1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 
41 using namespace llvm;
42 
43 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
44     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
45       Upper(Lower) {}
46 
47 ConstantRange::ConstantRange(APInt V)
48     : Lower(std::move(V)), Upper(Lower + 1) {}
49 
50 ConstantRange::ConstantRange(APInt L, APInt U)
51     : Lower(std::move(L)), Upper(std::move(U)) {
52   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
53          "ConstantRange with unequal bit widths");
54   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
55          "Lower == Upper, but they aren't min or max value!");
56 }
57 
58 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
59                                            bool IsSigned) {
60   assert(!Known.hasConflict() && "Expected valid KnownBits");
61 
62   if (Known.isUnknown())
63     return getFull(Known.getBitWidth());
64 
65   // For unsigned ranges, or signed ranges with known sign bit, create a simple
66   // range between the smallest and largest possible value.
67   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
68     return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
69 
70   // If we don't know the sign bit, pick the lower bound as a negative number
71   // and the upper bound as a non-negative one.
72   APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
73   Lower.setSignBit();
74   Upper.clearSignBit();
75   return ConstantRange(Lower, Upper + 1);
76 }
77 
78 KnownBits ConstantRange::toKnownBits() const {
79   // TODO: We could return conflicting known bits here, but consumers are
80   // likely not prepared for that.
81   if (isEmptySet())
82     return KnownBits(getBitWidth());
83 
84   // We can only retain the top bits that are the same between min and max.
85   APInt Min = getUnsignedMin();
86   APInt Max = getUnsignedMax();
87   KnownBits Known = KnownBits::makeConstant(Min);
88   if (Optional<unsigned> DifferentBit =
89           APIntOps::GetMostSignificantDifferentBit(Min, Max)) {
90     Known.Zero.clearLowBits(*DifferentBit + 1);
91     Known.One.clearLowBits(*DifferentBit + 1);
92   }
93   return Known;
94 }
95 
96 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
97                                                    const ConstantRange &CR) {
98   if (CR.isEmptySet())
99     return CR;
100 
101   uint32_t W = CR.getBitWidth();
102   switch (Pred) {
103   default:
104     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
105   case CmpInst::ICMP_EQ:
106     return CR;
107   case CmpInst::ICMP_NE:
108     if (CR.isSingleElement())
109       return ConstantRange(CR.getUpper(), CR.getLower());
110     return getFull(W);
111   case CmpInst::ICMP_ULT: {
112     APInt UMax(CR.getUnsignedMax());
113     if (UMax.isMinValue())
114       return getEmpty(W);
115     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
116   }
117   case CmpInst::ICMP_SLT: {
118     APInt SMax(CR.getSignedMax());
119     if (SMax.isMinSignedValue())
120       return getEmpty(W);
121     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
122   }
123   case CmpInst::ICMP_ULE:
124     return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
125   case CmpInst::ICMP_SLE:
126     return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
127   case CmpInst::ICMP_UGT: {
128     APInt UMin(CR.getUnsignedMin());
129     if (UMin.isMaxValue())
130       return getEmpty(W);
131     return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
132   }
133   case CmpInst::ICMP_SGT: {
134     APInt SMin(CR.getSignedMin());
135     if (SMin.isMaxSignedValue())
136       return getEmpty(W);
137     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
138   }
139   case CmpInst::ICMP_UGE:
140     return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
141   case CmpInst::ICMP_SGE:
142     return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
143   }
144 }
145 
146 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
147                                                       const ConstantRange &CR) {
148   // Follows from De-Morgan's laws:
149   //
150   // ~(~A union ~B) == A intersect B.
151   //
152   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
153       .inverse();
154 }
155 
156 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
157                                                  const APInt &C) {
158   // Computes the exact range that is equal to both the constant ranges returned
159   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
160   // when RHS is a singleton such as an APInt and so the assert is valid.
161   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
162   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
163   //
164   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
165   return makeAllowedICmpRegion(Pred, C);
166 }
167 
168 bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate(
169     const ConstantRange &CR1, const ConstantRange &CR2) {
170   if (CR1.isEmptySet() || CR2.isEmptySet())
171     return true;
172 
173   return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) ||
174          (CR1.isAllNegative() && CR2.isAllNegative());
175 }
176 
177 bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
178     const ConstantRange &CR1, const ConstantRange &CR2) {
179   if (CR1.isEmptySet() || CR2.isEmptySet())
180     return true;
181 
182   return (CR1.isAllNonNegative() && CR2.isAllNegative()) ||
183          (CR1.isAllNegative() && CR2.isAllNonNegative());
184 }
185 
186 CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness(
187     CmpInst::Predicate Pred, const ConstantRange &CR1,
188     const ConstantRange &CR2) {
189   assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) &&
190          "Only for relational integer predicates!");
191 
192   CmpInst::Predicate FlippedSignednessPred =
193       CmpInst::getFlippedSignednessPredicate(Pred);
194 
195   if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2))
196     return FlippedSignednessPred;
197 
198   if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2))
199     return CmpInst::getInversePredicate(FlippedSignednessPred);
200 
201   return CmpInst::Predicate::BAD_ICMP_PREDICATE;
202 }
203 
204 void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
205                                       APInt &RHS, APInt &Offset) const {
206   Offset = APInt(getBitWidth(), 0);
207   if (isFullSet() || isEmptySet()) {
208     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
209     RHS = APInt(getBitWidth(), 0);
210   } else if (auto *OnlyElt = getSingleElement()) {
211     Pred = CmpInst::ICMP_EQ;
212     RHS = *OnlyElt;
213   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
214     Pred = CmpInst::ICMP_NE;
215     RHS = *OnlyMissingElt;
216   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
217     Pred =
218         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
219     RHS = getUpper();
220   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
221     Pred =
222         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
223     RHS = getLower();
224   } else {
225     Pred = CmpInst::ICMP_ULT;
226     RHS = getUpper() - getLower();
227     Offset = -getLower();
228   }
229 
230   assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) &&
231          "Bad result!");
232 }
233 
234 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
235                                       APInt &RHS) const {
236   APInt Offset;
237   getEquivalentICmp(Pred, RHS, Offset);
238   return Offset.isZero();
239 }
240 
241 bool ConstantRange::icmp(CmpInst::Predicate Pred,
242                          const ConstantRange &Other) const {
243   return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
244 }
245 
246 /// Exact mul nuw region for single element RHS.
247 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
248   unsigned BitWidth = V.getBitWidth();
249   if (V == 0)
250     return ConstantRange::getFull(V.getBitWidth());
251 
252   return ConstantRange::getNonEmpty(
253       APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
254                              APInt::Rounding::UP),
255       APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
256                              APInt::Rounding::DOWN) + 1);
257 }
258 
259 /// Exact mul nsw region for single element RHS.
260 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
261   // Handle special case for 0, -1 and 1. See the last for reason why we
262   // specialize -1 and 1.
263   unsigned BitWidth = V.getBitWidth();
264   if (V == 0 || V.isOne())
265     return ConstantRange::getFull(BitWidth);
266 
267   APInt MinValue = APInt::getSignedMinValue(BitWidth);
268   APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
269   // e.g. Returning [-127, 127], represented as [-127, -128).
