1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 //===----------------------------------------------------------------------===//
39 //                ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
41 
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
46 
47   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49 
50   // Do not iterate on scalable vector. The num of elements is unknown at
51   // compile-time.
52   if (isa<ScalableVectorType>(DstTy))
53     return nullptr;
54 
55   // If this cast changes element count then we can't handle it here:
56   // doing so requires endianness information.  This should be handled by
57   // Analysis/ConstantFolding.cpp
58   unsigned NumElts = DstTy->getNumElements();
59   if (NumElts != cast<VectorType>(CV->getType())->getNumElements())
60     return nullptr;
61 
62   Type *DstEltTy = DstTy->getElementType();
63   // Fast path for splatted constants.
64   if (Constant *Splat = CV->getSplatValue()) {
65     return ConstantVector::getSplat(DstTy->getElementCount(),
66                                     ConstantExpr::getBitCast(Splat, DstEltTy));
67   }
68 
69   SmallVector<Constant*, 16> Result;
70   Type *Ty = IntegerType::get(CV->getContext(), 32);
71   for (unsigned i = 0; i != NumElts; ++i) {
72     Constant *C =
73       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
74     C = ConstantExpr::getBitCast(C, DstEltTy);
75     Result.push_back(C);
76   }
77 
78   return ConstantVector::get(Result);
79 }
80 
81 /// This function determines which opcode to use to fold two constant cast
82 /// expressions together. It uses CastInst::isEliminableCastPair to determine
83 /// the opcode. Consequently its just a wrapper around that function.
84 /// Determine if it is valid to fold a cast of a cast
85 static unsigned
86 foldConstantCastPair(
87   unsigned opc,          ///< opcode of the second cast constant expression
88   ConstantExpr *Op,      ///< the first cast constant expression
89   Type *DstTy            ///< destination type of the first cast
90 ) {
91   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
92   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
93   assert(CastInst::isCast(opc) && "Invalid cast opcode");
94 
95   // The types and opcodes for the two Cast constant expressions
96   Type *SrcTy = Op->getOperand(0)->getType();
97   Type *MidTy = Op->getType();
98   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
99   Instruction::CastOps secondOp = Instruction::CastOps(opc);
100 
101   // Assume that pointers are never more than 64 bits wide, and only use this
102   // for the middle type. Otherwise we could end up folding away illegal
103   // bitcasts between address spaces with different sizes.
104   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
105 
106   // Let CastInst::isEliminableCastPair do the heavy lifting.
107   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
108                                         nullptr, FakeIntPtrTy, nullptr);
109 }
110 
111 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
112   Type *SrcTy = V->getType();
113   if (SrcTy == DestTy)
114     return V; // no-op cast
115 
116   // Check to see if we are casting a pointer to an aggregate to a pointer to
117   // the first element.  If so, return the appropriate GEP instruction.
118   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
119     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
120       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
121           && PTy->getElementType()->isSized()) {
122         SmallVector<Value*, 8> IdxList;
123         Value *Zero =
124           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
125         IdxList.push_back(Zero);
126         Type *ElTy = PTy->getElementType();
127         while (ElTy && ElTy != DPTy->getElementType()) {
128           ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0);
129           IdxList.push_back(Zero);
130         }
131 
132         if (ElTy == DPTy->getElementType())
133           // This GEP is inbounds because all indices are zero.
134           return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
135                                                         V, IdxList);
136       }
137 
138   // Handle casts from one vector constant to another.  We know that the src
139   // and dest type have the same size (otherwise its an illegal cast).
140   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
141     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
142       assert(DestPTy->getPrimitiveSizeInBits() ==
143                  SrcTy->getPrimitiveSizeInBits() &&
144              "Not cast between same sized vectors!");
145       SrcTy = nullptr;
146       // First, check for null.  Undef is already handled.
147       if (isa<ConstantAggregateZero>(V))
148         return Constant::getNullValue(DestTy);
149 
150       // Handle ConstantVector and ConstantAggregateVector.
151       return BitCastConstantVector(V, DestPTy);
152     }
153 
154     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
155     // This allows for other simplifications (although some of them
156     // can only be handled by Analysis/ConstantFolding.cpp).
157     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
158       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
159   }
160 
161   // Finally, implement bitcast folding now.   The code below doesn't handle
162   // bitcast right.
163   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
164     return ConstantPointerNull::get(cast<PointerType>(DestTy));
165 
166   // Handle integral constant input.
167   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
168     if (DestTy->isIntegerTy())
169       // Integral -> Integral. This is a no-op because the bit widths must
170       // be the same. Consequently, we just fold to V.
171       return V;
172 
173     // See note below regarding the PPC_FP128 restriction.
174     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
175       return ConstantFP::get(DestTy->getContext(),
176                              APFloat(DestTy->getFltSemantics(),
177                                      CI->getValue()));
178 
179     // Otherwise, can't fold this (vector?)
180     return nullptr;
181   }
182 
183   // Handle ConstantFP input: FP -> Integral.
184   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
185     // PPC_FP128 is really the sum of two consecutive doubles, where the first
186     // double is always stored first in memory, regardless of the target
187     // endianness. The memory layout of i128, however, depends on the target
188     // endianness, and so we can't fold this without target endianness
189     // information. This should instead be handled by
190     // Analysis/ConstantFolding.cpp
191     if (FP->getType()->isPPC_FP128Ty())
192       return nullptr;
193 
194     // Make sure dest type is compatible with the folded integer constant.
195     if (!DestTy->isIntegerTy())
196       return nullptr;
197 
198     return ConstantInt::get(FP->getContext(),
199                             FP->getValueAPF().bitcastToAPInt());
200   }
201 
202   return nullptr;
203 }
204 
205 
206 /// V is an integer constant which only has a subset of its bytes used.
207 /// The bytes used are indicated by ByteStart (which is the first byte used,
208 /// counting from the least significant byte) and ByteSize, which is the number
209 /// of bytes used.
210 ///
211 /// This function analyzes the specified constant to see if the specified byte
212 /// range can be returned as a simplified constant.  If so, the constant is
213 /// returned, otherwise null is returned.
214 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
215                                       unsigned ByteSize) {
216   assert(C->getType()->isIntegerTy() &&
217          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
218          "Non-byte sized integer input");
219   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
220   assert(ByteSize && "Must be accessing some piece");
221   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
222   assert(ByteSize != CSize && "Should not extract everything");
223 
224   // Constant Integers are simple.
225   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
226     APInt V = CI->getValue();
227     if (ByteStart)
228       V.lshrInPlace(ByteStart*8);
229     V = V.trunc(ByteSize*8);
230     return ConstantInt::get(CI->getContext(), V);
231   }
232 
233   // In the input is a constant expr, we might be able to recursively simplify.
234   // If not, we definitely can't do anything.
235   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
236   if (!CE) return nullptr;
237 
238   switch (CE->getOpcode()) {
239   default: return nullptr;
240   case Instruction::Or: {
241     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
242     if (!RHS)
243       return nullptr;
244 
245     // X | -1 -> -1.
246     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
247       if (RHSC->isMinusOne())
248         return RHSC;
249 
250     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
251     if (!LHS)
252       return nullptr;
253     return ConstantExpr::getOr(LHS, RHS);
254   }
255   case Instruction::And: {
256     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
257     if (!RHS)
258       return nullptr;
259 
260     // X & 0 -> 0.
261     if (RHS->isNullValue())
262       return RHS;
263 
264     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
265     if (!LHS)
266       return nullptr;
267     return ConstantExpr::getAnd(LHS, RHS);
268   }
269   case Instruction::LShr: {
270     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
271     if (!Amt)
272       return nullptr;
273     APInt ShAmt = Amt->getValue();
274     // Cannot analyze non-byte shifts.
275     if ((ShAmt & 7) != 0)
276       return nullptr;
277     ShAmt.lshrInPlace(3);
278 
279     // If the extract is known to be all zeros, return zero.
280     if (ShAmt.uge(CSize - ByteStart))
281       return Constant::getNullValue(
282           IntegerType::get(CE->getContext(), ByteSize * 8));
283     // If the extract is known to be fully in the input, extract it.
284     if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
285       return ExtractConstantBytes(CE->getOperand(0),
286                                   ByteStart + ShAmt.getZExtValue(), ByteSize);
287 
288     // TODO: Handle the 'partially zero' case.
289     return nullptr;
290   }
291 
292   case Instruction::Shl: {
293     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
294     if (!Amt)
295       return nullptr;
296     APInt ShAmt = Amt->getValue();
297     // Cannot analyze non-byte shifts.
298     if ((ShAmt & 7) != 0)
299       return nullptr;
300     ShAmt.lshrInPlace(3);
301 
302     // If the extract is known to be all zeros, return zero.
303     if (ShAmt.uge(ByteStart + ByteSize))
304       return Constant::getNullValue(
305           IntegerType::get(CE->getContext(), ByteSize * 8));
306     // If the extract is known to be fully in the input, extract it.
307     if (ShAmt.ule(ByteStart))
308       return ExtractConstantBytes(CE->getOperand(0),
309                                   ByteStart - ShAmt.getZExtValue(), ByteSize);
310 
311     // TODO: Handle the 'partially zero' case.
312     return nullptr;
313   }
314 
315   case Instruction::ZExt: {
316     unsigned SrcBitSize =
317       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
318 
319     // If extracting something that is completely zero, return 0.
320     if (ByteStart*8 >= SrcBitSize)
321       return Constant::getNullValue(IntegerType::get(CE->getContext(),
322                                                      ByteSize*8));
323 
324     // If exactly extracting the input, return it.
325     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
326       return CE->getOperand(0);
327 
328     // If extracting something completely in the input, if the input is a
329     // multiple of 8 bits, recurse.
330     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
331       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
332 
333     // Otherwise, if extracting a subset of the input, which is not multiple of
334     // 8 bits, do a shift and trunc to get the bits.
335     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
336       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
337       Constant *Res = CE->getOperand(0);
338       if (ByteStart)
339         Res = ConstantExpr::getLShr(Res,
340                                  ConstantInt::get(Res->getType(), ByteStart*8));
341       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
342                                                           ByteSize*8));
343     }
344 
345     // TODO: Handle the 'partially zero' case.
346     return nullptr;
347   }
348   }
349 }
350 
351 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
352 /// factors factored out. If Folded is false, return null if no factoring was
353 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
354 /// top-level folder.
355 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) {
356   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
357     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
358     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
359     return ConstantExpr::getNUWMul(E, N);
360   }
361 
362   if (StructType *STy = dyn_cast<StructType>(Ty))
363     if (!STy->isPacked()) {
364       unsigned NumElems = STy->getNumElements();
365       // An empty struct has size zero.
