1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 
40 using namespace llvm;
41 
42 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
43     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
44       Upper(Lower) {}
45 
46 ConstantRange::ConstantRange(APInt V)
47     : Lower(std::move(V)), Upper(Lower + 1) {}
48 
49 ConstantRange::ConstantRange(APInt L, APInt U)
50     : Lower(std::move(L)), Upper(std::move(U)) {
51   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
52          "ConstantRange with unequal bit widths");
53   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
54          "Lower == Upper, but they aren't min or max value!");
55 }
56 
57 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
58                                            bool IsSigned) {
59   assert(!Known.hasConflict() && "Expected valid KnownBits");
60 
61   if (Known.isUnknown())
62     return getFull(Known.getBitWidth());
63 
64   // For unsigned ranges, or signed ranges with known sign bit, create a simple
65   // range between the smallest and largest possible value.
66   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
67     return ConstantRange(Known.One, ~Known.Zero + 1);
68 
69   // If we don't know the sign bit, pick the lower bound as a negative number
70   // and the upper bound as a non-negative one.
71   APInt Lower = Known.One, Upper = ~Known.Zero;
72   Lower.setSignBit();
73   Upper.clearSignBit();
74   return ConstantRange(Lower, Upper + 1);
75 }
76 
77 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
78                                                    const ConstantRange &CR) {
79   if (CR.isEmptySet())
80     return CR;
81 
82   uint32_t W = CR.getBitWidth();
83   switch (Pred) {
84   default:
85     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
86   case CmpInst::ICMP_EQ:
87     return CR;
88   case CmpInst::ICMP_NE:
89     if (CR.isSingleElement())
90       return ConstantRange(CR.getUpper(), CR.getLower());
91     return getFull(W);
92   case CmpInst::ICMP_ULT: {
93     APInt UMax(CR.getUnsignedMax());
94     if (UMax.isMinValue())
95       return getEmpty(W);
96     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
97   }
98   case CmpInst::ICMP_SLT: {
99     APInt SMax(CR.getSignedMax());
100     if (SMax.isMinSignedValue())
101       return getEmpty(W);
102     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
103   }
104   case CmpInst::ICMP_ULE: {
105     APInt UMax(CR.getUnsignedMax());
106     if (UMax.isMaxValue())
107       return getFull(W);
108     return ConstantRange(APInt::getMinValue(W), std::move(UMax) + 1);
109   }
110   case CmpInst::ICMP_SLE: {
111     APInt SMax(CR.getSignedMax());
112     if (SMax.isMaxSignedValue())
113       return getFull(W);
114     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax) + 1);
115   }
116   case CmpInst::ICMP_UGT: {
117     APInt UMin(CR.getUnsignedMin());
118     if (UMin.isMaxValue())
119       return getEmpty(W);
120     return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
121   }
122   case CmpInst::ICMP_SGT: {
123     APInt SMin(CR.getSignedMin());
124     if (SMin.isMaxSignedValue())
125       return getEmpty(W);
126     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
127   }
128   case CmpInst::ICMP_UGE: {
129     APInt UMin(CR.getUnsignedMin());
130     if (UMin.isMinValue())
131       return getFull(W);
132     return ConstantRange(std::move(UMin), APInt::getNullValue(W));
133   }
134   case CmpInst::ICMP_SGE: {
135     APInt SMin(CR.getSignedMin());
136     if (SMin.isMinSignedValue())
137       return getFull(W);
138     return ConstantRange(std::move(SMin), APInt::getSignedMinValue(W));
139   }
140   }
141 }
142 
143 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
144                                                       const ConstantRange &CR) {
145   // Follows from De-Morgan's laws:
146   //
147   // ~(~A union ~B) == A intersect B.
148   //
149   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
150       .inverse();
151 }
152 
153 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
154                                                  const APInt &C) {
155   // Computes the exact range that is equal to both the constant ranges returned
156   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
157   // when RHS is a singleton such as an APInt and so the assert is valid.
158   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
159   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
160   //
161   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
162   return makeAllowedICmpRegion(Pred, C);
163 }
164 
165 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
166                                       APInt &RHS) const {
167   bool Success = false;
168 
169   if (isFullSet() || isEmptySet()) {
170     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
171     RHS = APInt(getBitWidth(), 0);
172     Success = true;
173   } else if (auto *OnlyElt = getSingleElement()) {
174     Pred = CmpInst::ICMP_EQ;
175     RHS = *OnlyElt;
176     Success = true;
177   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
178     Pred = CmpInst::ICMP_NE;
179     RHS = *OnlyMissingElt;
180     Success = true;
181   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
182     Pred =
183         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
184     RHS = getUpper();
185     Success = true;
186   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
187     Pred =
188         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
189     RHS = getLower();
190     Success = true;
191   }
192 
193   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
194          "Bad result!");
195 
196   return Success;
197 }
198 
199 ConstantRange
200 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
201                                           const ConstantRange &Other,
202                                           unsigned NoWrapKind) {
203   using OBO = OverflowingBinaryOperator;
204 
205   // Computes the intersection of CR0 and CR1.  It is different from
206   // intersectWith in that the ConstantRange returned will only contain elements
207   // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
208   // not, of both X and Y).
