1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value.  This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range.  To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators.  When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
16 //
17 //  [F, F) = {}     = Empty set
18 //  [T, F) = {T}
19 //  [F, T) = {F}
20 //  [T, T) = {F, T} = Full set
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 
32 /// Initialize a full (the default) or empty set for the specified type.
33 ///
34 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
35   if (Full)
36     Lower = Upper = APInt::getMaxValue(BitWidth);
37   else
38     Lower = Upper = APInt::getMinValue(BitWidth);
39 }
40 
41 /// Initialize a range to hold the single specified value.
42 ///
43 ConstantRange::ConstantRange(APIntMoveTy V)
44     : Lower(std::move(V)), Upper(Lower + 1) {}
45 
46 ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U)
47     : Lower(std::move(L)), Upper(std::move(U)) {
48   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
49          "ConstantRange with unequal bit widths");
50   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
51          "Lower == Upper, but they aren't min or max value!");
52 }
53 
54 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
55                                                    const ConstantRange &CR) {
56   if (CR.isEmptySet())
57     return CR;
58 
59   uint32_t W = CR.getBitWidth();
60   switch (Pred) {
61   default:
62     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
63   case CmpInst::ICMP_EQ:
64     return CR;
65   case CmpInst::ICMP_NE:
66     if (CR.isSingleElement())
67       return ConstantRange(CR.getUpper(), CR.getLower());
68     return ConstantRange(W);
69   case CmpInst::ICMP_ULT: {
70     APInt UMax(CR.getUnsignedMax());
71     if (UMax.isMinValue())
72       return ConstantRange(W, /* empty */ false);
73     return ConstantRange(APInt::getMinValue(W), UMax);
74   }
75   case CmpInst::ICMP_SLT: {
76     APInt SMax(CR.getSignedMax());
77     if (SMax.isMinSignedValue())
78       return ConstantRange(W, /* empty */ false);
79     return ConstantRange(APInt::getSignedMinValue(W), SMax);
80   }
81   case CmpInst::ICMP_ULE: {
82     APInt UMax(CR.getUnsignedMax());
83     if (UMax.isMaxValue())
84       return ConstantRange(W);
85     return ConstantRange(APInt::getMinValue(W), UMax + 1);
86   }
87   case CmpInst::ICMP_SLE: {
88     APInt SMax(CR.getSignedMax());
89     if (SMax.isMaxSignedValue())
90       return ConstantRange(W);
91     return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
92   }
93   case CmpInst::ICMP_UGT: {
94     APInt UMin(CR.getUnsignedMin());
95     if (UMin.isMaxValue())
96       return ConstantRange(W, /* empty */ false);
97     return ConstantRange(UMin + 1, APInt::getNullValue(W));
98   }
99   case CmpInst::ICMP_SGT: {
100     APInt SMin(CR.getSignedMin());
101     if (SMin.isMaxSignedValue())
102       return ConstantRange(W, /* empty */ false);
103     return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
104   }
105   case CmpInst::ICMP_UGE: {
106     APInt UMin(CR.getUnsignedMin());
107     if (UMin.isMinValue())
108       return ConstantRange(W);
109     return ConstantRange(UMin, APInt::getNullValue(W));
110   }
111   case CmpInst::ICMP_SGE: {
112     APInt SMin(CR.getSignedMin());
113     if (SMin.isMinSignedValue())
114       return ConstantRange(W);
115     return ConstantRange(SMin, APInt::getSignedMinValue(W));
116   }
117   }
118 }
119 
120 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
121                                                       const ConstantRange &CR) {
122   // Follows from De-Morgan's laws:
123   //
124   // ~(~A union ~B) == A intersect B.
125   //
126   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
127       .inverse();
128 }
129 
130 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
131                                                  const APInt &C) {
132   // Computes the exact range that is equal to both the constant ranges returned
133   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
134   // when RHS is a singleton such as an APInt and so the assert is valid.
