1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 
41 using namespace llvm;
42 
43 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
44     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
45       Upper(Lower) {}
46 
47 ConstantRange::ConstantRange(APInt V)
48     : Lower(std::move(V)), Upper(Lower + 1) {}
49 
50 ConstantRange::ConstantRange(APInt L, APInt U)
51     : Lower(std::move(L)), Upper(std::move(U)) {
52   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
53          "ConstantRange with unequal bit widths");
54   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
55          "Lower == Upper, but they aren't min or max value!");
56 }
57 
58 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
59                                            bool IsSigned) {
60   assert(!Known.hasConflict() && "Expected valid KnownBits");
61 
62   if (Known.isUnknown())
63     return getFull(Known.getBitWidth());
64 
65   // For unsigned ranges, or signed ranges with known sign bit, create a simple
66   // range between the smallest and largest possible value.
67   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
68     return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
69 
70   // If we don't know the sign bit, pick the lower bound as a negative number
71   // and the upper bound as a non-negative one.
72   APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
73   Lower.setSignBit();
74   Upper.clearSignBit();
75   return ConstantRange(Lower, Upper + 1);
76 }
77 
78 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
79                                                    const ConstantRange &CR) {
80   if (CR.isEmptySet())
81     return CR;
82 
83   uint32_t W = CR.getBitWidth();
84   switch (Pred) {
85   default:
86     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
87   case CmpInst::ICMP_EQ:
88     return CR;
89   case CmpInst::ICMP_NE:
90     if (CR.isSingleElement())
91       return ConstantRange(CR.getUpper(), CR.getLower());
92     return getFull(W);
93   case CmpInst::ICMP_ULT: {
94     APInt UMax(CR.getUnsignedMax());
95     if (UMax.isMinValue())
96       return getEmpty(W);
97     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
98   }
99   case CmpInst::ICMP_SLT: {
100     APInt SMax(CR.getSignedMax());
101     if (SMax.isMinSignedValue())
102       return getEmpty(W);
103     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
104   }
105   case CmpInst::ICMP_ULE:
106     return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
107   case CmpInst::ICMP_SLE:
108     return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
109   case CmpInst::ICMP_UGT: {
110     APInt UMin(CR.getUnsignedMin());
111     if (UMin.isMaxValue())
112       return getEmpty(W);
113     return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
114   }
115   case CmpInst::ICMP_SGT: {
116     APInt SMin(CR.getSignedMin());
117     if (SMin.isMaxSignedValue())
118       return getEmpty(W);
119     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
120   }
121   case CmpInst::ICMP_UGE:
122     return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
123   case CmpInst::ICMP_SGE:
124     return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
125   }
126 }
127 
128 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
129                                                       const ConstantRange &CR) {
130   // Follows from De-Morgan's laws:
131   //
132   // ~(~A union ~B) == A intersect B.
133   //
134   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
135       .inverse();
136 }
137 
138 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
139                                                  const APInt &C) {
140   // Computes the exact range that is equal to both the constant ranges returned
141   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
142   // when RHS is a singleton such as an APInt and so the assert is valid.
143   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
144   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
145   //
146   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
147   return makeAllowedICmpRegion(Pred, C);
148 }
149 
150 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
151                                       APInt &RHS) const {
152   bool Success = false;
153 
154   if (isFullSet() || isEmptySet()) {
155     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
156     RHS = APInt(getBitWidth(), 0);
157     Success = true;
158   } else if (auto *OnlyElt = getSingleElement()) {
159     Pred = CmpInst::ICMP_EQ;
160     RHS = *OnlyElt;
161     Success = true;
162   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
163     Pred = CmpInst::ICMP_NE;
164     RHS = *OnlyMissingElt;
165     Success = true;
166   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
167     Pred =
168         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
169     RHS = getUpper();
170     Success = true;
171   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
172     Pred =
173         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
174     RHS = getLower();
175     Success = true;
176   }
177 
178   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
179          "Bad result!");
180 
181   return Success;
182 }
183 
184 bool ConstantRange::icmp(CmpInst::Predicate Pred,
185                          const ConstantRange &Other) const {
186   return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
187 }
188 
189 /// Exact mul nuw region for single element RHS.
190 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
191   unsigned BitWidth = V.getBitWidth();
192   if (V == 0)
193     return ConstantRange::getFull(V.getBitWidth());
194 
195   return ConstantRange::getNonEmpty(
196       APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
197                              APInt::Rounding::UP),
198       APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
199                              APInt::Rounding::DOWN) + 1);
200 }
201 
202 /// Exact mul nsw region for single element RHS.
203 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
204   // Handle special case for 0, -1 and 1. See the last for reason why we
205   // specialize -1 and 1.
206   unsigned BitWidth = V.getBitWidth();
207   if (V == 0 || V.isOne())
208     return ConstantRange::getFull(BitWidth);
209 
210   APInt MinValue = APInt::getSignedMinValue(BitWidth);
211   APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
212   // e.g. Returning [-127, 127], represented as [-127, -128).
213   if (V.isAllOnes())
214     return ConstantRange(-MaxValue, MinValue);
215 
216   APInt Lower, Upper;
217   if (V.isNegative()) {
218     Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
219     Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
220   } else {
221     Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
222     Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
223   }
224   // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
225   // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
226   // and 1 are already handled as special cases.
227   return ConstantRange(Lower, Upper + 1);
228 }
229 
230 ConstantRange
231 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
232                                           const ConstantRange &Other,
233                                           unsigned NoWrapKind) {
234   using OBO = OverflowingBinaryOperator;
235 
236   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
237 
238   assert((NoWrapKind == OBO::NoSignedWrap ||
239           NoWrapKind == OBO::NoUnsignedWrap) &&
240          "NoWrapKind invalid!");
241 
242   bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
243   unsigned BitWidth = Other.getBitWidth();
244 
245   switch (BinOp) {
246   default:
247     llvm_unreachable("Unsupported binary op");
248 
249   case Instruction::Add: {
250     if (Unsigned)
251       return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());
252 
253     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
254     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
255     return getNonEmpty(
256         SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
257         SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
258   }
259 
260   case Instruction::Sub: {
261     if (Unsigned)
262       return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
263 
264     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
265     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
266     return getNonEmpty(
267         SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
268         SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
269   }
270 
271   case Instruction::Mul:
272     if (Unsigned)
273       return makeExactMulNUWRegion(Other.getUnsignedMax());
274 
275     return makeExactMulNSWRegion(Other.getSignedMin())
276         .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
277 
278   case Instruction::Shl: {
279     // For given range of shift amounts, if we ignore all illegal shift amounts
280     // (that always produce poison), what shift amount range is left?
