1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // ConstantFold*Instruction Implementations 40 //===----------------------------------------------------------------------===// 41 42 /// Convert the specified vector Constant node to the specified vector type. 43 /// At this point, we know that the elements of the input vector constant are 44 /// all simple integer or FP values. 45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { 46 47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); 48 if (CV->isNullValue()) return Constant::getNullValue(DstTy); 49 50 // Do not iterate on scalable vector. The num of elements is unknown at 51 // compile-time. 52 if (isa<ScalableVectorType>(DstTy)) 53 return nullptr; 54 55 // If this cast changes element count then we can't handle it here: 56 // doing so requires endianness information. This should be handled by 57 // Analysis/ConstantFolding.cpp 58 unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements(); 59 if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements()) 60 return nullptr; 61 62 Type *DstEltTy = DstTy->getElementType(); 63 // Fast path for splatted constants. 64 if (Constant *Splat = CV->getSplatValue()) { 65 return ConstantVector::getSplat(DstTy->getElementCount(), 66 ConstantExpr::getBitCast(Splat, DstEltTy)); 67 } 68 69 SmallVector<Constant*, 16> Result; 70 Type *Ty = IntegerType::get(CV->getContext(), 32); 71 for (unsigned i = 0; i != NumElts; ++i) { 72 Constant *C = 73 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); 74 C = ConstantExpr::getBitCast(C, DstEltTy); 75 Result.push_back(C); 76 } 77 78 return ConstantVector::get(Result); 79 } 80 81 /// This function determines which opcode to use to fold two constant cast 82 /// expressions together. It uses CastInst::isEliminableCastPair to determine 83 /// the opcode. Consequently its just a wrapper around that function. 84 /// Determine if it is valid to fold a cast of a cast 85 static unsigned 86 foldConstantCastPair( 87 unsigned opc, ///< opcode of the second cast constant expression 88 ConstantExpr *Op, ///< the first cast constant expression 89 Type *DstTy ///< destination type of the first cast 90 ) { 91 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 92 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 93 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 94 95 // The types and opcodes for the two Cast constant expressions 96 Type *SrcTy = Op->getOperand(0)->getType(); 97 Type *MidTy = Op->getType(); 98 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 99 Instruction::CastOps secondOp = Instruction::CastOps(opc); 100 101 // Assume that pointers are never more than 64 bits wide, and only use this 102 // for the middle type. Otherwise we could end up folding away illegal 103 // bitcasts between address spaces with different sizes. 104 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 105 106 // Let CastInst::isEliminableCastPair do the heavy lifting. 107 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 108 nullptr, FakeIntPtrTy, nullptr); 109 } 110 111 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 112 Type *SrcTy = V->getType(); 113 if (SrcTy == DestTy) 114 return V; // no-op cast 115 116 // Check to see if we are casting a pointer to an aggregate to a pointer to 117 // the first element. If so, return the appropriate GEP instruction. 118 if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) 119 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) 120 if (PTy->getAddressSpace() == DPTy->getAddressSpace() && 121 !PTy->isOpaque() && !DPTy->isOpaque() && 122 PTy->getElementType()->isSized()) { 123 SmallVector<Value*, 8> IdxList; 124 Value *Zero = 125 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); 126 IdxList.push_back(Zero); 127 Type *ElTy = PTy->getElementType(); 128 while (ElTy && ElTy != DPTy->getElementType()) { 129 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0); 130 IdxList.push_back(Zero); 131 } 132 133 if (ElTy == DPTy->getElementType()) 134 // This GEP is inbounds because all indices are zero. 135 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), 136 V, IdxList); 137 } 138 139 // Handle casts from one vector constant to another. We know that the src 140 // and dest type have the same size (otherwise its an illegal cast). 141 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 142 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { 143 assert(DestPTy->getPrimitiveSizeInBits() == 144 SrcTy->getPrimitiveSizeInBits() && 145 "Not cast between same sized vectors!"); 146 SrcTy = nullptr; 147 // First, check for null. Undef is already handled. 148 if (isa<ConstantAggregateZero>(V)) 149 return Constant::getNullValue(DestTy); 150 151 // Handle ConstantVector and ConstantAggregateVector. 152 return BitCastConstantVector(V, DestPTy); 153 } 154 155 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 156 // This allows for other simplifications (although some of them 157 // can only be handled by Analysis/ConstantFolding.cpp). 158 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 159 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 160 } 161 162 // Finally, implement bitcast folding now. The code below doesn't handle 163 // bitcast right. 164 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. 165 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 166 167 // Handle integral constant input. 168 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 169 if (DestTy->isIntegerTy()) 170 // Integral -> Integral. This is a no-op because the bit widths must 171 // be the same. Consequently, we just fold to V. 172 return V; 173 174 // See note below regarding the PPC_FP128 restriction. 175 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 176 return ConstantFP::get(DestTy->getContext(), 177 APFloat(DestTy->getFltSemantics(), 178 CI->getValue())); 179 180 // Otherwise, can't fold this (vector?) 181 return nullptr; 182 } 183 184 // Handle ConstantFP input: FP -> Integral. 185 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 186 // PPC_FP128 is really the sum of two consecutive doubles, where the first 187 // double is always stored first in memory, regardless of the target 188 // endianness. The memory layout of i128, however, depends on the target 189 // endianness, and so we can't fold this without target endianness 190 // information. This should instead be handled by 191 // Analysis/ConstantFolding.cpp 192 if (FP->getType()->isPPC_FP128Ty()) 193 return nullptr; 194 195 // Make sure dest type is compatible with the folded integer constant. 196 if (!DestTy->isIntegerTy()) 197 return nullptr; 198 199 return ConstantInt::get(FP->getContext(), 200 FP->getValueAPF().bitcastToAPInt()); 201 } 202 203 return nullptr; 204 } 205 206 207 /// V is an integer constant which only has a subset of its bytes used. 208 /// The bytes used are indicated by ByteStart (which is the first byte used, 209 /// counting from the least significant byte) and ByteSize, which is the number 210 /// of bytes used. 211 /// 212 /// This function analyzes the specified constant to see if the specified byte 213 /// range can be returned as a simplified constant. If so, the constant is 214 /// returned, otherwise null is returned. 215 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, 216 unsigned ByteSize) { 217 assert(C->getType()->isIntegerTy() && 218 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && 219 "Non-byte sized integer input"); 220 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; 221 assert(ByteSize && "Must be accessing some piece"); 222 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); 223 assert(ByteSize != CSize && "Should not extract everything"); 224 225 // Constant Integers are simple. 226 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 227 APInt V = CI->getValue(); 228 if (ByteStart) 229 V.lshrInPlace(ByteStart*8); 230 V = V.trunc(ByteSize*8); 231 return ConstantInt::get(CI->getContext(), V); 232 } 233 234 // In the input is a constant expr, we might be able to recursively simplify. 235 // If not, we definitely can't do anything. 236 ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 237 if (!CE) return nullptr; 238 239 switch (CE->getOpcode()) { 240 default: return nullptr; 241 case Instruction::Or: { 242 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 243 if (!RHS) 244 return nullptr; 245 246 // X | -1 -> -1. 247 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) 248 if (RHSC->isMinusOne()) 249 return RHSC; 250 251 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 252 if (!LHS) 253 return nullptr; 254 return ConstantExpr::getOr(LHS, RHS); 255 } 256 case Instruction::And: { 257 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 258 if (!RHS) 259 return nullptr; 260 261 // X & 0 -> 0. 262 if (RHS->isNullValue()) 263 return RHS; 264 265 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 266 if (!LHS) 267 return nullptr; 268 return ConstantExpr::getAnd(LHS, RHS); 269 } 270 case Instruction::LShr: { 271 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 272 if (!Amt) 273 return nullptr; 274 APInt ShAmt = Amt->getValue(); 275 // Cannot analyze non-byte shifts. 276 if ((ShAmt & 7) != 0) 277 return nullptr; 278 ShAmt.lshrInPlace(3); 279 280 // If the extract is known to be all zeros, return zero. 281 if (ShAmt.uge(CSize - ByteStart)) 282 return Constant::getNullValue( 283 IntegerType::get(CE->getContext(), ByteSize * 8)); 284 // If the extract is known to be fully in the input, extract it. 285 if (ShAmt.ule(CSize - (ByteStart + ByteSize))) 286 return ExtractConstantBytes(CE->getOperand(0), 287 ByteStart + ShAmt.getZExtValue(), ByteSize); 288 289 // TODO: Handle the 'partially zero' case. 290 return nullptr; 291 } 292 293 case Instruction::Shl: { 294 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 295 if (!Amt) 296 return nullptr; 297 APInt ShAmt = Amt->getValue(); 298 // Cannot analyze non-byte shifts. 299 if ((ShAmt & 7) != 0) 300 return nullptr; 301 ShAmt.lshrInPlace(3); 302 303 // If the extract is known to be all zeros, return zero. 304 if (ShAmt.uge(ByteStart + ByteSize)) 305 return Constant::getNullValue( 306 IntegerType::get(CE->getContext(), ByteSize * 8)); 307 // If the extract is known to be fully in the input, extract it. 308 if (ShAmt.ule(ByteStart)) 309 return ExtractConstantBytes(CE->getOperand(0), 310 ByteStart - ShAmt.getZExtValue(), ByteSize); 311 312 // TODO: Handle the 'partially zero' case. 313 return nullptr; 314 } 315 316 case Instruction::ZExt: { 317 unsigned SrcBitSize = 318 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); 319 320 // If extracting something that is completely zero, return 0. 321 if (ByteStart*8 >= SrcBitSize) 322 return Constant::getNullValue(IntegerType::get(CE->getContext(), 323 ByteSize*8)); 324 325 // If exactly extracting the input, return it. 326 if (ByteStart == 0 && ByteSize*8 == SrcBitSize) 327 return CE->getOperand(0); 328 329 // If extracting something completely in the input, if the input is a 330 // multiple of 8 bits, recurse. 