1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Represent a range of possible values that may occur when the program is run 11 // for an integral value. This keeps track of a lower and upper bound for the 12 // constant, which MAY wrap around the end of the numeric range. To do this, it 13 // keeps track of a [lower, upper) bound, which specifies an interval just like 14 // STL iterators. When used with boolean values, the following are important 15 // ranges (other integral ranges use min/max values for special range values): 16 // 17 // [F, F) = {} = Empty set 18 // [T, F) = {T} 19 // [F, T) = {F} 20 // [T, T) = {F, T} = Full set 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 using namespace llvm; 31 32 /// Initialize a full (the default) or empty set for the specified type. 33 /// 34 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) { 35 if (Full) 36 Lower = Upper = APInt::getMaxValue(BitWidth); 37 else 38 Lower = Upper = APInt::getMinValue(BitWidth); 39 } 40 41 /// Initialize a range to hold the single specified value. 42 /// 43 ConstantRange::ConstantRange(APIntMoveTy V) 44 : Lower(std::move(V)), Upper(Lower + 1) {} 45 46 ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U) 47 : Lower(std::move(L)), Upper(std::move(U)) { 48 assert(Lower.getBitWidth() == Upper.getBitWidth() && 49 "ConstantRange with unequal bit widths"); 50 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && 51 "Lower == Upper, but they aren't min or max value!"); 52 } 53 54 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, 55 const ConstantRange &CR) { 56 if (CR.isEmptySet()) 57 return CR; 58 59 uint32_t W = CR.getBitWidth(); 60 switch (Pred) { 61 default: 62 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); 63 case CmpInst::ICMP_EQ: 64 return CR; 65 case CmpInst::ICMP_NE: 66 if (CR.isSingleElement()) 67 return ConstantRange(CR.getUpper(), CR.getLower()); 68 return ConstantRange(W); 69 case CmpInst::ICMP_ULT: { 70 APInt UMax(CR.getUnsignedMax()); 71 if (UMax.isMinValue()) 72 return ConstantRange(W, /* empty */ false); 73 return ConstantRange(APInt::getMinValue(W), UMax); 74 } 75 case CmpInst::ICMP_SLT: { 76 APInt SMax(CR.getSignedMax()); 77 if (SMax.isMinSignedValue()) 78 return ConstantRange(W, /* empty */ false); 79 return ConstantRange(APInt::getSignedMinValue(W), SMax); 80 } 81 case CmpInst::ICMP_ULE: { 82 APInt UMax(CR.getUnsignedMax()); 83 if (UMax.isMaxValue()) 84 return ConstantRange(W); 85 return ConstantRange(APInt::getMinValue(W), UMax + 1); 86 } 87 case CmpInst::ICMP_SLE: { 88 APInt SMax(CR.getSignedMax()); 89 if (SMax.isMaxSignedValue()) 90 return ConstantRange(W); 91 return ConstantRange(APInt::getSignedMinValue(W), SMax + 1); 92 } 93 case CmpInst::ICMP_UGT: { 94 APInt UMin(CR.getUnsignedMin()); 95 if (UMin.isMaxValue()) 96 return ConstantRange(W, /* empty */ false); 97 return ConstantRange(UMin + 1, APInt::getNullValue(W)); 98 } 99 case CmpInst::ICMP_SGT: { 100 APInt SMin(CR.getSignedMin()); 101 if (SMin.isMaxSignedValue()) 102 return ConstantRange(W, /* empty */ false); 103 return ConstantRange(SMin + 1, APInt::getSignedMinValue(W)); 104 } 105 case CmpInst::ICMP_UGE: { 106 APInt UMin(CR.getUnsignedMin()); 107 if (UMin.isMinValue()) 108 return ConstantRange(W); 109 return ConstantRange(UMin, APInt::getNullValue(W)); 110 } 111 case CmpInst::ICMP_SGE: { 112 APInt SMin(CR.getSignedMin()); 113 if (SMin.isMinSignedValue()) 114 return ConstantRange(W); 115 return ConstantRange(SMin, APInt::getSignedMinValue(W)); 116 } 117 } 118 } 119 120 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 121 const ConstantRange &CR) { 122 // Follows from De-Morgan's laws: 123 // 124 // ~(~A union ~B) == A intersect B. 125 // 126 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) 127 .inverse(); 128 } 129 130 ConstantRange 131 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 132 const ConstantRange &Other, 133 unsigned NoWrapKind) { 134 typedef OverflowingBinaryOperator OBO; 135 136 // Computes the intersection of CR0 and CR1. It is different from 137 // intersectWith in that the ConstantRange returned will only contain elements 138 // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or 139 // not, of both X and Y). 