366       if (NumElems == 0)
367         return ConstantExpr::getNullValue(DestTy);
368       // Check for a struct with all members having the same size.
369       Constant *MemberSize =
370         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
371       bool AllSame = true;
372       for (unsigned i = 1; i != NumElems; ++i)
373         if (MemberSize !=
374             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
375           AllSame = false;
376           break;
377         }
378       if (AllSame) {
379         Constant *N = ConstantInt::get(DestTy, NumElems);
380         return ConstantExpr::getNUWMul(MemberSize, N);
381       }
382     }
383 
384   // Pointer size doesn't depend on the pointee type, so canonicalize them
385   // to an arbitrary pointee.
386   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
387     if (!PTy->getElementType()->isIntegerTy(1))
388       return
389         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
390                                          PTy->getAddressSpace()),
391                         DestTy, true);
392 
393   // If there's no interesting folding happening, bail so that we don't create
394   // a constant that looks like it needs folding but really doesn't.
395   if (!Folded)
396     return nullptr;
397 
398   // Base case: Get a regular sizeof expression.
399   Constant *C = ConstantExpr::getSizeOf(Ty);
400   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
401                                                     DestTy, false),
402                             C, DestTy);
403   return C;
404 }
405 
406 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
407 /// factors factored out. If Folded is false, return null if no factoring was
408 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
409 /// top-level folder.
410 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) {
411   // The alignment of an array is equal to the alignment of the
412   // array element. Note that this is not always true for vectors.
413   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
414     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
415     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
416                                                       DestTy,
417                                                       false),
418                               C, DestTy);
419     return C;
420   }
421 
422   if (StructType *STy = dyn_cast<StructType>(Ty)) {
423     // Packed structs always have an alignment of 1.
424     if (STy->isPacked())
425       return ConstantInt::get(DestTy, 1);
426 
427     // Otherwise, struct alignment is the maximum alignment of any member.
428     // Without target data, we can't compare much, but we can check to see
429     // if all the members have the same alignment.
430     unsigned NumElems = STy->getNumElements();
431     // An empty struct has minimal alignment.
432     if (NumElems == 0)
433       return ConstantInt::get(DestTy, 1);
434     // Check for a struct with all members having the same alignment.
435     Constant *MemberAlign =
436       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
437     bool AllSame = true;
438     for (unsigned i = 1; i != NumElems; ++i)
439       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
440         AllSame = false;
441         break;
442       }
443     if (AllSame)
444       return MemberAlign;
445   }
446 
447   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
448   // to an arbitrary pointee.
449   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
450     if (!PTy->getElementType()->isIntegerTy(1))
451       return
452         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
453                                                            1),
454                                           PTy->getAddressSpace()),
455                          DestTy, true);
456 
457   // If there's no interesting folding happening, bail so that we don't create
458   // a constant that looks like it needs folding but really doesn't.
459   if (!Folded)
460     return nullptr;
461 
462   // Base case: Get a regular alignof expression.
463   Constant *C = ConstantExpr::getAlignOf(Ty);
464   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
465                                                     DestTy, false),
466                             C, DestTy);
467   return C;
468 }
469 
470 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
471 /// any known factors factored out. If Folded is false, return null if no
472 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
473 /// back into the top-level folder.
474 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy,
475                                    bool Folded) {
476   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
477     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
478                                                                 DestTy, false),
479                                         FieldNo, DestTy);
480     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
481     return ConstantExpr::getNUWMul(E, N);
482   }
483 
484   if (StructType *STy = dyn_cast<StructType>(Ty))
485     if (!STy->isPacked()) {
486       unsigned NumElems = STy->getNumElements();
487       // An empty struct has no members.
488       if (NumElems == 0)
489         return nullptr;
490       // Check for a struct with all members having the same size.
491       Constant *MemberSize =
492         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
493       bool AllSame = true;
494       for (unsigned i = 1; i != NumElems; ++i)
495         if (MemberSize !=
496             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
497           AllSame = false;
498           break;
499         }
500       if (AllSame) {
501         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
502                                                                     false,
503                                                                     DestTy,
504                                                                     false),
505                                             FieldNo, DestTy);
506         return ConstantExpr::getNUWMul(MemberSize, N);
507       }
508     }
509 
510   // If there's no interesting folding happening, bail so that we don't create
511   // a constant that looks like it needs folding but really doesn't.
512   if (!Folded)
513     return nullptr;
514 
515   // Base case: Get a regular offsetof expression.
516   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
517   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
518                                                     DestTy, false),
519                             C, DestTy);
520   return C;
521 }
522 
523 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
524                                             Type *DestTy) {
525   if (isa<UndefValue>(V)) {
526     // zext(undef) = 0, because the top bits will be zero.
527     // sext(undef) = 0, because the top bits will all be the same.
528     // [us]itofp(undef) = 0, because the result value is bounded.
529     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
530         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
531       return Constant::getNullValue(DestTy);
532     return UndefValue::get(DestTy);
533   }
534 
535   if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
536       opc != Instruction::AddrSpaceCast)
537     return Constant::getNullValue(DestTy);
538 
539   // If the cast operand is a constant expression, there's a few things we can
540   // do to try to simplify it.
541   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
542     if (CE->isCast()) {
543       // Try hard to fold cast of cast because they are often eliminable.
544       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
545         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
546     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
547                // Do not fold addrspacecast (gep 0, .., 0). It might make the
548                // addrspacecast uncanonicalized.
549                opc != Instruction::AddrSpaceCast &&
550                // Do not fold bitcast (gep) with inrange index, as this loses
551                // information.
552                !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
553                // Do not fold if the gep type is a vector, as bitcasting
554                // operand 0 of a vector gep will result in a bitcast between
555                // different sizes.
556                !CE->getType()->isVectorTy()) {
557       // If all of the indexes in the GEP are null values, there is no pointer
558       // adjustment going on.  We might as well cast the source pointer.
559       bool isAllNull = true;
560       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
561         if (!CE->getOperand(i)->isNullValue()) {
562           isAllNull = false;
563           break;
564         }
565       if (isAllNull)
566         // This is casting one pointer type to another, always BitCast
567         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
568     }
569   }
570 
571   // If the cast operand is a constant vector, perform the cast by
572   // operating on each element. In the cast of bitcasts, the element
573   // count may be mismatched; don't attempt to handle that here.
574   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
575       DestTy->isVectorTy() &&
576       cast<VectorType>(DestTy)->getNumElements() ==
577           cast<VectorType>(V->getType())->getNumElements()) {
578     VectorType *DestVecTy = cast<VectorType>(DestTy);
579     Type *DstEltTy = DestVecTy->getElementType();
580     // Fast path for splatted constants.
581     if (Constant *Splat = V->getSplatValue()) {
582       return ConstantVector::getSplat(
583           cast<VectorType>(DestTy)->getElementCount(),
584           ConstantExpr::getCast(opc, Splat, DstEltTy));
585     }
586     SmallVector<Constant *, 16> res;
587     Type *Ty = IntegerType::get(V->getContext(), 32);
588     for (unsigned i = 0, e = cast<VectorType>(V->getType())->getNumElements();
589          i != e; ++i) {
590       Constant *C =
591         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
592       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
593     }
594     return ConstantVector::get(res);
595   }
596 
597   // We actually have to do a cast now. Perform the cast according to the
598   // opcode specified.
599   switch (opc) {
600   default:
601     llvm_unreachable("Failed to cast constant expression");
602   case Instruction::FPTrunc:
603   case Instruction::FPExt:
604     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
605       bool ignored;
606       APFloat Val = FPC->getValueAPF();
607       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
608                   DestTy->isFloatTy() ? APFloat::IEEEsingle() :
609                   DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
610                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
611                   DestTy->isFP128Ty() ? APFloat::IEEEquad() :
612                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
613                   APFloat::Bogus(),
614                   APFloat::rmNearestTiesToEven, &ignored);
615       return ConstantFP::get(V->getContext(), Val);
616     }
617     return nullptr; // Can't fold.
618   case Instruction::FPToUI:
619   case Instruction::FPToSI:
620     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
621       const APFloat &V = FPC->getValueAPF();
622       bool ignored;
623       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
624       APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
625       if (APFloat::opInvalidOp ==
626           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
627         // Undefined behavior invoked - the destination type can't represent
628         // the input constant.
629         return UndefValue::get(DestTy);
630       }
631       return ConstantInt::get(FPC->getContext(), IntVal);
632     }
633     return nullptr; // Can't fold.
634   case Instruction::IntToPtr:   //always treated as unsigned
635     if (V->isNullValue())       // Is it an integral null value?
636       return ConstantPointerNull::get(cast<PointerType>(DestTy));
637     return nullptr;                   // Other pointer types cannot be casted
638   case Instruction::PtrToInt:   // always treated as unsigned
639     // Is it a null pointer value?
640     if (V->isNullValue())
641       return ConstantInt::get(DestTy, 0);
642     // If this is a sizeof-like expression, pull out multiplications by
643     // known factors to expose them to subsequent folding. If it's an
644     // alignof-like expression, factor out known factors.
645     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
646       if (CE->getOpcode() == Instruction::GetElementPtr &&
647           CE->getOperand(0)->isNullValue()) {
648         // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
649         // getFoldedAlignOf() don't handle the case when DestTy is a vector of
650         // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
651         // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
652         // happen in one "real" C-code test case, so it does not seem to be an
653         // important optimization to handle vectors here. For now, simply bail
654         // out.
655         if (DestTy->isVectorTy())
656           return nullptr;
657         GEPOperator *GEPO = cast<GEPOperator>(CE);
658         Type *Ty = GEPO->getSourceElementType();
659         if (CE->getNumOperands() == 2) {
660           // Handle a sizeof-like expression.
661           Constant *Idx = CE->getOperand(1);
662           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
663           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
664             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
665                                                                 DestTy, false),
666                                         Idx, DestTy);
667             return ConstantExpr::getMul(C, Idx);
668           }
669         } else if (CE->getNumOperands() == 3 &&
670                    CE->getOperand(1)->isNullValue()) {
671           // Handle an alignof-like expression.
672           if (StructType *STy = dyn_cast<StructType>(Ty))
673             if (!STy->isPacked()) {
674               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
675               if (CI->isOne() &&
676                   STy->getNumElements() == 2 &&
677                   STy->getElementType(0)->isIntegerTy(1)) {
678                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
679               }
680             }
681           // Handle an offsetof-like expression.
