1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 //===----------------------------------------------------------------------===//
39 //                ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
41 
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
46 
47   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49 
50   // If this cast changes element count then we can't handle it here:
51   // doing so requires endianness information.  This should be handled by
52   // Analysis/ConstantFolding.cpp
53   unsigned NumElts = DstTy->getNumElements();
54   if (NumElts != CV->getType()->getVectorNumElements())
55     return nullptr;
56 
57   Type *DstEltTy = DstTy->getElementType();
58 
59   SmallVector<Constant*, 16> Result;
60   Type *Ty = IntegerType::get(CV->getContext(), 32);
61   for (unsigned i = 0; i != NumElts; ++i) {
62     Constant *C =
63       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
64     C = ConstantExpr::getBitCast(C, DstEltTy);
65     Result.push_back(C);
66   }
67 
68   return ConstantVector::get(Result);
69 }
70 
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
75 static unsigned
76 foldConstantCastPair(
77   unsigned opc,          ///< opcode of the second cast constant expression
78   ConstantExpr *Op,      ///< the first cast constant expression
79   Type *DstTy            ///< destination type of the first cast
80 ) {
81   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
82   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
83   assert(CastInst::isCast(opc) && "Invalid cast opcode");
84 
85   // The types and opcodes for the two Cast constant expressions
86   Type *SrcTy = Op->getOperand(0)->getType();
87   Type *MidTy = Op->getType();
88   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
89   Instruction::CastOps secondOp = Instruction::CastOps(opc);
90 
91   // Assume that pointers are never more than 64 bits wide, and only use this
92   // for the middle type. Otherwise we could end up folding away illegal
93   // bitcasts between address spaces with different sizes.
94   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
95 
96   // Let CastInst::isEliminableCastPair do the heavy lifting.
97   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
98                                         nullptr, FakeIntPtrTy, nullptr);
99 }
100 
101 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
102   Type *SrcTy = V->getType();
103   if (SrcTy == DestTy)
104     return V; // no-op cast
105 
106   // Check to see if we are casting a pointer to an aggregate to a pointer to
107   // the first element.  If so, return the appropriate GEP instruction.
108   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
109     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
110       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
111           && PTy->getElementType()->isSized()) {
112         SmallVector<Value*, 8> IdxList;
113         Value *Zero =
114           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
115         IdxList.push_back(Zero);
116         Type *ElTy = PTy->getElementType();
117         while (ElTy != DPTy->getElementType()) {
118           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
119             if (STy->getNumElements() == 0) break;
120             ElTy = STy->getElementType(0);
121             IdxList.push_back(Zero);
122           } else if (SequentialType *STy =
123                      dyn_cast<SequentialType>(ElTy)) {
124             ElTy = STy->getElementType();
125             IdxList.push_back(Zero);
126           } else {
127             break;
128           }
129         }
130 
131         if (ElTy == DPTy->getElementType())
132           // This GEP is inbounds because all indices are zero.
133           return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
134                                                         V, IdxList);
135       }
136 
137   // Handle casts from one vector constant to another.  We know that the src
138   // and dest type have the same size (otherwise its an illegal cast).
139   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
142              "Not cast between same sized vectors!");
143       SrcTy = nullptr;
144       // First, check for null.  Undef is already handled.
145       if (isa<ConstantAggregateZero>(V))
146         return Constant::getNullValue(DestTy);
147 
148       // Handle ConstantVector and ConstantAggregateVector.
149       return BitCastConstantVector(V, DestPTy);
150     }
151 
152     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153     // This allows for other simplifications (although some of them
154     // can only be handled by Analysis/ConstantFolding.cpp).
155     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
156       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
157   }
158 
159   // Finally, implement bitcast folding now.   The code below doesn't handle
160   // bitcast right.
161   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
162     return ConstantPointerNull::get(cast<PointerType>(DestTy));
163 
164   // Handle integral constant input.
165   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
166     if (DestTy->isIntegerTy())
167       // Integral -> Integral. This is a no-op because the bit widths must
168       // be the same. Consequently, we just fold to V.
169       return V;
170 
171     // See note below regarding the PPC_FP128 restriction.
172     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
173       return ConstantFP::get(DestTy->getContext(),
174                              APFloat(DestTy->getFltSemantics(),
175                                      CI->getValue()));
176 
177     // Otherwise, can't fold this (vector?)
178     return nullptr;
179   }
180 
181   // Handle ConstantFP input: FP -> Integral.
182   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
183     // PPC_FP128 is really the sum of two consecutive doubles, where the first
184     // double is always stored first in memory, regardless of the target
185     // endianness. The memory layout of i128, however, depends on the target
186     // endianness, and so we can't fold this without target endianness
187     // information. This should instead be handled by
188     // Analysis/ConstantFolding.cpp
189     if (FP->getType()->isPPC_FP128Ty())
190       return nullptr;
191 
192     // Make sure dest type is compatible with the folded integer constant.
193     if (!DestTy->isIntegerTy())
194       return nullptr;
195 
196     return ConstantInt::get(FP->getContext(),
197                             FP->getValueAPF().bitcastToAPInt());
198   }
199 
200   return nullptr;
201 }
202 
203 
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
207 /// of bytes used.
208 ///
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant.  If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
213                                       unsigned ByteSize) {
214   assert(C->getType()->isIntegerTy() &&
215          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
216          "Non-byte sized integer input");
217   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
218   assert(ByteSize && "Must be accessing some piece");
219   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
220   assert(ByteSize != CSize && "Should not extract everything");
221 
222   // Constant Integers are simple.
223   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
224     APInt V = CI->getValue();
225     if (ByteStart)
226       V.lshrInPlace(ByteStart*8);
227     V = V.trunc(ByteSize*8);
228     return ConstantInt::get(CI->getContext(), V);
229   }
230 
231   // In the input is a constant expr, we might be able to recursively simplify.
232   // If not, we definitely can't do anything.
233   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234   if (!CE) return nullptr;
235 
236   switch (CE->getOpcode()) {
237   default: return nullptr;
238   case Instruction::Or: {
239     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240     if (!RHS)
241       return nullptr;
242 
243     // X | -1 -> -1.
244     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
245       if (RHSC->isMinusOne())
246         return RHSC;
247 
248     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
249     if (!LHS)
250       return nullptr;
251     return ConstantExpr::getOr(LHS, RHS);
252   }
253   case Instruction::And: {
254     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
255     if (!RHS)
256       return nullptr;
257 
258     // X & 0 -> 0.
259     if (RHS->isNullValue())
260       return RHS;
261 
262     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
263     if (!LHS)
264       return nullptr;
265     return ConstantExpr::getAnd(LHS, RHS);
266   }
267   case Instruction::LShr: {
268     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269     if (!Amt)
270       return nullptr;
271     APInt ShAmt = Amt->getValue();
272     // Cannot analyze non-byte shifts.
