1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Represent a range of possible values that may occur when the program is run 10 // for an integral value. This keeps track of a lower and upper bound for the 11 // constant, which MAY wrap around the end of the numeric range. To do this, it 12 // keeps track of a [lower, upper) bound, which specifies an interval just like 13 // STL iterators. When used with boolean values, the following are important 14 // ranges (other integral ranges use min/max values for special range values): 15 // 16 // [F, F) = {} = Empty set 17 // [T, F) = {T} 18 // [F, T) = {F} 19 // [T, T) = {F, T} = Full set 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 41 using namespace llvm; 42 43 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) 44 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), 45 Upper(Lower) {} 46 47 ConstantRange::ConstantRange(APInt V) 48 : Lower(std::move(V)), Upper(Lower + 1) {} 49 50 ConstantRange::ConstantRange(APInt L, APInt U) 51 : Lower(std::move(L)), Upper(std::move(U)) { 52 assert(Lower.getBitWidth() == Upper.getBitWidth() && 53 "ConstantRange with unequal bit widths"); 54 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && 55 "Lower == Upper, but they aren't min or max value!"); 56 } 57 58 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, 59 bool IsSigned) { 60 assert(!Known.hasConflict() && "Expected valid KnownBits"); 61 62 if (Known.isUnknown()) 63 return getFull(Known.getBitWidth()); 64 65 // For unsigned ranges, or signed ranges with known sign bit, create a simple 66 // range between the smallest and largest possible value. 67 if (!IsSigned || Known.isNegative() || Known.isNonNegative()) 68 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1); 69 70 // If we don't know the sign bit, pick the lower bound as a negative number 71 // and the upper bound as a non-negative one. 72 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue(); 73 Lower.setSignBit(); 74 Upper.clearSignBit(); 75 return ConstantRange(Lower, Upper + 1); 76 } 77 78 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, 79 const ConstantRange &CR) { 80 if (CR.isEmptySet()) 81 return CR; 82 83 uint32_t W = CR.getBitWidth(); 84 switch (Pred) { 85 default: 86 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); 87 case CmpInst::ICMP_EQ: 88 return CR; 89 case CmpInst::ICMP_NE: 90 if (CR.isSingleElement()) 91 return ConstantRange(CR.getUpper(), CR.getLower()); 92 return getFull(W); 93 case CmpInst::ICMP_ULT: { 94 APInt UMax(CR.getUnsignedMax()); 95 if (UMax.isMinValue()) 96 return getEmpty(W); 97 return ConstantRange(APInt::getMinValue(W), std::move(UMax)); 98 } 99 case CmpInst::ICMP_SLT: { 100 APInt SMax(CR.getSignedMax()); 101 if (SMax.isMinSignedValue()) 102 return getEmpty(W); 103 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); 104 } 105 case CmpInst::ICMP_ULE: 106 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1); 107 case CmpInst::ICMP_SLE: 108 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1); 109 case CmpInst::ICMP_UGT: { 110 APInt UMin(CR.getUnsignedMin()); 111 if (UMin.isMaxValue()) 112 return getEmpty(W); 113 return ConstantRange(std::move(UMin) + 1, APInt::getZero(W)); 114 } 115 case CmpInst::ICMP_SGT: { 116 APInt SMin(CR.getSignedMin()); 117 if (SMin.isMaxSignedValue()) 118 return getEmpty(W); 119 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); 120 } 121 case CmpInst::ICMP_UGE: 122 return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W)); 123 case CmpInst::ICMP_SGE: 124 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W)); 125 } 126 } 127 128 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 129 const ConstantRange &CR) { 130 // Follows from De-Morgan's laws: 131 // 132 // ~(~A union ~B) == A intersect B. 133 // 134 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) 135 .inverse(); 136 } 137 138 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, 139 const APInt &C) { 140 // Computes the exact range that is equal to both the constant ranges returned 141 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true 142 // when RHS is a singleton such as an APInt and so the assert is valid. 143 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion 144 // returns [0,4) but makeSatisfyICmpRegion returns [0,2). 145 // 146 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); 147 return makeAllowedICmpRegion(Pred, C); 148 } 149 150 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 151 APInt &RHS) const { 152 bool Success = false; 153 154 if (isFullSet() || isEmptySet()) { 155 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 156 RHS = APInt(getBitWidth(), 0); 157 Success = true; 158 } else if (auto *OnlyElt = getSingleElement()) { 159 Pred = CmpInst::ICMP_EQ; 160 RHS = *OnlyElt; 161 Success = true; 162 } else if (auto *OnlyMissingElt = getSingleMissingElement()) { 163 Pred = CmpInst::ICMP_NE; 164 RHS = *OnlyMissingElt; 165 Success = true; 166 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { 167 Pred = 168 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 169 RHS = getUpper(); 170 Success = true; 171 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { 172 Pred = 173 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; 174 RHS = getLower(); 175 Success = true; 176 } 177 178 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && 179 "Bad result!"); 180 181 return Success; 182 } 183 184 bool ConstantRange::icmp(CmpInst::Predicate Pred, 185 const ConstantRange &Other) const { 186 return makeSatisfyingICmpRegion(Pred, Other).contains(*this); 187 } 188 189 /// Exact mul nuw region for single element RHS. 190 static ConstantRange makeExactMulNUWRegion(const APInt &V) { 191 unsigned BitWidth = V.getBitWidth(); 192 if (V == 0) 193 return ConstantRange::getFull(V.getBitWidth()); 194 195 return ConstantRange::getNonEmpty( 196 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V, 197 APInt::Rounding::UP), 198 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V, 199 APInt::Rounding::DOWN) + 1); 200 } 201 202 /// Exact mul nsw region for single element RHS. 203 static ConstantRange makeExactMulNSWRegion(const APInt &V) { 204 // Handle special case for 0, -1 and 1. See the last for reason why we 205 // specialize -1 and 1. 206 unsigned BitWidth = V.getBitWidth(); 207 if (V == 0 || V.isOne()) 208 return ConstantRange::getFull(BitWidth); 209 210 APInt MinValue = APInt::getSignedMinValue(BitWidth); 211 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 212 // e.g. Returning [-127, 127], represented as [-127, -128). 213 if (V.isAllOnes()) 214 return ConstantRange(-MaxValue, MinValue); 215 216 APInt Lower, Upper; 217 if (V.isNegative()) { 218 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); 219 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); 220 } else { 221 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); 222 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); 223 } 224 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1). 225 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1, 226 // and 1 are already handled as special cases. 