135   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
136   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
137   //
138   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
139   return makeAllowedICmpRegion(Pred, C);
140 }
141 
142 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
143                                       APInt &RHS) const {
144   bool Success = false;
145 
146   if (isFullSet() || isEmptySet()) {
147     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
148     RHS = APInt(getBitWidth(), 0);
149     Success = true;
150   } else if (auto *OnlyElt = getSingleElement()) {
151     Pred = CmpInst::ICMP_EQ;
152     RHS = *OnlyElt;
153     Success = true;
154   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
155     Pred = CmpInst::ICMP_NE;
156     RHS = *OnlyMissingElt;
157     Success = true;
158   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
159     Pred =
160         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
161     RHS = getUpper();
162     Success = true;
163   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
164     Pred =
165         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
166     RHS = getLower();
167     Success = true;
168   }
169 
170   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
171          "Bad result!");
172 
173   return Success;
174 }
175 
176 ConstantRange
177 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
178                                           const ConstantRange &Other,
179                                           unsigned NoWrapKind) {
180   typedef OverflowingBinaryOperator OBO;
181 
182   // Computes the intersection of CR0 and CR1.  It is different from
183   // intersectWith in that the ConstantRange returned will only contain elements
184   // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
185   // not, of both X and Y).
186   auto SubsetIntersect =
187       [](const ConstantRange &CR0, const ConstantRange &CR1) {
188     return CR0.inverse().unionWith(CR1.inverse()).inverse();
189   };
190 
191   assert(BinOp >= Instruction::BinaryOpsBegin &&
192          BinOp < Instruction::BinaryOpsEnd && "Binary operators only!");
193 
194   assert((NoWrapKind == OBO::NoSignedWrap ||
195           NoWrapKind == OBO::NoUnsignedWrap ||
196           NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&
197          "NoWrapKind invalid!");
198 
199   unsigned BitWidth = Other.getBitWidth();
200   if (BinOp != Instruction::Add)
201     // Conservative answer: empty set
202     return ConstantRange(BitWidth, false);
203 
204   if (auto *C = Other.getSingleElement())
205     if (C->isMinValue())
206       // Full set: nothing signed / unsigned wraps when added to 0.
207       return ConstantRange(BitWidth);
208 
209   ConstantRange Result(BitWidth);
210 
211   if (NoWrapKind & OBO::NoUnsignedWrap)
212     Result =
213         SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
214                                               -Other.getUnsignedMax()));
215 
216   if (NoWrapKind & OBO::NoSignedWrap) {
217     APInt SignedMin = Other.getSignedMin();
218     APInt SignedMax = Other.getSignedMax();
219 
220     if (SignedMax.isStrictlyPositive())
221       Result = SubsetIntersect(
222           Result,
223           ConstantRange(APInt::getSignedMinValue(BitWidth),
224                         APInt::getSignedMinValue(BitWidth) - SignedMax));
225 
226     if (SignedMin.isNegative())
227       Result = SubsetIntersect(
228           Result, ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
229                                 APInt::getSignedMinValue(BitWidth)));
230   }
231 
232   return Result;
233 }
234 
235 /// isFullSet - Return true if this set contains all of the elements possible
236 /// for this data-type
237 bool ConstantRange::isFullSet() const {
238   return Lower == Upper && Lower.isMaxValue();
239 }
240 
241 /// isEmptySet - Return true if this set contains no members.
242 ///
243 bool ConstantRange::isEmptySet() const {
244   return Lower == Upper && Lower.isMinValue();
245 }
246 
247 /// isWrappedSet - Return true if this set wraps around the top of the range,
248 /// for example: [100, 8)
249 ///
250 bool ConstantRange::isWrappedSet() const {
251   return Lower.ugt(Upper);
252 }
253 
254 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
255 /// its bitwidth, for example: i8 [120, 140).
256 ///
257 bool ConstantRange::isSignWrappedSet() const {
258   return contains(APInt::getSignedMaxValue(getBitWidth())) &&
259          contains(APInt::getSignedMinValue(getBitWidth()));
260 }
261 
262 /// getSetSize - Return the number of elements in this set.
263 ///
264 APInt ConstantRange::getSetSize() const {
265   if (isFullSet()) {
266     APInt Size(getBitWidth()+1, 0);
267     Size.setBit(getBitWidth());
268     return Size;
269   }
270 
271   // This is also correct for wrapped sets.