273     if ((ShAmt & 7) != 0)
274       return nullptr;
275     ShAmt.lshrInPlace(3);
276 
277     // If the extract is known to be all zeros, return zero.
278     if (ShAmt.uge(CSize - ByteStart))
279       return Constant::getNullValue(
280           IntegerType::get(CE->getContext(), ByteSize * 8));
281     // If the extract is known to be fully in the input, extract it.
282     if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
283       return ExtractConstantBytes(CE->getOperand(0),
284                                   ByteStart + ShAmt.getZExtValue(), ByteSize);
285 
286     // TODO: Handle the 'partially zero' case.
287     return nullptr;
288   }
289 
290   case Instruction::Shl: {
291     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
292     if (!Amt)
293       return nullptr;
294     APInt ShAmt = Amt->getValue();
295     // Cannot analyze non-byte shifts.
296     if ((ShAmt & 7) != 0)
297       return nullptr;
298     ShAmt.lshrInPlace(3);
299 
300     // If the extract is known to be all zeros, return zero.
301     if (ShAmt.uge(ByteStart + ByteSize))
302       return Constant::getNullValue(
303           IntegerType::get(CE->getContext(), ByteSize * 8));
304     // If the extract is known to be fully in the input, extract it.
305     if (ShAmt.ule(ByteStart))
306       return ExtractConstantBytes(CE->getOperand(0),
307                                   ByteStart - ShAmt.getZExtValue(), ByteSize);
308 
309     // TODO: Handle the 'partially zero' case.
310     return nullptr;
311   }
312 
313   case Instruction::ZExt: {
314     unsigned SrcBitSize =
315       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
316 
317     // If extracting something that is completely zero, return 0.
318     if (ByteStart*8 >= SrcBitSize)
319       return Constant::getNullValue(IntegerType::get(CE->getContext(),
320                                                      ByteSize*8));
321 
322     // If exactly extracting the input, return it.
323     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
324       return CE->getOperand(0);
325 
326     // If extracting something completely in the input, if the input is a
327     // multiple of 8 bits, recurse.
328     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
329       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
330 
331     // Otherwise, if extracting a subset of the input, which is not multiple of
332     // 8 bits, do a shift and trunc to get the bits.
333     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
334       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
335       Constant *Res = CE->getOperand(0);
336       if (ByteStart)
337         Res = ConstantExpr::getLShr(Res,
338                                  ConstantInt::get(Res->getType(), ByteStart*8));
339       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
340                                                           ByteSize*8));
341     }
342 
343     // TODO: Handle the 'partially zero' case.
344     return nullptr;
345   }
346   }
347 }
348 
349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
350 /// factors factored out. If Folded is false, return null if no factoring was
351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
352 /// top-level folder.
353 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) {
354   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
355     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
356     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
357     return ConstantExpr::getNUWMul(E, N);
358   }
359 
360   if (StructType *STy = dyn_cast<StructType>(Ty))
361     if (!STy->isPacked()) {
362       unsigned NumElems = STy->getNumElements();
363       // An empty struct has size zero.
364       if (NumElems == 0)
365         return ConstantExpr::getNullValue(DestTy);
366       // Check for a struct with all members having the same size.
367       Constant *MemberSize =
368         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
369       bool AllSame = true;
370       for (unsigned i = 1; i != NumElems; ++i)
371         if (MemberSize !=
372             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
373           AllSame = false;
374           break;
375         }
376       if (AllSame) {
377         Constant *N = ConstantInt::get(DestTy, NumElems);
378         return ConstantExpr::getNUWMul(MemberSize, N);
379       }
380     }
381 
382   // Pointer size doesn't depend on the pointee type, so canonicalize them
383   // to an arbitrary pointee.
384   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
385     if (!PTy->getElementType()->isIntegerTy(1))
386       return
387         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
388                                          PTy->getAddressSpace()),
389                         DestTy, true);
390 
391   // If there's no interesting folding happening, bail so that we don't create
392   // a constant that looks like it needs folding but really doesn't.
393   if (!Folded)
394     return nullptr;
395 
396   // Base case: Get a regular sizeof expression.
397   Constant *C = ConstantExpr::getSizeOf(Ty);
398   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
399                                                     DestTy, false),
400                             C, DestTy);
401   return C;
402 }
403 
404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
405 /// factors factored out. If Folded is false, return null if no factoring was
406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
407 /// top-level folder.
408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) {
409   // The alignment of an array is equal to the alignment of the
410   // array element. Note that this is not always true for vectors.
411   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
412     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
413     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
414                                                       DestTy,
415                                                       false),
416                               C, DestTy);
417     return C;
418   }
419 
420   if (StructType *STy = dyn_cast<StructType>(Ty)) {
421     // Packed structs always have an alignment of 1.
422     if (STy->isPacked())
423       return ConstantInt::get(DestTy, 1);
424 
425     // Otherwise, struct alignment is the maximum alignment of any member.
426     // Without target data, we can't compare much, but we can check to see
427     // if all the members have the same alignment.
428     unsigned NumElems = STy->getNumElements();
429     // An empty struct has minimal alignment.
430     if (NumElems == 0)
431       return ConstantInt::get(DestTy, 1);
432     // Check for a struct with all members having the same alignment.
433     Constant *MemberAlign =
434       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
435     bool AllSame = true;
436     for (unsigned i = 1; i != NumElems; ++i)
437       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
438         AllSame = false;
439         break;
440       }
441     if (AllSame)
442       return MemberAlign;
443   }
444 
445   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446   // to an arbitrary pointee.
447   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
448     if (!PTy->getElementType()->isIntegerTy(1))
449       return
450         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
451                                                            1),
452                                           PTy->getAddressSpace()),
453                          DestTy, true);
454 
455   // If there's no interesting folding happening, bail so that we don't create
456   // a constant that looks like it needs folding but really doesn't.
457   if (!Folded)
458     return nullptr;
459 
460   // Base case: Get a regular alignof expression.
461   Constant *C = ConstantExpr::getAlignOf(Ty);
462   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
463                                                     DestTy, false),
464                             C, DestTy);
465   return C;
466 }
467 
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy,
473                                    bool Folded) {
474   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
475     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
476                                                                 DestTy, false),
477                                         FieldNo, DestTy);
478     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
479     return ConstantExpr::getNUWMul(E, N);
480   }
481 
482   if (StructType *STy = dyn_cast<StructType>(Ty))
483     if (!STy->isPacked()) {
484       unsigned NumElems = STy->getNumElements();
485       // An empty struct has no members.
486       if (NumElems == 0)
487         return nullptr;
488       // Check for a struct with all members having the same size.
