1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 
41 using namespace llvm;
42 
43 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
44     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
45       Upper(Lower) {}
46 
47 ConstantRange::ConstantRange(APInt V)
48     : Lower(std::move(V)), Upper(Lower + 1) {}
49 
50 ConstantRange::ConstantRange(APInt L, APInt U)
51     : Lower(std::move(L)), Upper(std::move(U)) {
52   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
53          "ConstantRange with unequal bit widths");
54   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
55          "Lower == Upper, but they aren't min or max value!");
56 }
57 
58 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
59                                            bool IsSigned) {
60   assert(!Known.hasConflict() && "Expected valid KnownBits");
61 
62   if (Known.isUnknown())
63     return getFull(Known.getBitWidth());
64 
65   // For unsigned ranges, or signed ranges with known sign bit, create a simple
66   // range between the smallest and largest possible value.
67   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
68     return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
69 
70   // If we don't know the sign bit, pick the lower bound as a negative number
71   // and the upper bound as a non-negative one.
72   APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
73   Lower.setSignBit();
74   Upper.clearSignBit();
75   return ConstantRange(Lower, Upper + 1);
76 }
77 
78 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
79                                                    const ConstantRange &CR) {
80   if (CR.isEmptySet())
81     return CR;
82 
83   uint32_t W = CR.getBitWidth();
84   switch (Pred) {
85   default:
86     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
87   case CmpInst::ICMP_EQ:
88     return CR;
89   case CmpInst::ICMP_NE:
90     if (CR.isSingleElement())
91       return ConstantRange(CR.getUpper(), CR.getLower());
92     return getFull(W);
93   case CmpInst::ICMP_ULT: {
94     APInt UMax(CR.getUnsignedMax());
95     if (UMax.isMinValue())
96       return getEmpty(W);
97     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
98   }
99   case CmpInst::ICMP_SLT: {
100     APInt SMax(CR.getSignedMax());
101     if (SMax.isMinSignedValue())
102       return getEmpty(W);
103     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
104   }
105   case CmpInst::ICMP_ULE:
106     return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
107   case CmpInst::ICMP_SLE:
108     return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
109   case CmpInst::ICMP_UGT: {
110     APInt UMin(CR.getUnsignedMin());
111     if (UMin.isMaxValue())
112       return getEmpty(W);
113     return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
114   }
115   case CmpInst::ICMP_SGT: {
116     APInt SMin(CR.getSignedMin());
117     if (SMin.isMaxSignedValue())
118       return getEmpty(W);
119     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
120   }
121   case CmpInst::ICMP_UGE:
122     return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
123   case CmpInst::ICMP_SGE:
124     return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
125   }
126 }
127 
128 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
129                                                       const ConstantRange &CR) {
130   // Follows from De-Morgan's laws:
131   //
132   // ~(~A union ~B) == A intersect B.
133   //
134   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
135       .inverse();
136 }
137 
138 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
139                                                  const APInt &C) {
140   // Computes the exact range that is equal to both the constant ranges returned
141   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
142   // when RHS is a singleton such as an APInt and so the assert is valid.
143   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
144   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
145   //
146   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
147   return makeAllowedICmpRegion(Pred, C);
148 }
149 
150 bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate(
151     const ConstantRange &CR1, const ConstantRange &CR2) {
152   if (CR1.isEmptySet() || CR2.isEmptySet())
153     return true;
154 
155   return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) ||
156          (CR1.isAllNegative() && CR2.isAllNegative());
157 }
158 
159 bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
160     const ConstantRange &CR1, const ConstantRange &CR2) {
161   if (CR1.isEmptySet() || CR2.isEmptySet())
162     return true;
163 
164   return (CR1.isAllNonNegative() && CR2.isAllNegative()) ||
165          (CR1.isAllNegative() && CR2.isAllNonNegative());
166 }
167 
168 CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness(
169     CmpInst::Predicate Pred, const ConstantRange &CR1,
170     const ConstantRange &CR2) {
171   assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) &&
172          "Only for relational integer predicates!");
173 
174   CmpInst::Predicate FlippedSignednessPred =
175       CmpInst::getFlippedSignednessPredicate(Pred);
176 
177   if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2))
178     return FlippedSignednessPred;
179 
180   if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2))
181     return CmpInst::getInversePredicate(FlippedSignednessPred);
182 
183   return CmpInst::Predicate::BAD_ICMP_PREDICATE;
184 }
185 
186 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
187                                       APInt &RHS) const {
188   bool Success = false;
189 
190   if (isFullSet() || isEmptySet()) {
191     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
192     RHS = APInt(getBitWidth(), 0);
193     Success = true;
194   } else if (auto *OnlyElt = getSingleElement()) {
195     Pred = CmpInst::ICMP_EQ;
196     RHS = *OnlyElt;
197     Success = true;
198   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
199     Pred = CmpInst::ICMP_NE;
200     RHS = *OnlyMissingElt;
201     Success = true;
202   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
203     Pred =
204         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
205     RHS = getUpper();
206     Success = true;
207   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
208     Pred =
209         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
210     RHS = getLower();
211     Success = true;
212   }
213 
214   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
215          "Bad result!");
216 
217   return Success;
218 }
219 
220 bool ConstantRange::icmp(CmpInst::Predicate Pred,
221                          const ConstantRange &Other) const {
222   return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
223 }
224 
225 /// Exact mul nuw region for single element RHS.
226 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
227   unsigned BitWidth = V.getBitWidth();
228   if (V == 0)
229     return ConstantRange::getFull(V.getBitWidth());
230 
231   return ConstantRange::getNonEmpty(
232       APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
233                              APInt::Rounding::UP),
234       APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
235                              APInt::Rounding::DOWN) + 1);
236 }
237 
238 /// Exact mul nsw region for single element RHS.
239 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
240   // Handle special case for 0, -1 and 1. See the last for reason why we
241   // specialize -1 and 1.
242   unsigned BitWidth = V.getBitWidth();
243   if (V == 0 || V.isOne())
244     return ConstantRange::getFull(BitWidth);
245 
246   APInt MinValue = APInt::getSignedMinValue(BitWidth);
247   APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
248   // e.g. Returning [-127, 127], represented as [-127, -128).
249   if (V.isAllOnes())
250     return ConstantRange(-MaxValue, MinValue);
251 
252   APInt Lower, Upper;
253   if (V.isNegative()) {
254     Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
255     Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
256   } else {
257     Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
258     Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
259   }
260   // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
261   // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
262   // and 1 are already handled as special cases.