281     ConstantRange ShAmt = Other.intersectWith(
282         ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
283     if (ShAmt.isEmptySet()) {
284       // If the entire range of shift amounts is already poison-producing,
285       // then we can freely add more poison-producing flags ontop of that.
286       return getFull(BitWidth);
287     }
288     // There are some legal shift amounts, we can compute conservatively-correct
289     // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
290     // to be at most bitwidth-1, which results in most conservative range.
291     APInt ShAmtUMax = ShAmt.getUnsignedMax();
292     if (Unsigned)
293       return getNonEmpty(APInt::getZero(BitWidth),
294                          APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
295     return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
296                        APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
297   }
298   }
299 }
300 
301 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
302                                                    const APInt &Other,
303                                                    unsigned NoWrapKind) {
304   // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
305   // "for all" and "for any" coincide in this case.
306   return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
307 }
308 
309 bool ConstantRange::isFullSet() const {
310   return Lower == Upper && Lower.isMaxValue();
311 }
312 
313 bool ConstantRange::isEmptySet() const {
314   return Lower == Upper && Lower.isMinValue();
315 }
316 
317 bool ConstantRange::isWrappedSet() const {
318   return Lower.ugt(Upper) && !Upper.isZero();
319 }
320 
321 bool ConstantRange::isUpperWrapped() const {
322   return Lower.ugt(Upper);
323 }
324 
325 bool ConstantRange::isSignWrappedSet() const {
326   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
327 }
328 
329 bool ConstantRange::isUpperSignWrapped() const {
330   return Lower.sgt(Upper);
331 }
332 
333 bool
334 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
335   assert(getBitWidth() == Other.getBitWidth());
336   if (isFullSet())
337     return false;
338   if (Other.isFullSet())
339     return true;
340   return (Upper - Lower).ult(Other.Upper - Other.Lower);
341 }
342 
343 bool
344 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
345   assert(MaxSize && "MaxSize can't be 0.");
346   // If this a full set, we need special handling to avoid needing an extra bit
347   // to represent the size.
348   if (isFullSet())
349     return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
350 
351   return (Upper - Lower).ugt(MaxSize);
352 }
353 
354 bool ConstantRange::isAllNegative() const {
355   // Empty set is all negative, full set is not.
356   if (isEmptySet())
357     return true;
358   if (isFullSet())
359     return false;
360 
361   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
362 }
363 
364 bool ConstantRange::isAllNonNegative() const {
365   // Empty and full set are automatically treated correctly.
366   return !isSignWrappedSet() && Lower.isNonNegative();
367 }
368 
369 APInt ConstantRange::getUnsignedMax() const {
370   if (isFullSet() || isUpperWrapped())
371     return APInt::getMaxValue(getBitWidth());
372   return getUpper() - 1;
373 }
374 
375 APInt ConstantRange::getUnsignedMin() const {
376   if (isFullSet() || isWrappedSet())
377     return APInt::getMinValue(getBitWidth());
378   return getLower();
379 }
380 
381 APInt ConstantRange::getSignedMax() const {
382   if (isFullSet() || isUpperSignWrapped())
383     return APInt::getSignedMaxValue(getBitWidth());
384   return getUpper() - 1;
385 }
386 
387 APInt ConstantRange::getSignedMin() const {
388   if (isFullSet() || isSignWrappedSet())
389     return APInt::getSignedMinValue(getBitWidth());
390   return getLower();
391 }
392 
393 bool ConstantRange::contains(const APInt &V) const {
394   if (Lower == Upper)
395     return isFullSet();
396 
397   if (!isUpperWrapped())
398     return Lower.ule(V) && V.ult(Upper);
399   return Lower.ule(V) || V.ult(Upper);
400 }
401 
402 bool ConstantRange::contains(const ConstantRange &Other) const {
403   if (isFullSet() || Other.isEmptySet()) return true;
404   if (isEmptySet() || Other.isFullSet()) return false;
405 
406   if (!isUpperWrapped()) {
407     if (Other.isUpperWrapped())
408       return false;
409 
410     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
411   }
412 
413   if (!Other.isUpperWrapped())
414     return Other.getUpper().ule(Upper) ||
415            Lower.ule(Other.getLower());
416 
417   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
418 }
419 
420 unsigned ConstantRange::getActiveBits() const {
421   if (isEmptySet())
422     return 0;
423 
424   return getUnsignedMax().getActiveBits();
425 }
426 
427 unsigned ConstantRange::getMinSignedBits() const {
428   if (isEmptySet())
429     return 0;
430 
431   return std::max(getSignedMin().getMinSignedBits(),
432                   getSignedMax().getMinSignedBits());
433 }
434 
435 ConstantRange ConstantRange::subtract(const APInt &Val) const {
436   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
437   // If the set is empty or full, don't modify the endpoints.
438   if (Lower == Upper)
439     return *this;
440   return ConstantRange(Lower - Val, Upper - Val);
441 }
442 
443 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
444   return intersectWith(CR.inverse());
445 }
446 
447 static ConstantRange getPreferredRange(
448     const ConstantRange &CR1, const ConstantRange &CR2,
449     ConstantRange::PreferredRangeType Type) {
450   if (Type == ConstantRange::Unsigned) {
451     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
452       return CR1;
453     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
454       return CR2;
455   } else if (Type == ConstantRange::Signed) {
456     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
457       return CR1;
458     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
459       return CR2;
460   }
461 
462   if (CR1.isSizeStrictlySmallerThan(CR2))
463     return CR1;
464   return CR2;
465 }
466 
467 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
468                                            PreferredRangeType Type) const {
469   assert(getBitWidth() == CR.getBitWidth() &&
470          "ConstantRange types don't agree!");
471 
472   // Handle common cases.