489       Constant *MemberSize =
490         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
491       bool AllSame = true;
492       for (unsigned i = 1; i != NumElems; ++i)
493         if (MemberSize !=
494             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
495           AllSame = false;
496           break;
497         }
498       if (AllSame) {
499         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
500                                                                     false,
501                                                                     DestTy,
502                                                                     false),
503                                             FieldNo, DestTy);
504         return ConstantExpr::getNUWMul(MemberSize, N);
505       }
506     }
507 
508   // If there's no interesting folding happening, bail so that we don't create
509   // a constant that looks like it needs folding but really doesn't.
510   if (!Folded)
511     return nullptr;
512 
513   // Base case: Get a regular offsetof expression.
514   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
515   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
516                                                     DestTy, false),
517                             C, DestTy);
518   return C;
519 }
520 
521 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
522                                             Type *DestTy) {
523   if (isa<UndefValue>(V)) {
524     // zext(undef) = 0, because the top bits will be zero.
525     // sext(undef) = 0, because the top bits will all be the same.
526     // [us]itofp(undef) = 0, because the result value is bounded.
527     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
528         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
529       return Constant::getNullValue(DestTy);
530     return UndefValue::get(DestTy);
531   }
532 
533   if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
534       opc != Instruction::AddrSpaceCast)
535     return Constant::getNullValue(DestTy);
536 
537   // If the cast operand is a constant expression, there's a few things we can
538   // do to try to simplify it.
539   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
540     if (CE->isCast()) {
541       // Try hard to fold cast of cast because they are often eliminable.
542       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
543         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
544     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
545                // Do not fold addrspacecast (gep 0, .., 0). It might make the
546                // addrspacecast uncanonicalized.
547                opc != Instruction::AddrSpaceCast &&
548                // Do not fold bitcast (gep) with inrange index, as this loses
549                // information.
550                !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
551                // Do not fold if the gep type is a vector, as bitcasting
552                // operand 0 of a vector gep will result in a bitcast between
553                // different sizes.
554                !CE->getType()->isVectorTy()) {
555       // If all of the indexes in the GEP are null values, there is no pointer
556       // adjustment going on.  We might as well cast the source pointer.
557       bool isAllNull = true;
558       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
559         if (!CE->getOperand(i)->isNullValue()) {
560           isAllNull = false;
561           break;
562         }
563       if (isAllNull)
564         // This is casting one pointer type to another, always BitCast
565         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
566     }
567   }
568 
569   // If the cast operand is a constant vector, perform the cast by
570   // operating on each element. In the cast of bitcasts, the element
571   // count may be mismatched; don't attempt to handle that here.
572   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
573       DestTy->isVectorTy() &&
574       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
575     SmallVector<Constant*, 16> res;
576     VectorType *DestVecTy = cast<VectorType>(DestTy);
577     Type *DstEltTy = DestVecTy->getElementType();
578     Type *Ty = IntegerType::get(V->getContext(), 32);
579     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
580       Constant *C =
581         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
582       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
583     }
584     return ConstantVector::get(res);
585   }
586 
587   // We actually have to do a cast now. Perform the cast according to the
588   // opcode specified.
589   switch (opc) {
590   default:
591     llvm_unreachable("Failed to cast constant expression");
592   case Instruction::FPTrunc:
593   case Instruction::FPExt:
594     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
595       bool ignored;
596       APFloat Val = FPC->getValueAPF();
597       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
598                   DestTy->isFloatTy() ? APFloat::IEEEsingle() :
599                   DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
600                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
601                   DestTy->isFP128Ty() ? APFloat::IEEEquad() :
602                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
603                   APFloat::Bogus(),
604                   APFloat::rmNearestTiesToEven, &ignored);
605       return ConstantFP::get(V->getContext(), Val);
606     }
607     return nullptr; // Can't fold.
608   case Instruction::FPToUI:
609   case Instruction::FPToSI:
610     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
611       const APFloat &V = FPC->getValueAPF();
612       bool ignored;
613       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
614       APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
615       if (APFloat::opInvalidOp ==
616           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
617         // Undefined behavior invoked - the destination type can't represent
618         // the input constant.
619         return UndefValue::get(DestTy);
620       }
621       return ConstantInt::get(FPC->getContext(), IntVal);
622     }
623     return nullptr; // Can't fold.
624   case Instruction::IntToPtr:   //always treated as unsigned
625     if (V->isNullValue())       // Is it an integral null value?
626       return ConstantPointerNull::get(cast<PointerType>(DestTy));
627     return nullptr;                   // Other pointer types cannot be casted
628   case Instruction::PtrToInt:   // always treated as unsigned
629     // Is it a null pointer value?
630     if (V->isNullValue())
631       return ConstantInt::get(DestTy, 0);
632     // If this is a sizeof-like expression, pull out multiplications by
633     // known factors to expose them to subsequent folding. If it's an
634     // alignof-like expression, factor out known factors.
635     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
636       if (CE->getOpcode() == Instruction::GetElementPtr &&
637           CE->getOperand(0)->isNullValue()) {
638         // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
639         // getFoldedAlignOf() don't handle the case when DestTy is a vector of
640         // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
641         // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
642         // happen in one "real" C-code test case, so it does not seem to be an
643         // important optimization to handle vectors here. For now, simply bail
644         // out.
645         if (DestTy->isVectorTy())
646           return nullptr;
647         GEPOperator *GEPO = cast<GEPOperator>(CE);
648         Type *Ty = GEPO->getSourceElementType();
649         if (CE->getNumOperands() == 2) {
650           // Handle a sizeof-like expression.
651           Constant *Idx = CE->getOperand(1);
652           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
653           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
654             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
655                                                                 DestTy, false),
656                                         Idx, DestTy);
657             return ConstantExpr::getMul(C, Idx);
658           }
659         } else if (CE->getNumOperands() == 3 &&
660                    CE->getOperand(1)->isNullValue()) {
661           // Handle an alignof-like expression.
662           if (StructType *STy = dyn_cast<StructType>(Ty))
663             if (!STy->isPacked()) {
664               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
665               if (CI->isOne() &&
666                   STy->getNumElements() == 2 &&
667                   STy->getElementType(0)->isIntegerTy(1)) {
668                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
669               }
670             }
671           // Handle an offsetof-like expression.