270   if (V.isAllOnes())
271     return ConstantRange(-MaxValue, MinValue);
272 
273   APInt Lower, Upper;
274   if (V.isNegative()) {
275     Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
276     Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
277   } else {
278     Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
279     Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
280   }
281   // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
282   // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
283   // and 1 are already handled as special cases.
284   return ConstantRange(Lower, Upper + 1);
285 }
286 
287 ConstantRange
288 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
289                                           const ConstantRange &Other,
290                                           unsigned NoWrapKind) {
291   using OBO = OverflowingBinaryOperator;
292 
293   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
294 
295   assert((NoWrapKind == OBO::NoSignedWrap ||
296           NoWrapKind == OBO::NoUnsignedWrap) &&
297          "NoWrapKind invalid!");
298 
299   bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
300   unsigned BitWidth = Other.getBitWidth();
301 
302   switch (BinOp) {
303   default:
304     llvm_unreachable("Unsupported binary op");
305 
306   case Instruction::Add: {
307     if (Unsigned)
308       return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());
309 
310     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
311     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
312     return getNonEmpty(
313         SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
314         SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
315   }
316 
317   case Instruction::Sub: {
318     if (Unsigned)
319       return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
320 
321     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
322     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
323     return getNonEmpty(
324         SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
325         SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
326   }
327 
328   case Instruction::Mul:
329     if (Unsigned)
330       return makeExactMulNUWRegion(Other.getUnsignedMax());
331 
332     return makeExactMulNSWRegion(Other.getSignedMin())
333         .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
334 
335   case Instruction::Shl: {
336     // For given range of shift amounts, if we ignore all illegal shift amounts
337     // (that always produce poison), what shift amount range is left?
338     ConstantRange ShAmt = Other.intersectWith(
339         ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
340     if (ShAmt.isEmptySet()) {
341       // If the entire range of shift amounts is already poison-producing,
342       // then we can freely add more poison-producing flags ontop of that.
343       return getFull(BitWidth);
344     }
345     // There are some legal shift amounts, we can compute conservatively-correct
346     // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
347     // to be at most bitwidth-1, which results in most conservative range.
348     APInt ShAmtUMax = ShAmt.getUnsignedMax();
349     if (Unsigned)
350       return getNonEmpty(APInt::getZero(BitWidth),
351                          APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
352     return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
353                        APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
354   }
355   }
356 }
357 
358 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
359                                                    const APInt &Other,
360                                                    unsigned NoWrapKind) {
361   // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
362   // "for all" and "for any" coincide in this case.
363   return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
364 }
365 
366 bool ConstantRange::isFullSet() const {
367   return Lower == Upper && Lower.isMaxValue();
368 }
369 
370 bool ConstantRange::isEmptySet() const {
371   return Lower == Upper && Lower.isMinValue();
372 }
373 
374 bool ConstantRange::isWrappedSet() const {
375   return Lower.ugt(Upper) && !Upper.isZero();
376 }
377 
378 bool ConstantRange::isUpperWrapped() const {
379   return Lower.ugt(Upper);
380 }
381 
382 bool ConstantRange::isSignWrappedSet() const {
383   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
384 }
385 
386 bool ConstantRange::isUpperSignWrapped() const {
387   return Lower.sgt(Upper);
388 }
389 
390 bool
391 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
392   assert(getBitWidth() == Other.getBitWidth());
393   if (isFullSet())
394     return false;
395   if (Other.isFullSet())
396     return true;
397   return (Upper - Lower).ult(Other.Upper - Other.Lower);
398 }
399 
400 bool
401 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
402   // If this a full set, we need special handling to avoid needing an extra bit
403   // to represent the size.
404   if (isFullSet())
405     return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
406 
407   return (Upper - Lower).ugt(MaxSize);
408 }
409 
410 bool ConstantRange::isAllNegative() const {
411   // Empty set is all negative, full set is not.
412   if (isEmptySet())
413     return true;
414   if (isFullSet())
415     return false;
416 
417   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
418 }
419 
420 bool ConstantRange::isAllNonNegative() const {
421   // Empty and full set are automatically treated correctly.
422   return !isSignWrappedSet() && Lower.isNonNegative();
423 }
424 
425 APInt ConstantRange::getUnsignedMax() const {
426   if (isFullSet() || isUpperWrapped())
427     return APInt::getMaxValue(getBitWidth());
428   return getUpper() - 1;
429 }
430 
431 APInt ConstantRange::getUnsignedMin() const {
432   if (isFullSet() || isWrappedSet())
433     return APInt::getMinValue(getBitWidth());
434   return getLower();
435 }
436 
437 APInt ConstantRange::getSignedMax() const {
438   if (isFullSet() || isUpperSignWrapped())
439     return APInt::getSignedMaxValue(getBitWidth());
440   return getUpper() - 1;
441 }
442 
443 APInt ConstantRange::getSignedMin() const {
444   if (isFullSet() || isSignWrappedSet())
445     return APInt::getSignedMinValue(getBitWidth());
446   return getLower();
447 }
448 
449 bool ConstantRange::contains(const APInt &V) const {
450   if (Lower == Upper)
451     return isFullSet();
452 
453   if (!isUpperWrapped())
454     return Lower.ule(V) && V.ult(Upper);
455   return Lower.ule(V) || V.ult(Upper);
456 }
457 
458 bool ConstantRange::contains(const ConstantRange &Other) const {
459   if (isFullSet() || Other.isEmptySet()) return true;
460   if (isEmptySet() || Other.isFullSet()) return false;
461 
462   if (!isUpperWrapped()) {
463     if (Other.isUpperWrapped())
464       return false;
465 
466     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
467   }
468 
469   if (!Other.isUpperWrapped())
470     return Other.getUpper().ule(Upper) ||
471            Lower.ule(Other.getLower());
472 
473   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
474 }
475 
476 unsigned ConstantRange::getActiveBits() const {
477   if (isEmptySet())
478     return 0;
479 
480   return getUnsignedMax().getActiveBits();
481 }
482 
483 unsigned ConstantRange::getMinSignedBits() const {
484   if (isEmptySet())
485     return 0;
486 
487   return std::max(getSignedMin().getMinSignedBits(),
488                   getSignedMax().getMinSignedBits());
489 }
490 
491 ConstantRange ConstantRange::subtract(const APInt &Val) const {
492   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
493   // If the set is empty or full, don't modify the endpoints.
494   if (Lower == Upper)
495     return *this;
496   return ConstantRange(Lower - Val, Upper - Val);
497 }
498 
499 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
500   return intersectWith(CR.inverse());
501 }
502 
503 static ConstantRange getPreferredRange(
504     const ConstantRange &CR1, const ConstantRange &CR2,
505     ConstantRange::PreferredRangeType Type) {
506   if (Type == ConstantRange::Unsigned) {
507     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
508       return CR1;
509     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
510       return CR2;
511   } else if (Type == ConstantRange::Signed) {
512     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
513       return CR1;
514     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
515       return CR2;
516   }
517 
518   if (CR1.isSizeStrictlySmallerThan(CR2))
519     return CR1;
520   return CR2;
521 }
522 
523 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
524                                            PreferredRangeType Type) const {
525   assert(getBitWidth() == CR.getBitWidth() &&
526          "ConstantRange types don't agree!");
527 
528   // Handle common cases.