473   if (   isEmptySet() || CR.isFullSet()) return *this;
474   if (CR.isEmptySet() ||    isFullSet()) return CR;
475 
476   if (!isUpperWrapped() && CR.isUpperWrapped())
477     return CR.intersectWith(*this, Type);
478 
479   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
480     if (Lower.ult(CR.Lower)) {
481       // L---U       : this
482       //       L---U : CR
483       if (Upper.ule(CR.Lower))
484         return getEmpty();
485 
486       // L---U       : this
487       //   L---U     : CR
488       if (Upper.ult(CR.Upper))
489         return ConstantRange(CR.Lower, Upper);
490 
491       // L-------U   : this
492       //   L---U     : CR
493       return CR;
494     }
495     //   L---U     : this
496     // L-------U   : CR
497     if (Upper.ult(CR.Upper))
498       return *this;
499 
500     //   L-----U   : this
501     // L-----U     : CR
502     if (Lower.ult(CR.Upper))
503       return ConstantRange(Lower, CR.Upper);
504 
505     //       L---U : this
506     // L---U       : CR
507     return getEmpty();
508   }
509 
510   if (isUpperWrapped() && !CR.isUpperWrapped()) {
511     if (CR.Lower.ult(Upper)) {
512       // ------U   L--- : this
513       //  L--U          : CR
514       if (CR.Upper.ult(Upper))
515         return CR;
516 
517       // ------U   L--- : this
518       //  L------U      : CR
519       if (CR.Upper.ule(Lower))
520         return ConstantRange(CR.Lower, Upper);
521 
522       // ------U   L--- : this
523       //  L----------U  : CR
524       return getPreferredRange(*this, CR, Type);
525     }
526     if (CR.Lower.ult(Lower)) {
527       // --U      L---- : this
528       //     L--U       : CR
529       if (CR.Upper.ule(Lower))
530         return getEmpty();
531 
532       // --U      L---- : this
533       //     L------U   : CR
534       return ConstantRange(Lower, CR.Upper);
535     }
536 
537     // --U  L------ : this
538     //        L--U  : CR
539     return CR;
540   }
541 
542   if (CR.Upper.ult(Upper)) {
543     // ------U L-- : this
544     // --U L------ : CR
545     if (CR.Lower.ult(Upper))
546       return getPreferredRange(*this, CR, Type);
547 
548     // ----U   L-- : this
549     // --U   L---- : CR
550     if (CR.Lower.ult(Lower))
551       return ConstantRange(Lower, CR.Upper);
552 
553     // ----U L---- : this
554     // --U     L-- : CR
555     return CR;
556   }
557   if (CR.Upper.ule(Lower)) {
558     // --U     L-- : this
559     // ----U L---- : CR
560     if (CR.Lower.ult(Lower))
561       return *this;
562 
563     // --U   L---- : this
564     // ----U   L-- : CR
565     return ConstantRange(CR.Lower, Upper);
566   }
567 
568   // --U L------ : this
569   // ------U L-- : CR
570   return getPreferredRange(*this, CR, Type);
571 }
572 
573 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
574                                        PreferredRangeType Type) const {
575   assert(getBitWidth() == CR.getBitWidth() &&
576          "ConstantRange types don't agree!");
577 
578   if (   isFullSet() || CR.isEmptySet()) return *this;
579   if (CR.isFullSet() ||    isEmptySet()) return CR;
580 
581   if (!isUpperWrapped() && CR.isUpperWrapped())
582     return CR.unionWith(*this, Type);
583 
584   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
585     //        L---U  and  L---U        : this
586     //  L---U                   L---U  : CR
587     // result in one of
588     //  L---------U
589     // -----U L-----
590     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
591       return getPreferredRange(
592           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
593 
594     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
595     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
596 
597     if (L.isZero() && U.isZero())
598       return getFull();
599 
600     return ConstantRange(std::move(L), std::move(U));
601   }
602 
603   if (!CR.isUpperWrapped()) {
604     // ------U   L-----  and  ------U   L----- : this
605     //   L--U                            L--U  : CR
606     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
607       return *this;
608 
609     // ------U   L----- : this
610     //    L---------U   : CR
611     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
612       return getFull();
613 
614     // ----U       L---- : this
615     //       L---U       : CR
616     // results in one of
617     // ----------U L----
618     // ----U L----------
619     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
620       return getPreferredRange(
621           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
622 
623     // ----U     L----- : this
624     //        L----U    : CR
625     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
626       return ConstantRange(CR.Lower, Upper);
627 
628     // ------U    L---- : this
629     //    L-----U       : CR
630     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
631            "ConstantRange::unionWith missed a case with one range wrapped");
632     return ConstantRange(Lower, CR.Upper);
633   }
634 
635   // ------U    L----  and  ------U    L---- : this
636   // -U  L-----------  and  ------------U  L : CR
637   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
638     return getFull();
639 
640   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
641   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
642 
643   return ConstantRange(std::move(L), std::move(U));
644 }
645 
646 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
647                                     uint32_t ResultBitWidth) const {
648   switch (CastOp) {
649   default:
650     llvm_unreachable("unsupported cast type");
651   case Instruction::Trunc:
652     return truncate(ResultBitWidth);
653   case Instruction::SExt:
654     return signExtend(ResultBitWidth);
655   case Instruction::ZExt:
656     return zeroExtend(ResultBitWidth);
657   case Instruction::BitCast:
658     return *this;
659   case Instruction::FPToUI:
660   case Instruction::FPToSI:
661     if (getBitWidth() == ResultBitWidth)
662       return *this;
663     else
664       return getFull(ResultBitWidth);
665   case Instruction::UIToFP: {
666     // TODO: use input range if available
667     auto BW = getBitWidth();
668     APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
669     APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
670     return ConstantRange(std::move(Min), std::move(Max));
671   }
672   case Instruction::SIToFP: {
673     // TODO: use input range if available
674     auto BW = getBitWidth();
675     APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
676     APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
677     return ConstantRange(std::move(SMin), std::move(SMax));
678   }
679   case Instruction::FPTrunc:
680   case Instruction::FPExt:
681   case Instruction::IntToPtr:
682   case Instruction::PtrToInt:
683   case Instruction::AddrSpaceCast:
684     // Conservatively return getFull set.
685     return getFull(ResultBitWidth);
686   };
687 }
688 
689 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
690   if (isEmptySet()) return getEmpty(DstTySize);
691 
692   unsigned SrcTySize = getBitWidth();
693   assert(SrcTySize < DstTySize && "Not a value extension");
694   if (isFullSet() || isUpperWrapped()) {
695     // Change into [0, 1 << src bit width)
696     APInt LowerExt(DstTySize, 0);
697     if (!Upper) // special case: [X, 0) -- not really wrapping around
698       LowerExt = Lower.zext(DstTySize);
699     return ConstantRange(std::move(LowerExt),
700                          APInt::getOneBitSet(DstTySize, SrcTySize));
701   }
702 
703   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
704 }
705 
706 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
707   if (isEmptySet()) return getEmpty(DstTySize);
708 
709   unsigned SrcTySize = getBitWidth();
710   assert(SrcTySize < DstTySize && "Not a value extension");
711 
712   // special case: [X, INT_MIN) -- not really wrapping around
713   if (Upper.isMinSignedValue())
714     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
715 
716   if (isFullSet() || isSignWrappedSet()) {
717     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
718                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
719   }
720 
721   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
722 }
723 
724 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
725   assert(getBitWidth() > DstTySize && "Not a value truncation");
726   if (isEmptySet())
727     return getEmpty(DstTySize);
728   if (isFullSet())
729     return getFull(DstTySize);
730 
731   APInt LowerDiv(Lower), UpperDiv(Upper);
732   ConstantRange Union(DstTySize, /*isFullSet=*/false);
733 
734   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
735   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
736   // then we do the union with [MaxValue, Upper)
737   if (isUpperWrapped()) {
738     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
739     // truncated range.