331 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) 332 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); 333 334 // Otherwise, if extracting a subset of the input, which is not multiple of 335 // 8 bits, do a shift and trunc to get the bits. 336 if ((ByteStart+ByteSize)*8 < SrcBitSize) { 337 assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); 338 Constant *Res = CE->getOperand(0); 339 if (ByteStart) 340 Res = ConstantExpr::getLShr(Res, 341 ConstantInt::get(Res->getType(), ByteStart*8)); 342 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), 343 ByteSize*8)); 344 } 345 346 // TODO: Handle the 'partially zero' case. 347 return nullptr; 348 } 349 } 350 } 351 352 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 353 Type *DestTy) { 354 if (isa<PoisonValue>(V)) 355 return PoisonValue::get(DestTy); 356 357 if (isa<UndefValue>(V)) { 358 // zext(undef) = 0, because the top bits will be zero. 359 // sext(undef) = 0, because the top bits will all be the same. 360 // [us]itofp(undef) = 0, because the result value is bounded. 361 if (opc == Instruction::ZExt || opc == Instruction::SExt || 362 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 363 return Constant::getNullValue(DestTy); 364 return UndefValue::get(DestTy); 365 } 366 367 if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 368 opc != Instruction::AddrSpaceCast) 369 return Constant::getNullValue(DestTy); 370 371 // If the cast operand is a constant expression, there's a few things we can 372 // do to try to simplify it. 373 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 374 if (CE->isCast()) { 375 // Try hard to fold cast of cast because they are often eliminable. 376 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 377 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); 378 } else if (CE->getOpcode() == Instruction::GetElementPtr && 379 // Do not fold addrspacecast (gep 0, .., 0). It might make the 380 // addrspacecast uncanonicalized. 381 opc != Instruction::AddrSpaceCast && 382 // Do not fold bitcast (gep) with inrange index, as this loses 383 // information. 384 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && 385 // Do not fold if the gep type is a vector, as bitcasting 386 // operand 0 of a vector gep will result in a bitcast between 387 // different sizes. 388 !CE->getType()->isVectorTy()) { 389 // If all of the indexes in the GEP are null values, there is no pointer 390 // adjustment going on. We might as well cast the source pointer. 391 bool isAllNull = true; 392 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 393 if (!CE->getOperand(i)->isNullValue()) { 394 isAllNull = false; 395 break; 396 } 397 if (isAllNull) 398 // This is casting one pointer type to another, always BitCast 399 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); 400 } 401 } 402 403 // If the cast operand is a constant vector, perform the cast by 404 // operating on each element. In the cast of bitcasts, the element 405 // count may be mismatched; don't attempt to handle that here. 406 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 407 DestTy->isVectorTy() && 408 cast<FixedVectorType>(DestTy)->getNumElements() == 409 cast<FixedVectorType>(V->getType())->getNumElements()) { 410 VectorType *DestVecTy = cast<VectorType>(DestTy); 411 Type *DstEltTy = DestVecTy->getElementType(); 412 // Fast path for splatted constants. 413 if (Constant *Splat = V->getSplatValue()) { 414 return ConstantVector::getSplat( 415 cast<VectorType>(DestTy)->getElementCount(), 416 ConstantExpr::getCast(opc, Splat, DstEltTy)); 417 } 418 SmallVector<Constant *, 16> res; 419 Type *Ty = IntegerType::get(V->getContext(), 32); 420 for (unsigned i = 0, 421 e = cast<FixedVectorType>(V->getType())->getNumElements(); 422 i != e; ++i) { 423 Constant *C = 424 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 425 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); 426 } 427 return ConstantVector::get(res); 428 } 429 430 // We actually have to do a cast now. Perform the cast according to the 431 // opcode specified. 432 switch (opc) { 433 default: 434 llvm_unreachable("Failed to cast constant expression"); 435 case Instruction::FPTrunc: 436 case Instruction::FPExt: 437 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 438 bool ignored; 439 APFloat Val = FPC->getValueAPF(); 440 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : 441 DestTy->isFloatTy() ? APFloat::IEEEsingle() : 442 DestTy->isDoubleTy() ? APFloat::IEEEdouble() : 443 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : 444 DestTy->isFP128Ty() ? APFloat::IEEEquad() : 445 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : 446 APFloat::Bogus(), 447 APFloat::rmNearestTiesToEven, &ignored); 448 return ConstantFP::get(V->getContext(), Val); 449 } 450 return nullptr; // Can't fold. 451 case Instruction::FPToUI: 452 case Instruction::FPToSI: 453 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 454 const APFloat &V = FPC->getValueAPF(); 455 bool ignored; 456 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 457 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 458 if (APFloat::opInvalidOp == 459 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 460 // Undefined behavior invoked - the destination type can't represent 461 // the input constant. 462 return PoisonValue::get(DestTy); 463 } 464 return ConstantInt::get(FPC->getContext(), IntVal); 465 } 466 return nullptr; // Can't fold. 467 case Instruction::IntToPtr: //always treated as unsigned 468 if (V->isNullValue()) // Is it an integral null value? 469 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 470 return nullptr; // Other pointer types cannot be casted 471 case Instruction::PtrToInt: // always treated as unsigned 472 // Is it a null pointer value? 473 if (V->isNullValue()) 474 return ConstantInt::get(DestTy, 0); 475 // Other pointer types cannot be casted 476 return nullptr; 477 case Instruction::UIToFP: 478 case Instruction::SIToFP: 479 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 480 const APInt &api = CI->getValue(); 481 APFloat apf(DestTy->getFltSemantics(), 482 APInt::getZero(DestTy->getPrimitiveSizeInBits())); 483 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 484 APFloat::rmNearestTiesToEven); 485 return ConstantFP::get(V->getContext(), apf); 486 } 487 return nullptr; 488 case Instruction::ZExt: 489 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 490 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 491 return ConstantInt::get(V->getContext(), 492 CI->getValue().zext(BitWidth)); 493 } 494 return nullptr; 495 case Instruction::SExt: 496 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 497 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 498 return ConstantInt::get(V->getContext(), 499 CI->getValue().sext(BitWidth)); 500 } 501 return nullptr; 502 case Instruction::Trunc: { 503 if (V->getType()->isVectorTy()) 504 return nullptr; 505 506 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 507 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 508 return ConstantInt::get(V->getContext(), 509 CI->getValue().trunc(DestBitWidth)); 510 } 511 512 // The input must be a constantexpr. See if we can simplify this based on 513 // the bytes we are demanding. Only do this if the source and dest are an 514 // even multiple of a byte. 515 if ((DestBitWidth & 7) == 0 && 516 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) 517 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) 518 return Res; 519 520 return nullptr; 521 } 522 case Instruction::BitCast: 523 return FoldBitCast(V, DestTy); 524 case Instruction::AddrSpaceCast: 525 return nullptr; 526 } 527 } 528 529 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 530 Constant *V1, Constant *V2) { 531 // Check for i1 and vector true/false conditions. 532 if (Cond->isNullValue()) return V2; 533 if (Cond->isAllOnesValue()) return V1; 534 535 // If the condition is a vector constant, fold the result elementwise. 536 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 537 auto *V1VTy = CondV->getType(); 538 SmallVector<Constant*, 16> Result; 539 Type *Ty = IntegerType::get(CondV->getContext(), 32); 540 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 541 Constant *V; 542 Constant *V1Element = ConstantExpr::getExtractElement(V1, 543 ConstantInt::get(Ty, i)); 544 Constant *V2Element = ConstantExpr::getExtractElement(V2, 545 ConstantInt::get(Ty, i)); 546 auto *Cond = cast<Constant>(CondV->getOperand(i)); 547 if (isa<PoisonValue>(Cond)) { 548 V = PoisonValue::get(V1Element->getType()); 549 } else if (V1Element == V2Element) { 550 V = V1Element; 551 } else if (isa<UndefValue>(Cond)) { 552 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 553 } else { 554 if (!isa<ConstantInt>(Cond)) break; 555 V = Cond->isNullValue() ? V2Element : V1Element; 556 } 557 Result.push_back(V); 558 } 559 560 // If we were able to build the vector, return it. 561 if (Result.size() == V1VTy->getNumElements()) 562 return ConstantVector::get(Result); 563 } 564 565 if (isa<PoisonValue>(Cond)) 566 return PoisonValue::get(V1->getType()); 567 568 if (isa<UndefValue>(Cond)) { 569 if (isa<UndefValue>(V1)) return V1; 570 return V2; 571 } 572 573 if (V1 == V2) return V1; 574 575 if (isa<PoisonValue>(V1)) 576 return V2; 577 if (isa<PoisonValue>(V2)) 578 return V1; 579 580 // If the true or false value is undef, we can fold to the other value as 581 // long as the other value isn't poison. 582 auto NotPoison = [](Constant *C) { 583 if (isa<PoisonValue>(C)) 584 return false; 585 586 // TODO: We can analyze ConstExpr by opcode to determine if there is any 587 // possibility of poison. 588 if (isa<ConstantExpr>(C)) 589 return false; 590 591 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || 592 isa<ConstantPointerNull>(C) || isa<Function>(C)) 593 return true; 594 595 if (C->getType()->isVectorTy()) 596 return !C->containsPoisonElement() && !C->containsConstantExpression(); 597 598 // TODO: Recursively analyze aggregates or other constants. 599 return false; 600 }; 601 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; 602 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; 603 604 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { 605 if (TrueVal->getOpcode() == Instruction::Select) 606 if (TrueVal->getOperand(0) == Cond) 607 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); 608 } 609 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { 610 if (FalseVal->getOpcode() == Instruction::Select) 611 if (FalseVal->getOperand(0) == Cond) 612 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); 613 } 614 615 return nullptr; 616 } 617 618 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 619 Constant *Idx) { 620 auto *ValVTy = cast<VectorType>(Val->getType()); 621 622 // extractelt poison, C -> poison 623 // extractelt C, undef -> poison 624 if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx)) 625 return PoisonValue::get(ValVTy->getElementType()); 626 627 // extractelt undef, C -> undef 628 if (isa<UndefValue>(Val)) 629 return UndefValue::get(ValVTy->getElementType()); 630 631 auto *CIdx = dyn_cast<ConstantInt>(Idx); 632 if (!CIdx) 633 return nullptr; 634 635 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 636 // ee({w,x,y,z}, wrong_value) -> poison 637 if (CIdx->uge(ValFVTy->getNumElements())) 638 return PoisonValue::get(ValFVTy->getElementType()); 639 } 640 641 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 642 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 643 if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 644 SmallVector<Constant *, 8> Ops; 645 Ops.reserve(CE->getNumOperands()); 646 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 647 Constant *Op = CE->getOperand(i); 648 if (Op->getType()->isVectorTy()) { 649 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 650 if (!ScalarOp) 651 return nullptr; 652 Ops.push_back(ScalarOp); 653 } else 654 Ops.push_back(Op); 655 } 656 return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 657 GEP->getSourceElementType()); 658 } else if (CE->getOpcode() == Instruction::InsertElement) { 659 if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) { 660 if (APSInt::isSameValue(APSInt(IEIdx->getValue()), 661 APSInt(CIdx->getValue()))) { 662 return CE->getOperand(1); 663 } else { 664 return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx); 665 } 666 } 667 } 668 } 669 670 if (Constant *C = Val->getAggregateElement(CIdx)) 671 return C; 672 673 // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x 674 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) { 675 if (Constant *SplatVal = Val->getSplatValue()) 676 return SplatVal; 677 } 678 679 return nullptr; 680 } 681 682 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 683 Constant *Elt, 684 Constant *Idx) { 685 if (isa<UndefValue>(Idx)) 686 return PoisonValue::get(Val->getType()); 687 688 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 689 if (!CIdx) return nullptr; 690 691 // Do not iterate on scalable vector. The num of elements is unknown at 692 // compile-time. 693 if (isa<ScalableVectorType>(Val->getType())) 694 return nullptr; 695 696 auto *ValTy = cast<FixedVectorType>(Val->getType()); 697 698 unsigned NumElts = ValTy->getNumElements(); 699 if (CIdx->uge(NumElts)) 700 return PoisonValue::get(Val->getType()); 701 702 SmallVector<Constant*, 16> Result; 703 Result.reserve(NumElts); 704 auto *Ty = Type::getInt32Ty(Val->getContext()); 705 uint64_t IdxVal = CIdx->getZExtValue(); 706 for (unsigned i = 0; i != NumElts; ++i) { 707 if (i == IdxVal) { 708 Result.push_back(Elt); 709 continue; 710 } 711 712 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 713 Result.push_back(C); 714 } 715 716 return ConstantVector::get(Result); 717 } 718 719 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 720 ArrayRef<int> Mask) { 721 auto *V1VTy = cast<VectorType>(V1->getType()); 722 unsigned MaskNumElts = Mask.size(); 723 auto MaskEltCount = 724 ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy)); 725 Type *EltTy = V1VTy->getElementType(); 726 727 // Undefined shuffle mask -> undefined value. 728 if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) { 729 return UndefValue::get(FixedVectorType::get(EltTy, MaskNumElts)); 730 } 731 732 // If the mask is all zeros this is a splat, no need to go through all 733 // elements. 734 if (all_of(Mask, [](int Elt) { return Elt == 0; }) && 735 !MaskEltCount.isScalable()) { 736 Type *Ty = IntegerType::get(V1->getContext(), 32); 737 Constant *Elt = 738 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 739 return ConstantVector::getSplat(MaskEltCount, Elt); 740 } 741 // Do not iterate on scalable vector. The num of elements is unknown at 742 // compile-time. 743 if (isa<ScalableVectorType>(V1VTy)) 744 return nullptr; 745 746 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); 747 748 // Loop over the shuffle mask, evaluating each element. 749 SmallVector<Constant*, 32> Result; 750 for (unsigned i = 0; i != MaskNumElts; ++i) { 751 int Elt = Mask[i]; 752 if (Elt == -1) { 753 Result.push_back(UndefValue::get(EltTy)); 754 continue; 755 } 756 Constant *InElt; 757 if (unsigned(Elt) >= SrcNumElts*2) 758 InElt = UndefValue::get(EltTy); 759 else if (unsigned(Elt) >= SrcNumElts) { 760 Type *Ty = IntegerType::get(V2->getContext(), 32); 761 InElt = 762 ConstantExpr::getExtractElement(V2, 763 ConstantInt::get(Ty, Elt - SrcNumElts)); 764 } else { 765 Type *Ty = IntegerType::get(V1->getContext(), 32); 766 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 767 } 768 Result.push_back(InElt); 769 } 770 771 return ConstantVector::get(Result); 772 } 773 774 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 775 ArrayRef<unsigned> Idxs) { 776 // Base case: no indices, so return the entire value. 777 if (Idxs.empty()) 778 return Agg; 779 780 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 781 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 782 783 return nullptr; 784 } 785 786 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 787 Constant *Val, 788 ArrayRef<unsigned> Idxs) { 789 // Base case: no indices, so replace the entire value. 790 if (Idxs.empty()) 791 return Val; 792 793 unsigned NumElts; 794 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 795 NumElts = ST->getNumElements(); 796 else 797 NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 798 799 SmallVector<Constant*, 32> Result; 800 for (unsigned i = 0; i != NumElts; ++i) { 801 Constant *C = Agg->getAggregateElement(i); 802 if (!C) return nullptr; 803 804 if (Idxs[0] == i) 805 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 806 807 Result.push_back(C); 808 } 809 810 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 811 return ConstantStruct::get(ST, Result); 812 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 813 } 814 815 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 816 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 817 818 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 819 // vectors are always evaluated per element. 820 bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 821 bool HasScalarUndefOrScalableVectorUndef = 822 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 823 824 if (HasScalarUndefOrScalableVectorUndef) { 825 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 826 case Instruction::FNeg: 827 return C; // -undef -> undef 828 case Instruction::UnaryOpsEnd: 829 llvm_unreachable("Invalid UnaryOp"); 830 } 831 } 832 833 // Constant should not be UndefValue, unless these are vector constants. 834 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 835 // We only have FP UnaryOps right now. 836 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 837 838 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 839 const APFloat &CV = CFP->getValueAPF(); 840 switch (Opcode) { 841 default: 842 break; 843 case Instruction::FNeg: 844 return ConstantFP::get(C->getContext(), neg(CV)); 845 } 846 } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) { 847 848 Type *Ty = IntegerType::get(VTy->getContext(), 32); 849 // Fast path for splatted constants. 850 if (Constant *Splat = C->getSplatValue()) { 851 Constant *Elt = ConstantExpr::get(Opcode, Splat); 852 return ConstantVector::getSplat(VTy->getElementCount(), Elt); 853 } 854 855 // Fold each element and create a vector constant from those constants. 856 SmallVector<Constant *, 16> Result; 857 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 858 Constant *ExtractIdx = ConstantInt::get(Ty, i); 859 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 860 861 Result.push_back(ConstantExpr::get(Opcode, Elt)); 862 } 863 864 return ConstantVector::get(Result); 865 } 866 867 // We don't know how to fold this. 868 return nullptr; 869 } 870 871 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 872 Constant *C2) { 873 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 874 875 // Simplify BinOps with their identity values first. They are no-ops and we 876 // can always return the other value, including undef or poison values. 877 // FIXME: remove unnecessary duplicated identity patterns below. 878 // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops, 879 // like X << 0 = X. 880 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType()); 881 if (Identity) { 882 if (C1 == Identity) 883 return C2; 884 if (C2 == Identity) 885 return C1; 886 } 887 888 // Binary operations propagate poison. 889 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 890 return PoisonValue::get(C1->getType()); 891 892 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 893 // vectors are always evaluated per element. 894 bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 895 bool HasScalarUndefOrScalableVectorUndef = 896 (!C1->getType()->isVectorTy() || IsScalableVector) && 897 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 898 if (HasScalarUndefOrScalableVectorUndef) { 899 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 900 case Instruction::Xor: 901 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 902 // Handle undef ^ undef -> 0 special case. This is a common 903 // idiom (misuse). 904 return Constant::getNullValue(C1->getType()); 905 LLVM_FALLTHROUGH; 906 case Instruction::Add: 907 case Instruction::Sub: 908 return UndefValue::get(C1->getType()); 909 case Instruction::And: 910 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 911 return C1; 912 return Constant::getNullValue(C1->getType()); // undef & X -> 0 913 case Instruction::Mul: { 914 // undef * undef -> undef 915 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 916 return C1; 917 const APInt *CV; 918 // X * undef -> undef if X is odd 919 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 920 if ((*CV)[0]) 921 return UndefValue::get(C1->getType()); 922 923 // X * undef -> 0 otherwise 924 return Constant::getNullValue(C1->getType()); 925 } 926 case Instruction::SDiv: 927 case Instruction::UDiv: 928 // X / undef -> poison 929 // X / 0 -> poison 930 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 931 return PoisonValue::get(C2->getType()); 932 // undef / 1 -> undef 933 if (match(C2, m_One())) 934 return C1; 935 // undef / X -> 0 otherwise 936 return Constant::getNullValue(C1->getType()); 937 case Instruction::URem: 938 case Instruction::SRem: 939 // X % undef -> poison 940 // X % 0 -> poison 941 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 942 return PoisonValue::get(C2->getType()); 943 // undef % X -> 0 otherwise 944 return Constant::getNullValue(C1->getType()); 945 case Instruction::Or: // X | undef -> -1 946 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 947 return C1; 948 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 949 case Instruction::LShr: 950 // X >>l undef -> poison 951 if (isa<UndefValue>(C2)) 952 return PoisonValue::get(C2->getType()); 953 // undef >>l 0 -> undef 954 if (match(C2, m_Zero())) 955 return C1; 956 // undef >>l X -> 0 957 return Constant::getNullValue(C1->getType()); 958 case Instruction::AShr: 959 // X >>a undef -> poison 960 if (isa<UndefValue>(C2)) 961 return PoisonValue::get(C2->getType()); 962 // undef >>a 0 -> undef 963 if (match(C2, m_Zero())) 964 return C1; 965 // TODO: undef >>a X -> poison if the shift is exact 966 // undef >>a X -> 0 967 return Constant::getNullValue(C1->getType()); 968 case Instruction::Shl: 969 // X << undef -> undef 970 if (isa<UndefValue>(C2)) 971 return PoisonValue::get(C2->getType()); 972 // undef << 0 -> undef 973 if (match(C2, m_Zero())) 974 return C1; 975 // undef << X -> 0 976 return Constant::getNullValue(C1->getType()); 977 case Instruction::FSub: 978 // -0.0 - undef --> undef (consistent with "fneg undef") 979 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 980 return C2; 981 LLVM_FALLTHROUGH; 982 case Instruction::FAdd: 983 case Instruction::FMul: 984 case Instruction::FDiv: 985 case Instruction::FRem: 986 // [any flop] undef, undef -> undef 987 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 988 return C1; 989 // [any flop] C, undef -> NaN 990 // [any flop] undef, C -> NaN 991 // We could potentially specialize NaN/Inf constants vs. 