529   if (   isEmptySet() || CR.isFullSet()) return *this;
530   if (CR.isEmptySet() ||    isFullSet()) return CR;
531 
532   if (!isUpperWrapped() && CR.isUpperWrapped())
533     return CR.intersectWith(*this, Type);
534 
535   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
536     if (Lower.ult(CR.Lower)) {
537       // L---U       : this
538       //       L---U : CR
539       if (Upper.ule(CR.Lower))
540         return getEmpty();
541 
542       // L---U       : this
543       //   L---U     : CR
544       if (Upper.ult(CR.Upper))
545         return ConstantRange(CR.Lower, Upper);
546 
547       // L-------U   : this
548       //   L---U     : CR
549       return CR;
550     }
551     //   L---U     : this
552     // L-------U   : CR
553     if (Upper.ult(CR.Upper))
554       return *this;
555 
556     //   L-----U   : this
557     // L-----U     : CR
558     if (Lower.ult(CR.Upper))
559       return ConstantRange(Lower, CR.Upper);
560 
561     //       L---U : this
562     // L---U       : CR
563     return getEmpty();
564   }
565 
566   if (isUpperWrapped() && !CR.isUpperWrapped()) {
567     if (CR.Lower.ult(Upper)) {
568       // ------U   L--- : this
569       //  L--U          : CR
570       if (CR.Upper.ult(Upper))
571         return CR;
572 
573       // ------U   L--- : this
574       //  L------U      : CR
575       if (CR.Upper.ule(Lower))
576         return ConstantRange(CR.Lower, Upper);
577 
578       // ------U   L--- : this
579       //  L----------U  : CR
580       return getPreferredRange(*this, CR, Type);
581     }
582     if (CR.Lower.ult(Lower)) {
583       // --U      L---- : this
584       //     L--U       : CR
585       if (CR.Upper.ule(Lower))
586         return getEmpty();
587 
588       // --U      L---- : this
589       //     L------U   : CR
590       return ConstantRange(Lower, CR.Upper);
591     }
592 
593     // --U  L------ : this
594     //        L--U  : CR
595     return CR;
596   }
597 
598   if (CR.Upper.ult(Upper)) {
599     // ------U L-- : this
600     // --U L------ : CR
601     if (CR.Lower.ult(Upper))
602       return getPreferredRange(*this, CR, Type);
603 
604     // ----U   L-- : this
605     // --U   L---- : CR
606     if (CR.Lower.ult(Lower))
607       return ConstantRange(Lower, CR.Upper);
608 
609     // ----U L---- : this
610     // --U     L-- : CR
611     return CR;
612   }
613   if (CR.Upper.ule(Lower)) {
614     // --U     L-- : this
615     // ----U L---- : CR
616     if (CR.Lower.ult(Lower))
617       return *this;
618 
619     // --U   L---- : this
620     // ----U   L-- : CR
621     return ConstantRange(CR.Lower, Upper);
622   }
623 
624   // --U L------ : this
625   // ------U L-- : CR
626   return getPreferredRange(*this, CR, Type);
627 }
628 
629 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
630                                        PreferredRangeType Type) const {
631   assert(getBitWidth() == CR.getBitWidth() &&
632          "ConstantRange types don't agree!");
633 
634   if (   isFullSet() || CR.isEmptySet()) return *this;
635   if (CR.isFullSet() ||    isEmptySet()) return CR;
636 
637   if (!isUpperWrapped() && CR.isUpperWrapped())
638     return CR.unionWith(*this, Type);
639 
640   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
641     //        L---U  and  L---U        : this
642     //  L---U                   L---U  : CR
643     // result in one of
644     //  L---------U
645     // -----U L-----
646     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
647       return getPreferredRange(
648           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
649 
650     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
651     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
652 
653     if (L.isZero() && U.isZero())
654       return getFull();
655 
656     return ConstantRange(std::move(L), std::move(U));
657   }
658 
659   if (!CR.isUpperWrapped()) {
660     // ------U   L-----  and  ------U   L----- : this
661     //   L--U                            L--U  : CR
662     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
663       return *this;
664 
665     // ------U   L----- : this
666     //    L---------U   : CR
667     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
668       return getFull();
669 
670     // ----U       L---- : this
671     //       L---U       : CR
672     // results in one of
673     // ----------U L----
674     // ----U L----------
675     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
676       return getPreferredRange(
677           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
678 
679     // ----U     L----- : this
680     //        L----U    : CR
681     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
682       return ConstantRange(CR.Lower, Upper);
683 
684     // ------U    L---- : this
685     //    L-----U       : CR
686     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
687            "ConstantRange::unionWith missed a case with one range wrapped");
688     return ConstantRange(Lower, CR.Upper);
689   }
690 
691   // ------U    L----  and  ------U    L---- : this
692   // -U  L-----------  and  ------------U  L : CR
693   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
694     return getFull();
695 
696   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
697   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
698 
699   return ConstantRange(std::move(L), std::move(U));
700 }
701 
702 Optional<ConstantRange>
703 ConstantRange::exactIntersectWith(const ConstantRange &CR) const {
704   // TODO: This can be implemented more efficiently.
705   ConstantRange Result = intersectWith(CR);
706   if (Result == inverse().unionWith(CR.inverse()).inverse())
707     return Result;
708   return None;
709 }
710 
711 Optional<ConstantRange>
712 ConstantRange::exactUnionWith(const ConstantRange &CR) const {
713   // TODO: This can be implemented more efficiently.
714   ConstantRange Result = unionWith(CR);
715   if (Result == inverse().intersectWith(CR.inverse()).inverse())
716     return Result;
717   return None;
718 }
719 
720 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
721                                     uint32_t ResultBitWidth) const {
722   switch (CastOp) {
723   default:
724     llvm_unreachable("unsupported cast type");
725   case Instruction::Trunc:
726     return truncate(ResultBitWidth);
727   case Instruction::SExt:
728     return signExtend(ResultBitWidth);
729   case Instruction::ZExt:
730     return zeroExtend(ResultBitWidth);
731   case Instruction::BitCast:
732     return *this;
733   case Instruction::FPToUI:
734   case Instruction::FPToSI:
735     if (getBitWidth() == ResultBitWidth)
736       return *this;
737     else
738       return getFull(ResultBitWidth);
739   case Instruction::UIToFP: {
740     // TODO: use input range if available
741     auto BW = getBitWidth();
742     APInt Min = APInt::getMinValue(BW);
743     APInt Max = APInt::getMaxValue(BW);
744     if (ResultBitWidth > BW) {
745       Min = Min.zext(ResultBitWidth);
746       Max = Max.zext(ResultBitWidth);
747     }
748     return ConstantRange(std::move(Min), std::move(Max));
749   }
750   case Instruction::SIToFP: {
751     // TODO: use input range if available
752     auto BW = getBitWidth();
753     APInt SMin = APInt::getSignedMinValue(BW);
754     APInt SMax = APInt::getSignedMaxValue(BW);
755     if (ResultBitWidth > BW) {
756       SMin = SMin.sext(ResultBitWidth);
757       SMax = SMax.sext(ResultBitWidth);
758     }
759     return ConstantRange(std::move(SMin), std::move(SMax));
760   }
761   case Instruction::FPTrunc:
762   case Instruction::FPExt:
763   case Instruction::IntToPtr:
764   case Instruction::PtrToInt:
765   case Instruction::AddrSpaceCast:
766     // Conservatively return getFull set.