140 auto SubsetIntersect = 141 [](const ConstantRange &CR0, const ConstantRange &CR1) { 142 return CR0.inverse().unionWith(CR1.inverse()).inverse(); 143 }; 144 145 assert(BinOp >= Instruction::BinaryOpsBegin && 146 BinOp < Instruction::BinaryOpsEnd && "Binary operators only!"); 147 148 assert((NoWrapKind == OBO::NoSignedWrap || 149 NoWrapKind == OBO::NoUnsignedWrap || 150 NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && 151 "NoWrapKind invalid!"); 152 153 unsigned BitWidth = Other.getBitWidth(); 154 if (BinOp != Instruction::Add) 155 // Conservative answer: empty set 156 return ConstantRange(BitWidth, false); 157 158 if (auto *C = Other.getSingleElement()) 159 if (C->isMinValue()) 160 // Full set: nothing signed / unsigned wraps when added to 0. 161 return ConstantRange(BitWidth); 162 163 ConstantRange Result(BitWidth); 164 165 if (NoWrapKind & OBO::NoUnsignedWrap) 166 Result = 167 SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth), 168 -Other.getUnsignedMax())); 169 170 if (NoWrapKind & OBO::NoSignedWrap) { 171 APInt SignedMin = Other.getSignedMin(); 172 APInt SignedMax = Other.getSignedMax(); 173 174 if (SignedMax.isStrictlyPositive()) 175 Result = SubsetIntersect( 176 Result, 177 ConstantRange(APInt::getSignedMinValue(BitWidth), 178 APInt::getSignedMinValue(BitWidth) - SignedMax)); 179 180 if (SignedMin.isNegative()) 181 Result = SubsetIntersect( 182 Result, ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin, 183 APInt::getSignedMinValue(BitWidth))); 184 } 185 186 return Result; 187 } 188 189 /// isFullSet - Return true if this set contains all of the elements possible 190 /// for this data-type 191 bool ConstantRange::isFullSet() const { 192 return Lower == Upper && Lower.isMaxValue(); 193 } 194 195 /// isEmptySet - Return true if this set contains no members. 196 /// 197 bool ConstantRange::isEmptySet() const { 198 return Lower == Upper && Lower.isMinValue(); 199 } 200 201 /// isWrappedSet - Return true if this set wraps around the top of the range, 202 /// for example: [100, 8) 203 /// 204 bool ConstantRange::isWrappedSet() const { 205 return Lower.ugt(Upper); 206 } 207 208 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of 209 /// its bitwidth, for example: i8 [120, 140). 210 /// 211 bool ConstantRange::isSignWrappedSet() const { 212 return contains(APInt::getSignedMaxValue(getBitWidth())) && 213 contains(APInt::getSignedMinValue(getBitWidth())); 214 } 215 216 /// getSetSize - Return the number of elements in this set. 217 /// 218 APInt ConstantRange::getSetSize() const { 219 if (isFullSet()) { 220 APInt Size(getBitWidth()+1, 0); 221 Size.setBit(getBitWidth()); 222 return Size; 223 } 224 225 // This is also correct for wrapped sets. 226 return (Upper - Lower).zext(getBitWidth()+1); 227 } 228 229 /// getUnsignedMax - Return the largest unsigned value contained in the 230 /// ConstantRange. 231 /// 232 APInt ConstantRange::getUnsignedMax() const { 233 if (isFullSet() || isWrappedSet()) 234 return APInt::getMaxValue(getBitWidth()); 235 return getUpper() - 1; 236 } 237 238 /// getUnsignedMin - Return the smallest unsigned value contained in the 239 /// ConstantRange. 240 /// 241 APInt ConstantRange::getUnsignedMin() const { 242 if (isFullSet() || (isWrappedSet() && getUpper() != 0)) 243 return APInt::getMinValue(getBitWidth()); 244 return getLower(); 245 } 246 247 /// getSignedMax - Return the largest signed value contained in the 248 /// ConstantRange. 249 /// 250 APInt ConstantRange::getSignedMax() const { 251 APInt SignedMax(APInt::getSignedMaxValue(getBitWidth())); 252 if (!isWrappedSet()) { 253 if (getLower().sle(getUpper() - 1)) 254 return getUpper() - 1; 255 return SignedMax; 256 } 257 if (getLower().isNegative() == getUpper().isNegative()) 258 return SignedMax; 259 return getUpper() - 1; 260 } 261 262 /// getSignedMin - Return the smallest signed value contained in the 263 /// ConstantRange. 