'normal' 992 // constants (possibly differently depending on opcode and operand). This 993 // would allow returning undef sometimes. But it is always safe to fold to 994 // NaN because we can choose the undef operand as NaN, and any FP opcode 995 // with a NaN operand will propagate NaN. 996 return ConstantFP::getNaN(C1->getType()); 997 case Instruction::BinaryOpsEnd: 998 llvm_unreachable("Invalid BinaryOp"); 999 } 1000 } 1001 1002 // Neither constant should be UndefValue, unless these are vector constants. 1003 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 1004 1005 // Handle simplifications when the RHS is a constant int. 1006 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1007 switch (Opcode) { 1008 case Instruction::Add: 1009 if (CI2->isZero()) return C1; // X + 0 == X 1010 break; 1011 case Instruction::Sub: 1012 if (CI2->isZero()) return C1; // X - 0 == X 1013 break; 1014 case Instruction::Mul: 1015 if (CI2->isZero()) return C2; // X * 0 == 0 1016 if (CI2->isOne()) 1017 return C1; // X * 1 == X 1018 break; 1019 case Instruction::UDiv: 1020 case Instruction::SDiv: 1021 if (CI2->isOne()) 1022 return C1; // X / 1 == X 1023 if (CI2->isZero()) 1024 return PoisonValue::get(CI2->getType()); // X / 0 == poison 1025 break; 1026 case Instruction::URem: 1027 case Instruction::SRem: 1028 if (CI2->isOne()) 1029 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 1030 if (CI2->isZero()) 1031 return PoisonValue::get(CI2->getType()); // X % 0 == poison 1032 break; 1033 case Instruction::And: 1034 if (CI2->isZero()) return C2; // X & 0 == 0 1035 if (CI2->isMinusOne()) 1036 return C1; // X & -1 == X 1037 1038 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1039 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) 1040 if (CE1->getOpcode() == Instruction::ZExt) { 1041 unsigned DstWidth = CI2->getType()->getBitWidth(); 1042 unsigned SrcWidth = 1043 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1044 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1045 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) 1046 return C1; 1047 } 1048 1049 // If and'ing the address of a global with a constant, fold it. 1050 if (CE1->getOpcode() == Instruction::PtrToInt && 1051 isa<GlobalValue>(CE1->getOperand(0))) { 1052 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 1053 1054 MaybeAlign GVAlign; 1055 1056 if (Module *TheModule = GV->getParent()) { 1057 const DataLayout &DL = TheModule->getDataLayout(); 1058 GVAlign = GV->getPointerAlignment(DL); 1059 1060 // If the function alignment is not specified then assume that it 1061 // is 4. 1062 // This is dangerous; on x86, the alignment of the pointer 1063 // corresponds to the alignment of the function, but might be less 1064 // than 4 if it isn't explicitly specified. 1065 // However, a fix for this behaviour was reverted because it 1066 // increased code size (see https://reviews.llvm.org/D55115) 1067 // FIXME: This code should be deleted once existing targets have 1068 // appropriate defaults 1069 if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 1070 GVAlign = Align(4); 1071 } else if (isa<Function>(GV)) { 1072 // Without a datalayout we have to assume the worst case: that the 1073 // function pointer isn't aligned at all. 1074 GVAlign = llvm::None; 1075 } else if (isa<GlobalVariable>(GV)) { 1076 GVAlign = cast<GlobalVariable>(GV)->getAlign(); 1077 } 1078 1079 if (GVAlign && *GVAlign > 1) { 1080 unsigned DstWidth = CI2->getType()->getBitWidth(); 1081 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign)); 1082 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1083 1084 // If checking bits we know are clear, return zero. 1085 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 1086 return Constant::getNullValue(CI2->getType()); 1087 } 1088 } 1089 } 1090 break; 1091 case Instruction::Or: 1092 if (CI2->isZero()) return C1; // X | 0 == X 1093 if (CI2->isMinusOne()) 1094 return C2; // X | -1 == -1 1095 break; 1096 case Instruction::Xor: 1097 if (CI2->isZero()) return C1; // X ^ 0 == X 1098 1099 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1100 switch (CE1->getOpcode()) { 1101 default: break; 1102 case Instruction::ICmp: 1103 case Instruction::FCmp: 1104 // cmp pred ^ true -> cmp !pred 1105 assert(CI2->isOne()); 1106 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); 1107 pred = CmpInst::getInversePredicate(pred); 1108 return ConstantExpr::getCompare(pred, CE1->getOperand(0), 1109 CE1->getOperand(1)); 1110 } 1111 } 1112 break; 1113 case Instruction::AShr: 1114 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 1115 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) 1116 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. 1117 return ConstantExpr::getLShr(C1, C2); 1118 break; 1119 } 1120 } else if (isa<ConstantInt>(C1)) { 1121 // If C1 is a ConstantInt and C2 is not, swap the operands. 1122 if (Instruction::isCommutative(Opcode)) 1123 return ConstantExpr::get(Opcode, C2, C1); 1124 } 1125 1126 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 1127 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1128 const APInt &C1V = CI1->getValue(); 1129 const APInt &C2V = CI2->getValue(); 1130 switch (Opcode) { 1131 default: 1132 break; 1133 case Instruction::Add: 1134 return ConstantInt::get(CI1->getContext(), C1V + C2V); 1135 case Instruction::Sub: 1136 return ConstantInt::get(CI1->getContext(), C1V - C2V); 1137 case Instruction::Mul: 1138 return ConstantInt::get(CI1->getContext(), C1V * C2V); 1139 case Instruction::UDiv: 1140 assert(!CI2->isZero() && "Div by zero handled above"); 1141 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 1142 case Instruction::SDiv: 1143 assert(!CI2->isZero() && "Div by zero handled above"); 1144 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1145 return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison 1146 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 1147 case Instruction::URem: 1148 assert(!CI2->isZero() && "Div by zero handled above"); 1149 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 1150 case Instruction::SRem: 1151 assert(!CI2->isZero() && "Div by zero handled above"); 1152 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1153 return PoisonValue::get(CI1->getType()); // MIN_INT % -1 -> poison 1154 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 1155 case Instruction::And: 1156 return ConstantInt::get(CI1->getContext(), C1V & C2V); 1157 case Instruction::Or: 1158 return ConstantInt::get(CI1->getContext(), C1V | C2V); 1159 case Instruction::Xor: 1160 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 1161 case Instruction::Shl: 1162 if (C2V.ult(C1V.getBitWidth())) 1163 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 1164 return PoisonValue::get(C1->getType()); // too big shift is poison 1165 case Instruction::LShr: 1166 if (C2V.ult(C1V.getBitWidth())) 1167 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 1168 return PoisonValue::get(C1->getType()); // too big shift is poison 1169 case Instruction::AShr: 1170 if (C2V.ult(C1V.getBitWidth())) 1171 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 1172 return PoisonValue::get(C1->getType()); // too big shift is poison 1173 } 1174 } 1175 1176 switch (Opcode) { 1177 case Instruction::SDiv: 1178 case Instruction::UDiv: 1179 case Instruction::URem: 1180 case Instruction::SRem: 1181 case Instruction::LShr: 1182 case Instruction::AShr: 1183 case Instruction::Shl: 1184 if (CI1->isZero()) return C1; 1185 break; 1186 default: 1187 break; 1188 } 1189 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 1190 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 1191 const APFloat &C1V = CFP1->getValueAPF(); 1192 const APFloat &C2V = CFP2->getValueAPF(); 1193 APFloat C3V = C1V; // copy for modification 1194 switch (Opcode) { 1195 default: 1196 break; 1197 case Instruction::FAdd: 1198 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 1199 return ConstantFP::get(C1->getContext(), C3V); 1200 case Instruction::FSub: 1201 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 1202 return ConstantFP::get(C1->getContext(), C3V); 1203 case Instruction::FMul: 1204 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 1205 return ConstantFP::get(C1->getContext(), C3V); 1206 case Instruction::FDiv: 1207 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 1208 return ConstantFP::get(C1->getContext(), C3V); 1209 case Instruction::FRem: 1210 (void)C3V.mod(C2V); 1211 return ConstantFP::get(C1->getContext(), C3V); 1212 } 1213 } 1214 } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) { 1215 // Fast path for splatted constants. 1216 if (Constant *C2Splat = C2->getSplatValue()) { 1217 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 1218 return PoisonValue::get(VTy); 1219 if (Constant *C1Splat = C1->getSplatValue()) { 1220 return ConstantVector::getSplat( 1221 VTy->getElementCount(), 1222 ConstantExpr::get(Opcode, C1Splat, C2Splat)); 1223 } 1224 } 1225 1226 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 1227 // Fold each element and create a vector constant from those constants. 1228 SmallVector<Constant*, 16> Result; 1229 Type *Ty = IntegerType::get(FVTy->getContext(), 32); 1230 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 1231 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1232 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 1233 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 1234 1235 // If any element of a divisor vector is zero, the whole op is poison. 1236 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 1237 return PoisonValue::get(VTy); 1238 1239 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); 1240 } 1241 1242 return ConstantVector::get(Result); 1243 } 1244 } 1245 1246 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1247 // There are many possible foldings we could do here. We should probably 1248 // at least fold add of a pointer with an integer into the appropriate 1249 // getelementptr. This will improve alias analysis a bit. 1250 1251 // Given ((a + b) + c), if (b + c) folds to something interesting, return 1252 // (a + (b + c)). 1253 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 1254 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 1255 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 1256 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 1257 } 1258 } else if (isa<ConstantExpr>(C2)) { 1259 // If C2 is a constant expr and C1 isn't, flop them around and fold the 1260 // other way if possible. 1261 if (Instruction::isCommutative(Opcode)) 1262 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 1263 } 1264 1265 // i1 can be simplified in many cases. 1266 if (C1->getType()->isIntegerTy(1)) { 1267 switch (Opcode) { 1268 case Instruction::Add: 1269 case Instruction::Sub: 1270 return ConstantExpr::getXor(C1, C2); 1271 case Instruction::Mul: 1272 return ConstantExpr::getAnd(C1, C2); 1273 case Instruction::Shl: 1274 case Instruction::LShr: 1275 case Instruction::AShr: 1276 // We can assume that C2 == 0. If it were one the result would be 1277 // undefined because the shift value is as large as the bitwidth. 