767     return getFull(ResultBitWidth);
768   };
769 }
770 
771 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
772   if (isEmptySet()) return getEmpty(DstTySize);
773 
774   unsigned SrcTySize = getBitWidth();
775   assert(SrcTySize < DstTySize && "Not a value extension");
776   if (isFullSet() || isUpperWrapped()) {
777     // Change into [0, 1 << src bit width)
778     APInt LowerExt(DstTySize, 0);
779     if (!Upper) // special case: [X, 0) -- not really wrapping around
780       LowerExt = Lower.zext(DstTySize);
781     return ConstantRange(std::move(LowerExt),
782                          APInt::getOneBitSet(DstTySize, SrcTySize));
783   }
784 
785   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
786 }
787 
788 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
789   if (isEmptySet()) return getEmpty(DstTySize);
790 
791   unsigned SrcTySize = getBitWidth();
792   assert(SrcTySize < DstTySize && "Not a value extension");
793 
794   // special case: [X, INT_MIN) -- not really wrapping around
795   if (Upper.isMinSignedValue())
796     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
797 
798   if (isFullSet() || isSignWrappedSet()) {
799     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
800                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
801   }
802 
803   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
804 }
805 
806 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
807   assert(getBitWidth() > DstTySize && "Not a value truncation");
808   if (isEmptySet())
809     return getEmpty(DstTySize);
810   if (isFullSet())
811     return getFull(DstTySize);
812 
813   APInt LowerDiv(Lower), UpperDiv(Upper);
814   ConstantRange Union(DstTySize, /*isFullSet=*/false);
815 
816   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
817   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
818   // then we do the union with [MaxValue, Upper)
819   if (isUpperWrapped()) {
820     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
821     // truncated range.
822     if (Upper.getActiveBits() > DstTySize ||
823         Upper.countTrailingOnes() == DstTySize)
824       return getFull(DstTySize);
825 
826     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
827     UpperDiv.setAllBits();
828 
829     // Union covers the MaxValue case, so return if the remaining range is just
830     // MaxValue(DstTy).
831     if (LowerDiv == UpperDiv)
832       return Union;
833   }
834 
835   // Chop off the most significant bits that are past the destination bitwidth.
836   if (LowerDiv.getActiveBits() > DstTySize) {
837     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
838     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
839     LowerDiv -= Adjust;
840     UpperDiv -= Adjust;
841   }
842 
843   unsigned UpperDivWidth = UpperDiv.getActiveBits();
844   if (UpperDivWidth <= DstTySize)
845     return ConstantRange(LowerDiv.trunc(DstTySize),
846                          UpperDiv.trunc(DstTySize)).unionWith(Union);
847 
848   // The truncated value wraps around. Check if we can do better than fullset.
849   if (UpperDivWidth == DstTySize + 1) {
850     // Clear the MSB so that UpperDiv wraps around.
851     UpperDiv.clearBit(DstTySize);
852     if (UpperDiv.ult(LowerDiv))
853       return ConstantRange(LowerDiv.trunc(DstTySize),
854                            UpperDiv.trunc(DstTySize)).unionWith(Union);
855   }
856 
857   return getFull(DstTySize);
858 }
859 
860 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
861   unsigned SrcTySize = getBitWidth();
862   if (SrcTySize > DstTySize)
863     return truncate(DstTySize);
864   if (SrcTySize < DstTySize)
865     return zeroExtend(DstTySize);
866   return *this;
867 }
868 
869 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
870   unsigned SrcTySize = getBitWidth();
871   if (SrcTySize > DstTySize)
872     return truncate(DstTySize);
873   if (SrcTySize < DstTySize)
874     return signExtend(DstTySize);
875   return *this;
876 }
877 
878 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
879                                       const ConstantRange &Other) const {
880   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
881 
882   switch (BinOp) {
883   case Instruction::Add:
884     return add(Other);
885   case Instruction::Sub:
886     return sub(Other);
887   case Instruction::Mul:
888     return multiply(Other);
889   case Instruction::UDiv:
890     return udiv(Other);
891   case Instruction::SDiv:
892     return sdiv(Other);
893   case Instruction::URem:
894     return urem(Other);
895   case Instruction::SRem:
896     return srem(Other);
897   case Instruction::Shl:
898     return shl(Other);
899   case Instruction::LShr:
900     return lshr(Other);
901   case Instruction::AShr:
902     return ashr(Other);
903   case Instruction::And:
904     return binaryAnd(Other);
905   case Instruction::Or:
906     return binaryOr(Other);
907   case Instruction::Xor:
908     return binaryXor(Other);
909   // Note: floating point operations applied to abstract ranges are just
910   // ideal integer operations with a lossy representation
911   case Instruction::FAdd:
912     return add(Other);
913   case Instruction::FSub:
914     return sub(Other);
915   case Instruction::FMul:
916     return multiply(Other);
917   default:
918     // Conservatively return getFull set.
919     return getFull();
920   }
921 }
922 
923 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
924                                                  const ConstantRange &Other,
925                                                  unsigned NoWrapKind) const {
926   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
927 
928   switch (BinOp) {
929   case Instruction::Add:
930     return addWithNoWrap(Other, NoWrapKind);
931   case Instruction::Sub:
932     return subWithNoWrap(Other, NoWrapKind);
933   default:
934     // Don't know about this Overflowing Binary Operation.
935     // Conservatively fallback to plain binop handling.