263   return ConstantRange(Lower, Upper + 1);
264 }
265 
266 ConstantRange
267 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
268                                           const ConstantRange &Other,
269                                           unsigned NoWrapKind) {
270   using OBO = OverflowingBinaryOperator;
271 
272   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
273 
274   assert((NoWrapKind == OBO::NoSignedWrap ||
275           NoWrapKind == OBO::NoUnsignedWrap) &&
276          "NoWrapKind invalid!");
277 
278   bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
279   unsigned BitWidth = Other.getBitWidth();
280 
281   switch (BinOp) {
282   default:
283     llvm_unreachable("Unsupported binary op");
284 
285   case Instruction::Add: {
286     if (Unsigned)
287       return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());
288 
289     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
290     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
291     return getNonEmpty(
292         SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
293         SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
294   }
295 
296   case Instruction::Sub: {
297     if (Unsigned)
298       return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
299 
300     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
301     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
302     return getNonEmpty(
303         SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
304         SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
305   }
306 
307   case Instruction::Mul:
308     if (Unsigned)
309       return makeExactMulNUWRegion(Other.getUnsignedMax());
310 
311     return makeExactMulNSWRegion(Other.getSignedMin())
312         .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
313 
314   case Instruction::Shl: {
315     // For given range of shift amounts, if we ignore all illegal shift amounts
316     // (that always produce poison), what shift amount range is left?
317     ConstantRange ShAmt = Other.intersectWith(
318         ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
319     if (ShAmt.isEmptySet()) {
320       // If the entire range of shift amounts is already poison-producing,
321       // then we can freely add more poison-producing flags ontop of that.
322       return getFull(BitWidth);
323     }
324     // There are some legal shift amounts, we can compute conservatively-correct
325     // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
326     // to be at most bitwidth-1, which results in most conservative range.
327     APInt ShAmtUMax = ShAmt.getUnsignedMax();
328     if (Unsigned)
329       return getNonEmpty(APInt::getZero(BitWidth),
330                          APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
331     return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
332                        APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
333   }
334   }
335 }
336 
337 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
338                                                    const APInt &Other,
339                                                    unsigned NoWrapKind) {
340   // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
341   // "for all" and "for any" coincide in this case.
342   return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
343 }
344 
345 bool ConstantRange::isFullSet() const {
346   return Lower == Upper && Lower.isMaxValue();
347 }
348 
349 bool ConstantRange::isEmptySet() const {
350   return Lower == Upper && Lower.isMinValue();
351 }
352 
353 bool ConstantRange::isWrappedSet() const {
354   return Lower.ugt(Upper) && !Upper.isZero();
355 }
356 
357 bool ConstantRange::isUpperWrapped() const {
358   return Lower.ugt(Upper);
359 }
360 
361 bool ConstantRange::isSignWrappedSet() const {
362   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
363 }
364 
365 bool ConstantRange::isUpperSignWrapped() const {
366   return Lower.sgt(Upper);
367 }
368 
369 bool
370 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
371   assert(getBitWidth() == Other.getBitWidth());
372   if (isFullSet())
373     return false;
374   if (Other.isFullSet())
375     return true;
376   return (Upper - Lower).ult(Other.Upper - Other.Lower);
377 }
378 
379 bool
380 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
381   assert(MaxSize && "MaxSize can't be 0.");
382   // If this a full set, we need special handling to avoid needing an extra bit
383   // to represent the size.
384   if (isFullSet())
385     return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
386 
387   return (Upper - Lower).ugt(MaxSize);
388 }
389 
390 bool ConstantRange::isAllNegative() const {
391   // Empty set is all negative, full set is not.
392   if (isEmptySet())
393     return true;
394   if (isFullSet())
395     return false;
396 
397   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
398 }
399 
400 bool ConstantRange::isAllNonNegative() const {
401   // Empty and full set are automatically treated correctly.
402   return !isSignWrappedSet() && Lower.isNonNegative();
403 }
404 
405 APInt ConstantRange::getUnsignedMax() const {
406   if (isFullSet() || isUpperWrapped())
407     return APInt::getMaxValue(getBitWidth());
408   return getUpper() - 1;
409 }
410 
411 APInt ConstantRange::getUnsignedMin() const {
412   if (isFullSet() || isWrappedSet())
413     return APInt::getMinValue(getBitWidth());
414   return getLower();
415 }
416 
417 APInt ConstantRange::getSignedMax() const {
418   if (isFullSet() || isUpperSignWrapped())
419     return APInt::getSignedMaxValue(getBitWidth());
420   return getUpper() - 1;
421 }
422 
423 APInt ConstantRange::getSignedMin() const {
424   if (isFullSet() || isSignWrappedSet())
425     return APInt::getSignedMinValue(getBitWidth());
426   return getLower();
427 }
428 
429 bool ConstantRange::contains(const APInt &V) const {
430   if (Lower == Upper)
431     return isFullSet();
432 
433   if (!isUpperWrapped())
434     return Lower.ule(V) && V.ult(Upper);
435   return Lower.ule(V) || V.ult(Upper);
436 }
437 
438 bool ConstantRange::contains(const ConstantRange &Other) const {
439   if (isFullSet() || Other.isEmptySet()) return true;
440   if (isEmptySet() || Other.isFullSet()) return false;
441 
442   if (!isUpperWrapped()) {
443     if (Other.isUpperWrapped())
444       return false;
445 
446     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
447   }
448 
449   if (!Other.isUpperWrapped())
450     return Other.getUpper().ule(Upper) ||
451            Lower.ule(Other.getLower());
452 
453   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
454 }
455 
456 unsigned ConstantRange::getActiveBits() const {
457   if (isEmptySet())
458     return 0;
459 
460   return getUnsignedMax().getActiveBits();
461 }
462 
463 unsigned ConstantRange::getMinSignedBits() const {
464   if (isEmptySet())
465     return 0;
466 
467   return std::max(getSignedMin().getMinSignedBits(),
468                   getSignedMax().getMinSignedBits());
469 }
470 
471 ConstantRange ConstantRange::subtract(const APInt &Val) const {
472   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
473   // If the set is empty or full, don't modify the endpoints.
474   if (Lower == Upper)
475     return *this;
476   return ConstantRange(Lower - Val, Upper - Val);
477 }
478 
479 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
480   return intersectWith(CR.inverse());
481 }
482 
483 static ConstantRange getPreferredRange(
484     const ConstantRange &CR1, const ConstantRange &CR2,
485     ConstantRange::PreferredRangeType Type) {
486   if (Type == ConstantRange::Unsigned) {
487     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
488       return CR1;
489     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
490       return CR2;
491   } else if (Type == ConstantRange::Signed) {
492     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
493       return CR1;
494     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
495       return CR2;
496   }
497 
498   if (CR1.isSizeStrictlySmallerThan(CR2))
499     return CR1;
500   return CR2;
501 }
502 
503 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
504                                            PreferredRangeType Type) const {
505   assert(getBitWidth() == CR.getBitWidth() &&
506          "ConstantRange types don't agree!");
507 
508   // Handle common cases.