740     if (Upper.getActiveBits() > DstTySize ||
741         Upper.countTrailingOnes() == DstTySize)
742       return getFull(DstTySize);
743 
744     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
745     UpperDiv.setAllBits();
746 
747     // Union covers the MaxValue case, so return if the remaining range is just
748     // MaxValue(DstTy).
749     if (LowerDiv == UpperDiv)
750       return Union;
751   }
752 
753   // Chop off the most significant bits that are past the destination bitwidth.
754   if (LowerDiv.getActiveBits() > DstTySize) {
755     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
756     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
757     LowerDiv -= Adjust;
758     UpperDiv -= Adjust;
759   }
760 
761   unsigned UpperDivWidth = UpperDiv.getActiveBits();
762   if (UpperDivWidth <= DstTySize)
763     return ConstantRange(LowerDiv.trunc(DstTySize),
764                          UpperDiv.trunc(DstTySize)).unionWith(Union);
765 
766   // The truncated value wraps around. Check if we can do better than fullset.
767   if (UpperDivWidth == DstTySize + 1) {
768     // Clear the MSB so that UpperDiv wraps around.
769     UpperDiv.clearBit(DstTySize);
770     if (UpperDiv.ult(LowerDiv))
771       return ConstantRange(LowerDiv.trunc(DstTySize),
772                            UpperDiv.trunc(DstTySize)).unionWith(Union);
773   }
774 
775   return getFull(DstTySize);
776 }
777 
778 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
779   unsigned SrcTySize = getBitWidth();
780   if (SrcTySize > DstTySize)
781     return truncate(DstTySize);
782   if (SrcTySize < DstTySize)
783     return zeroExtend(DstTySize);
784   return *this;
785 }
786 
787 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
788   unsigned SrcTySize = getBitWidth();
789   if (SrcTySize > DstTySize)
790     return truncate(DstTySize);
791   if (SrcTySize < DstTySize)
792     return signExtend(DstTySize);
793   return *this;
794 }
795 
796 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
797                                       const ConstantRange &Other) const {
798   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
799 
800   switch (BinOp) {
801   case Instruction::Add:
802     return add(Other);
803   case Instruction::Sub:
804     return sub(Other);
805   case Instruction::Mul:
806     return multiply(Other);
807   case Instruction::UDiv:
808     return udiv(Other);
809   case Instruction::SDiv:
810     return sdiv(Other);
811   case Instruction::URem:
812     return urem(Other);
813   case Instruction::SRem:
814     return srem(Other);
815   case Instruction::Shl:
816     return shl(Other);
817   case Instruction::LShr:
818     return lshr(Other);
819   case Instruction::AShr:
820     return ashr(Other);
821   case Instruction::And:
822     return binaryAnd(Other);
823   case Instruction::Or:
824     return binaryOr(Other);
825   case Instruction::Xor:
826     return binaryXor(Other);
827   // Note: floating point operations applied to abstract ranges are just
828   // ideal integer operations with a lossy representation
829   case Instruction::FAdd:
830     return add(Other);
831   case Instruction::FSub:
832     return sub(Other);
833   case Instruction::FMul:
834     return multiply(Other);
835   default:
836     // Conservatively return getFull set.
837     return getFull();
838   }
839 }
840 
841 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
842                                                  const ConstantRange &Other,
843                                                  unsigned NoWrapKind) const {
844   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
845 
846   switch (BinOp) {
847   case Instruction::Add:
848     return addWithNoWrap(Other, NoWrapKind);
849   case Instruction::Sub:
850     return subWithNoWrap(Other, NoWrapKind);
851   default:
852     // Don't know about this Overflowing Binary Operation.
853     // Conservatively fallback to plain binop handling.
854     return binaryOp(BinOp, Other);
855   }
856 }
857 
858 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
859   switch (IntrinsicID) {
860   case Intrinsic::uadd_sat:
861   case Intrinsic::usub_sat:
862   case Intrinsic::sadd_sat:
863   case Intrinsic::ssub_sat:
864   case Intrinsic::umin:
865   case Intrinsic::umax:
866   case Intrinsic::smin:
867   case Intrinsic::smax:
868   case Intrinsic::abs:
869     return true;
870   default:
871     return false;
872   }
873 }
874 
875 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
876                                        ArrayRef<ConstantRange> Ops) {
877   switch (IntrinsicID) {
878   case Intrinsic::uadd_sat:
879     return Ops[0].uadd_sat(Ops[1]);
880   case Intrinsic::usub_sat:
881     return Ops[0].usub_sat(Ops[1]);
882   case Intrinsic::sadd_sat:
883     return Ops[0].sadd_sat(Ops[1]);
884   case Intrinsic::ssub_sat:
885     return Ops[0].ssub_sat(Ops[1]);
886   case Intrinsic::umin:
887     return Ops[0].umin(Ops[1]);
888   case Intrinsic::umax:
889     return Ops[0].umax(Ops[1]);
890   case Intrinsic::smin:
891     return Ops[0].smin(Ops[1]);
892   case Intrinsic::smax:
893     return Ops[0].smax(Ops[1]);
894   case Intrinsic::abs: {
895     const APInt *IntMinIsPoison = Ops[1].getSingleElement();
896     assert(IntMinIsPoison && "Must be known (immarg)");
897     assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
898     return Ops[0].abs(IntMinIsPoison->getBoolValue());
899   }
900   default:
901     assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
902     llvm_unreachable("Unsupported intrinsic");
903   }
904 }
905 
906 ConstantRange
907 ConstantRange::add(const ConstantRange &Other) const {
908   if (isEmptySet() || Other.isEmptySet())
909     return getEmpty();
910   if (isFullSet() || Other.isFullSet())
911     return getFull();
912 
913   APInt NewLower = getLower() + Other.getLower();
914   APInt NewUpper = getUpper() + Other.getUpper() - 1;
915   if (NewLower == NewUpper)
916     return getFull();
917 
918   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
919   if (X.isSizeStrictlySmallerThan(*this) ||
920       X.isSizeStrictlySmallerThan(Other))
921     // We've wrapped, therefore, full set.
922     return getFull();
923   return X;
924 }
925 
926 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
927                                            unsigned NoWrapKind,
928                                            PreferredRangeType RangeType) const {
929   // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
930   // (X is from this, and Y is from Other)
931   if (isEmptySet() || Other.isEmptySet())
932     return getEmpty();
933   if (isFullSet() && Other.isFullSet())
934     return getFull();
935 
936   using OBO = OverflowingBinaryOperator;
937   ConstantRange Result = add(Other);
938 
939   // If an overflow happens for every value pair in these two constant ranges,
940   // we must return Empty set. In this case, we get that for free, because we
941   // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
942   // in an empty set.