1278 return C1; 1279 case Instruction::SDiv: 1280 case Instruction::UDiv: 1281 // We can assume that C2 == 1. If it were zero the result would be 1282 // undefined through division by zero. 1283 return C1; 1284 case Instruction::URem: 1285 case Instruction::SRem: 1286 // We can assume that C2 == 1. If it were zero the result would be 1287 // undefined through division by zero. 1288 return ConstantInt::getFalse(C1->getContext()); 1289 default: 1290 break; 1291 } 1292 } 1293 1294 // We don't know how to fold this. 1295 return nullptr; 1296 } 1297 1298 /// This type is zero-sized if it's an array or structure of zero-sized types. 1299 /// The only leaf zero-sized type is an empty structure. 1300 static bool isMaybeZeroSizedType(Type *Ty) { 1301 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1302 if (STy->isOpaque()) return true; // Can't say. 1303 1304 // If all of elements have zero size, this does too. 1305 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1306 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; 1307 return true; 1308 1309 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1310 return isMaybeZeroSizedType(ATy->getElementType()); 1311 } 1312 return false; 1313 } 1314 1315 /// Compare the two constants as though they were getelementptr indices. 1316 /// This allows coercion of the types to be the same thing. 1317 /// 1318 /// If the two constants are the "same" (after coercion), return 0. If the 1319 /// first is less than the second, return -1, if the second is less than the 1320 /// first, return 1. If the constants are not integral, return -2. 1321 /// 1322 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { 1323 if (C1 == C2) return 0; 1324 1325 // Ok, we found a different index. If they are not ConstantInt, we can't do 1326 // anything with them. 1327 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) 1328 return -2; // don't know! 1329 1330 // We cannot compare the indices if they don't fit in an int64_t. 1331 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || 1332 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) 1333 return -2; // don't know! 1334 1335 // Ok, we have two differing integer indices. Sign extend them to be the same 1336 // type. 1337 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); 1338 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); 1339 1340 if (C1Val == C2Val) return 0; // They are equal 1341 1342 // If the type being indexed over is really just a zero sized type, there is 1343 // no pointer difference being made here. 1344 if (isMaybeZeroSizedType(ElTy)) 1345 return -2; // dunno. 1346 1347 // If they are really different, now that they are the same type, then we 1348 // found a difference! 1349 if (C1Val < C2Val) 1350 return -1; 1351 else 1352 return 1; 1353 } 1354 1355 /// This function determines if there is anything we can decide about the two 1356 /// constants provided. This doesn't need to handle simple things like 1357 /// ConstantFP comparisons, but should instead handle ConstantExprs. 1358 /// If we can determine that the two constants have a particular relation to 1359 /// each other, we should return the corresponding FCmpInst predicate, 1360 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in 1361 /// ConstantFoldCompareInstruction. 1362 /// 1363 /// To simplify this code we canonicalize the relation so that the first 1364 /// operand is always the most "complex" of the two. We consider ConstantFP 1365 /// to be the simplest, and ConstantExprs to be the most complex. 1366 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { 1367 assert(V1->getType() == V2->getType() && 1368 "Cannot compare values of different types!"); 1369 1370 // We do not know if a constant expression will evaluate to a number or NaN. 1371 // Therefore, we can only say that the relation is unordered or equal. 1372 if (V1 == V2) return FCmpInst::FCMP_UEQ; 1373 1374 if (!isa<ConstantExpr>(V1)) { 1375 if (!isa<ConstantExpr>(V2)) { 1376 // Simple case, use the standard constant folder. 1377 ConstantInt *R = nullptr; 1378 R = dyn_cast<ConstantInt>( 1379 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); 1380 if (R && !R->isZero()) 1381 return FCmpInst::FCMP_OEQ; 1382 R = dyn_cast<ConstantInt>( 1383 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); 1384 if (R && !R->isZero()) 1385 return FCmpInst::FCMP_OLT; 1386 R = dyn_cast<ConstantInt>( 1387 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); 1388 if (R && !R->isZero()) 1389 return FCmpInst::FCMP_OGT; 1390 1391 // Nothing more we can do 1392 return FCmpInst::BAD_FCMP_PREDICATE; 1393 } 1394 1395 // If the first operand is simple and second is ConstantExpr, swap operands. 1396 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); 1397 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) 1398 return FCmpInst::getSwappedPredicate(SwappedRelation); 1399 } else { 1400 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1401 // constantexpr or a simple constant. 1402 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1403 switch (CE1->getOpcode()) { 1404 case Instruction::FPTrunc: 1405 case Instruction::FPExt: 1406 case Instruction::UIToFP: 1407 case Instruction::SIToFP: 1408 // We might be able to do something with these but we don't right now. 1409 break; 1410 default: 1411 break; 1412 } 1413 } 1414 // There are MANY other foldings that we could perform here. They will 1415 // probably be added on demand, as they seem needed. 1416 return FCmpInst::BAD_FCMP_PREDICATE; 1417 } 1418 1419 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 1420 const GlobalValue *GV2) { 1421 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 1422 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) 1423 return true; 1424 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 1425 Type *Ty = GVar->getValueType(); 1426 // A global with opaque type might end up being zero sized. 1427 if (!Ty->isSized()) 1428 return true; 1429 // A global with an empty type might lie at the address of any other 1430 // global. 1431 if (Ty->isEmptyTy()) 1432 return true; 1433 } 1434 return false; 1435 }; 1436 // Don't try to decide equality of aliases. 1437 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 1438 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 1439 return ICmpInst::ICMP_NE; 1440 return ICmpInst::BAD_ICMP_PREDICATE; 1441 } 1442 1443 /// This function determines if there is anything we can decide about the two 1444 /// constants provided. This doesn't need to handle simple things like integer 1445 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 1446 /// If we can determine that the two constants have a particular relation to 1447 /// each other, we should return the corresponding ICmp predicate, otherwise 1448 /// return ICmpInst::BAD_ICMP_PREDICATE. 1449 /// 1450 /// To simplify this code we canonicalize the relation so that the first 1451 /// operand is always the most "complex" of the two. We consider simple 1452 /// constants (like ConstantInt) to be the simplest, followed by 1453 /// GlobalValues, followed by ConstantExpr's (the most complex). 1454 /// 1455 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, 1456 bool isSigned) { 1457 assert(V1->getType() == V2->getType() && 1458 "Cannot compare different types of values!"); 1459 if (V1 == V2) return ICmpInst::ICMP_EQ; 1460 1461 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && 1462 !isa<BlockAddress>(V1)) { 1463 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && 1464 !isa<BlockAddress>(V2)) { 1465 // We distilled this down to a simple case, use the standard constant 1466 // folder. 1467 ConstantInt *R = nullptr; 1468 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; 1469 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1470 if (R && !R->isZero()) 1471 return pred; 1472 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1473 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1474 if (R && !R->isZero()) 1475 return pred; 1476 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1477 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1478 if (R && !R->isZero()) 1479 return pred; 1480 1481 // If we couldn't figure it out, bail. 1482 return ICmpInst::BAD_ICMP_PREDICATE; 1483 } 1484 1485 // If the first operand is simple, swap operands. 1486 ICmpInst::Predicate SwappedRelation = 1487 evaluateICmpRelation(V2, V1, isSigned); 1488 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1489 return ICmpInst::getSwappedPredicate(SwappedRelation); 1490 1491 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1492 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1493 ICmpInst::Predicate SwappedRelation = 1494 evaluateICmpRelation(V2, V1, isSigned); 1495 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1496 return ICmpInst::getSwappedPredicate(SwappedRelation); 1497 return ICmpInst::BAD_ICMP_PREDICATE; 1498 } 1499 1500 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1501 // constant (which, since the types must match, means that it's a 1502 // ConstantPointerNull). 1503 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1504 return areGlobalsPotentiallyEqual(GV, GV2); 1505 } else if (isa<BlockAddress>(V2)) { 1506 return ICmpInst::ICMP_NE; // Globals never equal labels. 1507 } else { 1508 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); 1509 // GlobalVals can never be null unless they have external weak linkage. 1510 // We don't try to evaluate aliases here. 1511 // NOTE: We should not be doing this constant folding if null pointer 1512 // is considered valid for the function. But currently there is no way to 1513 // query it from the Constant type. 1514 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1515 !NullPointerIsDefined(nullptr /* F */, 1516 GV->getType()->getAddressSpace())) 1517 return ICmpInst::ICMP_UGT; 1518 } 1519 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1520 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1521 ICmpInst::Predicate SwappedRelation = 1522 evaluateICmpRelation(V2, V1, isSigned); 1523 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1524 return ICmpInst::getSwappedPredicate(SwappedRelation); 1525 return ICmpInst::BAD_ICMP_PREDICATE; 1526 } 1527 1528 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1529 // constant (which, since the types must match, means that it is a 1530 // ConstantPointerNull). 1531 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1532 // Block address in another function can't equal this one, but block 1533 // addresses in the current function might be the same if blocks are 1534 // empty. 1535 if (BA2->getFunction() != BA->getFunction()) 1536 return ICmpInst::ICMP_NE; 1537 } else { 1538 // Block addresses aren't null, don't equal the address of globals. 1539 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && 1540 "Canonicalization guarantee!"); 1541 return ICmpInst::ICMP_NE; 1542 } 1543 } else { 1544 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1545 // constantexpr, a global, block address, or a simple constant. 1546 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1547 Constant *CE1Op0 = CE1->getOperand(0); 1548 1549 switch (CE1->getOpcode()) { 1550 case Instruction::Trunc: 1551 case Instruction::FPTrunc: 1552 case Instruction::FPExt: 1553 case Instruction::FPToUI: 1554 case Instruction::FPToSI: 1555 break; // We can't evaluate floating point casts or truncations. 1556 1557 case Instruction::BitCast: 1558 // If this is a global value cast, check to see if the RHS is also a 1559 // GlobalValue. 