672           if (Ty->isStructTy() || Ty->isArrayTy()) {
673             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
674                                                 DestTy, false))
675               return C;
676           }
677         }
678       }
679     // Other pointer types cannot be casted
680     return nullptr;
681   case Instruction::UIToFP:
682   case Instruction::SIToFP:
683     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
684       const APInt &api = CI->getValue();
685       APFloat apf(DestTy->getFltSemantics(),
686                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
687       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
688                            APFloat::rmNearestTiesToEven);
689       return ConstantFP::get(V->getContext(), apf);
690     }
691     return nullptr;
692   case Instruction::ZExt:
693     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
694       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
695       return ConstantInt::get(V->getContext(),
696                               CI->getValue().zext(BitWidth));
697     }
698     return nullptr;
699   case Instruction::SExt:
700     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
701       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
702       return ConstantInt::get(V->getContext(),
703                               CI->getValue().sext(BitWidth));
704     }
705     return nullptr;
706   case Instruction::Trunc: {
707     if (V->getType()->isVectorTy())
708       return nullptr;
709 
710     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
711     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
712       return ConstantInt::get(V->getContext(),
713                               CI->getValue().trunc(DestBitWidth));
714     }
715 
716     // The input must be a constantexpr.  See if we can simplify this based on
717     // the bytes we are demanding.  Only do this if the source and dest are an
718     // even multiple of a byte.
719     if ((DestBitWidth & 7) == 0 &&
720         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
721       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
722         return Res;
723 
724     return nullptr;
725   }
726   case Instruction::BitCast:
727     return FoldBitCast(V, DestTy);
728   case Instruction::AddrSpaceCast:
729     return nullptr;
730   }
731 }
732 
733 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
734                                               Constant *V1, Constant *V2) {
735   // Check for i1 and vector true/false conditions.
736   if (Cond->isNullValue()) return V2;
737   if (Cond->isAllOnesValue()) return V1;
738 
739   // If the condition is a vector constant, fold the result elementwise.
740   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
741     SmallVector<Constant*, 16> Result;
742     Type *Ty = IntegerType::get(CondV->getContext(), 32);
743     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
744       Constant *V;
745       Constant *V1Element = ConstantExpr::getExtractElement(V1,
746                                                     ConstantInt::get(Ty, i));
747       Constant *V2Element = ConstantExpr::getExtractElement(V2,
748                                                     ConstantInt::get(Ty, i));
749       auto *Cond = cast<Constant>(CondV->getOperand(i));
750       if (V1Element == V2Element) {
751         V = V1Element;
752       } else if (isa<UndefValue>(Cond)) {
753         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
754       } else {
755         if (!isa<ConstantInt>(Cond)) break;
756         V = Cond->isNullValue() ? V2Element : V1Element;
757       }
758       Result.push_back(V);
759     }
760 
761     // If we were able to build the vector, return it.
762     if (Result.size() == V1->getType()->getVectorNumElements())
763       return ConstantVector::get(Result);
764   }
765 
766   if (isa<UndefValue>(Cond)) {
767     if (isa<UndefValue>(V1)) return V1;
768     return V2;
769   }
770   if (isa<UndefValue>(V1)) return V2;
771   if (isa<UndefValue>(V2)) return V1;
772   if (V1 == V2) return V1;
773 
774   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
775     if (TrueVal->getOpcode() == Instruction::Select)
776       if (TrueVal->getOperand(0) == Cond)
777         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
778   }
779   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
780     if (FalseVal->getOpcode() == Instruction::Select)
781       if (FalseVal->getOperand(0) == Cond)
782         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
783   }
784 
785   return nullptr;
786 }
787 
788 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
789                                                       Constant *Idx) {
790   // extractelt undef, C -> undef
791   // extractelt C, undef -> undef
792   if (isa<UndefValue>(Val) || isa<UndefValue>(Idx))
793     return UndefValue::get(Val->getType()->getVectorElementType());
794 
795   auto *CIdx = dyn_cast<ConstantInt>(Idx);
796   if (!CIdx)
797     return nullptr;
798 
799   // ee({w,x,y,z}, wrong_value) -> undef
800   if (CIdx->uge(Val->getType()->getVectorNumElements()))
801     return UndefValue::get(Val->getType()->getVectorElementType());
802 
803   // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
804   if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
805     if (CE->getOpcode() == Instruction::GetElementPtr) {
806       SmallVector<Constant *, 8> Ops;
807       Ops.reserve(CE->getNumOperands());
808       for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
809         Constant *Op = CE->getOperand(i);
810         if (Op->getType()->isVectorTy()) {
811           Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
812           if (!ScalarOp)
813             return  nullptr;
814           Ops.push_back(ScalarOp);
815         } else
816           Ops.push_back(Op);
817       }
818       return CE->getWithOperands(Ops, CE->getType()->getVectorElementType(),
819                                  false,
820                                  Ops[0]->getType()->getPointerElementType());
821     }
822   }
823 
824   return Val->getAggregateElement(CIdx);
825 }
826 
827 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
828                                                      Constant *Elt,
829                                                      Constant *Idx) {
830   if (isa<UndefValue>(Idx))
831     return UndefValue::get(Val->getType());
832 
833   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
834   if (!CIdx) return nullptr;
835 
836   unsigned NumElts = Val->getType()->getVectorNumElements();
837   if (CIdx->uge(NumElts))
838     return UndefValue::get(Val->getType());
839 
840   SmallVector<Constant*, 16> Result;
841   Result.reserve(NumElts);
842   auto *Ty = Type::getInt32Ty(Val->getContext());
843   uint64_t IdxVal = CIdx->getZExtValue();
844   for (unsigned i = 0; i != NumElts; ++i) {
845     if (i == IdxVal) {
846       Result.push_back(Elt);
847       continue;
848     }
849 
850     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
851     Result.push_back(C);
852   }
853 
854   return ConstantVector::get(Result);
855 }
856 
857 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
858                                                      Constant *V2,
859                                                      Constant *Mask) {
860   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
861   Type *EltTy = V1->getType()->getVectorElementType();
862 
863   // Undefined shuffle mask -> undefined value.
864   if (isa<UndefValue>(Mask))
865     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
866 
867   // Don't break the bitcode reader hack.
868   if (isa<ConstantExpr>(Mask)) return nullptr;
869 
870   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
871 
872   // Loop over the shuffle mask, evaluating each element.
873   SmallVector<Constant*, 32> Result;
874   for (unsigned i = 0; i != MaskNumElts; ++i) {
875     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
876     if (Elt == -1) {
877       Result.push_back(UndefValue::get(EltTy));
878       continue;
879     }
880     Constant *InElt;
881     if (unsigned(Elt) >= SrcNumElts*2)
882       InElt = UndefValue::get(EltTy);
883     else if (unsigned(Elt) >= SrcNumElts) {
884       Type *Ty = IntegerType::get(V2->getContext(), 32);
885       InElt =
886         ConstantExpr::getExtractElement(V2,
887                                         ConstantInt::get(Ty, Elt - SrcNumElts));
888     } else {
889       Type *Ty = IntegerType::get(V1->getContext(), 32);
890       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
891     }
892     Result.push_back(InElt);
893   }
894 
895   return ConstantVector::get(Result);
896 }
897 
898 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
899                                                     ArrayRef<unsigned> Idxs) {
900   // Base case: no indices, so return the entire value.
