1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Represent a range of possible values that may occur when the program is run 10 // for an integral value. This keeps track of a lower and upper bound for the 11 // constant, which MAY wrap around the end of the numeric range. To do this, it 12 // keeps track of a [lower, upper) bound, which specifies an interval just like 13 // STL iterators. When used with boolean values, the following are important 14 // ranges (other integral ranges use min/max values for special range values): 15 // 16 // [F, F) = {} = Empty set 17 // [T, F) = {T} 18 // [F, T) = {F} 19 // [T, T) = {F, T} = Full set 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 41 using namespace llvm; 42 43 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) 44 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), 45 Upper(Lower) {} 46 47 ConstantRange::ConstantRange(APInt V) 48 : Lower(std::move(V)), Upper(Lower + 1) {} 49 50 ConstantRange::ConstantRange(APInt L, APInt U) 51 : Lower(std::move(L)), Upper(std::move(U)) { 52 assert(Lower.getBitWidth() == Upper.getBitWidth() && 53 "ConstantRange with unequal bit widths"); 54 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && 55 "Lower == Upper, but they aren't min or max value!"); 56 } 57 58 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, 59 bool IsSigned) { 60 assert(!Known.hasConflict() && "Expected valid KnownBits"); 61 62 if (Known.isUnknown()) 63 return getFull(Known.getBitWidth()); 64 65 // For unsigned ranges, or signed ranges with known sign bit, create a simple 66 // range between the smallest and largest possible value. 67 if (!IsSigned || Known.isNegative() || Known.isNonNegative()) 68 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1); 69 70 // If we don't know the sign bit, pick the lower bound as a negative number 71 // and the upper bound as a non-negative one. 72 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue(); 73 Lower.setSignBit(); 74 Upper.clearSignBit(); 75 return ConstantRange(Lower, Upper + 1); 76 } 77 78 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, 79 const ConstantRange &CR) { 80 if (CR.isEmptySet()) 81 return CR; 82 83 uint32_t W = CR.getBitWidth(); 84 switch (Pred) { 85 default: 86 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); 87 case CmpInst::ICMP_EQ: 88 return CR; 89 case CmpInst::ICMP_NE: 90 if (CR.isSingleElement()) 91 return ConstantRange(CR.getUpper(), CR.getLower()); 92 return getFull(W); 93 case CmpInst::ICMP_ULT: { 94 APInt UMax(CR.getUnsignedMax()); 95 if (UMax.isMinValue()) 96 return getEmpty(W); 97 return ConstantRange(APInt::getMinValue(W), std::move(UMax)); 98 } 99 case CmpInst::ICMP_SLT: { 100 APInt SMax(CR.getSignedMax()); 101 if (SMax.isMinSignedValue()) 102 return getEmpty(W); 103 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); 104 } 105 case CmpInst::ICMP_ULE: 106 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1); 107 case CmpInst::ICMP_SLE: 108 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1); 109 case CmpInst::ICMP_UGT: { 110 APInt UMin(CR.getUnsignedMin()); 111 if (UMin.isMaxValue()) 112 return getEmpty(W); 113 return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W)); 114 } 115 case CmpInst::ICMP_SGT: { 116 APInt SMin(CR.getSignedMin()); 117 if (SMin.isMaxSignedValue()) 118 return getEmpty(W); 119 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); 120 } 121 case CmpInst::ICMP_UGE: 122 return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W)); 123 case CmpInst::ICMP_SGE: 124 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W)); 125 } 126 } 127 128 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 129 const ConstantRange &CR) { 130 // Follows from De-Morgan's laws: 131 // 132 // ~(~A union ~B) == A intersect B. 133 // 134 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) 135 .inverse(); 136 } 137 138 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, 139 const APInt &C) { 140 // Computes the exact range that is equal to both the constant ranges returned 141 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true 142 // when RHS is a singleton such as an APInt and so the assert is valid. 143 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion 144 // returns [0,4) but makeSatisfyICmpRegion returns [0,2). 145 // 146 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); 147 return makeAllowedICmpRegion(Pred, C); 148 } 149 150 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 151 APInt &RHS) const { 152 bool Success = false; 153 154 if (isFullSet() || isEmptySet()) { 155 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 156 RHS = APInt(getBitWidth(), 0); 157 Success = true; 158 } else if (auto *OnlyElt = getSingleElement()) { 159 Pred = CmpInst::ICMP_EQ; 160 RHS = *OnlyElt; 161 Success = true; 162 } else if (auto *OnlyMissingElt = getSingleMissingElement()) { 163 Pred = CmpInst::ICMP_NE; 164 RHS = *OnlyMissingElt; 165 Success = true; 166 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { 167 Pred = 168 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 169 RHS = getUpper(); 170 Success = true; 171 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { 172 Pred = 173 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; 174 RHS = getLower(); 175 Success = true; 176 } 177 178 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && 179 "Bad result!"); 180 181 return Success; 182 } 183 184 /// Exact mul nuw region for single element RHS. 185 static ConstantRange makeExactMulNUWRegion(const APInt &V) { 186 unsigned BitWidth = V.getBitWidth(); 187 if (V == 0) 188 return ConstantRange::getFull(V.getBitWidth()); 189 190 return ConstantRange::getNonEmpty( 191 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V, 192 APInt::Rounding::UP), 193 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V, 194 APInt::Rounding::DOWN) + 1); 195 } 196 197 /// Exact mul nsw region for single element RHS. 198 static ConstantRange makeExactMulNSWRegion(const APInt &V) { 199 // Handle special case for 0, -1 and 1. See the last for reason why we 200 // specialize -1 and 1. 201 unsigned BitWidth = V.getBitWidth(); 202 if (V == 0 || V.isOneValue()) 203 return ConstantRange::getFull(BitWidth); 204 205 APInt MinValue = APInt::getSignedMinValue(BitWidth); 206 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 207 // e.g. Returning [-127, 127], represented as [-127, -128). 208 if (V.isAllOnesValue()) 209 return ConstantRange(-MaxValue, MinValue); 210 211 APInt Lower, Upper; 212 if (V.isNegative()) { 213 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); 214 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); 215 } else { 216 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); 217 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); 218 } 219 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1). 220 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1, 221 // and 1 are already handled as special cases. 