682           if (Ty->isStructTy() || Ty->isArrayTy()) {
683             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
684                                                 DestTy, false))
685               return C;
686           }
687         }
688       }
689     // Other pointer types cannot be casted
690     return nullptr;
691   case Instruction::UIToFP:
692   case Instruction::SIToFP:
693     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
694       const APInt &api = CI->getValue();
695       APFloat apf(DestTy->getFltSemantics(),
696                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
697       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
698                            APFloat::rmNearestTiesToEven);
699       return ConstantFP::get(V->getContext(), apf);
700     }
701     return nullptr;
702   case Instruction::ZExt:
703     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
704       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
705       return ConstantInt::get(V->getContext(),
706                               CI->getValue().zext(BitWidth));
707     }
708     return nullptr;
709   case Instruction::SExt:
710     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
711       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
712       return ConstantInt::get(V->getContext(),
713                               CI->getValue().sext(BitWidth));
714     }
715     return nullptr;
716   case Instruction::Trunc: {
717     if (V->getType()->isVectorTy())
718       return nullptr;
719 
720     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
721     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
722       return ConstantInt::get(V->getContext(),
723                               CI->getValue().trunc(DestBitWidth));
724     }
725 
726     // The input must be a constantexpr.  See if we can simplify this based on
727     // the bytes we are demanding.  Only do this if the source and dest are an
728     // even multiple of a byte.
729     if ((DestBitWidth & 7) == 0 &&
730         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
731       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
732         return Res;
733 
734     return nullptr;
735   }
736   case Instruction::BitCast:
737     return FoldBitCast(V, DestTy);
738   case Instruction::AddrSpaceCast:
739     return nullptr;
740   }
741 }
742 
743 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
744                                               Constant *V1, Constant *V2) {
745   // Check for i1 and vector true/false conditions.
746   if (Cond->isNullValue()) return V2;
747   if (Cond->isAllOnesValue()) return V1;
748 
749   // If the condition is a vector constant, fold the result elementwise.
750   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
751     auto *V1VTy = CondV->getType();
752     SmallVector<Constant*, 16> Result;
753     Type *Ty = IntegerType::get(CondV->getContext(), 32);
754     for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
755       Constant *V;
756       Constant *V1Element = ConstantExpr::getExtractElement(V1,
757                                                     ConstantInt::get(Ty, i));
758       Constant *V2Element = ConstantExpr::getExtractElement(V2,
759                                                     ConstantInt::get(Ty, i));
760       auto *Cond = cast<Constant>(CondV->getOperand(i));
761       if (V1Element == V2Element) {
762         V = V1Element;
763       } else if (isa<UndefValue>(Cond)) {
764         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
765       } else {
766         if (!isa<ConstantInt>(Cond)) break;
767         V = Cond->isNullValue() ? V2Element : V1Element;
768       }
769       Result.push_back(V);
770     }
771 
772     // If we were able to build the vector, return it.
773     if (Result.size() == V1VTy->getNumElements())
774       return ConstantVector::get(Result);
775   }
776 
777   if (isa<UndefValue>(Cond)) {
778     if (isa<UndefValue>(V1)) return V1;
779     return V2;
780   }
781   if (isa<UndefValue>(V1)) return V2;
782   if (isa<UndefValue>(V2)) return V1;
783   if (V1 == V2) return V1;
784 
785   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
786     if (TrueVal->getOpcode() == Instruction::Select)
787       if (TrueVal->getOperand(0) == Cond)
788         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
789   }
790   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
791     if (FalseVal->getOpcode() == Instruction::Select)
792       if (FalseVal->getOperand(0) == Cond)
793         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
794   }
795 
796   return nullptr;
797 }
798 
799 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
800                                                       Constant *Idx) {
801   auto *ValVTy = cast<VectorType>(Val->getType());
802 
803   // extractelt undef, C -> undef
804   // extractelt C, undef -> undef
805   if (isa<UndefValue>(Val) || isa<UndefValue>(Idx))
806     return UndefValue::get(ValVTy->getElementType());
807 
808   auto *CIdx = dyn_cast<ConstantInt>(Idx);
809   if (!CIdx)
810     return nullptr;
811 
812   // ee({w,x,y,z}, wrong_value) -> undef
813   if (CIdx->uge(ValVTy->getNumElements()))
814     return UndefValue::get(ValVTy->getElementType());
815 
816   // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
817   if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
818     if (CE->getOpcode() == Instruction::GetElementPtr) {
819       SmallVector<Constant *, 8> Ops;
820       Ops.reserve(CE->getNumOperands());
821       for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
822         Constant *Op = CE->getOperand(i);
823         if (Op->getType()->isVectorTy()) {
824           Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
825           if (!ScalarOp)
826             return  nullptr;
827           Ops.push_back(ScalarOp);
828         } else
829           Ops.push_back(Op);
830       }
831       return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
832                                  Ops[0]->getType()->getPointerElementType());
833     }
834   }
835 
836   return Val->getAggregateElement(CIdx);
837 }
838 
839 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
840                                                      Constant *Elt,
841                                                      Constant *Idx) {
842   if (isa<UndefValue>(Idx))
843     return UndefValue::get(Val->getType());
844 
845   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
846   if (!CIdx) return nullptr;
847 
848   // Do not iterate on scalable vector. The num of elements is unknown at
849   // compile-time.
850   VectorType *ValTy = cast<VectorType>(Val->getType());
851   if (isa<ScalableVectorType>(ValTy))
852     return nullptr;
853 
854   unsigned NumElts = cast<VectorType>(Val->getType())->getNumElements();
855   if (CIdx->uge(NumElts))
856     return UndefValue::get(Val->getType());
857 
858   SmallVector<Constant*, 16> Result;
859   Result.reserve(NumElts);
860   auto *Ty = Type::getInt32Ty(Val->getContext());
861   uint64_t IdxVal = CIdx->getZExtValue();
862   for (unsigned i = 0; i != NumElts; ++i) {
863     if (i == IdxVal) {
864       Result.push_back(Elt);
865       continue;
866     }
867 
868     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
869     Result.push_back(C);
870   }
871 
872   return ConstantVector::get(Result);
873 }
874 
875 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
876                                                      ArrayRef<int> Mask) {
877   auto *V1VTy = cast<VectorType>(V1->getType());
878   unsigned MaskNumElts = Mask.size();
879   ElementCount MaskEltCount = {MaskNumElts, isa<ScalableVectorType>(V1VTy)};
880   Type *EltTy = V1VTy->getElementType();
881 
882   // Undefined shuffle mask -> undefined value.
883   if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
884     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
885   }
886 
887   // If the mask is all zeros this is a splat, no need to go through all
888   // elements.
889   if (all_of(Mask, [](int Elt) { return Elt == 0; }) &&
890       !MaskEltCount.Scalable) {
891     Type *Ty = IntegerType::get(V1->getContext(), 32);
892     Constant *Elt =
893         ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
894     return ConstantVector::getSplat(MaskEltCount, Elt);
895   }
896   // Do not iterate on scalable vector. The num of elements is unknown at
897   // compile-time.
898   if (isa<ScalableVectorType>(V1VTy))
899     return nullptr;
900 
901   unsigned SrcNumElts = V1VTy->getNumElements();
902 
903   // Loop over the shuffle mask, evaluating each element.
904   SmallVector<Constant*, 32> Result;
905   for (unsigned i = 0; i != MaskNumElts; ++i) {
906     int Elt = Mask[i];
907     if (Elt == -1) {
908       Result.push_back(UndefValue::get(EltTy));
909       continue;
910     }
911     Constant *InElt;
912     if (unsigned(Elt) >= SrcNumElts*2)
913       InElt = UndefValue::get(EltTy);
914     else if (unsigned(Elt) >= SrcNumElts) {
915       Type *Ty = IntegerType::get(V2->getContext(), 32);
916       InElt =
917         ConstantExpr::getExtractElement(V2,
918                                         ConstantInt::get(Ty, Elt - SrcNumElts));
919     } else {
920       Type *Ty = IntegerType::get(V1->getContext(), 32);
921       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
922     }
923     Result.push_back(InElt);
924   }
925 
926   return ConstantVector::get(Result);
927 }
928 
929 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
930                                                     ArrayRef<unsigned> Idxs) {
931   // Base case: no indices, so return the entire value.
932   if (Idxs.empty())
933     return Agg;
934 
935   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
936     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
937 
938   return nullptr;
939 }
940 
941 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
942                                                    Constant *Val,
943                                                    ArrayRef<unsigned> Idxs) {
944   // Base case: no indices, so replace the entire value.
945   if (Idxs.empty())
946     return Val;
947 
948   unsigned NumElts;
949   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
950     NumElts = ST->getNumElements();
951   else
952     NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
953 
954   SmallVector<Constant*, 32> Result;
955   for (unsigned i = 0; i != NumElts; ++i) {
956     Constant *C = Agg->getAggregateElement(i);
957     if (!C) return nullptr;
958 
959     if (Idxs[0] == i)
960       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
961 
962     Result.push_back(C);
963   }
964 
965   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
966     return ConstantStruct::get(ST, Result);
967   return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
968 }
969 
970 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
971   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
972 
973   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
974   // vectors are always evaluated per element.
975   bool IsScalableVector = isa<ScalableVectorType>(C->getType());
976   bool HasScalarUndefOrScalableVectorUndef =
977       (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
978 
979   if (HasScalarUndefOrScalableVectorUndef) {
980     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
981     case Instruction::FNeg:
982       return C; // -undef -> undef
983     case Instruction::UnaryOpsEnd:
984       llvm_unreachable("Invalid UnaryOp");
985     }
986   }
987 
988   // Constant should not be UndefValue, unless these are vector constants.
989   assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
990   // We only have FP UnaryOps right now.
991   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
992 
993   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
994     const APFloat &CV = CFP->getValueAPF();
995     switch (Opcode) {
996     default:
997       break;
998     case Instruction::FNeg:
999       return ConstantFP::get(C->getContext(), neg(CV));
1000     }
1001   } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) {
1002     // Do not iterate on scalable vector. The number of elements is unknown at
1003     // compile-time.
1004     if (IsScalableVector)
1005       return nullptr;
1006     Type *Ty = IntegerType::get(VTy->getContext(), 32);
1007     // Fast path for splatted constants.
1008     if (Constant *Splat = C->getSplatValue()) {
1009       Constant *Elt = ConstantExpr::get(Opcode, Splat);
1010       return ConstantVector::getSplat(VTy->getElementCount(), Elt);
1011     }
1012 
1013     // Fold each element and create a vector constant from those constants.
