0, Func);
1931 
1932   if (Func->getType() != getType()) {
1933     // It is ok to mutate the type here because this constant should always
1934     // reflect the type of the function it's holding.
1935     mutateType(Func->getType());
1936   }
1937   return nullptr;
1938 }
1939 
1940 //---- ConstantExpr::get() implementations.
1941 //
1942 
1943 /// This is a utility function to handle folding of casts and lookup of the
1944 /// cast in the ExprConstants map. It is used by the various get* methods below.
1945 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1946                                bool OnlyIfReduced = false) {
1947   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1948   // Fold a few common cases
1949   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1950     return FC;
1951 
1952   if (OnlyIfReduced)
1953     return nullptr;
1954 
1955   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1956 
1957   // Look up the constant in the table first to ensure uniqueness.
1958   ConstantExprKeyType Key(opc, C);
1959 
1960   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1961 }
1962 
1963 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1964                                 bool OnlyIfReduced) {
1965   Instruction::CastOps opc = Instruction::CastOps(oc);
1966   assert(Instruction::isCast(opc) && "opcode out of range");
1967   assert(C && Ty && "Null arguments to getCast");
1968   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1969 
1970   switch (opc) {
1971   default:
1972     llvm_unreachable("Invalid cast opcode");
1973   case Instruction::Trunc:
1974     return getTrunc(C, Ty, OnlyIfReduced);
1975   case Instruction::ZExt:
1976     return getZExt(C, Ty, OnlyIfReduced);
1977   case Instruction::SExt:
1978     return getSExt(C, Ty, OnlyIfReduced);
1979   case Instruction::FPTrunc:
1980     return getFPTrunc(C, Ty, OnlyIfReduced);
1981   case Instruction::FPExt:
1982     return getFPExtend(C, Ty, OnlyIfReduced);
1983   case Instruction::UIToFP:
1984     return getUIToFP(C, Ty, OnlyIfReduced);
1985   case Instruction::SIToFP:
1986     return getSIToFP(C, Ty, OnlyIfReduced);
1987   case Instruction::FPToUI:
1988     return getFPToUI(C, Ty, OnlyIfReduced);
1989   case Instruction::FPToSI:
1990     return getFPToSI(C, Ty, OnlyIfReduced);
1991   case Instruction::PtrToInt:
1992     return getPtrToInt(C, Ty, OnlyIfReduced);
1993   case Instruction::IntToPtr:
1994     return getIntToPtr(C, Ty, OnlyIfReduced);
1995   case Instruction::BitCast:
1996     return getBitCast(C, Ty, OnlyIfReduced);
1997   case Instruction::AddrSpaceCast:
1998     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1999   }
2000 }
2001 
2002 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
2003   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2004     return getBitCast(C, Ty);
2005   return getZExt(C, Ty);
2006 }
2007 
2008 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
2009   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2010     return getBitCast(C, Ty);
2011   return getSExt(C, Ty);
2012 }
2013 
2014 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
2015   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2016     return getBitCast(C, Ty);
2017   return getTrunc(C, Ty);
2018 }
2019 
2020 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
2021   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2022   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2023           "Invalid cast");
2024 
2025   if (Ty->isIntOrIntVectorTy())
2026     return getPtrToInt(S, Ty);
2027 
2028   unsigned SrcAS = S->getType()->getPointerAddressSpace();
2029   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2030     return getAddrSpaceCast(S, Ty);
2031 
2032   return getBitCast(S, Ty);
2033 }
2034 
2035 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
2036                                                          Type *Ty) {
2037   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2038   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2039 
2040   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2041     return getAddrSpaceCast(S, Ty);
2042 
2043   return getBitCast(S, Ty);
2044 }
2045 
2046 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
2047   assert(C->getType()->isIntOrIntVectorTy() &&
2048          Ty->isIntOrIntVectorTy() && "Invalid cast");
2049   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2050   unsigned DstBits = Ty->getScalarSizeInBits();
2051   Instruction::CastOps opcode =
2052     (SrcBits == DstBits ? Instruction::BitCast :
2053      (SrcBits > DstBits ? Instruction::Trunc :
2054       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2055   return getCast(opcode, C, Ty);
2056 }
2057 
2058 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
2059   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2060          "Invalid cast");
2061   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2062   unsigned DstBits = Ty->getScalarSizeInBits();
2063   if (SrcBits == DstBits)
2064     return C; // Avoid a useless cast
2065   Instruction::CastOps opcode =
2066     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
2067   return getCast(opcode, C, Ty);
2068 }
2069 
2070 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2071 #ifndef NDEBUG
2072   bool fromVec = isa<VectorType>(C->getType());
2073   bool toVec = isa<VectorType>(Ty);
2074 #endif
2075   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2076   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
2077   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
2078   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2079          "SrcTy must be larger than DestTy for Trunc!");
2080 
2081   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
2082 }
2083 
2084 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2085 #ifndef NDEBUG
2086   bool fromVec = isa<VectorType>(C->getType());
2087   bool toVec = isa<VectorType>(Ty);
2088 #endif
2089   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2090   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
2091   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
2092   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2093          "SrcTy must be smaller than DestTy for SExt!");
2094 
2095   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
2096 }
2097 
2098 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2099 #ifndef NDEBUG
2100   bool fromVec = isa<VectorType>(C->getType());
2101   bool toVec = isa<VectorType>(Ty);
2102 #endif
2103   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2104   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
2105   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
2106   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2107          "SrcTy must be smaller than DestTy for ZExt!");
2108 
2109   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
2110 }
2111 
2112 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2113 #ifndef NDEBUG
2114   bool fromVec = isa<VectorType>(C->getType());
2115   bool toVec = isa<VectorType>(Ty);
2116 #endif
2117   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2118   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2119          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2120          "This is an illegal floating point truncation!");
2121   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
2122 }
2123 
2124 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
2125 #ifndef NDEBUG
2126   bool fromVec = isa<VectorType>(C->getType());
2127   bool toVec = isa<VectorType>(Ty);
2128 #endif
2129   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2130   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2131          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2132          "This is an illegal floating point extension!");
2133   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
2134 }
2135 
2136 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2137 #ifndef NDEBUG