222 return ConstantRange(Lower, Upper + 1); 223 } 224 225 ConstantRange 226 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 227 const ConstantRange &Other, 228 unsigned NoWrapKind) { 229 using OBO = OverflowingBinaryOperator; 230 231 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 232 233 assert((NoWrapKind == OBO::NoSignedWrap || 234 NoWrapKind == OBO::NoUnsignedWrap) && 235 "NoWrapKind invalid!"); 236 237 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; 238 unsigned BitWidth = Other.getBitWidth(); 239 240 switch (BinOp) { 241 default: 242 llvm_unreachable("Unsupported binary op"); 243 244 case Instruction::Add: { 245 if (Unsigned) 246 return getNonEmpty(APInt::getNullValue(BitWidth), 247 -Other.getUnsignedMax()); 248 249 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 250 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 251 return getNonEmpty( 252 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, 253 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); 254 } 255 256 case Instruction::Sub: { 257 if (Unsigned) 258 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth)); 259 260 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 261 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 262 return getNonEmpty( 263 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, 264 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); 265 } 266 267 case Instruction::Mul: 268 if (Unsigned) 269 return makeExactMulNUWRegion(Other.getUnsignedMax()); 270 271 return makeExactMulNSWRegion(Other.getSignedMin()) 272 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax())); 273 274 case Instruction::Shl: { 275 // For given range of shift amounts, if we ignore all illegal shift amounts 276 // (that always produce poison), what shift amount range is left? 277 ConstantRange ShAmt = Other.intersectWith( 278 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); 279 if (ShAmt.isEmptySet()) { 280 // If the entire range of shift amounts is already poison-producing, 281 // then we can freely add more poison-producing flags ontop of that. 282 return getFull(BitWidth); 283 } 284 // There are some legal shift amounts, we can compute conservatively-correct 285 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax 286 // to be at most bitwidth-1, which results in most conservative range. 287 APInt ShAmtUMax = ShAmt.getUnsignedMax(); 288 if (Unsigned) 289 return getNonEmpty(APInt::getNullValue(BitWidth), 290 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1); 291 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax), 292 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1); 293 } 294 } 295 } 296 297 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, 298 const APInt &Other, 299 unsigned NoWrapKind) { 300 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as 301 // "for all" and "for any" coincide in this case. 302 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind); 303 } 304 305 bool ConstantRange::isFullSet() const { 306 return Lower == Upper && Lower.isMaxValue(); 307 } 308 309 bool ConstantRange::isEmptySet() const { 310 return Lower == Upper && Lower.isMinValue(); 311 } 312 313 bool ConstantRange::isWrappedSet() const { 314 return Lower.ugt(Upper) && !Upper.isNullValue(); 315 } 316 317 bool ConstantRange::isUpperWrapped() const { 318 return Lower.ugt(Upper); 319 } 320 321 bool ConstantRange::isSignWrappedSet() const { 322 return Lower.sgt(Upper) && !Upper.isMinSignedValue(); 323 } 324 325 bool ConstantRange::isUpperSignWrapped() const { 326 return Lower.sgt(Upper); 327 } 328 329 bool 330 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { 331 assert(getBitWidth() == Other.getBitWidth()); 332 if (isFullSet()) 333 return false; 334 if (Other.isFullSet()) 335 return true; 336 return (Upper - Lower).ult(Other.Upper - Other.Lower); 337 } 338 339 bool 340 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { 341 assert(MaxSize && "MaxSize can't be 0."); 342 // If this a full set, we need special handling to avoid needing an extra bit 343 // to represent the size. 344 if (isFullSet()) 345 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); 346 347 return (Upper - Lower).ugt(MaxSize); 348 } 349 350 bool ConstantRange::isAllNegative() const { 351 // Empty set is all negative, full set is not. 352 if (isEmptySet()) 353 return true; 354 if (isFullSet()) 355 return false; 356 357 return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); 358 } 359 360 bool ConstantRange::isAllNonNegative() const { 361 // Empty and full set are automatically treated correctly. 362 return !isSignWrappedSet() && Lower.isNonNegative(); 363 } 364 365 APInt ConstantRange::getUnsignedMax() const { 366 if (isFullSet() || isUpperWrapped()) 367 return APInt::getMaxValue(getBitWidth()); 368 return getUpper() - 1; 369 } 370 371 APInt ConstantRange::getUnsignedMin() const { 372 if (isFullSet() || isWrappedSet()) 373 return APInt::getMinValue(getBitWidth()); 374 return getLower(); 375 } 376 377 APInt ConstantRange::getSignedMax() const { 378 if (isFullSet() || isUpperSignWrapped()) 379 return APInt::getSignedMaxValue(getBitWidth()); 380 return getUpper() - 1; 381 } 382 383 APInt ConstantRange::getSignedMin() const { 384 if (isFullSet() || isSignWrappedSet()) 385 return APInt::getSignedMinValue(getBitWidth()); 386 return getLower(); 387 } 388 389 bool ConstantRange::contains(const APInt &V) const { 390 if (Lower == Upper) 391 return isFullSet(); 392 393 if (!isUpperWrapped()) 394 return Lower.ule(V) && V.ult(Upper); 395 return Lower.ule(V) || V.ult(Upper); 396 } 397 398 bool ConstantRange::contains(const ConstantRange &Other) const { 399 if (isFullSet() || Other.isEmptySet()) return true; 400 if (isEmptySet() || Other.isFullSet()) return false; 401 402 if (!isUpperWrapped()) { 403 if (Other.isUpperWrapped()) 404 return false; 405 406 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 407 } 408 409 if (!Other.isUpperWrapped()) 410 return Other.getUpper().ule(Upper) || 411 Lower.ule(Other.getLower()); 412 413 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 414 } 415 416 ConstantRange ConstantRange::subtract(const APInt &Val) const { 417 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 418 // If the set is empty or full, don't modify the endpoints. 419 if (Lower == Upper) 420 return *this; 421 return ConstantRange(Lower - Val, Upper - Val); 422 } 423 424 ConstantRange ConstantRange::difference(const ConstantRange &CR) const { 425 return intersectWith(CR.inverse()); 426 } 427 428 static ConstantRange getPreferredRange( 429 const ConstantRange &CR1, const ConstantRange &CR2, 430 ConstantRange::PreferredRangeType Type) { 431 if (Type == ConstantRange::Unsigned) { 432 if (!CR1.isWrappedSet() && CR2.isWrappedSet()) 433 return CR1; 434 if (CR1.isWrappedSet() && !CR2.isWrappedSet()) 435 return CR2; 436 } else if (Type == ConstantRange::Signed) { 437 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) 438 return CR1; 439 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) 440 return CR2; 441 } 442 443 if (CR1.isSizeStrictlySmallerThan(CR2)) 444 return CR1; 445 return CR2; 446 } 447 448 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, 449 PreferredRangeType Type) const { 450 assert(getBitWidth() == CR.getBitWidth() && 451 "ConstantRange types don't agree!"); 452 453 // Handle common cases. 