1014     SmallVector<Constant*, 16> Result;
1015     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1016       Constant *ExtractIdx = ConstantInt::get(Ty, i);
1017       Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
1018 
1019       Result.push_back(ConstantExpr::get(Opcode, Elt));
1020     }
1021 
1022     return ConstantVector::get(Result);
1023   }
1024 
1025   // We don't know how to fold this.
1026   return nullptr;
1027 }
1028 
1029 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
1030                                               Constant *C2) {
1031   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
1032 
1033   // Simplify BinOps with their identity values first. They are no-ops and we
1034   // can always return the other value, including undef or poison values.
1035   // FIXME: remove unnecessary duplicated identity patterns below.
1036   // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops,
1037   //        like X << 0 = X.
1038   Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType());
1039   if (Identity) {
1040     if (C1 == Identity)
1041       return C2;
1042     if (C2 == Identity)
1043       return C1;
1044   }
1045 
1046   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
1047   // vectors are always evaluated per element.
1048   bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
1049   bool HasScalarUndefOrScalableVectorUndef =
1050       (!C1->getType()->isVectorTy() || IsScalableVector) &&
1051       (isa<UndefValue>(C1) || isa<UndefValue>(C2));
1052   if (HasScalarUndefOrScalableVectorUndef) {
1053     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
1054     case Instruction::Xor:
1055       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1056         // Handle undef ^ undef -> 0 special case. This is a common
1057         // idiom (misuse).
1058         return Constant::getNullValue(C1->getType());
1059       LLVM_FALLTHROUGH;
1060     case Instruction::Add:
1061     case Instruction::Sub:
1062       return UndefValue::get(C1->getType());
1063     case Instruction::And:
1064       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
1065         return C1;
1066       return Constant::getNullValue(C1->getType());   // undef & X -> 0
1067     case Instruction::Mul: {
1068       // undef * undef -> undef
1069       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1070         return C1;
1071       const APInt *CV;
1072       // X * undef -> undef   if X is odd
1073       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
1074         if ((*CV)[0])
1075           return UndefValue::get(C1->getType());
1076 
1077       // X * undef -> 0       otherwise
1078       return Constant::getNullValue(C1->getType());
1079     }
1080     case Instruction::SDiv:
1081     case Instruction::UDiv:
1082       // X / undef -> undef
1083       if (isa<UndefValue>(C2))
1084         return C2;
1085       // undef / 0 -> undef
1086       // undef / 1 -> undef
1087       if (match(C2, m_Zero()) || match(C2, m_One()))
1088         return C1;
1089       // undef / X -> 0       otherwise
1090       return Constant::getNullValue(C1->getType());
1091     case Instruction::URem:
1092     case Instruction::SRem:
1093       // X % undef -> undef
1094       if (match(C2, m_Undef()))
1095         return C2;
1096       // undef % 0 -> undef
1097       if (match(C2, m_Zero()))
1098         return C1;
1099       // undef % X -> 0       otherwise
1100       return Constant::getNullValue(C1->getType());
1101     case Instruction::Or:                          // X | undef -> -1
1102       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1103         return C1;
1104       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1105     case Instruction::LShr:
1106       // X >>l undef -> undef
1107       if (isa<UndefValue>(C2))
1108         return C2;
1109       // undef >>l 0 -> undef
1110       if (match(C2, m_Zero()))
1111         return C1;
1112       // undef >>l X -> 0
1113       return Constant::getNullValue(C1->getType());
1114     case Instruction::AShr:
1115       // X >>a undef -> undef
1116       if (isa<UndefValue>(C2))
1117         return C2;
1118       // undef >>a 0 -> undef
1119       if (match(C2, m_Zero()))
1120         return C1;
1121       // TODO: undef >>a X -> undef if the shift is exact
1122       // undef >>a X -> 0
1123       return Constant::getNullValue(C1->getType());
1124     case Instruction::Shl:
1125       // X << undef -> undef
1126       if (isa<UndefValue>(C2))
1127         return C2;
1128       // undef << 0 -> undef
1129       if (match(C2, m_Zero()))
1130         return C1;
1131       // undef << X -> 0
1132       return Constant::getNullValue(C1->getType());
1133     case Instruction::FSub:
1134       // -0.0 - undef --> undef (consistent with "fneg undef")
1135       if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
1136         return C2;
1137       LLVM_FALLTHROUGH;
1138     case Instruction::FAdd:
1139     case Instruction::FMul:
1140     case Instruction::FDiv:
1141     case Instruction::FRem:
1142       // [any flop] undef, undef -> undef
1143       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1144         return C1;
1145       // [any flop] C, undef -> NaN
1146       // [any flop] undef, C -> NaN
1147       // We could potentially specialize NaN/Inf constants vs. 'normal'
1148       // constants (possibly differently depending on opcode and operand). This
1149       // would allow returning undef sometimes. But it is always safe to fold to
1150       // NaN because we can choose the undef operand as NaN, and any FP opcode
1151       // with a NaN operand will propagate NaN.
1152       return ConstantFP::getNaN(C1->getType());
1153     case Instruction::BinaryOpsEnd:
1154       llvm_unreachable("Invalid BinaryOp");
1155     }
1156   }
1157 
1158   // Neither constant should be UndefValue, unless these are vector constants.
1159   assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
1160 
1161   // Handle simplifications when the RHS is a constant int.
1162   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1163     switch (Opcode) {
1164     case Instruction::Add:
1165       if (CI2->isZero()) return C1;                             // X + 0 == X
1166       break;
1167     case Instruction::Sub:
1168       if (CI2->isZero()) return C1;                             // X - 0 == X
1169       break;
1170     case Instruction::Mul:
1171       if (CI2->isZero()) return C2;                             // X * 0 == 0
1172       if (CI2->isOne())
1173         return C1;                                              // X * 1 == X
1174       break;
1175     case Instruction::UDiv:
1176     case Instruction::SDiv:
1177       if (CI2->isOne())
1178         return C1;                                            // X / 1 == X
1179       if (CI2->isZero())
1180         return UndefValue::get(CI2->getType());               // X / 0 == undef
1181       break;
1182     case Instruction::URem:
1183     case Instruction::SRem:
1184       if (CI2->isOne())
1185         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1186       if (CI2->isZero())
1187         return UndefValue::get(CI2->getType());               // X % 0 == undef
1188       break;
1189     case Instruction::And:
1190       if (CI2->isZero()) return C2;                           // X & 0 == 0
1191       if (CI2->isMinusOne())
1192         return C1;                                            // X & -1 == X
1193 
1194       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1195         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1196         if (CE1->getOpcode() == Instruction::ZExt) {
1197           unsigned DstWidth = CI2->getType()->getBitWidth();
1198           unsigned SrcWidth =
1199             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1200           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1201           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1202             return C1;
1203         }
1204 
1205         // If and'ing the address of a global with a constant, fold it.
1206         if (CE1->getOpcode() == Instruction::PtrToInt &&
1207             isa<GlobalValue>(CE1->getOperand(0))) {
1208           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1209 
1210           MaybeAlign GVAlign;
1211 
1212           if (Module *TheModule = GV->getParent()) {
1213             GVAlign = GV->getPointerAlignment(TheModule->getDataLayout());
1214 
1215             // If the function alignment is not specified then assume that it
1216             // is 4.
1217             // This is dangerous; on x86, the alignment of the pointer
1218             // corresponds to the alignment of the function, but might be less
1219             // than 4 if it isn't explicitly specified.
1220             // However, a fix for this behaviour was reverted because it
1221             // increased code size (see https://reviews.llvm.org/D55115)
1222             // FIXME: This code should be deleted once existing targets have
1223             // appropriate defaults
1224             if (!GVAlign && isa<Function>(GV))
1225               GVAlign = Align(4);
1226           } else if (isa<Function>(GV)) {
1227             // Without a datalayout we have to assume the worst case: that the
1228             // function pointer isn't aligned at all.
1229             GVAlign = llvm::None;
1230           } else {
1231             GVAlign = MaybeAlign(GV->getAlignment());
1232           }
1233 
1234           if (GVAlign && *GVAlign > 1) {
1235             unsigned DstWidth = CI2->getType()->getBitWidth();
1236             unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1237             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1238 
1239             // If checking bits we know are clear, return zero.
1240             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1241               return Constant::getNullValue(CI2->getType());
1242           }
1243         }
1244       }
1245       break;
1246     case Instruction::Or:
1247       if (CI2->isZero()) return C1;        // X | 0 == X
1248       if (CI2->isMinusOne())
1249         return C2;                         // X | -1 == -1
1250       break;
1251     case Instruction::Xor:
1252       if (CI2->isZero()) return C1;        // X ^ 0 == X
1253 
1254       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1255         switch (CE1->getOpcode()) {
1256         default: break;
1257         case Instruction::ICmp:
1258         case Instruction::FCmp:
1259           // cmp pred ^ true -> cmp !pred
1260           assert(CI2->isOne());
1261           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1262           pred = CmpInst::getInversePredicate(pred);
1263           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1264                                           CE1->getOperand(1));
1265         }
1266       }
1267       break;
1268     case Instruction::AShr:
1269       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1270       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1271         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1272           return ConstantExpr::getLShr(C1, C2);
1273       break;
1274     }
1275   } else if (isa<ConstantInt>(C1)) {
1276     // If C1 is a ConstantInt and C2 is not, swap the operands.