2138   bool fromVec = isa<VectorType>(C->getType());
2139   bool toVec = isa<VectorType>(Ty);
2140 #endif
2141   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2142   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2143          "This is an illegal uint to floating point cast!");
2144   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
2145 }
2146 
2147 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2148 #ifndef NDEBUG
2149   bool fromVec = isa<VectorType>(C->getType());
2150   bool toVec = isa<VectorType>(Ty);
2151 #endif
2152   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2153   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2154          "This is an illegal sint to floating point cast!");
2155   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
2156 }
2157 
2158 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2159 #ifndef NDEBUG
2160   bool fromVec = isa<VectorType>(C->getType());
2161   bool toVec = isa<VectorType>(Ty);
2162 #endif
2163   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2164   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2165          "This is an illegal floating point to uint cast!");
2166   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
2167 }
2168 
2169 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2170 #ifndef NDEBUG
2171   bool fromVec = isa<VectorType>(C->getType());
2172   bool toVec = isa<VectorType>(Ty);
2173 #endif
2174   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2175   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2176          "This is an illegal floating point to sint cast!");
2177   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
2178 }
2179 
2180 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2181                                     bool OnlyIfReduced) {
2182   assert(C->getType()->isPtrOrPtrVectorTy() &&
2183          "PtrToInt source must be pointer or pointer vector");
2184   assert(DstTy->isIntOrIntVectorTy() &&
2185          "PtrToInt destination must be integer or integer vector");
2186   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2187   if (isa<VectorType>(C->getType()))
2188     assert(cast<FixedVectorType>(C->getType())->getNumElements() ==
2189                cast<FixedVectorType>(DstTy)->getNumElements() &&
2190            "Invalid cast between a different number of vector elements");
2191   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2192 }
2193 
2194 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2195                                     bool OnlyIfReduced) {
2196   assert(C->getType()->isIntOrIntVectorTy() &&
2197          "IntToPtr source must be integer or integer vector");
2198   assert(DstTy->isPtrOrPtrVectorTy() &&
2199          "IntToPtr destination must be a pointer or pointer vector");
2200   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2201   if (isa<VectorType>(C->getType()))
2202     assert(cast<VectorType>(C->getType())->getElementCount() ==
2203                cast<VectorType>(DstTy)->getElementCount() &&
2204            "Invalid cast between a different number of vector elements");
2205   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2206 }
2207 
2208 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2209                                    bool OnlyIfReduced) {
2210   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2211          "Invalid constantexpr bitcast!");
2212 
2213   // It is common to ask for a bitcast of a value to its own type, handle this
2214   // speedily.
2215   if (C->getType() == DstTy) return C;
2216 
2217   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2218 }
2219 
2220 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2221                                          bool OnlyIfReduced) {
2222   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2223          "Invalid constantexpr addrspacecast!");
2224 
2225   // Canonicalize addrspacecasts between different pointer types by first
2226   // bitcasting the pointer type and then converting the address space.
2227   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
2228   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
2229   if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) {
2230     Type *MidTy = PointerType::getWithSamePointeeType(
2231         DstScalarTy, SrcScalarTy->getAddressSpace());
2232     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
2233       // Handle vectors of pointers.
2234       MidTy = FixedVectorType::get(MidTy,
2235                                    cast<FixedVectorType>(VT)->getNumElements());
2236     }
2237     C = getBitCast(C, MidTy);
2238   }
2239   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2240 }
2241 
2242 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
2243                             Type *OnlyIfReducedTy) {
2244   // Check the operands for consistency first.
2245   assert(Instruction::isUnaryOp(Opcode) &&
2246          "Invalid opcode in unary constant expression");
2247 
2248 #ifndef NDEBUG
2249   switch (Opcode) {
2250   case Instruction::FNeg:
2251     assert(C->getType()->isFPOrFPVectorTy() &&
2252            "Tried to create a floating-point operation on a "
2253            "non-floating-point type!");
2254     break;
2255   default:
2256     break;
2257   }
2258 #endif
2259 
2260   if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
2261     return FC;
2262 
2263   if (OnlyIfReducedTy == C->getType())
2264     return nullptr;
2265 
2266   Constant *ArgVec[] = { C };
2267   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2268 
2269   LLVMContextImpl *pImpl = C->getContext().pImpl;
2270   return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
2271 }
2272 
2273 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2274                             unsigned Flags, Type *OnlyIfReducedTy) {
2275   // Check the operands for consistency first.
2276   assert(Instruction::isBinaryOp(Opcode) &&
2277          "Invalid opcode in binary constant expression");
2278   assert(C1->getType() == C2->getType() &&
2279          "Operand types in binary constant expression should match");
2280 
2281 #ifndef NDEBUG
2282   switch (Opcode) {
2283   case Instruction::Add:
2284   case Instruction::Sub:
2285   case Instruction::Mul:
2286   case Instruction::UDiv:
2287   case Instruction::SDiv:
2288   case Instruction::URem:
2289   case Instruction::SRem:
2290     assert(C1->getType()->isIntOrIntVectorTy() &&
2291            "Tried to create an integer operation on a non-integer type!");
2292     break;
2293   case Instruction::FAdd:
2294   case Instruction::FSub:
2295   case Instruction::FMul:
2296   case Instruction::FDiv:
2297   case Instruction::FRem:
2298     assert(C1->getType()->isFPOrFPVectorTy() &&
2299            "Tried to create a floating-point operation on a "
2300            "non-floating-point type!");
2301     break;
2302   case Instruction::And:
2303   case Instruction::Or:
2304   case Instruction::Xor:
2305     assert(C1->getType()->isIntOrIntVectorTy() &&
2306            "Tried to create a logical operation on a non-integral type!");
2307     break;
2308   case Instruction::Shl:
2309   case Instruction::LShr:
2310   case Instruction::AShr:
2311     assert(C1->getType()->isIntOrIntVectorTy() &&
2312            "Tried to create a shift operation on a non-integer type!");
2313     break;
2314   default:
2315     break;
2316   }
2317 #endif
2318 
2319   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2320     return FC;
2321 
2322   if (OnlyIfReducedTy == C1->getType())
2323     return nullptr;
2324 
2325   Constant *ArgVec[] = { C1, C2 };
2326   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2327 
2328   LLVMContextImpl *pImpl = C1->getContext().pImpl;
2329   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2330 }
2331 
2332 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2333   // sizeof is implemented as: (i64) gep (Ty*)null, 1
2334   // Note that a non-inbounds gep is used, as null isn't within any object.