454 if ( isEmptySet() || CR.isFullSet()) return *this; 455 if (CR.isEmptySet() || isFullSet()) return CR; 456 457 if (!isUpperWrapped() && CR.isUpperWrapped()) 458 return CR.intersectWith(*this, Type); 459 460 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 461 if (Lower.ult(CR.Lower)) { 462 // L---U : this 463 // L---U : CR 464 if (Upper.ule(CR.Lower)) 465 return getEmpty(); 466 467 // L---U : this 468 // L---U : CR 469 if (Upper.ult(CR.Upper)) 470 return ConstantRange(CR.Lower, Upper); 471 472 // L-------U : this 473 // L---U : CR 474 return CR; 475 } 476 // L---U : this 477 // L-------U : CR 478 if (Upper.ult(CR.Upper)) 479 return *this; 480 481 // L-----U : this 482 // L-----U : CR 483 if (Lower.ult(CR.Upper)) 484 return ConstantRange(Lower, CR.Upper); 485 486 // L---U : this 487 // L---U : CR 488 return getEmpty(); 489 } 490 491 if (isUpperWrapped() && !CR.isUpperWrapped()) { 492 if (CR.Lower.ult(Upper)) { 493 // ------U L--- : this 494 // L--U : CR 495 if (CR.Upper.ult(Upper)) 496 return CR; 497 498 // ------U L--- : this 499 // L------U : CR 500 if (CR.Upper.ule(Lower)) 501 return ConstantRange(CR.Lower, Upper); 502 503 // ------U L--- : this 504 // L----------U : CR 505 return getPreferredRange(*this, CR, Type); 506 } 507 if (CR.Lower.ult(Lower)) { 508 // --U L---- : this 509 // L--U : CR 510 if (CR.Upper.ule(Lower)) 511 return getEmpty(); 512 513 // --U L---- : this 514 // L------U : CR 515 return ConstantRange(Lower, CR.Upper); 516 } 517 518 // --U L------ : this 519 // L--U : CR 520 return CR; 521 } 522 523 if (CR.Upper.ult(Upper)) { 524 // ------U L-- : this 525 // --U L------ : CR 526 if (CR.Lower.ult(Upper)) 527 return getPreferredRange(*this, CR, Type); 528 529 // ----U L-- : this 530 // --U L---- : CR 531 if (CR.Lower.ult(Lower)) 532 return ConstantRange(Lower, CR.Upper); 533 534 // ----U L---- : this 535 // --U L-- : CR 536 return CR; 537 } 538 if (CR.Upper.ule(Lower)) { 539 // --U L-- : this 540 // ----U L---- : CR 541 if (CR.Lower.ult(Lower)) 542 return *this; 543 544 // --U L---- : this 545 // ----U L-- : CR 546 return ConstantRange(CR.Lower, Upper); 547 } 548 549 // --U L------ : this 550 // ------U L-- : CR 551 return getPreferredRange(*this, CR, Type); 552 } 553 554 ConstantRange ConstantRange::unionWith(const ConstantRange &CR, 555 PreferredRangeType Type) const { 556 assert(getBitWidth() == CR.getBitWidth() && 557 "ConstantRange types don't agree!"); 558 559 if ( isFullSet() || CR.isEmptySet()) return *this; 560 if (CR.isFullSet() || isEmptySet()) return CR; 561 562 if (!isUpperWrapped() && CR.isUpperWrapped()) 563 return CR.unionWith(*this, Type); 564 565 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 566 // L---U and L---U : this 567 // L---U L---U : CR 568 // result in one of 569 // L---------U 570 // -----U L----- 571 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) 572 return getPreferredRange( 573 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 574 575 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 576 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; 577 578 if (L.isNullValue() && U.isNullValue()) 579 return getFull(); 580 581 return ConstantRange(std::move(L), std::move(U)); 582 } 583 584 if (!CR.isUpperWrapped()) { 585 // ------U L----- and ------U L----- : this 586 // L--U L--U : CR 587 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 588 return *this; 589 590 // ------U L----- : this 591 // L---------U : CR 592 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 593 return getFull(); 594 595 // ----U L---- : this 596 // L---U : CR 597 // results in one of 598 // ----------U L---- 599 // ----U L---------- 600 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) 601 return getPreferredRange( 602 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 603 604 // ----U L----- : this 605 // L----U : CR 606 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper)) 607 return ConstantRange(CR.Lower, Upper); 608 609 // ------U L---- : this 610 // L-----U : CR 611 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && 612 "ConstantRange::unionWith missed a case with one range wrapped"); 613 return ConstantRange(Lower, CR.Upper); 614 } 615 616 // ------U L---- and ------U L---- : this 617 // -U L----------- and ------------U L : CR 618 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 619 return getFull(); 620 621 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 622 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; 623 624 return ConstantRange(std::move(L), std::move(U)); 625 } 626 627 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, 628 uint32_t ResultBitWidth) const { 629 switch (CastOp) { 630 default: 631 llvm_unreachable("unsupported cast type"); 632 case Instruction::Trunc: 633 return truncate(ResultBitWidth); 634 case Instruction::SExt: 635 return signExtend(ResultBitWidth); 636 case Instruction::ZExt: 637 return zeroExtend(ResultBitWidth); 638 case Instruction::BitCast: 639 return *this; 640 case Instruction::FPToUI: 641 case Instruction::FPToSI: 642 if (getBitWidth() == ResultBitWidth) 643 return *this; 644 else 645 return getFull(ResultBitWidth); 646 case Instruction::UIToFP: { 647 // TODO: use input range if available 648 auto BW = getBitWidth(); 649 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth); 650 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth); 651 return ConstantRange(std::move(Min), std::move(Max)); 652 } 653 case Instruction::SIToFP: { 654 // TODO: use input range if available 655 auto BW = getBitWidth(); 656 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth); 657 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth); 658 return ConstantRange(std::move(SMin), std::move(SMax)); 659 } 660 case Instruction::FPTrunc: 661 case Instruction::FPExt: 662 case Instruction::IntToPtr: 663 case Instruction::PtrToInt: 664 case Instruction::AddrSpaceCast: 665 // Conservatively return getFull set. 666 return getFull(ResultBitWidth); 667 }; 668 } 669 670 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 671 if (isEmptySet()) return getEmpty(DstTySize); 672 673 unsigned SrcTySize = getBitWidth(); 674 assert(SrcTySize < DstTySize && "Not a value extension"); 675 if (isFullSet() || isUpperWrapped()) { 676 // Change into [0, 1 << src bit width) 677 APInt LowerExt(DstTySize, 0); 678 if (!Upper) // special case: [X, 0) -- not really wrapping around 679 LowerExt = Lower.zext(DstTySize); 680 return ConstantRange(std::move(LowerExt), 681 APInt::getOneBitSet(DstTySize, SrcTySize)); 682 } 683 684 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 685 } 686 687 