509   if (   isEmptySet() || CR.isFullSet()) return *this;
510   if (CR.isEmptySet() ||    isFullSet()) return CR;
511 
512   if (!isUpperWrapped() && CR.isUpperWrapped())
513     return CR.intersectWith(*this, Type);
514 
515   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
516     if (Lower.ult(CR.Lower)) {
517       // L---U       : this
518       //       L---U : CR
519       if (Upper.ule(CR.Lower))
520         return getEmpty();
521 
522       // L---U       : this
523       //   L---U     : CR
524       if (Upper.ult(CR.Upper))
525         return ConstantRange(CR.Lower, Upper);
526 
527       // L-------U   : this
528       //   L---U     : CR
529       return CR;
530     }
531     //   L---U     : this
532     // L-------U   : CR
533     if (Upper.ult(CR.Upper))
534       return *this;
535 
536     //   L-----U   : this
537     // L-----U     : CR
538     if (Lower.ult(CR.Upper))
539       return ConstantRange(Lower, CR.Upper);
540 
541     //       L---U : this
542     // L---U       : CR
543     return getEmpty();
544   }
545 
546   if (isUpperWrapped() && !CR.isUpperWrapped()) {
547     if (CR.Lower.ult(Upper)) {
548       // ------U   L--- : this
549       //  L--U          : CR
550       if (CR.Upper.ult(Upper))
551         return CR;
552 
553       // ------U   L--- : this
554       //  L------U      : CR
555       if (CR.Upper.ule(Lower))
556         return ConstantRange(CR.Lower, Upper);
557 
558       // ------U   L--- : this
559       //  L----------U  : CR
560       return getPreferredRange(*this, CR, Type);
561     }
562     if (CR.Lower.ult(Lower)) {
563       // --U      L---- : this
564       //     L--U       : CR
565       if (CR.Upper.ule(Lower))
566         return getEmpty();
567 
568       // --U      L---- : this
569       //     L------U   : CR
570       return ConstantRange(Lower, CR.Upper);
571     }
572 
573     // --U  L------ : this
574     //        L--U  : CR
575     return CR;
576   }
577 
578   if (CR.Upper.ult(Upper)) {
579     // ------U L-- : this
580     // --U L------ : CR
581     if (CR.Lower.ult(Upper))
582       return getPreferredRange(*this, CR, Type);
583 
584     // ----U   L-- : this
585     // --U   L---- : CR
586     if (CR.Lower.ult(Lower))
587       return ConstantRange(Lower, CR.Upper);
588 
589     // ----U L---- : this
590     // --U     L-- : CR
591     return CR;
592   }
593   if (CR.Upper.ule(Lower)) {
594     // --U     L-- : this
595     // ----U L---- : CR
596     if (CR.Lower.ult(Lower))
597       return *this;
598 
599     // --U   L---- : this
600     // ----U   L-- : CR
601     return ConstantRange(CR.Lower, Upper);
602   }
603 
604   // --U L------ : this
605   // ------U L-- : CR
606   return getPreferredRange(*this, CR, Type);
607 }
608 
609 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
610                                        PreferredRangeType Type) const {
611   assert(getBitWidth() == CR.getBitWidth() &&
612          "ConstantRange types don't agree!");
613 
614   if (   isFullSet() || CR.isEmptySet()) return *this;
615   if (CR.isFullSet() ||    isEmptySet()) return CR;
616 
617   if (!isUpperWrapped() && CR.isUpperWrapped())
618     return CR.unionWith(*this, Type);
619 
620   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
621     //        L---U  and  L---U        : this
622     //  L---U                   L---U  : CR
623     // result in one of
624     //  L---------U
625     // -----U L-----
626     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
627       return getPreferredRange(
628           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
629 
630     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
631     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
632 
633     if (L.isZero() && U.isZero())
634       return getFull();
635 
636     return ConstantRange(std::move(L), std::move(U));
637   }
638 
639   if (!CR.isUpperWrapped()) {
640     // ------U   L-----  and  ------U   L----- : this
641     //   L--U                            L--U  : CR
642     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
643       return *this;
644 
645     // ------U   L----- : this
646     //    L---------U   : CR
647     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
648       return getFull();
649 
650     // ----U       L---- : this
651     //       L---U       : CR
652     // results in one of
653     // ----------U L----
654     // ----U L----------
655     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
656       return getPreferredRange(
657           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
658 
659     // ----U     L----- : this
660     //        L----U    : CR
661     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
662       return ConstantRange(CR.Lower, Upper);
663 
664     // ------U    L---- : this
665     //    L-----U       : CR
666     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
667            "ConstantRange::unionWith missed a case with one range wrapped");
668     return ConstantRange(Lower, CR.Upper);
669   }
670 
671   // ------U    L----  and  ------U    L---- : this
672   // -U  L-----------  and  ------------U  L : CR
673   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
674     return getFull();
675 
676   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
677   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
678 
679   return ConstantRange(std::move(L), std::move(U));
680 }
681 
682 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
683                                     uint32_t ResultBitWidth) const {
684   switch (CastOp) {
685   default:
686     llvm_unreachable("unsupported cast type");
687   case Instruction::Trunc:
688     return truncate(ResultBitWidth);
689   case Instruction::SExt:
690     return signExtend(ResultBitWidth);
691   case Instruction::ZExt:
692     return zeroExtend(ResultBitWidth);
693   case Instruction::BitCast:
694     return *this;
695   case Instruction::FPToUI:
696   case Instruction::FPToSI:
697     if (getBitWidth() == ResultBitWidth)
698       return *this;
699     else
700       return getFull(ResultBitWidth);
701   case Instruction::UIToFP: {
702     // TODO: use input range if available
703     auto BW = getBitWidth();
704     APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
705     APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
706     return ConstantRange(std::move(Min), std::move(Max));
707   }
708   case Instruction::SIToFP: {
709     // TODO: use input range if available
710     auto BW = getBitWidth();
711     APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
712     APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
713     return ConstantRange(std::move(SMin), std::move(SMax));
714   }
715   case Instruction::FPTrunc:
716   case Instruction::FPExt:
717   case Instruction::IntToPtr:
718   case Instruction::PtrToInt:
719   case Instruction::AddrSpaceCast:
720     // Conservatively return getFull set.