227 return ConstantRange(Lower, Upper + 1); 228 } 229 230 ConstantRange 231 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 232 const ConstantRange &Other, 233 unsigned NoWrapKind) { 234 using OBO = OverflowingBinaryOperator; 235 236 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 237 238 assert((NoWrapKind == OBO::NoSignedWrap || 239 NoWrapKind == OBO::NoUnsignedWrap) && 240 "NoWrapKind invalid!"); 241 242 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; 243 unsigned BitWidth = Other.getBitWidth(); 244 245 switch (BinOp) { 246 default: 247 llvm_unreachable("Unsupported binary op"); 248 249 case Instruction::Add: { 250 if (Unsigned) 251 return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax()); 252 253 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 254 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 255 return getNonEmpty( 256 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, 257 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); 258 } 259 260 case Instruction::Sub: { 261 if (Unsigned) 262 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth)); 263 264 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 265 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 266 return getNonEmpty( 267 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, 268 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); 269 } 270 271 case Instruction::Mul: 272 if (Unsigned) 273 return makeExactMulNUWRegion(Other.getUnsignedMax()); 274 275 return makeExactMulNSWRegion(Other.getSignedMin()) 276 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax())); 277 278 case Instruction::Shl: { 279 // For given range of shift amounts, if we ignore all illegal shift amounts 280 // (that always produce poison), what shift amount range is left? 281 ConstantRange ShAmt = Other.intersectWith( 282 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); 283 if (ShAmt.isEmptySet()) { 284 // If the entire range of shift amounts is already poison-producing, 285 // then we can freely add more poison-producing flags ontop of that. 286 return getFull(BitWidth); 287 } 288 // There are some legal shift amounts, we can compute conservatively-correct 289 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax 290 // to be at most bitwidth-1, which results in most conservative range. 291 APInt ShAmtUMax = ShAmt.getUnsignedMax(); 292 if (Unsigned) 293 return getNonEmpty(APInt::getZero(BitWidth), 294 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1); 295 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax), 296 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1); 297 } 298 } 299 } 300 301 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, 302 const APInt &Other, 303 unsigned NoWrapKind) { 304 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as 305 // "for all" and "for any" coincide in this case. 306 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind); 307 } 308 309 bool ConstantRange::isFullSet() const { 310 return Lower == Upper && Lower.isMaxValue(); 311 } 312 313 bool ConstantRange::isEmptySet() const { 314 return Lower == Upper && Lower.isMinValue(); 315 } 316 317 bool ConstantRange::isWrappedSet() const { 318 return Lower.ugt(Upper) && !Upper.isZero(); 319 } 320 321 bool ConstantRange::isUpperWrapped() const { 322 return Lower.ugt(Upper); 323 } 324 325 bool ConstantRange::isSignWrappedSet() const { 326 return Lower.sgt(Upper) && !Upper.isMinSignedValue(); 327 } 328 329 bool ConstantRange::isUpperSignWrapped() const { 330 return Lower.sgt(Upper); 331 } 332 333 bool 334 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { 335 assert(getBitWidth() == Other.getBitWidth()); 336 if (isFullSet()) 337 return false; 338 if (Other.isFullSet()) 339 return true; 340 return (Upper - Lower).ult(Other.Upper - Other.Lower); 341 } 342 343 bool 344 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { 345 assert(MaxSize && "MaxSize can't be 0."); 346 // If this a full set, we need special handling to avoid needing an extra bit 347 // to represent the size. 348 if (isFullSet()) 349 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); 350 351 return (Upper - Lower).ugt(MaxSize); 352 } 353 354 bool ConstantRange::isAllNegative() const { 355 // Empty set is all negative, full set is not. 356 if (isEmptySet()) 357 return true; 358 if (isFullSet()) 359 return false; 360 361 return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); 362 } 363 364 bool ConstantRange::isAllNonNegative() const { 365 // Empty and full set are automatically treated correctly. 366 return !isSignWrappedSet() && Lower.isNonNegative(); 367 } 368 369 APInt ConstantRange::getUnsignedMax() const { 370 if (isFullSet() || isUpperWrapped()) 371 return APInt::getMaxValue(getBitWidth()); 372 return getUpper() - 1; 373 } 374 375 APInt ConstantRange::getUnsignedMin() const { 376 if (isFullSet() || isWrappedSet()) 377 return APInt::getMinValue(getBitWidth()); 378 return getLower(); 379 } 380 381 APInt ConstantRange::getSignedMax() const { 382 if (isFullSet() || isUpperSignWrapped()) 383 return APInt::getSignedMaxValue(getBitWidth()); 384 return getUpper() - 1; 385 } 386 387 APInt ConstantRange::getSignedMin() const { 388 if (isFullSet() || isSignWrappedSet()) 389 return APInt::getSignedMinValue(getBitWidth()); 390 return getLower(); 391 } 392 393 bool ConstantRange::contains(const APInt &V) const { 394 if (Lower == Upper) 395 return isFullSet(); 396 397 if (!isUpperWrapped()) 398 return Lower.ule(V) && V.ult(Upper); 399 return Lower.ule(V) || V.ult(Upper); 400 } 401 402 bool ConstantRange::contains(const ConstantRange &Other) const { 403 if (isFullSet() || Other.isEmptySet()) return true; 404 if (isEmptySet() || Other.isFullSet()) return false; 405 406 if (!isUpperWrapped()) { 407 if (Other.isUpperWrapped()) 408 return false; 409 410 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 411 } 412 413 if (!Other.isUpperWrapped()) 414 return Other.getUpper().ule(Upper) || 415 Lower.ule(Other.getLower()); 416 417 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 418 } 419 420 unsigned ConstantRange::getActiveBits() const { 421 if (isEmptySet()) 422 return 0; 423 424 return getUnsignedMax().getActiveBits(); 425 } 426 427 unsigned ConstantRange::getMinSignedBits() const { 428 if (isEmptySet()) 429 return 0; 430 431 return std::max(getSignedMin().getMinSignedBits(), 432 getSignedMax().getMinSignedBits()); 433 } 434 435 ConstantRange ConstantRange::subtract(const APInt &Val) const { 436 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 437 // If the set is empty or full, don't modify the endpoints. 438 if (Lower == Upper) 439 return *this; 440 return ConstantRange(Lower - Val, Upper - Val); 441 } 442 443 ConstantRange ConstantRange::difference(const ConstantRange &CR) const { 444 return intersectWith(CR.inverse()); 445 } 446 447 static ConstantRange getPreferredRange( 448 const ConstantRange &CR1, const ConstantRange &CR2, 449 ConstantRange::PreferredRangeType Type) { 450 if (Type == ConstantRange::Unsigned) { 451 if (!CR1.isWrappedSet() && CR2.isWrappedSet()) 452 return CR1; 453 if (CR1.isWrappedSet() && !CR2.isWrappedSet()) 454 return CR2; 455 } else if (Type == ConstantRange::Signed) { 456 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) 457 return CR1; 458 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) 459 return CR2; 460 } 461 462 if (CR1.isSizeStrictlySmallerThan(CR2)) 463 return CR1; 464 return CR2; 465 } 466 467 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, 468 PreferredRangeType Type) const { 469 assert(getBitWidth() == CR.getBitWidth() && 470 "ConstantRange types don't agree!"); 471 472 // Handle common cases. 