936     return binaryOp(BinOp, Other);
937   }
938 }
939 
940 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
941   switch (IntrinsicID) {
942   case Intrinsic::uadd_sat:
943   case Intrinsic::usub_sat:
944   case Intrinsic::sadd_sat:
945   case Intrinsic::ssub_sat:
946   case Intrinsic::umin:
947   case Intrinsic::umax:
948   case Intrinsic::smin:
949   case Intrinsic::smax:
950   case Intrinsic::abs:
951     return true;
952   default:
953     return false;
954   }
955 }
956 
957 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
958                                        ArrayRef<ConstantRange> Ops) {
959   switch (IntrinsicID) {
960   case Intrinsic::uadd_sat:
961     return Ops[0].uadd_sat(Ops[1]);
962   case Intrinsic::usub_sat:
963     return Ops[0].usub_sat(Ops[1]);
964   case Intrinsic::sadd_sat:
965     return Ops[0].sadd_sat(Ops[1]);
966   case Intrinsic::ssub_sat:
967     return Ops[0].ssub_sat(Ops[1]);
968   case Intrinsic::umin:
969     return Ops[0].umin(Ops[1]);
970   case Intrinsic::umax:
971     return Ops[0].umax(Ops[1]);
972   case Intrinsic::smin:
973     return Ops[0].smin(Ops[1]);
974   case Intrinsic::smax:
975     return Ops[0].smax(Ops[1]);
976   case Intrinsic::abs: {
977     const APInt *IntMinIsPoison = Ops[1].getSingleElement();
978     assert(IntMinIsPoison && "Must be known (immarg)");
979     assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
980     return Ops[0].abs(IntMinIsPoison->getBoolValue());
981   }
982   default:
983     assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
984     llvm_unreachable("Unsupported intrinsic");
985   }
986 }
987 
988 ConstantRange
989 ConstantRange::add(const ConstantRange &Other) const {
990   if (isEmptySet() || Other.isEmptySet())
991     return getEmpty();
992   if (isFullSet() || Other.isFullSet())
993     return getFull();
994 
995   APInt NewLower = getLower() + Other.getLower();
996   APInt NewUpper = getUpper() + Other.getUpper() - 1;
997   if (NewLower == NewUpper)
998     return getFull();
999 
1000   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
1001   if (X.isSizeStrictlySmallerThan(*this) ||
1002       X.isSizeStrictlySmallerThan(Other))
1003     // We've wrapped, therefore, full set.
1004     return getFull();
1005   return X;
1006 }
1007 
1008 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
1009                                            unsigned NoWrapKind,
1010                                            PreferredRangeType RangeType) const {
1011   // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
1012   // (X is from this, and Y is from Other)
1013   if (isEmptySet() || Other.isEmptySet())
1014     return getEmpty();
1015   if (isFullSet() && Other.isFullSet())
1016     return getFull();
1017 
1018   using OBO = OverflowingBinaryOperator;
1019   ConstantRange Result = add(Other);
1020 
1021   // If an overflow happens for every value pair in these two constant ranges,
1022   // we must return Empty set. In this case, we get that for free, because we
1023   // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
1024   // in an empty set.
1025 
1026   if (NoWrapKind & OBO::NoSignedWrap)
1027     Result = Result.intersectWith(sadd_sat(Other), RangeType);
1028 
1029   if (NoWrapKind & OBO::NoUnsignedWrap)
1030     Result = Result.intersectWith(uadd_sat(Other), RangeType);
1031 
1032   return Result;
1033 }
1034 
1035 ConstantRange
1036 ConstantRange::sub(const ConstantRange &Other) const {
1037   if (isEmptySet() || Other.isEmptySet())
1038     return getEmpty();
1039   if (isFullSet() || Other.isFullSet())
1040     return getFull();
1041 
1042   APInt NewLower = getLower() - Other.getUpper() + 1;
1043   APInt NewUpper = getUpper() - Other.getLower();
1044   if (NewLower == NewUpper)
1045     return getFull();
1046 
1047   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
1048   if (X.isSizeStrictlySmallerThan(*this) ||
1049       X.isSizeStrictlySmallerThan(Other))
1050     // We've wrapped, therefore, full set.
1051     return getFull();
1052   return X;
1053 }
1054 
1055 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
1056                                            unsigned NoWrapKind,
1057                                            PreferredRangeType RangeType) const {
1058   // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
1059   // (X is from this, and Y is from Other)
1060   if (isEmptySet() || Other.isEmptySet())
1061     return getEmpty();
1062   if (isFullSet() && Other.isFullSet())
1063     return getFull();
1064 
1065   using OBO = OverflowingBinaryOperator;
1066   ConstantRange Result = sub(Other);
1067 
1068   // If an overflow happens for every value pair in these two constant ranges,
1069   // we must return Empty set. In signed case, we get that for free, because we
1070   // get lucky that intersection of sub() with ssub_sat() results in an
1071   // empty set. But for unsigned we must perform the overflow check manually.
1072 
1073   if (NoWrapKind & OBO::NoSignedWrap)
1074     Result = Result.intersectWith(ssub_sat(Other), RangeType);
1075 
1076   if (NoWrapKind & OBO::NoUnsignedWrap) {
1077     if (getUnsignedMax().ult(Other.getUnsignedMin()))
1078       return getEmpty(); // Always overflows.
1079     Result = Result.intersectWith(usub_sat(Other), RangeType);
1080   }
1081 
1082   return Result;
1083 }
1084 
1085 ConstantRange
1086 ConstantRange::multiply(const ConstantRange &Other) const {
1087   // TODO: If either operand is a single element and the multiply is known to
1088   // be non-wrapping, round the result min and max value to the appropriate
1089   // multiple of that element. If wrapping is possible, at least adjust the
1090   // range according to the greatest power-of-two factor of the single element.
1091 
1092   if (isEmptySet() || Other.isEmptySet())
1093     return getEmpty();
1094 
1095   // Multiplication is signedness-independent. However different ranges can be
1096   // obtained depending on how the input ranges are treated. These different
1097   // ranges are all conservatively correct, but one might be better than the
1098   // other. We calculate two ranges; one treating the inputs as unsigned
1099   // and the other signed, then return the smallest of these ranges.
1100 
1101   // Unsigned range first.
1102   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1103   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1104   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1105   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1106 
1107   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1108                                             this_max * Other_max + 1);
1109   ConstantRange UR = Result_zext.truncate(getBitWidth());
1110 
1111   // If the unsigned range doesn't wrap, and isn't negative then it's a range
1112   // from one positive number to another which is as good as we can generate.
1113   // In this case, skip the extra work of generating signed ranges which aren't
1114   // going to be better than this range.
1115   if (!UR.isUpperWrapped() &&
1116       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1117     return UR;
1118 
1119   // Now the signed range. Because we could be dealing with negative numbers
1120   // here, the lower bound is the smallest of the cartesian product of the
1121   // lower and upper ranges; for example:
1122   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1123   // Similarly for the upper bound, swapping min for max.