721     return getFull(ResultBitWidth);
722   };
723 }
724 
725 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
726   if (isEmptySet()) return getEmpty(DstTySize);
727 
728   unsigned SrcTySize = getBitWidth();
729   assert(SrcTySize < DstTySize && "Not a value extension");
730   if (isFullSet() || isUpperWrapped()) {
731     // Change into [0, 1 << src bit width)
732     APInt LowerExt(DstTySize, 0);
733     if (!Upper) // special case: [X, 0) -- not really wrapping around
734       LowerExt = Lower.zext(DstTySize);
735     return ConstantRange(std::move(LowerExt),
736                          APInt::getOneBitSet(DstTySize, SrcTySize));
737   }
738 
739   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
740 }
741 
742 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
743   if (isEmptySet()) return getEmpty(DstTySize);
744 
745   unsigned SrcTySize = getBitWidth();
746   assert(SrcTySize < DstTySize && "Not a value extension");
747 
748   // special case: [X, INT_MIN) -- not really wrapping around
749   if (Upper.isMinSignedValue())
750     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
751 
752   if (isFullSet() || isSignWrappedSet()) {
753     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
754                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
755   }
756 
757   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
758 }
759 
760 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
761   assert(getBitWidth() > DstTySize && "Not a value truncation");
762   if (isEmptySet())
763     return getEmpty(DstTySize);
764   if (isFullSet())
765     return getFull(DstTySize);
766 
767   APInt LowerDiv(Lower), UpperDiv(Upper);
768   ConstantRange Union(DstTySize, /*isFullSet=*/false);
769 
770   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
771   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
772   // then we do the union with [MaxValue, Upper)
773   if (isUpperWrapped()) {
774     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
775     // truncated range.
776     if (Upper.getActiveBits() > DstTySize ||
777         Upper.countTrailingOnes() == DstTySize)
778       return getFull(DstTySize);
779 
780     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
781     UpperDiv.setAllBits();
782 
783     // Union covers the MaxValue case, so return if the remaining range is just
784     // MaxValue(DstTy).
785     if (LowerDiv == UpperDiv)
786       return Union;
787   }
788 
789   // Chop off the most significant bits that are past the destination bitwidth.
790   if (LowerDiv.getActiveBits() > DstTySize) {
791     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
792     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
793     LowerDiv -= Adjust;
794     UpperDiv -= Adjust;
795   }
796 
797   unsigned UpperDivWidth = UpperDiv.getActiveBits();
798   if (UpperDivWidth <= DstTySize)
799     return ConstantRange(LowerDiv.trunc(DstTySize),
800                          UpperDiv.trunc(DstTySize)).unionWith(Union);
801 
802   // The truncated value wraps around. Check if we can do better than fullset.
803   if (UpperDivWidth == DstTySize + 1) {
804     // Clear the MSB so that UpperDiv wraps around.
805     UpperDiv.clearBit(DstTySize);
806     if (UpperDiv.ult(LowerDiv))
807       return ConstantRange(LowerDiv.trunc(DstTySize),
808                            UpperDiv.trunc(DstTySize)).unionWith(Union);
809   }
810 
811   return getFull(DstTySize);
812 }
813 
814 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
815   unsigned SrcTySize = getBitWidth();
816   if (SrcTySize > DstTySize)
817     return truncate(DstTySize);
818   if (SrcTySize < DstTySize)
819     return zeroExtend(DstTySize);
820   return *this;
821 }
822 
823 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
824   unsigned SrcTySize = getBitWidth();
825   if (SrcTySize > DstTySize)
826     return truncate(DstTySize);
827   if (SrcTySize < DstTySize)
828     return signExtend(DstTySize);
829   return *this;
830 }
831 
832 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
833                                       const ConstantRange &Other) const {
834   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
835 
836   switch (BinOp) {
837   case Instruction::Add:
838     return add(Other);
839   case Instruction::Sub:
840     return sub(Other);
841   case Instruction::Mul:
842     return multiply(Other);
843   case Instruction::UDiv:
844     return udiv(Other);
845   case Instruction::SDiv:
846     return sdiv(Other);
847   case Instruction::URem:
848     return urem(Other);
849   case Instruction::SRem:
850     return srem(Other);
851   case Instruction::Shl:
852     return shl(Other);
853   case Instruction::LShr:
854     return lshr(Other);
855   case Instruction::AShr:
856     return ashr(Other);
857   case Instruction::And:
858     return binaryAnd(Other);
859   case Instruction::Or:
860     return binaryOr(Other);
861   case Instruction::Xor:
862     return binaryXor(Other);
863   // Note: floating point operations applied to abstract ranges are just
864   // ideal integer operations with a lossy representation
865   case Instruction::FAdd:
866     return add(Other);
867   case Instruction::FSub:
868     return sub(Other);
869   case Instruction::FMul:
870     return multiply(Other);
871   default:
872     // Conservatively return getFull set.
873     return getFull();
874   }
875 }
876 
877 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
878                                                  const ConstantRange &Other,
879                                                  unsigned NoWrapKind) const {
880   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
881 
882   switch (BinOp) {
883   case Instruction::Add:
884     return addWithNoWrap(Other, NoWrapKind);
885   case Instruction::Sub:
886     return subWithNoWrap(Other, NoWrapKind);
887   default:
888     // Don't know about this Overflowing Binary Operation.
889     // Conservatively fallback to plain binop handling.
890     return binaryOp(BinOp, Other);
891   }
892 }
893 
894 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
895   switch (IntrinsicID) {
896   case Intrinsic::uadd_sat:
897   case Intrinsic::usub_sat:
898   case Intrinsic::sadd_sat:
899   case Intrinsic::ssub_sat:
900   case Intrinsic::umin:
901   case Intrinsic::umax:
902   case Intrinsic::smin:
903   case Intrinsic::smax:
904   case Intrinsic::abs:
905     return true;
906   default:
907     return false;
908   }
909 }
910 
911 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
912                                        ArrayRef<ConstantRange> Ops) {
913   switch (IntrinsicID) {
914   case Intrinsic::uadd_sat:
915     return Ops[0].uadd_sat(Ops[1]);
916   case Intrinsic::usub_sat:
917     return Ops[0].usub_sat(Ops[1]);
918   case Intrinsic::sadd_sat:
919     return Ops[0].sadd_sat(Ops[1]);
920   case Intrinsic::ssub_sat:
921     return Ops[0].ssub_sat(Ops[1]);
922   case Intrinsic::umin:
923     return Ops[0].umin(Ops[1]);
924   case Intrinsic::umax:
925     return Ops[0].umax(Ops[1]);
926   case Intrinsic::smin:
927     return Ops[0].smin(Ops[1]);
928   case Intrinsic::smax:
929     return Ops[0].smax(Ops[1]);
930   case Intrinsic::abs: {
931     const APInt *IntMinIsPoison = Ops[1].getSingleElement();
932     assert(IntMinIsPoison && "Must be known (immarg)");
933     assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
934     return Ops[0].abs(IntMinIsPoison->getBoolValue());
935   }
936   default:
937     assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
938     llvm_unreachable("Unsupported intrinsic");
939   }
940 }
941 
942 ConstantRange
943 ConstantRange::add(const ConstantRange &Other) const {
944   if (isEmptySet() || Other.isEmptySet())
945     return getEmpty();
946   if (isFullSet() || Other.isFullSet())
947     return getFull();
948 
949   APInt NewLower = getLower() + Other.getLower();
950   APInt NewUpper = getUpper() + Other.getUpper() - 1;
951   if (NewLower == NewUpper)
952     return getFull();
953 
954   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
955   if (X.isSizeStrictlySmallerThan(*this) ||
956       X.isSizeStrictlySmallerThan(Other))
957     // We've wrapped, therefore, full set.