1277     if (Instruction::isCommutative(Opcode))
1278       return ConstantExpr::get(Opcode, C2, C1);
1279   }
1280 
1281   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1282     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1283       const APInt &C1V = CI1->getValue();
1284       const APInt &C2V = CI2->getValue();
1285       switch (Opcode) {
1286       default:
1287         break;
1288       case Instruction::Add:
1289         return ConstantInt::get(CI1->getContext(), C1V + C2V);
1290       case Instruction::Sub:
1291         return ConstantInt::get(CI1->getContext(), C1V - C2V);
1292       case Instruction::Mul:
1293         return ConstantInt::get(CI1->getContext(), C1V * C2V);
1294       case Instruction::UDiv:
1295         assert(!CI2->isZero() && "Div by zero handled above");
1296         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1297       case Instruction::SDiv:
1298         assert(!CI2->isZero() && "Div by zero handled above");
1299         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1300           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1301         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1302       case Instruction::URem:
1303         assert(!CI2->isZero() && "Div by zero handled above");
1304         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1305       case Instruction::SRem:
1306         assert(!CI2->isZero() && "Div by zero handled above");
1307         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1308           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1309         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1310       case Instruction::And:
1311         return ConstantInt::get(CI1->getContext(), C1V & C2V);
1312       case Instruction::Or:
1313         return ConstantInt::get(CI1->getContext(), C1V | C2V);
1314       case Instruction::Xor:
1315         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1316       case Instruction::Shl:
1317         if (C2V.ult(C1V.getBitWidth()))
1318           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1319         return UndefValue::get(C1->getType()); // too big shift is undef
1320       case Instruction::LShr:
1321         if (C2V.ult(C1V.getBitWidth()))
1322           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1323         return UndefValue::get(C1->getType()); // too big shift is undef
1324       case Instruction::AShr:
1325         if (C2V.ult(C1V.getBitWidth()))
1326           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1327         return UndefValue::get(C1->getType()); // too big shift is undef
1328       }
1329     }
1330 
1331     switch (Opcode) {
1332     case Instruction::SDiv:
1333     case Instruction::UDiv:
1334     case Instruction::URem:
1335     case Instruction::SRem:
1336     case Instruction::LShr:
1337     case Instruction::AShr:
1338     case Instruction::Shl:
1339       if (CI1->isZero()) return C1;
1340       break;
1341     default:
1342       break;
1343     }
1344   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1345     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1346       const APFloat &C1V = CFP1->getValueAPF();
1347       const APFloat &C2V = CFP2->getValueAPF();
1348       APFloat C3V = C1V;  // copy for modification
1349       switch (Opcode) {
1350       default:
1351         break;
1352       case Instruction::FAdd:
1353         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1354         return ConstantFP::get(C1->getContext(), C3V);
1355       case Instruction::FSub:
1356         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1357         return ConstantFP::get(C1->getContext(), C3V);
1358       case Instruction::FMul:
1359         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1360         return ConstantFP::get(C1->getContext(), C3V);
1361       case Instruction::FDiv:
1362         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1363         return ConstantFP::get(C1->getContext(), C3V);
1364       case Instruction::FRem:
1365         (void)C3V.mod(C2V);
1366         return ConstantFP::get(C1->getContext(), C3V);
1367       }
1368     }
1369   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1370     // Do not iterate on scalable vector. The number of elements is unknown at
1371     // compile-time.
1372     if (IsScalableVector)
1373       return nullptr;
1374     // Fast path for splatted constants.
1375     if (Constant *C2Splat = C2->getSplatValue()) {
1376       if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
1377         return UndefValue::get(VTy);
1378       if (Constant *C1Splat = C1->getSplatValue()) {
1379         return ConstantVector::getSplat(
1380             VTy->getElementCount(),
1381             ConstantExpr::get(Opcode, C1Splat, C2Splat));
1382       }
1383     }
1384 
1385     // Fold each element and create a vector constant from those constants.
1386     SmallVector<Constant*, 16> Result;
1387     Type *Ty = IntegerType::get(VTy->getContext(), 32);
1388     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1389       Constant *ExtractIdx = ConstantInt::get(Ty, i);
1390       Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1391       Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1392 
1393       // If any element of a divisor vector is zero, the whole op is undef.
1394       if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1395         return UndefValue::get(VTy);
1396 
1397       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1398     }
1399 
1400     return ConstantVector::get(Result);
1401   }
1402 
1403   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1404     // There are many possible foldings we could do here.  We should probably
1405     // at least fold add of a pointer with an integer into the appropriate
1406     // getelementptr.  This will improve alias analysis a bit.
1407 
1408     // Given ((a + b) + c), if (b + c) folds to something interesting, return
1409     // (a + (b + c)).
1410     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1411       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1412       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1413         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1414     }
1415   } else if (isa<ConstantExpr>(C2)) {
1416     // If C2 is a constant expr and C1 isn't, flop them around and fold the
1417     // other way if possible.
1418     if (Instruction::isCommutative(Opcode))
1419       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1420   }
1421 
1422   // i1 can be simplified in many cases.
1423   if (C1->getType()->isIntegerTy(1)) {
1424     switch (Opcode) {
1425     case Instruction::Add:
1426     case Instruction::Sub:
1427       return ConstantExpr::getXor(C1, C2);
1428     case Instruction::Mul:
1429       return ConstantExpr::getAnd(C1, C2);
1430     case Instruction::Shl:
1431     case Instruction::LShr:
1432     case Instruction::AShr:
1433       // We can assume that C2 == 0.  If it were one the result would be
1434       // undefined because the shift value is as large as the bitwidth.
1435       return C1;
1436     case Instruction::SDiv:
1437     case Instruction::UDiv:
1438       // We can assume that C2 == 1.  If it were zero the result would be
1439       // undefined through division by zero.
1440       return C1;
1441     case Instruction::URem:
1442     case Instruction::SRem:
1443       // We can assume that C2 == 1.  If it were zero the result would be
1444       // undefined through division by zero.
1445       return ConstantInt::getFalse(C1->getContext());
1446     default:
1447       break;
1448     }
1449   }
1450 
1451   // We don't know how to fold this.
1452   return nullptr;
1453 }
1454 
1455 /// This type is zero-sized if it's an array or structure of zero-sized types.
1456 /// The only leaf zero-sized type is an empty structure.
1457 static bool isMaybeZeroSizedType(Type *Ty) {
1458   if (StructType *STy = dyn_cast<StructType>(Ty)) {
1459     if (STy->isOpaque()) return true;  // Can't say.
1460 
1461     // If all of elements have zero size, this does too.
1462     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1463       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1464     return true;
1465 
1466   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1467     return isMaybeZeroSizedType(ATy->getElementType());
1468   }
1469   return false;
1470 }
1471 
1472 /// Compare the two constants as though they were getelementptr indices.
1473 /// This allows coercion of the types to be the same thing.
1474 ///
1475 /// If the two constants are the "same" (after coercion), return 0.  If the
1476 /// first is less than the second, return -1, if the second is less than the
1477 /// first, return 1.  If the constants are not integral, return -2.
1478 ///
1479 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1480   if (C1 == C2) return 0;
1481 
1482   // Ok, we found a different index.  If they are not ConstantInt, we can't do
1483   // anything with them.
1484   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1485     return -2; // don't know!
1486 
1487   // We cannot compare the indices if they don't fit in an int64_t.
1488   if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1489       cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1490     return -2; // don't know!
1491 
1492   // Ok, we have two differing integer indices.  Sign extend them to be the same
1493   // type.
1494   int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1495   int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1496 
1497   if (C1Val == C2Val) return 0;  // They are equal
1498 
1499   // If the type being indexed over is really just a zero sized type, there is
1500   // no pointer difference being made here.
1501   if (isMaybeZeroSizedType(ElTy))
1502     return -2; // dunno.
1503 
1504   // If they are really different, now that they are the same type, then we
1505   // found a difference!
1506   if (C1Val < C2Val)
1507     return -1;
1508   else
1509     return 1;
1510 }
1511 
1512 /// This function determines if there is anything we can decide about the two
1513 /// constants provided. This doesn't need to handle simple things like
1514 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1515 /// If we can determine that the two constants have a particular relation to
1516 /// each other, we should return the corresponding FCmpInst predicate,
1517 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1518 /// ConstantFoldCompareInstruction.
1519 ///
1520 /// To simplify this code we canonicalize the relation so that the first
1521 /// operand is always the most "complex" of the two.  We consider ConstantFP
1522 /// to be the simplest, and ConstantExprs to be the most complex.
1523 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1524   assert(V1->getType() == V2->getType() &&
1525          "Cannot compare values of different types!");
1526 
1527   // We do not know if a constant expression will evaluate to a number or NaN.
1528   // Therefore, we can only say that the relation is unordered or equal.
1529   if (V1 == V2) return FCmpInst::FCMP_UEQ;
1530 
1531   if (!isa<ConstantExpr>(V1)) {
1532     if (!isa<ConstantExpr>(V2)) {
1533       // Simple case, use the standard constant folder.
1534       ConstantInt *R = nullptr;
1535       R = dyn_cast<ConstantInt>(
1536                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1537       if (R && !R->isZero())
1538         return FCmpInst::FCMP_OEQ;
1539       R = dyn_cast<ConstantInt>(
1540                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1541       if (R && !R->isZero())
1542         return FCmpInst::FCMP_OLT;
1543       R = dyn_cast<ConstantInt>(
1544                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1545       if (R && !R->isZero())
1546         return FCmpInst::FCMP_OGT;
1547 
1548       // Nothing more we can do
1549       return FCmpInst::BAD_FCMP_PREDICATE;
1550     }
1551 
1552     // If the first operand is simple and second is ConstantExpr, swap operands.
1553     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1554     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1555       return FCmpInst::getSwappedPredicate(SwappedRelation);
1556   } else {
1557     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1558     // constantexpr or a simple constant.
1559     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1560     switch (CE1->getOpcode()) {
1561     case Instruction::FPTrunc:
1562     case Instruction::FPExt:
1563     case Instruction::UIToFP:
1564     case Instruction::SIToFP:
1565       // We might be able to do something with these but we don't right now.
1566       break;
1567     default:
1568       break;
1569     }
1570   }
1571   // There are MANY other foldings that we could perform here.  They will
1572   // probably be added on demand, as they seem needed.
1573   return FCmpInst::BAD_FCMP_PREDICATE;
1574 }
1575 
1576 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1577                                                       const GlobalValue *GV2) {
1578   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1579     if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1580       return true;
1581     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1582       Type *Ty = GVar->getValueType();
1583       // A global with opaque type might end up being zero sized.
1584       if (!Ty->isSized())
1585         return true;
1586       // A global with an empty type might lie at the address of any other
1587       // global.
1588       if (Ty->isEmptyTy())
1589         return true;
1590     }
1591     return false;
1592   };
1593   // Don't try to decide equality of aliases.
1594   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1595     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1596       return ICmpInst::ICMP_NE;
1597   return ICmpInst::BAD_ICMP_PREDICATE;
1598 }
1599 
1600 /// This function determines if there is anything we can decide about the two
1601 /// constants provided. This doesn't need to handle simple things like integer
1602 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1603 /// If we can determine that the two constants have a particular relation to
1604 /// each other, we should return the corresponding ICmp predicate, otherwise
1605 /// return ICmpInst::BAD_ICMP_PREDICATE.
1606 ///
1607 /// To simplify this code we canonicalize the relation so that the first
1608 /// operand is always the most "complex" of the two.  We consider simple
1609 /// constants (like ConstantInt) to be the simplest, followed by
1610 /// GlobalValues, followed by ConstantExpr's (the most complex).