473 if ( isEmptySet() || CR.isFullSet()) return *this; 474 if (CR.isEmptySet() || isFullSet()) return CR; 475 476 if (!isUpperWrapped() && CR.isUpperWrapped()) 477 return CR.intersectWith(*this, Type); 478 479 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 480 if (Lower.ult(CR.Lower)) { 481 // L---U : this 482 // L---U : CR 483 if (Upper.ule(CR.Lower)) 484 return getEmpty(); 485 486 // L---U : this 487 // L---U : CR 488 if (Upper.ult(CR.Upper)) 489 return ConstantRange(CR.Lower, Upper); 490 491 // L-------U : this 492 // L---U : CR 493 return CR; 494 } 495 // L---U : this 496 // L-------U : CR 497 if (Upper.ult(CR.Upper)) 498 return *this; 499 500 // L-----U : this 501 // L-----U : CR 502 if (Lower.ult(CR.Upper)) 503 return ConstantRange(Lower, CR.Upper); 504 505 // L---U : this 506 // L---U : CR 507 return getEmpty(); 508 } 509 510 if (isUpperWrapped() && !CR.isUpperWrapped()) { 511 if (CR.Lower.ult(Upper)) { 512 // ------U L--- : this 513 // L--U : CR 514 if (CR.Upper.ult(Upper)) 515 return CR; 516 517 // ------U L--- : this 518 // L------U : CR 519 if (CR.Upper.ule(Lower)) 520 return ConstantRange(CR.Lower, Upper); 521 522 // ------U L--- : this 523 // L----------U : CR 524 return getPreferredRange(*this, CR, Type); 525 } 526 if (CR.Lower.ult(Lower)) { 527 // --U L---- : this 528 // L--U : CR 529 if (CR.Upper.ule(Lower)) 530 return getEmpty(); 531 532 // --U L---- : this 533 // L------U : CR 534 return ConstantRange(Lower, CR.Upper); 535 } 536 537 // --U L------ : this 538 // L--U : CR 539 return CR; 540 } 541 542 if (CR.Upper.ult(Upper)) { 543 // ------U L-- : this 544 // --U L------ : CR 545 if (CR.Lower.ult(Upper)) 546 return getPreferredRange(*this, CR, Type); 547 548 // ----U L-- : this 549 // --U L---- : CR 550 if (CR.Lower.ult(Lower)) 551 return ConstantRange(Lower, CR.Upper); 552 553 // ----U L---- : this 554 // --U L-- : CR 555 return CR; 556 } 557 if (CR.Upper.ule(Lower)) { 558 // --U L-- : this 559 // ----U L---- : CR 560 if (CR.Lower.ult(Lower)) 561 return *this; 562 563 // --U L---- : this 564 // ----U L-- : CR 565 return ConstantRange(CR.Lower, Upper); 566 } 567 568 // --U L------ : this 569 // ------U L-- : CR 570 return getPreferredRange(*this, CR, Type); 571 } 572 573 ConstantRange ConstantRange::unionWith(const ConstantRange &CR, 574 PreferredRangeType Type) const { 575 assert(getBitWidth() == CR.getBitWidth() && 576 "ConstantRange types don't agree!"); 577 578 if ( isFullSet() || CR.isEmptySet()) return *this; 579 if (CR.isFullSet() || isEmptySet()) return CR; 580 581 if (!isUpperWrapped() && CR.isUpperWrapped()) 582 return CR.unionWith(*this, Type); 583 584 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 585 // L---U and L---U : this 586 // L---U L---U : CR 587 // result in one of 588 // L---------U 589 // -----U L----- 590 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) 591 return getPreferredRange( 592 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 593 594 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 595 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; 596 597 if (L.isZero() && U.isZero()) 598 return getFull(); 599 600 return ConstantRange(std::move(L), std::move(U)); 601 } 602 603 if (!CR.isUpperWrapped()) { 604 // ------U L----- and ------U L----- : this 605 // L--U L--U : CR 606 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 607 return *this; 608 609 // ------U L----- : this 610 // L---------U : CR 611 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 612 return getFull(); 613 614 // ----U L---- : this 615 // L---U : CR 616 // results in one of 617 // ----------U L---- 618 // ----U L---------- 619 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) 620 return getPreferredRange( 621 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 622 623 // ----U L----- : this 624 // L----U : CR 625 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper)) 626 return ConstantRange(CR.Lower, Upper); 627 628 // ------U L---- : this 629 // L-----U : CR 630 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && 631 "ConstantRange::unionWith missed a case with one range wrapped"); 632 return ConstantRange(Lower, CR.Upper); 633 } 634 635 // ------U L---- and ------U L---- : this 636 // -U L----------- and ------------U L : CR 637 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 638 return getFull(); 639 640 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 641 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; 642 643 return ConstantRange(std::move(L), std::move(U)); 644 } 645 646 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, 647 uint32_t ResultBitWidth) const { 648 switch (CastOp) { 649 default: 650 llvm_unreachable("unsupported cast type"); 651 case Instruction::Trunc: 652 return truncate(ResultBitWidth); 653 case Instruction::SExt: 654 return signExtend(ResultBitWidth); 655 case Instruction::ZExt: 656 return zeroExtend(ResultBitWidth); 657 case Instruction::BitCast: 658 return *this; 659 case Instruction::FPToUI: 660 case Instruction::FPToSI: 661 if (getBitWidth() == ResultBitWidth) 662 return *this; 663 else 664 return getFull(ResultBitWidth); 665 case Instruction::UIToFP: { 666 // TODO: use input range if available 667 auto BW = getBitWidth(); 668 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth); 669 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth); 670 return ConstantRange(std::move(Min), std::move(Max)); 671 } 672 case Instruction::SIToFP: { 673 // TODO: use input range if available 674 auto BW = getBitWidth(); 675 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth); 676 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth); 677 return ConstantRange(std::move(SMin), std::move(SMax)); 678 } 679 case Instruction::FPTrunc: 680 case Instruction::FPExt: 681 case Instruction::IntToPtr: 682 case Instruction::PtrToInt: 683 case Instruction::AddrSpaceCast: 684 // Conservatively return getFull set. 685 return getFull(ResultBitWidth); 686 }; 687 } 688 689 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 690 if (isEmptySet()) return getEmpty(DstTySize); 691 692 unsigned SrcTySize = getBitWidth(); 693 assert(SrcTySize < DstTySize && "Not a value extension"); 694 if (isFullSet() || isUpperWrapped()) { 695 // Change into [0, 1 << src bit width) 696 APInt LowerExt(DstTySize, 0); 697 if (!Upper) // special case: [X, 0) -- not really wrapping around 698 LowerExt = Lower.zext(DstTySize); 699 return ConstantRange(std::move(LowerExt), 700 APInt::getOneBitSet(DstTySize, SrcTySize)); 701 } 702 703 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 704 } 705 706 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 707 if (isEmptySet()) return getEmpty(DstTySize); 708 709 unsigned SrcTySize = getBitWidth(); 710 assert(SrcTySize < DstTySize && "Not a value extension"); 711 712 // special case: [X, INT_MIN) -- not really wrapping around 713 if (Upper.isMinSignedValue()) 714 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); 715 716 if (isFullSet() || isSignWrappedSet()) { 717 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 718 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 719 } 720 721 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 722 } 723 724 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 725 assert(getBitWidth() > DstTySize && "Not a value truncation"); 726 if (isEmptySet()) 727 return getEmpty(DstTySize); 728 if (isFullSet()) 729 return getFull(DstTySize); 730 731 APInt LowerDiv(Lower), UpperDiv(Upper); 732 ConstantRange Union(DstTySize, /*isFullSet=*/false); 733 734 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] 735 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and 736 // then we do the union with [MaxValue, Upper) 737 if (isUpperWrapped()) { 738 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole 739 // truncated range. 