943 
944   if (NoWrapKind & OBO::NoSignedWrap)
945     Result = Result.intersectWith(sadd_sat(Other), RangeType);
946 
947   if (NoWrapKind & OBO::NoUnsignedWrap)
948     Result = Result.intersectWith(uadd_sat(Other), RangeType);
949 
950   return Result;
951 }
952 
953 ConstantRange
954 ConstantRange::sub(const ConstantRange &Other) const {
955   if (isEmptySet() || Other.isEmptySet())
956     return getEmpty();
957   if (isFullSet() || Other.isFullSet())
958     return getFull();
959 
960   APInt NewLower = getLower() - Other.getUpper() + 1;
961   APInt NewUpper = getUpper() - Other.getLower();
962   if (NewLower == NewUpper)
963     return getFull();
964 
965   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
966   if (X.isSizeStrictlySmallerThan(*this) ||
967       X.isSizeStrictlySmallerThan(Other))
968     // We've wrapped, therefore, full set.
969     return getFull();
970   return X;
971 }
972 
973 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
974                                            unsigned NoWrapKind,
975                                            PreferredRangeType RangeType) const {
976   // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
977   // (X is from this, and Y is from Other)
978   if (isEmptySet() || Other.isEmptySet())
979     return getEmpty();
980   if (isFullSet() && Other.isFullSet())
981     return getFull();
982 
983   using OBO = OverflowingBinaryOperator;
984   ConstantRange Result = sub(Other);
985 
986   // If an overflow happens for every value pair in these two constant ranges,
987   // we must return Empty set. In signed case, we get that for free, because we
988   // get lucky that intersection of sub() with ssub_sat() results in an
989   // empty set. But for unsigned we must perform the overflow check manually.
990 
991   if (NoWrapKind & OBO::NoSignedWrap)
992     Result = Result.intersectWith(ssub_sat(Other), RangeType);
993 
994   if (NoWrapKind & OBO::NoUnsignedWrap) {
995     if (getUnsignedMax().ult(Other.getUnsignedMin()))
996       return getEmpty(); // Always overflows.
997     Result = Result.intersectWith(usub_sat(Other), RangeType);
998   }
999 
1000   return Result;
1001 }
1002 
1003 ConstantRange
1004 ConstantRange::multiply(const ConstantRange &Other) const {
1005   // TODO: If either operand is a single element and the multiply is known to
1006   // be non-wrapping, round the result min and max value to the appropriate
1007   // multiple of that element. If wrapping is possible, at least adjust the
1008   // range according to the greatest power-of-two factor of the single element.
1009 
1010   if (isEmptySet() || Other.isEmptySet())
1011     return getEmpty();
1012 
1013   // Multiplication is signedness-independent. However different ranges can be
1014   // obtained depending on how the input ranges are treated. These different
1015   // ranges are all conservatively correct, but one might be better than the
1016   // other. We calculate two ranges; one treating the inputs as unsigned
1017   // and the other signed, then return the smallest of these ranges.
1018 
1019   // Unsigned range first.
1020   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1021   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1022   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1023   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1024 
1025   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1026                                             this_max * Other_max + 1);
1027   ConstantRange UR = Result_zext.truncate(getBitWidth());
1028 
1029   // If the unsigned range doesn't wrap, and isn't negative then it's a range
1030   // from one positive number to another which is as good as we can generate.
1031   // In this case, skip the extra work of generating signed ranges which aren't
1032   // going to be better than this range.
1033   if (!UR.isUpperWrapped() &&
1034       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1035     return UR;
1036 
1037   // Now the signed range. Because we could be dealing with negative numbers
1038   // here, the lower bound is the smallest of the cartesian product of the
1039   // lower and upper ranges; for example:
1040   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1041   // Similarly for the upper bound, swapping min for max.
1042 
1043   this_min = getSignedMin().sext(getBitWidth() * 2);
1044   this_max = getSignedMax().sext(getBitWidth() * 2);
1045   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1046   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1047 
1048   auto L = {this_min * Other_min, this_min * Other_max,
1049             this_max * Other_min, this_max * Other_max};
1050   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1051   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1052   ConstantRange SR = Result_sext.truncate(getBitWidth());
1053 
1054   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1055 }
1056 
1057 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
1058   if (isEmptySet() || Other.isEmptySet())
1059     return getEmpty();
1060 
1061   APInt Min = getSignedMin();
1062   APInt Max = getSignedMax();
1063   APInt OtherMin = Other.getSignedMin();
1064   APInt OtherMax = Other.getSignedMax();
1065 
1066   bool O1, O2, O3, O4;
1067   auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
1068                Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
1069   if (O1 || O2 || O3 || O4)
1070     return getFull();
1071 
1072   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1073   return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
1074 }
1075 
1076 ConstantRange
1077 ConstantRange::smax(const ConstantRange &Other) const {
1078   // X smax Y is: range(smax(X_smin, Y_smin),
1079   //                    smax(X_smax, Y_smax))
1080   if (isEmptySet() || Other.isEmptySet())
1081     return getEmpty();
1082   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1083   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1084   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1085   if (isSignWrappedSet() || Other.isSignWrappedSet())
1086     return Res.intersectWith(unionWith(Other, Signed), Signed);
1087   return Res;
1088 }
1089 
1090 ConstantRange
1091 ConstantRange::umax(const ConstantRange &Other) const {
1092   // X umax Y is: range(umax(X_umin, Y_umin),
1093   //                    umax(X_umax, Y_umax))
1094   if (isEmptySet() || Other.isEmptySet())
1095     return getEmpty();
1096   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1097   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1098   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1099   if (isWrappedSet() || Other.isWrappedSet())
1100     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1101   return Res;
1102 }
1103 
1104 ConstantRange
1105 ConstantRange::smin(const ConstantRange &Other) const {
1106   // X smin Y is: range(smin(X_smin, Y_smin),
1107   //                    smin(X_smax, Y_smax))
1108   if (isEmptySet() || Other.isEmptySet())
1109     return getEmpty();
1110   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1111   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1112   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1113   if (isSignWrappedSet() || Other.isSignWrappedSet())
1114     return Res.intersectWith(unionWith(Other, Signed), Signed);
1115   return Res;
1116 }
1117 
1118 ConstantRange
1119 ConstantRange::umin(const ConstantRange &Other) const {
1120   // X umin Y is: range(umin(X_umin, Y_umin),
1121   //                    umin(X_umax, Y_umax))
1122   if (isEmptySet() || Other.isEmptySet())
1123     return getEmpty();
1124   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1125   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1126   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1127   if (isWrappedSet() || Other.isWrappedSet())
1128     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1129   return Res;
1130 }
1131 
1132 ConstantRange
1133 ConstantRange::udiv(const ConstantRange &RHS) const {
1134   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1135     return getEmpty();
1136 
1137   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1138 
1139   APInt RHS_umin = RHS.getUnsignedMin();
1140   if (RHS_umin.isZero()) {
1141     // We want the lowest value in RHS excluding zero. Usually that would be 1
1142     // except for a range in the form of [X, 1) in which case it would be X.