901   if (Idxs.empty())
902     return Agg;
903 
904   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
905     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
906 
907   return nullptr;
908 }
909 
910 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
911                                                    Constant *Val,
912                                                    ArrayRef<unsigned> Idxs) {
913   // Base case: no indices, so replace the entire value.
914   if (Idxs.empty())
915     return Val;
916 
917   unsigned NumElts;
918   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
919     NumElts = ST->getNumElements();
920   else
921     NumElts = cast<SequentialType>(Agg->getType())->getNumElements();
922 
923   SmallVector<Constant*, 32> Result;
924   for (unsigned i = 0; i != NumElts; ++i) {
925     Constant *C = Agg->getAggregateElement(i);
926     if (!C) return nullptr;
927 
928     if (Idxs[0] == i)
929       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
930 
931     Result.push_back(C);
932   }
933 
934   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
935     return ConstantStruct::get(ST, Result);
936   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
937     return ConstantArray::get(AT, Result);
938   return ConstantVector::get(Result);
939 }
940 
941 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
942   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
943 
944   // Handle scalar UndefValue. Vectors are always evaluated per element.
945   bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C);
946 
947   if (HasScalarUndef) {
948     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
949     case Instruction::FNeg:
950       return C; // -undef -> undef
951     case Instruction::UnaryOpsEnd:
952       llvm_unreachable("Invalid UnaryOp");
953     }
954   }
955 
956   // Constant should not be UndefValue, unless these are vector constants.
957   assert(!HasScalarUndef && "Unexpected UndefValue");
958   // We only have FP UnaryOps right now.
959   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
960 
961   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
962     const APFloat &CV = CFP->getValueAPF();
963     switch (Opcode) {
964     default:
965       break;
966     case Instruction::FNeg:
967       return ConstantFP::get(C->getContext(), neg(CV));
968     }
969   } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) {
970     // Fold each element and create a vector constant from those constants.
971     SmallVector<Constant*, 16> Result;
972     Type *Ty = IntegerType::get(VTy->getContext(), 32);
973     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
974       Constant *ExtractIdx = ConstantInt::get(Ty, i);
975       Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
976 
977       Result.push_back(ConstantExpr::get(Opcode, Elt));
978     }
979 
980     return ConstantVector::get(Result);
981   }
982 
983   // We don't know how to fold this.
984   return nullptr;
985 }
986 
987 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
988                                               Constant *C2) {
989   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
990 
991   // Handle scalar UndefValue. Vectors are always evaluated per element.
992   bool HasScalarUndef = !C1->getType()->isVectorTy() &&
993                         (isa<UndefValue>(C1) || isa<UndefValue>(C2));
994   if (HasScalarUndef) {
995     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
996     case Instruction::Xor:
997       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
998         // Handle undef ^ undef -> 0 special case. This is a common
999         // idiom (misuse).
1000         return Constant::getNullValue(C1->getType());
1001       LLVM_FALLTHROUGH;
1002     case Instruction::Add:
1003     case Instruction::Sub:
1004       return UndefValue::get(C1->getType());
1005     case Instruction::And:
1006       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
1007         return C1;
1008       return Constant::getNullValue(C1->getType());   // undef & X -> 0
1009     case Instruction::Mul: {
1010       // undef * undef -> undef
1011       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1012         return C1;
1013       const APInt *CV;
1014       // X * undef -> undef   if X is odd
1015       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
1016         if ((*CV)[0])
1017           return UndefValue::get(C1->getType());
1018 
1019       // X * undef -> 0       otherwise
1020       return Constant::getNullValue(C1->getType());
1021     }
1022     case Instruction::SDiv:
1023     case Instruction::UDiv:
1024       // X / undef -> undef
1025       if (isa<UndefValue>(C2))
1026         return C2;
1027       // undef / 0 -> undef
1028       // undef / 1 -> undef
1029       if (match(C2, m_Zero()) || match(C2, m_One()))
1030         return C1;
1031       // undef / X -> 0       otherwise
1032       return Constant::getNullValue(C1->getType());
1033     case Instruction::URem:
1034     case Instruction::SRem:
1035       // X % undef -> undef
1036       if (match(C2, m_Undef()))
1037         return C2;
1038       // undef % 0 -> undef
1039       if (match(C2, m_Zero()))
1040         return C1;
1041       // undef % X -> 0       otherwise
1042       return Constant::getNullValue(C1->getType());
1043     case Instruction::Or:                          // X | undef -> -1
1044       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1045         return C1;
1046       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1047     case Instruction::LShr:
1048       // X >>l undef -> undef
1049       if (isa<UndefValue>(C2))
1050         return C2;
1051       // undef >>l 0 -> undef
1052       if (match(C2, m_Zero()))
1053         return C1;
1054       // undef >>l X -> 0
1055       return Constant::getNullValue(C1->getType());
1056     case Instruction::AShr:
1057       // X >>a undef -> undef
1058       if (isa<UndefValue>(C2))
1059         return C2;
1060       // undef >>a 0 -> undef
1061       if (match(C2, m_Zero()))
1062         return C1;
1063       // TODO: undef >>a X -> undef if the shift is exact
1064       // undef >>a X -> 0
1065       return Constant::getNullValue(C1->getType());
1066     case Instruction::Shl:
1067       // X << undef -> undef
1068       if (isa<UndefValue>(C2))
1069         return C2;
1070       // undef << 0 -> undef
1071       if (match(C2, m_Zero()))
1072         return C1;
1073       // undef << X -> 0
1074       return Constant::getNullValue(C1->getType());
1075     case Instruction::FAdd:
1076     case Instruction::FSub:
1077     case Instruction::FMul:
1078     case Instruction::FDiv:
1079     case Instruction::FRem:
1080       // [any flop] undef, undef -> undef
1081       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1082         return C1;
1083       // [any flop] C, undef -> NaN
1084       // [any flop] undef, C -> NaN
1085       // We could potentially specialize NaN/Inf constants vs. 'normal'
1086       // constants (possibly differently depending on opcode and operand). This
1087       // would allow returning undef sometimes. But it is always safe to fold to
1088       // NaN because we can choose the undef operand as NaN, and any FP opcode
1089       // with a NaN operand will propagate NaN.
1090       return ConstantFP::getNaN(C1->getType());
1091     case Instruction::BinaryOpsEnd:
1092       llvm_unreachable("Invalid BinaryOp");
1093     }
1094   }
1095 
1096   // Neither constant should be UndefValue, unless these are vector constants.