264 /// 265 APInt ConstantRange::getSignedMin() const { 266 APInt SignedMin(APInt::getSignedMinValue(getBitWidth())); 267 if (!isWrappedSet()) { 268 if (getLower().sle(getUpper() - 1)) 269 return getLower(); 270 return SignedMin; 271 } 272 if ((getUpper() - 1).slt(getLower())) { 273 if (getUpper() != SignedMin) 274 return SignedMin; 275 } 276 return getLower(); 277 } 278 279 /// contains - Return true if the specified value is in the set. 280 /// 281 bool ConstantRange::contains(const APInt &V) const { 282 if (Lower == Upper) 283 return isFullSet(); 284 285 if (!isWrappedSet()) 286 return Lower.ule(V) && V.ult(Upper); 287 return Lower.ule(V) || V.ult(Upper); 288 } 289 290 /// contains - Return true if the argument is a subset of this range. 291 /// Two equal sets contain each other. The empty set contained by all other 292 /// sets. 293 /// 294 bool ConstantRange::contains(const ConstantRange &Other) const { 295 if (isFullSet() || Other.isEmptySet()) return true; 296 if (isEmptySet() || Other.isFullSet()) return false; 297 298 if (!isWrappedSet()) { 299 if (Other.isWrappedSet()) 300 return false; 301 302 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 303 } 304 305 if (!Other.isWrappedSet()) 306 return Other.getUpper().ule(Upper) || 307 Lower.ule(Other.getLower()); 308 309 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 310 } 311 312 /// subtract - Subtract the specified constant from the endpoints of this 313 /// constant range. 314 ConstantRange ConstantRange::subtract(const APInt &Val) const { 315 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 316 // If the set is empty or full, don't modify the endpoints. 317 if (Lower == Upper) 318 return *this; 319 return ConstantRange(Lower - Val, Upper - Val); 320 } 321 322 /// \brief Subtract the specified range from this range (aka relative complement 323 /// of the sets). 324 ConstantRange ConstantRange::difference(const ConstantRange &CR) const { 325 return intersectWith(CR.inverse()); 326 } 327 328 /// intersectWith - Return the range that results from the intersection of this 329 /// range with another range. The resultant range is guaranteed to include all 330 /// elements contained in both input ranges, and to have the smallest possible 331 /// set size that does so. Because there may be two intersections with the 332 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A). 333 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { 334 assert(getBitWidth() == CR.getBitWidth() && 335 "ConstantRange types don't agree!"); 336 337 // Handle common cases. 338 if ( isEmptySet() || CR.isFullSet()) return *this; 339 if (CR.isEmptySet() || isFullSet()) return CR; 340 341 if (!isWrappedSet() && CR.isWrappedSet()) 342 return CR.intersectWith(*this); 343 344 if (!isWrappedSet() && !CR.isWrappedSet()) { 345 if (Lower.ult(CR.Lower)) { 346 if (Upper.ule(CR.Lower)) 347 return ConstantRange(getBitWidth(), false); 348 349 if (Upper.ult(CR.Upper)) 350 return ConstantRange(CR.Lower, Upper); 351 352 return CR; 353 } 354 if (Upper.ult(CR.Upper)) 355 return *this; 356 357 if (Lower.ult(CR.Upper)) 358 return ConstantRange(Lower, CR.Upper); 359 360 return ConstantRange(getBitWidth(), false); 361 } 362 363 if (isWrappedSet() && !CR.isWrappedSet()) { 364 if (CR.Lower.ult(Upper)) { 365 if (CR.Upper.ult(Upper)) 366 return CR; 367 368 if (CR.Upper.ule(Lower)) 369 return ConstantRange(CR.Lower, Upper); 370 371 if (getSetSize().ult(CR.getSetSize())) 372 return *this; 373 return CR; 374 } 375 if (CR.Lower.ult(Lower)) { 376 if (CR.Upper.ule(Lower)) 377 return ConstantRange(getBitWidth(), false); 378 379 return ConstantRange(Lower, CR.Upper); 380 } 381 return CR; 382 } 383 384 if (CR.Upper.ult(Upper)) { 385 if (CR.Lower.ult(Upper)) { 386 if (getSetSize().ult(CR.getSetSize())) 387 return *this; 388 return CR; 389 } 390 391 if (CR.Lower.ult(Lower)) 392 return ConstantRange(Lower, CR.Upper); 393 394 return CR; 395 } 396 if (CR.Upper.ule(Lower)) { 397 if (CR.Lower.ult(Lower)) 398 return *this; 399 400 return ConstantRange(CR.Lower, Upper); 401 } 402 if (getSetSize().ult(CR.getSetSize())) 403 return *this; 404 return CR; 405 } 406 407 408 /// unionWith - Return the range that results from the union of this range with 409 /// another range. The resultant range is guaranteed to include the elements of 410 /// both sets, but may contain more. For example, [3, 9) union [12,15) is 411 /// [3, 15), which includes 9, 10, and 11, which were not included in either 412 /// set before. 