209   auto SubsetIntersect =
210       [](const ConstantRange &CR0, const ConstantRange &CR1) {
211     return CR0.inverse().unionWith(CR1.inverse()).inverse();
212   };
213 
214   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
215 
216   assert((NoWrapKind == OBO::NoSignedWrap ||
217           NoWrapKind == OBO::NoUnsignedWrap ||
218           NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&
219          "NoWrapKind invalid!");
220 
221   unsigned BitWidth = Other.getBitWidth();
222   ConstantRange Result(BitWidth, /* full */ true);
223 
224   switch (BinOp) {
225   default:
226     // Conservative answer: empty set
227     return getEmpty(BitWidth);
228 
229   case Instruction::Add:
230     if (auto *C = Other.getSingleElement())
231       if (C->isNullValue())
232         // Full set: nothing signed / unsigned wraps when added to 0.
233         return getFull(BitWidth);
234     if (NoWrapKind & OBO::NoUnsignedWrap)
235       Result =
236           SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
237                                                 -Other.getUnsignedMax()));
238     if (NoWrapKind & OBO::NoSignedWrap) {
239       const APInt &SignedMin = Other.getSignedMin();
240       const APInt &SignedMax = Other.getSignedMax();
241       if (SignedMax.isStrictlyPositive())
242         Result = SubsetIntersect(
243             Result,
244             ConstantRange(APInt::getSignedMinValue(BitWidth),
245                           APInt::getSignedMinValue(BitWidth) - SignedMax));
246       if (SignedMin.isNegative())
247         Result = SubsetIntersect(
248             Result,
249             ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
250                           APInt::getSignedMinValue(BitWidth)));
251     }
252     return Result;
253 
254   case Instruction::Sub:
255     if (auto *C = Other.getSingleElement())
256       if (C->isNullValue())
257         // Full set: nothing signed / unsigned wraps when subtracting 0.
258         return getFull(BitWidth);
259     if (NoWrapKind & OBO::NoUnsignedWrap)
260       Result =
261           SubsetIntersect(Result, ConstantRange(Other.getUnsignedMax(),
262                                                 APInt::getMinValue(BitWidth)));
263     if (NoWrapKind & OBO::NoSignedWrap) {
264       const APInt &SignedMin = Other.getSignedMin();
265       const APInt &SignedMax = Other.getSignedMax();
266       if (SignedMax.isStrictlyPositive())
267         Result = SubsetIntersect(
268             Result,
269             ConstantRange(APInt::getSignedMinValue(BitWidth) + SignedMax,
270                           APInt::getSignedMinValue(BitWidth)));
271       if (SignedMin.isNegative())
272         Result = SubsetIntersect(
273             Result,
274             ConstantRange(APInt::getSignedMinValue(BitWidth),
275                           APInt::getSignedMinValue(BitWidth) + SignedMin));
276     }
277     return Result;
278   case Instruction::Mul: {
279     if (NoWrapKind == (OBO::NoSignedWrap | OBO::NoUnsignedWrap)) {
280       return SubsetIntersect(
281           makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoSignedWrap),
282           makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoUnsignedWrap));
283     }
284 
285     // Equivalent to calling makeGuaranteedNoWrapRegion() on [V, V+1).
286     const bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
287     const auto makeSingleValueRegion = [Unsigned,
288                                         BitWidth](APInt V) -> ConstantRange {
289       // Handle special case for 0, -1 and 1. See the last for reason why we
290       // specialize -1 and 1.
291       if (V == 0 || V.isOneValue())
292         return getFull(BitWidth);
293 
294       APInt MinValue, MaxValue;
295       if (Unsigned) {
296         MinValue = APInt::getMinValue(BitWidth);
297         MaxValue = APInt::getMaxValue(BitWidth);
298       } else {
299         MinValue = APInt::getSignedMinValue(BitWidth);
300         MaxValue = APInt::getSignedMaxValue(BitWidth);
301       }
302       // e.g. Returning [-127, 127], represented as [-127, -128).
303       if (!Unsigned && V.isAllOnesValue())
304         return ConstantRange(-MaxValue, MinValue);
305 
306       APInt Lower, Upper;
307       if (!Unsigned && V.isNegative()) {
308         Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
309         Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
310       } else if (Unsigned) {
311         Lower = APIntOps::RoundingUDiv(MinValue, V, APInt::Rounding::UP);
312         Upper = APIntOps::RoundingUDiv(MaxValue, V, APInt::Rounding::DOWN);
313       } else {
314         Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
315         Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
316       }
317       // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
318       // Upper + 1 is guanranteed not to overflow, because |divisor| > 1. 0, -1,
319       // and 1 are already handled as special cases.