958     return getFull();
959   return X;
960 }
961 
962 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
963                                            unsigned NoWrapKind,
964                                            PreferredRangeType RangeType) const {
965   // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
966   // (X is from this, and Y is from Other)
967   if (isEmptySet() || Other.isEmptySet())
968     return getEmpty();
969   if (isFullSet() && Other.isFullSet())
970     return getFull();
971 
972   using OBO = OverflowingBinaryOperator;
973   ConstantRange Result = add(Other);
974 
975   // If an overflow happens for every value pair in these two constant ranges,
976   // we must return Empty set. In this case, we get that for free, because we
977   // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
978   // in an empty set.
979 
980   if (NoWrapKind & OBO::NoSignedWrap)
981     Result = Result.intersectWith(sadd_sat(Other), RangeType);
982 
983   if (NoWrapKind & OBO::NoUnsignedWrap)
984     Result = Result.intersectWith(uadd_sat(Other), RangeType);
985 
986   return Result;
987 }
988 
989 ConstantRange
990 ConstantRange::sub(const ConstantRange &Other) const {
991   if (isEmptySet() || Other.isEmptySet())
992     return getEmpty();
993   if (isFullSet() || Other.isFullSet())
994     return getFull();
995 
996   APInt NewLower = getLower() - Other.getUpper() + 1;
997   APInt NewUpper = getUpper() - Other.getLower();
998   if (NewLower == NewUpper)
999     return getFull();
1000 
1001   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
1002   if (X.isSizeStrictlySmallerThan(*this) ||
1003       X.isSizeStrictlySmallerThan(Other))
1004     // We've wrapped, therefore, full set.
1005     return getFull();
1006   return X;
1007 }
1008 
1009 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
1010                                            unsigned NoWrapKind,
1011                                            PreferredRangeType RangeType) const {
1012   // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
1013   // (X is from this, and Y is from Other)
1014   if (isEmptySet() || Other.isEmptySet())
1015     return getEmpty();
1016   if (isFullSet() && Other.isFullSet())
1017     return getFull();
1018 
1019   using OBO = OverflowingBinaryOperator;
1020   ConstantRange Result = sub(Other);
1021 
1022   // If an overflow happens for every value pair in these two constant ranges,
1023   // we must return Empty set. In signed case, we get that for free, because we
1024   // get lucky that intersection of sub() with ssub_sat() results in an
1025   // empty set. But for unsigned we must perform the overflow check manually.
1026 
1027   if (NoWrapKind & OBO::NoSignedWrap)
1028     Result = Result.intersectWith(ssub_sat(Other), RangeType);
1029 
1030   if (NoWrapKind & OBO::NoUnsignedWrap) {
1031     if (getUnsignedMax().ult(Other.getUnsignedMin()))
1032       return getEmpty(); // Always overflows.
1033     Result = Result.intersectWith(usub_sat(Other), RangeType);
1034   }
1035 
1036   return Result;
1037 }
1038 
1039 ConstantRange
1040 ConstantRange::multiply(const ConstantRange &Other) const {
1041   // TODO: If either operand is a single element and the multiply is known to
1042   // be non-wrapping, round the result min and max value to the appropriate
1043   // multiple of that element. If wrapping is possible, at least adjust the
1044   // range according to the greatest power-of-two factor of the single element.
1045 
1046   if (isEmptySet() || Other.isEmptySet())
1047     return getEmpty();
1048 
1049   // Multiplication is signedness-independent. However different ranges can be
1050   // obtained depending on how the input ranges are treated. These different
1051   // ranges are all conservatively correct, but one might be better than the
1052   // other. We calculate two ranges; one treating the inputs as unsigned
1053   // and the other signed, then return the smallest of these ranges.
1054 
1055   // Unsigned range first.
1056   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1057   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1058   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1059   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1060 
1061   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1062                                             this_max * Other_max + 1);
1063   ConstantRange UR = Result_zext.truncate(getBitWidth());
1064 
1065   // If the unsigned range doesn't wrap, and isn't negative then it's a range
1066   // from one positive number to another which is as good as we can generate.
1067   // In this case, skip the extra work of generating signed ranges which aren't
1068   // going to be better than this range.
1069   if (!UR.isUpperWrapped() &&
1070       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1071     return UR;
1072 
1073   // Now the signed range. Because we could be dealing with negative numbers
1074   // here, the lower bound is the smallest of the cartesian product of the
1075   // lower and upper ranges; for example:
1076   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1077   // Similarly for the upper bound, swapping min for max.
1078 
1079   this_min = getSignedMin().sext(getBitWidth() * 2);
1080   this_max = getSignedMax().sext(getBitWidth() * 2);
1081   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1082   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1083 
1084   auto L = {this_min * Other_min, this_min * Other_max,
1085             this_max * Other_min, this_max * Other_max};
1086   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1087   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1088   ConstantRange SR = Result_sext.truncate(getBitWidth());
1089 
1090   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1091 }
1092 
1093 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
1094   if (isEmptySet() || Other.isEmptySet())
1095     return getEmpty();
1096 
1097   APInt Min = getSignedMin();
1098   APInt Max = getSignedMax();
1099   APInt OtherMin = Other.getSignedMin();
1100   APInt OtherMax = Other.getSignedMax();
1101 
1102   bool O1, O2, O3, O4;
1103   auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
1104                Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
1105   if (O1 || O2 || O3 || O4)
1106     return getFull();
1107 
1108   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1109   return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
1110 }
1111 
1112 ConstantRange
1113 ConstantRange::smax(const ConstantRange &Other) const {
1114   // X smax Y is: range(smax(X_smin, Y_smin),
1115   //                    smax(X_smax, Y_smax))
1116   if (isEmptySet() || Other.isEmptySet())
1117     return getEmpty();
1118   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1119   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1120   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1121   if (isSignWrappedSet() || Other.isSignWrappedSet())
1122     return Res.intersectWith(unionWith(Other, Signed), Signed);
1123   return Res;
1124 }
1125 
1126 ConstantRange
1127 ConstantRange::umax(const ConstantRange &Other) const {
1128   // X umax Y is: range(umax(X_umin, Y_umin),
1129   //                    umax(X_umax, Y_umax))
1130   if (isEmptySet() || Other.isEmptySet())
1131     return getEmpty();
1132   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1133   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1134   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1135   if (isWrappedSet() || Other.isWrappedSet())
1136     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1137   return Res;
1138 }
1139 
1140 ConstantRange
1141 ConstantRange::smin(const ConstantRange &Other) const {
1142   // X smin Y is: range(smin(X_smin, Y_smin),
1143   //                    smin(X_smax, Y_smax))
1144   if (isEmptySet() || Other.isEmptySet())
1145     return getEmpty();
1146   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1147   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1148   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1149   if (isSignWrappedSet() || Other.isSignWrappedSet())
1150     return Res.intersectWith(unionWith(Other, Signed), Signed);
1151   return Res;
1152 }
1153 
1154 ConstantRange
1155 ConstantRange::umin(const ConstantRange &Other) const {
1156   // X umin Y is: range(umin(X_umin, Y_umin),
1157   //                    umin(X_umax, Y_umax))
1158   if (isEmptySet() || Other.isEmptySet())
1159     return getEmpty();
1160   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1161   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1162   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1163   if (isWrappedSet() || Other.isWrappedSet())
1164     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1165   return Res;
1166 }
1167 
1168 ConstantRange
1169 ConstantRange::udiv(const ConstantRange &RHS) const {
1170   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1171     return getEmpty();
1172 
1173   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1174 
1175   APInt RHS_umin = RHS.getUnsignedMin();
1176   if (RHS_umin.isZero()) {
1177     // We want the lowest value in RHS excluding zero. Usually that would be 1
1178     // except for a range in the form of [X, 1) in which case it would be X.