1560 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) 1561 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) 1562 return areGlobalsPotentiallyEqual(GV, GV2); 1563 LLVM_FALLTHROUGH; 1564 case Instruction::UIToFP: 1565 case Instruction::SIToFP: 1566 case Instruction::ZExt: 1567 case Instruction::SExt: 1568 // We can't evaluate floating point casts or truncations. 1569 if (CE1Op0->getType()->isFPOrFPVectorTy()) 1570 break; 1571 1572 // If the cast is not actually changing bits, and the second operand is a 1573 // null pointer, do the comparison with the pre-casted value. 1574 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { 1575 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; 1576 if (CE1->getOpcode() == Instruction::SExt) isSigned = true; 1577 return evaluateICmpRelation(CE1Op0, 1578 Constant::getNullValue(CE1Op0->getType()), 1579 isSigned); 1580 } 1581 break; 1582 1583 case Instruction::GetElementPtr: { 1584 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1585 // Ok, since this is a getelementptr, we know that the constant has a 1586 // pointer type. Check the various cases. 1587 if (isa<ConstantPointerNull>(V2)) { 1588 // If we are comparing a GEP to a null pointer, check to see if the base 1589 // of the GEP equals the null pointer. 1590 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1591 // If its not weak linkage, the GVal must have a non-zero address 1592 // so the result is greater-than 1593 if (!GV->hasExternalWeakLinkage()) 1594 return ICmpInst::ICMP_UGT; 1595 } else if (isa<ConstantPointerNull>(CE1Op0)) { 1596 // If we are indexing from a null pointer, check to see if we have any 1597 // non-zero indices. 1598 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) 1599 if (!CE1->getOperand(i)->isNullValue()) 1600 // Offsetting from null, must not be equal. 1601 return ICmpInst::ICMP_UGT; 1602 // Only zero indexes from null, must still be zero. 1603 return ICmpInst::ICMP_EQ; 1604 } 1605 // Otherwise, we can't really say if the first operand is null or not. 1606 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1607 if (isa<ConstantPointerNull>(CE1Op0)) { 1608 // If its not weak linkage, the GVal must have a non-zero address 1609 // so the result is less-than 1610 if (!GV2->hasExternalWeakLinkage()) 1611 return ICmpInst::ICMP_ULT; 1612 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1613 if (GV == GV2) { 1614 // If this is a getelementptr of the same global, then it must be 1615 // different. Because the types must match, the getelementptr could 1616 // only have at most one index, and because we fold getelementptr's 1617 // with a single zero index, it must be nonzero. 1618 assert(CE1->getNumOperands() == 2 && 1619 !CE1->getOperand(1)->isNullValue() && 1620 "Surprising getelementptr!"); 1621 return ICmpInst::ICMP_UGT; 1622 } else { 1623 if (CE1GEP->hasAllZeroIndices()) 1624 return areGlobalsPotentiallyEqual(GV, GV2); 1625 return ICmpInst::BAD_ICMP_PREDICATE; 1626 } 1627 } 1628 } else { 1629 ConstantExpr *CE2 = cast<ConstantExpr>(V2); 1630 Constant *CE2Op0 = CE2->getOperand(0); 1631 1632 // There are MANY other foldings that we could perform here. They will 1633 // probably be added on demand, as they seem needed. 1634 switch (CE2->getOpcode()) { 1635 default: break; 1636 case Instruction::GetElementPtr: 1637 // By far the most common case to handle is when the base pointers are 1638 // obviously to the same global. 1639 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1640 // Don't know relative ordering, but check for inequality. 1641 if (CE1Op0 != CE2Op0) { 1642 GEPOperator *CE2GEP = cast<GEPOperator>(CE2); 1643 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1644 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1645 cast<GlobalValue>(CE2Op0)); 1646 return ICmpInst::BAD_ICMP_PREDICATE; 1647 } 1648 // Ok, we know that both getelementptr instructions are based on the 1649 // same global. From this, we can precisely determine the relative 1650 // ordering of the resultant pointers. 1651 unsigned i = 1; 1652 1653 // The logic below assumes that the result of the comparison 1654 // can be determined by finding the first index that differs. 1655 // This doesn't work if there is over-indexing in any 1656 // subsequent indices, so check for that case first. 1657 if (!CE1->isGEPWithNoNotionalOverIndexing() || 1658 !CE2->isGEPWithNoNotionalOverIndexing()) 1659 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1660 1661 // Compare all of the operands the GEP's have in common. 1662 gep_type_iterator GTI = gep_type_begin(CE1); 1663 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); 1664 ++i, ++GTI) 1665 switch (IdxCompare(CE1->getOperand(i), 1666 CE2->getOperand(i), GTI.getIndexedType())) { 1667 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; 1668 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; 1669 case -2: return ICmpInst::BAD_ICMP_PREDICATE; 1670 } 1671 1672 // Ok, we ran out of things they have in common. If any leftovers 1673 // are non-zero then we have a difference, otherwise we are equal. 1674 for (; i < CE1->getNumOperands(); ++i) 1675 if (!CE1->getOperand(i)->isNullValue()) { 1676 if (isa<ConstantInt>(CE1->getOperand(i))) 1677 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1678 else 1679 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1680 } 1681 1682 for (; i < CE2->getNumOperands(); ++i) 1683 if (!CE2->getOperand(i)->isNullValue()) { 1684 if (isa<ConstantInt>(CE2->getOperand(i))) 1685 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1686 else 1687 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1688 } 1689 return ICmpInst::ICMP_EQ; 1690 } 1691 } 1692 } 1693 break; 1694 } 1695 default: 1696 break; 1697 } 1698 } 1699 1700 return ICmpInst::BAD_ICMP_PREDICATE; 1701 } 1702 1703 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 1704 Constant *C1, Constant *C2) { 1705 Type *ResultTy; 1706 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1707 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1708 VT->getElementCount()); 1709 else 1710 ResultTy = Type::getInt1Ty(C1->getContext()); 1711 1712 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1713 if (pred == FCmpInst::FCMP_FALSE) 1714 return Constant::getNullValue(ResultTy); 1715 1716 if (pred == FCmpInst::FCMP_TRUE) 1717 return Constant::getAllOnesValue(ResultTy); 1718 1719 // Handle some degenerate cases first 1720 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 1721 return PoisonValue::get(ResultTy); 1722 1723 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1724 CmpInst::Predicate Predicate = CmpInst::Predicate(pred); 1725 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1726 // For EQ and NE, we can always pick a value for the undef to make the 1727 // predicate pass or fail, so we can return undef. 1728 // Also, if both operands are undef, we can return undef for int comparison. 1729 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1730 return UndefValue::get(ResultTy); 1731 1732 // Otherwise, for integer compare, pick the same value as the non-undef 1733 // operand, and fold it to true or false. 1734 if (isIntegerPredicate) 1735 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1736 1737 // Choosing NaN for the undef will always make unordered comparison succeed 1738 // and ordered comparison fails. 1739 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1740 } 1741 1742 // icmp eq/ne(null,GV) -> false/true 1743 if (C1->isNullValue()) { 1744 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) 1745 // Don't try to evaluate aliases. External weak GV can be null. 1746 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1747 !NullPointerIsDefined(nullptr /* F */, 1748 GV->getType()->getAddressSpace())) { 1749 if (pred == ICmpInst::ICMP_EQ) 1750 return ConstantInt::getFalse(C1->getContext()); 1751 else if (pred == ICmpInst::ICMP_NE) 1752 return ConstantInt::getTrue(C1->getContext()); 1753 } 1754 // icmp eq/ne(GV,null) -> false/true 1755 } else if (C2->isNullValue()) { 1756 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) { 1757 // Don't try to evaluate aliases. External weak GV can be null. 1758 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1759 !NullPointerIsDefined(nullptr /* F */, 1760 GV->getType()->getAddressSpace())) { 1761 if (pred == ICmpInst::ICMP_EQ) 1762 return ConstantInt::getFalse(C1->getContext()); 1763 else if (pred == ICmpInst::ICMP_NE) 1764 return ConstantInt::getTrue(C1->getContext()); 1765 } 1766 } 1767 1768 // The caller is expected to commute the operands if the constant expression 1769 // is C2. 1770 // C1 >= 0 --> true 1771 if (pred == ICmpInst::ICMP_UGE) 1772 return Constant::getAllOnesValue(ResultTy); 1773 // C1 < 0 --> false 1774 if (pred == ICmpInst::ICMP_ULT) 1775 return Constant::getNullValue(ResultTy); 1776 } 1777 1778 // If the comparison is a comparison between two i1's, simplify it. 1779 if (C1->getType()->isIntegerTy(1)) { 1780 switch(pred) { 1781 case ICmpInst::ICMP_EQ: 1782 if (isa<ConstantInt>(C2)) 1783 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1784 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1785 case ICmpInst::ICMP_NE: 1786 return ConstantExpr::getXor(C1, C2); 1787 default: 1788 break; 1789 } 1790 } 1791 1792 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1793 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1794 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1795 switch (pred) { 1796 default: llvm_unreachable("Invalid ICmp Predicate"); 1797 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); 1798 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); 1799 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); 1800 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); 1801 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); 1802 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); 1803 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); 1804 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); 1805 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); 1806 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); 1807 } 1808 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1809 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1810 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1811 APFloat::cmpResult R = C1V.compare(C2V); 1812 switch (pred) { 1813 default: llvm_unreachable("Invalid FCmp Predicate"); 1814 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); 1815 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); 1816 case FCmpInst::FCMP_UNO: 1817 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); 1818 case FCmpInst::FCMP_ORD: 1819 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); 1820 case FCmpInst::FCMP_UEQ: 1821 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1822 R==APFloat::cmpEqual); 1823 case FCmpInst::FCMP_OEQ: 1824 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); 1825 case FCmpInst::FCMP_UNE: 1826 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); 1827 case FCmpInst::FCMP_ONE: 1828 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1829 R==APFloat::cmpGreaterThan); 1830 case FCmpInst::FCMP_ULT: 1831 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1832 R==APFloat::cmpLessThan); 1833 case FCmpInst::FCMP_OLT: 1834 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); 1835 case FCmpInst::FCMP_UGT: 1836 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1837 R==APFloat::cmpGreaterThan); 1838 case FCmpInst::FCMP_OGT: 1839 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); 1840 case FCmpInst::FCMP_ULE: 1841 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); 1842 case FCmpInst::FCMP_OLE: 1843 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1844 R==APFloat::cmpEqual); 1845 case FCmpInst::FCMP_UGE: 1846 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); 1847 case FCmpInst::FCMP_OGE: 1848 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || 1849 R==APFloat::cmpEqual); 1850 } 1851 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 1852 1853 // Fast path for splatted constants. 