413 /// 414 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { 415 assert(getBitWidth() == CR.getBitWidth() && 416 "ConstantRange types don't agree!"); 417 418 if ( isFullSet() || CR.isEmptySet()) return *this; 419 if (CR.isFullSet() || isEmptySet()) return CR; 420 421 if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this); 422 423 if (!isWrappedSet() && !CR.isWrappedSet()) { 424 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) { 425 // If the two ranges are disjoint, find the smaller gap and bridge it. 426 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; 427 if (d1.ult(d2)) 428 return ConstantRange(Lower, CR.Upper); 429 return ConstantRange(CR.Lower, Upper); 430 } 431 432 APInt L = Lower, U = Upper; 433 if (CR.Lower.ult(L)) 434 L = CR.Lower; 435 if ((CR.Upper - 1).ugt(U - 1)) 436 U = CR.Upper; 437 438 if (L == 0 && U == 0) 439 return ConstantRange(getBitWidth()); 440 441 return ConstantRange(L, U); 442 } 443 444 if (!CR.isWrappedSet()) { 445 // ------U L----- and ------U L----- : this 446 // L--U L--U : CR 447 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 448 return *this; 449 450 // ------U L----- : this 451 // L---------U : CR 452 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 453 return ConstantRange(getBitWidth()); 454 455 // ----U L---- : this 456 // L---U : CR 457 // <d1> <d2> 458 if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) { 459 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; 460 if (d1.ult(d2)) 461 return ConstantRange(Lower, CR.Upper); 462 return ConstantRange(CR.Lower, Upper); 463 } 464 465 // ----U L----- : this 466 // L----U : CR 467 if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) 468 return ConstantRange(CR.Lower, Upper); 469 470 // ------U L---- : this 471 // L-----U : CR 472 assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) && 473 "ConstantRange::unionWith missed a case with one range wrapped"); 474 return ConstantRange(Lower, CR.Upper); 475 } 476 477 // ------U L---- and ------U L---- : this 478 // -U L----------- and ------------U L : CR 479 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 480 return ConstantRange(getBitWidth()); 481 482 APInt L = Lower, U = Upper; 483 if (CR.Upper.ugt(U)) 484 U = CR.Upper; 485 if (CR.Lower.ult(L)) 486 L = CR.Lower; 487 488 return ConstantRange(L, U); 489 } 490 491 /// zeroExtend - Return a new range in the specified integer type, which must 492 /// be strictly larger than the current type. The returned range will 493 /// correspond to the possible range of values as if the source range had been 494 /// zero extended. 495 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 496 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); 497 498 unsigned SrcTySize = getBitWidth(); 499 assert(SrcTySize < DstTySize && "Not a value extension"); 500 if (isFullSet() || isWrappedSet()) { 501 // Change into [0, 1 << src bit width) 502 APInt LowerExt(DstTySize, 0); 503 if (!Upper) // special case: [X, 0) -- not really wrapping around 504 LowerExt = Lower.zext(DstTySize); 505 return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize)); 506 } 507 508 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 509 } 510 511 /// signExtend - Return a new range in the specified integer type, which must 512 /// be strictly larger than the current type. The returned range will 513 /// correspond to the possible range of values as if the source range had been 514 /// sign extended. 