1124 
1125   this_min = getSignedMin().sext(getBitWidth() * 2);
1126   this_max = getSignedMax().sext(getBitWidth() * 2);
1127   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1128   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1129 
1130   auto L = {this_min * Other_min, this_min * Other_max,
1131             this_max * Other_min, this_max * Other_max};
1132   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1133   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1134   ConstantRange SR = Result_sext.truncate(getBitWidth());
1135 
1136   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1137 }
1138 
1139 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
1140   if (isEmptySet() || Other.isEmptySet())
1141     return getEmpty();
1142 
1143   APInt Min = getSignedMin();
1144   APInt Max = getSignedMax();
1145   APInt OtherMin = Other.getSignedMin();
1146   APInt OtherMax = Other.getSignedMax();
1147 
1148   bool O1, O2, O3, O4;
1149   auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
1150                Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
1151   if (O1 || O2 || O3 || O4)
1152     return getFull();
1153 
1154   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1155   return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
1156 }
1157 
1158 ConstantRange
1159 ConstantRange::smax(const ConstantRange &Other) const {
1160   // X smax Y is: range(smax(X_smin, Y_smin),
1161   //                    smax(X_smax, Y_smax))
1162   if (isEmptySet() || Other.isEmptySet())
1163     return getEmpty();
1164   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1165   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1166   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1167   if (isSignWrappedSet() || Other.isSignWrappedSet())
1168     return Res.intersectWith(unionWith(Other, Signed), Signed);
1169   return Res;
1170 }
1171 
1172 ConstantRange
1173 ConstantRange::umax(const ConstantRange &Other) const {
1174   // X umax Y is: range(umax(X_umin, Y_umin),
1175   //                    umax(X_umax, Y_umax))
1176   if (isEmptySet() || Other.isEmptySet())
1177     return getEmpty();
1178   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1179   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1180   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1181   if (isWrappedSet() || Other.isWrappedSet())
1182     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1183   return Res;
1184 }
1185 
1186 ConstantRange
1187 ConstantRange::smin(const ConstantRange &Other) const {
1188   // X smin Y is: range(smin(X_smin, Y_smin),
1189   //                    smin(X_smax, Y_smax))
1190   if (isEmptySet() || Other.isEmptySet())
1191     return getEmpty();
1192   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1193   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1194   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1195   if (isSignWrappedSet() || Other.isSignWrappedSet())
1196     return Res.intersectWith(unionWith(Other, Signed), Signed);
1197   return Res;
1198 }
1199 
1200 ConstantRange
1201 ConstantRange::umin(const ConstantRange &Other) const {
1202   // X umin Y is: range(umin(X_umin, Y_umin),
1203   //                    umin(X_umax, Y_umax))
1204   if (isEmptySet() || Other.isEmptySet())
1205     return getEmpty();
1206   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1207   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1208   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1209   if (isWrappedSet() || Other.isWrappedSet())
1210     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1211   return Res;
1212 }
1213 
1214 ConstantRange
1215 ConstantRange::udiv(const ConstantRange &RHS) const {
1216   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1217     return getEmpty();
1218 
1219   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1220 
1221   APInt RHS_umin = RHS.getUnsignedMin();
1222   if (RHS_umin.isZero()) {
1223     // We want the lowest value in RHS excluding zero. Usually that would be 1
1224     // except for a range in the form of [X, 1) in which case it would be X.
1225     if (RHS.getUpper() == 1)
1226       RHS_umin = RHS.getLower();
1227     else
1228       RHS_umin = 1;
1229   }
1230 
1231   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1232   return getNonEmpty(std::move(Lower), std::move(Upper));
1233 }
1234 
1235 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1236   // We split up the LHS and RHS into positive and negative components
1237   // and then also compute the positive and negative components of the result
1238   // separately by combining division results with the appropriate signs.
1239   APInt Zero = APInt::getZero(getBitWidth());
1240   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1241   ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1242   ConstantRange NegFilter(SignedMin, Zero);
1243   ConstantRange PosL = intersectWith(PosFilter);
1244   ConstantRange NegL = intersectWith(NegFilter);
1245   ConstantRange PosR = RHS.intersectWith(PosFilter);
1246   ConstantRange NegR = RHS.intersectWith(NegFilter);
1247 
1248   ConstantRange PosRes = getEmpty();
1249   if (!PosL.isEmptySet() && !PosR.isEmptySet())
1250     // pos / pos = pos.
1251     PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1252                            (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1253 
1254   if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1255     // neg / neg = pos.
1256     //
1257     // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1258     // IR level, so we'll want to exclude this case when calculating bounds.
1259     // (For APInts the operation is well-defined and yields SignedMin.) We
1260     // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1261     APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1262     if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
1263       // Remove -1 from the LHS. Skip if it's the only element, as this would
1264       // leave us with an empty set.
1265       if (!NegR.Lower.isAllOnes()) {
1266         APInt AdjNegRUpper;
1267         if (RHS.Lower.isAllOnes())
1268           // Negative part of [-1, X] without -1 is [SignedMin, X].
1269           AdjNegRUpper = RHS.Upper;
1270         else
1271           // [X, -1] without -1 is [X, -2].
1272           AdjNegRUpper = NegR.Upper - 1;
1273 
1274         PosRes = PosRes.unionWith(
1275             ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1276       }
1277 
1278       // Remove SignedMin from the RHS. Skip if it's the only element, as this
1279       // would leave us with an empty set.
1280       if (NegL.Upper != SignedMin + 1) {
1281         APInt AdjNegLLower;
1282         if (Upper == SignedMin + 1)
1283           // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1284           AdjNegLLower = Lower;
1285         else
1286           // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1287           AdjNegLLower = NegL.Lower + 1;
1288 
1289         PosRes = PosRes.unionWith(
1290             ConstantRange(std::move(Lo),
1291                           AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1292       }
1293     } else {
1294       PosRes = PosRes.unionWith(
1295           ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1296     }
1297   }
1298 
1299   ConstantRange NegRes = getEmpty();
1300   if (!PosL.isEmptySet() && !NegR.isEmptySet())
1301     // pos / neg = neg.
1302     NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1303                            PosL.Lower.sdiv(NegR.Lower) + 1);
1304 
1305   if (!NegL.isEmptySet() && !PosR.isEmptySet())
1306     // neg / pos = neg.
1307     NegRes = NegRes.unionWith(
1308         ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1309                       (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1310 
1311   // Prefer a non-wrapping signed range here.
1312   ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1313 
1314   // Preserve the zero that we dropped when splitting the LHS by sign.
1315   if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1316     Res = Res.unionWith(ConstantRange(Zero));
1317   return Res;
1318 }
1319 
1320 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1321   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1322     return getEmpty();
1323 
1324   if (const APInt *RHSInt = RHS.getSingleElement()) {
1325     // UREM by null is UB.
1326     if (RHSInt->isZero())
1327       return getEmpty();
1328     // Use APInt's implementation of UREM for single element ranges.
1329     if (const APInt *LHSInt = getSingleElement())
1330       return {LHSInt->urem(*RHSInt)};
1331   }
1332 
1333   // L % R for L < R is L.
1334   if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1335     return *this;
1336 
1337   // L % R is <= L and < R.
1338   APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1339   return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
1340 }
1341 
1342 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1343   if (isEmptySet() || RHS.isEmptySet())
1344     return getEmpty();
1345 
1346   if (const APInt *RHSInt = RHS.getSingleElement()) {
1347     // SREM by null is UB.
1348     if (RHSInt->isZero())
1349       return getEmpty();
1350     // Use APInt's implementation of SREM for single element ranges.
1351     if (const APInt *LHSInt = getSingleElement())
1352       return {LHSInt->srem(*RHSInt)};
1353   }
1354 
1355   ConstantRange AbsRHS = RHS.abs();
1356   APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1357   APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1358 
1359   // Modulus by zero is UB.
1360   if (MaxAbsRHS.isZero())
1361     return getEmpty();
1362 
1363   if (MinAbsRHS.isZero())
1364     ++MinAbsRHS;
1365 
1366   APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1367 
1368   if (MinLHS.isNonNegative()) {
1369     // L % R for L < R is L.
1370     if (MaxLHS.ult(MinAbsRHS))
1371       return *this;
1372 
1373     // L % R is <= L and < R.
1374     APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1375     return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
1376   }
1377 
1378   // Same basic logic as above, but the result is negative.