1854 if (Constant *C1Splat = C1->getSplatValue()) 1855 if (Constant *C2Splat = C2->getSplatValue()) 1856 return ConstantVector::getSplat( 1857 C1VTy->getElementCount(), 1858 ConstantExpr::getCompare(pred, C1Splat, C2Splat)); 1859 1860 // Do not iterate on scalable vector. The number of elements is unknown at 1861 // compile-time. 1862 if (isa<ScalableVectorType>(C1VTy)) 1863 return nullptr; 1864 1865 // If we can constant fold the comparison of each element, constant fold 1866 // the whole vector comparison. 1867 SmallVector<Constant*, 4> ResElts; 1868 Type *Ty = IntegerType::get(C1->getContext(), 32); 1869 // Compare the elements, producing an i1 result or constant expr. 1870 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); 1871 I != E; ++I) { 1872 Constant *C1E = 1873 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I)); 1874 Constant *C2E = 1875 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I)); 1876 1877 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); 1878 } 1879 1880 return ConstantVector::get(ResElts); 1881 } 1882 1883 if (C1->getType()->isFloatingPointTy() && 1884 // Only call evaluateFCmpRelation if we have a constant expr to avoid 1885 // infinite recursive loop 1886 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { 1887 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1888 switch (evaluateFCmpRelation(C1, C2)) { 1889 default: llvm_unreachable("Unknown relation!"); 1890 case FCmpInst::FCMP_UNO: 1891 case FCmpInst::FCMP_ORD: 1892 case FCmpInst::FCMP_UNE: 1893 case FCmpInst::FCMP_ULT: 1894 case FCmpInst::FCMP_UGT: 1895 case FCmpInst::FCMP_ULE: 1896 case FCmpInst::FCMP_UGE: 1897 case FCmpInst::FCMP_TRUE: 1898 case FCmpInst::FCMP_FALSE: 1899 case FCmpInst::BAD_FCMP_PREDICATE: 1900 break; // Couldn't determine anything about these constants. 1901 case FCmpInst::FCMP_OEQ: // We know that C1 == C2 1902 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || 1903 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || 1904 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 1905 break; 1906 case FCmpInst::FCMP_OLT: // We know that C1 < C2 1907 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 1908 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || 1909 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); 1910 break; 1911 case FCmpInst::FCMP_OGT: // We know that C1 > C2 1912 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 1913 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || 1914 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 1915 break; 1916 case FCmpInst::FCMP_OLE: // We know that C1 <= C2 1917 // We can only partially decide this relation. 1918 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 1919 Result = 0; 1920 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 1921 Result = 1; 1922 break; 1923 case FCmpInst::FCMP_OGE: // We known that C1 >= C2 1924 // We can only partially decide this relation. 1925 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 1926 Result = 0; 1927 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 1928 Result = 1; 1929 break; 1930 case FCmpInst::FCMP_ONE: // We know that C1 != C2 1931 // We can only partially decide this relation. 1932 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 1933 Result = 0; 1934 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 1935 Result = 1; 1936 break; 1937 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2). 1938 // We can only partially decide this relation. 1939 if (pred == FCmpInst::FCMP_ONE) 1940 Result = 0; 1941 else if (pred == FCmpInst::FCMP_UEQ) 1942 Result = 1; 1943 break; 1944 } 1945 1946 // If we evaluated the result, return it now. 1947 if (Result != -1) 1948 return ConstantInt::get(ResultTy, Result); 1949 1950 } else { 1951 // Evaluate the relation between the two constants, per the predicate. 1952 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1953 switch (evaluateICmpRelation(C1, C2, 1954 CmpInst::isSigned((CmpInst::Predicate)pred))) { 1955 default: llvm_unreachable("Unknown relational!"); 1956 case ICmpInst::BAD_ICMP_PREDICATE: 1957 break; // Couldn't determine anything about these constants. 1958 case ICmpInst::ICMP_EQ: // We know the constants are equal! 1959 // If we know the constants are equal, we can decide the result of this 1960 // computation precisely. 1961 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); 1962 break; 1963 case ICmpInst::ICMP_ULT: 1964 switch (pred) { 1965 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 1966 Result = 1; break; 1967 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 1968 Result = 0; break; 1969 } 1970 break; 1971 case ICmpInst::ICMP_SLT: 1972 switch (pred) { 1973 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 1974 Result = 1; break; 1975 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 1976 Result = 0; break; 1977 } 1978 break; 1979 case ICmpInst::ICMP_UGT: 1980 switch (pred) { 1981 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 1982 Result = 1; break; 1983 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 1984 Result = 0; break; 1985 } 1986 break; 1987 case ICmpInst::ICMP_SGT: 1988 switch (pred) { 1989 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 1990 Result = 1; break; 1991 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 1992 Result = 0; break; 1993 } 1994 break; 1995 case ICmpInst::ICMP_ULE: 1996 if (pred == ICmpInst::ICMP_UGT) Result = 0; 1997 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; 1998 break; 1999 case ICmpInst::ICMP_SLE: 2000 if (pred == ICmpInst::ICMP_SGT) Result = 0; 2001 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; 2002 break; 2003 case ICmpInst::ICMP_UGE: 2004 if (pred == ICmpInst::ICMP_ULT) Result = 0; 2005 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; 2006 break; 2007 case ICmpInst::ICMP_SGE: 2008 if (pred == ICmpInst::ICMP_SLT) Result = 0; 2009 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; 2010 break; 2011 case ICmpInst::ICMP_NE: 2012 if (pred == ICmpInst::ICMP_EQ) Result = 0; 2013 if (pred == ICmpInst::ICMP_NE) Result = 1; 2014 break; 2015 } 2016 2017 // If we evaluated the result, return it now. 2018 if (Result != -1) 2019 return ConstantInt::get(ResultTy, Result); 2020 2021 // If the right hand side is a bitcast, try using its inverse to simplify 2022 // it by moving it to the left hand side. We can't do this if it would turn 2023 // a vector compare into a scalar compare or visa versa, or if it would turn 2024 // the operands into FP values. 2025 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { 2026 Constant *CE2Op0 = CE2->getOperand(0); 2027 if (CE2->getOpcode() == Instruction::BitCast && 2028 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() && 2029 !CE2Op0->getType()->isFPOrFPVectorTy()) { 2030 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); 2031 return ConstantExpr::getICmp(pred, Inverse, CE2Op0); 2032 } 2033 } 2034 2035 // If the left hand side is an extension, try eliminating it. 2036 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 2037 if ((CE1->getOpcode() == Instruction::SExt && 2038 ICmpInst::isSigned((ICmpInst::Predicate)pred)) || 2039 (CE1->getOpcode() == Instruction::ZExt && 2040 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ 2041 Constant *CE1Op0 = CE1->getOperand(0); 2042 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); 2043 if (CE1Inverse == CE1Op0) { 2044 // Check whether we can safely truncate the right hand side. 2045 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); 2046 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, 2047 C2->getType()) == C2) 2048 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); 2049 } 2050 } 2051 } 2052 2053 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 2054 (C1->isNullValue() && !C2->isNullValue())) { 2055 // If C2 is a constant expr and C1 isn't, flip them around and fold the 2056 // other way if possible. 2057 // Also, if C1 is null and C2 isn't, flip them around. 2058 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); 2059 return ConstantExpr::getICmp(pred, C2, C1); 2060 } 2061 } 2062 return nullptr; 2063 } 2064 2065 /// Test whether the given sequence of *normalized* indices is "inbounds". 2066 template<typename IndexTy> 2067 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { 2068 // No indices means nothing that could be out of bounds. 2069 if (Idxs.empty()) return true; 2070 2071 // If the first index is zero, it's in bounds. 2072 if (cast<Constant>(Idxs[0])->isNullValue()) return true; 2073 2074 // If the first index is one and all the rest are zero, it's in bounds, 2075 // by the one-past-the-end rule. 2076 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { 2077 if (!CI->isOne()) 2078 return false; 2079 } else { 2080 auto *CV = cast<ConstantDataVector>(Idxs[0]); 2081 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); 2082 if (!CI || !CI->isOne()) 2083 return false; 2084 } 2085 2086 for (unsigned i = 1, e = Idxs.size(); i != e; ++i) 2087 if (!cast<Constant>(Idxs[i])->isNullValue()) 2088 return false; 2089 return true; 2090 } 2091 2092 /// Test whether a given ConstantInt is in-range for a SequentialType. 2093 static bool isIndexInRangeOfArrayType(uint64_t NumElements, 2094 const ConstantInt *CI) { 2095 // We cannot bounds check the index if it doesn't fit in an int64_t. 2096 if (CI->getValue().getMinSignedBits() > 64) 2097 return false; 2098 2099 // A negative index or an index past the end of our sequential type is 2100 // considered out-of-range. 2101 int64_t IndexVal = CI->getSExtValue(); 2102 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) 2103 return false; 2104 2105 // Otherwise, it is in-range. 2106 return true; 2107 } 2108 2109 // Combine Indices - If the source pointer to this getelementptr instruction 2110 // is a getelementptr instruction, combine the indices of the two 2111 // getelementptr instructions into a single instruction. 2112 static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds, 2113 ArrayRef<Value *> Idxs) { 2114 if (PointeeTy != GEP->getResultElementType()) 2115 return nullptr; 2116 2117 Constant *Idx0 = cast<Constant>(Idxs[0]); 2118 if (Idx0->isNullValue()) { 2119 // Handle the simple case of a zero index. 2120 SmallVector<Value*, 16> NewIndices; 2121 NewIndices.reserve(Idxs.size() + GEP->getNumIndices()); 2122 NewIndices.append(GEP->idx_begin(), GEP->idx_end()); 2123 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 2124 return ConstantExpr::getGetElementPtr( 2125 GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()), 2126 NewIndices, InBounds && GEP->isInBounds(), GEP->getInRangeIndex()); 2127 } 2128 2129 gep_type_iterator LastI = gep_type_end(GEP); 2130 for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); 2131 I != E; ++I) 2132 LastI = I; 2133 2134 // We cannot combine indices if doing so would take us outside of an 2135 // array or vector. Doing otherwise could trick us if we evaluated such a 2136 // GEP as part of a load. 2137 // 2138 // e.g. Consider if the original GEP was: 2139 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2140 // i32 0, i32 0, i64 0) 2141 // 2142 // If we then tried to offset it by '8' to get to the third element, 2143 // an i8, we should *not* get: 2144 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2145 // i32 0, i32 0, i64 8) 2146 // 2147 // This GEP tries to index array element '8 which runs out-of-bounds. 