2335   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2336   Constant *GEP = getGetElementPtr(
2337       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2338   return getPtrToInt(GEP,
2339                      Type::getInt64Ty(Ty->getContext()));
2340 }
2341 
2342 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2343   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2344   // Note that a non-inbounds gep is used, as null isn't within any object.
2345   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2346   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2347   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2348   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2349   Constant *Indices[2] = { Zero, One };
2350   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2351   return getPtrToInt(GEP,
2352                      Type::getInt64Ty(Ty->getContext()));
2353 }
2354 
2355 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2356   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2357                                            FieldNo));
2358 }
2359 
2360 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2361   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2362   // Note that a non-inbounds gep is used, as null isn't within any object.
2363   Constant *GEPIdx[] = {
2364     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2365     FieldNo
2366   };
2367   Constant *GEP = getGetElementPtr(
2368       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2369   return getPtrToInt(GEP,
2370                      Type::getInt64Ty(Ty->getContext()));
2371 }
2372 
2373 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2374                                    Constant *C2, bool OnlyIfReduced) {
2375   assert(C1->getType() == C2->getType() && "Op types should be identical!");
2376 
2377   switch (Predicate) {
2378   default: llvm_unreachable("Invalid CmpInst predicate");
2379   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2380   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2381   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2382   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2383   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2384   case CmpInst::FCMP_TRUE:
2385     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2386 
2387   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2388   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2389   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2390   case CmpInst::ICMP_SLE:
2391     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2392   }
2393 }
2394 
2395 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2396                                   Type *OnlyIfReducedTy) {
2397   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2398 
2399   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2400     return SC;        // Fold common cases
2401 
2402   if (OnlyIfReducedTy == V1->getType())
2403     return nullptr;
2404 
2405   Constant *ArgVec[] = { C, V1, V2 };
2406   ConstantExprKeyType Key(Instruction::Select, ArgVec);
2407 
2408   LLVMContextImpl *pImpl = C->getContext().pImpl;
2409   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2410 }
2411 
2412 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2413                                          ArrayRef<Value *> Idxs, bool InBounds,
2414                                          Optional<unsigned> InRangeIndex,
2415                                          Type *OnlyIfReducedTy) {
2416   PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType());
2417   assert(Ty && "Must specify element type");
2418   assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty));
2419 
2420   if (Constant *FC =
2421           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2422     return FC;          // Fold a few common cases.
2423 
2424   // Get the result type of the getelementptr!
2425   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2426   assert(DestTy && "GEP indices invalid!");
2427   unsigned AS = OrigPtrTy->getAddressSpace();
2428   Type *ReqTy = OrigPtrTy->isOpaque()
2429       ? PointerType::get(OrigPtrTy->getContext(), AS)
2430       : DestTy->getPointerTo(AS);
2431 
2432   auto EltCount = ElementCount::getFixed(0);
2433   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2434     EltCount = VecTy->getElementCount();
2435   else
2436     for (auto Idx : Idxs)
2437       if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
2438         EltCount = VecTy->getElementCount();
2439 
2440   if (EltCount.isNonZero())
2441     ReqTy = VectorType::get(ReqTy, EltCount);
2442 
2443   if (OnlyIfReducedTy == ReqTy)
2444     return nullptr;
2445 
2446   // Look up the constant in the table first to ensure uniqueness
2447   std::vector<Constant*> ArgVec;
2448   ArgVec.reserve(1 + Idxs.size());
2449   ArgVec.push_back(C);
2450   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2451   for (; GTI != GTE; ++GTI) {
2452     auto *Idx = cast<Constant>(GTI.getOperand());
2453     assert(
2454         (!isa<VectorType>(Idx->getType()) ||
2455          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2456         "getelementptr index type missmatch");
2457 
2458     if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2459       Idx = Idx->getSplatValue();
2460     } else if (GTI.isSequential() && EltCount.isNonZero() &&
2461                !Idx->getType()->isVectorTy()) {
2462       Idx = ConstantVector::getSplat(EltCount, Idx);
2463     }
2464     ArgVec.push_back(Idx);
2465   }
2466 
2467   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2468   if (InRangeIndex && *InRangeIndex < 63)
2469     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2470   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2471                                 SubClassOptionalData, None, None, Ty);
2472 
2473   LLVMContextImpl *pImpl = C->getContext().pImpl;
2474   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2475 }
2476 
2477 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2478                                 Constant *RHS, bool OnlyIfReduced) {
2479   assert(LHS->getType() == RHS->getType());
2480   assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2481          "Invalid ICmp Predicate");
2482 
2483   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2484     return FC;          // Fold a few common cases...
2485 
2486   if (OnlyIfReduced)
2487     return nullptr;
2488 
2489   // Look up the constant in the table first to ensure uniqueness
2490   Constant *ArgVec[] = { LHS, RHS };
2491   // Get the key type with both the opcode and predicate
2492   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2493 
2494   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2495   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2496     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2497 
2498   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2499   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2500 }
2501 
2502 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2503                                 Constant *RHS, bool OnlyIfReduced) {
2504   assert(LHS->getType() == RHS->getType());
2505   assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2506          "Invalid FCmp Predicate");
2507 
2508   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2509     return FC;          // Fold a few common cases...
2510 
2511   if (OnlyIfReduced)
2512     return nullptr;
2513 
2514   // Look up the constant in the table first to ensure uniqueness
2515   Constant *ArgVec[] = { LHS, RHS };
2516   // Get the key type with both the opcode and predicate
2517   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2518 
2519   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2520   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2521     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2522 
2523   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2524   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2525 }
2526 
2527 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2528                                           Type *OnlyIfReducedTy) {
2529   assert(Val->getType()->isVectorTy() &&
2530          "Tried to create extractelement operation on non-vector type!");
2531   assert(Idx->getType()->isIntegerTy() &&
2532          "Extractelement index must be an integer type!");
2533 
2534   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2535     return FC;          // Fold a few common cases.