1097   assert(!HasScalarUndef && "Unexpected UndefValue");
1098 
1099   // Handle simplifications when the RHS is a constant int.
1100   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1101     switch (Opcode) {
1102     case Instruction::Add:
1103       if (CI2->isZero()) return C1;                             // X + 0 == X
1104       break;
1105     case Instruction::Sub:
1106       if (CI2->isZero()) return C1;                             // X - 0 == X
1107       break;
1108     case Instruction::Mul:
1109       if (CI2->isZero()) return C2;                             // X * 0 == 0
1110       if (CI2->isOne())
1111         return C1;                                              // X * 1 == X
1112       break;
1113     case Instruction::UDiv:
1114     case Instruction::SDiv:
1115       if (CI2->isOne())
1116         return C1;                                            // X / 1 == X
1117       if (CI2->isZero())
1118         return UndefValue::get(CI2->getType());               // X / 0 == undef
1119       break;
1120     case Instruction::URem:
1121     case Instruction::SRem:
1122       if (CI2->isOne())
1123         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1124       if (CI2->isZero())
1125         return UndefValue::get(CI2->getType());               // X % 0 == undef
1126       break;
1127     case Instruction::And:
1128       if (CI2->isZero()) return C2;                           // X & 0 == 0
1129       if (CI2->isMinusOne())
1130         return C1;                                            // X & -1 == X
1131 
1132       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1133         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1134         if (CE1->getOpcode() == Instruction::ZExt) {
1135           unsigned DstWidth = CI2->getType()->getBitWidth();
1136           unsigned SrcWidth =
1137             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1138           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1139           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1140             return C1;
1141         }
1142 
1143         // If and'ing the address of a global with a constant, fold it.
1144         if (CE1->getOpcode() == Instruction::PtrToInt &&
1145             isa<GlobalValue>(CE1->getOperand(0))) {
1146           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1147 
1148           MaybeAlign GVAlign;
1149 
1150           if (Module *TheModule = GV->getParent()) {
1151             GVAlign = GV->getPointerAlignment(TheModule->getDataLayout());
1152 
1153             // If the function alignment is not specified then assume that it
1154             // is 4.
1155             // This is dangerous; on x86, the alignment of the pointer
1156             // corresponds to the alignment of the function, but might be less
1157             // than 4 if it isn't explicitly specified.
1158             // However, a fix for this behaviour was reverted because it
1159             // increased code size (see https://reviews.llvm.org/D55115)
1160             // FIXME: This code should be deleted once existing targets have
1161             // appropriate defaults
1162             if (!GVAlign && isa<Function>(GV))
1163               GVAlign = Align(4);
1164           } else if (isa<Function>(GV)) {
1165             // Without a datalayout we have to assume the worst case: that the
1166             // function pointer isn't aligned at all.
1167             GVAlign = llvm::None;
1168           } else {
1169             GVAlign = MaybeAlign(GV->getAlignment());
1170           }
1171 
1172           if (GVAlign && *GVAlign > 1) {
1173             unsigned DstWidth = CI2->getType()->getBitWidth();
1174             unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1175             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1176 
1177             // If checking bits we know are clear, return zero.
1178             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1179               return Constant::getNullValue(CI2->getType());
1180           }
1181         }
1182       }
1183       break;
1184     case Instruction::Or:
1185       if (CI2->isZero()) return C1;        // X | 0 == X
1186       if (CI2->isMinusOne())
1187         return C2;                         // X | -1 == -1
1188       break;
1189     case Instruction::Xor:
1190       if (CI2->isZero()) return C1;        // X ^ 0 == X
1191 
1192       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1193         switch (CE1->getOpcode()) {
1194         default: break;
1195         case Instruction::ICmp:
1196         case Instruction::FCmp:
1197           // cmp pred ^ true -> cmp !pred
1198           assert(CI2->isOne());
1199           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1200           pred = CmpInst::getInversePredicate(pred);
1201           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1202                                           CE1->getOperand(1));
1203         }
1204       }
1205       break;
1206     case Instruction::AShr:
1207       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1208       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1209         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1210           return ConstantExpr::getLShr(C1, C2);
1211       break;
1212     }
1213   } else if (isa<ConstantInt>(C1)) {
1214     // If C1 is a ConstantInt and C2 is not, swap the operands.
1215     if (Instruction::isCommutative(Opcode))
1216       return ConstantExpr::get(Opcode, C2, C1);
1217   }
1218 
1219   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1220     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1221       const APInt &C1V = CI1->getValue();
1222       const APInt &C2V = CI2->getValue();
1223       switch (Opcode) {
1224       default:
1225         break;
1226       case Instruction::Add:
1227         return ConstantInt::get(CI1->getContext(), C1V + C2V);
1228       case Instruction::Sub:
1229         return ConstantInt::get(CI1->getContext(), C1V - C2V);
1230       case Instruction::Mul:
1231         return ConstantInt::get(CI1->getContext(), C1V * C2V);
1232       case Instruction::UDiv:
1233         assert(!CI2->isZero() && "Div by zero handled above");
1234         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1235       case Instruction::SDiv:
1236         assert(!CI2->isZero() && "Div by zero handled above");
1237         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1238           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1239         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1240       case Instruction::URem:
1241         assert(!CI2->isZero() && "Div by zero handled above");
1242         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1243       case Instruction::SRem:
1244         assert(!CI2->isZero() && "Div by zero handled above");
1245         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1246           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1247         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1248       case Instruction::And:
1249         return ConstantInt::get(CI1->getContext(), C1V & C2V);
1250       case Instruction::Or:
1251         return ConstantInt::get(CI1->getContext(), C1V | C2V);
1252       case Instruction::Xor:
1253         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1254       case Instruction::Shl:
1255         if (C2V.ult(C1V.getBitWidth()))
1256           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1257         return UndefValue::get(C1->getType()); // too big shift is undef
1258       case Instruction::LShr:
1259         if (C2V.ult(C1V.getBitWidth()))
1260           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1261         return UndefValue::get(C1->getType()); // too big shift is undef
1262       case Instruction::AShr:
1263         if (C2V.ult(C1V.getBitWidth()))
1264           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1265         return UndefValue::get(C1->getType()); // too big shift is undef
1266       }
1267     }
1268 
1269     switch (Opcode) {
1270     case Instruction::SDiv:
1271     case Instruction::UDiv:
1272     case Instruction::URem:
1273     case Instruction::SRem:
1274     case Instruction::LShr:
1275     case Instruction::AShr:
1276     case Instruction::Shl:
1277       if (CI1->isZero()) return C1;
1278       break;
1279     default:
1280       break;
1281     }
1282   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1283     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1284       const APFloat &C1V = CFP1->getValueAPF();
1285       const APFloat &C2V = CFP2->getValueAPF();
1286       APFloat C3V = C1V;  // copy for modification
1287       switch (Opcode) {
1288       default:
1289         break;
1290       case Instruction::FAdd:
1291         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1292         return ConstantFP::get(C1->getContext(), C3V);
1293       case Instruction::FSub:
1294         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1295         return ConstantFP::get(C1->getContext(), C3V);
1296       case Instruction::FMul:
1297         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1298         return ConstantFP::get(C1->getContext(), C3V);
1299       case Instruction::FDiv:
1300         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1301         return ConstantFP::get(C1->getContext(), C3V);
1302       case Instruction::FRem:
1303         (void)C3V.mod(C2V);
1304         return ConstantFP::get(C1->getContext(), C3V);
1305       }
1306     }
1307   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1308     // Fold each element and create a vector constant from those constants.