740 if (Upper.getActiveBits() > DstTySize || 741 Upper.countTrailingOnes() == DstTySize) 742 return getFull(DstTySize); 743 744 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); 745 UpperDiv.setAllBits(); 746 747 // Union covers the MaxValue case, so return if the remaining range is just 748 // MaxValue(DstTy). 749 if (LowerDiv == UpperDiv) 750 return Union; 751 } 752 753 // Chop off the most significant bits that are past the destination bitwidth. 754 if (LowerDiv.getActiveBits() > DstTySize) { 755 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. 756 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); 757 LowerDiv -= Adjust; 758 UpperDiv -= Adjust; 759 } 760 761 unsigned UpperDivWidth = UpperDiv.getActiveBits(); 762 if (UpperDivWidth <= DstTySize) 763 return ConstantRange(LowerDiv.trunc(DstTySize), 764 UpperDiv.trunc(DstTySize)).unionWith(Union); 765 766 // The truncated value wraps around. Check if we can do better than fullset. 767 if (UpperDivWidth == DstTySize + 1) { 768 // Clear the MSB so that UpperDiv wraps around. 769 UpperDiv.clearBit(DstTySize); 770 if (UpperDiv.ult(LowerDiv)) 771 return ConstantRange(LowerDiv.trunc(DstTySize), 772 UpperDiv.trunc(DstTySize)).unionWith(Union); 773 } 774 775 return getFull(DstTySize); 776 } 777 778 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 779 unsigned SrcTySize = getBitWidth(); 780 if (SrcTySize > DstTySize) 781 return truncate(DstTySize); 782 if (SrcTySize < DstTySize) 783 return zeroExtend(DstTySize); 784 return *this; 785 } 786 787 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 788 unsigned SrcTySize = getBitWidth(); 789 if (SrcTySize > DstTySize) 790 return truncate(DstTySize); 791 if (SrcTySize < DstTySize) 792 return signExtend(DstTySize); 793 return *this; 794 } 795 796 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, 797 const ConstantRange &Other) const { 798 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 799 800 switch (BinOp) { 801 case Instruction::Add: 802 return add(Other); 803 case Instruction::Sub: 804 return sub(Other); 805 case Instruction::Mul: 806 return multiply(Other); 807 case Instruction::UDiv: 808 return udiv(Other); 809 case Instruction::SDiv: 810 return sdiv(Other); 811 case Instruction::URem: 812 return urem(Other); 813 case Instruction::SRem: 814 return srem(Other); 815 case Instruction::Shl: 816 return shl(Other); 817 case Instruction::LShr: 818 return lshr(Other); 819 case Instruction::AShr: 820 return ashr(Other); 821 case Instruction::And: 822 return binaryAnd(Other); 823 case Instruction::Or: 824 return binaryOr(Other); 825 case Instruction::Xor: 826 return binaryXor(Other); 827 // Note: floating point operations applied to abstract ranges are just 828 // ideal integer operations with a lossy representation 829 case Instruction::FAdd: 830 return add(Other); 831 case Instruction::FSub: 832 return sub(Other); 833 case Instruction::FMul: 834 return multiply(Other); 835 default: 836 // Conservatively return getFull set. 837 return getFull(); 838 } 839 } 840 841 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp, 842 const ConstantRange &Other, 843 unsigned NoWrapKind) const { 844 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 845 846 switch (BinOp) { 847 case Instruction::Add: 848 return addWithNoWrap(Other, NoWrapKind); 849 case Instruction::Sub: 850 return subWithNoWrap(Other, NoWrapKind); 851 default: 852 // Don't know about this Overflowing Binary Operation. 853 // Conservatively fallback to plain binop handling. 854 return binaryOp(BinOp, Other); 855 } 856 } 857 858 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) { 859 switch (IntrinsicID) { 860 case Intrinsic::uadd_sat: 861 case Intrinsic::usub_sat: 862 case Intrinsic::sadd_sat: 863 case Intrinsic::ssub_sat: 864 case Intrinsic::umin: 865 case Intrinsic::umax: 866 case Intrinsic::smin: 867 case Intrinsic::smax: 868 case Intrinsic::abs: 869 return true; 870 default: 871 return false; 872 } 873 } 874 875 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID, 876 ArrayRef<ConstantRange> Ops) { 877 switch (IntrinsicID) { 878 case Intrinsic::uadd_sat: 879 return Ops[0].uadd_sat(Ops[1]); 880 case Intrinsic::usub_sat: 881 return Ops[0].usub_sat(Ops[1]); 882 case Intrinsic::sadd_sat: 883 return Ops[0].sadd_sat(Ops[1]); 884 case Intrinsic::ssub_sat: 885 return Ops[0].ssub_sat(Ops[1]); 886 case Intrinsic::umin: 887 return Ops[0].umin(Ops[1]); 888 case Intrinsic::umax: 889 return Ops[0].umax(Ops[1]); 890 case Intrinsic::smin: 891 return Ops[0].smin(Ops[1]); 892 case Intrinsic::smax: 893 return Ops[0].smax(Ops[1]); 894 case Intrinsic::abs: { 895 const APInt *IntMinIsPoison = Ops[1].getSingleElement(); 896 assert(IntMinIsPoison && "Must be known (immarg)"); 897 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean"); 898 return Ops[0].abs(IntMinIsPoison->getBoolValue()); 899 } 900 default: 901 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported"); 902 llvm_unreachable("Unsupported intrinsic"); 903 } 904 } 905 906 ConstantRange 907 ConstantRange::add(const ConstantRange &Other) const { 908 if (isEmptySet() || Other.isEmptySet()) 909 return getEmpty(); 910 if (isFullSet() || Other.isFullSet()) 911 return getFull(); 912 913 APInt NewLower = getLower() + Other.getLower(); 914 APInt NewUpper = getUpper() + Other.getUpper() - 1; 915 if (NewLower == NewUpper) 916 return getFull(); 917 918 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 919 if (X.isSizeStrictlySmallerThan(*this) || 920 X.isSizeStrictlySmallerThan(Other)) 921 // We've wrapped, therefore, full set. 922 return getFull(); 923 return X; 924 } 925 926 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, 927 unsigned NoWrapKind, 928 PreferredRangeType RangeType) const { 929 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). 930 // (X is from this, and Y is from Other) 931 if (isEmptySet() || Other.isEmptySet()) 932 return getEmpty(); 933 if (isFullSet() && Other.isFullSet()) 934 return getFull(); 935 936 using OBO = OverflowingBinaryOperator; 937 ConstantRange Result = add(Other); 938 939 // If an overflow happens for every value pair in these two constant ranges, 940 // we must return Empty set. In this case, we get that for free, because we 941 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results 942 // in an empty set. 943 944 if (NoWrapKind & OBO::NoSignedWrap) 945 Result = Result.intersectWith(sadd_sat(Other), RangeType); 946 947 if (NoWrapKind & OBO::NoUnsignedWrap) 948 Result = Result.intersectWith(uadd_sat(Other), RangeType); 949 950 return Result; 951 } 952 953 ConstantRange 954 ConstantRange::sub(const ConstantRange &Other) const { 955 if (isEmptySet() || Other.isEmptySet()) 956 return getEmpty(); 957 if (isFullSet() || Other.isFullSet()) 958 return getFull(); 959 960 APInt NewLower = getLower() - Other.getUpper() + 1; 961 APInt NewUpper = getUpper() - Other.getLower(); 962 if (NewLower == NewUpper) 963 return getFull(); 964 965 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 966 if (X.isSizeStrictlySmallerThan(*this) || 967 X.isSizeStrictlySmallerThan(Other)) 968 // We've wrapped, therefore, full set. 969 return getFull(); 970 return X; 971 } 972 973 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other, 974 unsigned NoWrapKind, 975 PreferredRangeType RangeType) const { 976 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow). 