2536 
2537   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2538   if (OnlyIfReducedTy == ReqTy)
2539     return nullptr;
2540 
2541   // Look up the constant in the table first to ensure uniqueness
2542   Constant *ArgVec[] = { Val, Idx };
2543   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2544 
2545   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2546   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2547 }
2548 
2549 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2550                                          Constant *Idx, Type *OnlyIfReducedTy) {
2551   assert(Val->getType()->isVectorTy() &&
2552          "Tried to create insertelement operation on non-vector type!");
2553   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2554          "Insertelement types must match!");
2555   assert(Idx->getType()->isIntegerTy() &&
2556          "Insertelement index must be i32 type!");
2557 
2558   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2559     return FC;          // Fold a few common cases.
2560 
2561   if (OnlyIfReducedTy == Val->getType())
2562     return nullptr;
2563 
2564   // Look up the constant in the table first to ensure uniqueness
2565   Constant *ArgVec[] = { Val, Elt, Idx };
2566   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2567 
2568   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2569   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2570 }
2571 
2572 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2573                                          ArrayRef<int> Mask,
2574                                          Type *OnlyIfReducedTy) {
2575   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2576          "Invalid shuffle vector constant expr operands!");
2577 
2578   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2579     return FC;          // Fold a few common cases.
2580 
2581   unsigned NElts = Mask.size();
2582   auto V1VTy = cast<VectorType>(V1->getType());
2583   Type *EltTy = V1VTy->getElementType();
2584   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2585   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2586 
2587   if (OnlyIfReducedTy == ShufTy)
2588     return nullptr;
2589 
2590   // Look up the constant in the table first to ensure uniqueness
2591   Constant *ArgVec[] = {V1, V2};
2592   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
2593 
2594   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2595   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2596 }
2597 
2598 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2599                                        ArrayRef<unsigned> Idxs,
2600                                        Type *OnlyIfReducedTy) {
2601   assert(Agg->getType()->isFirstClassType() &&
2602          "Non-first-class type for constant insertvalue expression");
2603 
2604   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2605                                           Idxs) == Val->getType() &&
2606          "insertvalue indices invalid!");
2607   Type *ReqTy = Val->getType();
2608 
2609   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2610     return FC;
2611 
2612   if (OnlyIfReducedTy == ReqTy)
2613     return nullptr;
2614 
2615   Constant *ArgVec[] = { Agg, Val };
2616   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2617 
2618   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2619   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2620 }
2621 
2622 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2623                                         Type *OnlyIfReducedTy) {
2624   assert(Agg->getType()->isFirstClassType() &&
2625          "Tried to create extractelement operation on non-first-class type!");
2626 
2627   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2628   (void)ReqTy;
2629   assert(ReqTy && "extractvalue indices invalid!");
2630 
2631   assert(Agg->getType()->isFirstClassType() &&
2632          "Non-first-class type for constant extractvalue expression");
2633   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2634     return FC;
2635 
2636   if (OnlyIfReducedTy == ReqTy)
2637     return nullptr;
2638 
2639   Constant *ArgVec[] = { Agg };
2640   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2641 
2642   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2643   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2644 }
2645 
2646 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2647   assert(C->getType()->isIntOrIntVectorTy() &&
2648          "Cannot NEG a nonintegral value!");
2649   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2650                 C, HasNUW, HasNSW);
2651 }
2652 
2653 Constant *ConstantExpr::getFNeg(Constant *C) {
2654   assert(C->getType()->isFPOrFPVectorTy() &&
2655          "Cannot FNEG a non-floating-point value!");
2656   return get(Instruction::FNeg, C);
2657 }
2658 
2659 Constant *ConstantExpr::getNot(Constant *C) {
2660   assert(C->getType()->isIntOrIntVectorTy() &&
2661          "Cannot NOT a nonintegral value!");
2662   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2663 }
2664 
2665 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2666                                bool HasNUW, bool HasNSW) {
2667   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2668                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2669   return get(Instruction::Add, C1, C2, Flags);
2670 }
2671 
2672 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2673   return get(Instruction::FAdd, C1, C2);
2674 }
2675 
2676 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2677                                bool HasNUW, bool HasNSW) {
2678   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2679                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2680   return get(Instruction::Sub, C1, C2, Flags);
2681 }
2682 
2683 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2684   return get(Instruction::FSub, C1, C2);
2685 }
2686 
2687 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2688                                bool HasNUW, bool HasNSW) {
2689   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2690                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2691   return get(Instruction::Mul, C1, C2, Flags);
2692 }
2693 
2694 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2695   return get(Instruction::FMul, C1, C2);
2696 }
2697 
2698 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2699   return get(Instruction::UDiv, C1, C2,
2700              isExact ? PossiblyExactOperator::IsExact : 0);
2701 }
2702 
2703 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2704   return get(Instruction::SDiv, C1, C2,
2705              isExact ? PossiblyExactOperator::IsExact : 0);
2706 }
2707 
2708 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2709   return get(Instruction::FDiv, C1, C2);
2710 }
2711 
2712 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2713   return get(Instruction::URem, C1, C2);
2714 }
2715 
2716 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2717   return get(Instruction::SRem, C1, C2);
2718 }
2719 
2720 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2721   return get(Instruction::FRem, C1, C2);
2722 }
2723 
2724 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2725   return get(Instruction::And, C1, C2);
2726 }
2727 
2728 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2729   return get(Instruction::Or, C1, C2);
2730 }
2731 
2732 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2733   return get(Instruction::Xor, C1, C2);
2734 }
2735 
2736 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) {
2737   Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2);
2738   return getSelect(Cmp, C1, C2);
2739 }
2740 
2741 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2742                                bool HasNUW, bool HasNSW) {
2743   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2744                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2745   return get(Instruction::Shl, C1, C2, Flags);
2746 }
2747 
2748 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2749   return get(Instruction::LShr, C1, C2,
2750              isExact ? PossiblyExactOperator::IsExact : 0);
2751 }
2752 
2753 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2754   return get(Instruction::AShr, C1, C2,
2755              isExact ? PossiblyExactOperator::IsExact : 0);
2756 }
2757 
2758 Constant *ConstantExpr::getExactLogBase2(Constant *C) {
2759   Type *Ty = C->getType();
2760   const APInt *IVal;
2761   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
2762     return ConstantInt::get(Ty, IVal->logBase2());
2763 
2764   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
2765   auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2766   if (!VecTy)
2767     return nullptr;
2768 
2769   SmallVector<Constant *, 4> Elts;
2770   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
2771     Constant *Elt = C->getAggregateElement(I);
2772     if (!Elt)
2773       return nullptr;
2774     // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
2775     if (isa<UndefValue>(Elt)) {
2776       Elts.push_back(Constant::getNullValue(Ty->getScalarType()));
2777       continue;
2778     }
2779     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
2780       return nullptr;
2781     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
2782   }
2783 
2784   return ConstantVector::get(Elts);
2785 }
2786 
2787 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2788                                          bool AllowRHSConstant) {
2789   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2790 
2791   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2792   if (Instruction::isCommutative(Opcode)) {
2793     switch (Opcode) {
2794       case Instruction::Add: // X + 0 = X
2795       case Instruction::Or:  // X | 0 = X
2796       case Instruction::Xor: // X ^ 0 = X
2797         return Constant::getNullValue(Ty);
2798       case Instruction::Mul: // X * 1 = X
2799         return ConstantInt::get(Ty, 1);
2800       case Instruction::And: // X & -1 = X
2801         return Constant::getAllOnesValue(Ty);
2802       case Instruction::FAdd: // X + -0.0 = X
2803         // TODO: If the fadd has 'nsz', should we return +0.0?
