1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 
33 using namespace llvm;
34 using namespace PatternMatch;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Constant Class
38 //===----------------------------------------------------------------------===//
39 
40 bool Constant::isNegativeZeroValue() const {
41   // Floating point values have an explicit -0.0 value.
42   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
43     return CFP->isZero() && CFP->isNegative();
44 
45   // Equivalent for a vector of -0.0's.
46   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
47     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
48       if (CV->getElementAsAPFloat(0).isNegZero())
49         return true;
50 
51   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55 
56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
57   if (getType()->isFPOrFPVectorTy())
58     return false;
59 
60   // Otherwise, just use +0.0.
61   return isNullValue();
62 }
63 
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67   // Floating point values have an explicit -0.0 value.
68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69     return CFP->isZero();
70 
71   // Equivalent for a vector of -0.0's.
72   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
73     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
74       if (CV->getElementAsAPFloat(0).isZero())
75         return true;
76 
77   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
78     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
79       if (SplatCFP && SplatCFP->isZero())
80         return true;
81 
82   // Otherwise, just use +0.0.
83   return isNullValue();
84 }
85 
86 bool Constant::isNullValue() const {
87   // 0 is null.
88   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
89     return CI->isZero();
90 
91   // +0.0 is null.
92   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
93     return CFP->isZero() && !CFP->isNegative();
94 
95   // constant zero is zero for aggregates, cpnull is null for pointers, none for
96   // tokens.
97   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
98          isa<ConstantTokenNone>(this);
99 }
100 
101 bool Constant::isAllOnesValue() const {
102   // Check for -1 integers
103   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
104     return CI->isMinusOne();
105 
106   // Check for FP which are bitcasted from -1 integers
107   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
108     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
109 
110   // Check for constant vectors which are splats of -1 values.
111   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
112     if (Constant *Splat = CV->getSplatValue())
113       return Splat->isAllOnesValue();
114 
115   // Check for constant vectors which are splats of -1 values.
116   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
117     if (CV->isSplat()) {
118       if (CV->getElementType()->isFloatingPointTy())
119         return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
120       return CV->getElementAsAPInt(0).isAllOnesValue();
121     }
122   }
123 
124   return false;
125 }
126 
127 bool Constant::isOneValue() const {
128   // Check for 1 integers
129   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130     return CI->isOne();
131 
132   // Check for FP which are bitcasted from 1 integers
133   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134     return CFP->getValueAPF().bitcastToAPInt().isOneValue();
135 
136   // Check for constant vectors which are splats of 1 values.
137   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
138     if (Constant *Splat = CV->getSplatValue())
139       return Splat->isOneValue();
140 
141   // Check for constant vectors which are splats of 1 values.
142   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
143     if (CV->isSplat()) {
144       if (CV->getElementType()->isFloatingPointTy())
145         return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
146       return CV->getElementAsAPInt(0).isOneValue();
147     }
148   }
149 
150   return false;
151 }
152 
153 bool Constant::isMinSignedValue() const {
154   // Check for INT_MIN integers
155   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
156     return CI->isMinValue(/*isSigned=*/true);
157 
158   // Check for FP which are bitcasted from INT_MIN integers
159   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
160     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
161 
162   // Check for constant vectors which are splats of INT_MIN values.
163   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
164     if (Constant *Splat = CV->getSplatValue())
165       return Splat->isMinSignedValue();
166 
167   // Check for constant vectors which are splats of INT_MIN values.
168   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
169     if (CV->isSplat()) {
170       if (CV->getElementType()->isFloatingPointTy())
171         return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
172       return CV->getElementAsAPInt(0).isMinSignedValue();
173     }
174   }
175 
176   return false;
177 }
178 
179 bool Constant::isNotMinSignedValue() const {
180   // Check for INT_MIN integers
181   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
182     return !CI->isMinValue(/*isSigned=*/true);
183 
184   // Check for FP which are bitcasted from INT_MIN integers
185   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
186     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
187 
188   // Check that vectors don't contain INT_MIN
189   if (this->getType()->isVectorTy()) {
190     unsigned NumElts = this->getType()->getVectorNumElements();
191     for (unsigned i = 0; i != NumElts; ++i) {
192       Constant *Elt = this->getAggregateElement(i);
193       if (!Elt || !Elt->isNotMinSignedValue())
194         return false;
195     }
196     return true;
197   }
198 
199   // It *may* contain INT_MIN, we can't tell.
200   return false;
201 }
202 
203 bool Constant::isFiniteNonZeroFP() const {
204   if (auto *CFP = dyn_cast<ConstantFP>(this))
205     return CFP->getValueAPF().isFiniteNonZero();
206   if (!getType()->isVectorTy())
207     return false;
208   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
209     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
210     if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
211       return false;
212   }
213   return true;
214 }
215 
216 bool Constant::isNormalFP() const {
217   if (auto *CFP = dyn_cast<ConstantFP>(this))
218     return CFP->getValueAPF().isNormal();
219   if (!getType()->isVectorTy())
220     return false;
221   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
222     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
223     if (!CFP || !CFP->getValueAPF().isNormal())
224       return false;
225   }
226   return true;
227 }
228 
229 bool Constant::hasExactInverseFP() const {
230   if (auto *CFP = dyn_cast<ConstantFP>(this))
231     return CFP->getValueAPF().getExactInverse(nullptr);
232   if (!getType()->isVectorTy())
233     return false;
234   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
235     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
236     if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
237       return false;
238   }
239   return true;
240 }
241 
242 bool Constant::isNaN() const {
243   if (auto *CFP = dyn_cast<ConstantFP>(this))
244     return CFP->isNaN();
245   if (!getType()->isVectorTy())
246     return false;
247   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
248     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
249     if (!CFP || !CFP->isNaN())
250       return false;
251   }
252   return true;
253 }
254 
255 bool Constant::isElementWiseEqual(Value *Y) const {
256   // Are they fully identical?
257   if (this == Y)
258     return true;
259   // They may still be identical element-wise (if they have `undef`s).
260   auto *Cy = dyn_cast<Constant>(Y);
261   if (!Cy)
262     return false;
263   return match(ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_EQ,
264                                      const_cast<Constant *>(this), Cy),
265                m_One());
266 }
267 
268 bool Constant::containsUndefElement() const {
269   if (!getType()->isVectorTy())
270     return false;
271   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
272     if (isa<UndefValue>(getAggregateElement(i)))
273       return true;
274 
275   return false;
276 }
277 
278 bool Constant::containsConstantExpression() const {
279   if (!getType()->isVectorTy())
280     return false;
281   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
282     if (isa<ConstantExpr>(getAggregateElement(i)))
283       return true;
284 
285   return false;
286 }
287 
288 /// Constructor to create a '0' constant of arbitrary type.
289 Constant *Constant::getNullValue(Type *Ty) {
290   switch (Ty->getTypeID()) {
291   case Type::IntegerTyID:
292     return ConstantInt::get(Ty, 0);
293   case Type::HalfTyID:
294     return ConstantFP::get(Ty->getContext(),
295                            APFloat::getZero(APFloat::IEEEhalf()));
296   case Type::FloatTyID:
297     return ConstantFP::get(Ty->getContext(),
298                            APFloat::getZero(APFloat::IEEEsingle()));
299   case Type::DoubleTyID:
300     return ConstantFP::get(Ty->getContext(),
301                            APFloat::getZero(APFloat::IEEEdouble()));
302   case Type::X86_FP80TyID:
303     return ConstantFP::get(Ty->getContext(),
304                            APFloat::getZero(APFloat::x87DoubleExtended()));
305   case Type::FP128TyID:
306     return ConstantFP::get(Ty->getContext(),
307                            APFloat::getZero(APFloat::IEEEquad()));
308   case Type::PPC_FP128TyID:
309     return ConstantFP::get(Ty->getContext(),
310                            APFloat(APFloat::PPCDoubleDouble(),
311                                    APInt::getNullValue(128)));
312   case Type::PointerTyID:
313     return ConstantPointerNull::get(cast<PointerType>(Ty));
314   case Type::StructTyID:
315   case Type::ArrayTyID:
316   case Type::VectorTyID:
317     return ConstantAggregateZero::get(Ty);
318   case Type::TokenTyID:
319     return ConstantTokenNone::get(Ty->getContext());
320   default:
321     // Function, Label, or Opaque type?
322     llvm_unreachable("Cannot create a null constant of that type!");
323   }
324 }
325 
326 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
327   Type *ScalarTy = Ty->getScalarType();
328 
329   // Create the base integer constant.
330   Constant *C = ConstantInt::get(Ty->getContext(), V);
331 
332   // Convert an integer to a pointer, if necessary.
333   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
334     C = ConstantExpr::getIntToPtr(C, PTy);
335 
336   // Broadcast a scalar to a vector, if necessary.
337   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
338     C = ConstantVector::getSplat(VTy->getNumElements(), C);
339 
340   return C;
341 }
342 
343 Constant *Constant::getAllOnesValue(Type *Ty) {
344   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
345     return ConstantInt::get(Ty->getContext(),
346                             APInt::getAllOnesValue(ITy->getBitWidth()));
347 
348   if (Ty->isFloatingPointTy()) {
349     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
350                                           !Ty->isPPC_FP128Ty());
351     return ConstantFP::get(Ty->getContext(), FL);
352   }
353 
354   VectorType *VTy = cast<VectorType>(Ty);
355   return ConstantVector::getSplat(VTy->getNumElements(),
356                                   getAllOnesValue(VTy->getElementType()));
357 }
358 
359 Constant *Constant::getAggregateElement(unsigned Elt) const {
360   if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
361     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
362 
363   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
364     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
365 
366   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
367     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
368 
369   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
370     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
371                                        : nullptr;
372   return nullptr;
373 }
374 
375 Constant *Constant::getAggregateElement(Constant *Elt) const {
376   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
377   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
378     // Check if the constant fits into an uint64_t.
379     if (CI->getValue().getActiveBits() > 64)
380       return nullptr;
381     return getAggregateElement(CI->getZExtValue());
382   }
383   return nullptr;
384 }
385 
386 void Constant::destroyConstant() {
387   /// First call destroyConstantImpl on the subclass.  This gives the subclass
388   /// a chance to remove the constant from any maps/pools it's contained in.
389   switch (getValueID()) {
390   default:
391     llvm_unreachable("Not a constant!");
392 #define HANDLE_CONSTANT(Name)                                                  \
393   case Value::Name##Val:                                                       \
394     cast<Name>(this)->destroyConstantImpl();                                   \
395     break;
396 #include "llvm/IR/Value.def"
397   }
398 
399   // When a Constant is destroyed, there may be lingering
400   // references to the constant by other constants in the constant pool.  These
401   // constants are implicitly dependent on the module that is being deleted,
402   // but they don't know that.  Because we only find out when the CPV is
403   // deleted, we must now notify all of our users (that should only be
404   // Constants) that they are, in fact, invalid now and should be deleted.
405   //
406   while (!use_empty()) {
407     Value *V = user_back();
408 #ifndef NDEBUG // Only in -g mode...
409     if (!isa<Constant>(V)) {
410       dbgs() << "While deleting: " << *this
411              << "\n\nUse still stuck around after Def is destroyed: " << *V
412              << "\n\n";
413     }
414 #endif
415     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
416     cast<Constant>(V)->destroyConstant();
417 
418     // The constant should remove itself from our use list...