1179     if (RHS.getUpper() == 1)
1180       RHS_umin = RHS.getLower();
1181     else
1182       RHS_umin = 1;
1183   }
1184 
1185   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1186   return getNonEmpty(std::move(Lower), std::move(Upper));
1187 }
1188 
1189 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1190   // We split up the LHS and RHS into positive and negative components
1191   // and then also compute the positive and negative components of the result
1192   // separately by combining division results with the appropriate signs.
1193   APInt Zero = APInt::getZero(getBitWidth());
1194   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1195   ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1196   ConstantRange NegFilter(SignedMin, Zero);
1197   ConstantRange PosL = intersectWith(PosFilter);
1198   ConstantRange NegL = intersectWith(NegFilter);
1199   ConstantRange PosR = RHS.intersectWith(PosFilter);
1200   ConstantRange NegR = RHS.intersectWith(NegFilter);
1201 
1202   ConstantRange PosRes = getEmpty();
1203   if (!PosL.isEmptySet() && !PosR.isEmptySet())
1204     // pos / pos = pos.
1205     PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1206                            (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1207 
1208   if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1209     // neg / neg = pos.
1210     //
1211     // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1212     // IR level, so we'll want to exclude this case when calculating bounds.
1213     // (For APInts the operation is well-defined and yields SignedMin.) We
1214     // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1215     APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1216     if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
1217       // Remove -1 from the LHS. Skip if it's the only element, as this would
1218       // leave us with an empty set.
1219       if (!NegR.Lower.isAllOnes()) {
1220         APInt AdjNegRUpper;
1221         if (RHS.Lower.isAllOnes())
1222           // Negative part of [-1, X] without -1 is [SignedMin, X].
1223           AdjNegRUpper = RHS.Upper;
1224         else
1225           // [X, -1] without -1 is [X, -2].
1226           AdjNegRUpper = NegR.Upper - 1;
1227 
1228         PosRes = PosRes.unionWith(
1229             ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1230       }
1231 
1232       // Remove SignedMin from the RHS. Skip if it's the only element, as this
1233       // would leave us with an empty set.
1234       if (NegL.Upper != SignedMin + 1) {
1235         APInt AdjNegLLower;
1236         if (Upper == SignedMin + 1)
1237           // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1238           AdjNegLLower = Lower;
1239         else
1240           // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1241           AdjNegLLower = NegL.Lower + 1;
1242 
1243         PosRes = PosRes.unionWith(
1244             ConstantRange(std::move(Lo),
1245                           AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1246       }
1247     } else {
1248       PosRes = PosRes.unionWith(
1249           ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1250     }
1251   }
1252 
1253   ConstantRange NegRes = getEmpty();
1254   if (!PosL.isEmptySet() && !NegR.isEmptySet())
1255     // pos / neg = neg.
1256     NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1257                            PosL.Lower.sdiv(NegR.Lower) + 1);
1258 
1259   if (!NegL.isEmptySet() && !PosR.isEmptySet())
1260     // neg / pos = neg.
1261     NegRes = NegRes.unionWith(
1262         ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1263                       (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1264 
1265   // Prefer a non-wrapping signed range here.
1266   ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1267 
1268   // Preserve the zero that we dropped when splitting the LHS by sign.
1269   if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1270     Res = Res.unionWith(ConstantRange(Zero));
1271   return Res;
1272 }
1273 
1274 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1275   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1276     return getEmpty();
1277 
1278   if (const APInt *RHSInt = RHS.getSingleElement()) {
1279     // UREM by null is UB.
1280     if (RHSInt->isZero())
1281       return getEmpty();
1282     // Use APInt's implementation of UREM for single element ranges.
1283     if (const APInt *LHSInt = getSingleElement())
1284       return {LHSInt->urem(*RHSInt)};
1285   }
1286 
1287   // L % R for L < R is L.
1288   if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1289     return *this;
1290 
1291   // L % R is <= L and < R.
1292   APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1293   return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
1294 }
1295 
1296 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1297   if (isEmptySet() || RHS.isEmptySet())
1298     return getEmpty();
1299 
1300   if (const APInt *RHSInt = RHS.getSingleElement()) {
1301     // SREM by null is UB.
1302     if (RHSInt->isZero())
1303       return getEmpty();
1304     // Use APInt's implementation of SREM for single element ranges.
1305     if (const APInt *LHSInt = getSingleElement())
1306       return {LHSInt->srem(*RHSInt)};
1307   }
1308 
1309   ConstantRange AbsRHS = RHS.abs();
1310   APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1311   APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1312 
1313   // Modulus by zero is UB.
1314   if (MaxAbsRHS.isZero())
1315     return getEmpty();
1316 
1317   if (MinAbsRHS.isZero())
1318     ++MinAbsRHS;
1319 
1320   APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1321 
1322   if (MinLHS.isNonNegative()) {
1323     // L % R for L < R is L.
1324     if (MaxLHS.ult(MinAbsRHS))
1325       return *this;
1326 
1327     // L % R is <= L and < R.
1328     APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1329     return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
1330   }
1331 
1332   // Same basic logic as above, but the result is negative.
1333   if (MaxLHS.isNegative()) {
1334     if (MinLHS.ugt(-MinAbsRHS))
1335       return *this;
1336 
1337     APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1338     return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1339   }
1340 
1341   // LHS range crosses zero.
1342   APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1343   APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1344   return ConstantRange(std::move(Lower), std::move(Upper));
1345 }
1346 
1347 ConstantRange ConstantRange::binaryNot() const {
1348   return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
1349 }
1350 
1351 ConstantRange
1352 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1353   if (isEmptySet() || Other.isEmptySet())
1354     return getEmpty();
1355 
1356   // Use APInt's implementation of AND for single element ranges.