2804         return ConstantFP::getNegativeZero(Ty);
2805       case Instruction::FMul: // X * 1.0 = X
2806         return ConstantFP::get(Ty, 1.0);
2807       default:
2808         llvm_unreachable("Every commutative binop has an identity constant");
2809     }
2810   }
2811 
2812   // Non-commutative opcodes: AllowRHSConstant must be set.
2813   if (!AllowRHSConstant)
2814     return nullptr;
2815 
2816   switch (Opcode) {
2817     case Instruction::Sub:  // X - 0 = X
2818     case Instruction::Shl:  // X << 0 = X
2819     case Instruction::LShr: // X >>u 0 = X
2820     case Instruction::AShr: // X >> 0 = X
2821     case Instruction::FSub: // X - 0.0 = X
2822       return Constant::getNullValue(Ty);
2823     case Instruction::SDiv: // X / 1 = X
2824     case Instruction::UDiv: // X /u 1 = X
2825       return ConstantInt::get(Ty, 1);
2826     case Instruction::FDiv: // X / 1.0 = X
2827       return ConstantFP::get(Ty, 1.0);
2828     default:
2829       return nullptr;
2830   }
2831 }
2832 
2833 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2834   switch (Opcode) {
2835   default:
2836     // Doesn't have an absorber.
2837     return nullptr;
2838 
2839   case Instruction::Or:
2840     return Constant::getAllOnesValue(Ty);
2841 
2842   case Instruction::And:
2843   case Instruction::Mul:
2844     return Constant::getNullValue(Ty);
2845   }
2846 }
2847 
2848 /// Remove the constant from the constant table.
2849 void ConstantExpr::destroyConstantImpl() {
2850   getType()->getContext().pImpl->ExprConstants.remove(this);
2851 }
2852 
2853 const char *ConstantExpr::getOpcodeName() const {
2854   return Instruction::getOpcodeName(getOpcode());
2855 }
2856 
2857 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2858     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2859     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2860                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2861                        (IdxList.size() + 1),
2862                    IdxList.size() + 1),
2863       SrcElementTy(SrcElementTy),
2864       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2865   Op<0>() = C;
2866   Use *OperandList = getOperandList();
2867   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2868     OperandList[i+1] = IdxList[i];
2869 }
2870 
2871 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2872   return SrcElementTy;
2873 }
2874 
2875 Type *GetElementPtrConstantExpr::getResultElementType() const {
2876   return ResElementTy;
2877 }
2878 
2879 //===----------------------------------------------------------------------===//
2880 //                       ConstantData* implementations
2881 
2882 Type *ConstantDataSequential::getElementType() const {
2883   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2884     return ATy->getElementType();
2885   return cast<VectorType>(getType())->getElementType();
2886 }
2887 
2888 StringRef ConstantDataSequential::getRawDataValues() const {
2889   return StringRef(DataElements, getNumElements()*getElementByteSize());
2890 }
2891 
2892 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2893   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2894     return true;
2895   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2896     switch (IT->getBitWidth()) {
2897     case 8:
2898     case 16:
2899     case 32:
2900     case 64:
2901       return true;
2902     default: break;
2903     }
2904   }
2905   return false;
2906 }
2907 
2908 unsigned ConstantDataSequential::getNumElements() const {
2909   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2910     return AT->getNumElements();
2911   return cast<FixedVectorType>(getType())->getNumElements();
2912 }
2913 
2914 
2915 uint64_t ConstantDataSequential::getElementByteSize() const {
2916   return getElementType()->getPrimitiveSizeInBits()/8;
2917 }
2918 
2919 /// Return the start of the specified element.
2920 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2921   assert(Elt < getNumElements() && "Invalid Elt");
2922   return DataElements+Elt*getElementByteSize();
2923 }
2924 
2925 
2926 /// Return true if the array is empty or all zeros.
2927 static bool isAllZeros(StringRef Arr) {
2928   for (char I : Arr)
2929     if (I != 0)
2930       return false;
2931   return true;
2932 }
2933 
2934 /// This is the underlying implementation of all of the
2935 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2936 /// the correct element type.  We take the bytes in as a StringRef because
2937 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2938 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2939 #ifndef NDEBUG
2940   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2941     assert(isElementTypeCompatible(ATy->getElementType()));
2942   else
2943     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2944 #endif
2945   // If the elements are all zero or there are no elements, return a CAZ, which
2946   // is more dense and canonical.
2947   if (isAllZeros(Elements))
2948     return ConstantAggregateZero::get(Ty);
2949 
2950   // Do a lookup to see if we have already formed one of these.
2951   auto &Slot =
2952       *Ty->getContext()
2953            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2954            .first;
2955 
2956   // The bucket can point to a linked list of different CDS's that have the same
2957   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2958   // of i8, or a 1-element array of i32.  They'll both end up in the same
2959   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2960   std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2961   for (; *Entry; Entry = &(*Entry)->Next)
2962     if ((*Entry)->getType() == Ty)
2963       return Entry->get();
2964 
2965   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2966   // and return it.