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 688 if (isEmptySet()) return getEmpty(DstTySize); 689 690 unsigned SrcTySize = getBitWidth(); 691 assert(SrcTySize < DstTySize && "Not a value extension"); 692 693 // special case: [X, INT_MIN) -- not really wrapping around 694 if (Upper.isMinSignedValue()) 695 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); 696 697 if (isFullSet() || isSignWrappedSet()) { 698 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 699 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 700 } 701 702 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 703 } 704 705 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 706 assert(getBitWidth() > DstTySize && "Not a value truncation"); 707 if (isEmptySet()) 708 return getEmpty(DstTySize); 709 if (isFullSet()) 710 return getFull(DstTySize); 711 712 APInt LowerDiv(Lower), UpperDiv(Upper); 713 ConstantRange Union(DstTySize, /*isFullSet=*/false); 714 715 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] 716 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and 717 // then we do the union with [MaxValue, Upper) 718 if (isUpperWrapped()) { 719 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole 720 // truncated range. 721 if (Upper.getActiveBits() > DstTySize || 722 Upper.countTrailingOnes() == DstTySize) 723 return getFull(DstTySize); 724 725 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); 726 UpperDiv.setAllBits(); 727 728 // Union covers the MaxValue case, so return if the remaining range is just 729 // MaxValue(DstTy). 730 if (LowerDiv == UpperDiv) 731 return Union; 732 } 733 734 // Chop off the most significant bits that are past the destination bitwidth. 735 if (LowerDiv.getActiveBits() > DstTySize) { 736 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. 737 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); 738 LowerDiv -= Adjust; 739 UpperDiv -= Adjust; 740 } 741 742 unsigned UpperDivWidth = UpperDiv.getActiveBits(); 743 if (UpperDivWidth <= DstTySize) 744 return ConstantRange(LowerDiv.trunc(DstTySize), 745 UpperDiv.trunc(DstTySize)).unionWith(Union); 746 747 // The truncated value wraps around. Check if we can do better than fullset. 748 if (UpperDivWidth == DstTySize + 1) { 749 // Clear the MSB so that UpperDiv wraps around. 750 UpperDiv.clearBit(DstTySize); 751 if (UpperDiv.ult(LowerDiv)) 752 return ConstantRange(LowerDiv.trunc(DstTySize), 753 UpperDiv.trunc(DstTySize)).unionWith(Union); 754 } 755 756 return getFull(DstTySize); 757 } 758 759 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 760 unsigned SrcTySize = getBitWidth(); 761 if (SrcTySize > DstTySize) 762 return truncate(DstTySize); 763 if (SrcTySize < DstTySize) 764 return zeroExtend(DstTySize); 765 return *this; 766 } 767 768 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 769 unsigned SrcTySize = getBitWidth(); 770 if (SrcTySize > DstTySize) 771 return truncate(DstTySize); 772 if (SrcTySize < DstTySize) 773 return signExtend(DstTySize); 774 return *this; 775 } 776 777 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, 778 const ConstantRange &Other) const { 779 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 780 781 switch (BinOp) { 782 case Instruction::Add: 783 return add(Other); 784 case Instruction::Sub: 785 return sub(Other); 786 case Instruction::Mul: 787 return multiply(Other); 788 case Instruction::UDiv: 789 return udiv(Other); 790 case Instruction::SDiv: 791 return sdiv(Other); 792 case Instruction::URem: 793 return urem(Other); 794 case Instruction::SRem: 795 return srem(Other); 796 case Instruction::Shl: 797 return shl(Other); 798 case Instruction::LShr: 799 return lshr(Other); 800 case Instruction::AShr: 801 return ashr(Other); 802 case Instruction::And: 803 return binaryAnd(Other); 804 case Instruction::Or: 805 return binaryOr(Other); 806 case Instruction::Xor: 807 return binaryXor(Other); 808 // Note: floating point operations applied to abstract ranges are just 809 // ideal integer operations with a lossy representation 810 case Instruction::FAdd: 811 return add(Other); 812 case Instruction::FSub: 813 return sub(Other); 814 case Instruction::FMul: 815 return multiply(Other); 816 default: 817 // Conservatively return getFull set. 818 return getFull(); 819 } 820 } 821 822 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp, 823 const ConstantRange &Other, 824 unsigned NoWrapKind) const { 825 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 826 827 switch (BinOp) { 828 case Instruction::Add: 829 return addWithNoWrap(Other, NoWrapKind); 830 case Instruction::Sub: 831 return subWithNoWrap(Other, NoWrapKind); 832 default: 833 // Don't know about this Overflowing Binary Operation. 834 // Conservatively fallback to plain binop handling. 835 return binaryOp(BinOp, Other); 836 } 837 } 838 839 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) { 840 switch (IntrinsicID) { 841 case Intrinsic::uadd_sat: 842 case Intrinsic::usub_sat: 843 case Intrinsic::sadd_sat: 844 case Intrinsic::ssub_sat: 845 case Intrinsic::umin: 846 case Intrinsic::umax: 847 case Intrinsic::smin: 848 case Intrinsic::smax: 849 case Intrinsic::abs: 850 return true; 851 default: 852 return false; 853 } 854 } 855 856 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID, 857 ArrayRef<ConstantRange> Ops) { 858 switch (IntrinsicID) { 859 case Intrinsic::uadd_sat: 860 return Ops[0].uadd_sat(Ops[1]); 861 case Intrinsic::usub_sat: 862 return Ops[0].usub_sat(Ops[1]); 863 case Intrinsic::sadd_sat: 864 return Ops[0].sadd_sat(Ops[1]); 865 case Intrinsic::ssub_sat: 866 return Ops[0].ssub_sat(Ops[1]); 867 case Intrinsic::umin: 868 return Ops[0].umin(Ops[1]); 869 case Intrinsic::umax: 870 return Ops[0].umax(Ops[1]); 871 case Intrinsic::smin: 872 return Ops[0].smin(Ops[1]); 873 case Intrinsic::smax: 874 return Ops[0].smax(Ops[1]); 875 case Intrinsic::abs: { 876 const APInt *IntMinIsPoison = Ops[1].getSingleElement(); 877 assert(IntMinIsPoison && "Must be known (immarg)"); 878 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean"); 879 return Ops[0].abs(IntMinIsPoison->getBoolValue()); 880 } 881 default: 882 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported"); 883 llvm_unreachable("Unsupported intrinsic"); 884 } 885 } 886 887 ConstantRange 888 ConstantRange::add(const ConstantRange &Other) const { 889 if (isEmptySet() || Other.isEmptySet()) 890 return getEmpty(); 891 if (isFullSet() || Other.isFullSet()) 892 return getFull(); 893 894 APInt NewLower = getLower() + Other.getLower(); 895 APInt NewUpper = getUpper() + Other.getUpper() - 1; 896 if (NewLower == NewUpper) 897 return getFull(); 898 899 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 900 if (X.isSizeStrictlySmallerThan(*this) || 901 X.isSizeStrictlySmallerThan(Other)) 902 // We've wrapped, therefore, full set. 903 return getFull(); 904 return X; 905 } 906 907 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, 908 unsigned NoWrapKind, 909 PreferredRangeType RangeType) const { 910 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). 