1143     if (RHS.getUpper() == 1)
1144       RHS_umin = RHS.getLower();
1145     else
1146       RHS_umin = 1;
1147   }
1148 
1149   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1150   return getNonEmpty(std::move(Lower), std::move(Upper));
1151 }
1152 
1153 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1154   // We split up the LHS and RHS into positive and negative components
1155   // and then also compute the positive and negative components of the result
1156   // separately by combining division results with the appropriate signs.
1157   APInt Zero = APInt::getZero(getBitWidth());
1158   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1159   ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1160   ConstantRange NegFilter(SignedMin, Zero);
1161   ConstantRange PosL = intersectWith(PosFilter);
1162   ConstantRange NegL = intersectWith(NegFilter);
1163   ConstantRange PosR = RHS.intersectWith(PosFilter);
1164   ConstantRange NegR = RHS.intersectWith(NegFilter);
1165 
1166   ConstantRange PosRes = getEmpty();
1167   if (!PosL.isEmptySet() && !PosR.isEmptySet())
1168     // pos / pos = pos.
1169     PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1170                            (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1171 
1172   if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1173     // neg / neg = pos.
1174     //
1175     // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1176     // IR level, so we'll want to exclude this case when calculating bounds.
1177     // (For APInts the operation is well-defined and yields SignedMin.) We
1178     // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1179     APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1180     if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
1181       // Remove -1 from the LHS. Skip if it's the only element, as this would
1182       // leave us with an empty set.
1183       if (!NegR.Lower.isAllOnes()) {
1184         APInt AdjNegRUpper;
1185         if (RHS.Lower.isAllOnes())
1186           // Negative part of [-1, X] without -1 is [SignedMin, X].
1187           AdjNegRUpper = RHS.Upper;
1188         else
1189           // [X, -1] without -1 is [X, -2].
1190           AdjNegRUpper = NegR.Upper - 1;
1191 
1192         PosRes = PosRes.unionWith(
1193             ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1194       }
1195 
1196       // Remove SignedMin from the RHS. Skip if it's the only element, as this
1197       // would leave us with an empty set.
1198       if (NegL.Upper != SignedMin + 1) {
1199         APInt AdjNegLLower;
1200         if (Upper == SignedMin + 1)
1201           // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1202           AdjNegLLower = Lower;
1203         else
1204           // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1205           AdjNegLLower = NegL.Lower + 1;
1206 
1207         PosRes = PosRes.unionWith(
1208             ConstantRange(std::move(Lo),
1209                           AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1210       }
1211     } else {
1212       PosRes = PosRes.unionWith(
1213           ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1214     }
1215   }
1216 
1217   ConstantRange NegRes = getEmpty();
1218   if (!PosL.isEmptySet() && !NegR.isEmptySet())
1219     // pos / neg = neg.
1220     NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1221                            PosL.Lower.sdiv(NegR.Lower) + 1);
1222 
1223   if (!NegL.isEmptySet() && !PosR.isEmptySet())
1224     // neg / pos = neg.
1225     NegRes = NegRes.unionWith(
1226         ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1227                       (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1228 
1229   // Prefer a non-wrapping signed range here.
1230   ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1231 
1232   // Preserve the zero that we dropped when splitting the LHS by sign.
1233   if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1234     Res = Res.unionWith(ConstantRange(Zero));
1235   return Res;
1236 }
1237 
1238 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1239   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1240     return getEmpty();
1241 
1242   if (const APInt *RHSInt = RHS.getSingleElement()) {
1243     // UREM by null is UB.
1244     if (RHSInt->isZero())
1245       return getEmpty();
1246     // Use APInt's implementation of UREM for single element ranges.
1247     if (const APInt *LHSInt = getSingleElement())
1248       return {LHSInt->urem(*RHSInt)};
1249   }
1250 
1251   // L % R for L < R is L.
1252   if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1253     return *this;
1254 
1255   // L % R is <= L and < R.
1256   APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1257   return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
1258 }
1259 
1260 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1261   if (isEmptySet() || RHS.isEmptySet())
1262     return getEmpty();
1263 
1264   if (const APInt *RHSInt = RHS.getSingleElement()) {
1265     // SREM by null is UB.
1266     if (RHSInt->isZero())
1267       return getEmpty();
1268     // Use APInt's implementation of SREM for single element ranges.
1269     if (const APInt *LHSInt = getSingleElement())
1270       return {LHSInt->srem(*RHSInt)};
1271   }
1272 
1273   ConstantRange AbsRHS = RHS.abs();
1274   APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1275   APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1276 
1277   // Modulus by zero is UB.
1278   if (MaxAbsRHS.isZero())
1279     return getEmpty();
1280 
1281   if (MinAbsRHS.isZero())
1282     ++MinAbsRHS;
1283 
1284   APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1285 
1286   if (MinLHS.isNonNegative()) {
1287     // L % R for L < R is L.
1288     if (MaxLHS.ult(MinAbsRHS))
1289       return *this;
1290 
1291     // L % R is <= L and < R.
1292     APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1293     return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
1294   }
1295 
1296   // Same basic logic as above, but the result is negative.
1297   if (MaxLHS.isNegative()) {
1298     if (MinLHS.ugt(-MinAbsRHS))
1299       return *this;
1300 
1301     APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1302     return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1303   }
1304 
1305   // LHS range crosses zero.
1306   APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1307   APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1308   return ConstantRange(std::move(Lower), std::move(Upper));
1309 }
1310 
1311 ConstantRange ConstantRange::binaryNot() const {
1312   return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
1313 }
1314 
1315 ConstantRange
1316 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1317   if (isEmptySet() || Other.isEmptySet())
1318     return getEmpty();
1319 
1320   // Use APInt's implementation of AND for single element ranges.
1321   if (isSingleElement() && Other.isSingleElement())
1322     return {*getSingleElement() & *Other.getSingleElement()};
1323 
1324   // TODO: replace this with something less conservative
1325 
1326   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1327   return getNonEmpty(APInt::getZero(getBitWidth()), std::move(umin) + 1);
1328 }
1329 
1330 ConstantRange
1331 ConstantRange::binaryOr(const ConstantRange &Other) const {
1332   if (isEmptySet() || Other.isEmptySet())
1333     return getEmpty();
1334 
1335   // Use APInt's implementation of OR for single element ranges.