977 // (X is from this, and Y is from Other) 978 if (isEmptySet() || Other.isEmptySet()) 979 return getEmpty(); 980 if (isFullSet() && Other.isFullSet()) 981 return getFull(); 982 983 using OBO = OverflowingBinaryOperator; 984 ConstantRange Result = sub(Other); 985 986 // If an overflow happens for every value pair in these two constant ranges, 987 // we must return Empty set. In signed case, we get that for free, because we 988 // get lucky that intersection of sub() with ssub_sat() results in an 989 // empty set. But for unsigned we must perform the overflow check manually. 990 991 if (NoWrapKind & OBO::NoSignedWrap) 992 Result = Result.intersectWith(ssub_sat(Other), RangeType); 993 994 if (NoWrapKind & OBO::NoUnsignedWrap) { 995 if (getUnsignedMax().ult(Other.getUnsignedMin())) 996 return getEmpty(); // Always overflows. 997 Result = Result.intersectWith(usub_sat(Other), RangeType); 998 } 999 1000 return Result; 1001 } 1002 1003 ConstantRange 1004 ConstantRange::multiply(const ConstantRange &Other) const { 1005 // TODO: If either operand is a single element and the multiply is known to 1006 // be non-wrapping, round the result min and max value to the appropriate 1007 // multiple of that element. If wrapping is possible, at least adjust the 1008 // range according to the greatest power-of-two factor of the single element. 1009 1010 if (isEmptySet() || Other.isEmptySet()) 1011 return getEmpty(); 1012 1013 // Multiplication is signedness-independent. However different ranges can be 1014 // obtained depending on how the input ranges are treated. These different 1015 // ranges are all conservatively correct, but one might be better than the 1016 // other. We calculate two ranges; one treating the inputs as unsigned 1017 // and the other signed, then return the smallest of these ranges. 1018 1019 // Unsigned range first. 1020 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 1021 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 1022 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 1023 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 1024 1025 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 1026 this_max * Other_max + 1); 1027 ConstantRange UR = Result_zext.truncate(getBitWidth()); 1028 1029 // If the unsigned range doesn't wrap, and isn't negative then it's a range 1030 // from one positive number to another which is as good as we can generate. 1031 // In this case, skip the extra work of generating signed ranges which aren't 1032 // going to be better than this range. 1033 if (!UR.isUpperWrapped() && 1034 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) 1035 return UR; 1036 1037 // Now the signed range. Because we could be dealing with negative numbers 1038 // here, the lower bound is the smallest of the cartesian product of the 1039 // lower and upper ranges; for example: 1040 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1041 // Similarly for the upper bound, swapping min for max. 1042 1043 this_min = getSignedMin().sext(getBitWidth() * 2); 1044 this_max = getSignedMax().sext(getBitWidth() * 2); 1045 Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1046 Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1047 1048 auto L = {this_min * Other_min, this_min * Other_max, 1049 this_max * Other_min, this_max * Other_max}; 1050 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1051 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); 1052 ConstantRange SR = Result_sext.truncate(getBitWidth()); 1053 1054 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; 1055 } 1056 1057 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const { 1058 if (isEmptySet() || Other.isEmptySet()) 1059 return getEmpty(); 1060 1061 APInt Min = getSignedMin(); 1062 APInt Max = getSignedMax(); 1063 APInt OtherMin = Other.getSignedMin(); 1064 APInt OtherMax = Other.getSignedMax(); 1065 1066 bool O1, O2, O3, O4; 1067 auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2), 1068 Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)}; 1069 if (O1 || O2 || O3 || O4) 1070 return getFull(); 1071 1072 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1073 return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1); 1074 } 1075 1076 ConstantRange 1077 ConstantRange::smax(const ConstantRange &Other) const { 1078 // X smax Y is: range(smax(X_smin, Y_smin), 1079 // smax(X_smax, Y_smax)) 1080 if (isEmptySet() || Other.isEmptySet()) 1081 return getEmpty(); 1082 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 1083 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 1084 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1085 if (isSignWrappedSet() || Other.isSignWrappedSet()) 1086 return Res.intersectWith(unionWith(Other, Signed), Signed); 1087 return Res; 1088 } 1089 1090 ConstantRange 1091 ConstantRange::umax(const ConstantRange &Other) const { 1092 // X umax Y is: range(umax(X_umin, Y_umin), 1093 // umax(X_umax, Y_umax)) 1094 if (isEmptySet() || Other.isEmptySet()) 1095 return getEmpty(); 1096 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1097 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1098 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1099 if (isWrappedSet() || Other.isWrappedSet()) 1100 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned); 1101 return Res; 1102 } 1103 1104 ConstantRange 1105 ConstantRange::smin(const ConstantRange &Other) const { 1106 // X smin Y is: range(smin(X_smin, Y_smin), 1107 // smin(X_smax, Y_smax)) 1108 if (isEmptySet() || Other.isEmptySet()) 1109 return getEmpty(); 1110 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); 1111 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; 1112 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1113 if (isSignWrappedSet() || Other.isSignWrappedSet()) 1114 return Res.intersectWith(unionWith(Other, Signed), Signed); 1115 return Res; 1116 } 1117 1118 ConstantRange 1119 ConstantRange::umin(const ConstantRange &Other) const { 1120 // X umin Y is: range(umin(X_umin, Y_umin), 1121 // umin(X_umax, Y_umax)) 1122 if (isEmptySet() || Other.isEmptySet()) 1123 return getEmpty(); 1124 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); 1125 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1126 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1127 if (isWrappedSet() || Other.isWrappedSet()) 1128 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned); 1129 return Res; 1130 } 1131 1132 ConstantRange 1133 ConstantRange::udiv(const ConstantRange &RHS) const { 1134 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) 1135 return getEmpty(); 1136 1137 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 1138 1139 APInt RHS_umin = RHS.getUnsignedMin(); 1140 if (RHS_umin.isZero()) { 1141 // We want the lowest value in RHS excluding zero. Usually that would be 1 1142 // except for a range in the form of [X, 1) in which case it would be X. 1143 if (RHS.getUpper() == 1) 1144 RHS_umin = RHS.getLower(); 1145 else 1146 RHS_umin = 1; 1147 } 1148 1149 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 1150 return getNonEmpty(std::move(Lower), std::move(Upper)); 1151 } 1152 1153 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { 1154 // We split up the LHS and RHS into positive and negative components 1155 // and then also compute the positive and negative components of the result 1156 // separately by combining division results with the appropriate signs. 