1357   if (isSingleElement() && Other.isSingleElement())
1358     return {*getSingleElement() & *Other.getSingleElement()};
1359 
1360   // TODO: replace this with something less conservative
1361 
1362   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1363   return getNonEmpty(APInt::getZero(getBitWidth()), std::move(umin) + 1);
1364 }
1365 
1366 ConstantRange
1367 ConstantRange::binaryOr(const ConstantRange &Other) const {
1368   if (isEmptySet() || Other.isEmptySet())
1369     return getEmpty();
1370 
1371   // Use APInt's implementation of OR for single element ranges.
1372   if (isSingleElement() && Other.isSingleElement())
1373     return {*getSingleElement() | *Other.getSingleElement()};
1374 
1375   // TODO: replace this with something less conservative
1376 
1377   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1378   return getNonEmpty(std::move(umax), APInt::getZero(getBitWidth()));
1379 }
1380 
1381 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1382   if (isEmptySet() || Other.isEmptySet())
1383     return getEmpty();
1384 
1385   // Use APInt's implementation of XOR for single element ranges.
1386   if (isSingleElement() && Other.isSingleElement())
1387     return {*getSingleElement() ^ *Other.getSingleElement()};
1388 
1389   // Special-case binary complement, since we can give a precise answer.
1390   if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
1391     return binaryNot();
1392   if (isSingleElement() && getSingleElement()->isAllOnes())
1393     return Other.binaryNot();
1394 
1395   // TODO: replace this with something less conservative
1396   return getFull();
1397 }
1398 
1399 ConstantRange
1400 ConstantRange::shl(const ConstantRange &Other) const {
1401   if (isEmptySet() || Other.isEmptySet())
1402     return getEmpty();
1403 
1404   APInt Min = getUnsignedMin();
1405   APInt Max = getUnsignedMax();
1406   if (const APInt *RHS = Other.getSingleElement()) {
1407     unsigned BW = getBitWidth();
1408     if (RHS->uge(BW))
1409       return getEmpty();
1410 
1411     unsigned EqualLeadingBits = (Min ^ Max).countLeadingZeros();
1412     if (RHS->ule(EqualLeadingBits))
1413       return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);
1414 
1415     return getNonEmpty(APInt::getZero(BW),
1416                        APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
1417   }
1418 
1419   APInt OtherMax = Other.getUnsignedMax();
1420 
1421   // There's overflow!
1422   if (OtherMax.ugt(Max.countLeadingZeros()))
1423     return getFull();
1424 
1425   // FIXME: implement the other tricky cases
1426 
1427   Min <<= Other.getUnsignedMin();
1428   Max <<= OtherMax;
1429 
1430   return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
1431 }
1432 
1433 ConstantRange
1434 ConstantRange::lshr(const ConstantRange &Other) const {
1435   if (isEmptySet() || Other.isEmptySet())
1436     return getEmpty();
1437 
1438   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1439   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1440   return getNonEmpty(std::move(min), std::move(max));
1441 }
1442 
1443 ConstantRange
1444 ConstantRange::ashr(const ConstantRange &Other) const {
1445   if (isEmptySet() || Other.isEmptySet())
1446     return getEmpty();
1447 
1448   // May straddle zero, so handle both positive and negative cases.
1449   // 'PosMax' is the upper bound of the result of the ashr
1450   // operation, when Upper of the LHS of ashr is a non-negative.
1451   // number. Since ashr of a non-negative number will result in a
1452   // smaller number, the Upper value of LHS is shifted right with
1453   // the minimum value of 'Other' instead of the maximum value.
1454   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1455 
1456   // 'PosMin' is the lower bound of the result of the ashr
1457   // operation, when Lower of the LHS is a non-negative number.
1458   // Since ashr of a non-negative number will result in a smaller
1459   // number, the Lower value of LHS is shifted right with the
1460   // maximum value of 'Other'.
1461   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1462 
1463   // 'NegMax' is the upper bound of the result of the ashr
1464   // operation, when Upper of the LHS of ashr is a negative number.
1465   // Since 'ashr' of a negative number will result in a bigger
1466   // number, the Upper value of LHS is shifted right with the
1467   // maximum value of 'Other'.
1468   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1469 
1470   // 'NegMin' is the lower bound of the result of the ashr
1471   // operation, when Lower of the LHS of ashr is a negative number.
1472   // Since 'ashr' of a negative number will result in a bigger
1473   // number, the Lower value of LHS is shifted right with the
1474   // minimum value of 'Other'.
1475   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1476 
1477   APInt max, min;
1478   if (getSignedMin().isNonNegative()) {
1479     // Upper and Lower of LHS are non-negative.
1480     min = PosMin;
1481     max = PosMax;
1482   } else if (getSignedMax().isNegative()) {
1483     // Upper and Lower of LHS are negative.
1484     min = NegMin;
1485     max = NegMax;
1486   } else {
1487     // Upper is non-negative and Lower is negative.
1488     min = NegMin;
1489     max = PosMax;
1490   }
1491   return getNonEmpty(std::move(min), std::move(max));
1492 }
1493 
1494 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1495   if (isEmptySet() || Other.isEmptySet())
1496     return getEmpty();
1497 
1498   APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1499   APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1500   return getNonEmpty(std::move(NewL), std::move(NewU));
1501 }
1502 
1503 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1504   if (isEmptySet() || Other.isEmptySet())
1505     return getEmpty();
1506 
1507   APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1508   APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1509   return getNonEmpty(std::move(NewL), std::move(NewU));
1510 }
1511 
1512 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1513   if (isEmptySet() || Other.isEmptySet())
1514     return getEmpty();
1515 
1516   APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1517   APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1518   return getNonEmpty(std::move(NewL), std::move(NewU));
1519 }
1520 
1521 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1522   if (isEmptySet() || Other.isEmptySet())
1523     return getEmpty();
1524 
1525   APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1526   APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1527   return getNonEmpty(std::move(NewL), std::move(NewU));
1528 }
1529 
1530 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1531   if (isEmptySet() || Other.isEmptySet())
1532     return getEmpty();
1533 
1534   APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1535   APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1536   return getNonEmpty(std::move(NewL), std::move(NewU));
1537 }
1538 
1539 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1540   if (isEmptySet() || Other.isEmptySet())
1541     return getEmpty();
1542 
1543   // Because we could be dealing with negative numbers here, the lower bound is
1544   // the smallest of the cartesian product of the lower and upper ranges;
1545   // for example:
1546   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1547   // Similarly for the upper bound, swapping min for max.