419     assert((use_empty() || user_back() != V) && "Constant not removed!");
420   }
421 
422   // Value has no outstanding references it is safe to delete it now...
423   delete this;
424 }
425 
426 static bool canTrapImpl(const Constant *C,
427                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
428   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
429   // The only thing that could possibly trap are constant exprs.
430   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
431   if (!CE)
432     return false;
433 
434   // ConstantExpr traps if any operands can trap.
435   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
436     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
437       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
438         return true;
439     }
440   }
441 
442   // Otherwise, only specific operations can trap.
443   switch (CE->getOpcode()) {
444   default:
445     return false;
446   case Instruction::UDiv:
447   case Instruction::SDiv:
448   case Instruction::URem:
449   case Instruction::SRem:
450     // Div and rem can trap if the RHS is not known to be non-zero.
451     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
452       return true;
453     return false;
454   }
455 }
456 
457 bool Constant::canTrap() const {
458   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
459   return canTrapImpl(this, NonTrappingOps);
460 }
461 
462 /// Check if C contains a GlobalValue for which Predicate is true.
463 static bool
464 ConstHasGlobalValuePredicate(const Constant *C,
465                              bool (*Predicate)(const GlobalValue *)) {
466   SmallPtrSet<const Constant *, 8> Visited;
467   SmallVector<const Constant *, 8> WorkList;
468   WorkList.push_back(C);
469   Visited.insert(C);
470 
471   while (!WorkList.empty()) {
472     const Constant *WorkItem = WorkList.pop_back_val();
473     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
474       if (Predicate(GV))
475         return true;
476     for (const Value *Op : WorkItem->operands()) {
477       const Constant *ConstOp = dyn_cast<Constant>(Op);
478       if (!ConstOp)
479         continue;
480       if (Visited.insert(ConstOp).second)
481         WorkList.push_back(ConstOp);
482     }
483   }
484   return false;
485 }
486 
487 bool Constant::isThreadDependent() const {
488   auto DLLImportPredicate = [](const GlobalValue *GV) {
489     return GV->isThreadLocal();
490   };
491   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
492 }
493 
494 bool Constant::isDLLImportDependent() const {
495   auto DLLImportPredicate = [](const GlobalValue *GV) {
496     return GV->hasDLLImportStorageClass();
497   };
498   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
499 }
500 
501 bool Constant::isConstantUsed() const {
502   for (const User *U : users()) {
503     const Constant *UC = dyn_cast<Constant>(U);
504     if (!UC || isa<GlobalValue>(UC))
505       return true;
506 
507     if (UC->isConstantUsed())
508       return true;
509   }
510   return false;
511 }
512 
513 bool Constant::needsRelocation() const {
514   if (isa<GlobalValue>(this))
515     return true; // Global reference.
516 
517   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
518     return BA->getFunction()->needsRelocation();
519 
520   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
521     if (CE->getOpcode() == Instruction::Sub) {
522       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
523       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
524       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
525           RHS->getOpcode() == Instruction::PtrToInt) {
526         Constant *LHSOp0 = LHS->getOperand(0);
527         Constant *RHSOp0 = RHS->getOperand(0);
528 
529         // While raw uses of blockaddress need to be relocated, differences
530         // between two of them don't when they are for labels in the same
531         // function.  This is a common idiom when creating a table for the
532         // indirect goto extension, so we handle it efficiently here.
533         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
534             cast<BlockAddress>(LHSOp0)->getFunction() ==
535                 cast<BlockAddress>(RHSOp0)->getFunction())
536           return false;
537 
538         // Relative pointers do not need to be dynamically relocated.
539         if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts()))
540           if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts()))
541             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
542               return false;
543       }
544     }
545   }
546 
547   bool Result = false;
548   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
549     Result |= cast<Constant>(getOperand(i))->needsRelocation();
550 
551   return Result;
552 }
553 
554 /// If the specified constantexpr is dead, remove it. This involves recursively
555 /// eliminating any dead users of the constantexpr.
556 static bool removeDeadUsersOfConstant(const Constant *C) {
557   if (isa<GlobalValue>(C)) return false; // Cannot remove this
558 
559   while (!C->use_empty()) {
560     const Constant *User = dyn_cast<Constant>(C->user_back());
561     if (!User) return false; // Non-constant usage;
562     if (!removeDeadUsersOfConstant(User))
563       return false; // Constant wasn't dead
564   }
565 
566   const_cast<Constant*>(C)->destroyConstant();
567   return true;
568 }
569 
570 
571 void Constant::removeDeadConstantUsers() const {
572   Value::const_user_iterator I = user_begin(), E = user_end();
573   Value::const_user_iterator LastNonDeadUser = E;
574   while (I != E) {
575     const Constant *User = dyn_cast<Constant>(*I);
576     if (!User) {
577       LastNonDeadUser = I;
578       ++I;
579       continue;
580     }
581 
582     if (!removeDeadUsersOfConstant(User)) {
583       // If the constant wasn't dead, remember that this was the last live use
584       // and move on to the next constant.
585       LastNonDeadUser = I;
586       ++I;
587       continue;
588     }
589 
590     // If the constant was dead, then the iterator is invalidated.
591     if (LastNonDeadUser == E)
592       I = user_begin();
593     else
594       I = std::next(LastNonDeadUser);
595   }
596 }
597 
598 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
599   assert(C && Replacement && "Expected non-nullptr constant arguments");
600   Type *Ty = C->getType();
601   if (match(C, m_Undef())) {
602     assert(Ty == Replacement->getType() && "Expected matching types");
603     return Replacement;
604   }
605 
606   // Don't know how to deal with this constant.
607   if (!Ty->isVectorTy())
608     return C;
609 
610   unsigned NumElts = Ty->getVectorNumElements();
611   SmallVector<Constant *, 32> NewC(NumElts);
612   for (unsigned i = 0; i != NumElts; ++i) {
613     Constant *EltC = C->getAggregateElement(i);
614     assert(EltC->getType() == Replacement->getType() &&
615            "Expected matching types");
616     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
617   }
618   return ConstantVector::get(NewC);
619 }
620 
621 
622 //===----------------------------------------------------------------------===//
623 //                                ConstantInt
624 //===----------------------------------------------------------------------===//
625 
626 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
627     : ConstantData(Ty, ConstantIntVal), Val(V) {
628   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
629 }
630 
631 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
632   LLVMContextImpl *pImpl = Context.pImpl;
633   if (!pImpl->TheTrueVal)
634     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
635   return pImpl->TheTrueVal;
636 }
637 
638 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
639   LLVMContextImpl *pImpl = Context.pImpl;
640   if (!pImpl->TheFalseVal)
641     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
642   return pImpl->TheFalseVal;
643 }
644 
645 Constant *ConstantInt::getTrue(Type *Ty) {
646   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
647   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
648   if (auto *VTy = dyn_cast<VectorType>(Ty))
649     return ConstantVector::getSplat(VTy->getNumElements(), TrueC);
650   return TrueC;
651 }
652 
653 Constant *ConstantInt::getFalse(Type *Ty) {
654   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
655   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
656   if (auto *VTy = dyn_cast<VectorType>(Ty))
657     return ConstantVector::getSplat(VTy->getNumElements(), FalseC);
658   return FalseC;
659 }
660 
661 // Get a ConstantInt from an APInt.
662 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
663   // get an existing value or the insertion position
664   LLVMContextImpl *pImpl = Context.pImpl;
665   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
666   if (!Slot) {
667     // Get the corresponding integer type for the bit width of the value.
668     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
669     Slot.reset(new ConstantInt(ITy, V));
670   }
671   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
672   return Slot.get();
673 }
674 
675 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
676   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
677 
678   // For vectors, broadcast the value.
679   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
680     return ConstantVector::getSplat(VTy->getNumElements(), C);
681 
682   return C;
683 }
684 
685 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
686   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
687 }
688 
689 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
690   return get(Ty, V, true);
691 }
692 
693 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
694   return get(Ty, V, true);
695 }
696 
697 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
698   ConstantInt *C = get(Ty->getContext(), V);
699   assert(C->getType() == Ty->getScalarType() &&
700          "ConstantInt type doesn't match the type implied by its value!");
701 
702   // For vectors, broadcast the value.
703   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
704     return ConstantVector::getSplat(VTy->getNumElements(), C);
705 
706   return C;
707 }
708 
709 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
710   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
711 }
712 
713 /// Remove the constant from the constant table.
714 void ConstantInt::destroyConstantImpl() {
715   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
716 }
717 
718 //===----------------------------------------------------------------------===//
719 //                                ConstantFP
720 //===----------------------------------------------------------------------===//
721 
722 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
723   if (Ty->isHalfTy())
724     return &APFloat::IEEEhalf();
725   if (Ty->isFloatTy())
726     return &APFloat::IEEEsingle();
727   if (Ty->isDoubleTy())
728     return &APFloat::IEEEdouble();
729   if (Ty->isX86_FP80Ty())
730     return &APFloat::x87DoubleExtended();
731   else if (Ty->isFP128Ty())
732     return &APFloat::IEEEquad();
733 
734   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
735   return &APFloat::PPCDoubleDouble();
736 }
737 
738 Constant *ConstantFP::get(Type *Ty, double V) {
739   LLVMContext &Context = Ty->getContext();
740 
741   APFloat FV(V);
742   bool ignored;
743   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
744              APFloat::rmNearestTiesToEven, &ignored);
745   Constant *C = get(Context, FV);
746 
747   // For vectors, broadcast the value.
748   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
749     return ConstantVector::getSplat(VTy->getNumElements(), C);
750 
751   return C;
752 }
753 
754 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
755   ConstantFP *C = get(Ty->getContext(), V);
756   assert(C->getType() == Ty->getScalarType() &&
757          "ConstantFP type doesn't match the type implied by its value!");
758 
759   // For vectors, broadcast the value.
760   if (auto *VTy = dyn_cast<VectorType>(Ty))
761     return ConstantVector::getSplat(VTy->getNumElements(), C);
762 
763   return C;
764 }
765 
766 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
767   LLVMContext &Context = Ty->getContext();
768 
769   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
770   Constant *C = get(Context, FV);
771 
772   // For vectors, broadcast the value.
773   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
774     return ConstantVector::getSplat(VTy->getNumElements(), C);
775 
776   return C;
777 }
778 
779 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
780   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
781   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
782   Constant *C = get(Ty->getContext(), NaN);
783 
784   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
785     return ConstantVector::getSplat(VTy->getNumElements(), C);
786 
787   return C;
788 }
789 
790 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
791   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
792   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
793   Constant *C = get(Ty->getContext(), NaN);
794 
795   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
796     return ConstantVector::getSplat(VTy->getNumElements(), C);
797 
798   return C;
799 }
800 
801 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
802   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
803   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
804   Constant *C = get(Ty->getContext(), NaN);
805 
806   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
807     return ConstantVector::getSplat(VTy->getNumElements(), C);
808 
809   return C;
810 }
811 
812 Constant *ConstantFP::getNegativeZero(Type *Ty) {
813   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
814   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
815   Constant *C = get(Ty->getContext(), NegZero);
816 
817   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
818     return ConstantVector::getSplat(VTy->getNumElements(), C);
819 
820   return C;
821 }
822 
823 
824 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
825   if (Ty->isFPOrFPVectorTy())
826     return getNegativeZero(Ty);
827 
828   return Constant::getNullValue(Ty);
829 }
830 
831 
832 // ConstantFP accessors.