911 // (X is from this, and Y is from Other) 912 if (isEmptySet() || Other.isEmptySet()) 913 return getEmpty(); 914 if (isFullSet() && Other.isFullSet()) 915 return getFull(); 916 917 using OBO = OverflowingBinaryOperator; 918 ConstantRange Result = add(Other); 919 920 // If an overflow happens for every value pair in these two constant ranges, 921 // we must return Empty set. In this case, we get that for free, because we 922 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results 923 // in an empty set. 924 925 if (NoWrapKind & OBO::NoSignedWrap) 926 Result = Result.intersectWith(sadd_sat(Other), RangeType); 927 928 if (NoWrapKind & OBO::NoUnsignedWrap) 929 Result = Result.intersectWith(uadd_sat(Other), RangeType); 930 931 return Result; 932 } 933 934 ConstantRange 935 ConstantRange::sub(const ConstantRange &Other) const { 936 if (isEmptySet() || Other.isEmptySet()) 937 return getEmpty(); 938 if (isFullSet() || Other.isFullSet()) 939 return getFull(); 940 941 APInt NewLower = getLower() - Other.getUpper() + 1; 942 APInt NewUpper = getUpper() - Other.getLower(); 943 if (NewLower == NewUpper) 944 return getFull(); 945 946 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 947 if (X.isSizeStrictlySmallerThan(*this) || 948 X.isSizeStrictlySmallerThan(Other)) 949 // We've wrapped, therefore, full set. 950 return getFull(); 951 return X; 952 } 953 954 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other, 955 unsigned NoWrapKind, 956 PreferredRangeType RangeType) const { 957 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow). 958 // (X is from this, and Y is from Other) 959 if (isEmptySet() || Other.isEmptySet()) 960 return getEmpty(); 961 if (isFullSet() && Other.isFullSet()) 962 return getFull(); 963 964 using OBO = OverflowingBinaryOperator; 965 ConstantRange Result = sub(Other); 966 967 // If an overflow happens for every value pair in these two constant ranges, 968 // we must return Empty set. In signed case, we get that for free, because we 969 // get lucky that intersection of sub() with ssub_sat() results in an 970 // empty set. But for unsigned we must perform the overflow check manually. 971 972 if (NoWrapKind & OBO::NoSignedWrap) 973 Result = Result.intersectWith(ssub_sat(Other), RangeType); 974 975 if (NoWrapKind & OBO::NoUnsignedWrap) { 976 if (getUnsignedMax().ult(Other.getUnsignedMin())) 977 return getEmpty(); // Always overflows. 978 Result = Result.intersectWith(usub_sat(Other), RangeType); 979 } 980 981 return Result; 982 } 983 984 ConstantRange 985 ConstantRange::multiply(const ConstantRange &Other) const { 986 // TODO: If either operand is a single element and the multiply is known to 987 // be non-wrapping, round the result min and max value to the appropriate 988 // multiple of that element. If wrapping is possible, at least adjust the 989 // range according to the greatest power-of-two factor of the single element. 990 991 if (isEmptySet() || Other.isEmptySet()) 992 return getEmpty(); 993 994 // Multiplication is signedness-independent. However different ranges can be 995 // obtained depending on how the input ranges are treated. These different 996 // ranges are all conservatively correct, but one might be better than the 997 // other. We calculate two ranges; one treating the inputs as unsigned 998 // and the other signed, then return the smallest of these ranges. 999 1000 // Unsigned range first. 1001 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 1002 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 1003 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 1004 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 1005 1006 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 1007 this_max * Other_max + 1); 1008 ConstantRange UR = Result_zext.truncate(getBitWidth()); 1009 1010 // If the unsigned range doesn't wrap, and isn't negative then it's a range 1011 // from one positive number to another which is as good as we can generate. 1012 // In this case, skip the extra work of generating signed ranges which aren't 1013 // going to be better than this range. 1014 if (!UR.isUpperWrapped() && 1015 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) 1016 return UR; 1017 1018 // Now the signed range. Because we could be dealing with negative numbers 1019 // here, the lower bound is the smallest of the cartesian product of the 1020 // lower and upper ranges; for example: 1021 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1022 // Similarly for the upper bound, swapping min for max. 1023 1024 this_min = getSignedMin().sext(getBitWidth() * 2); 1025 this_max = getSignedMax().sext(getBitWidth() * 2); 1026 Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1027 Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1028 1029 auto L = {this_min * Other_min, this_min * Other_max, 1030 this_max * Other_min, this_max * Other_max}; 1031 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1032 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); 1033 ConstantRange SR = Result_sext.truncate(getBitWidth()); 1034 1035 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; 1036 } 1037 1038 ConstantRange 1039 ConstantRange::smax(const ConstantRange &Other) const { 1040 // X smax Y is: range(smax(X_smin, Y_smin), 1041 // smax(X_smax, Y_smax)) 1042 if (isEmptySet() || Other.isEmptySet()) 1043 return getEmpty(); 1044 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 1045 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 1046 return getNonEmpty(std::move(NewL), std::move(NewU)); 1047 } 1048 1049 ConstantRange 1050 ConstantRange::umax(const ConstantRange &Other) const { 1051 // X umax Y is: range(umax(X_umin, Y_umin), 1052 // umax(X_umax, Y_umax)) 1053 if (isEmptySet() || Other.isEmptySet()) 1054 return getEmpty(); 1055 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1056 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1057 return getNonEmpty(std::move(NewL), std::move(NewU)); 1058 } 1059 1060 ConstantRange 1061 ConstantRange::smin(const ConstantRange &Other) const { 1062 // X smin Y is: range(smin(X_smin, Y_smin), 1063 // smin(X_smax, Y_smax)) 1064 if (isEmptySet() || Other.isEmptySet()) 1065 return getEmpty(); 1066 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); 1067 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; 1068 return getNonEmpty(std::move(NewL), std::move(NewU)); 1069 } 1070 1071 ConstantRange 1072 ConstantRange::umin(const ConstantRange &Other) const { 1073 // X umin Y is: range(umin(X_umin, Y_umin), 1074 // umin(X_umax, Y_umax)) 1075 if (isEmptySet() || Other.isEmptySet()) 1076 return getEmpty(); 1077 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); 1078 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1079 return getNonEmpty(std::move(NewL), std::move(NewU)); 1080 } 1081 1082 ConstantRange 1083 ConstantRange::udiv(const ConstantRange &RHS) const { 1084 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) 1085 return getEmpty(); 1086 1087 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 1088 1089 APInt RHS_umin = RHS.getUnsignedMin(); 1090 if (RHS_umin.isNullValue()) { 1091 // We want the lowest value in RHS excluding zero. Usually that would be 1 1092 // except for a range in the form of [X, 1) in which case it would be X. 1093 if (RHS.getUpper() == 1) 1094 RHS_umin = RHS.getLower(); 1095 else 1096 RHS_umin = 1; 1097 } 1098 1099 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 1100 return getNonEmpty(std::move(Lower), std::move(Upper)); 1101 } 1102 1103 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { 1104 // We split up the LHS and RHS into positive and negative components 1105 // and then also compute the positive and negative components of the result 1106 // separately by combining division results with the appropriate signs. 