272   return (Upper - Lower).zext(getBitWidth()+1);
273 }
274 
275 /// getUnsignedMax - Return the largest unsigned value contained in the
276 /// ConstantRange.
277 ///
278 APInt ConstantRange::getUnsignedMax() const {
279   if (isFullSet() || isWrappedSet())
280     return APInt::getMaxValue(getBitWidth());
281   return getUpper() - 1;
282 }
283 
284 /// getUnsignedMin - Return the smallest unsigned value contained in the
285 /// ConstantRange.
286 ///
287 APInt ConstantRange::getUnsignedMin() const {
288   if (isFullSet() || (isWrappedSet() && getUpper() != 0))
289     return APInt::getMinValue(getBitWidth());
290   return getLower();
291 }
292 
293 /// getSignedMax - Return the largest signed value contained in the
294 /// ConstantRange.
295 ///
296 APInt ConstantRange::getSignedMax() const {
297   APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
298   if (!isWrappedSet()) {
299     if (getLower().sle(getUpper() - 1))
300       return getUpper() - 1;
301     return SignedMax;
302   }
303   if (getLower().isNegative() == getUpper().isNegative())
304     return SignedMax;
305   return getUpper() - 1;
306 }
307 
308 /// getSignedMin - Return the smallest signed value contained in the
309 /// ConstantRange.
310 ///
311 APInt ConstantRange::getSignedMin() const {
312   APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
313   if (!isWrappedSet()) {
314     if (getLower().sle(getUpper() - 1))
315       return getLower();
316     return SignedMin;
317   }
318   if ((getUpper() - 1).slt(getLower())) {
319     if (getUpper() != SignedMin)
320       return SignedMin;
321   }
322   return getLower();
323 }
324 
325 /// contains - Return true if the specified value is in the set.
326 ///
327 bool ConstantRange::contains(const APInt &V) const {
328   if (Lower == Upper)
329     return isFullSet();
330 
331   if (!isWrappedSet())
332     return Lower.ule(V) && V.ult(Upper);
333   return Lower.ule(V) || V.ult(Upper);
334 }
335 
336 /// contains - Return true if the argument is a subset of this range.
337 /// Two equal sets contain each other. The empty set contained by all other
338 /// sets.
339 ///
340 bool ConstantRange::contains(const ConstantRange &Other) const {
341   if (isFullSet() || Other.isEmptySet()) return true;
342   if (isEmptySet() || Other.isFullSet()) return false;
343 
344   if (!isWrappedSet()) {
345     if (Other.isWrappedSet())
346       return false;
347 
348     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
349   }
350 
351   if (!Other.isWrappedSet())
352     return Other.getUpper().ule(Upper) ||
353            Lower.ule(Other.getLower());
354 
355   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
356 }
357 
358 /// subtract - Subtract the specified constant from the endpoints of this
359 /// constant range.
360 ConstantRange ConstantRange::subtract(const APInt &Val) const {
361   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
362   // If the set is empty or full, don't modify the endpoints.
363   if (Lower == Upper)
364     return *this;
365   return ConstantRange(Lower - Val, Upper - Val);
366 }
367 
368 /// \brief Subtract the specified range from this range (aka relative complement
369 /// of the sets).
370 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
371   return intersectWith(CR.inverse());
372 }
373 
374 /// intersectWith - Return the range that results from the intersection of this
375 /// range with another range.  The resultant range is guaranteed to include all
376 /// elements contained in both input ranges, and to have the smallest possible
377 /// set size that does so.  Because there may be two intersections with the
378 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
379 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
380   assert(getBitWidth() == CR.getBitWidth() &&
381          "ConstantRange types don't agree!");
382 
383   // Handle common cases.