320       return ConstantRange(Lower, Upper + 1);
321     };
322 
323     if (Unsigned)
324       return makeSingleValueRegion(Other.getUnsignedMax());
325 
326     return SubsetIntersect(makeSingleValueRegion(Other.getSignedMin()),
327                            makeSingleValueRegion(Other.getSignedMax()));
328   }
329   }
330 }
331 
332 bool ConstantRange::isFullSet() const {
333   return Lower == Upper && Lower.isMaxValue();
334 }
335 
336 bool ConstantRange::isEmptySet() const {
337   return Lower == Upper && Lower.isMinValue();
338 }
339 
340 bool ConstantRange::isWrappedSet() const {
341   return Lower.ugt(Upper) && !Upper.isNullValue();
342 }
343 
344 bool ConstantRange::isUpperWrapped() const {
345   return Lower.ugt(Upper);
346 }
347 
348 bool ConstantRange::isSignWrappedSet() const {
349   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
350 }
351 
352 bool ConstantRange::isUpperSignWrapped() const {
353   return Lower.sgt(Upper);
354 }
355 
356 APInt ConstantRange::getSetSize() const {
357   if (isFullSet())
358     return APInt::getOneBitSet(getBitWidth()+1, getBitWidth());
359 
360   // This is also correct for wrapped sets.
361   return (Upper - Lower).zext(getBitWidth()+1);
362 }
363 
364 bool
365 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
366   assert(getBitWidth() == Other.getBitWidth());
367   if (isFullSet())
368     return false;
369   if (Other.isFullSet())
370     return true;
371   return (Upper - Lower).ult(Other.Upper - Other.Lower);
372 }
373 
374 bool
375 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
376   assert(MaxSize && "MaxSize can't be 0.");
377   // If this a full set, we need special handling to avoid needing an extra bit
378   // to represent the size.
379   if (isFullSet())
380     return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
381 
382   return (Upper - Lower).ugt(MaxSize);
383 }
384 
385 bool ConstantRange::isAllNegative() const {
386   // Empty set is all negative, full set is not.
387   if (isEmptySet())
388     return true;
389   if (isFullSet())
390     return false;
391 
392   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
393 }
394 
395 bool ConstantRange::isAllNonNegative() const {
396   // Empty and full set are automatically treated correctly.
397   return !isSignWrappedSet() && Lower.isNonNegative();
398 }
399 
400 APInt ConstantRange::getUnsignedMax() const {
401   if (isFullSet() || isUpperWrapped())
402     return APInt::getMaxValue(getBitWidth());
403   return getUpper() - 1;
404 }
405 
406 APInt ConstantRange::getUnsignedMin() const {
407   if (isFullSet() || isWrappedSet())
408     return APInt::getMinValue(getBitWidth());
409   return getLower();
410 }
411 
412 APInt ConstantRange::getSignedMax() const {
413   if (isFullSet() || isUpperSignWrapped())
414     return APInt::getSignedMaxValue(getBitWidth());
415   return getUpper() - 1;
416 }
417 
418 APInt ConstantRange::getSignedMin() const {
419   if (isFullSet() || isSignWrappedSet())
420     return APInt::getSignedMinValue(getBitWidth());
421   return getLower();
422 }
423 
424 bool ConstantRange::contains(const APInt &V) const {
425   if (Lower == Upper)
426     return isFullSet();
427 
428   if (!isUpperWrapped())
429     return Lower.ule(V) && V.ult(Upper);
430   return Lower.ule(V) || V.ult(Upper);
431 }
432 
433 bool ConstantRange::contains(const ConstantRange &Other) const {
434   if (isFullSet() || Other.isEmptySet()) return true;
435   if (isEmptySet() || Other.isFullSet()) return false;
436 
437   if (!isUpperWrapped()) {
438     if (Other.isUpperWrapped())
439       return false;
440 
441     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
442   }
443 
444   if (!Other.isUpperWrapped())
445     return Other.getUpper().ule(Upper) ||
446            Lower.ule(Other.getLower());
447 
448   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
449 }
450 
451 ConstantRange ConstantRange::subtract(const APInt &Val) const {
452   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
453   // If the set is empty or full, don't modify the endpoints.
454   if (Lower == Upper)
455     return *this;
456   return ConstantRange(Lower - Val, Upper - Val);
457 }
458 
459 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
460   return intersectWith(CR.inverse());
461 }
462 
463 static ConstantRange getPreferredRange(
464     const ConstantRange &CR1, const ConstantRange &CR2,
465     ConstantRange::PreferredRangeType Type) {
466   if (Type == ConstantRange::Unsigned) {
467     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
468       return CR1;
469     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
470       return CR2;
471   } else if (Type == ConstantRange::Signed) {
472     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
473       return CR1;
474     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
475       return CR2;
476   }
477 
478   if (CR1.isSizeStrictlySmallerThan(CR2))
479     return CR1;
480   return CR2;
481 }
482 
483 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
484                                            PreferredRangeType Type) const {
485   assert(getBitWidth() == CR.getBitWidth() &&
486          "ConstantRange types don't agree!");
487 
488   // Handle common cases.