1336   if (isSingleElement() && Other.isSingleElement())
1337     return {*getSingleElement() | *Other.getSingleElement()};
1338 
1339   // TODO: replace this with something less conservative
1340 
1341   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1342   return getNonEmpty(std::move(umax), APInt::getZero(getBitWidth()));
1343 }
1344 
1345 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1346   if (isEmptySet() || Other.isEmptySet())
1347     return getEmpty();
1348 
1349   // Use APInt's implementation of XOR for single element ranges.
1350   if (isSingleElement() && Other.isSingleElement())
1351     return {*getSingleElement() ^ *Other.getSingleElement()};
1352 
1353   // Special-case binary complement, since we can give a precise answer.
1354   if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
1355     return binaryNot();
1356   if (isSingleElement() && getSingleElement()->isAllOnes())
1357     return Other.binaryNot();
1358 
1359   // TODO: replace this with something less conservative
1360   return getFull();
1361 }
1362 
1363 ConstantRange
1364 ConstantRange::shl(const ConstantRange &Other) const {
1365   if (isEmptySet() || Other.isEmptySet())
1366     return getEmpty();
1367 
1368   APInt Min = getUnsignedMin();
1369   APInt Max = getUnsignedMax();
1370   if (const APInt *RHS = Other.getSingleElement()) {
1371     unsigned BW = getBitWidth();
1372     if (RHS->uge(BW))
1373       return getEmpty();
1374 
1375     unsigned EqualLeadingBits = (Min ^ Max).countLeadingZeros();
1376     if (RHS->ule(EqualLeadingBits))
1377       return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);
1378 
1379     return getNonEmpty(APInt::getZero(BW),
1380                        APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
1381   }
1382 
1383   APInt OtherMax = Other.getUnsignedMax();
1384 
1385   // There's overflow!
1386   if (OtherMax.ugt(Max.countLeadingZeros()))
1387     return getFull();
1388 
1389   // FIXME: implement the other tricky cases
1390 
1391   Min <<= Other.getUnsignedMin();
1392   Max <<= OtherMax;
1393 
1394   return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
1395 }
1396 
1397 ConstantRange
1398 ConstantRange::lshr(const ConstantRange &Other) const {
1399   if (isEmptySet() || Other.isEmptySet())
1400     return getEmpty();
1401 
1402   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1403   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1404   return getNonEmpty(std::move(min), std::move(max));
1405 }
1406 
1407 ConstantRange
1408 ConstantRange::ashr(const ConstantRange &Other) const {
1409   if (isEmptySet() || Other.isEmptySet())
1410     return getEmpty();
1411 
1412   // May straddle zero, so handle both positive and negative cases.
1413   // 'PosMax' is the upper bound of the result of the ashr
1414   // operation, when Upper of the LHS of ashr is a non-negative.
1415   // number. Since ashr of a non-negative number will result in a
1416   // smaller number, the Upper value of LHS is shifted right with
1417   // the minimum value of 'Other' instead of the maximum value.
1418   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1419 
1420   // 'PosMin' is the lower bound of the result of the ashr
1421   // operation, when Lower of the LHS is a non-negative number.
1422   // Since ashr of a non-negative number will result in a smaller
1423   // number, the Lower value of LHS is shifted right with the
1424   // maximum value of 'Other'.
1425   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1426 
1427   // 'NegMax' is the upper bound of the result of the ashr
1428   // operation, when Upper of the LHS of ashr is a negative number.
1429   // Since 'ashr' of a negative number will result in a bigger
1430   // number, the Upper value of LHS is shifted right with the
1431   // maximum value of 'Other'.
1432   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1433 
1434   // 'NegMin' is the lower bound of the result of the ashr
1435   // operation, when Lower of the LHS of ashr is a negative number.
1436   // Since 'ashr' of a negative number will result in a bigger
1437   // number, the Lower value of LHS is shifted right with the
1438   // minimum value of 'Other'.
1439   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1440 
1441   APInt max, min;
1442   if (getSignedMin().isNonNegative()) {
1443     // Upper and Lower of LHS are non-negative.
1444     min = PosMin;
1445     max = PosMax;
1446   } else if (getSignedMax().isNegative()) {
1447     // Upper and Lower of LHS are negative.
1448     min = NegMin;
1449     max = NegMax;
1450   } else {
1451     // Upper is non-negative and Lower is negative.
1452     min = NegMin;
1453     max = PosMax;
1454   }
1455   return getNonEmpty(std::move(min), std::move(max));
1456 }
1457 
1458 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1459   if (isEmptySet() || Other.isEmptySet())
1460     return getEmpty();
1461 
1462   APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1463   APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1464   return getNonEmpty(std::move(NewL), std::move(NewU));
1465 }
1466 
1467 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1468   if (isEmptySet() || Other.isEmptySet())
1469     return getEmpty();
1470 
1471   APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1472   APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1473   return getNonEmpty(std::move(NewL), std::move(NewU));
1474 }
1475 
1476 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1477   if (isEmptySet() || Other.isEmptySet())
1478     return getEmpty();
1479 
1480   APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1481   APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1482   return getNonEmpty(std::move(NewL), std::move(NewU));
1483 }
1484 
1485 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1486   if (isEmptySet() || Other.isEmptySet())
1487     return getEmpty();
1488 
1489   APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1490   APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1491   return getNonEmpty(std::move(NewL), std::move(NewU));
1492 }
1493 
1494 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1495   if (isEmptySet() || Other.isEmptySet())
1496     return getEmpty();
1497 
1498   APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1499   APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1500   return getNonEmpty(std::move(NewL), std::move(NewU));
1501 }
1502 
1503 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1504   if (isEmptySet() || Other.isEmptySet())
1505     return getEmpty();
1506 
1507   // Because we could be dealing with negative numbers here, the lower bound is
1508   // the smallest of the cartesian product of the lower and upper ranges;
1509   // for example:
1510   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1511   // Similarly for the upper bound, swapping min for max.
1512 
1513   APInt this_min = getSignedMin().sext(getBitWidth() * 2);
1514   APInt this_max = getSignedMax().sext(getBitWidth() * 2);
1515   APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1516   APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1517 
1518   auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
1519             this_max * Other_max};
1520   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1521 
1522   // Note that we wanted to perform signed saturating multiplication,
1523   // so since we performed plain multiplication in twice the bitwidth,
1524   // we need to perform signed saturating truncation.