1379   if (MaxLHS.isNegative()) {
1380     if (MinLHS.ugt(-MinAbsRHS))
1381       return *this;
1382 
1383     APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1384     return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1385   }
1386 
1387   // LHS range crosses zero.
1388   APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1389   APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1390   return ConstantRange(std::move(Lower), std::move(Upper));
1391 }
1392 
1393 ConstantRange ConstantRange::binaryNot() const {
1394   return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
1395 }
1396 
1397 ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const {
1398   if (isEmptySet() || Other.isEmptySet())
1399     return getEmpty();
1400 
1401   ConstantRange KnownBitsRange =
1402       fromKnownBits(toKnownBits() & Other.toKnownBits(), false);
1403   ConstantRange UMinUMaxRange =
1404       getNonEmpty(APInt::getZero(getBitWidth()),
1405                   APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1);
1406   return KnownBitsRange.intersectWith(UMinUMaxRange);
1407 }
1408 
1409 ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const {
1410   if (isEmptySet() || Other.isEmptySet())
1411     return getEmpty();
1412 
1413   ConstantRange KnownBitsRange =
1414       fromKnownBits(toKnownBits() | Other.toKnownBits(), false);
1415   // Upper wrapped range.
1416   ConstantRange UMaxUMinRange =
1417       getNonEmpty(APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()),
1418                   APInt::getZero(getBitWidth()));
1419   return KnownBitsRange.intersectWith(UMaxUMinRange);
1420 }
1421 
1422 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1423   if (isEmptySet() || Other.isEmptySet())
1424     return getEmpty();
1425 
1426   // Use APInt's implementation of XOR for single element ranges.
1427   if (isSingleElement() && Other.isSingleElement())
1428     return {*getSingleElement() ^ *Other.getSingleElement()};
1429 
1430   // Special-case binary complement, since we can give a precise answer.
1431   if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
1432     return binaryNot();
1433   if (isSingleElement() && getSingleElement()->isAllOnes())
1434     return Other.binaryNot();
1435 
1436   return fromKnownBits(toKnownBits() ^ Other.toKnownBits(), /*IsSigned*/false);
1437 }
1438 
1439 ConstantRange
1440 ConstantRange::shl(const ConstantRange &Other) const {
1441   if (isEmptySet() || Other.isEmptySet())
1442     return getEmpty();
1443 
1444   APInt Min = getUnsignedMin();
1445   APInt Max = getUnsignedMax();
1446   if (const APInt *RHS = Other.getSingleElement()) {
1447     unsigned BW = getBitWidth();
1448     if (RHS->uge(BW))
1449       return getEmpty();
1450 
1451     unsigned EqualLeadingBits = (Min ^ Max).countLeadingZeros();
1452     if (RHS->ule(EqualLeadingBits))
1453       return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);
1454 
1455     return getNonEmpty(APInt::getZero(BW),
1456                        APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
1457   }
1458 
1459   APInt OtherMax = Other.getUnsignedMax();
1460 
1461   // There's overflow!
1462   if (OtherMax.ugt(Max.countLeadingZeros()))
1463     return getFull();
1464 
1465   // FIXME: implement the other tricky cases
1466 
1467   Min <<= Other.getUnsignedMin();
1468   Max <<= OtherMax;
1469 
1470   return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
1471 }
1472 
1473 ConstantRange
1474 ConstantRange::lshr(const ConstantRange &Other) const {
1475   if (isEmptySet() || Other.isEmptySet())
1476     return getEmpty();
1477 
1478   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1479   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1480   return getNonEmpty(std::move(min), std::move(max));
1481 }
1482 
1483 ConstantRange
1484 ConstantRange::ashr(const ConstantRange &Other) const {
1485   if (isEmptySet() || Other.isEmptySet())
1486     return getEmpty();
1487 
1488   // May straddle zero, so handle both positive and negative cases.
1489   // 'PosMax' is the upper bound of the result of the ashr
1490   // operation, when Upper of the LHS of ashr is a non-negative.
1491   // number. Since ashr of a non-negative number will result in a
1492   // smaller number, the Upper value of LHS is shifted right with
1493   // the minimum value of 'Other' instead of the maximum value.
1494   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1495 
1496   // 'PosMin' is the lower bound of the result of the ashr
1497   // operation, when Lower of the LHS is a non-negative number.
1498   // Since ashr of a non-negative number will result in a smaller
1499   // number, the Lower value of LHS is shifted right with the
1500   // maximum value of 'Other'.
1501   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1502 
1503   // 'NegMax' is the upper bound of the result of the ashr
1504   // operation, when Upper of the LHS of ashr is a negative number.
1505   // Since 'ashr' of a negative number will result in a bigger
1506   // number, the Upper value of LHS is shifted right with the
1507   // maximum value of 'Other'.
1508   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1509 
1510   // 'NegMin' is the lower bound of the result of the ashr
1511   // operation, when Lower of the LHS of ashr is a negative number.
1512   // Since 'ashr' of a negative number will result in a bigger
1513   // number, the Lower value of LHS is shifted right with the
1514   // minimum value of 'Other'.
1515   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1516 
1517   APInt max, min;
1518   if (getSignedMin().isNonNegative()) {
1519     // Upper and Lower of LHS are non-negative.
1520     min = PosMin;
1521     max = PosMax;
1522   } else if (getSignedMax().isNegative()) {
1523     // Upper and Lower of LHS are negative.
1524     min = NegMin;
1525     max = NegMax;
1526   } else {
1527     // Upper is non-negative and Lower is negative.
1528     min = NegMin;
1529     max = PosMax;
1530   }
1531   return getNonEmpty(std::move(min), std::move(max));
1532 }
1533 
1534 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1535   if (isEmptySet() || Other.isEmptySet())
1536     return getEmpty();
1537 
1538   APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1539   APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1540   return getNonEmpty(std::move(NewL), std::move(NewU));
1541 }
1542 
1543 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1544   if (isEmptySet() || Other.isEmptySet())
1545     return getEmpty();
1546 
1547   APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1548   APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1549   return getNonEmpty(std::move(NewL), std::move(NewU));
1550 }
1551 
1552 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1553   if (isEmptySet() || Other.isEmptySet())
1554     return getEmpty();
1555 
1556   APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1557   APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1558   return getNonEmpty(std::move(NewL), std::move(NewU));
1559 }
1560 
1561 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1562   if (isEmptySet() || Other.isEmptySet())
1563     return getEmpty();
1564 
1565   APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1566   APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1567   return getNonEmpty(std::move(NewL), std::move(NewU));
1568 }
1569 
1570 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1571   if (isEmptySet() || Other.isEmptySet())
1572     return getEmpty();
1573 
1574   APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1575   APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1576   return getNonEmpty(std::move(NewL), std::move(NewU));
1577 }
1578 
1579 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1580   if (isEmptySet() || Other.isEmptySet())
1581     return getEmpty();
1582 
1583   // Because we could be dealing with negative numbers here, the lower bound is
1584   // the smallest of the cartesian product of the lower and upper ranges;
1585   // for example:
1586   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1587   // Similarly for the upper bound, swapping min for max.