1548 
1549   APInt Min = getSignedMin();
1550   APInt Max = getSignedMax();
1551   APInt OtherMin = Other.getSignedMin();
1552   APInt OtherMax = Other.getSignedMax();
1553 
1554   auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax),
1555             Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)};
1556   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1557   return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1);
1558 }
1559 
1560 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1561   if (isEmptySet() || Other.isEmptySet())
1562     return getEmpty();
1563 
1564   APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1565   APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1566   return getNonEmpty(std::move(NewL), std::move(NewU));
1567 }
1568 
1569 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1570   if (isEmptySet() || Other.isEmptySet())
1571     return getEmpty();
1572 
1573   APInt Min = getSignedMin(), Max = getSignedMax();
1574   APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1575   APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1576   APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1577   return getNonEmpty(std::move(NewL), std::move(NewU));
1578 }
1579 
1580 ConstantRange ConstantRange::inverse() const {
1581   if (isFullSet())
1582     return getEmpty();
1583   if (isEmptySet())
1584     return getFull();
1585   return ConstantRange(Upper, Lower);
1586 }
1587 
1588 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1589   if (isEmptySet())
1590     return getEmpty();
1591 
1592   if (isSignWrappedSet()) {
1593     APInt Lo;
1594     // Check whether the range crosses zero.
1595     if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1596       Lo = APInt::getZero(getBitWidth());
1597     else
1598       Lo = APIntOps::umin(Lower, -Upper + 1);
1599 
1600     // If SignedMin is not poison, then it is included in the result range.
1601     if (IntMinIsPoison)
1602       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
1603     else
1604       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1605   }
1606 
1607   APInt SMin = getSignedMin(), SMax = getSignedMax();
1608 
1609   // Skip SignedMin if it is poison.
1610   if (IntMinIsPoison && SMin.isMinSignedValue()) {
1611     // The range may become empty if it *only* contains SignedMin.
1612     if (SMax.isMinSignedValue())
1613       return getEmpty();
1614     ++SMin;
1615   }
1616 
1617   // All non-negative.
1618   if (SMin.isNonNegative())
1619     return *this;
1620 
1621   // All negative.
1622   if (SMax.isNegative())
1623     return ConstantRange(-SMax, -SMin + 1);
1624 
1625   // Range crosses zero.
1626   return ConstantRange(APInt::getZero(getBitWidth()),
1627                        APIntOps::umax(-SMin, SMax) + 1);
1628 }
1629 
1630 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1631     const ConstantRange &Other) const {
1632   if (isEmptySet() || Other.isEmptySet())
1633     return OverflowResult::MayOverflow;
1634 
1635   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1636   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1637 
1638   // a u+ b overflows high iff a u> ~b.
1639   if (Min.ugt(~OtherMin))
1640     return OverflowResult::AlwaysOverflowsHigh;
1641   if (Max.ugt(~OtherMax))
1642     return OverflowResult::MayOverflow;
1643   return OverflowResult::NeverOverflows;
1644 }
1645 
1646 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1647     const ConstantRange &Other) const {
1648   if (isEmptySet() || Other.isEmptySet())
1649     return OverflowResult::MayOverflow;
1650 
1651   APInt Min = getSignedMin(), Max = getSignedMax();
1652   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1653 
1654   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1655   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1656 
1657   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1658   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1659   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1660       Min.sgt(SignedMax - OtherMin))
1661     return OverflowResult::AlwaysOverflowsHigh;
1662   if (Max.isNegative() && OtherMax.isNegative() &&
1663       Max.slt(SignedMin - OtherMax))
1664     return OverflowResult::AlwaysOverflowsLow;
1665 
1666   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1667       Max.sgt(SignedMax - OtherMax))
1668     return OverflowResult::MayOverflow;
1669   if (Min.isNegative() && OtherMin.isNegative() &&
1670       Min.slt(SignedMin - OtherMin))
1671     return OverflowResult::MayOverflow;
1672 
1673   return OverflowResult::NeverOverflows;
1674 }
1675 
1676 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1677     const ConstantRange &Other) const {
1678   if (isEmptySet() || Other.isEmptySet())
1679     return OverflowResult::MayOverflow;
1680 
1681   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1682   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1683 
1684   // a u- b overflows low iff a u< b.
1685   if (Max.ult(OtherMin))
1686     return OverflowResult::AlwaysOverflowsLow;
1687   if (Min.ult(OtherMax))
1688     return OverflowResult::MayOverflow;
1689   return OverflowResult::NeverOverflows;
1690 }
1691 
1692 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1693     const ConstantRange &Other) const {
1694   if (isEmptySet() || Other.isEmptySet())
1695     return OverflowResult::MayOverflow;
1696 
1697   APInt Min = getSignedMin(), Max = getSignedMax();
1698   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1699 
1700   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1701   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1702 
1703   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1704   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1705   if (Min.isNonNegative() && OtherMax.isNegative() &&
1706       Min.sgt(SignedMax + OtherMax))
1707     return OverflowResult::AlwaysOverflowsHigh;
1708   if (Max.isNegative() && OtherMin.isNonNegative() &&
1709       Max.slt(SignedMin + OtherMin))
1710     return OverflowResult::AlwaysOverflowsLow;
1711 
1712   if (Max.isNonNegative() && OtherMin.isNegative() &&
1713       Max.sgt(SignedMax + OtherMin))
1714     return OverflowResult::MayOverflow;
1715   if (Min.isNegative() && OtherMax.isNonNegative() &&
1716       Min.slt(SignedMin + OtherMax))
1717     return OverflowResult::MayOverflow;
1718 
1719   return OverflowResult::NeverOverflows;
1720 }
1721 
1722 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1723     const ConstantRange &Other) const {
1724   if (isEmptySet() || Other.isEmptySet())
1725     return OverflowResult::MayOverflow;
1726 
1727   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1728   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1729   bool Overflow;
1730 
1731   (void) Min.umul_ov(OtherMin, Overflow);
1732   if (Overflow)
1733     return OverflowResult::AlwaysOverflowsHigh;
1734 
1735   (void) Max.umul_ov(OtherMax, Overflow);
1736   if (Overflow)
1737     return OverflowResult::MayOverflow;
1738 
1739   return OverflowResult::NeverOverflows;
1740 }
1741 
1742 void ConstantRange::print(raw_ostream &OS) const {
1743   if (isFullSet())
1744     OS << "full-set";
1745   else if (isEmptySet())
1746     OS << "empty-set";
1747   else
1748     OS << "[" << Lower << "," << Upper << ")";
1749 }
1750 
1751 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1752 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1753   print(dbgs());
1754 }
1755 #endif
1756 
1757 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1758   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1759   assert(NumRanges >= 1 && "Must have at least one range!");
1760   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1761 
1762   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1763   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1764 
1765   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1766 
1767   for (unsigned i = 1; i < NumRanges; ++i) {
1768     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1769     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1770 
1771     // Note: unionWith will potentially create a range that contains values not
1772     // contained in any of the original N ranges.
1773     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1774   }
1775 
1776   return CR;
1777 }
1778