489   if (   isEmptySet() || CR.isFullSet()) return *this;
490   if (CR.isEmptySet() ||    isFullSet()) return CR;
491 
492   if (!isUpperWrapped() && CR.isUpperWrapped())
493     return CR.intersectWith(*this, Type);
494 
495   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
496     if (Lower.ult(CR.Lower)) {
497       // L---U       : this
498       //       L---U : CR
499       if (Upper.ule(CR.Lower))
500         return getEmpty();
501 
502       // L---U       : this
503       //   L---U     : CR
504       if (Upper.ult(CR.Upper))
505         return ConstantRange(CR.Lower, Upper);
506 
507       // L-------U   : this
508       //   L---U     : CR
509       return CR;
510     }
511     //   L---U     : this
512     // L-------U   : CR
513     if (Upper.ult(CR.Upper))
514       return *this;
515 
516     //   L-----U   : this
517     // L-----U     : CR
518     if (Lower.ult(CR.Upper))
519       return ConstantRange(Lower, CR.Upper);
520 
521     //       L---U : this
522     // L---U       : CR
523     return getEmpty();
524   }
525 
526   if (isUpperWrapped() && !CR.isUpperWrapped()) {
527     if (CR.Lower.ult(Upper)) {
528       // ------U   L--- : this
529       //  L--U          : CR
530       if (CR.Upper.ult(Upper))
531         return CR;
532 
533       // ------U   L--- : this
534       //  L------U      : CR
535       if (CR.Upper.ule(Lower))
536         return ConstantRange(CR.Lower, Upper);
537 
538       // ------U   L--- : this
539       //  L----------U  : CR
540       return getPreferredRange(*this, CR, Type);
541     }
542     if (CR.Lower.ult(Lower)) {
543       // --U      L---- : this
544       //     L--U       : CR
545       if (CR.Upper.ule(Lower))
546         return getEmpty();
547 
548       // --U      L---- : this
549       //     L------U   : CR
550       return ConstantRange(Lower, CR.Upper);
551     }
552 
553     // --U  L------ : this
554     //        L--U  : CR
555     return CR;
556   }
557 
558   if (CR.Upper.ult(Upper)) {
559     // ------U L-- : this
560     // --U L------ : CR
561     if (CR.Lower.ult(Upper))
562       return getPreferredRange(*this, CR, Type);
563 
564     // ----U   L-- : this
565     // --U   L---- : CR
566     if (CR.Lower.ult(Lower))
567       return ConstantRange(Lower, CR.Upper);
568 
569     // ----U L---- : this
570     // --U     L-- : CR
571     return CR;
572   }
573   if (CR.Upper.ule(Lower)) {
574     // --U     L-- : this
575     // ----U L---- : CR
576     if (CR.Lower.ult(Lower))
577       return *this;
578 
579     // --U   L---- : this
580     // ----U   L-- : CR
581     return ConstantRange(CR.Lower, Upper);
582   }
583 
584   // --U L------ : this
585   // ------U L-- : CR
586   return getPreferredRange(*this, CR, Type);
587 }
588 
589 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
590                                        PreferredRangeType Type) const {
591   assert(getBitWidth() == CR.getBitWidth() &&
592          "ConstantRange types don't agree!");
593 
594   if (   isFullSet() || CR.isEmptySet()) return *this;
595   if (CR.isFullSet() ||    isEmptySet()) return CR;
596 
597   if (!isUpperWrapped() && CR.isUpperWrapped())
598     return CR.unionWith(*this, Type);
599 
600   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
601     //        L---U  and  L---U        : this
602     //  L---U                   L---U  : CR
603     // result in one of
604     //  L---------U
605     // -----U L-----
606     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
607       return getPreferredRange(
608           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
609 
610     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
611     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
612 
613     if (L.isNullValue() && U.isNullValue())
614       return getFull();
615 
616     return ConstantRange(std::move(L), std::move(U));
617   }
618 
619   if (!CR.isUpperWrapped()) {
620     // ------U   L-----  and  ------U   L----- : this
621     //   L--U                            L--U  : CR
622     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
623       return *this;
624 
625     // ------U   L----- : this
626     //    L---------U   : CR
627     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
628       return getFull();
629 
630     // ----U       L---- : this
631     //       L---U       : CR
632     // results in one of
633     // ----------U L----
634     // ----U L----------
635     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
636       return getPreferredRange(
637           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
638 
639     // ----U     L----- : this
640     //        L----U    : CR
641     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
642       return ConstantRange(CR.Lower, Upper);
643 
644     // ------U    L---- : this
645     //    L-----U       : CR
646     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
647            "ConstantRange::unionWith missed a case with one range wrapped");
648     return ConstantRange(Lower, CR.Upper);
649   }
650 
651   // ------U    L----  and  ------U    L---- : this
652   // -U  L-----------  and  ------------U  L : CR
653   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
654     return getFull();
655 
656   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
657   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
658 
659   return ConstantRange(std::move(L), std::move(U));
660 }
661 
662 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
663                                     uint32_t ResultBitWidth) const {
664   switch (CastOp) {
665   default:
666     llvm_unreachable("unsupported cast type");
667   case Instruction::Trunc:
668     return truncate(ResultBitWidth);
669   case Instruction::SExt:
670     return signExtend(ResultBitWidth);
671   case Instruction::ZExt:
672     return zeroExtend(ResultBitWidth);
673   case Instruction::BitCast:
674     return *this;
675   case Instruction::FPToUI:
676   case Instruction::FPToSI:
677     if (getBitWidth() == ResultBitWidth)
678       return *this;
679     else
680       return getFull();
681   case Instruction::UIToFP: {
682     // TODO: use input range if available
683     auto BW = getBitWidth();
684     APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
685     APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
686     return ConstantRange(std::move(Min), std::move(Max));
687   }
688   case Instruction::SIToFP: {
689     // TODO: use input range if available
690     auto BW = getBitWidth();
691     APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
692     APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
693     return ConstantRange(std::move(SMin), std::move(SMax));
694   }
695   case Instruction::FPTrunc:
696   case Instruction::FPExt:
697   case Instruction::IntToPtr:
698   case Instruction::PtrToInt:
699   case Instruction::AddrSpaceCast:
700     // Conservatively return getFull set.