1157 APInt Zero = APInt::getZero(getBitWidth()); 1158 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1159 ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin); 1160 ConstantRange NegFilter(SignedMin, Zero); 1161 ConstantRange PosL = intersectWith(PosFilter); 1162 ConstantRange NegL = intersectWith(NegFilter); 1163 ConstantRange PosR = RHS.intersectWith(PosFilter); 1164 ConstantRange NegR = RHS.intersectWith(NegFilter); 1165 1166 ConstantRange PosRes = getEmpty(); 1167 if (!PosL.isEmptySet() && !PosR.isEmptySet()) 1168 // pos / pos = pos. 1169 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1), 1170 (PosL.Upper - 1).sdiv(PosR.Lower) + 1); 1171 1172 if (!NegL.isEmptySet() && !NegR.isEmptySet()) { 1173 // neg / neg = pos. 1174 // 1175 // We need to deal with one tricky case here: SignedMin / -1 is UB on the 1176 // IR level, so we'll want to exclude this case when calculating bounds. 1177 // (For APInts the operation is well-defined and yields SignedMin.) We 1178 // handle this by dropping either SignedMin from the LHS or -1 from the RHS. 1179 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower); 1180 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) { 1181 // Remove -1 from the LHS. Skip if it's the only element, as this would 1182 // leave us with an empty set. 1183 if (!NegR.Lower.isAllOnes()) { 1184 APInt AdjNegRUpper; 1185 if (RHS.Lower.isAllOnes()) 1186 // Negative part of [-1, X] without -1 is [SignedMin, X]. 1187 AdjNegRUpper = RHS.Upper; 1188 else 1189 // [X, -1] without -1 is [X, -2]. 1190 AdjNegRUpper = NegR.Upper - 1; 1191 1192 PosRes = PosRes.unionWith( 1193 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1)); 1194 } 1195 1196 // Remove SignedMin from the RHS. Skip if it's the only element, as this 1197 // would leave us with an empty set. 1198 if (NegL.Upper != SignedMin + 1) { 1199 APInt AdjNegLLower; 1200 if (Upper == SignedMin + 1) 1201 // Negative part of [X, SignedMin] without SignedMin is [X, -1]. 1202 AdjNegLLower = Lower; 1203 else 1204 // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. 1205 AdjNegLLower = NegL.Lower + 1; 1206 1207 PosRes = PosRes.unionWith( 1208 ConstantRange(std::move(Lo), 1209 AdjNegLLower.sdiv(NegR.Upper - 1) + 1)); 1210 } 1211 } else { 1212 PosRes = PosRes.unionWith( 1213 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1)); 1214 } 1215 } 1216 1217 ConstantRange NegRes = getEmpty(); 1218 if (!PosL.isEmptySet() && !NegR.isEmptySet()) 1219 // pos / neg = neg. 1220 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1), 1221 PosL.Lower.sdiv(NegR.Lower) + 1); 1222 1223 if (!NegL.isEmptySet() && !PosR.isEmptySet()) 1224 // neg / pos = neg. 1225 NegRes = NegRes.unionWith( 1226 ConstantRange(NegL.Lower.sdiv(PosR.Lower), 1227 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1)); 1228 1229 // Prefer a non-wrapping signed range here. 1230 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed); 1231 1232 // Preserve the zero that we dropped when splitting the LHS by sign. 1233 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) 1234 Res = Res.unionWith(ConstantRange(Zero)); 1235 return Res; 1236 } 1237 1238 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { 1239 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) 1240 return getEmpty(); 1241 1242 if (const APInt *RHSInt = RHS.getSingleElement()) { 1243 // UREM by null is UB. 1244 if (RHSInt->isZero()) 1245 return getEmpty(); 1246 // Use APInt's implementation of UREM for single element ranges. 1247 if (const APInt *LHSInt = getSingleElement()) 1248 return {LHSInt->urem(*RHSInt)}; 1249 } 1250 1251 // L % R for L < R is L. 1252 if (getUnsignedMax().ult(RHS.getUnsignedMin())) 1253 return *this; 1254 1255 // L % R is <= L and < R. 1256 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1; 1257 return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper)); 1258 } 1259 1260 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { 1261 if (isEmptySet() || RHS.isEmptySet()) 1262 return getEmpty(); 1263 1264 if (const APInt *RHSInt = RHS.getSingleElement()) { 1265 // SREM by null is UB. 1266 if (RHSInt->isZero()) 1267 return getEmpty(); 1268 // Use APInt's implementation of SREM for single element ranges. 1269 if (const APInt *LHSInt = getSingleElement()) 1270 return {LHSInt->srem(*RHSInt)}; 1271 } 1272 1273 ConstantRange AbsRHS = RHS.abs(); 1274 APInt MinAbsRHS = AbsRHS.getUnsignedMin(); 1275 APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); 1276 1277 // Modulus by zero is UB. 1278 if (MaxAbsRHS.isZero()) 1279 return getEmpty(); 1280 1281 if (MinAbsRHS.isZero()) 1282 ++MinAbsRHS; 1283 1284 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); 1285 1286 if (MinLHS.isNonNegative()) { 1287 // L % R for L < R is L. 1288 if (MaxLHS.ult(MinAbsRHS)) 1289 return *this; 1290 1291 // L % R is <= L and < R. 1292 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1293 return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper)); 1294 } 1295 1296 // Same basic logic as above, but the result is negative. 1297 if (MaxLHS.isNegative()) { 1298 if (MinLHS.ugt(-MinAbsRHS)) 1299 return *this; 1300 1301 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1302 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); 1303 } 1304 1305 // LHS range crosses zero. 1306 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1307 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1308 return ConstantRange(std::move(Lower), std::move(Upper)); 1309 } 1310 1311 ConstantRange ConstantRange::binaryNot() const { 1312 return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this); 1313 } 1314 1315 ConstantRange 1316 ConstantRange::binaryAnd(const ConstantRange &Other) const { 1317 if (isEmptySet() || Other.isEmptySet()) 1318 return getEmpty(); 1319 1320 // Use APInt's implementation of AND for single element ranges. 1321 if (isSingleElement() && Other.isSingleElement()) 1322 return {*getSingleElement() & *Other.getSingleElement()}; 1323 1324 // TODO: replace this with something less conservative 1325 1326 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); 1327 return getNonEmpty(APInt::getZero(getBitWidth()), std::move(umin) + 1); 1328 } 1329 1330 ConstantRange 1331 ConstantRange::binaryOr(const ConstantRange &Other) const { 1332 if (isEmptySet() || Other.isEmptySet()) 1333 return getEmpty(); 1334 1335 // Use APInt's implementation of OR for single element ranges. 