1309     SmallVector<Constant*, 16> Result;
1310     Type *Ty = IntegerType::get(VTy->getContext(), 32);
1311     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1312       Constant *ExtractIdx = ConstantInt::get(Ty, i);
1313       Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1314       Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1315 
1316       // If any element of a divisor vector is zero, the whole op is undef.
1317       if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1318         return UndefValue::get(VTy);
1319 
1320       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1321     }
1322 
1323     return ConstantVector::get(Result);
1324   }
1325 
1326   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1327     // There are many possible foldings we could do here.  We should probably
1328     // at least fold add of a pointer with an integer into the appropriate
1329     // getelementptr.  This will improve alias analysis a bit.
1330 
1331     // Given ((a + b) + c), if (b + c) folds to something interesting, return
1332     // (a + (b + c)).
1333     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1334       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1335       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1336         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1337     }
1338   } else if (isa<ConstantExpr>(C2)) {
1339     // If C2 is a constant expr and C1 isn't, flop them around and fold the
1340     // other way if possible.
1341     if (Instruction::isCommutative(Opcode))
1342       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1343   }
1344 
1345   // i1 can be simplified in many cases.
1346   if (C1->getType()->isIntegerTy(1)) {
1347     switch (Opcode) {
1348     case Instruction::Add:
1349     case Instruction::Sub:
1350       return ConstantExpr::getXor(C1, C2);
1351     case Instruction::Mul:
1352       return ConstantExpr::getAnd(C1, C2);
1353     case Instruction::Shl:
1354     case Instruction::LShr:
1355     case Instruction::AShr:
1356       // We can assume that C2 == 0.  If it were one the result would be
1357       // undefined because the shift value is as large as the bitwidth.
1358       return C1;
1359     case Instruction::SDiv:
1360     case Instruction::UDiv:
1361       // We can assume that C2 == 1.  If it were zero the result would be
1362       // undefined through division by zero.
1363       return C1;
1364     case Instruction::URem:
1365     case Instruction::SRem:
1366       // We can assume that C2 == 1.  If it were zero the result would be
1367       // undefined through division by zero.
1368       return ConstantInt::getFalse(C1->getContext());
1369     default:
1370       break;
1371     }
1372   }
1373 
1374   // We don't know how to fold this.
1375   return nullptr;
1376 }
1377 
1378 /// This type is zero-sized if it's an array or structure of zero-sized types.
1379 /// The only leaf zero-sized type is an empty structure.
1380 static bool isMaybeZeroSizedType(Type *Ty) {
1381   if (StructType *STy = dyn_cast<StructType>(Ty)) {
1382     if (STy->isOpaque()) return true;  // Can't say.
1383 
1384     // If all of elements have zero size, this does too.
1385     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1386       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1387     return true;
1388 
1389   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1390     return isMaybeZeroSizedType(ATy->getElementType());
1391   }
1392   return false;
1393 }
1394 
1395 /// Compare the two constants as though they were getelementptr indices.
1396 /// This allows coercion of the types to be the same thing.
1397 ///
1398 /// If the two constants are the "same" (after coercion), return 0.  If the
1399 /// first is less than the second, return -1, if the second is less than the
1400 /// first, return 1.  If the constants are not integral, return -2.
1401 ///
1402 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1403   if (C1 == C2) return 0;
1404 
1405   // Ok, we found a different index.  If they are not ConstantInt, we can't do
1406   // anything with them.
1407   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1408     return -2; // don't know!
1409 
1410   // We cannot compare the indices if they don't fit in an int64_t.
1411   if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1412       cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1413     return -2; // don't know!
1414 
1415   // Ok, we have two differing integer indices.  Sign extend them to be the same
1416   // type.
1417   int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1418   int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1419 
1420   if (C1Val == C2Val) return 0;  // They are equal
1421 
1422   // If the type being indexed over is really just a zero sized type, there is
1423   // no pointer difference being made here.
1424   if (isMaybeZeroSizedType(ElTy))
1425     return -2; // dunno.
1426 
1427   // If they are really different, now that they are the same type, then we
1428   // found a difference!
1429   if (C1Val < C2Val)
1430     return -1;
1431   else
1432     return 1;
1433 }
1434 
1435 /// This function determines if there is anything we can decide about the two
1436 /// constants provided. This doesn't need to handle simple things like
1437 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1438 /// If we can determine that the two constants have a particular relation to
1439 /// each other, we should return the corresponding FCmpInst predicate,
1440 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1441 /// ConstantFoldCompareInstruction.
1442 ///
1443 /// To simplify this code we canonicalize the relation so that the first
1444 /// operand is always the most "complex" of the two.  We consider ConstantFP
1445 /// to be the simplest, and ConstantExprs to be the most complex.
1446 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1447   assert(V1->getType() == V2->getType() &&
1448          "Cannot compare values of different types!");
1449 
1450   // We do not know if a constant expression will evaluate to a number or NaN.
1451   // Therefore, we can only say that the relation is unordered or equal.
1452   if (V1 == V2) return FCmpInst::FCMP_UEQ;
1453 
1454   if (!isa<ConstantExpr>(V1)) {
1455     if (!isa<ConstantExpr>(V2)) {
1456       // Simple case, use the standard constant folder.
1457       ConstantInt *R = nullptr;
1458       R = dyn_cast<ConstantInt>(
1459                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1460       if (R && !R->isZero())
1461         return FCmpInst::FCMP_OEQ;
1462       R = dyn_cast<ConstantInt>(
1463                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1464       if (R && !R->isZero())
1465         return FCmpInst::FCMP_OLT;
1466       R = dyn_cast<ConstantInt>(
1467                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1468       if (R && !R->isZero())
1469         return FCmpInst::FCMP_OGT;
1470 
1471       // Nothing more we can do
1472       return FCmpInst::BAD_FCMP_PREDICATE;
1473     }
1474 
1475     // If the first operand is simple and second is ConstantExpr, swap operands.