1107 APInt Zero = APInt::getNullValue(getBitWidth()); 1108 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1109 ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin); 1110 ConstantRange NegFilter(SignedMin, Zero); 1111 ConstantRange PosL = intersectWith(PosFilter); 1112 ConstantRange NegL = intersectWith(NegFilter); 1113 ConstantRange PosR = RHS.intersectWith(PosFilter); 1114 ConstantRange NegR = RHS.intersectWith(NegFilter); 1115 1116 ConstantRange PosRes = getEmpty(); 1117 if (!PosL.isEmptySet() && !PosR.isEmptySet()) 1118 // pos / pos = pos. 1119 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1), 1120 (PosL.Upper - 1).sdiv(PosR.Lower) + 1); 1121 1122 if (!NegL.isEmptySet() && !NegR.isEmptySet()) { 1123 // neg / neg = pos. 1124 // 1125 // We need to deal with one tricky case here: SignedMin / -1 is UB on the 1126 // IR level, so we'll want to exclude this case when calculating bounds. 1127 // (For APInts the operation is well-defined and yields SignedMin.) We 1128 // handle this by dropping either SignedMin from the LHS or -1 from the RHS. 1129 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower); 1130 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) { 1131 // Remove -1 from the LHS. Skip if it's the only element, as this would 1132 // leave us with an empty set. 1133 if (!NegR.Lower.isAllOnesValue()) { 1134 APInt AdjNegRUpper; 1135 if (RHS.Lower.isAllOnesValue()) 1136 // Negative part of [-1, X] without -1 is [SignedMin, X]. 1137 AdjNegRUpper = RHS.Upper; 1138 else 1139 // [X, -1] without -1 is [X, -2]. 1140 AdjNegRUpper = NegR.Upper - 1; 1141 1142 PosRes = PosRes.unionWith( 1143 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1)); 1144 } 1145 1146 // Remove SignedMin from the RHS. Skip if it's the only element, as this 1147 // would leave us with an empty set. 1148 if (NegL.Upper != SignedMin + 1) { 1149 APInt AdjNegLLower; 1150 if (Upper == SignedMin + 1) 1151 // Negative part of [X, SignedMin] without SignedMin is [X, -1]. 1152 AdjNegLLower = Lower; 1153 else 1154 // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. 1155 AdjNegLLower = NegL.Lower + 1; 1156 1157 PosRes = PosRes.unionWith( 1158 ConstantRange(std::move(Lo), 1159 AdjNegLLower.sdiv(NegR.Upper - 1) + 1)); 1160 } 1161 } else { 1162 PosRes = PosRes.unionWith( 1163 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1)); 1164 } 1165 } 1166 1167 ConstantRange NegRes = getEmpty(); 1168 if (!PosL.isEmptySet() && !NegR.isEmptySet()) 1169 // pos / neg = neg. 1170 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1), 1171 PosL.Lower.sdiv(NegR.Lower) + 1); 1172 1173 if (!NegL.isEmptySet() && !PosR.isEmptySet()) 1174 // neg / pos = neg. 1175 NegRes = NegRes.unionWith( 1176 ConstantRange(NegL.Lower.sdiv(PosR.Lower), 1177 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1)); 1178 1179 // Prefer a non-wrapping signed range here. 1180 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed); 1181 1182 // Preserve the zero that we dropped when splitting the LHS by sign. 1183 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) 1184 Res = Res.unionWith(ConstantRange(Zero)); 1185 return Res; 1186 } 1187 1188 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { 1189 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) 1190 return getEmpty(); 1191 1192 // L % R for L < R is L. 1193 if (getUnsignedMax().ult(RHS.getUnsignedMin())) 1194 return *this; 1195 1196 // L % R is <= L and < R. 1197 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1; 1198 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper)); 1199 } 1200 1201 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { 1202 if (isEmptySet() || RHS.isEmptySet()) 1203 return getEmpty(); 1204 1205 ConstantRange AbsRHS = RHS.abs(); 1206 APInt MinAbsRHS = AbsRHS.getUnsignedMin(); 1207 APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); 1208 1209 // Modulus by zero is UB. 1210 if (MaxAbsRHS.isNullValue()) 1211 return getEmpty(); 1212 1213 if (MinAbsRHS.isNullValue()) 1214 ++MinAbsRHS; 1215 1216 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); 1217 1218 if (MinLHS.isNonNegative()) { 1219 // L % R for L < R is L. 1220 if (MaxLHS.ult(MinAbsRHS)) 1221 return *this; 1222 1223 // L % R is <= L and < R. 1224 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1225 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper)); 1226 } 1227 1228 // Same basic logic as above, but the result is negative. 1229 if (MaxLHS.isNegative()) { 1230 if (MinLHS.ugt(-MinAbsRHS)) 1231 return *this; 1232 1233 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1234 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); 1235 } 1236 1237 // LHS range crosses zero. 1238 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1239 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1240 return ConstantRange(std::move(Lower), std::move(Upper)); 1241 } 1242 1243 ConstantRange 1244 ConstantRange::binaryAnd(const ConstantRange &Other) const { 1245 if (isEmptySet() || Other.isEmptySet()) 1246 return getEmpty(); 1247 1248 // Use APInt's implementation of AND for single element ranges. 1249 if (isSingleElement() && Other.isSingleElement()) 1250 return {*getSingleElement() & *Other.getSingleElement()}; 1251 1252 // TODO: replace this with something less conservative 1253 1254 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); 1255 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1); 1256 } 1257 1258 ConstantRange 1259 ConstantRange::binaryOr(const ConstantRange &Other) const { 1260 if (isEmptySet() || Other.isEmptySet()) 1261 return getEmpty(); 1262 1263 // Use APInt's implementation of OR for single element ranges. 1264 if (isSingleElement() && Other.isSingleElement()) 1265 return {*getSingleElement() | *Other.getSingleElement()}; 1266 1267 // TODO: replace this with something less conservative 1268 1269 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1270 return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth())); 1271 } 1272 1273 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const { 1274 if (isEmptySet() || Other.isEmptySet()) 1275 return getEmpty(); 1276 1277 // Use APInt's implementation of XOR for single element ranges. 