2967   if (isa<ArrayType>(Ty)) {
2968     // Use reset because std::make_unique can't access the constructor.
2969     Entry->reset(new ConstantDataArray(Ty, Slot.first().data()));
2970     return Entry->get();
2971   }
2972 
2973   assert(isa<VectorType>(Ty));
2974   // Use reset because std::make_unique can't access the constructor.
2975   Entry->reset(new ConstantDataVector(Ty, Slot.first().data()));
2976   return Entry->get();
2977 }
2978 
2979 void ConstantDataSequential::destroyConstantImpl() {
2980   // Remove the constant from the StringMap.
2981   StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants =
2982       getType()->getContext().pImpl->CDSConstants;
2983 
2984   auto Slot = CDSConstants.find(getRawDataValues());
2985 
2986   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2987 
2988   std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
2989 
2990   // Remove the entry from the hash table.
2991   if (!(*Entry)->Next) {
2992     // If there is only one value in the bucket (common case) it must be this
2993     // entry, and removing the entry should remove the bucket completely.
2994     assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential");
2995     getContext().pImpl->CDSConstants.erase(Slot);
2996     return;
2997   }
2998 
2999   // Otherwise, there are multiple entries linked off the bucket, unlink the
3000   // node we care about but keep the bucket around.
3001   while (true) {
3002     std::unique_ptr<ConstantDataSequential> &Node = *Entry;
3003     assert(Node && "Didn't find entry in its uniquing hash table!");
3004     // If we found our entry, unlink it from the list and we're done.
3005     if (Node.get() == this) {
3006       Node = std::move(Node->Next);
3007       return;
3008     }
3009 
3010     Entry = &Node->Next;
3011   }
3012 }
3013 
3014 /// getFP() constructors - Return a constant of array type with a float
3015 /// element type taken from argument `ElementType', and count taken from
3016 /// argument `Elts'.  The amount of bits of the contained type must match the
3017 /// number of bits of the type contained in the passed in ArrayRef.
3018 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3019 /// that this can return a ConstantAggregateZero object.
3020 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
3021   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3022          "Element type is not a 16-bit float type");
3023   Type *Ty = ArrayType::get(ElementType, Elts.size());
3024   const char *Data = reinterpret_cast<const char *>(Elts.data());
3025   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3026 }
3027 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
3028   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3029   Type *Ty = ArrayType::get(ElementType, Elts.size());
3030   const char *Data = reinterpret_cast<const char *>(Elts.data());
3031   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3032 }
3033 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
3034   assert(ElementType->isDoubleTy() &&
3035          "Element type is not a 64-bit float type");
3036   Type *Ty = ArrayType::get(ElementType, Elts.size());
3037   const char *Data = reinterpret_cast<const char *>(Elts.data());
3038   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3039 }
3040 
3041 Constant *ConstantDataArray::getString(LLVMContext &Context,
3042                                        StringRef Str, bool AddNull) {
3043   if (!AddNull) {
3044     const uint8_t *Data = Str.bytes_begin();
3045     return get(Context, makeArrayRef(Data, Str.size()));
3046   }
3047 
3048   SmallVector<uint8_t, 64> ElementVals;
3049   ElementVals.append(Str.begin(), Str.end());
3050   ElementVals.push_back(0);
3051   return get(Context, ElementVals);
3052 }
3053 
3054 /// get() constructors - Return a constant with vector type with an element
3055 /// count and element type matching the ArrayRef passed in.  Note that this
3056 /// can return a ConstantAggregateZero object.
3057 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
3058   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
3059   const char *Data = reinterpret_cast<const char *>(Elts.data());
3060   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
3061 }
3062 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
3063   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
3064   const char *Data = reinterpret_cast<const char *>(Elts.data());
3065   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3066 }
3067 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
3068   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
3069   const char *Data = reinterpret_cast<const char *>(Elts.data());
3070   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3071 }
3072 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
3073   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
3074   const char *Data = reinterpret_cast<const char *>(Elts.data());
3075   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3076 }
3077 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
3078   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
3079   const char *Data = reinterpret_cast<const char *>(Elts.data());
3080   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3081 }
3082 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
3083   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
3084   const char *Data = reinterpret_cast<const char *>(Elts.data());
3085   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3086 }
3087 
3088 /// getFP() constructors - Return a constant of vector type with a float
3089 /// element type taken from argument `ElementType', and count taken from
3090 /// argument `Elts'.  The amount of bits of the contained type must match the
3091 /// number of bits of the type contained in the passed in ArrayRef.
3092 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3093 /// that this can return a ConstantAggregateZero object.
3094 Constant *ConstantDataVector::getFP(Type *ElementType,
3095                                     ArrayRef<uint16_t> Elts) {
3096   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3097          "Element type is not a 16-bit float type");
3098   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3099   const char *Data = reinterpret_cast<const char *>(Elts.data());
3100   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3101 }
3102 Constant *ConstantDataVector::getFP(Type *ElementType,
3103                                     ArrayRef<uint32_t> Elts) {
3104   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3105   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3106   const char *Data = reinterpret_cast<const char *>(Elts.data());
3107   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3108 }
3109 Constant *ConstantDataVector::getFP(Type *ElementType,
3110                                     ArrayRef<uint64_t> Elts) {
3111   assert(ElementType->isDoubleTy() &&
3112          "Element type is not a 64-bit float type");
3113   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3114   const char *Data = reinterpret_cast<const char *>(Elts.data());
3115   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3116 }
3117 
3118 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
3119   assert(isElementTypeCompatible(V->getType()) &&
3120          "Element type not compatible with ConstantData");
3121   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3122     if (CI->getType()->isIntegerTy(8)) {
3123       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
3124       return get(V->getContext(), Elts);
3125     }
3126     if (CI->getType()->isIntegerTy(16)) {
3127       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
3128       return get(V->getContext(), Elts);
3129     }
3130     if (CI->getType()->isIntegerTy(32)) {
3131       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
3132       return get(V->getContext(), Elts);
3133     }
3134     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
3135     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
3136     return get(V->getContext(), Elts);
3137   }
3138 
3139   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3140     if (CFP->getType()->isHalfTy()) {
3141       SmallVector<uint16_t, 16> Elts(
3142           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3143       return getFP(V->getType(), Elts);
3144     }
3145     if (CFP->getType()->isBFloatTy()) {
3146       SmallVector<uint16_t, 16> Elts(
3147           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3148       return getFP(V->getType(), Elts);
3149     }
3150     if (CFP->getType()->isFloatTy()) {
3151       SmallVector<uint32_t, 16> Elts(
3152           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3153       return getFP(V->getType(), Elts);
3154     }
3155     if (CFP->getType()->isDoubleTy()) {
3156       SmallVector<uint64_t, 16> Elts(
3157           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3158       return getFP(V->getType(), Elts);
3159     }
3160   }
3161   return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V);
3162 }
3163 
3164 
3165 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
3166   assert(isa<IntegerType>(getElementType()) &&
3167          "Accessor can only be used when element is an integer");
3168   const char *EltPtr = getElementPointer(Elt);
3169 
3170   // The data is stored in host byte order, make sure to cast back to the right
3171   // type to load with the right endianness.