384   if (   isEmptySet() || CR.isFullSet()) return *this;
385   if (CR.isEmptySet() ||    isFullSet()) return CR;
386 
387   if (!isWrappedSet() && CR.isWrappedSet())
388     return CR.intersectWith(*this);
389 
390   if (!isWrappedSet() && !CR.isWrappedSet()) {
391     if (Lower.ult(CR.Lower)) {
392       if (Upper.ule(CR.Lower))
393         return ConstantRange(getBitWidth(), false);
394 
395       if (Upper.ult(CR.Upper))
396         return ConstantRange(CR.Lower, Upper);
397 
398       return CR;
399     }
400     if (Upper.ult(CR.Upper))
401       return *this;
402 
403     if (Lower.ult(CR.Upper))
404       return ConstantRange(Lower, CR.Upper);
405 
406     return ConstantRange(getBitWidth(), false);
407   }
408 
409   if (isWrappedSet() && !CR.isWrappedSet()) {
410     if (CR.Lower.ult(Upper)) {
411       if (CR.Upper.ult(Upper))
412         return CR;
413 
414       if (CR.Upper.ule(Lower))
415         return ConstantRange(CR.Lower, Upper);
416 
417       if (getSetSize().ult(CR.getSetSize()))
418         return *this;
419       return CR;
420     }
421     if (CR.Lower.ult(Lower)) {
422       if (CR.Upper.ule(Lower))
423         return ConstantRange(getBitWidth(), false);
424 
425       return ConstantRange(Lower, CR.Upper);
426     }
427     return CR;
428   }
429 
430   if (CR.Upper.ult(Upper)) {
431     if (CR.Lower.ult(Upper)) {
432       if (getSetSize().ult(CR.getSetSize()))
433         return *this;
434       return CR;
435     }
436 
437     if (CR.Lower.ult(Lower))
438       return ConstantRange(Lower, CR.Upper);
439 
440     return CR;
441   }
442   if (CR.Upper.ule(Lower)) {
443     if (CR.Lower.ult(Lower))
444       return *this;
445 
446     return ConstantRange(CR.Lower, Upper);
447   }
448   if (getSetSize().ult(CR.getSetSize()))
449     return *this;
450   return CR;
451 }
452 
453 
454 /// unionWith - Return the range that results from the union of this range with
455 /// another range.  The resultant range is guaranteed to include the elements of
456 /// both sets, but may contain more.  For example, [3, 9) union [12,15) is
457 /// [3, 15), which includes 9, 10, and 11, which were not included in either
458 /// set before.
459 ///
460 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
461   assert(getBitWidth() == CR.getBitWidth() &&
462          "ConstantRange types don't agree!");
463 
464   if (   isFullSet() || CR.isEmptySet()) return *this;
465   if (CR.isFullSet() ||    isEmptySet()) return CR;
466 
467   if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
468 
469   if (!isWrappedSet() && !CR.isWrappedSet()) {
470     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
471       // If the two ranges are disjoint, find the smaller gap and bridge it.
472       APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
473       if (d1.ult(d2))
474         return ConstantRange(Lower, CR.Upper);
475       return ConstantRange(CR.Lower, Upper);
476     }
477 
478     APInt L = Lower, U = Upper;
479     if (CR.Lower.ult(L))
480       L = CR.Lower;
481     if ((CR.Upper - 1).ugt(U - 1))
482       U = CR.Upper;
483 
484     if (L == 0 && U == 0)
485       return ConstantRange(getBitWidth());
486 
487     return ConstantRange(L, U);
488   }
489 
490   if (!CR.isWrappedSet()) {
491     // ------U   L-----  and  ------U   L----- : this
492     //   L--U                            L--U  : CR
493     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
494       return *this;
495 
496     // ------U   L----- : this
497     //    L---------U   : CR
498     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
499       return ConstantRange(getBitWidth());
500 
501     // ----U       L---- : this
502     //       L---U       : CR
503     //    <d1>  <d2>
504     if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
505       APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
506       if (d1.ult(d2))
507         return ConstantRange(Lower, CR.Upper);
508       return ConstantRange(CR.Lower, Upper);
509     }
510 
511     // ----U     L----- : this
512     //        L----U    : CR
513     if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
514       return ConstantRange(CR.Lower, Upper);
515 
516     // ------U    L---- : this
517     //    L-----U       : CR
518     assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
519            "ConstantRange::unionWith missed a case with one range wrapped");
520     return ConstantRange(Lower, CR.Upper);
521   }
522 
523   // ------U    L----  and  ------U    L---- : this
524   // -U  L-----------  and  ------------U  L : CR
525   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
526     return ConstantRange(getBitWidth());
527 
528   APInt L = Lower, U = Upper;
529   if (CR.Upper.ugt(U))
530     U = CR.Upper;
531   if (CR.Lower.ult(L))
532     L = CR.Lower;
533 
534   return ConstantRange(L, U);
535 }
536 
537 /// zeroExtend - Return a new range in the specified integer type, which must
538 /// be strictly larger than the current type.  The returned range will
539 /// correspond to the possible range of values as if the source range had been
540 /// zero extended.