1278 if (isSingleElement() && Other.isSingleElement()) 1279 return {*getSingleElement() ^ *Other.getSingleElement()}; 1280 1281 // TODO: replace this with something less conservative 1282 return getFull(); 1283 } 1284 1285 ConstantRange 1286 ConstantRange::shl(const ConstantRange &Other) const { 1287 if (isEmptySet() || Other.isEmptySet()) 1288 return getEmpty(); 1289 1290 APInt max = getUnsignedMax(); 1291 APInt Other_umax = Other.getUnsignedMax(); 1292 1293 // If we are shifting by maximum amount of 1294 // zero return return the original range. 1295 if (Other_umax.isNullValue()) 1296 return *this; 1297 // there's overflow! 1298 if (Other_umax.ugt(max.countLeadingZeros())) 1299 return getFull(); 1300 1301 // FIXME: implement the other tricky cases 1302 1303 APInt min = getUnsignedMin(); 1304 min <<= Other.getUnsignedMin(); 1305 max <<= Other_umax; 1306 1307 return ConstantRange(std::move(min), std::move(max) + 1); 1308 } 1309 1310 ConstantRange 1311 ConstantRange::lshr(const ConstantRange &Other) const { 1312 if (isEmptySet() || Other.isEmptySet()) 1313 return getEmpty(); 1314 1315 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; 1316 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 1317 return getNonEmpty(std::move(min), std::move(max)); 1318 } 1319 1320 ConstantRange 1321 ConstantRange::ashr(const ConstantRange &Other) const { 1322 if (isEmptySet() || Other.isEmptySet()) 1323 return getEmpty(); 1324 1325 // May straddle zero, so handle both positive and negative cases. 1326 // 'PosMax' is the upper bound of the result of the ashr 1327 // operation, when Upper of the LHS of ashr is a non-negative. 1328 // number. Since ashr of a non-negative number will result in a 1329 // smaller number, the Upper value of LHS is shifted right with 1330 // the minimum value of 'Other' instead of the maximum value. 1331 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; 1332 1333 // 'PosMin' is the lower bound of the result of the ashr 1334 // operation, when Lower of the LHS is a non-negative number. 1335 // Since ashr of a non-negative number will result in a smaller 1336 // number, the Lower value of LHS is shifted right with the 1337 // maximum value of 'Other'. 1338 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); 1339 1340 // 'NegMax' is the upper bound of the result of the ashr 1341 // operation, when Upper of the LHS of ashr is a negative number. 1342 // Since 'ashr' of a negative number will result in a bigger 1343 // number, the Upper value of LHS is shifted right with the 1344 // maximum value of 'Other'. 1345 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; 1346 1347 // 'NegMin' is the lower bound of the result of the ashr 1348 // operation, when Lower of the LHS of ashr is a negative number. 1349 // Since 'ashr' of a negative number will result in a bigger 1350 // number, the Lower value of LHS is shifted right with the 1351 // minimum value of 'Other'. 1352 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); 1353 1354 APInt max, min; 1355 if (getSignedMin().isNonNegative()) { 1356 // Upper and Lower of LHS are non-negative. 1357 min = PosMin; 1358 max = PosMax; 1359 } else if (getSignedMax().isNegative()) { 1360 // Upper and Lower of LHS are negative. 1361 min = NegMin; 1362 max = NegMax; 1363 } else { 1364 // Upper is non-negative and Lower is negative. 1365 min = NegMin; 1366 max = PosMax; 1367 } 1368 return getNonEmpty(std::move(min), std::move(max)); 1369 } 1370 1371 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { 1372 if (isEmptySet() || Other.isEmptySet()) 1373 return getEmpty(); 1374 1375 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin()); 1376 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1; 1377 return getNonEmpty(std::move(NewL), std::move(NewU)); 1378 } 1379 1380 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { 1381 if (isEmptySet() || Other.isEmptySet()) 1382 return getEmpty(); 1383 1384 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin()); 1385 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1; 1386 return getNonEmpty(std::move(NewL), std::move(NewU)); 1387 } 1388 1389 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { 1390 if (isEmptySet() || Other.isEmptySet()) 1391 return getEmpty(); 1392 1393 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax()); 1394 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1; 1395 return getNonEmpty(std::move(NewL), std::move(NewU)); 1396 } 1397 1398 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { 1399 if (isEmptySet() || Other.isEmptySet()) 1400 return getEmpty(); 1401 1402 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax()); 1403 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1; 1404 return getNonEmpty(std::move(NewL), std::move(NewU)); 1405 } 1406 1407 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const { 1408 if (isEmptySet() || Other.isEmptySet()) 1409 return getEmpty(); 1410 1411 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin()); 1412 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1; 1413 return getNonEmpty(std::move(NewL), std::move(NewU)); 1414 } 1415 1416 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const { 1417 if (isEmptySet() || Other.isEmptySet()) 1418 return getEmpty(); 1419 1420 // Because we could be dealing with negative numbers here, the lower bound is 1421 // the smallest of the cartesian product of the lower and upper ranges; 1422 // for example: 1423 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1424 // Similarly for the upper bound, swapping min for max. 1425 1426 APInt this_min = getSignedMin().sext(getBitWidth() * 2); 1427 APInt this_max = getSignedMax().sext(getBitWidth() * 2); 1428 APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1429 APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1430 1431 auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min, 1432 this_max * Other_max}; 1433 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1434 1435 // Note that we wanted to perform signed saturating multiplication, 1436 // so since we performed plain multiplication in twice the bitwidth, 1437 // we need to perform signed saturating truncation. 