1336 if (isSingleElement() && Other.isSingleElement()) 1337 return {*getSingleElement() | *Other.getSingleElement()}; 1338 1339 // TODO: replace this with something less conservative 1340 1341 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1342 return getNonEmpty(std::move(umax), APInt::getZero(getBitWidth())); 1343 } 1344 1345 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const { 1346 if (isEmptySet() || Other.isEmptySet()) 1347 return getEmpty(); 1348 1349 // Use APInt's implementation of XOR for single element ranges. 1350 if (isSingleElement() && Other.isSingleElement()) 1351 return {*getSingleElement() ^ *Other.getSingleElement()}; 1352 1353 // Special-case binary complement, since we can give a precise answer. 1354 if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes()) 1355 return binaryNot(); 1356 if (isSingleElement() && getSingleElement()->isAllOnes()) 1357 return Other.binaryNot(); 1358 1359 // TODO: replace this with something less conservative 1360 return getFull(); 1361 } 1362 1363 ConstantRange 1364 ConstantRange::shl(const ConstantRange &Other) const { 1365 if (isEmptySet() || Other.isEmptySet()) 1366 return getEmpty(); 1367 1368 APInt Min = getUnsignedMin(); 1369 APInt Max = getUnsignedMax(); 1370 if (const APInt *RHS = Other.getSingleElement()) { 1371 unsigned BW = getBitWidth(); 1372 if (RHS->uge(BW)) 1373 return getEmpty(); 1374 1375 unsigned EqualLeadingBits = (Min ^ Max).countLeadingZeros(); 1376 if (RHS->ule(EqualLeadingBits)) 1377 return getNonEmpty(Min << *RHS, (Max << *RHS) + 1); 1378 1379 return getNonEmpty(APInt::getZero(BW), 1380 APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1); 1381 } 1382 1383 APInt OtherMax = Other.getUnsignedMax(); 1384 1385 // There's overflow! 1386 if (OtherMax.ugt(Max.countLeadingZeros())) 1387 return getFull(); 1388 1389 // FIXME: implement the other tricky cases 1390 1391 Min <<= Other.getUnsignedMin(); 1392 Max <<= OtherMax; 1393 1394 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1); 1395 } 1396 1397 ConstantRange 1398 ConstantRange::lshr(const ConstantRange &Other) const { 1399 if (isEmptySet() || Other.isEmptySet()) 1400 return getEmpty(); 1401 1402 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; 1403 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 1404 return getNonEmpty(std::move(min), std::move(max)); 1405 } 1406 1407 ConstantRange 1408 ConstantRange::ashr(const ConstantRange &Other) const { 1409 if (isEmptySet() || Other.isEmptySet()) 1410 return getEmpty(); 1411 1412 // May straddle zero, so handle both positive and negative cases. 1413 // 'PosMax' is the upper bound of the result of the ashr 1414 // operation, when Upper of the LHS of ashr is a non-negative. 1415 // number. Since ashr of a non-negative number will result in a 1416 // smaller number, the Upper value of LHS is shifted right with 1417 // the minimum value of 'Other' instead of the maximum value. 1418 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; 1419 1420 // 'PosMin' is the lower bound of the result of the ashr 1421 // operation, when Lower of the LHS is a non-negative number. 1422 // Since ashr of a non-negative number will result in a smaller 1423 // number, the Lower value of LHS is shifted right with the 1424 // maximum value of 'Other'. 1425 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); 1426 1427 // 'NegMax' is the upper bound of the result of the ashr 1428 // operation, when Upper of the LHS of ashr is a negative number. 1429 // Since 'ashr' of a negative number will result in a bigger 1430 // number, the Upper value of LHS is shifted right with the 1431 // maximum value of 'Other'. 1432 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; 1433 1434 // 'NegMin' is the lower bound of the result of the ashr 1435 // operation, when Lower of the LHS of ashr is a negative number. 1436 // Since 'ashr' of a negative number will result in a bigger 1437 // number, the Lower value of LHS is shifted right with the 1438 // minimum value of 'Other'. 1439 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); 1440 1441 APInt max, min; 1442 if (getSignedMin().isNonNegative()) { 1443 // Upper and Lower of LHS are non-negative. 1444 min = PosMin; 1445 max = PosMax; 1446 } else if (getSignedMax().isNegative()) { 1447 // Upper and Lower of LHS are negative. 1448 min = NegMin; 1449 max = NegMax; 1450 } else { 1451 // Upper is non-negative and Lower is negative. 1452 min = NegMin; 1453 max = PosMax; 1454 } 1455 return getNonEmpty(std::move(min), std::move(max)); 1456 } 1457 1458 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { 1459 if (isEmptySet() || Other.isEmptySet()) 1460 return getEmpty(); 1461 1462 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin()); 1463 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1; 1464 return getNonEmpty(std::move(NewL), std::move(NewU)); 1465 } 1466 1467 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { 1468 if (isEmptySet() || Other.isEmptySet()) 1469 return getEmpty(); 1470 1471 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin()); 1472 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1; 1473 return getNonEmpty(std::move(NewL), std::move(NewU)); 1474 } 1475 1476 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { 1477 if (isEmptySet() || Other.isEmptySet()) 1478 return getEmpty(); 1479 1480 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax()); 1481 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1; 1482 return getNonEmpty(std::move(NewL), std::move(NewU)); 1483 } 1484 1485 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { 1486 if (isEmptySet() || Other.isEmptySet()) 1487 return getEmpty(); 1488 1489 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax()); 1490 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1; 1491 return getNonEmpty(std::move(NewL), std::move(NewU)); 1492 } 1493 1494 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const { 1495 if (isEmptySet() || Other.isEmptySet()) 1496 return getEmpty(); 1497 1498 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin()); 1499 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1; 1500 return getNonEmpty(std::move(NewL), std::move(NewU)); 1501 } 1502 1503 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const { 1504 if (isEmptySet() || Other.isEmptySet()) 1505 return getEmpty(); 1506 1507 // Because we could be dealing with negative numbers here, the lower bound is 1508 // the smallest of the cartesian product of the lower and upper ranges; 1509 // for example: 1510 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1511 // Similarly for the upper bound, swapping min for max. 1512 1513 APInt this_min = getSignedMin().sext(getBitWidth() * 2); 1514 APInt this_max = getSignedMax().sext(getBitWidth() * 2); 1515 APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1516 APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1517 1518 auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min, 1519 this_max * Other_max}; 1520 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1521 1522 // Note that we wanted to perform signed saturating multiplication, 1523 // so since we performed plain multiplication in twice the bitwidth, 1524 // we need to perform signed saturating truncation. 