3172   switch (getElementType()->getIntegerBitWidth()) {
3173   default: llvm_unreachable("Invalid bitwidth for CDS");
3174   case 8:
3175     return *reinterpret_cast<const uint8_t *>(EltPtr);
3176   case 16:
3177     return *reinterpret_cast<const uint16_t *>(EltPtr);
3178   case 32:
3179     return *reinterpret_cast<const uint32_t *>(EltPtr);
3180   case 64:
3181     return *reinterpret_cast<const uint64_t *>(EltPtr);
3182   }
3183 }
3184 
3185 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
3186   assert(isa<IntegerType>(getElementType()) &&
3187          "Accessor can only be used when element is an integer");
3188   const char *EltPtr = getElementPointer(Elt);
3189 
3190   // The data is stored in host byte order, make sure to cast back to the right
3191   // type to load with the right endianness.
3192   switch (getElementType()->getIntegerBitWidth()) {
3193   default: llvm_unreachable("Invalid bitwidth for CDS");
3194   case 8: {
3195     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
3196     return APInt(8, EltVal);
3197   }
3198   case 16: {
3199     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3200     return APInt(16, EltVal);
3201   }
3202   case 32: {
3203     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3204     return APInt(32, EltVal);
3205   }
3206   case 64: {
3207     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3208     return APInt(64, EltVal);
3209   }
3210   }
3211 }
3212 
3213 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
3214   const char *EltPtr = getElementPointer(Elt);
3215 
3216   switch (getElementType()->getTypeID()) {
3217   default:
3218     llvm_unreachable("Accessor can only be used when element is float/double!");
3219   case Type::HalfTyID: {
3220     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3221     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3222   }
3223   case Type::BFloatTyID: {
3224     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3225     return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3226   }
3227   case Type::FloatTyID: {
3228     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3229     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3230   }
3231   case Type::DoubleTyID: {
3232     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3233     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3234   }
3235   }
3236 }
3237 
3238 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3239   assert(getElementType()->isFloatTy() &&
3240          "Accessor can only be used when element is a 'float'");
3241   return *reinterpret_cast<const float *>(getElementPointer(Elt));
3242 }
3243 
3244 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3245   assert(getElementType()->isDoubleTy() &&
3246          "Accessor can only be used when element is a 'float'");
3247   return *reinterpret_cast<const double *>(getElementPointer(Elt));
3248 }
3249 
3250 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3251   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3252       getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3253     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3254 
3255   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3256 }
3257 
3258 bool ConstantDataSequential::isString(unsigned CharSize) const {
3259   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3260 }
3261 
3262 bool ConstantDataSequential::isCString() const {
3263   if (!isString())
3264     return false;
3265 
3266   StringRef Str = getAsString();
3267 
3268   // The last value must be nul.
3269   if (Str.back() != 0) return false;
3270 
3271   // Other elements must be non-nul.
3272   return Str.drop_back().find(0) == StringRef::npos;
3273 }
3274 
3275 bool ConstantDataVector::isSplatData() const {
3276   const char *Base = getRawDataValues().data();
3277 
3278   // Compare elements 1+ to the 0'th element.
3279   unsigned EltSize = getElementByteSize();
3280   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3281     if (memcmp(Base, Base+i*EltSize, EltSize))
3282       return false;
3283 
3284   return true;
3285 }
3286 
3287 bool ConstantDataVector::isSplat() const {
3288   if (!IsSplatSet) {
3289     IsSplatSet = true;
3290     IsSplat = isSplatData();
3291   }
3292   return IsSplat;
3293 }
3294 
3295 Constant *ConstantDataVector::getSplatValue() const {
3296   // If they're all the same, return the 0th one as a representative.
3297   return isSplat() ? getElementAsConstant(0) : nullptr;
3298 }
3299 
3300 //===----------------------------------------------------------------------===//
3301 //                handleOperandChange implementations
3302 
3303 /// Update this constant array to change uses of
3304 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
3305 /// etc.
3306 ///
3307 /// Note that we intentionally replace all uses of From with To here.  Consider
3308 /// a large array that uses 'From' 1000 times.  By handling this case all here,
3309 /// ConstantArray::handleOperandChange is only invoked once, and that
3310 /// single invocation handles all 1000 uses.  Handling them one at a time would
3311 /// work, but would be really slow because it would have to unique each updated
3312 /// array instance.
3313 ///
3314 void Constant::handleOperandChange(Value *From, Value *To) {
3315   Value *Replacement = nullptr;
3316   switch (getValueID()) {
3317   default:
3318     llvm_unreachable("Not a constant!");
3319 #define HANDLE_CONSTANT(Name)                                                  \
3320   case Value::Name##Val:                                                       \
3321     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
3322     break;
3323 #include "llvm/IR/Value.def"
3324   }
3325 
3326   // If handleOperandChangeImpl returned nullptr, then it handled
3327   // replacing itself and we don't want to delete or replace anything else here.
3328   if (!Replacement)
3329     return;
3330 
3331   // I do need to replace this with an existing value.
3332   assert(Replacement != this && "I didn't contain From!");
3333 
3334   // Everyone using this now uses the replacement.
3335   replaceAllUsesWith(Replacement);
3336 
3337   // Delete the old constant!
3338   destroyConstant();
3339 }
3340 
3341 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3342   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3343   Constant *ToC = cast<Constant>(To);
3344 
3345   SmallVector<Constant*, 8> Values;
3346   Values.reserve(getNumOperands());  // Build replacement array.
3347 
3348   // Fill values with the modified operands of the constant array.  Also,
3349   // compute whether this turns into an all-zeros array.