515 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 516 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); 517 518 unsigned SrcTySize = getBitWidth(); 519 assert(SrcTySize < DstTySize && "Not a value extension"); 520 521 // special case: [X, INT_MIN) -- not really wrapping around 522 if (Upper.isMinSignedValue()) 523 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); 524 525 if (isFullSet() || isSignWrappedSet()) { 526 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 527 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 528 } 529 530 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 531 } 532 533 /// truncate - Return a new range in the specified integer type, which must be 534 /// strictly smaller than the current type. The returned range will 535 /// correspond to the possible range of values as if the source range had been 536 /// truncated to the specified type. 537 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 538 assert(getBitWidth() > DstTySize && "Not a value truncation"); 539 if (isEmptySet()) 540 return ConstantRange(DstTySize, /*isFullSet=*/false); 541 if (isFullSet()) 542 return ConstantRange(DstTySize, /*isFullSet=*/true); 543 544 APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth()); 545 APInt MaxBitValue(getBitWidth(), 0); 546 MaxBitValue.setBit(DstTySize); 547 548 APInt LowerDiv(Lower), UpperDiv(Upper); 549 ConstantRange Union(DstTySize, /*isFullSet=*/false); 550 551 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] 552 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and 553 // then we do the union with [MaxValue, Upper) 554 if (isWrappedSet()) { 555 // if Upper is greater than Max Value, it covers the whole truncated range. 556 if (Upper.uge(MaxValue)) 557 return ConstantRange(DstTySize, /*isFullSet=*/true); 558 559 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); 560 UpperDiv = APInt::getMaxValue(getBitWidth()); 561 562 // Union covers the MaxValue case, so return if the remaining range is just 563 // MaxValue. 564 if (LowerDiv == UpperDiv) 565 return Union; 566 } 567 568 // Chop off the most significant bits that are past the destination bitwidth. 569 if (LowerDiv.uge(MaxValue)) { 570 APInt Div(getBitWidth(), 0); 571 APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv); 572 UpperDiv = UpperDiv - MaxBitValue * Div; 573 } 574 575 if (UpperDiv.ule(MaxValue)) 576 return ConstantRange(LowerDiv.trunc(DstTySize), 577 UpperDiv.trunc(DstTySize)).unionWith(Union); 578 579 // The truncated value wrapps around. Check if we can do better than fullset. 580 APInt UpperModulo = UpperDiv - MaxBitValue; 581 if (UpperModulo.ult(LowerDiv)) 582 return ConstantRange(LowerDiv.trunc(DstTySize), 583 UpperModulo.trunc(DstTySize)).unionWith(Union); 584 585 return ConstantRange(DstTySize, /*isFullSet=*/true); 586 } 587 588 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The 589 /// value is zero extended, truncated, or left alone to make it that width. 590 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 591 unsigned SrcTySize = getBitWidth(); 592 if (SrcTySize > DstTySize) 593 return truncate(DstTySize); 594 if (SrcTySize < DstTySize) 595 return zeroExtend(DstTySize); 596 return *this; 597 } 598 599 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The 600 /// value is sign extended, truncated, or left alone to make it that width. 601 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 602 unsigned SrcTySize = getBitWidth(); 603 if (SrcTySize > DstTySize) 604 return truncate(DstTySize); 605 if (SrcTySize < DstTySize) 606 return signExtend(DstTySize); 607 return *this; 608 } 609 610 ConstantRange 611 ConstantRange::add(const ConstantRange &Other) const { 612 if (isEmptySet() || Other.isEmptySet()) 613 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 614 if (isFullSet() || Other.isFullSet()) 615 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 616 617 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); 618 APInt NewLower = getLower() + Other.getLower(); 619 APInt NewUpper = getUpper() + Other.getUpper() - 1; 620 if (NewLower == NewUpper) 621 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 622 623 ConstantRange X = ConstantRange(NewLower, NewUpper); 624 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) 625 // We've wrapped, therefore, full set. 626 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 627 628 return X; 629 } 630 631 ConstantRange 632 ConstantRange::sub(const ConstantRange &Other) const { 633 if (isEmptySet() || Other.isEmptySet()) 634 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 635 if (isFullSet() || Other.isFullSet()) 636 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 637 638 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); 639 APInt NewLower = getLower() - Other.getUpper() + 1; 640 APInt NewUpper = getUpper() - Other.getLower(); 641 if (NewLower == NewUpper) 642 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 643 644 ConstantRange X = ConstantRange(NewLower, NewUpper); 645 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) 646 // We've wrapped, therefore, full set. 647 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 648 649 return X; 650 } 651 652 ConstantRange 653 ConstantRange::multiply(const ConstantRange &Other) const { 654 // TODO: If either operand is a single element and the multiply is known to 655 // be non-wrapping, round the result min and max value to the appropriate 656 // multiple of that element. If wrapping is possible, at least adjust the 657 // range according to the greatest power-of-two factor of the single element. 658 659 if (isEmptySet() || Other.isEmptySet()) 660 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 661 662 // Multiplication is signedness-independent. However different ranges can be 663 // obtained depending on how the input ranges are treated. These different 664 // ranges are all conservatively correct, but one might be better than the 665 // other. We calculate two ranges; one treating the inputs as unsigned 666 // and the other signed, then return the smallest of these ranges. 667 668 // Unsigned range first. 669 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 670 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 671 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 672 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 673 674 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 675 this_max * Other_max + 1); 676 ConstantRange UR = Result_zext.truncate(getBitWidth()); 677 678 // Now the signed range. Because we could be dealing with negative numbers 679 // here, the lower bound is the smallest of the cartesian product of the 680 // lower and upper ranges; for example: 681 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 682 // Similarly for the upper bound, swapping min for max. 683 684 this_min = getSignedMin().sext(getBitWidth() * 2); 685 this_max = getSignedMax().sext(getBitWidth() * 2); 686 Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 687 Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 688 689 auto L = {this_min * Other_min, this_min * Other_max, 690 this_max * Other_min, this_max * Other_max}; 691 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 692 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); 693 ConstantRange SR = Result_sext.truncate(getBitWidth()); 694 695 return UR.getSetSize().ult(SR.getSetSize()) ? UR : SR; 696 } 697 698 ConstantRange 699 ConstantRange::smax(const ConstantRange &Other) const { 700 // X smax Y is: range(smax(X_smin, Y_smin), 701 // smax(X_smax, Y_smax)) 702 if (isEmptySet() || Other.isEmptySet()) 703 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 704 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 705 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 706 if (NewU == NewL) 707 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 708 return ConstantRange(NewL, NewU); 709 } 710 711 ConstantRange 712 ConstantRange::umax(const ConstantRange &Other) const { 713 // X umax Y is: range(umax(X_umin, Y_umin), 714 // umax(X_umax, Y_umax)) 715 if (isEmptySet() || Other.isEmptySet()) 716 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 717 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 718 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 719 if (NewU == NewL) 720 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 721 return ConstantRange(NewL, NewU); 722 } 723 724 ConstantRange 725 ConstantRange::smin(const ConstantRange &Other) const { 726 // X smin Y is: range(smin(X_smin, Y_smin), 727 // smin(X_smax, Y_smax)) 728 if (isEmptySet() || Other.isEmptySet()) 729 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 730 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); 731 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; 732 if (NewU == NewL) 733 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 734 return ConstantRange(NewL, NewU); 735 } 736 737 