1588 
1589   APInt Min = getSignedMin();
1590   APInt Max = getSignedMax();
1591   APInt OtherMin = Other.getSignedMin();
1592   APInt OtherMax = Other.getSignedMax();
1593 
1594   auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax),
1595             Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)};
1596   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1597   return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1);
1598 }
1599 
1600 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1601   if (isEmptySet() || Other.isEmptySet())
1602     return getEmpty();
1603 
1604   APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1605   APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1606   return getNonEmpty(std::move(NewL), std::move(NewU));
1607 }
1608 
1609 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1610   if (isEmptySet() || Other.isEmptySet())
1611     return getEmpty();
1612 
1613   APInt Min = getSignedMin(), Max = getSignedMax();
1614   APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1615   APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1616   APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1617   return getNonEmpty(std::move(NewL), std::move(NewU));
1618 }
1619 
1620 ConstantRange ConstantRange::inverse() const {
1621   if (isFullSet())
1622     return getEmpty();
1623   if (isEmptySet())
1624     return getFull();
1625   return ConstantRange(Upper, Lower);
1626 }
1627 
1628 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1629   if (isEmptySet())
1630     return getEmpty();
1631 
1632   if (isSignWrappedSet()) {
1633     APInt Lo;
1634     // Check whether the range crosses zero.
1635     if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1636       Lo = APInt::getZero(getBitWidth());
1637     else
1638       Lo = APIntOps::umin(Lower, -Upper + 1);
1639 
1640     // If SignedMin is not poison, then it is included in the result range.
1641     if (IntMinIsPoison)
1642       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
1643     else
1644       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1645   }
1646 
1647   APInt SMin = getSignedMin(), SMax = getSignedMax();
1648 
1649   // Skip SignedMin if it is poison.
1650   if (IntMinIsPoison && SMin.isMinSignedValue()) {
1651     // The range may become empty if it *only* contains SignedMin.
1652     if (SMax.isMinSignedValue())
1653       return getEmpty();
1654     ++SMin;
1655   }
1656 
1657   // All non-negative.
1658   if (SMin.isNonNegative())
1659     return *this;
1660 
1661   // All negative.
1662   if (SMax.isNegative())
1663     return ConstantRange(-SMax, -SMin + 1);
1664 
1665   // Range crosses zero.
1666   return ConstantRange(APInt::getZero(getBitWidth()),
1667                        APIntOps::umax(-SMin, SMax) + 1);
1668 }
1669 
1670 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1671     const ConstantRange &Other) const {
1672   if (isEmptySet() || Other.isEmptySet())
1673     return OverflowResult::MayOverflow;
1674 
1675   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1676   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1677 
1678   // a u+ b overflows high iff a u> ~b.
1679   if (Min.ugt(~OtherMin))
1680     return OverflowResult::AlwaysOverflowsHigh;
1681   if (Max.ugt(~OtherMax))
1682     return OverflowResult::MayOverflow;
1683   return OverflowResult::NeverOverflows;
1684 }
1685 
1686 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1687     const ConstantRange &Other) const {
1688   if (isEmptySet() || Other.isEmptySet())
1689     return OverflowResult::MayOverflow;
1690 
1691   APInt Min = getSignedMin(), Max = getSignedMax();
1692   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1693 
1694   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1695   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1696 
1697   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1698   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1699   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1700       Min.sgt(SignedMax - OtherMin))
1701     return OverflowResult::AlwaysOverflowsHigh;
1702   if (Max.isNegative() && OtherMax.isNegative() &&
1703       Max.slt(SignedMin - OtherMax))
1704     return OverflowResult::AlwaysOverflowsLow;
1705 
1706   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1707       Max.sgt(SignedMax - OtherMax))
1708     return OverflowResult::MayOverflow;
1709   if (Min.isNegative() && OtherMin.isNegative() &&
1710       Min.slt(SignedMin - OtherMin))
1711     return OverflowResult::MayOverflow;
1712 
1713   return OverflowResult::NeverOverflows;
1714 }
1715 
1716 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1717     const ConstantRange &Other) const {
1718   if (isEmptySet() || Other.isEmptySet())
1719     return OverflowResult::MayOverflow;
1720 
1721   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1722   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1723 
1724   // a u- b overflows low iff a u< b.
1725   if (Max.ult(OtherMin))
1726     return OverflowResult::AlwaysOverflowsLow;
1727   if (Min.ult(OtherMax))
1728     return OverflowResult::MayOverflow;
1729   return OverflowResult::NeverOverflows;
1730 }
1731 
1732 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1733     const ConstantRange &Other) const {
1734   if (isEmptySet() || Other.isEmptySet())
1735     return OverflowResult::MayOverflow;
1736 
1737   APInt Min = getSignedMin(), Max = getSignedMax();
1738   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1739 
1740   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1741   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1742 
1743   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1744   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1745   if (Min.isNonNegative() && OtherMax.isNegative() &&
1746       Min.sgt(SignedMax + OtherMax))
1747     return OverflowResult::AlwaysOverflowsHigh;
1748   if (Max.isNegative() && OtherMin.isNonNegative() &&
1749       Max.slt(SignedMin + OtherMin))
1750     return OverflowResult::AlwaysOverflowsLow;
1751 
1752   if (Max.isNonNegative() && OtherMin.isNegative() &&
1753       Max.sgt(SignedMax + OtherMin))
1754     return OverflowResult::MayOverflow;
1755   if (Min.isNegative() && OtherMax.isNonNegative() &&
1756       Min.slt(SignedMin + OtherMax))
1757     return OverflowResult::MayOverflow;
1758 
1759   return OverflowResult::NeverOverflows;
1760 }
1761 
1762 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1763     const ConstantRange &Other) const {
1764   if (isEmptySet() || Other.isEmptySet())
1765     return OverflowResult::MayOverflow;
1766 
1767   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1768   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1769   bool Overflow;
1770 
1771   (void) Min.umul_ov(OtherMin, Overflow);
1772   if (Overflow)
1773     return OverflowResult::AlwaysOverflowsHigh;
1774 
1775   (void) Max.umul_ov(OtherMax, Overflow);
1776   if (Overflow)
1777     return OverflowResult::MayOverflow;
1778 
1779   return OverflowResult::NeverOverflows;
1780 }
1781 
1782 void ConstantRange::print(raw_ostream &OS) const {
1783   if (isFullSet())
1784     OS << "full-set";
1785   else if (isEmptySet())
1786     OS << "empty-set";
1787   else
1788     OS << "[" << Lower << "," << Upper << ")";
1789 }
1790 
1791 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1792 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1793   print(dbgs());
1794 }
1795 #endif
1796 
1797 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1798   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1799   assert(NumRanges >= 1 && "Must have at least one range!");
1800   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1801 
1802   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1803   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1804 
1805   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1806 
1807   for (unsigned i = 1; i < NumRanges; ++i) {
1808     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1809     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1810 
1811     // Note: unionWith will potentially create a range that contains values not
1812     // contained in any of the original N ranges.
1813     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1814   }
1815 
1816   return CR;
1817 }
1818