3350   unsigned NumUpdated = 0;
3351 
3352   // Keep track of whether all the values in the array are "ToC".
3353   bool AllSame = true;
3354   Use *OperandList = getOperandList();
3355   unsigned OperandNo = 0;
3356   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3357     Constant *Val = cast<Constant>(O->get());
3358     if (Val == From) {
3359       OperandNo = (O - OperandList);
3360       Val = ToC;
3361       ++NumUpdated;
3362     }
3363     Values.push_back(Val);
3364     AllSame &= Val == ToC;
3365   }
3366 
3367   if (AllSame && ToC->isNullValue())
3368     return ConstantAggregateZero::get(getType());
3369 
3370   if (AllSame && isa<UndefValue>(ToC))
3371     return UndefValue::get(getType());
3372 
3373   // Check for any other type of constant-folding.
3374   if (Constant *C = getImpl(getType(), Values))
3375     return C;
3376 
3377   // Update to the new value.
3378   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3379       Values, this, From, ToC, NumUpdated, OperandNo);
3380 }
3381 
3382 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3383   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3384   Constant *ToC = cast<Constant>(To);
3385 
3386   Use *OperandList = getOperandList();
3387 
3388   SmallVector<Constant*, 8> Values;
3389   Values.reserve(getNumOperands());  // Build replacement struct.
3390 
3391   // Fill values with the modified operands of the constant struct.  Also,
3392   // compute whether this turns into an all-zeros struct.
3393   unsigned NumUpdated = 0;
3394   bool AllSame = true;
3395   unsigned OperandNo = 0;
3396   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3397     Constant *Val = cast<Constant>(O->get());
3398     if (Val == From) {
3399       OperandNo = (O - OperandList);
3400       Val = ToC;
3401       ++NumUpdated;
3402     }
3403     Values.push_back(Val);
3404     AllSame &= Val == ToC;
3405   }
3406 
3407   if (AllSame && ToC->isNullValue())
3408     return ConstantAggregateZero::get(getType());
3409 
3410   if (AllSame && isa<UndefValue>(ToC))
3411     return UndefValue::get(getType());
3412 
3413   // Update to the new value.
3414   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3415       Values, this, From, ToC, NumUpdated, OperandNo);
3416 }
3417 
3418 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3419   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3420   Constant *ToC = cast<Constant>(To);
3421 
3422   SmallVector<Constant*, 8> Values;
3423   Values.reserve(getNumOperands());  // Build replacement array...
3424   unsigned NumUpdated = 0;
3425   unsigned OperandNo = 0;
3426   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3427     Constant *Val = getOperand(i);
3428     if (Val == From) {
3429       OperandNo = i;
3430       ++NumUpdated;
3431       Val = ToC;
3432     }
3433     Values.push_back(Val);
3434   }
3435 
3436   if (Constant *C = getImpl(Values))
3437     return C;
3438 
3439   // Update to the new value.
3440   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3441       Values, this, From, ToC, NumUpdated, OperandNo);
3442 }
3443 
3444 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3445   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3446   Constant *To = cast<Constant>(ToV);
3447 
3448   SmallVector<Constant*, 8> NewOps;
3449   unsigned NumUpdated = 0;
3450   unsigned OperandNo = 0;
3451   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3452     Constant *Op = getOperand(i);
3453     if (Op == From) {
3454       OperandNo = i;
3455       ++NumUpdated;
3456       Op = To;
3457     }
3458     NewOps.push_back(Op);
3459   }
3460   assert(NumUpdated && "I didn't contain From!");
3461 
3462   if (Constant *C = getWithOperands(NewOps, getType(), true))
3463     return C;
3464 
3465   // Update to the new value.
3466   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3467       NewOps, this, From, To, NumUpdated, OperandNo);
3468 }
3469 
3470 Instruction *ConstantExpr::getAsInstruction() const {
3471   SmallVector<Value *, 4> ValueOperands(operands());
3472   ArrayRef<Value*> Ops(ValueOperands);
3473 
3474   switch (getOpcode()) {
3475   case Instruction::Trunc:
3476   case Instruction::ZExt:
3477   case Instruction::SExt:
3478   case Instruction::FPTrunc:
3479   case Instruction::FPExt:
3480   case Instruction::UIToFP:
3481   case Instruction::SIToFP:
3482   case Instruction::FPToUI:
3483   case Instruction::FPToSI:
3484   case Instruction::PtrToInt:
3485   case Instruction::IntToPtr:
3486   case Instruction::BitCast:
3487   case Instruction::AddrSpaceCast:
3488     return CastInst::Create((Instruction::CastOps)getOpcode(),
3489                             Ops[0], getType());
3490   case Instruction::Select:
3491     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3492   case Instruction::InsertElement:
3493     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3494   case Instruction::ExtractElement:
3495     return ExtractElementInst::Create(Ops[0], Ops[1]);
3496   case Instruction::InsertValue:
3497     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3498   case Instruction::ExtractValue:
3499     return ExtractValueInst::Create(Ops[0], getIndices());
3500   case Instruction::ShuffleVector:
3501     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask());
3502 
3503   case Instruction::GetElementPtr: {
3504     const auto *GO = cast<GEPOperator>(this);
3505     if (GO->isInBounds())
3506       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3507                                                Ops[0], Ops.slice(1));
3508     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3509                                      Ops.slice(1));
3510   }
3511   case Instruction::ICmp:
3512   case Instruction::FCmp:
3513     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3514                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3515   case Instruction::FNeg:
3516     return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
3517   default:
3518     assert(getNumOperands() == 2 && "Must be binary operator?");
3519     BinaryOperator *BO =
3520       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3521                              Ops[0], Ops[1]);
3522     if (isa<OverflowingBinaryOperator>(BO)) {
3523       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3524                                OverflowingBinaryOperator::NoUnsignedWrap);
3525       BO->setHasNoSignedWrap(SubclassOptionalData &
3526                              OverflowingBinaryOperator::NoSignedWrap);
3527     }
3528     if (isa<PossiblyExactOperator>(BO))
3529       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3530     return BO;
3531   }
3532 }
3533