833 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
834   LLVMContextImpl* pImpl = Context.pImpl;
835 
836   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
837 
838   if (!Slot) {
839     Type *Ty;
840     if (&V.getSemantics() == &APFloat::IEEEhalf())
841       Ty = Type::getHalfTy(Context);
842     else if (&V.getSemantics() == &APFloat::IEEEsingle())
843       Ty = Type::getFloatTy(Context);
844     else if (&V.getSemantics() == &APFloat::IEEEdouble())
845       Ty = Type::getDoubleTy(Context);
846     else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
847       Ty = Type::getX86_FP80Ty(Context);
848     else if (&V.getSemantics() == &APFloat::IEEEquad())
849       Ty = Type::getFP128Ty(Context);
850     else {
851       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
852              "Unknown FP format");
853       Ty = Type::getPPC_FP128Ty(Context);
854     }
855     Slot.reset(new ConstantFP(Ty, V));
856   }
857 
858   return Slot.get();
859 }
860 
861 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
862   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
863   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
864 
865   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
866     return ConstantVector::getSplat(VTy->getNumElements(), C);
867 
868   return C;
869 }
870 
871 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
872     : ConstantData(Ty, ConstantFPVal), Val(V) {
873   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
874          "FP type Mismatch");
875 }
876 
877 bool ConstantFP::isExactlyValue(const APFloat &V) const {
878   return Val.bitwiseIsEqual(V);
879 }
880 
881 /// Remove the constant from the constant table.
882 void ConstantFP::destroyConstantImpl() {
883   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
884 }
885 
886 //===----------------------------------------------------------------------===//
887 //                   ConstantAggregateZero Implementation
888 //===----------------------------------------------------------------------===//
889 
890 Constant *ConstantAggregateZero::getSequentialElement() const {
891   return Constant::getNullValue(getType()->getSequentialElementType());
892 }
893 
894 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
895   return Constant::getNullValue(getType()->getStructElementType(Elt));
896 }
897 
898 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
899   if (isa<SequentialType>(getType()))
900     return getSequentialElement();
901   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
902 }
903 
904 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
905   if (isa<SequentialType>(getType()))
906     return getSequentialElement();
907   return getStructElement(Idx);
908 }
909 
910 unsigned ConstantAggregateZero::getNumElements() const {
911   Type *Ty = getType();
912   if (auto *AT = dyn_cast<ArrayType>(Ty))
913     return AT->getNumElements();
914   if (auto *VT = dyn_cast<VectorType>(Ty))
915     return VT->getNumElements();
916   return Ty->getStructNumElements();
917 }
918 
919 //===----------------------------------------------------------------------===//
920 //                         UndefValue Implementation
921 //===----------------------------------------------------------------------===//
922 
923 UndefValue *UndefValue::getSequentialElement() const {
924   return UndefValue::get(getType()->getSequentialElementType());
925 }
926 
927 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
928   return UndefValue::get(getType()->getStructElementType(Elt));
929 }
930 
931 UndefValue *UndefValue::getElementValue(Constant *C) const {
932   if (isa<SequentialType>(getType()))
933     return getSequentialElement();
934   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
935 }
936 
937 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
938   if (isa<SequentialType>(getType()))
939     return getSequentialElement();
940   return getStructElement(Idx);
941 }
942 
943 unsigned UndefValue::getNumElements() const {
944   Type *Ty = getType();
945   if (auto *ST = dyn_cast<SequentialType>(Ty))
946     return ST->getNumElements();
947   return Ty->getStructNumElements();
948 }
949 
950 //===----------------------------------------------------------------------===//
951 //                            ConstantXXX Classes
952 //===----------------------------------------------------------------------===//
953 
954 template <typename ItTy, typename EltTy>
955 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
956   for (; Start != End; ++Start)
957     if (*Start != Elt)
958       return false;
959   return true;
960 }
961 
962 template <typename SequentialTy, typename ElementTy>
963 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
964   assert(!V.empty() && "Cannot get empty int sequence.");
965 
966   SmallVector<ElementTy, 16> Elts;
967   for (Constant *C : V)
968     if (auto *CI = dyn_cast<ConstantInt>(C))
969       Elts.push_back(CI->getZExtValue());
970     else
971       return nullptr;
972   return SequentialTy::get(V[0]->getContext(), Elts);
973 }
974 
975 template <typename SequentialTy, typename ElementTy>
976 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
977   assert(!V.empty() && "Cannot get empty FP sequence.");
978 
979   SmallVector<ElementTy, 16> Elts;
980   for (Constant *C : V)
981     if (auto *CFP = dyn_cast<ConstantFP>(C))
982       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
983     else
984       return nullptr;
985   return SequentialTy::getFP(V[0]->getContext(), Elts);
986 }
987 
988 template <typename SequenceTy>
989 static Constant *getSequenceIfElementsMatch(Constant *C,
990                                             ArrayRef<Constant *> V) {
991   // We speculatively build the elements here even if it turns out that there is
992   // a constantexpr or something else weird, since it is so uncommon for that to
993   // happen.
994   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
995     if (CI->getType()->isIntegerTy(8))
996       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
997     else if (CI->getType()->isIntegerTy(16))
998       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
999     else if (CI->getType()->isIntegerTy(32))
1000       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1001     else if (CI->getType()->isIntegerTy(64))
1002       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1003   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1004     if (CFP->getType()->isHalfTy())
1005       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1006     else if (CFP->getType()->isFloatTy())
1007       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1008     else if (CFP->getType()->isDoubleTy())
1009       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1010   }
1011 
1012   return nullptr;
1013 }
1014 
1015 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
1016                                      ArrayRef<Constant *> V)
1017     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1018                V.size()) {
1019   llvm::copy(V, op_begin());
1020 
1021   // Check that types match, unless this is an opaque struct.
1022   if (auto *ST = dyn_cast<StructType>(T))
1023     if (ST->isOpaque())
1024       return;
1025   for (unsigned I = 0, E = V.size(); I != E; ++I)
1026     assert(V[I]->getType() == T->getTypeAtIndex(I) &&
1027            "Initializer for composite element doesn't match!");
1028 }
1029 
1030 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1031     : ConstantAggregate(T, ConstantArrayVal, V) {
1032   assert(V.size() == T->getNumElements() &&
1033          "Invalid initializer for constant array");
1034 }
1035 
1036 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1037   if (Constant *C = getImpl(Ty, V))
1038     return C;
1039   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1040 }
1041 
1042 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1043   // Empty arrays are canonicalized to ConstantAggregateZero.
1044   if (V.empty())
1045     return ConstantAggregateZero::get(Ty);
1046 
1047   for (unsigned i = 0, e = V.size(); i != e; ++i) {
1048     assert(V[i]->getType() == Ty->getElementType() &&
1049            "Wrong type in array element initializer");
1050   }
1051 
1052   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1053   // all undef, return an UndefValue, if "all simple", then return a
1054   // ConstantDataArray.
1055   Constant *C = V[0];
1056   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1057     return UndefValue::get(Ty);
1058 
1059   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1060     return ConstantAggregateZero::get(Ty);
1061 
1062   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1063   // the element type is compatible with ConstantDataVector.  If so, use it.
1064   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1065     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1066 
1067   // Otherwise, we really do want to create a ConstantArray.
1068   return nullptr;
1069 }
1070 
1071 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1072                                                ArrayRef<Constant*> V,
1073                                                bool Packed) {
1074   unsigned VecSize = V.size();
1075   SmallVector<Type*, 16> EltTypes(VecSize);
1076   for (unsigned i = 0; i != VecSize; ++i)
1077     EltTypes[i] = V[i]->getType();
1078 
1079   return StructType::get(Context, EltTypes, Packed);
1080 }
1081 
1082 
1083 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1084                                                bool Packed) {
1085   assert(!V.empty() &&
1086          "ConstantStruct::getTypeForElements cannot be called on empty list");
1087   return getTypeForElements(V[0]->getContext(), V, Packed);
1088 }
1089 
1090 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1091     : ConstantAggregate(T, ConstantStructVal, V) {
1092   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1093          "Invalid initializer for constant struct");
1094 }
1095 
1096 // ConstantStruct accessors.
1097 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1098   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1099          "Incorrect # elements specified to ConstantStruct::get");
1100 
1101   // Create a ConstantAggregateZero value if all elements are zeros.
1102   bool isZero = true;
1103   bool isUndef = false;
1104 
1105   if (!V.empty()) {
1106     isUndef = isa<UndefValue>(V[0]);
1107     isZero = V[0]->isNullValue();
1108     if (isUndef || isZero) {
1109       for (unsigned i = 0, e = V.size(); i != e; ++i) {
1110         if (!V[i]->isNullValue())
1111           isZero = false;
1112         if (!isa<UndefValue>(V[i]))
1113           isUndef = false;
1114       }
1115     }
1116   }
1117   if (isZero)
1118     return ConstantAggregateZero::get(ST);
1119   if (isUndef)
1120     return UndefValue::get(ST);
1121 
1122   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1123 }
1124 
1125 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1126     : ConstantAggregate(T, ConstantVectorVal, V) {
1127   assert(V.size() == T->getNumElements() &&
1128          "Invalid initializer for constant vector");
1129 }
1130 
1131 // ConstantVector accessors.
1132 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1133   if (Constant *C = getImpl(V))
1134     return C;
1135   VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1136   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1137 }
1138 
1139 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1140   assert(!V.empty() && "Vectors can't be empty");
1141   VectorType *T = VectorType::get(V.front()->getType(), V.size());
1142 
1143   // If this is an all-undef or all-zero vector, return a
1144   // ConstantAggregateZero or UndefValue.
1145   Constant *C = V[0];
1146   bool isZero = C->isNullValue();
1147   bool isUndef = isa<UndefValue>(C);
1148 
1149   if (isZero || isUndef) {
1150     for (unsigned i = 1, e = V.size(); i != e; ++i)
1151       if (V[i] != C) {
1152         isZero = isUndef = false;
1153         break;
1154       }
1155   }
1156 
1157   if (isZero)
1158     return ConstantAggregateZero::get(T);
1159   if (isUndef)
1160     return UndefValue::get(T);
1161 
1162   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1163   // the element type is compatible with ConstantDataVector.  If so, use it.
1164   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1165     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1166 
1167   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1168   // the operand list contains a ConstantExpr or something else strange.
1169   return nullptr;
1170 }
1171 
1172 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1173   // If this splat is compatible with ConstantDataVector, use it instead of
1174   // ConstantVector.
1175   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1176       ConstantDataSequential::isElementTypeCompatible(V->getType()))
1177     return ConstantDataVector::getSplat(NumElts, V);
1178 
1179   SmallVector<Constant*, 32> Elts(NumElts, V);
1180   return get(Elts);
1181 }
1182 
1183 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1184   LLVMContextImpl *pImpl = Context.pImpl;
1185   if (!pImpl->TheNoneToken)
1186     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1187   return pImpl->TheNoneToken.get();
1188 }
1189 
1190 /// Remove the constant from the constant table.