1438 return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()), 1439 std::max(L, Compare).truncSSat(getBitWidth()) + 1); 1440 } 1441 1442 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const { 1443 if (isEmptySet() || Other.isEmptySet()) 1444 return getEmpty(); 1445 1446 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin()); 1447 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1; 1448 return getNonEmpty(std::move(NewL), std::move(NewU)); 1449 } 1450 1451 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const { 1452 if (isEmptySet() || Other.isEmptySet()) 1453 return getEmpty(); 1454 1455 APInt Min = getSignedMin(), Max = getSignedMax(); 1456 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax(); 1457 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax); 1458 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1; 1459 return getNonEmpty(std::move(NewL), std::move(NewU)); 1460 } 1461 1462 ConstantRange ConstantRange::inverse() const { 1463 if (isFullSet()) 1464 return getEmpty(); 1465 if (isEmptySet()) 1466 return getFull(); 1467 return ConstantRange(Upper, Lower); 1468 } 1469 1470 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const { 1471 if (isEmptySet()) 1472 return getEmpty(); 1473 1474 if (isSignWrappedSet()) { 1475 APInt Lo; 1476 // Check whether the range crosses zero. 1477 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) 1478 Lo = APInt::getNullValue(getBitWidth()); 1479 else 1480 Lo = APIntOps::umin(Lower, -Upper + 1); 1481 1482 // If SignedMin is not poison, then it is included in the result range. 1483 if (IntMinIsPoison) 1484 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth())); 1485 else 1486 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1); 1487 } 1488 1489 APInt SMin = getSignedMin(), SMax = getSignedMax(); 1490 1491 // Skip SignedMin if it is poison. 1492 if (IntMinIsPoison && SMin.isMinSignedValue()) { 1493 // The range may become empty if it *only* contains SignedMin. 1494 if (SMax.isMinSignedValue()) 1495 return getEmpty(); 1496 ++SMin; 1497 } 1498 1499 // All non-negative. 1500 if (SMin.isNonNegative()) 1501 return *this; 1502 1503 // All negative. 1504 if (SMax.isNegative()) 1505 return ConstantRange(-SMax, -SMin + 1); 1506 1507 // Range crosses zero. 1508 return ConstantRange(APInt::getNullValue(getBitWidth()), 1509 APIntOps::umax(-SMin, SMax) + 1); 1510 } 1511 1512 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( 1513 const ConstantRange &Other) const { 1514 if (isEmptySet() || Other.isEmptySet()) 1515 return OverflowResult::MayOverflow; 1516 1517 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1518 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1519 1520 // a u+ b overflows high iff a u> ~b. 1521 if (Min.ugt(~OtherMin)) 1522 return OverflowResult::AlwaysOverflowsHigh; 1523 if (Max.ugt(~OtherMax)) 1524 return OverflowResult::MayOverflow; 1525 return OverflowResult::NeverOverflows; 1526 } 1527 1528 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( 1529 const ConstantRange &Other) const { 1530 if (isEmptySet() || Other.isEmptySet()) 1531 return OverflowResult::MayOverflow; 1532 1533 APInt Min = getSignedMin(), Max = getSignedMax(); 1534 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1535 1536 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1537 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1538 1539 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. 1540 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. 1541 if (Min.isNonNegative() && OtherMin.isNonNegative() && 1542 Min.sgt(SignedMax - OtherMin)) 1543 return OverflowResult::AlwaysOverflowsHigh; 1544 if (Max.isNegative() && OtherMax.isNegative() && 1545 Max.slt(SignedMin - OtherMax)) 1546 return OverflowResult::AlwaysOverflowsLow; 1547 1548 if (Max.isNonNegative() && OtherMax.isNonNegative() && 1549 Max.sgt(SignedMax - OtherMax)) 1550 return OverflowResult::MayOverflow; 1551 if (Min.isNegative() && OtherMin.isNegative() && 1552 Min.slt(SignedMin - OtherMin)) 1553 return OverflowResult::MayOverflow; 1554 1555 return OverflowResult::NeverOverflows; 1556 } 1557 1558 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( 1559 const ConstantRange &Other) const { 1560 if (isEmptySet() || Other.isEmptySet()) 1561 return OverflowResult::MayOverflow; 1562 1563 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1564 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1565 1566 // a u- b overflows low iff a u< b. 1567 if (Max.ult(OtherMin)) 1568 return OverflowResult::AlwaysOverflowsLow; 1569 if (Min.ult(OtherMax)) 1570 return OverflowResult::MayOverflow; 1571 return OverflowResult::NeverOverflows; 1572 } 1573 1574 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( 1575 const ConstantRange &Other) const { 1576 if (isEmptySet() || Other.isEmptySet()) 1577 return OverflowResult::MayOverflow; 1578 1579 APInt Min = getSignedMin(), Max = getSignedMax(); 1580 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1581 1582 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1583 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1584 1585 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. 1586 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. 1587 if (Min.isNonNegative() && OtherMax.isNegative() && 1588 Min.sgt(SignedMax + OtherMax)) 1589 return OverflowResult::AlwaysOverflowsHigh; 1590 if (Max.isNegative() && OtherMin.isNonNegative() && 1591 Max.slt(SignedMin + OtherMin)) 1592 return OverflowResult::AlwaysOverflowsLow; 1593 1594 if (Max.isNonNegative() && OtherMin.isNegative() && 1595 Max.sgt(SignedMax + OtherMin)) 1596 return OverflowResult::MayOverflow; 1597 if (Min.isNegative() && OtherMax.isNonNegative() && 1598 Min.slt(SignedMin + OtherMax)) 1599 return OverflowResult::MayOverflow; 1600 1601 return OverflowResult::NeverOverflows; 1602 } 1603 1604 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( 1605 const ConstantRange &Other) const { 1606 if (isEmptySet() || Other.isEmptySet()) 1607 return OverflowResult::MayOverflow; 1608 1609 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1610 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1611 bool Overflow; 1612 1613 (void) Min.umul_ov(OtherMin, Overflow); 1614 if (Overflow) 1615 return OverflowResult::AlwaysOverflowsHigh; 1616 1617 (void) Max.umul_ov(OtherMax, Overflow); 1618 if (Overflow) 1619 return OverflowResult::MayOverflow; 1620 1621 return OverflowResult::NeverOverflows; 1622 } 1623 1624 void ConstantRange::print(raw_ostream &OS) const { 1625 if (isFullSet()) 1626 OS << "full-set"; 1627 else if (isEmptySet()) 1628 OS << "empty-set"; 1629 else 1630 OS << "[" << Lower << "," << Upper << ")"; 1631 } 1632 1633 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1634 LLVM_DUMP_METHOD void ConstantRange::dump() const { 1635 print(dbgs()); 1636 } 1637 #endif 1638 1639 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 1640 const unsigned NumRanges = Ranges.getNumOperands() / 2; 1641 assert(NumRanges >= 1 && "Must have at least one range!"); 1642 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 1643 1644 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 1645 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 1646 1647 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 1648 1649 for (unsigned i = 1; i < NumRanges; ++i) { 1650 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 1651 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 1652 1653 // Note: unionWith will potentially create a range that contains values not 1654 // contained in any of the original N ranges. 1655 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 1656 } 1657 1658 return CR; 1659 } 1660