2148 // Subsequent evaluation would get confused and produce erroneous results. 2149 // 2150 // The following prohibits such a GEP from being formed by checking to see 2151 // if the index is in-range with respect to an array. 2152 if (!LastI.isSequential()) 2153 return nullptr; 2154 ConstantInt *CI = dyn_cast<ConstantInt>(Idx0); 2155 if (!CI) 2156 return nullptr; 2157 if (LastI.isBoundedSequential() && 2158 !isIndexInRangeOfArrayType(LastI.getSequentialNumElements(), CI)) 2159 return nullptr; 2160 2161 // TODO: This code may be extended to handle vectors as well. 2162 auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1)); 2163 Type *LastIdxTy = LastIdx->getType(); 2164 if (LastIdxTy->isVectorTy()) 2165 return nullptr; 2166 2167 SmallVector<Value*, 16> NewIndices; 2168 NewIndices.reserve(Idxs.size() + GEP->getNumIndices()); 2169 NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1); 2170 2171 // Add the last index of the source with the first index of the new GEP. 2172 // Make sure to handle the case when they are actually different types. 2173 if (LastIdxTy != Idx0->getType()) { 2174 unsigned CommonExtendedWidth = 2175 std::max(LastIdxTy->getIntegerBitWidth(), 2176 Idx0->getType()->getIntegerBitWidth()); 2177 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2178 2179 Type *CommonTy = 2180 Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth); 2181 Idx0 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); 2182 LastIdx = ConstantExpr::getSExtOrBitCast(LastIdx, CommonTy); 2183 } 2184 2185 NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx)); 2186 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 2187 2188 // The combined GEP normally inherits its index inrange attribute from 2189 // the inner GEP, but if the inner GEP's last index was adjusted by the 2190 // outer GEP, any inbounds attribute on that index is invalidated. 2191 Optional<unsigned> IRIndex = GEP->getInRangeIndex(); 2192 if (IRIndex && *IRIndex == GEP->getNumIndices() - 1) 2193 IRIndex = None; 2194 2195 return ConstantExpr::getGetElementPtr( 2196 GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()), 2197 NewIndices, InBounds && GEP->isInBounds(), IRIndex); 2198 } 2199 2200 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 2201 bool InBounds, 2202 Optional<unsigned> InRangeIndex, 2203 ArrayRef<Value *> Idxs) { 2204 if (Idxs.empty()) return C; 2205 2206 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 2207 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); 2208 2209 if (isa<PoisonValue>(C)) 2210 return PoisonValue::get(GEPTy); 2211 2212 if (isa<UndefValue>(C)) 2213 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 2214 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 2215 2216 Constant *Idx0 = cast<Constant>(Idxs[0]); 2217 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) 2218 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 2219 ? ConstantVector::getSplat( 2220 cast<VectorType>(GEPTy)->getElementCount(), C) 2221 : C; 2222 2223 if (C->isNullValue()) { 2224 bool isNull = true; 2225 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2226 if (!isa<UndefValue>(Idxs[i]) && 2227 !cast<Constant>(Idxs[i])->isNullValue()) { 2228 isNull = false; 2229 break; 2230 } 2231 if (isNull) { 2232 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); 2233 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); 2234 2235 assert(Ty && "Invalid indices for GEP!"); 2236 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2237 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2238 if (VectorType *VT = dyn_cast<VectorType>(C->getType())) 2239 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount()); 2240 2241 // The GEP returns a vector of pointers when one of more of 2242 // its arguments is a vector. 2243 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2244 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { 2245 assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) == 2246 isa<ScalableVectorType>(VT)) && 2247 "Mismatched GEPTy vector types"); 2248 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount()); 2249 break; 2250 } 2251 } 2252 2253 return Constant::getNullValue(GEPTy); 2254 } 2255 } 2256 2257 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2258 if (auto *GEP = dyn_cast<GEPOperator>(CE)) 2259 if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs)) 2260 return C; 2261 2262 // Attempt to fold casts to the same type away. For example, folding: 2263 // 2264 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), 2265 // i64 0, i64 0) 2266 // into: 2267 // 2268 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) 2269 // 2270 // Don't fold if the cast is changing address spaces. 2271 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { 2272 PointerType *SrcPtrTy = 2273 dyn_cast<PointerType>(CE->getOperand(0)->getType()); 2274 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); 2275 if (SrcPtrTy && DstPtrTy) { 2276 ArrayType *SrcArrayTy = 2277 dyn_cast<ArrayType>(SrcPtrTy->getElementType()); 2278 ArrayType *DstArrayTy = 2279 dyn_cast<ArrayType>(DstPtrTy->getElementType()); 2280 if (SrcArrayTy && DstArrayTy 2281 && SrcArrayTy->getElementType() == DstArrayTy->getElementType() 2282 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 2283 return ConstantExpr::getGetElementPtr(SrcArrayTy, 2284 (Constant *)CE->getOperand(0), 2285 Idxs, InBounds, InRangeIndex); 2286 } 2287 } 2288 } 2289 2290 // Check to see if any array indices are not within the corresponding 2291 // notional array or vector bounds. If so, try to determine if they can be 2292 // factored out into preceding dimensions. 2293 SmallVector<Constant *, 8> NewIdxs; 2294 Type *Ty = PointeeTy; 2295 Type *Prev = C->getType(); 2296 auto GEPIter = gep_type_begin(PointeeTy, Idxs); 2297 bool Unknown = 2298 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); 2299 for (unsigned i = 1, e = Idxs.size(); i != e; 2300 Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) { 2301 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { 2302 // We don't know if it's in range or not. 2303 Unknown = true; 2304 continue; 2305 } 2306 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) 2307 // Skip if the type of the previous index is not supported. 2308 continue; 2309 if (InRangeIndex && i == *InRangeIndex + 1) { 2310 // If an index is marked inrange, we cannot apply this canonicalization to 2311 // the following index, as that will cause the inrange index to point to 2312 // the wrong element. 2313 continue; 2314 } 2315 if (isa<StructType>(Ty)) { 2316 // The verify makes sure that GEPs into a struct are in range. 2317 continue; 2318 } 2319 if (isa<VectorType>(Ty)) { 2320 // There can be awkward padding in after a non-power of two vector. 2321 Unknown = true; 2322 continue; 2323 } 2324 auto *STy = cast<ArrayType>(Ty); 2325 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { 2326 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) 2327 // It's in range, skip to the next index. 2328 continue; 2329 if (CI->isNegative()) { 2330 // It's out of range and negative, don't try to factor it. 2331 Unknown = true; 2332 continue; 2333 } 2334 } else { 2335 auto *CV = cast<ConstantDataVector>(Idxs[i]); 2336 bool InRange = true; 2337 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { 2338 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); 2339 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); 2340 if (CI->isNegative()) { 2341 Unknown = true; 2342 break; 2343 } 2344 } 2345 if (InRange || Unknown) 2346 // It's in range, skip to the next index. 2347 // It's out of range and negative, don't try to factor it. 2348 continue; 2349 } 2350 if (isa<StructType>(Prev)) { 2351 // It's out of range, but the prior dimension is a struct 2352 // so we can't do anything about it. 2353 Unknown = true; 2354 continue; 2355 } 2356 // It's out of range, but we can factor it into the prior 2357 // dimension. 2358 NewIdxs.resize(Idxs.size()); 2359 // Determine the number of elements in our sequential type. 2360 uint64_t NumElements = STy->getArrayNumElements(); 2361 2362 // Expand the current index or the previous index to a vector from a scalar 2363 // if necessary. 2364 Constant *CurrIdx = cast<Constant>(Idxs[i]); 2365 auto *PrevIdx = 2366 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); 2367 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); 2368 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); 2369 bool UseVector = IsCurrIdxVector || IsPrevIdxVector; 2370 2371 if (!IsCurrIdxVector && IsPrevIdxVector) 2372 CurrIdx = ConstantDataVector::getSplat( 2373 cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx); 2374 2375 if (!IsPrevIdxVector && IsCurrIdxVector) 2376 PrevIdx = ConstantDataVector::getSplat( 2377 cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx); 2378 2379 Constant *Factor = 2380 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); 2381 if (UseVector) 2382 Factor = ConstantDataVector::getSplat( 2383 IsPrevIdxVector 2384 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 2385 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), 2386 Factor); 2387 2388 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); 2389 2390 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); 2391 2392 unsigned CommonExtendedWidth = 2393 std::max(PrevIdx->getType()->getScalarSizeInBits(), 2394 Div->getType()->getScalarSizeInBits()); 2395 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2396 2397 // Before adding, extend both operands to i64 to avoid 2398 // overflow trouble. 2399 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); 2400 if (UseVector) 2401 ExtendedTy = FixedVectorType::get( 2402 ExtendedTy, 2403 IsPrevIdxVector 2404 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 2405 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements()); 2406 2407 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2408 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); 2409 2410 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2411 Div = ConstantExpr::getSExt(Div, ExtendedTy); 2412 2413 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); 2414 } 2415 2416 // If we did any factoring, start over with the adjusted indices. 2417 if (!NewIdxs.empty()) { 2418 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2419 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); 2420 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, 2421 InRangeIndex); 2422 } 2423 2424 // If all indices are known integers and normalized, we can do a simple 2425 // check for the "inbounds" property. 2426 if (!Unknown && !InBounds) 2427 if (auto *GV = dyn_cast<GlobalVariable>(C)) 2428 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) 2429 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, 2430 /*InBounds=*/true, InRangeIndex); 2431 2432 return nullptr; 2433 } 2434