1191 void ConstantTokenNone::destroyConstantImpl() {
1192   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1193 }
1194 
1195 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1196 // can't be inline because we don't want to #include Instruction.h into
1197 // Constant.h
1198 bool ConstantExpr::isCast() const {
1199   return Instruction::isCast(getOpcode());
1200 }
1201 
1202 bool ConstantExpr::isCompare() const {
1203   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1204 }
1205 
1206 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1207   if (getOpcode() != Instruction::GetElementPtr) return false;
1208 
1209   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1210   User::const_op_iterator OI = std::next(this->op_begin());
1211 
1212   // The remaining indices may be compile-time known integers within the bounds
1213   // of the corresponding notional static array types.
1214   for (; GEPI != E; ++GEPI, ++OI) {
1215     if (isa<UndefValue>(*OI))
1216       continue;
1217     auto *CI = dyn_cast<ConstantInt>(*OI);
1218     if (!CI || (GEPI.isBoundedSequential() &&
1219                 (CI->getValue().getActiveBits() > 64 ||
1220                  CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1221       return false;
1222   }
1223 
1224   // All the indices checked out.
1225   return true;
1226 }
1227 
1228 bool ConstantExpr::hasIndices() const {
1229   return getOpcode() == Instruction::ExtractValue ||
1230          getOpcode() == Instruction::InsertValue;
1231 }
1232 
1233 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1234   if (const ExtractValueConstantExpr *EVCE =
1235         dyn_cast<ExtractValueConstantExpr>(this))
1236     return EVCE->Indices;
1237 
1238   return cast<InsertValueConstantExpr>(this)->Indices;
1239 }
1240 
1241 unsigned ConstantExpr::getPredicate() const {
1242   return cast<CompareConstantExpr>(this)->predicate;
1243 }
1244 
1245 Constant *
1246 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1247   assert(Op->getType() == getOperand(OpNo)->getType() &&
1248          "Replacing operand with value of different type!");
1249   if (getOperand(OpNo) == Op)
1250     return const_cast<ConstantExpr*>(this);
1251 
1252   SmallVector<Constant*, 8> NewOps;
1253   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1254     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1255 
1256   return getWithOperands(NewOps);
1257 }
1258 
1259 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1260                                         bool OnlyIfReduced, Type *SrcTy) const {
1261   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1262 
1263   // If no operands changed return self.
1264   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1265     return const_cast<ConstantExpr*>(this);
1266 
1267   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1268   switch (getOpcode()) {
1269   case Instruction::Trunc:
1270   case Instruction::ZExt:
1271   case Instruction::SExt:
1272   case Instruction::FPTrunc:
1273   case Instruction::FPExt:
1274   case Instruction::UIToFP:
1275   case Instruction::SIToFP:
1276   case Instruction::FPToUI:
1277   case Instruction::FPToSI:
1278   case Instruction::PtrToInt:
1279   case Instruction::IntToPtr:
1280   case Instruction::BitCast:
1281   case Instruction::AddrSpaceCast:
1282     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1283   case Instruction::Select:
1284     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1285   case Instruction::InsertElement:
1286     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1287                                           OnlyIfReducedTy);
1288   case Instruction::ExtractElement:
1289     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1290   case Instruction::InsertValue:
1291     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1292                                         OnlyIfReducedTy);
1293   case Instruction::ExtractValue:
1294     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1295   case Instruction::ShuffleVector:
1296     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1297                                           OnlyIfReducedTy);
1298   case Instruction::GetElementPtr: {
1299     auto *GEPO = cast<GEPOperator>(this);
1300     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1301     return ConstantExpr::getGetElementPtr(
1302         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1303         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1304   }
1305   case Instruction::ICmp:
1306   case Instruction::FCmp:
1307     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1308                                     OnlyIfReducedTy);
1309   default:
1310     assert(getNumOperands() == 2 && "Must be binary operator?");
1311     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1312                              OnlyIfReducedTy);
1313   }
1314 }
1315 
1316 
1317 //===----------------------------------------------------------------------===//
1318 //                      isValueValidForType implementations
1319 
1320 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1321   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1322   if (Ty->isIntegerTy(1))
1323     return Val == 0 || Val == 1;
1324   return isUIntN(NumBits, Val);
1325 }
1326 
1327 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1328   unsigned NumBits = Ty->getIntegerBitWidth();
1329   if (Ty->isIntegerTy(1))
1330     return Val == 0 || Val == 1 || Val == -1;
1331   return isIntN(NumBits, Val);
1332 }
1333 
1334 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1335   // convert modifies in place, so make a copy.
1336   APFloat Val2 = APFloat(Val);
1337   bool losesInfo;
1338   switch (Ty->getTypeID()) {
1339   default:
1340     return false;         // These can't be represented as floating point!
1341 
1342   // FIXME rounding mode needs to be more flexible
1343   case Type::HalfTyID: {
1344     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1345       return true;
1346     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1347     return !losesInfo;
1348   }
1349   case Type::FloatTyID: {
1350     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1351       return true;
1352     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1353     return !losesInfo;
1354   }
1355   case Type::DoubleTyID: {
1356     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1357         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1358         &Val2.getSemantics() == &APFloat::IEEEdouble())
1359       return true;
1360     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1361     return !losesInfo;
1362   }
1363   case Type::X86_FP80TyID:
1364     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1365            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1366            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1367            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1368   case Type::FP128TyID:
1369     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1370            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1371            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1372            &Val2.getSemantics() == &APFloat::IEEEquad();
1373   case Type::PPC_FP128TyID:
1374     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1375            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1376            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1377            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1378   }
1379 }
1380 
1381 
1382 //===----------------------------------------------------------------------===//
1383 //                      Factory Function Implementation
1384 
1385 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1386   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1387          "Cannot create an aggregate zero of non-aggregate type!");
1388 
1389   std::unique_ptr<ConstantAggregateZero> &Entry =
1390       Ty->getContext().pImpl->CAZConstants[Ty];
1391   if (!Entry)
1392     Entry.reset(new ConstantAggregateZero(Ty));
1393 
1394   return Entry.get();
1395 }
1396 
1397 /// Remove the constant from the constant table.
1398 void ConstantAggregateZero::destroyConstantImpl() {
1399   getContext().pImpl->CAZConstants.erase(getType());
1400 }
1401 
1402 /// Remove the constant from the constant table.
1403 void ConstantArray::destroyConstantImpl() {
1404   getType()->getContext().pImpl->ArrayConstants.remove(this);
1405 }
1406 
1407 
1408 //---- ConstantStruct::get() implementation...
1409 //
1410 
1411 /// Remove the constant from the constant table.
1412 void ConstantStruct::destroyConstantImpl() {
1413   getType()->getContext().pImpl->StructConstants.remove(this);
1414 }
1415 
1416 /// Remove the constant from the constant table.
1417 void ConstantVector::destroyConstantImpl() {
1418   getType()->getContext().pImpl->VectorConstants.remove(this);
1419 }
1420 
1421 Constant *Constant::getSplatValue() const {
1422   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1423   if (isa<ConstantAggregateZero>(this))
1424     return getNullValue(this->getType()->getVectorElementType());
1425   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1426     return CV->getSplatValue();
1427   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1428     return CV->getSplatValue();
1429   return nullptr;
1430 }
1431 
1432 Constant *ConstantVector::getSplatValue() const {
1433   // Check out first element.
1434   Constant *Elt = getOperand(0);
1435   // Then make sure all remaining elements point to the same value.
1436   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1437     if (getOperand(I) != Elt)
1438       return nullptr;
1439   return Elt;
1440 }
1441 
1442 const APInt &Constant::getUniqueInteger() const {
1443   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1444     return CI->getValue();
1445   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1446   const Constant *C = this->getAggregateElement(0U);
1447   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1448   return cast<ConstantInt>(C)->getValue();
1449 }
1450 
1451 //---- ConstantPointerNull::get() implementation.
1452 //
1453 
1454 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1455   std::unique_ptr<ConstantPointerNull> &Entry =
1456       Ty->getContext().pImpl->CPNConstants[Ty];
1457   if (!Entry)
1458     Entry.reset(new ConstantPointerNull(Ty));
1459 
1460   return Entry.get();
1461 }
1462 
1463 /// Remove the constant from the constant table.
1464 void ConstantPointerNull::destroyConstantImpl() {
1465   getContext().pImpl->CPNConstants.erase(getType());
1466 }
1467 
1468 UndefValue *UndefValue::get(Type *Ty) {
1469   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1470   if (!Entry)
1471     Entry.reset(new UndefValue(Ty));
1472 
1473   return Entry.get();
1474 }
1475 
1476 /// Remove the constant from the constant table.
1477 void UndefValue::destroyConstantImpl() {
1478   // Free the constant and any dangling references to it.
1479   getContext().pImpl->UVConstants.erase(getType());
1480 }
1481 
1482 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1483   assert(BB->getParent() && "Block must have a parent");
1484   return get(BB->getParent(), BB);
1485 }
1486 
1487 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1488   BlockAddress *&BA =
1489     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1490   if (!BA)
1491     BA = new BlockAddress(F, BB);
1492 
1493   assert(BA->getFunction() == F && "Basic block moved between functions");
1494   return BA;
1495 }
1496 
1497 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1498 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1499            &Op<0>(), 2) {
1500   setOperand(0, F);
1501   setOperand(1, BB);
1502   BB->AdjustBlockAddressRefCount(1);
1503 }
1504 
1505 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1506   if (!BB->hasAddressTaken())
1507     return nullptr;
1508 
1509   const Function *F = BB->getParent();
1510   assert(F && "Block must have a parent");
1511   BlockAddress *BA =
1512       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1513   assert(BA && "Refcount and block address map disagree!");
1514   return BA;
1515 }
1516 
1517 /// Remove the constant from the constant table.
1518 void BlockAddress::destroyConstantImpl() {
1519   getFunction()->getType()->getContext().pImpl
1520     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1521   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1522 }
1523 
1524 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1525   // This could be replacing either the Basic Block or the Function.  In either
1526   // case, we have to remove the map entry.
1527   Function *NewF = getFunction();
1528   BasicBlock *NewBB = getBasicBlock();
1529 
1530   if (From == NewF)
1531     NewF = cast<Function>(To->stripPointerCasts());
1532   else {
1533     assert(From == NewBB && "From does not match any operand");
1534     NewBB = cast<BasicBlock>(To);
1535   }
1536 
1537   // See if the 'new' entry already exists, if not, just update this in place
1538   // and return early.
1539   BlockAddress *&NewBA =
1540     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1541   if (NewBA)
1542     return NewBA;
1543 
1544   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1545 
1546   // Remove the old entry, this can't cause the map to rehash (just a
1547   // tombstone will get added).
1548   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1549                                                           getBasicBlock()));
1550   NewBA = this;
1551   setOperand(0, NewF);
1552   setOperand(1, NewBB);
1553   getBasicBlock()->AdjustBlockAddressRefCount(1);
1554 
1555   // If we just want to keep the existing value, then return null.
1556   // Callers know that this means we shouldn't delete this value.
1557   return nullptr;
1558 }
1559 
1560 //---- ConstantExpr::get() implementations.