541 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
542   if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
543 
544   unsigned SrcTySize = getBitWidth();
545   assert(SrcTySize < DstTySize && "Not a value extension");
546   if (isFullSet() || isWrappedSet()) {
547     // Change into [0, 1 << src bit width)
548     APInt LowerExt(DstTySize, 0);
549     if (!Upper) // special case: [X, 0) -- not really wrapping around
550       LowerExt = Lower.zext(DstTySize);
551     return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize));
552   }
553 
554   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
555 }
556 
557 /// signExtend - Return a new range in the specified integer type, which must
558 /// be strictly larger than the current type.  The returned range will
559 /// correspond to the possible range of values as if the source range had been
560 /// sign extended.
561 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
562   if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
563 
564   unsigned SrcTySize = getBitWidth();
565   assert(SrcTySize < DstTySize && "Not a value extension");
566 
567   // special case: [X, INT_MIN) -- not really wrapping around
568   if (Upper.isMinSignedValue())
569     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
570 
571   if (isFullSet() || isSignWrappedSet()) {
572     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
573                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
574   }
575 
576   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
577 }
578 
579 /// truncate - Return a new range in the specified integer type, which must be
580 /// strictly smaller than the current type.  The returned range will
581 /// correspond to the possible range of values as if the source range had been
582 /// truncated to the specified type.
583 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
584   assert(getBitWidth() > DstTySize && "Not a value truncation");
585   if (isEmptySet())
586     return ConstantRange(DstTySize, /*isFullSet=*/false);
587   if (isFullSet())
588     return ConstantRange(DstTySize, /*isFullSet=*/true);
589 
590   APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
591   APInt MaxBitValue(getBitWidth(), 0);
592   MaxBitValue.setBit(DstTySize);
593 
594   APInt LowerDiv(Lower), UpperDiv(Upper);
595   ConstantRange Union(DstTySize, /*isFullSet=*/false);
596 
597   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
598   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
599   // then we do the union with [MaxValue, Upper)
600   if (isWrappedSet()) {
601     // If Upper is greater than Max Value, it covers the whole truncated range.
602     if (Upper.uge(MaxValue))
603       return ConstantRange(DstTySize, /*isFullSet=*/true);
604 
605     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
606     UpperDiv = APInt::getMaxValue(getBitWidth());
607 
608     // Union covers the MaxValue case, so return if the remaining range is just
609     // MaxValue.
610     if (LowerDiv == UpperDiv)
611       return Union;
612   }
613 
614   // Chop off the most significant bits that are past the destination bitwidth.
615   if (LowerDiv.uge(MaxValue)) {
616     APInt Div(getBitWidth(), 0);
617     APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
618     UpperDiv = UpperDiv - MaxBitValue * Div;
619   }
620 
621   if (UpperDiv.ule(MaxValue))
622     return ConstantRange(LowerDiv.trunc(DstTySize),
623                          UpperDiv.trunc(DstTySize)).unionWith(Union);
624 
625   // The truncated value wraps around. Check if we can do better than fullset.
626   APInt UpperModulo = UpperDiv - MaxBitValue;
627   if (UpperModulo.ult(LowerDiv))
628     return ConstantRange(LowerDiv.trunc(DstTySize),
629                          UpperModulo.trunc(DstTySize)).unionWith(Union);
630 
631   return ConstantRange(DstTySize, /*isFullSet=*/true);
632 }
633 
634 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
635 /// value is zero extended, truncated, or left alone to make it that width.