1525   return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
1526                      std::max(L, Compare).truncSSat(getBitWidth()) + 1);
1527 }
1528 
1529 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1530   if (isEmptySet() || Other.isEmptySet())
1531     return getEmpty();
1532 
1533   APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1534   APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1535   return getNonEmpty(std::move(NewL), std::move(NewU));
1536 }
1537 
1538 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1539   if (isEmptySet() || Other.isEmptySet())
1540     return getEmpty();
1541 
1542   APInt Min = getSignedMin(), Max = getSignedMax();
1543   APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1544   APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1545   APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1546   return getNonEmpty(std::move(NewL), std::move(NewU));
1547 }
1548 
1549 ConstantRange ConstantRange::inverse() const {
1550   if (isFullSet())
1551     return getEmpty();
1552   if (isEmptySet())
1553     return getFull();
1554   return ConstantRange(Upper, Lower);
1555 }
1556 
1557 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1558   if (isEmptySet())
1559     return getEmpty();
1560 
1561   if (isSignWrappedSet()) {
1562     APInt Lo;
1563     // Check whether the range crosses zero.
1564     if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1565       Lo = APInt::getZero(getBitWidth());
1566     else
1567       Lo = APIntOps::umin(Lower, -Upper + 1);
1568 
1569     // If SignedMin is not poison, then it is included in the result range.
1570     if (IntMinIsPoison)
1571       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
1572     else
1573       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1574   }
1575 
1576   APInt SMin = getSignedMin(), SMax = getSignedMax();
1577 
1578   // Skip SignedMin if it is poison.
1579   if (IntMinIsPoison && SMin.isMinSignedValue()) {
1580     // The range may become empty if it *only* contains SignedMin.
1581     if (SMax.isMinSignedValue())
1582       return getEmpty();
1583     ++SMin;
1584   }
1585 
1586   // All non-negative.
1587   if (SMin.isNonNegative())
1588     return *this;
1589 
1590   // All negative.
1591   if (SMax.isNegative())
1592     return ConstantRange(-SMax, -SMin + 1);
1593 
1594   // Range crosses zero.
1595   return ConstantRange(APInt::getZero(getBitWidth()),
1596                        APIntOps::umax(-SMin, SMax) + 1);
1597 }
1598 
1599 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1600     const ConstantRange &Other) const {
1601   if (isEmptySet() || Other.isEmptySet())
1602     return OverflowResult::MayOverflow;
1603 
1604   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1605   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1606 
1607   // a u+ b overflows high iff a u> ~b.
1608   if (Min.ugt(~OtherMin))
1609     return OverflowResult::AlwaysOverflowsHigh;
1610   if (Max.ugt(~OtherMax))
1611     return OverflowResult::MayOverflow;
1612   return OverflowResult::NeverOverflows;
1613 }
1614 
1615 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1616     const ConstantRange &Other) const {
1617   if (isEmptySet() || Other.isEmptySet())
1618     return OverflowResult::MayOverflow;
1619 
1620   APInt Min = getSignedMin(), Max = getSignedMax();
1621   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1622 
1623   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1624   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1625 
1626   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1627   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1628   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1629       Min.sgt(SignedMax - OtherMin))
1630     return OverflowResult::AlwaysOverflowsHigh;
1631   if (Max.isNegative() && OtherMax.isNegative() &&
1632       Max.slt(SignedMin - OtherMax))
1633     return OverflowResult::AlwaysOverflowsLow;
1634 
1635   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1636       Max.sgt(SignedMax - OtherMax))
1637     return OverflowResult::MayOverflow;
1638   if (Min.isNegative() && OtherMin.isNegative() &&
1639       Min.slt(SignedMin - OtherMin))
1640     return OverflowResult::MayOverflow;
1641 
1642   return OverflowResult::NeverOverflows;
1643 }
1644 
1645 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1646     const ConstantRange &Other) const {
1647   if (isEmptySet() || Other.isEmptySet())
1648     return OverflowResult::MayOverflow;
1649 
1650   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1651   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1652 
1653   // a u- b overflows low iff a u< b.
1654   if (Max.ult(OtherMin))
1655     return OverflowResult::AlwaysOverflowsLow;
1656   if (Min.ult(OtherMax))
1657     return OverflowResult::MayOverflow;
1658   return OverflowResult::NeverOverflows;
1659 }
1660 
1661 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1662     const ConstantRange &Other) const {
1663   if (isEmptySet() || Other.isEmptySet())
1664     return OverflowResult::MayOverflow;
1665 
1666   APInt Min = getSignedMin(), Max = getSignedMax();
1667   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1668 
1669   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1670   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1671 
1672   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1673   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1674   if (Min.isNonNegative() && OtherMax.isNegative() &&
1675       Min.sgt(SignedMax + OtherMax))
1676     return OverflowResult::AlwaysOverflowsHigh;
1677   if (Max.isNegative() && OtherMin.isNonNegative() &&
1678       Max.slt(SignedMin + OtherMin))
1679     return OverflowResult::AlwaysOverflowsLow;
1680 
1681   if (Max.isNonNegative() && OtherMin.isNegative() &&
1682       Max.sgt(SignedMax + OtherMin))
1683     return OverflowResult::MayOverflow;
1684   if (Min.isNegative() && OtherMax.isNonNegative() &&
1685       Min.slt(SignedMin + OtherMax))
1686     return OverflowResult::MayOverflow;
1687 
1688   return OverflowResult::NeverOverflows;
1689 }
1690 
1691 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1692     const ConstantRange &Other) const {
1693   if (isEmptySet() || Other.isEmptySet())
1694     return OverflowResult::MayOverflow;
1695 
1696   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1697   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1698   bool Overflow;
1699 
1700   (void) Min.umul_ov(OtherMin, Overflow);
1701   if (Overflow)
1702     return OverflowResult::AlwaysOverflowsHigh;
1703 
1704   (void) Max.umul_ov(OtherMax, Overflow);
1705   if (Overflow)
1706     return OverflowResult::MayOverflow;
1707 
1708   return OverflowResult::NeverOverflows;
1709 }
1710 
1711 void ConstantRange::print(raw_ostream &OS) const {
1712   if (isFullSet())
1713     OS << "full-set";
1714   else if (isEmptySet())
1715     OS << "empty-set";
1716   else
1717     OS << "[" << Lower << "," << Upper << ")";
1718 }
1719 
1720 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1721 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1722   print(dbgs());
1723 }
1724 #endif
1725 
1726 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1727   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1728   assert(NumRanges >= 1 && "Must have at least one range!");
1729   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1730 
1731   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1732   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1733 
1734   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1735 
1736   for (unsigned i = 1; i < NumRanges; ++i) {
1737     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1738     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1739 
1740     // Note: unionWith will potentially create a range that contains values not
1741     // contained in any of the original N ranges.
1742     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1743   }
1744 
1745   return CR;
1746 }
1747