1561 //
1562 
1563 /// This is a utility function to handle folding of casts and lookup of the
1564 /// cast in the ExprConstants map. It is used by the various get* methods below.
1565 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1566                                bool OnlyIfReduced = false) {
1567   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1568   // Fold a few common cases
1569   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1570     return FC;
1571 
1572   if (OnlyIfReduced)
1573     return nullptr;
1574 
1575   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1576 
1577   // Look up the constant in the table first to ensure uniqueness.
1578   ConstantExprKeyType Key(opc, C);
1579 
1580   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1581 }
1582 
1583 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1584                                 bool OnlyIfReduced) {
1585   Instruction::CastOps opc = Instruction::CastOps(oc);
1586   assert(Instruction::isCast(opc) && "opcode out of range");
1587   assert(C && Ty && "Null arguments to getCast");
1588   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1589 
1590   switch (opc) {
1591   default:
1592     llvm_unreachable("Invalid cast opcode");
1593   case Instruction::Trunc:
1594     return getTrunc(C, Ty, OnlyIfReduced);
1595   case Instruction::ZExt:
1596     return getZExt(C, Ty, OnlyIfReduced);
1597   case Instruction::SExt:
1598     return getSExt(C, Ty, OnlyIfReduced);
1599   case Instruction::FPTrunc:
1600     return getFPTrunc(C, Ty, OnlyIfReduced);
1601   case Instruction::FPExt:
1602     return getFPExtend(C, Ty, OnlyIfReduced);
1603   case Instruction::UIToFP:
1604     return getUIToFP(C, Ty, OnlyIfReduced);
1605   case Instruction::SIToFP:
1606     return getSIToFP(C, Ty, OnlyIfReduced);
1607   case Instruction::FPToUI:
1608     return getFPToUI(C, Ty, OnlyIfReduced);
1609   case Instruction::FPToSI:
1610     return getFPToSI(C, Ty, OnlyIfReduced);
1611   case Instruction::PtrToInt:
1612     return getPtrToInt(C, Ty, OnlyIfReduced);
1613   case Instruction::IntToPtr:
1614     return getIntToPtr(C, Ty, OnlyIfReduced);
1615   case Instruction::BitCast:
1616     return getBitCast(C, Ty, OnlyIfReduced);
1617   case Instruction::AddrSpaceCast:
1618     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1619   }
1620 }
1621 
1622 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1623   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1624     return getBitCast(C, Ty);
1625   return getZExt(C, Ty);
1626 }
1627 
1628 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1629   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1630     return getBitCast(C, Ty);
1631   return getSExt(C, Ty);
1632 }
1633 
1634 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1635   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1636     return getBitCast(C, Ty);
1637   return getTrunc(C, Ty);
1638 }
1639 
1640 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1641   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1642   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1643           "Invalid cast");
1644 
1645   if (Ty->isIntOrIntVectorTy())
1646     return getPtrToInt(S, Ty);
1647 
1648   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1649   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1650     return getAddrSpaceCast(S, Ty);
1651 
1652   return getBitCast(S, Ty);
1653 }
1654 
1655 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1656                                                          Type *Ty) {
1657   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1658   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1659 
1660   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1661     return getAddrSpaceCast(S, Ty);
1662 
1663   return getBitCast(S, Ty);
1664 }
1665 
1666 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1667   assert(C->getType()->isIntOrIntVectorTy() &&
1668          Ty->isIntOrIntVectorTy() && "Invalid cast");
1669   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1670   unsigned DstBits = Ty->getScalarSizeInBits();
1671   Instruction::CastOps opcode =
1672     (SrcBits == DstBits ? Instruction::BitCast :
1673      (SrcBits > DstBits ? Instruction::Trunc :
1674       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1675   return getCast(opcode, C, Ty);
1676 }
1677 
1678 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1679   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1680          "Invalid cast");
1681   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1682   unsigned DstBits = Ty->getScalarSizeInBits();
1683   if (SrcBits == DstBits)
1684     return C; // Avoid a useless cast
1685   Instruction::CastOps opcode =
1686     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1687   return getCast(opcode, C, Ty);
1688 }
1689 
1690 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1691 #ifndef NDEBUG
1692   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1693   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1694 #endif
1695   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1696   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1697   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1698   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1699          "SrcTy must be larger than DestTy for Trunc!");
1700 
1701   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1702 }
1703 
1704 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1705 #ifndef NDEBUG
1706   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1707   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1708 #endif
1709   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1710   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1711   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1712   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1713          "SrcTy must be smaller than DestTy for SExt!");
1714 
1715   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1716 }
1717 
1718 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1719 #ifndef NDEBUG
1720   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1721   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1722 #endif
1723   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1724   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1725   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1726   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1727          "SrcTy must be smaller than DestTy for ZExt!");
1728 
1729   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1730 }
1731 
1732 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1733 #ifndef NDEBUG
1734   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1735   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1736 #endif
1737   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1738   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1739          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1740          "This is an illegal floating point truncation!");
1741   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1742 }
1743 
1744 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1745 #ifndef NDEBUG
1746   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1747   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1748 #endif
1749   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1750   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1751          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1752          "This is an illegal floating point extension!");
1753   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1754 }
1755 
1756 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1757 #ifndef NDEBUG
1758   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1759   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1760 #endif
1761   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1762   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1763          "This is an illegal uint to floating point cast!");
1764   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1765 }
1766 
1767 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1768 #ifndef NDEBUG
1769   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1770   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1771 #endif
1772   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1773   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1774          "This is an illegal sint to floating point cast!");
1775   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1776 }
1777 
1778 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1779 #ifndef NDEBUG
1780   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1781   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1782 #endif
1783   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1784   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1785          "This is an illegal floating point to uint cast!");
1786   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1787 }
1788 
1789 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1790 #ifndef NDEBUG
1791   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1792   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1793 #endif
1794   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1795   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1796          "This is an illegal floating point to sint cast!");
1797   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1798 }
1799 
1800 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1801                                     bool OnlyIfReduced) {
1802   assert(C->getType()->isPtrOrPtrVectorTy() &&
1803          "PtrToInt source must be pointer or pointer vector");
1804   assert(DstTy->isIntOrIntVectorTy() &&
1805          "PtrToInt destination must be integer or integer vector");
1806   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1807   if (isa<VectorType>(C->getType()))
1808     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1809            "Invalid cast between a different number of vector elements");
1810   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1811 }
1812 
1813 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1814                                     bool OnlyIfReduced) {
1815   assert(C->getType()->isIntOrIntVectorTy() &&
1816          "IntToPtr source must be integer or integer vector");
1817   assert(DstTy->isPtrOrPtrVectorTy() &&
1818          "IntToPtr destination must be a pointer or pointer vector");
1819   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1820   if (isa<VectorType>(C->getType()))
1821     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1822            "Invalid cast between a different number of vector elements");
1823   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1824 }
1825 
1826 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1827                                    bool OnlyIfReduced) {
1828   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1829          "Invalid constantexpr bitcast!");
1830 
1831   // It is common to ask for a bitcast of a value to its own type, handle this
1832   // speedily.
1833   if (C->getType() == DstTy) return C;
1834 
1835   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1836 }
1837 
1838 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1839                                          bool OnlyIfReduced) {
1840   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1841          "Invalid constantexpr addrspacecast!");
1842 
1843   // Canonicalize addrspacecasts between different pointer types by first
1844   // bitcasting the pointer type and then converting the address space.
1845   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1846   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1847   Type *DstElemTy = DstScalarTy->getElementType();
1848   if (SrcScalarTy->getElementType() != DstElemTy) {
1849     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1850     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1851       // Handle vectors of pointers.
1852       MidTy = VectorType::get(MidTy, VT->getNumElements());
1853     }
1854     C = getBitCast(C, MidTy);
1855   }
1856   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1857 }
1858 
1859 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
1860                             Type *OnlyIfReducedTy) {
1861   // Check the operands for consistency first.
1862   assert(Instruction::isUnaryOp(Opcode) &&
1863          "Invalid opcode in unary constant expression");
1864 
1865 #ifndef NDEBUG
1866   switch (Opcode) {
1867   case Instruction::FNeg:
1868     assert(C->getType()->isFPOrFPVectorTy() &&
1869            "Tried to create a floating-point operation on a "
1870            "non-floating-point type!");
1871     break;
1872   default:
1873     break;
1874   }
1875 #endif
1876 
1877   if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
1878     return FC;
1879 
1880   if (OnlyIfReducedTy == C->getType())
1881     return nullptr;
1882 
1883   Constant *ArgVec[] = { C };
1884   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1885 
1886   LLVMContextImpl *pImpl = C->getContext().pImpl;
1887   return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
1888 }
1889 
1890 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1891                             unsigned Flags, Type *OnlyIfReducedTy) {
1892   // Check the operands for consistency first.
1893   assert(Instruction::isBinaryOp(Opcode) &&
1894          "Invalid opcode in binary constant expression");
1895   assert(C1->getType() == C2->getType() &&
1896          "Operand types in binary constant expression should match");
1897 
1898 #ifndef NDEBUG
1899   switch (Opcode) {
1900   case Instruction::Add:
1901   case Instruction::Sub:
1902   case Instruction::Mul:
1903   case Instruction::UDiv:
1904   case Instruction::SDiv:
1905   case Instruction::URem:
1906   case Instruction::SRem:
1907     assert(C1->getType()->isIntOrIntVectorTy() &&
1908            "Tried to create an integer operation on a non-integer type!");
1909     break;
1910   case Instruction::FAdd:
1911   case Instruction::FSub:
1912   case Instruction::FMul:
1913   case Instruction::FDiv:
1914   case Instruction::FRem:
1915     assert(C1->getType()->isFPOrFPVectorTy() &&
1916            "Tried to create a floating-point operation on a "
1917            "non-floating-point type!");
1918     break;
1919   case Instruction::And:
1920   case Instruction::Or:
1921   case Instruction::Xor:
1922     assert(C1->getType()->isIntOrIntVectorTy() &&
1923            "Tried to create a logical operation on a non-integral type!");
1924     break;
1925   case Instruction::Shl:
1926   case Instruction::LShr:
1927   case Instruction::AShr:
1928     assert(C1->getType()->isIntOrIntVectorTy() &&
1929            "Tried to create a shift operation on a non-integer type!");
1930     break;
1931   default:
1932     break;
1933   }
1934 #endif
1935 
1936   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1937     return FC;
1938 
1939   if (OnlyIfReducedTy == C1->getType())
1940     return nullptr;
1941 
1942   Constant *ArgVec[] = { C1, C2 };
1943   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1944 
1945   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1946   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1947 }
1948 
1949 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1950   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1951   // Note that a non-inbounds gep is used, as null isn't within any object.
1952   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1953   Constant *GEP = getGetElementPtr(
1954       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1955   return getPtrToInt(GEP,
1956                      Type::getInt64Ty(Ty->getContext()));
1957 }
1958 
1959 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1960   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1961   // Note that a non-inbounds gep is used, as null isn't within any object.
1962   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
1963   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1964   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1965   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1966   Constant *Indices[2] = { Zero, One };
1967   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1968   return getPtrToInt(GEP,
1969                      Type::getInt64Ty(Ty->getContext()));
1970 }
1971 
1972 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1973   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1974                                            FieldNo));
1975 }
1976 
1977 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1978   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1979   // Note that a non-inbounds gep is used, as null isn't within any object.