1525 return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()), 1526 std::max(L, Compare).truncSSat(getBitWidth()) + 1); 1527 } 1528 1529 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const { 1530 if (isEmptySet() || Other.isEmptySet()) 1531 return getEmpty(); 1532 1533 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin()); 1534 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1; 1535 return getNonEmpty(std::move(NewL), std::move(NewU)); 1536 } 1537 1538 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const { 1539 if (isEmptySet() || Other.isEmptySet()) 1540 return getEmpty(); 1541 1542 APInt Min = getSignedMin(), Max = getSignedMax(); 1543 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax(); 1544 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax); 1545 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1; 1546 return getNonEmpty(std::move(NewL), std::move(NewU)); 1547 } 1548 1549 ConstantRange ConstantRange::inverse() const { 1550 if (isFullSet()) 1551 return getEmpty(); 1552 if (isEmptySet()) 1553 return getFull(); 1554 return ConstantRange(Upper, Lower); 1555 } 1556 1557 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const { 1558 if (isEmptySet()) 1559 return getEmpty(); 1560 1561 if (isSignWrappedSet()) { 1562 APInt Lo; 1563 // Check whether the range crosses zero. 1564 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) 1565 Lo = APInt::getZero(getBitWidth()); 1566 else 1567 Lo = APIntOps::umin(Lower, -Upper + 1); 1568 1569 // If SignedMin is not poison, then it is included in the result range. 1570 if (IntMinIsPoison) 1571 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth())); 1572 else 1573 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1); 1574 } 1575 1576 APInt SMin = getSignedMin(), SMax = getSignedMax(); 1577 1578 // Skip SignedMin if it is poison. 1579 if (IntMinIsPoison && SMin.isMinSignedValue()) { 1580 // The range may become empty if it *only* contains SignedMin. 1581 if (SMax.isMinSignedValue()) 1582 return getEmpty(); 1583 ++SMin; 1584 } 1585 1586 // All non-negative. 1587 if (SMin.isNonNegative()) 1588 return *this; 1589 1590 // All negative. 1591 if (SMax.isNegative()) 1592 return ConstantRange(-SMax, -SMin + 1); 1593 1594 // Range crosses zero. 1595 return ConstantRange(APInt::getZero(getBitWidth()), 1596 APIntOps::umax(-SMin, SMax) + 1); 1597 } 1598 1599 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( 1600 const ConstantRange &Other) const { 1601 if (isEmptySet() || Other.isEmptySet()) 1602 return OverflowResult::MayOverflow; 1603 1604 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1605 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1606 1607 // a u+ b overflows high iff a u> ~b. 1608 if (Min.ugt(~OtherMin)) 1609 return OverflowResult::AlwaysOverflowsHigh; 1610 if (Max.ugt(~OtherMax)) 1611 return OverflowResult::MayOverflow; 1612 return OverflowResult::NeverOverflows; 1613 } 1614 1615 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( 1616 const ConstantRange &Other) const { 1617 if (isEmptySet() || Other.isEmptySet()) 1618 return OverflowResult::MayOverflow; 1619 1620 APInt Min = getSignedMin(), Max = getSignedMax(); 1621 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1622 1623 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1624 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1625 1626 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. 1627 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. 1628 if (Min.isNonNegative() && OtherMin.isNonNegative() && 1629 Min.sgt(SignedMax - OtherMin)) 1630 return OverflowResult::AlwaysOverflowsHigh; 1631 if (Max.isNegative() && OtherMax.isNegative() && 1632 Max.slt(SignedMin - OtherMax)) 1633 return OverflowResult::AlwaysOverflowsLow; 1634 1635 if (Max.isNonNegative() && OtherMax.isNonNegative() && 1636 Max.sgt(SignedMax - OtherMax)) 1637 return OverflowResult::MayOverflow; 1638 if (Min.isNegative() && OtherMin.isNegative() && 1639 Min.slt(SignedMin - OtherMin)) 1640 return OverflowResult::MayOverflow; 1641 1642 return OverflowResult::NeverOverflows; 1643 } 1644 1645 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( 1646 const ConstantRange &Other) const { 1647 if (isEmptySet() || Other.isEmptySet()) 1648 return OverflowResult::MayOverflow; 1649 1650 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1651 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1652 1653 // a u- b overflows low iff a u< b. 1654 if (Max.ult(OtherMin)) 1655 return OverflowResult::AlwaysOverflowsLow; 1656 if (Min.ult(OtherMax)) 1657 return OverflowResult::MayOverflow; 1658 return OverflowResult::NeverOverflows; 1659 } 1660 1661 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( 1662 const ConstantRange &Other) const { 1663 if (isEmptySet() || Other.isEmptySet()) 1664 return OverflowResult::MayOverflow; 1665 1666 APInt Min = getSignedMin(), Max = getSignedMax(); 1667 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1668 1669 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1670 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1671 1672 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. 1673 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. 1674 if (Min.isNonNegative() && OtherMax.isNegative() && 1675 Min.sgt(SignedMax + OtherMax)) 1676 return OverflowResult::AlwaysOverflowsHigh; 1677 if (Max.isNegative() && OtherMin.isNonNegative() && 1678 Max.slt(SignedMin + OtherMin)) 1679 return OverflowResult::AlwaysOverflowsLow; 1680 1681 if (Max.isNonNegative() && OtherMin.isNegative() && 1682 Max.sgt(SignedMax + OtherMin)) 1683 return OverflowResult::MayOverflow; 1684 if (Min.isNegative() && OtherMax.isNonNegative() && 1685 Min.slt(SignedMin + OtherMax)) 1686 return OverflowResult::MayOverflow; 1687 1688 return OverflowResult::NeverOverflows; 1689 } 1690 1691 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( 1692 const ConstantRange &Other) const { 1693 if (isEmptySet() || Other.isEmptySet()) 1694 return OverflowResult::MayOverflow; 1695 1696 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1697 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1698 bool Overflow; 1699 1700 (void) Min.umul_ov(OtherMin, Overflow); 1701 if (Overflow) 1702 return OverflowResult::AlwaysOverflowsHigh; 1703 1704 (void) Max.umul_ov(OtherMax, Overflow); 1705 if (Overflow) 1706 return OverflowResult::MayOverflow; 1707 1708 return OverflowResult::NeverOverflows; 1709 } 1710 1711 void ConstantRange::print(raw_ostream &OS) const { 1712 if (isFullSet()) 1713 OS << "full-set"; 1714 else if (isEmptySet()) 1715 OS << "empty-set"; 1716 else 1717 OS << "[" << Lower << "," << Upper << ")"; 1718 } 1719 1720 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1721 LLVM_DUMP_METHOD void ConstantRange::dump() const { 1722 print(dbgs()); 1723 } 1724 #endif 1725 1726 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 1727 const unsigned NumRanges = Ranges.getNumOperands() / 2; 1728 assert(NumRanges >= 1 && "Must have at least one range!"); 1729 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 1730 1731 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 1732 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 1733 1734 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 1735 1736 for (unsigned i = 1; i < NumRanges; ++i) { 1737 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 1738 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 1739 1740 // Note: unionWith will potentially create a range that contains values not 1741 // contained in any of the original N ranges. 1742 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 1743 } 1744 1745 return CR; 1746 } 1747