701     return getFull();
702   };
703 }
704 
705 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
706   if (isEmptySet()) return getEmpty(DstTySize);
707 
708   unsigned SrcTySize = getBitWidth();
709   assert(SrcTySize < DstTySize && "Not a value extension");
710   if (isFullSet() || isUpperWrapped()) {
711     // Change into [0, 1 << src bit width)
712     APInt LowerExt(DstTySize, 0);
713     if (!Upper) // special case: [X, 0) -- not really wrapping around
714       LowerExt = Lower.zext(DstTySize);
715     return ConstantRange(std::move(LowerExt),
716                          APInt::getOneBitSet(DstTySize, SrcTySize));
717   }
718 
719   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
720 }
721 
722 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
723   if (isEmptySet()) return getEmpty(DstTySize);
724 
725   unsigned SrcTySize = getBitWidth();
726   assert(SrcTySize < DstTySize && "Not a value extension");
727 
728   // special case: [X, INT_MIN) -- not really wrapping around
729   if (Upper.isMinSignedValue())
730     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
731 
732   if (isFullSet() || isSignWrappedSet()) {
733     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
734                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
735   }
736 
737   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
738 }
739 
740 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
741   assert(getBitWidth() > DstTySize && "Not a value truncation");
742   if (isEmptySet())
743     return getEmpty(DstTySize);
744   if (isFullSet())
745     return getFull(DstTySize);
746 
747   APInt LowerDiv(Lower), UpperDiv(Upper);
748   ConstantRange Union(DstTySize, /*isFullSet=*/false);
749 
750   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
751   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
752   // then we do the union with [MaxValue, Upper)
753   if (isUpperWrapped()) {
754     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
755     // truncated range.
756     if (Upper.getActiveBits() > DstTySize ||
757         Upper.countTrailingOnes() == DstTySize)
758       return getFull(DstTySize);
759 
760     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
761     UpperDiv.setAllBits();
762 
763     // Union covers the MaxValue case, so return if the remaining range is just
764     // MaxValue(DstTy).
765     if (LowerDiv == UpperDiv)
766       return Union;
767   }
768 
769   // Chop off the most significant bits that are past the destination bitwidth.
770   if (LowerDiv.getActiveBits() > DstTySize) {
771     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
772     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
773     LowerDiv -= Adjust;
774     UpperDiv -= Adjust;
775   }
776 
777   unsigned UpperDivWidth = UpperDiv.getActiveBits();
778   if (UpperDivWidth <= DstTySize)
779     return ConstantRange(LowerDiv.trunc(DstTySize),
780                          UpperDiv.trunc(DstTySize)).unionWith(Union);
781 
782   // The truncated value wraps around. Check if we can do better than fullset.
783   if (UpperDivWidth == DstTySize + 1) {
784     // Clear the MSB so that UpperDiv wraps around.
785     UpperDiv.clearBit(DstTySize);
786     if (UpperDiv.ult(LowerDiv))
787       return ConstantRange(LowerDiv.trunc(DstTySize),
788                            UpperDiv.trunc(DstTySize)).unionWith(Union);
789   }
790 
791   return getFull(DstTySize);
792 }
793 
794 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
795   unsigned SrcTySize = getBitWidth();
796   if (SrcTySize > DstTySize)
797     return truncate(DstTySize);
798   if (SrcTySize < DstTySize)
799     return zeroExtend(DstTySize);
800   return *this;
801 }
802 
803 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
804   unsigned SrcTySize = getBitWidth();
805   if (SrcTySize > DstTySize)
806     return truncate(DstTySize);
807   if (SrcTySize < DstTySize)
808     return signExtend(DstTySize);
809   return *this;
810 }
811 
812 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
813                                       const ConstantRange &Other) const {
814   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
815 
816   switch (BinOp) {
817   case Instruction::Add:
818     return add(Other);
819   case Instruction::Sub:
820     return sub(Other);
821   case Instruction::Mul:
822     return multiply(Other);
823   case Instruction::UDiv:
824     return udiv(Other);
825   case Instruction::Shl:
826     return shl(Other);
827   case Instruction::LShr:
828     return lshr(Other);
829   case Instruction::AShr:
830     return ashr(Other);
831   case Instruction::And:
832     return binaryAnd(Other);
833   case Instruction::Or:
834     return binaryOr(Other);
835   // Note: floating point operations applied to abstract ranges are just
836   // ideal integer operations with a lossy representation
837   case Instruction::FAdd:
838     return add(Other);
839   case Instruction::FSub:
840     return sub(Other);
841   case Instruction::FMul:
842     return multiply(Other);
843   default:
844     // Conservatively return getFull set.