1980   Constant *GEPIdx[] = {
1981     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1982     FieldNo
1983   };
1984   Constant *GEP = getGetElementPtr(
1985       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1986   return getPtrToInt(GEP,
1987                      Type::getInt64Ty(Ty->getContext()));
1988 }
1989 
1990 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1991                                    Constant *C2, bool OnlyIfReduced) {
1992   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1993 
1994   switch (Predicate) {
1995   default: llvm_unreachable("Invalid CmpInst predicate");
1996   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1997   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1998   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1999   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2000   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2001   case CmpInst::FCMP_TRUE:
2002     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2003 
2004   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2005   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2006   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2007   case CmpInst::ICMP_SLE:
2008     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2009   }
2010 }
2011 
2012 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2013                                   Type *OnlyIfReducedTy) {
2014   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2015 
2016   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2017     return SC;        // Fold common cases
2018 
2019   if (OnlyIfReducedTy == V1->getType())
2020     return nullptr;
2021 
2022   Constant *ArgVec[] = { C, V1, V2 };
2023   ConstantExprKeyType Key(Instruction::Select, ArgVec);
2024 
2025   LLVMContextImpl *pImpl = C->getContext().pImpl;
2026   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2027 }
2028 
2029 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2030                                          ArrayRef<Value *> Idxs, bool InBounds,
2031                                          Optional<unsigned> InRangeIndex,
2032                                          Type *OnlyIfReducedTy) {
2033   if (!Ty)
2034     Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2035   else
2036     assert(Ty ==
2037            cast<PointerType>(C->getType()->getScalarType())->getElementType());
2038 
2039   if (Constant *FC =
2040           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2041     return FC;          // Fold a few common cases.
2042 
2043   // Get the result type of the getelementptr!
2044   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2045   assert(DestTy && "GEP indices invalid!");
2046   unsigned AS = C->getType()->getPointerAddressSpace();
2047   Type *ReqTy = DestTy->getPointerTo(AS);
2048 
2049   unsigned NumVecElts = 0;
2050   if (C->getType()->isVectorTy())
2051     NumVecElts = C->getType()->getVectorNumElements();
2052   else for (auto Idx : Idxs)
2053     if (Idx->getType()->isVectorTy())
2054       NumVecElts = Idx->getType()->getVectorNumElements();
2055 
2056   if (NumVecElts)
2057     ReqTy = VectorType::get(ReqTy, NumVecElts);
2058 
2059   if (OnlyIfReducedTy == ReqTy)
2060     return nullptr;
2061 
2062   // Look up the constant in the table first to ensure uniqueness
2063   std::vector<Constant*> ArgVec;
2064   ArgVec.reserve(1 + Idxs.size());
2065   ArgVec.push_back(C);
2066   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2067     assert((!Idxs[i]->getType()->isVectorTy() ||
2068             Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
2069            "getelementptr index type missmatch");
2070 
2071     Constant *Idx = cast<Constant>(Idxs[i]);
2072     if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
2073       Idx = ConstantVector::getSplat(NumVecElts, Idx);
2074     ArgVec.push_back(Idx);
2075   }
2076 
2077   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2078   if (InRangeIndex && *InRangeIndex < 63)
2079     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2080   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2081                                 SubClassOptionalData, None, Ty);
2082 
2083   LLVMContextImpl *pImpl = C->getContext().pImpl;
2084   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2085 }
2086 
2087 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2088                                 Constant *RHS, bool OnlyIfReduced) {
2089   assert(LHS->getType() == RHS->getType());
2090   assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2091          "Invalid ICmp Predicate");
2092 
2093   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2094     return FC;          // Fold a few common cases...
2095 
2096   if (OnlyIfReduced)
2097     return nullptr;
2098 
2099   // Look up the constant in the table first to ensure uniqueness
2100   Constant *ArgVec[] = { LHS, RHS };
2101   // Get the key type with both the opcode and predicate
2102   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2103 
2104   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2105   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2106     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2107 
2108   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2109   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2110 }
2111 
2112 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2113                                 Constant *RHS, bool OnlyIfReduced) {
2114   assert(LHS->getType() == RHS->getType());
2115   assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2116          "Invalid FCmp Predicate");
2117 
2118   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2119     return FC;          // Fold a few common cases...
2120 
2121   if (OnlyIfReduced)
2122     return nullptr;
2123 
2124   // Look up the constant in the table first to ensure uniqueness
2125   Constant *ArgVec[] = { LHS, RHS };
2126   // Get the key type with both the opcode and predicate
2127   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2128 
2129   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2130   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2131     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2132 
2133   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2134   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2135 }
2136 
2137 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2138                                           Type *OnlyIfReducedTy) {
2139   assert(Val->getType()->isVectorTy() &&
2140          "Tried to create extractelement operation on non-vector type!");
2141   assert(Idx->getType()->isIntegerTy() &&
2142          "Extractelement index must be an integer type!");
2143 
2144   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2145     return FC;          // Fold a few common cases.
2146 
2147   Type *ReqTy = Val->getType()->getVectorElementType();
2148   if (OnlyIfReducedTy == ReqTy)
2149     return nullptr;
2150 
2151   // Look up the constant in the table first to ensure uniqueness
2152   Constant *ArgVec[] = { Val, Idx };
2153   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2154 
2155   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2156   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2157 }
2158 
2159 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2160                                          Constant *Idx, Type *OnlyIfReducedTy) {
2161   assert(Val->getType()->isVectorTy() &&
2162          "Tried to create insertelement operation on non-vector type!");
2163   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2164          "Insertelement types must match!");
2165   assert(Idx->getType()->isIntegerTy() &&
2166          "Insertelement index must be i32 type!");
2167 
2168   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2169     return FC;          // Fold a few common cases.
2170 
2171   if (OnlyIfReducedTy == Val->getType())
2172     return nullptr;
2173 
2174   // Look up the constant in the table first to ensure uniqueness
2175   Constant *ArgVec[] = { Val, Elt, Idx };
2176   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2177 
2178   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2179   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2180 }
2181 
2182 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2183                                          Constant *Mask, Type *OnlyIfReducedTy) {
2184   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2185          "Invalid shuffle vector constant expr operands!");
2186 
2187   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2188     return FC;          // Fold a few common cases.
2189 
2190   unsigned NElts = Mask->getType()->getVectorNumElements();
2191   Type *EltTy = V1->getType()->getVectorElementType();
2192   Type *ShufTy = VectorType::get(EltTy, NElts);
2193 
2194   if (OnlyIfReducedTy == ShufTy)
2195     return nullptr;
2196 
2197   // Look up the constant in the table first to ensure uniqueness
2198   Constant *ArgVec[] = { V1, V2, Mask };
2199   const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2200 
2201   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2202   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2203 }
2204 
2205 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2206                                        ArrayRef<unsigned> Idxs,
2207                                        Type *OnlyIfReducedTy) {
2208   assert(Agg->getType()->isFirstClassType() &&
2209          "Non-first-class type for constant insertvalue expression");
2210 
2211   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2212                                           Idxs) == Val->getType() &&
2213          "insertvalue indices invalid!");
2214   Type *ReqTy = Val->getType();
2215 
2216   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2217     return FC;
2218 
2219   if (OnlyIfReducedTy == ReqTy)
2220     return nullptr;
2221 
2222   Constant *ArgVec[] = { Agg, Val };
2223   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2224 
2225   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2226   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2227 }
2228 
2229 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2230                                         Type *OnlyIfReducedTy) {
2231   assert(Agg->getType()->isFirstClassType() &&
2232          "Tried to create extractelement operation on non-first-class type!");
2233 
2234   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2235   (void)ReqTy;
2236   assert(ReqTy && "extractvalue indices invalid!");
2237 
2238   assert(Agg->getType()->isFirstClassType() &&
2239          "Non-first-class type for constant extractvalue expression");
2240   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2241     return FC;
2242 
2243   if (OnlyIfReducedTy == ReqTy)
2244     return nullptr;
2245 
2246   Constant *ArgVec[] = { Agg };
2247   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2248 
2249   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2250   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2251 }
2252 
2253 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2254   assert(C->getType()->isIntOrIntVectorTy() &&
2255          "Cannot NEG a nonintegral value!");
2256   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2257                 C, HasNUW, HasNSW);
2258 }
2259 
2260 Constant *ConstantExpr::getFNeg(Constant *C) {
2261   assert(C->getType()->isFPOrFPVectorTy() &&
2262          "Cannot FNEG a non-floating-point value!");
2263   return get(Instruction::FNeg, C);
2264 }
2265 
2266 Constant *ConstantExpr::getNot(Constant *C) {
2267   assert(C->getType()->isIntOrIntVectorTy() &&
2268          "Cannot NOT a nonintegral value!");
2269   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2270 }
2271 
2272 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2273                                bool HasNUW, bool HasNSW) {
2274   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2275                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2276   return get(Instruction::Add, C1, C2, Flags);
2277 }
2278 
2279 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2280   return get(Instruction::FAdd, C1, C2);
2281 }
2282 
2283 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2284                                bool HasNUW, bool HasNSW) {
2285   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2286                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2287   return get(Instruction::Sub, C1, C2, Flags);
2288 }
2289 
2290 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2291   return get(Instruction::FSub, C1, C2);
2292 }
2293 
2294 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2295                                bool HasNUW, bool HasNSW) {
2296   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2297                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2298   return get(Instruction::Mul, C1, C2, Flags);
2299 }
2300 
2301 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2302   return get(Instruction::FMul, C1, C2);
2303 }
2304 
2305 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2306   return get(Instruction::UDiv, C1, C2,
2307              isExact ? PossiblyExactOperator::IsExact : 0);
2308 }
2309 
2310 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2311   return get(Instruction::SDiv, C1, C2,
2312              isExact ? PossiblyExactOperator::IsExact : 0);
2313 }
2314 
2315 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2316   return get(Instruction::FDiv, C1, C2);
2317 }
2318 
2319 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2320   return get(Instruction::URem, C1, C2);
2321 }
2322 
2323 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2324   return get(Instruction::SRem, C1, C2);
2325 }
2326 
2327 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2328   return get(Instruction::FRem, C1, C2);
2329 }
2330 
2331 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2332   return get(Instruction::And, C1, C2);
2333 }
2334 
2335 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2336   return get(Instruction::Or, C1, C2);
2337 }
2338 
2339 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2340   return get(Instruction::Xor, C1, C2);
2341 }
2342 
2343 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2344                                bool HasNUW, bool HasNSW) {
2345   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2346                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2347   return get(Instruction::Shl, C1, C2, Flags);
2348 }
2349 
2350 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2351   return get(Instruction::LShr, C1, C2,
2352              isExact ? PossiblyExactOperator::IsExact : 0);
2353 }
2354 
2355 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2356   return get(Instruction::AShr, C1, C2,
2357              isExact ? PossiblyExactOperator::IsExact : 0);
2358 }
2359 
2360 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2361                                          bool AllowRHSConstant) {
2362   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2363 
2364   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2365   if (Instruction::isCommutative(Opcode)) {
2366     switch (Opcode) {
2367       case Instruction::Add: // X + 0 = X
2368       case Instruction::Or:  // X | 0 = X
2369       case Instruction::Xor: // X ^ 0 = X
2370         return Constant::getNullValue(Ty);
2371       case Instruction::Mul: // X * 1 = X
2372         return ConstantInt::get(Ty, 1);
2373       case Instruction::And: // X & -1 = X
2374         return Constant::getAllOnesValue(Ty);
2375       case Instruction::FAdd: // X + -0.0 = X
2376         // TODO: If the fadd has 'nsz', should we return +0.0?