636 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
637   unsigned SrcTySize = getBitWidth();
638   if (SrcTySize > DstTySize)
639     return truncate(DstTySize);
640   if (SrcTySize < DstTySize)
641     return zeroExtend(DstTySize);
642   return *this;
643 }
644 
645 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
646 /// value is sign extended, truncated, or left alone to make it that width.
647 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
648   unsigned SrcTySize = getBitWidth();
649   if (SrcTySize > DstTySize)
650     return truncate(DstTySize);
651   if (SrcTySize < DstTySize)
652     return signExtend(DstTySize);
653   return *this;
654 }
655 
656 ConstantRange
657 ConstantRange::add(const ConstantRange &Other) const {
658   if (isEmptySet() || Other.isEmptySet())
659     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
660   if (isFullSet() || Other.isFullSet())
661     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
662 
663   APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
664   APInt NewLower = getLower() + Other.getLower();
665   APInt NewUpper = getUpper() + Other.getUpper() - 1;
666   if (NewLower == NewUpper)
667     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
668 
669   ConstantRange X = ConstantRange(NewLower, NewUpper);
670   if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
671     // We've wrapped, therefore, full set.
672     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
673 
674   return X;
675 }
676 
677 ConstantRange
678 ConstantRange::sub(const ConstantRange &Other) const {
679   if (isEmptySet() || Other.isEmptySet())
680     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
681   if (isFullSet() || Other.isFullSet())
682     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
683 
684   APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
685   APInt NewLower = getLower() - Other.getUpper() + 1;
686   APInt NewUpper = getUpper() - Other.getLower();
687   if (NewLower == NewUpper)
688     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
689 
690   ConstantRange X = ConstantRange(NewLower, NewUpper);
691   if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
692     // We've wrapped, therefore, full set.
693     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
694 
695   return X;
696 }
697 
698 ConstantRange
699 ConstantRange::multiply(const ConstantRange &Other) const {
700   // TODO: If either operand is a single element and the multiply is known to
701   // be non-wrapping, round the result min and max value to the appropriate
702   // multiple of that element. If wrapping is possible, at least adjust the
703   // range according to the greatest power-of-two factor of the single element.
704 
705   if (isEmptySet() || Other.isEmptySet())
706     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
707 
708   // Multiplication is signedness-independent. However different ranges can be
709   // obtained depending on how the input ranges are treated. These different
710   // ranges are all conservatively correct, but one might be better than the
711   // other. We calculate two ranges; one treating the inputs as unsigned
712   // and the other signed, then return the smallest of these ranges.
713 
714   // Unsigned range first.
715   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
716   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
717   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
718   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
719 
720   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
721                                             this_max * Other_max + 1);
722   ConstantRange UR = Result_zext.truncate(getBitWidth());
723 
724   // If the unsigned range doesn't wrap, and isn't negative then it's a range
725   // from one positive number to another which is as good as we can generate.
726   // In this case, skip the extra work of generating signed ranges which aren't
727   // going to be better than this range.
728   if (!UR.isWrappedSet() && UR.getLower().isNonNegative())
729     return UR;
730 
731   // Now the signed range. Because we could be dealing with negative numbers
732   // here, the lower bound is the smallest of the cartesian product of the
733   // lower and upper ranges; for example:
734   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
735   // Similarly for the upper bound, swapping min for max.