1611 ///
1612 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1613                                                 bool isSigned) {
1614   assert(V1->getType() == V2->getType() &&
1615          "Cannot compare different types of values!");
1616   if (V1 == V2) return ICmpInst::ICMP_EQ;
1617 
1618   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1619       !isa<BlockAddress>(V1)) {
1620     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1621         !isa<BlockAddress>(V2)) {
1622       // We distilled this down to a simple case, use the standard constant
1623       // folder.
1624       ConstantInt *R = nullptr;
1625       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1626       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1627       if (R && !R->isZero())
1628         return pred;
1629       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1630       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1631       if (R && !R->isZero())
1632         return pred;
1633       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1634       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1635       if (R && !R->isZero())
1636         return pred;
1637 
1638       // If we couldn't figure it out, bail.
1639       return ICmpInst::BAD_ICMP_PREDICATE;
1640     }
1641 
1642     // If the first operand is simple, swap operands.
1643     ICmpInst::Predicate SwappedRelation =
1644       evaluateICmpRelation(V2, V1, isSigned);
1645     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1646       return ICmpInst::getSwappedPredicate(SwappedRelation);
1647 
1648   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1649     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1650       ICmpInst::Predicate SwappedRelation =
1651         evaluateICmpRelation(V2, V1, isSigned);
1652       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1653         return ICmpInst::getSwappedPredicate(SwappedRelation);
1654       return ICmpInst::BAD_ICMP_PREDICATE;
1655     }
1656 
1657     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1658     // constant (which, since the types must match, means that it's a
1659     // ConstantPointerNull).
1660     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1661       return areGlobalsPotentiallyEqual(GV, GV2);
1662     } else if (isa<BlockAddress>(V2)) {
1663       return ICmpInst::ICMP_NE; // Globals never equal labels.
1664     } else {
1665       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1666       // GlobalVals can never be null unless they have external weak linkage.
1667       // We don't try to evaluate aliases here.
1668       // NOTE: We should not be doing this constant folding if null pointer
1669       // is considered valid for the function. But currently there is no way to
1670       // query it from the Constant type.
1671       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1672           !NullPointerIsDefined(nullptr /* F */,
1673                                 GV->getType()->getAddressSpace()))
1674         return ICmpInst::ICMP_NE;
1675     }
1676   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1677     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1678       ICmpInst::Predicate SwappedRelation =
1679         evaluateICmpRelation(V2, V1, isSigned);
1680       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1681         return ICmpInst::getSwappedPredicate(SwappedRelation);
1682       return ICmpInst::BAD_ICMP_PREDICATE;
1683     }
1684 
1685     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1686     // constant (which, since the types must match, means that it is a
1687     // ConstantPointerNull).
1688     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1689       // Block address in another function can't equal this one, but block
1690       // addresses in the current function might be the same if blocks are
1691       // empty.
1692       if (BA2->getFunction() != BA->getFunction())
1693         return ICmpInst::ICMP_NE;
1694     } else {
1695       // Block addresses aren't null, don't equal the address of globals.
1696       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1697              "Canonicalization guarantee!");
1698       return ICmpInst::ICMP_NE;
1699     }
1700   } else {
1701     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1702     // constantexpr, a global, block address, or a simple constant.
1703     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1704     Constant *CE1Op0 = CE1->getOperand(0);
1705 
1706     switch (CE1->getOpcode()) {
1707     case Instruction::Trunc:
1708     case Instruction::FPTrunc:
1709     case Instruction::FPExt:
1710     case Instruction::FPToUI:
1711     case Instruction::FPToSI:
1712       break; // We can't evaluate floating point casts or truncations.
1713 
1714     case Instruction::UIToFP:
1715     case Instruction::SIToFP:
1716     case Instruction::BitCast:
1717     case Instruction::ZExt:
1718     case Instruction::SExt:
1719       // We can't evaluate floating point casts or truncations.
1720       if (CE1Op0->getType()->isFPOrFPVectorTy())
1721         break;
1722 
1723       // If the cast is not actually changing bits, and the second operand is a
1724       // null pointer, do the comparison with the pre-casted value.
1725       if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1726         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1727         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1728         return evaluateICmpRelation(CE1Op0,
1729                                     Constant::getNullValue(CE1Op0->getType()),
1730                                     isSigned);
1731       }
1732       break;
1733 
1734     case Instruction::GetElementPtr: {
1735       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1736       // Ok, since this is a getelementptr, we know that the constant has a
1737       // pointer type.  Check the various cases.
1738       if (isa<ConstantPointerNull>(V2)) {
1739         // If we are comparing a GEP to a null pointer, check to see if the base
1740         // of the GEP equals the null pointer.
1741         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1742           if (GV->hasExternalWeakLinkage())
1743             // Weak linkage GVals could be zero or not. We're comparing that
1744             // to null pointer so its greater-or-equal
1745             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1746           else
1747             // If its not weak linkage, the GVal must have a non-zero address
1748             // so the result is greater-than
1749             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1750         } else if (isa<ConstantPointerNull>(CE1Op0)) {
1751           // If we are indexing from a null pointer, check to see if we have any
1752           // non-zero indices.
1753           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1754             if (!CE1->getOperand(i)->isNullValue())
1755               // Offsetting from null, must not be equal.
1756               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1757           // Only zero indexes from null, must still be zero.
1758           return ICmpInst::ICMP_EQ;
1759         }
1760         // Otherwise, we can't really say if the first operand is null or not.
1761       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1762         if (isa<ConstantPointerNull>(CE1Op0)) {
1763           if (GV2->hasExternalWeakLinkage())
1764             // Weak linkage GVals could be zero or not. We're comparing it to
1765             // a null pointer, so its less-or-equal
1766             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1767           else
1768             // If its not weak linkage, the GVal must have a non-zero address
1769             // so the result is less-than
1770             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1771         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1772           if (GV == GV2) {
1773             // If this is a getelementptr of the same global, then it must be
1774             // different.  Because the types must match, the getelementptr could
1775             // only have at most one index, and because we fold getelementptr's
1776             // with a single zero index, it must be nonzero.
1777             assert(CE1->getNumOperands() == 2 &&
1778                    !CE1->getOperand(1)->isNullValue() &&
1779                    "Surprising getelementptr!");
1780             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1781           } else {
1782             if (CE1GEP->hasAllZeroIndices())
1783               return areGlobalsPotentiallyEqual(GV, GV2);
1784             return ICmpInst::BAD_ICMP_PREDICATE;
1785           }
1786         }
1787       } else {
1788         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1789         Constant *CE2Op0 = CE2->getOperand(0);
1790 
1791         // There are MANY other foldings that we could perform here.  They will
1792         // probably be added on demand, as they seem needed.
1793         switch (CE2->getOpcode()) {
1794         default: break;
1795         case Instruction::GetElementPtr:
1796           // By far the most common case to handle is when the base pointers are
1797           // obviously to the same global.
1798           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1799             // Don't know relative ordering, but check for inequality.
1800             if (CE1Op0 != CE2Op0) {
1801               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1802               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1803                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1804                                                   cast<GlobalValue>(CE2Op0));
1805               return ICmpInst::BAD_ICMP_PREDICATE;
1806             }
1807             // Ok, we know that both getelementptr instructions are based on the
1808             // same global.  From this, we can precisely determine the relative
1809             // ordering of the resultant pointers.
1810             unsigned i = 1;
1811 
1812             // The logic below assumes that the result of the comparison
1813             // can be determined by finding the first index that differs.
1814             // This doesn't work if there is over-indexing in any
1815             // subsequent indices, so check for that case first.
1816             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1817                 !CE2->isGEPWithNoNotionalOverIndexing())
1818                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1819 
1820             // Compare all of the operands the GEP's have in common.
1821             gep_type_iterator GTI = gep_type_begin(CE1);
1822             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1823                  ++i, ++GTI)
1824               switch (IdxCompare(CE1->getOperand(i),
1825                                  CE2->getOperand(i), GTI.getIndexedType())) {
1826               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1827               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1828               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1829               }
1830 
1831             // Ok, we ran out of things they have in common.  If any leftovers
1832             // are non-zero then we have a difference, otherwise we are equal.
1833             for (; i < CE1->getNumOperands(); ++i)
1834               if (!CE1->getOperand(i)->isNullValue()) {
1835                 if (isa<ConstantInt>(CE1->getOperand(i)))
1836                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1837                 else
1838                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1839               }
1840 
1841             for (; i < CE2->getNumOperands(); ++i)
1842               if (!CE2->getOperand(i)->isNullValue()) {
1843                 if (isa<ConstantInt>(CE2->getOperand(i)))
1844                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1845                 else
1846                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1847               }
1848             return ICmpInst::ICMP_EQ;
1849           }
1850         }
1851       }
1852       break;
1853     }
1854     default:
1855       break;
1856     }
1857   }
1858 
1859   return ICmpInst::BAD_ICMP_PREDICATE;
1860 }
1861 
1862 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1863                                                Constant *C1, Constant *C2) {
1864   Type *ResultTy;
1865   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1866     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1867                                VT->getElementCount());
1868   else
1869     ResultTy = Type::getInt1Ty(C1->getContext());
1870 
1871   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1872   if (pred == FCmpInst::FCMP_FALSE)
1873     return Constant::getNullValue(ResultTy);
1874 
1875   if (pred == FCmpInst::FCMP_TRUE)
1876     return Constant::getAllOnesValue(ResultTy);
1877 
1878   // Handle some degenerate cases first
1879   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1880     CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1881     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1882     // For EQ and NE, we can always pick a value for the undef to make the
1883     // predicate pass or fail, so we can return undef.
1884     // Also, if both operands are undef, we can return undef for int comparison.
1885     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1886       return UndefValue::get(ResultTy);
1887 
1888     // Otherwise, for integer compare, pick the same value as the non-undef
1889     // operand, and fold it to true or false.
1890     if (isIntegerPredicate)
1891       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1892 
1893     // Choosing NaN for the undef will always make unordered comparison succeed
1894     // and ordered comparison fails.
1895     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1896   }
1897 
1898   // icmp eq/ne(null,GV) -> false/true
1899   if (C1->isNullValue()) {
1900     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1901       // Don't try to evaluate aliases.  External weak GV can be null.
1902       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1903           !NullPointerIsDefined(nullptr /* F */,
1904                                 GV->getType()->getAddressSpace())) {
1905         if (pred == ICmpInst::ICMP_EQ)
1906           return ConstantInt::getFalse(C1->getContext());
1907         else if (pred == ICmpInst::ICMP_NE)
1908           return ConstantInt::getTrue(C1->getContext());
1909       }
1910   // icmp eq/ne(GV,null) -> false/true
1911   } else if (C2->isNullValue()) {
1912     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1913       // Don't try to evaluate aliases.  External weak GV can be null.