2377         return ConstantFP::getNegativeZero(Ty);
2378       case Instruction::FMul: // X * 1.0 = X
2379         return ConstantFP::get(Ty, 1.0);
2380       default:
2381         llvm_unreachable("Every commutative binop has an identity constant");
2382     }
2383   }
2384 
2385   // Non-commutative opcodes: AllowRHSConstant must be set.
2386   if (!AllowRHSConstant)
2387     return nullptr;
2388 
2389   switch (Opcode) {
2390     case Instruction::Sub:  // X - 0 = X
2391     case Instruction::Shl:  // X << 0 = X
2392     case Instruction::LShr: // X >>u 0 = X
2393     case Instruction::AShr: // X >> 0 = X
2394     case Instruction::FSub: // X - 0.0 = X
2395       return Constant::getNullValue(Ty);
2396     case Instruction::SDiv: // X / 1 = X
2397     case Instruction::UDiv: // X /u 1 = X
2398       return ConstantInt::get(Ty, 1);
2399     case Instruction::FDiv: // X / 1.0 = X
2400       return ConstantFP::get(Ty, 1.0);
2401     default:
2402       return nullptr;
2403   }
2404 }
2405 
2406 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2407   switch (Opcode) {
2408   default:
2409     // Doesn't have an absorber.
2410     return nullptr;
2411 
2412   case Instruction::Or:
2413     return Constant::getAllOnesValue(Ty);
2414 
2415   case Instruction::And:
2416   case Instruction::Mul:
2417     return Constant::getNullValue(Ty);
2418   }
2419 }
2420 
2421 /// Remove the constant from the constant table.
2422 void ConstantExpr::destroyConstantImpl() {
2423   getType()->getContext().pImpl->ExprConstants.remove(this);
2424 }
2425 
2426 const char *ConstantExpr::getOpcodeName() const {
2427   return Instruction::getOpcodeName(getOpcode());
2428 }
2429 
2430 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2431     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2432     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2433                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2434                        (IdxList.size() + 1),
2435                    IdxList.size() + 1),
2436       SrcElementTy(SrcElementTy),
2437       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2438   Op<0>() = C;
2439   Use *OperandList = getOperandList();
2440   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2441     OperandList[i+1] = IdxList[i];
2442 }
2443 
2444 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2445   return SrcElementTy;
2446 }
2447 
2448 Type *GetElementPtrConstantExpr::getResultElementType() const {
2449   return ResElementTy;
2450 }
2451 
2452 //===----------------------------------------------------------------------===//
2453 //                       ConstantData* implementations
2454 
2455 Type *ConstantDataSequential::getElementType() const {
2456   return getType()->getElementType();
2457 }
2458 
2459 StringRef ConstantDataSequential::getRawDataValues() const {
2460   return StringRef(DataElements, getNumElements()*getElementByteSize());
2461 }
2462 
2463 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2464   if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2465   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2466     switch (IT->getBitWidth()) {
2467     case 8:
2468     case 16:
2469     case 32:
2470     case 64:
2471       return true;
2472     default: break;
2473     }
2474   }
2475   return false;
2476 }
2477 
2478 unsigned ConstantDataSequential::getNumElements() const {
2479   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2480     return AT->getNumElements();
2481   return getType()->getVectorNumElements();
2482 }
2483 
2484 
2485 uint64_t ConstantDataSequential::getElementByteSize() const {
2486   return getElementType()->getPrimitiveSizeInBits()/8;
2487 }
2488 
2489 /// Return the start of the specified element.
2490 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2491   assert(Elt < getNumElements() && "Invalid Elt");
2492   return DataElements+Elt*getElementByteSize();
2493 }
2494 
2495 
2496 /// Return true if the array is empty or all zeros.
2497 static bool isAllZeros(StringRef Arr) {
2498   for (char I : Arr)
2499     if (I != 0)
2500       return false;
2501   return true;
2502 }
2503 
2504 /// This is the underlying implementation of all of the
2505 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2506 /// the correct element type.  We take the bytes in as a StringRef because
2507 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2508 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2509   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2510   // If the elements are all zero or there are no elements, return a CAZ, which
2511   // is more dense and canonical.
2512   if (isAllZeros(Elements))
2513     return ConstantAggregateZero::get(Ty);
2514 
2515   // Do a lookup to see if we have already formed one of these.
2516   auto &Slot =
2517       *Ty->getContext()
2518            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2519            .first;
2520 
2521   // The bucket can point to a linked list of different CDS's that have the same
2522   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2523   // of i8, or a 1-element array of i32.  They'll both end up in the same
2524   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2525   ConstantDataSequential **Entry = &Slot.second;
2526   for (ConstantDataSequential *Node = *Entry; Node;
2527        Entry = &Node->Next, Node = *Entry)
2528     if (Node->getType() == Ty)
2529       return Node;
2530 
2531   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2532   // and return it.
2533   if (isa<ArrayType>(Ty))
2534     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2535 
2536   assert(isa<VectorType>(Ty));
2537   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2538 }
2539 
2540 void ConstantDataSequential::destroyConstantImpl() {
2541   // Remove the constant from the StringMap.
2542   StringMap<ConstantDataSequential*> &CDSConstants =
2543     getType()->getContext().pImpl->CDSConstants;
2544 
2545   StringMap<ConstantDataSequential*>::iterator Slot =
2546     CDSConstants.find(getRawDataValues());
2547 
2548   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2549 
2550   ConstantDataSequential **Entry = &Slot->getValue();
2551 
2552   // Remove the entry from the hash table.
2553   if (!(*Entry)->Next) {
2554     // If there is only one value in the bucket (common case) it must be this
2555     // entry, and removing the entry should remove the bucket completely.
2556     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2557     getContext().pImpl->CDSConstants.erase(Slot);
2558   } else {
2559     // Otherwise, there are multiple entries linked off the bucket, unlink the
2560     // node we care about but keep the bucket around.
2561     for (ConstantDataSequential *Node = *Entry; ;
2562          Entry = &Node->Next, Node = *Entry) {
2563       assert(Node && "Didn't find entry in its uniquing hash table!");
2564       // If we found our entry, unlink it from the list and we're done.
2565       if (Node == this) {
2566         *Entry = Node->Next;
2567         break;
2568       }
2569     }
2570   }
2571 
2572   // If we were part of a list, make sure that we don't delete the list that is
2573   // still owned by the uniquing map.
2574   Next = nullptr;
2575 }
2576 
2577 /// getFP() constructors - Return a constant with array type with an element
2578 /// count and element type of float with precision matching the number of
2579 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2580 /// double for 64bits) Note that this can return a ConstantAggregateZero
2581 /// object.
2582 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2583                                    ArrayRef<uint16_t> Elts) {
2584   Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2585   const char *Data = reinterpret_cast<const char *>(Elts.data());
2586   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2587 }
2588 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2589                                    ArrayRef<uint32_t> Elts) {
2590   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2591   const char *Data = reinterpret_cast<const char *>(Elts.data());
2592   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2593 }
2594 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2595                                    ArrayRef<uint64_t> Elts) {
2596   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2597   const char *Data = reinterpret_cast<const char *>(Elts.data());
2598   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2599 }
2600 
2601 Constant *ConstantDataArray::getString(LLVMContext &Context,
2602                                        StringRef Str, bool AddNull) {
2603   if (!AddNull) {
2604     const uint8_t *Data = Str.bytes_begin();
2605     return get(Context, makeArrayRef(Data, Str.size()));
2606   }
2607 
2608   SmallVector<uint8_t, 64> ElementVals;
2609   ElementVals.append(Str.begin(), Str.end());
2610   ElementVals.push_back(0);
2611   return get(Context, ElementVals);
2612 }
2613 
2614 /// get() constructors - Return a constant with vector type with an element
2615 /// count and element type matching the ArrayRef passed in.  Note that this
2616 /// can return a ConstantAggregateZero object.
2617 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2618   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2619   const char *Data = reinterpret_cast<const char *>(Elts.data());
2620   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2621 }
2622 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2623   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2624   const char *Data = reinterpret_cast<const char *>(Elts.data());
2625   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2626 }
2627 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2628   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2629   const char *Data = reinterpret_cast<const char *>(Elts.data());
2630   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2631 }
2632 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2633   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2634   const char *Data = reinterpret_cast<const char *>(Elts.data());
2635   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2636 }
2637 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2638   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2639   const char *Data = reinterpret_cast<const char *>(Elts.data());
2640   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2641 }
2642 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2643   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2644   const char *Data = reinterpret_cast<const char *>(Elts.data());
2645   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2646 }
2647 
2648 /// getFP() constructors - Return a constant with vector type with an element
2649 /// count and element type of float with the precision matching the number of
2650 /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
2651 /// double for 64bits) Note that this can return a ConstantAggregateZero
2652 /// object.
2653 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2654                                     ArrayRef<uint16_t> Elts) {
2655   Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2656   const char *Data = reinterpret_cast<const char *>(Elts.data());
2657   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2658 }
2659 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2660                                     ArrayRef<uint32_t> Elts) {
2661   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2662   const char *Data = reinterpret_cast<const char *>(Elts.data());
2663   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2664 }
2665 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2666                                     ArrayRef<uint64_t> Elts) {
2667   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2668   const char *Data = reinterpret_cast<const char *>(Elts.data());
2669   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2670 }
2671 
2672 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2673   assert(isElementTypeCompatible(V->getType()) &&
2674          "Element type not compatible with ConstantData");
2675   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2676     if (CI->getType()->isIntegerTy(8)) {
2677       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2678       return get(V->getContext(), Elts);
2679     }
2680     if (CI->getType()->isIntegerTy(16)) {
2681       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2682       return get(V->getContext(), Elts);
2683     }
2684     if (CI->getType()->isIntegerTy(32)) {
2685       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2686       return get(V->getContext(), Elts);
2687     }
2688     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2689     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2690     return get(V->getContext(), Elts);
2691   }
2692 
2693   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2694     if (CFP->getType()->isHalfTy()) {
2695       SmallVector<uint16_t, 16> Elts(
2696           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2697       return getFP(V->getContext(), Elts);
2698     }
2699     if (CFP->getType()->isFloatTy()) {
2700       SmallVector<uint32_t, 16> Elts(
2701           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2702       return getFP(V->getContext(), Elts);
2703     }
2704     if (CFP->getType()->isDoubleTy()) {
2705       SmallVector<uint64_t, 16> Elts(
2706           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2707       return getFP(V->getContext(), Elts);
2708     }
2709   }
2710   return ConstantVector::getSplat(NumElts, V);
2711 }
2712 
2713 
2714 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2715   assert(isa<IntegerType>(getElementType()) &&
2716          "Accessor can only be used when element is an integer");
2717   const char *EltPtr = getElementPointer(Elt);
2718 
2719   // The data is stored in host byte order, make sure to cast back to the right
2720   // type to load with the right endianness.