845     return getFull();
846   }
847 }
848 
849 ConstantRange
850 ConstantRange::add(const ConstantRange &Other) const {
851   if (isEmptySet() || Other.isEmptySet())
852     return getEmpty();
853   if (isFullSet() || Other.isFullSet())
854     return getFull();
855 
856   APInt NewLower = getLower() + Other.getLower();
857   APInt NewUpper = getUpper() + Other.getUpper() - 1;
858   if (NewLower == NewUpper)
859     return getFull();
860 
861   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
862   if (X.isSizeStrictlySmallerThan(*this) ||
863       X.isSizeStrictlySmallerThan(Other))
864     // We've wrapped, therefore, full set.
865     return getFull();
866   return X;
867 }
868 
869 ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const {
870   // Calculate the subset of this range such that "X + Other" is
871   // guaranteed not to wrap (overflow) for all X in this subset.
872   // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are
873   // passing a single element range.
874   auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add,
875                                       ConstantRange(Other),
876                                       OverflowingBinaryOperator::NoSignedWrap);
877   auto NSWConstrainedRange = intersectWith(NSWRange);
878 
879   return NSWConstrainedRange.add(ConstantRange(Other));
880 }
881 
882 ConstantRange
883 ConstantRange::sub(const ConstantRange &Other) const {
884   if (isEmptySet() || Other.isEmptySet())
885     return getEmpty();
886   if (isFullSet() || Other.isFullSet())
887     return getFull();
888 
889   APInt NewLower = getLower() - Other.getUpper() + 1;
890   APInt NewUpper = getUpper() - Other.getLower();
891   if (NewLower == NewUpper)
892     return getFull();
893 
894   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
895   if (X.isSizeStrictlySmallerThan(*this) ||
896       X.isSizeStrictlySmallerThan(Other))
897     // We've wrapped, therefore, full set.
898     return getFull();
899   return X;
900 }
901 
902 ConstantRange
903 ConstantRange::multiply(const ConstantRange &Other) const {
904   // TODO: If either operand is a single element and the multiply is known to
905   // be non-wrapping, round the result min and max value to the appropriate
906   // multiple of that element. If wrapping is possible, at least adjust the
907   // range according to the greatest power-of-two factor of the single element.
908 
909   if (isEmptySet() || Other.isEmptySet())
910     return getEmpty();
911 
912   // Multiplication is signedness-independent. However different ranges can be
913   // obtained depending on how the input ranges are treated. These different
914   // ranges are all conservatively correct, but one might be better than the
915   // other. We calculate two ranges; one treating the inputs as unsigned
916   // and the other signed, then return the smallest of these ranges.
917 
918   // Unsigned range first.
919   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
920   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
921   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
922   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
923 
924   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
925                                             this_max * Other_max + 1);
926   ConstantRange UR = Result_zext.truncate(getBitWidth());
927 
928   // If the unsigned range doesn't wrap, and isn't negative then it's a range
929   // from one positive number to another which is as good as we can generate.
930   // In this case, skip the extra work of generating signed ranges which aren't
931   // going to be better than this range.
932   if (!UR.isUpperWrapped() &&
933       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
934     return UR;
935 
936   // Now the signed range. Because we could be dealing with negative numbers
937   // here, the lower bound is the smallest of the cartesian product of the
938   // lower and upper ranges; for example:
939   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
940   // Similarly for the upper bound, swapping min for max.