1914       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1915           !NullPointerIsDefined(nullptr /* F */,
1916                                 GV->getType()->getAddressSpace())) {
1917         if (pred == ICmpInst::ICMP_EQ)
1918           return ConstantInt::getFalse(C1->getContext());
1919         else if (pred == ICmpInst::ICMP_NE)
1920           return ConstantInt::getTrue(C1->getContext());
1921       }
1922   }
1923 
1924   // If the comparison is a comparison between two i1's, simplify it.
1925   if (C1->getType()->isIntegerTy(1)) {
1926     switch(pred) {
1927     case ICmpInst::ICMP_EQ:
1928       if (isa<ConstantInt>(C2))
1929         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1930       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1931     case ICmpInst::ICMP_NE:
1932       return ConstantExpr::getXor(C1, C2);
1933     default:
1934       break;
1935     }
1936   }
1937 
1938   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1939     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1940     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1941     switch (pred) {
1942     default: llvm_unreachable("Invalid ICmp Predicate");
1943     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1944     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1945     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1946     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1947     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1948     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1949     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1950     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1951     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1952     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1953     }
1954   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1955     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1956     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1957     APFloat::cmpResult R = C1V.compare(C2V);
1958     switch (pred) {
1959     default: llvm_unreachable("Invalid FCmp Predicate");
1960     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1961     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1962     case FCmpInst::FCMP_UNO:
1963       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1964     case FCmpInst::FCMP_ORD:
1965       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1966     case FCmpInst::FCMP_UEQ:
1967       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1968                                         R==APFloat::cmpEqual);
1969     case FCmpInst::FCMP_OEQ:
1970       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1971     case FCmpInst::FCMP_UNE:
1972       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1973     case FCmpInst::FCMP_ONE:
1974       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1975                                         R==APFloat::cmpGreaterThan);
1976     case FCmpInst::FCMP_ULT:
1977       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1978                                         R==APFloat::cmpLessThan);
1979     case FCmpInst::FCMP_OLT:
1980       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1981     case FCmpInst::FCMP_UGT:
1982       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1983                                         R==APFloat::cmpGreaterThan);
1984     case FCmpInst::FCMP_OGT:
1985       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1986     case FCmpInst::FCMP_ULE:
1987       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1988     case FCmpInst::FCMP_OLE:
1989       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1990                                         R==APFloat::cmpEqual);
1991     case FCmpInst::FCMP_UGE:
1992       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1993     case FCmpInst::FCMP_OGE:
1994       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1995                                         R==APFloat::cmpEqual);
1996     }
1997   } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1998 
1999     // Do not iterate on scalable vector. The number of elements is unknown at
2000     // compile-time.
2001     if (isa<ScalableVectorType>(C1VTy))
2002       return nullptr;
2003 
2004     // Fast path for splatted constants.
2005     if (Constant *C1Splat = C1->getSplatValue())
2006       if (Constant *C2Splat = C2->getSplatValue())
2007         return ConstantVector::getSplat(
2008             C1VTy->getElementCount(),
2009             ConstantExpr::getCompare(pred, C1Splat, C2Splat));
2010 
2011     // If we can constant fold the comparison of each element, constant fold
2012     // the whole vector comparison.
2013     SmallVector<Constant*, 4> ResElts;
2014     Type *Ty = IntegerType::get(C1->getContext(), 32);
2015     // Compare the elements, producing an i1 result or constant expr.
2016     for (unsigned i = 0, e = C1VTy->getNumElements(); i != e; ++i) {
2017       Constant *C1E =
2018         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
2019       Constant *C2E =
2020         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
2021 
2022       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
2023     }
2024 
2025     return ConstantVector::get(ResElts);
2026   }
2027 
2028   if (C1->getType()->isFloatingPointTy() &&
2029       // Only call evaluateFCmpRelation if we have a constant expr to avoid
2030       // infinite recursive loop
2031       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
2032     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2033     switch (evaluateFCmpRelation(C1, C2)) {
2034     default: llvm_unreachable("Unknown relation!");
2035     case FCmpInst::FCMP_UNO:
2036     case FCmpInst::FCMP_ORD:
2037     case FCmpInst::FCMP_UNE:
2038     case FCmpInst::FCMP_ULT:
2039     case FCmpInst::FCMP_UGT:
2040     case FCmpInst::FCMP_ULE:
2041     case FCmpInst::FCMP_UGE:
2042     case FCmpInst::FCMP_TRUE:
2043     case FCmpInst::FCMP_FALSE:
2044     case FCmpInst::BAD_FCMP_PREDICATE:
2045       break; // Couldn't determine anything about these constants.
2046     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
2047       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
2048                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
2049                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2050       break;
2051     case FCmpInst::FCMP_OLT: // We know that C1 < C2
2052       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2053                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
2054                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
2055       break;
2056     case FCmpInst::FCMP_OGT: // We know that C1 > C2
2057       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2058                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
2059                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2060       break;
2061     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
2062       // We can only partially decide this relation.
2063       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2064         Result = 0;
2065       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2066         Result = 1;
2067       break;
2068     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
2069       // We can only partially decide this relation.
2070       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2071         Result = 0;
2072       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2073         Result = 1;
2074       break;
2075     case FCmpInst::FCMP_ONE: // We know that C1 != C2
2076       // We can only partially decide this relation.
2077       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
2078         Result = 0;
2079       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
2080         Result = 1;
2081       break;
2082     case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
2083       // We can only partially decide this relation.
2084       if (pred == FCmpInst::FCMP_ONE)
2085         Result = 0;
2086       else if (pred == FCmpInst::FCMP_UEQ)
2087         Result = 1;
2088       break;
2089     }
2090 
2091     // If we evaluated the result, return it now.
2092     if (Result != -1)
2093       return ConstantInt::get(ResultTy, Result);
2094 
2095   } else {
2096     // Evaluate the relation between the two constants, per the predicate.
2097     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2098     switch (evaluateICmpRelation(C1, C2,
2099                                  CmpInst::isSigned((CmpInst::Predicate)pred))) {
2100     default: llvm_unreachable("Unknown relational!");
2101     case ICmpInst::BAD_ICMP_PREDICATE:
2102       break;  // Couldn't determine anything about these constants.
2103     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
2104       // If we know the constants are equal, we can decide the result of this
2105       // computation precisely.
2106       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2107       break;
2108     case ICmpInst::ICMP_ULT:
2109       switch (pred) {
2110       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2111         Result = 1; break;
2112       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2113         Result = 0; break;
2114       }
2115       break;
2116     case ICmpInst::ICMP_SLT:
2117       switch (pred) {
2118       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2119         Result = 1; break;
2120       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2121         Result = 0; break;
2122       }
2123       break;
2124     case ICmpInst::ICMP_UGT:
2125       switch (pred) {
2126       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2127         Result = 1; break;
2128       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2129         Result = 0; break;
2130       }
2131       break;
2132     case ICmpInst::ICMP_SGT:
2133       switch (pred) {
2134       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2135         Result = 1; break;
2136       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2137         Result = 0; break;
2138       }
2139       break;
2140     case ICmpInst::ICMP_ULE:
2141       if (pred == ICmpInst::ICMP_UGT) Result = 0;
2142       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2143       break;
2144     case ICmpInst::ICMP_SLE:
2145       if (pred == ICmpInst::ICMP_SGT) Result = 0;
2146       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2147       break;
2148     case ICmpInst::ICMP_UGE:
2149       if (pred == ICmpInst::ICMP_ULT) Result = 0;
2150       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2151       break;
2152     case ICmpInst::ICMP_SGE:
2153       if (pred == ICmpInst::ICMP_SLT) Result = 0;
2154       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2155       break;
2156     case ICmpInst::ICMP_NE:
2157       if (pred == ICmpInst::ICMP_EQ) Result = 0;
2158       if (pred == ICmpInst::ICMP_NE) Result = 1;
2159       break;
2160     }
2161 
2162     // If we evaluated the result, return it now.
2163     if (Result != -1)
2164       return ConstantInt::get(ResultTy, Result);
2165 
2166     // If the right hand side is a bitcast, try using its inverse to simplify
2167     // it by moving it to the left hand side.  We can't do this if it would turn
2168     // a vector compare into a scalar compare or visa versa, or if it would turn
2169     // the operands into FP values.
2170     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2171       Constant *CE2Op0 = CE2->getOperand(0);
2172       if (CE2->getOpcode() == Instruction::BitCast &&
2173           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2174           !CE2Op0->getType()->isFPOrFPVectorTy()) {
2175         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2176         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2177       }
2178     }
2179 
2180     // If the left hand side is an extension, try eliminating it.
2181     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2182       if ((CE1->getOpcode() == Instruction::SExt &&
2183            ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2184           (CE1->getOpcode() == Instruction::ZExt &&
2185            !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2186         Constant *CE1Op0 = CE1->getOperand(0);
2187         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2188         if (CE1Inverse == CE1Op0) {
2189           // Check whether we can safely truncate the right hand side.
2190           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2191           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2192                                     C2->getType()) == C2)
2193             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2194         }
2195       }
2196     }
2197 
2198     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2199         (C1->isNullValue() && !C2->isNullValue())) {
2200       // If C2 is a constant expr and C1 isn't, flip them around and fold the
2201       // other way if possible.
2202       // Also, if C1 is null and C2 isn't, flip them around.
2203       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2204       return ConstantExpr::getICmp(pred, C2, C1);
2205     }
2206   }
2207   return nullptr;
2208 }
2209 
2210 /// Test whether the given sequence of *normalized* indices is "inbounds".
2211 template<typename IndexTy>
2212 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2213   // No indices means nothing that could be out of bounds.
2214   if (Idxs.empty()) return true;
2215 
2216   // If the first index is zero, it's in bounds.
2217   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2218 
2219   // If the first index is one and all the rest are zero, it's in bounds,
2220   // by the one-past-the-end rule.
2221   if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2222     if (!CI->isOne())
2223       return false;
2224   } else {
2225     auto *CV = cast<ConstantDataVector>(Idxs[0]);
2226     CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2227     if (!CI || !CI->isOne())
2228       return false;
2229   }
2230 
2231   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2232     if (!cast<Constant>(Idxs[i])->isNullValue())
2233       return false;
2234   return true;
2235 }
2236 
2237 /// Test whether a given ConstantInt is in-range for a SequentialType.
2238 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2239                                       const ConstantInt *CI) {
2240   // We cannot bounds check the index if it doesn't fit in an int64_t.