2721   switch (getElementType()->getIntegerBitWidth()) {
2722   default: llvm_unreachable("Invalid bitwidth for CDS");
2723   case 8:
2724     return *reinterpret_cast<const uint8_t *>(EltPtr);
2725   case 16:
2726     return *reinterpret_cast<const uint16_t *>(EltPtr);
2727   case 32:
2728     return *reinterpret_cast<const uint32_t *>(EltPtr);
2729   case 64:
2730     return *reinterpret_cast<const uint64_t *>(EltPtr);
2731   }
2732 }
2733 
2734 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
2735   assert(isa<IntegerType>(getElementType()) &&
2736          "Accessor can only be used when element is an integer");
2737   const char *EltPtr = getElementPointer(Elt);
2738 
2739   // The data is stored in host byte order, make sure to cast back to the right
2740   // type to load with the right endianness.
2741   switch (getElementType()->getIntegerBitWidth()) {
2742   default: llvm_unreachable("Invalid bitwidth for CDS");
2743   case 8: {
2744     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
2745     return APInt(8, EltVal);
2746   }
2747   case 16: {
2748     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2749     return APInt(16, EltVal);
2750   }
2751   case 32: {
2752     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2753     return APInt(32, EltVal);
2754   }
2755   case 64: {
2756     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2757     return APInt(64, EltVal);
2758   }
2759   }
2760 }
2761 
2762 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2763   const char *EltPtr = getElementPointer(Elt);
2764 
2765   switch (getElementType()->getTypeID()) {
2766   default:
2767     llvm_unreachable("Accessor can only be used when element is float/double!");
2768   case Type::HalfTyID: {
2769     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2770     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
2771   }
2772   case Type::FloatTyID: {
2773     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2774     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
2775   }
2776   case Type::DoubleTyID: {
2777     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2778     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
2779   }
2780   }
2781 }
2782 
2783 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2784   assert(getElementType()->isFloatTy() &&
2785          "Accessor can only be used when element is a 'float'");
2786   return *reinterpret_cast<const float *>(getElementPointer(Elt));
2787 }
2788 
2789 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2790   assert(getElementType()->isDoubleTy() &&
2791          "Accessor can only be used when element is a 'float'");
2792   return *reinterpret_cast<const double *>(getElementPointer(Elt));
2793 }
2794 
2795 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2796   if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2797       getElementType()->isDoubleTy())
2798     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2799 
2800   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2801 }
2802 
2803 bool ConstantDataSequential::isString(unsigned CharSize) const {
2804   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
2805 }
2806 
2807 bool ConstantDataSequential::isCString() const {
2808   if (!isString())
2809     return false;
2810 
2811   StringRef Str = getAsString();
2812 
2813   // The last value must be nul.
2814   if (Str.back() != 0) return false;
2815 
2816   // Other elements must be non-nul.
2817   return Str.drop_back().find(0) == StringRef::npos;
2818 }
2819 
2820 bool ConstantDataVector::isSplat() const {
2821   const char *Base = getRawDataValues().data();
2822 
2823   // Compare elements 1+ to the 0'th element.
2824   unsigned EltSize = getElementByteSize();
2825   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2826     if (memcmp(Base, Base+i*EltSize, EltSize))
2827       return false;
2828 
2829   return true;
2830 }
2831 
2832 Constant *ConstantDataVector::getSplatValue() const {
2833   // If they're all the same, return the 0th one as a representative.
2834   return isSplat() ? getElementAsConstant(0) : nullptr;
2835 }
2836 
2837 //===----------------------------------------------------------------------===//
2838 //                handleOperandChange implementations
2839 
2840 /// Update this constant array to change uses of
2841 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2842 /// etc.
2843 ///
2844 /// Note that we intentionally replace all uses of From with To here.  Consider
2845 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2846 /// ConstantArray::handleOperandChange is only invoked once, and that
2847 /// single invocation handles all 1000 uses.  Handling them one at a time would
2848 /// work, but would be really slow because it would have to unique each updated
2849 /// array instance.
2850 ///
2851 void Constant::handleOperandChange(Value *From, Value *To) {
2852   Value *Replacement = nullptr;
2853   switch (getValueID()) {
2854   default:
2855     llvm_unreachable("Not a constant!");
2856 #define HANDLE_CONSTANT(Name)                                                  \
2857   case Value::Name##Val:                                                       \
2858     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
2859     break;
2860 #include "llvm/IR/Value.def"
2861   }
2862 
2863   // If handleOperandChangeImpl returned nullptr, then it handled
2864   // replacing itself and we don't want to delete or replace anything else here.
2865   if (!Replacement)
2866     return;
2867 
2868   // I do need to replace this with an existing value.
2869   assert(Replacement != this && "I didn't contain From!");
2870 
2871   // Everyone using this now uses the replacement.
2872   replaceAllUsesWith(Replacement);
2873 
2874   // Delete the old constant!
2875   destroyConstant();
2876 }
2877 
2878 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
2879   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2880   Constant *ToC = cast<Constant>(To);
2881 
2882   SmallVector<Constant*, 8> Values;
2883   Values.reserve(getNumOperands());  // Build replacement array.
2884 
2885   // Fill values with the modified operands of the constant array.  Also,
2886   // compute whether this turns into an all-zeros array.
2887   unsigned NumUpdated = 0;
2888 
2889   // Keep track of whether all the values in the array are "ToC".
2890   bool AllSame = true;
2891   Use *OperandList = getOperandList();
2892   unsigned OperandNo = 0;
2893   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2894     Constant *Val = cast<Constant>(O->get());
2895     if (Val == From) {
2896       OperandNo = (O - OperandList);
2897       Val = ToC;
2898       ++NumUpdated;
2899     }
2900     Values.push_back(Val);
2901     AllSame &= Val == ToC;
2902   }
2903 
2904   if (AllSame && ToC->isNullValue())
2905     return ConstantAggregateZero::get(getType());
2906 
2907   if (AllSame && isa<UndefValue>(ToC))
2908     return UndefValue::get(getType());
2909 
2910   // Check for any other type of constant-folding.
2911   if (Constant *C = getImpl(getType(), Values))
2912     return C;
2913 
2914   // Update to the new value.
2915   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2916       Values, this, From, ToC, NumUpdated, OperandNo);
2917 }
2918 
2919 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
2920   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2921   Constant *ToC = cast<Constant>(To);
2922 
2923   Use *OperandList = getOperandList();
2924 
2925   SmallVector<Constant*, 8> Values;
2926   Values.reserve(getNumOperands());  // Build replacement struct.
2927 
2928   // Fill values with the modified operands of the constant struct.  Also,
2929   // compute whether this turns into an all-zeros struct.
2930   unsigned NumUpdated = 0;
2931   bool AllSame = true;
2932   unsigned OperandNo = 0;
2933   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
2934     Constant *Val = cast<Constant>(O->get());
2935     if (Val == From) {
2936       OperandNo = (O - OperandList);
2937       Val = ToC;
2938       ++NumUpdated;
2939     }
2940     Values.push_back(Val);
2941     AllSame &= Val == ToC;
2942   }
2943 
2944   if (AllSame && ToC->isNullValue())
2945     return ConstantAggregateZero::get(getType());
2946 
2947   if (AllSame && isa<UndefValue>(ToC))
2948     return UndefValue::get(getType());
2949 
2950   // Update to the new value.
2951   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2952       Values, this, From, ToC, NumUpdated, OperandNo);
2953 }
2954 
2955 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
2956   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2957   Constant *ToC = cast<Constant>(To);
2958 
2959   SmallVector<Constant*, 8> Values;
2960   Values.reserve(getNumOperands());  // Build replacement array...
2961   unsigned NumUpdated = 0;
2962   unsigned OperandNo = 0;
2963   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2964     Constant *Val = getOperand(i);
2965     if (Val == From) {
2966       OperandNo = i;
2967       ++NumUpdated;
2968       Val = ToC;
2969     }
2970     Values.push_back(Val);
2971   }
2972 
2973   if (Constant *C = getImpl(Values))
2974     return C;
2975 
2976   // Update to the new value.
2977   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2978       Values, this, From, ToC, NumUpdated, OperandNo);
2979 }
2980 
2981 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
2982   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2983   Constant *To = cast<Constant>(ToV);
2984 
2985   SmallVector<Constant*, 8> NewOps;
2986   unsigned NumUpdated = 0;
2987   unsigned OperandNo = 0;
2988   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2989     Constant *Op = getOperand(i);
2990     if (Op == From) {
2991       OperandNo = i;
2992       ++NumUpdated;
2993       Op = To;
2994     }
2995     NewOps.push_back(Op);
2996   }
2997   assert(NumUpdated && "I didn't contain From!");
2998 
2999   if (Constant *C = getWithOperands(NewOps, getType(), true))
3000     return C;
3001 
3002   // Update to the new value.
3003   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3004       NewOps, this, From, To, NumUpdated, OperandNo);
3005 }
3006 
3007 Instruction *ConstantExpr::getAsInstruction() {
3008   SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
3009   ArrayRef<Value*> Ops(ValueOperands);
3010 
3011   switch (getOpcode()) {
3012   case Instruction::Trunc:
3013   case Instruction::ZExt:
3014   case Instruction::SExt:
3015   case Instruction::FPTrunc:
3016   case Instruction::FPExt:
3017   case Instruction::UIToFP:
3018   case Instruction::SIToFP:
3019   case Instruction::FPToUI:
3020   case Instruction::FPToSI:
3021   case Instruction::PtrToInt:
3022   case Instruction::IntToPtr:
3023   case Instruction::BitCast:
3024   case Instruction::AddrSpaceCast:
3025     return CastInst::Create((Instruction::CastOps)getOpcode(),
3026                             Ops[0], getType());
3027   case Instruction::Select:
3028     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3029   case Instruction::InsertElement:
3030     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3031   case Instruction::ExtractElement:
3032     return ExtractElementInst::Create(Ops[0], Ops[1]);
3033   case Instruction::InsertValue:
3034     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3035   case Instruction::ExtractValue:
3036     return ExtractValueInst::Create(Ops[0], getIndices());
3037   case Instruction::ShuffleVector:
3038     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3039 
3040   case Instruction::GetElementPtr: {
3041     const auto *GO = cast<GEPOperator>(this);
3042     if (GO->isInBounds())
3043       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3044                                                Ops[0], Ops.slice(1));
3045     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3046                                      Ops.slice(1));
3047   }
3048   case Instruction::ICmp:
3049   case Instruction::FCmp:
3050     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3051                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3052   case Instruction::FNeg:
3053     return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
3054   default:
3055     assert(getNumOperands() == 2 && "Must be binary operator?");
3056     BinaryOperator *BO =
3057       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3058                              Ops[0], Ops[1]);
3059     if (isa<OverflowingBinaryOperator>(BO)) {
3060       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3061                                OverflowingBinaryOperator::NoUnsignedWrap);
3062       BO->setHasNoSignedWrap(SubclassOptionalData &
3063                              OverflowingBinaryOperator::NoSignedWrap);
3064     }
3065     if (isa<PossiblyExactOperator>(BO))
3066       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3067     return BO;
3068   }
3069 }
3070