941 
942   this_min = getSignedMin().sext(getBitWidth() * 2);
943   this_max = getSignedMax().sext(getBitWidth() * 2);
944   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
945   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
946 
947   auto L = {this_min * Other_min, this_min * Other_max,
948             this_max * Other_min, this_max * Other_max};
949   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
950   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
951   ConstantRange SR = Result_sext.truncate(getBitWidth());
952 
953   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
954 }
955 
956 ConstantRange
957 ConstantRange::smax(const ConstantRange &Other) const {
958   // X smax Y is: range(smax(X_smin, Y_smin),
959   //                    smax(X_smax, Y_smax))
960   if (isEmptySet() || Other.isEmptySet())
961     return getEmpty();
962   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
963   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
964   if (NewU == NewL)
965     return getFull();
966   return ConstantRange(std::move(NewL), std::move(NewU));
967 }
968 
969 ConstantRange
970 ConstantRange::umax(const ConstantRange &Other) const {
971   // X umax Y is: range(umax(X_umin, Y_umin),
972   //                    umax(X_umax, Y_umax))
973   if (isEmptySet() || Other.isEmptySet())
974     return getEmpty();
975   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
976   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
977   if (NewU == NewL)
978     return getFull();
979   return ConstantRange(std::move(NewL), std::move(NewU));
980 }
981 
982 ConstantRange
983 ConstantRange::smin(const ConstantRange &Other) const {
984   // X smin Y is: range(smin(X_smin, Y_smin),
985   //                    smin(X_smax, Y_smax))
986   if (isEmptySet() || Other.isEmptySet())
987     return getEmpty();
988   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
989   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
990   if (NewU == NewL)
991     return getFull();
992   return ConstantRange(std::move(NewL), std::move(NewU));
993 }
994 
995 ConstantRange
996 ConstantRange::umin(const ConstantRange &Other) const {
997   // X umin Y is: range(umin(X_umin, Y_umin),
998   //                    umin(X_umax, Y_umax))
999   if (isEmptySet() || Other.isEmptySet())
1000     return getEmpty();
1001   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1002   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1003   if (NewU == NewL)
1004     return getFull();
1005   return ConstantRange(std::move(NewL), std::move(NewU));
1006 }
1007 
1008 ConstantRange
1009 ConstantRange::udiv(const ConstantRange &RHS) const {
1010   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1011     return getEmpty();
1012   if (RHS.isFullSet())
1013     return getFull();
1014 
1015   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1016 
1017   APInt RHS_umin = RHS.getUnsignedMin();
1018   if (RHS_umin.isNullValue()) {
1019     // We want the lowest value in RHS excluding zero. Usually that would be 1
1020     // except for a range in the form of [X, 1) in which case it would be X.
1021     if (RHS.getUpper() == 1)
1022       RHS_umin = RHS.getLower();
1023     else
1024       RHS_umin = 1;
1025   }
1026 
1027   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1028 
1029   // If the LHS is Full and the RHS is a wrapped interval containing 1 then
1030   // this could occur.
1031   if (Lower == Upper)
1032     return getFull();
1033 
1034   return ConstantRange(std::move(Lower), std::move(Upper));
1035 }
1036 
1037 ConstantRange
1038 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1039   if (isEmptySet() || Other.isEmptySet())
1040     return getEmpty();
1041 
1042   // TODO: replace this with something less conservative
1043 
1044   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1045   if (umin.isAllOnesValue())
1046     return getFull();
1047   return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
1048 }
1049 
1050 ConstantRange
1051 ConstantRange::binaryOr(const ConstantRange &Other) const {
1052   if (isEmptySet() || Other.isEmptySet())
1053     return getEmpty();
1054 
1055   // TODO: replace this with something less conservative
1056 
1057   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1058   if (umax.isNullValue())
1059     return getFull();
1060   return ConstantRange(std::move(umax), APInt::getNullValue(getBitWidth()));
1061 }
1062 
1063 ConstantRange
1064 ConstantRange::shl(const ConstantRange &Other) const {
1065   if (isEmptySet() || Other.isEmptySet())
1066     return getEmpty();
1067 
1068   APInt max = getUnsignedMax();
1069   APInt Other_umax = Other.getUnsignedMax();
1070 
1071   // If we are shifting by maximum amount of
1072   // zero return return the original range.
1073   if (Other_umax.isNullValue())
1074     return *this;
1075   // there's overflow!
1076   if (Other_umax.ugt(max.countLeadingZeros()))
1077     return getFull();
1078 
1079   // FIXME: implement the other tricky cases
1080 
1081   APInt min = getUnsignedMin();
1082   min <<= Other.getUnsignedMin();
1083   max <<= Other_umax;
1084 
1085   return ConstantRange(std::move(min), std::move(max) + 1);
1086 }
1087 
1088 ConstantRange
1089 ConstantRange::lshr(const ConstantRange &Other) const {
1090   if (isEmptySet() || Other.isEmptySet())
1091     return getEmpty();
1092 
1093   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1094   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1095   if (min == max)
1096     return getFull();
1097 
1098   return ConstantRange(std::move(min), std::move(max));
1099 }
1100 
1101 ConstantRange
1102 ConstantRange::ashr(const ConstantRange &Other) const {
1103   if (isEmptySet() || Other.isEmptySet())
1104     return getEmpty();
1105 
1106   // May straddle zero, so handle both positive and negative cases.
1107   // 'PosMax' is the upper bound of the result of the ashr
1108   // operation, when Upper of the LHS of ashr is a non-negative.
1109   // number. Since ashr of a non-negative number will result in a
1110   // smaller number, the Upper value of LHS is shifted right with
1111   // the minimum value of 'Other' instead of the maximum value.
1112   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1113 
1114   // 'PosMin' is the lower bound of the result of the ashr
1115   // operation, when Lower of the LHS is a non-negative number.
1116   // Since ashr of a non-negative number will result in a smaller
1117   // number, the Lower value of LHS is shifted right with the
1118   // maximum value of 'Other'.
1119   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1120 
1121   // 'NegMax' is the upper bound of the result of the ashr
1122   // operation, when Upper of the LHS of ashr is a negative number.
1123   // Since 'ashr' of a negative number will result in a bigger
1124   // number, the Upper value of LHS is shifted right with the
1125   // maximum value of 'Other'.
1126   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1127 
1128   // 'NegMin' is the lower bound of the result of the ashr
1129   // operation, when Lower of the LHS of ashr is a negative number.