2241   if (CI->getValue().getMinSignedBits() > 64)
2242     return false;
2243 
2244   // A negative index or an index past the end of our sequential type is
2245   // considered out-of-range.
2246   int64_t IndexVal = CI->getSExtValue();
2247   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2248     return false;
2249 
2250   // Otherwise, it is in-range.
2251   return true;
2252 }
2253 
2254 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2255                                           bool InBounds,
2256                                           Optional<unsigned> InRangeIndex,
2257                                           ArrayRef<Value *> Idxs) {
2258   if (Idxs.empty()) return C;
2259 
2260   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2261       PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2262 
2263   if (isa<UndefValue>(C))
2264     return UndefValue::get(GEPTy);
2265 
2266   Constant *Idx0 = cast<Constant>(Idxs[0]);
2267   if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2268     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2269                ? ConstantVector::getSplat(
2270                      cast<VectorType>(GEPTy)->getElementCount(), C)
2271                : C;
2272 
2273   if (C->isNullValue()) {
2274     bool isNull = true;
2275     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2276       if (!isa<UndefValue>(Idxs[i]) &&
2277           !cast<Constant>(Idxs[i])->isNullValue()) {
2278         isNull = false;
2279         break;
2280       }
2281     if (isNull) {
2282       PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2283       Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2284 
2285       assert(Ty && "Invalid indices for GEP!");
2286       Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2287       Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2288       if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2289         GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2290 
2291       // The GEP returns a vector of pointers when one of more of
2292       // its arguments is a vector.
2293       for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2294         if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2295           GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2296           break;
2297         }
2298       }
2299 
2300       return Constant::getNullValue(GEPTy);
2301     }
2302   }
2303 
2304   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2305     // Combine Indices - If the source pointer to this getelementptr instruction
2306     // is a getelementptr instruction, combine the indices of the two
2307     // getelementptr instructions into a single instruction.
2308     //
2309     if (CE->getOpcode() == Instruction::GetElementPtr) {
2310       gep_type_iterator LastI = gep_type_end(CE);
2311       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2312            I != E; ++I)
2313         LastI = I;
2314 
2315       // We cannot combine indices if doing so would take us outside of an
2316       // array or vector.  Doing otherwise could trick us if we evaluated such a
2317       // GEP as part of a load.
2318       //
2319       // e.g. Consider if the original GEP was:
2320       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2321       //                    i32 0, i32 0, i64 0)
2322       //
2323       // If we then tried to offset it by '8' to get to the third element,
2324       // an i8, we should *not* get:
2325       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2326       //                    i32 0, i32 0, i64 8)
2327       //
2328       // This GEP tries to index array element '8  which runs out-of-bounds.
2329       // Subsequent evaluation would get confused and produce erroneous results.
2330       //
2331       // The following prohibits such a GEP from being formed by checking to see
2332       // if the index is in-range with respect to an array.
2333       // TODO: This code may be extended to handle vectors as well.
2334       bool PerformFold = false;
2335       if (Idx0->isNullValue())
2336         PerformFold = true;
2337       else if (LastI.isSequential())
2338         if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2339           PerformFold = (!LastI.isBoundedSequential() ||
2340                          isIndexInRangeOfArrayType(
2341                              LastI.getSequentialNumElements(), CI)) &&
2342                         !CE->getOperand(CE->getNumOperands() - 1)
2343                              ->getType()
2344                              ->isVectorTy();
2345 
2346       if (PerformFold) {
2347         SmallVector<Value*, 16> NewIndices;
2348         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2349         NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2350 
2351         // Add the last index of the source with the first index of the new GEP.
2352         // Make sure to handle the case when they are actually different types.
2353         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2354         // Otherwise it must be an array.
2355         if (!Idx0->isNullValue()) {
2356           Type *IdxTy = Combined->getType();
2357           if (IdxTy != Idx0->getType()) {
2358             unsigned CommonExtendedWidth =
2359                 std::max(IdxTy->getIntegerBitWidth(),
2360                          Idx0->getType()->getIntegerBitWidth());
2361             CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2362 
2363             Type *CommonTy =
2364                 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2365             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2366             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2367             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2368           } else {
2369             Combined =
2370               ConstantExpr::get(Instruction::Add, Idx0, Combined);
2371           }
2372         }
2373 
2374         NewIndices.push_back(Combined);
2375         NewIndices.append(Idxs.begin() + 1, Idxs.end());
2376 
2377         // The combined GEP normally inherits its index inrange attribute from
2378         // the inner GEP, but if the inner GEP's last index was adjusted by the
2379         // outer GEP, any inbounds attribute on that index is invalidated.
2380         Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex();
2381         if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue())
2382           IRIndex = None;
2383 
2384         return ConstantExpr::getGetElementPtr(
2385             cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2386             NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(),
2387             IRIndex);
2388       }
2389     }
2390 
2391     // Attempt to fold casts to the same type away.  For example, folding:
2392     //
2393     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2394     //                       i64 0, i64 0)
2395     // into:
2396     //
2397     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2398     //
2399     // Don't fold if the cast is changing address spaces.
2400     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2401       PointerType *SrcPtrTy =
2402         dyn_cast<PointerType>(CE->getOperand(0)->getType());
2403       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2404       if (SrcPtrTy && DstPtrTy) {
2405         ArrayType *SrcArrayTy =
2406           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2407         ArrayType *DstArrayTy =
2408           dyn_cast<ArrayType>(DstPtrTy->getElementType());
2409         if (SrcArrayTy && DstArrayTy
2410             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2411             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2412           return ConstantExpr::getGetElementPtr(SrcArrayTy,
2413                                                 (Constant *)CE->getOperand(0),
2414                                                 Idxs, InBounds, InRangeIndex);
2415       }
2416     }
2417   }
2418 
2419   // Check to see if any array indices are not within the corresponding
2420   // notional array or vector bounds. If so, try to determine if they can be
2421   // factored out into preceding dimensions.
2422   SmallVector<Constant *, 8> NewIdxs;
2423   Type *Ty = PointeeTy;
2424   Type *Prev = C->getType();
2425   auto GEPIter = gep_type_begin(PointeeTy, Idxs);
2426   bool Unknown =
2427       !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2428   for (unsigned i = 1, e = Idxs.size(); i != e;
2429        Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
2430     if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2431       // We don't know if it's in range or not.
2432       Unknown = true;
2433       continue;
2434     }
2435     if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2436       // Skip if the type of the previous index is not supported.
2437       continue;
2438     if (InRangeIndex && i == *InRangeIndex + 1) {
2439       // If an index is marked inrange, we cannot apply this canonicalization to
2440       // the following index, as that will cause the inrange index to point to
2441       // the wrong element.
2442       continue;
2443     }
2444     if (isa<StructType>(Ty)) {
2445       // The verify makes sure that GEPs into a struct are in range.
2446       continue;
2447     }
2448     if (isa<VectorType>(Ty)) {
2449       // There can be awkward padding in after a non-power of two vector.
2450       Unknown = true;
2451       continue;
2452     }
2453     auto *STy = cast<ArrayType>(Ty);
2454     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2455       if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2456         // It's in range, skip to the next index.
2457         continue;
2458       if (CI->getSExtValue() < 0) {
2459         // It's out of range and negative, don't try to factor it.
2460         Unknown = true;
2461         continue;
2462       }
2463     } else {
2464       auto *CV = cast<ConstantDataVector>(Idxs[i]);
2465       bool InRange = true;
2466       for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2467         auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2468         InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2469         if (CI->getSExtValue() < 0) {
2470           Unknown = true;
2471           break;
2472         }
2473       }
2474       if (InRange || Unknown)
2475         // It's in range, skip to the next index.
2476         // It's out of range and negative, don't try to factor it.
2477         continue;
2478     }
2479     if (isa<StructType>(Prev)) {
2480       // It's out of range, but the prior dimension is a struct
2481       // so we can't do anything about it.
2482       Unknown = true;
2483       continue;
2484     }
2485     // It's out of range, but we can factor it into the prior
2486     // dimension.
2487     NewIdxs.resize(Idxs.size());
2488     // Determine the number of elements in our sequential type.
2489     uint64_t NumElements = STy->getArrayNumElements();
2490 
2491     // Expand the current index or the previous index to a vector from a scalar
2492     // if necessary.
2493     Constant *CurrIdx = cast<Constant>(Idxs[i]);
2494     auto *PrevIdx =
2495         NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2496     bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2497     bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2498     bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2499 
2500     if (!IsCurrIdxVector && IsPrevIdxVector)
2501       CurrIdx = ConstantDataVector::getSplat(
2502           cast<VectorType>(PrevIdx->getType())->getNumElements(), CurrIdx);
2503 
2504     if (!IsPrevIdxVector && IsCurrIdxVector)
2505       PrevIdx = ConstantDataVector::getSplat(
2506           cast<VectorType>(CurrIdx->getType())->getNumElements(), PrevIdx);
2507 
2508     Constant *Factor =
2509         ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2510     if (UseVector)
2511       Factor = ConstantDataVector::getSplat(
2512           IsPrevIdxVector
2513               ? cast<VectorType>(PrevIdx->getType())->getNumElements()
2514               : cast<VectorType>(CurrIdx->getType())->getNumElements(),
2515           Factor);
2516 
2517     NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2518 
2519     Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2520 
2521     unsigned CommonExtendedWidth =
2522         std::max(PrevIdx->getType()->getScalarSizeInBits(),
2523                  Div->getType()->getScalarSizeInBits());
2524     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2525 
2526     // Before adding, extend both operands to i64 to avoid
2527     // overflow trouble.
2528     Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2529     if (UseVector)
2530       ExtendedTy = VectorType::get(
2531           ExtendedTy,
2532           IsPrevIdxVector
2533               ? cast<VectorType>(PrevIdx->getType())->getNumElements()
2534               : cast<VectorType>(CurrIdx->getType())->getNumElements());
2535 
2536     if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2537       PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2538 
2539     if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2540       Div = ConstantExpr::getSExt(Div, ExtendedTy);
2541 
2542     NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2543   }
2544 
2545   // If we did any factoring, start over with the adjusted indices.
2546   if (!NewIdxs.empty()) {
2547     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2548       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2549     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2550                                           InRangeIndex);
2551   }
2552 
2553   // If all indices are known integers and normalized, we can do a simple
2554   // check for the "inbounds" property.
2555   if (!Unknown && !InBounds)
2556     if (auto *GV = dyn_cast<GlobalVariable>(C))
2557       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2558         return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2559                                               /*InBounds=*/true, InRangeIndex);
2560 
2561   return nullptr;
2562 }
2563