736 
737   this_min = getSignedMin().sext(getBitWidth() * 2);
738   this_max = getSignedMax().sext(getBitWidth() * 2);
739   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
740   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
741 
742   auto L = {this_min * Other_min, this_min * Other_max,
743             this_max * Other_min, this_max * Other_max};
744   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
745   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
746   ConstantRange SR = Result_sext.truncate(getBitWidth());
747 
748   return UR.getSetSize().ult(SR.getSetSize()) ? UR : SR;
749 }
750 
751 ConstantRange
752 ConstantRange::smax(const ConstantRange &Other) const {
753   // X smax Y is: range(smax(X_smin, Y_smin),
754   //                    smax(X_smax, Y_smax))
755   if (isEmptySet() || Other.isEmptySet())
756     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
757   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
758   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
759   if (NewU == NewL)
760     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
761   return ConstantRange(NewL, NewU);
762 }
763 
764 ConstantRange
765 ConstantRange::umax(const ConstantRange &Other) const {
766   // X umax Y is: range(umax(X_umin, Y_umin),
767   //                    umax(X_umax, Y_umax))
768   if (isEmptySet() || Other.isEmptySet())
769     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
770   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
771   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
772   if (NewU == NewL)
773     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
774   return ConstantRange(NewL, NewU);
775 }
776 
777 ConstantRange
778 ConstantRange::smin(const ConstantRange &Other) const {
779   // X smin Y is: range(smin(X_smin, Y_smin),
780   //                    smin(X_smax, Y_smax))
781   if (isEmptySet() || Other.isEmptySet())
782     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
783   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
784   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
785   if (NewU == NewL)
786     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
787   return ConstantRange(NewL, NewU);
788 }
789 
790 ConstantRange
791 ConstantRange::umin(const ConstantRange &Other) const {
792   // X umin Y is: range(umin(X_umin, Y_umin),
793   //                    umin(X_umax, Y_umax))
794   if (isEmptySet() || Other.isEmptySet())
795     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
796   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
797   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
798   if (NewU == NewL)
799     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
800   return ConstantRange(NewL, NewU);
801 }
802 
803 ConstantRange
804 ConstantRange::udiv(const ConstantRange &RHS) const {
805   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
806     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
807   if (RHS.isFullSet())
808     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
809 
810   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
811 
812   APInt RHS_umin = RHS.getUnsignedMin();
813   if (RHS_umin == 0) {
814     // We want the lowest value in RHS excluding zero. Usually that would be 1
815     // except for a range in the form of [X, 1) in which case it would be X.
816     if (RHS.getUpper() == 1)
817       RHS_umin = RHS.getLower();
818     else
819       RHS_umin = APInt(getBitWidth(), 1);
820   }
821 
822   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
823 
824   // If the LHS is Full and the RHS is a wrapped interval containing 1 then
825   // this could occur.
826   if (Lower == Upper)
827     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
828 
829   return ConstantRange(Lower, Upper);
830 }
831 
832 ConstantRange
833 ConstantRange::binaryAnd(const ConstantRange &Other) const {
834   if (isEmptySet() || Other.isEmptySet())
835     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
836 
837   // TODO: replace this with something less conservative
838 
839   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
840   if (umin.isAllOnesValue())
841     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
842   return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
843 }
844 
845 ConstantRange
846 ConstantRange::binaryOr(const ConstantRange &Other) const {
847   if (isEmptySet() || Other.isEmptySet())
848     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
849 
850   // TODO: replace this with something less conservative
851 
852   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
853   if (umax.isMinValue())
854     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
855   return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
856 }
857 
858 ConstantRange
859 ConstantRange::shl(const ConstantRange &Other) const {
860   if (isEmptySet() || Other.isEmptySet())
861     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
862 
863   APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
864   APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
865 
866   // there's no overflow!
867   APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
868   if (Zeros.ugt(Other.getUnsignedMax()))
869     return ConstantRange(min, max + 1);
870 
871   // FIXME: implement the other tricky cases
872   return ConstantRange(getBitWidth(), /*isFullSet=*/true);
873 }
874 
875 ConstantRange
876 ConstantRange::lshr(const ConstantRange &Other) const {
877   if (isEmptySet() || Other.isEmptySet())
878     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
879 
880   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
881   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
882   if (min == max + 1)
883     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
884 
885   return ConstantRange(min, max + 1);
886 }
887 
888 ConstantRange ConstantRange::inverse() const {
889   if (isFullSet())
890     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
891   if (isEmptySet())
892     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
893   return ConstantRange(Upper, Lower);
894 }
895 
896 /// print - Print out the bounds to a stream...
897 ///
898 void ConstantRange::print(raw_ostream &OS) const {
899   if (isFullSet())
900     OS << "full-set";
901   else if (isEmptySet())
902     OS << "empty-set";
903   else
904     OS << "[" << Lower << "," << Upper << ")";
905 }
906 
907 /// dump - Allow printing from a debugger easily...
908 ///
909 LLVM_DUMP_METHOD void ConstantRange::dump() const {
910   print(dbgs());
911 }
912