1130   // Since 'ashr' of a negative number will result in a bigger
1131   // number, the Lower value of LHS is shifted right with the
1132   // minimum value of 'Other'.
1133   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1134 
1135   APInt max, min;
1136   if (getSignedMin().isNonNegative()) {
1137     // Upper and Lower of LHS are non-negative.
1138     min = PosMin;
1139     max = PosMax;
1140   } else if (getSignedMax().isNegative()) {
1141     // Upper and Lower of LHS are negative.
1142     min = NegMin;
1143     max = NegMax;
1144   } else {
1145     // Upper is non-negative and Lower is negative.
1146     min = NegMin;
1147     max = PosMax;
1148   }
1149   if (min == max)
1150     return getFull();
1151 
1152   return ConstantRange(std::move(min), std::move(max));
1153 }
1154 
1155 ConstantRange ConstantRange::inverse() const {
1156   if (isFullSet())
1157     return getEmpty();
1158   if (isEmptySet())
1159     return getFull();
1160   return ConstantRange(Upper, Lower);
1161 }
1162 
1163 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1164     const ConstantRange &Other) const {
1165   if (isEmptySet() || Other.isEmptySet())
1166     return OverflowResult::MayOverflow;
1167 
1168   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1169   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1170 
1171   // a u+ b overflows iff a u> ~b.
1172   if (Min.ugt(~OtherMin))
1173     return OverflowResult::AlwaysOverflows;
1174   if (Max.ugt(~OtherMax))
1175     return OverflowResult::MayOverflow;
1176   return OverflowResult::NeverOverflows;
1177 }
1178 
1179 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1180     const ConstantRange &Other) const {
1181   if (isEmptySet() || Other.isEmptySet())
1182     return OverflowResult::MayOverflow;
1183 
1184   APInt Min = getSignedMin(), Max = getSignedMax();
1185   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1186 
1187   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1188   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1189 
1190   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1191   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1192   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1193       Min.sgt(SignedMax - OtherMin))
1194     return OverflowResult::AlwaysOverflows;
1195   if (Max.isNegative() && OtherMax.isNegative() &&
1196       Max.slt(SignedMin - OtherMax))
1197     return OverflowResult::AlwaysOverflows;
1198 
1199   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1200       Max.sgt(SignedMax - OtherMax))
1201     return OverflowResult::MayOverflow;
1202   if (Min.isNegative() && OtherMin.isNegative() &&
1203       Min.slt(SignedMin - OtherMin))
1204     return OverflowResult::MayOverflow;
1205 
1206   return OverflowResult::NeverOverflows;
1207 }
1208 
1209 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1210     const ConstantRange &Other) const {
1211   if (isEmptySet() || Other.isEmptySet())
1212     return OverflowResult::MayOverflow;
1213 
1214   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1215   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1216 
1217   // a u- b overflows iff a u< b.
1218   if (Max.ult(OtherMin))
1219     return OverflowResult::AlwaysOverflows;
1220   if (Min.ult(OtherMax))
1221     return OverflowResult::MayOverflow;
1222   return OverflowResult::NeverOverflows;
1223 }
1224 
1225 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1226     const ConstantRange &Other) const {
1227   if (isEmptySet() || Other.isEmptySet())
1228     return OverflowResult::MayOverflow;
1229 
1230   APInt Min = getSignedMin(), Max = getSignedMax();
1231   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1232 
1233   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1234   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1235 
1236   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1237   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1238   if (Min.isNonNegative() && OtherMax.isNegative() &&
1239       Min.sgt(SignedMax + OtherMax))
1240     return OverflowResult::AlwaysOverflows;
1241   if (Max.isNegative() && OtherMin.isNonNegative() &&
1242       Max.slt(SignedMin + OtherMin))
1243     return OverflowResult::AlwaysOverflows;
1244 
1245   if (Max.isNonNegative() && OtherMin.isNegative() &&
1246       Max.sgt(SignedMax + OtherMin))
1247     return OverflowResult::MayOverflow;
1248   if (Min.isNegative() && OtherMax.isNonNegative() &&
1249       Min.slt(SignedMin + OtherMax))
1250     return OverflowResult::MayOverflow;
1251 
1252   return OverflowResult::NeverOverflows;
1253 }
1254 
1255 void ConstantRange::print(raw_ostream &OS) const {
1256   if (isFullSet())
1257     OS << "full-set";
1258   else if (isEmptySet())
1259     OS << "empty-set";
1260   else
1261     OS << "[" << Lower << "," << Upper << ")";
1262 }
1263 
1264 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1265 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1266   print(dbgs());
1267 }
1268 #endif
1269 
1270 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1271   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1272   assert(NumRanges >= 1 && "Must have at least one range!");
1273   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1274 
1275   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1276   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1277 
1278   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1279 
1280   for (unsigned i = 1; i < NumRanges; ++i) {
1281     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1282     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1283 
1284     // Note: unionWith will potentially create a range that contains values not
1285     // contained in any of the original N ranges.
1286     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1287   }
1288 
1289   return CR;
1290 }
1291