ConstantRange 738 ConstantRange::umin(const ConstantRange &Other) const { 739 // X umin Y is: range(umin(X_umin, Y_umin), 740 // umin(X_umax, Y_umax)) 741 if (isEmptySet() || Other.isEmptySet()) 742 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 743 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); 744 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; 745 if (NewU == NewL) 746 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 747 return ConstantRange(NewL, NewU); 748 } 749 750 ConstantRange 751 ConstantRange::udiv(const ConstantRange &RHS) const { 752 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0) 753 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 754 if (RHS.isFullSet()) 755 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 756 757 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 758 759 APInt RHS_umin = RHS.getUnsignedMin(); 760 if (RHS_umin == 0) { 761 // We want the lowest value in RHS excluding zero. Usually that would be 1 762 // except for a range in the form of [X, 1) in which case it would be X. 763 if (RHS.getUpper() == 1) 764 RHS_umin = RHS.getLower(); 765 else 766 RHS_umin = APInt(getBitWidth(), 1); 767 } 768 769 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 770 771 // If the LHS is Full and the RHS is a wrapped interval containing 1 then 772 // this could occur. 773 if (Lower == Upper) 774 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 775 776 return ConstantRange(Lower, Upper); 777 } 778 779 ConstantRange 780 ConstantRange::binaryAnd(const ConstantRange &Other) const { 781 if (isEmptySet() || Other.isEmptySet()) 782 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 783 784 // TODO: replace this with something less conservative 785 786 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); 787 if (umin.isAllOnesValue()) 788 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 789 return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1); 790 } 791 792 ConstantRange 793 ConstantRange::binaryOr(const ConstantRange &Other) const { 794 if (isEmptySet() || Other.isEmptySet()) 795 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 796 797 // TODO: replace this with something less conservative 798 799 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 800 if (umax.isMinValue()) 801 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 802 return ConstantRange(umax, APInt::getNullValue(getBitWidth())); 803 } 804 805 ConstantRange 806 ConstantRange::shl(const ConstantRange &Other) const { 807 if (isEmptySet() || Other.isEmptySet()) 808 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 809 810 APInt min = getUnsignedMin().shl(Other.getUnsignedMin()); 811 APInt max = getUnsignedMax().shl(Other.getUnsignedMax()); 812 813 // there's no overflow! 814 APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros()); 815 if (Zeros.ugt(Other.getUnsignedMax())) 816 return ConstantRange(min, max + 1); 817 818 // FIXME: implement the other tricky cases 819 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 820 } 821 822 ConstantRange 823 ConstantRange::lshr(const ConstantRange &Other) const { 824 if (isEmptySet() || Other.isEmptySet()) 825 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 826 827 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()); 828 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 829 if (min == max + 1) 830 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 831 832 return ConstantRange(min, max + 1); 833 } 834 835 ConstantRange ConstantRange::inverse() const { 836 if (isFullSet()) 837 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 838 if (isEmptySet()) 839 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 840 return ConstantRange(Upper, Lower); 841 } 842 843 /// print - Print out the bounds to a stream... 844 /// 845 void ConstantRange::print(raw_ostream &OS) const { 846 if (isFullSet()) 847 OS << "full-set"; 848 else if (isEmptySet()) 849 OS << "empty-set"; 850 else 851 OS << "[" << Lower << "," << Upper << ")"; 852 } 853 854 /// dump - Allow printing from a debugger easily... 855 /// 856 LLVM_DUMP_METHOD void ConstantRange::dump() const { 857 print(dbgs()); 858 } 859