1476     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1477     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1478       return FCmpInst::getSwappedPredicate(SwappedRelation);
1479   } else {
1480     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1481     // constantexpr or a simple constant.
1482     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1483     switch (CE1->getOpcode()) {
1484     case Instruction::FPTrunc:
1485     case Instruction::FPExt:
1486     case Instruction::UIToFP:
1487     case Instruction::SIToFP:
1488       // We might be able to do something with these but we don't right now.
1489       break;
1490     default:
1491       break;
1492     }
1493   }
1494   // There are MANY other foldings that we could perform here.  They will
1495   // probably be added on demand, as they seem needed.
1496   return FCmpInst::BAD_FCMP_PREDICATE;
1497 }
1498 
1499 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1500                                                       const GlobalValue *GV2) {
1501   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1502     if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1503       return true;
1504     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1505       Type *Ty = GVar->getValueType();
1506       // A global with opaque type might end up being zero sized.
1507       if (!Ty->isSized())
1508         return true;
1509       // A global with an empty type might lie at the address of any other
1510       // global.
1511       if (Ty->isEmptyTy())
1512         return true;
1513     }
1514     return false;
1515   };
1516   // Don't try to decide equality of aliases.
1517   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1518     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1519       return ICmpInst::ICMP_NE;
1520   return ICmpInst::BAD_ICMP_PREDICATE;
1521 }
1522 
1523 /// This function determines if there is anything we can decide about the two
1524 /// constants provided. This doesn't need to handle simple things like integer
1525 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1526 /// If we can determine that the two constants have a particular relation to
1527 /// each other, we should return the corresponding ICmp predicate, otherwise
1528 /// return ICmpInst::BAD_ICMP_PREDICATE.
1529 ///
1530 /// To simplify this code we canonicalize the relation so that the first
1531 /// operand is always the most "complex" of the two.  We consider simple
1532 /// constants (like ConstantInt) to be the simplest, followed by
1533 /// GlobalValues, followed by ConstantExpr's (the most complex).
1534 ///
1535 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1536                                                 bool isSigned) {
1537   assert(V1->getType() == V2->getType() &&
1538          "Cannot compare different types of values!");
1539   if (V1 == V2) return ICmpInst::ICMP_EQ;
1540 
1541   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1542       !isa<BlockAddress>(V1)) {
1543     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1544         !isa<BlockAddress>(V2)) {
1545       // We distilled this down to a simple case, use the standard constant
1546       // folder.
1547       ConstantInt *R = nullptr;
1548       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1549       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1550       if (R && !R->isZero())
1551         return pred;
1552       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1553       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1554       if (R && !R->isZero())
1555         return pred;
1556       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1557       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1558       if (R && !R->isZero())
1559         return pred;
1560 
1561       // If we couldn't figure it out, bail.
1562       return ICmpInst::BAD_ICMP_PREDICATE;
1563     }
1564 
1565     // If the first operand is simple, swap operands.
1566     ICmpInst::Predicate SwappedRelation =
1567       evaluateICmpRelation(V2, V1, isSigned);
1568     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1569       return ICmpInst::getSwappedPredicate(SwappedRelation);
1570 
1571   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1572     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1573       ICmpInst::Predicate SwappedRelation =
1574         evaluateICmpRelation(V2, V1, isSigned);
1575       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1576         return ICmpInst::getSwappedPredicate(SwappedRelation);
1577       return ICmpInst::BAD_ICMP_PREDICATE;
1578     }
1579 
1580     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1581     // constant (which, since the types must match, means that it's a
1582     // ConstantPointerNull).
1583     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1584       return areGlobalsPotentiallyEqual(GV, GV2);
1585     } else if (isa<BlockAddress>(V2)) {
1586       return ICmpInst::ICMP_NE; // Globals never equal labels.
1587     } else {
1588       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1589       // GlobalVals can never be null unless they have external weak linkage.
1590       // We don't try to evaluate aliases here.
1591       // NOTE: We should not be doing this constant folding if null pointer
1592       // is considered valid for the function. But currently there is no way to
1593       // query it from the Constant type.
1594       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1595           !NullPointerIsDefined(nullptr /* F */,
1596                                 GV->getType()->getAddressSpace()))
1597         return ICmpInst::ICMP_NE;
1598     }
1599   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1600     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1601       ICmpInst::Predicate SwappedRelation =
1602         evaluateICmpRelation(V2, V1, isSigned);
1603       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1604         return ICmpInst::getSwappedPredicate(SwappedRelation);
1605       return ICmpInst::BAD_ICMP_PREDICATE;
1606     }
1607 
1608     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1609     // constant (which, since the types must match, means that it is a
1610     // ConstantPointerNull).
1611     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1612       // Block address in another function can't equal this one, but block
1613       // addresses in the current function might be the same if blocks are
1614       // empty.
1615       if (BA2->getFunction() != BA->getFunction())
1616         return ICmpInst::ICMP_NE;
1617     } else {
1618       // Block addresses aren't null, don't equal the address of globals.
1619       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1620              "Canonicalization guarantee!");
1621       return ICmpInst::ICMP_NE;
1622     }
1623   } else {
1624     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1625     // constantexpr, a global, block address, or a simple constant.
1626     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1627     Constant *CE1Op0 = CE1->getOperand(0);
1628 
1629     switch (CE1->getOpcode()) {
1630     case Instruction::Trunc:
1631     case Instruction::FPTrunc:
1632     case Instruction::FPExt:
1633     case Instruction::FPToUI:
1634     case Instruction::FPToSI:
1635       break; // We can't evaluate floating point casts or truncations.
1636 
1637     case Instruction::UIToFP:
1638     case Instruction::SIToFP:
1639     case Instruction::BitCast:
1640     case Instruction::ZExt:
1641     case Instruction::SExt:
1642       // We can't evaluate floating point casts or truncations.
1643       if (CE1Op0->getType()->isFPOrFPVectorTy())
1644         break;
1645 
1646       // If the cast is not actually changing bits, and the second operand is a
1647       // null pointer, do the comparison with the pre-casted value.
1648       if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1649         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1650         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1651         return evaluateICmpRelation(CE1Op0,
1652                                     Constant::getNullValue(CE1Op0->getType()),
1653                                     isSigned);
1654       }
1655       break;
1656 
1657     case Instruction::GetElementPtr: {
1658       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1659       // Ok, since this is a getelementptr, we know that the constant has a
1660       // pointer type.  Check the various cases.
1661       if (isa<ConstantPointerNull>(V2)) {
1662         // If we are comparing a GEP to a null pointer, check to see if the base
1663         // of the GEP equals the null pointer.
1664         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1665           if (GV->hasExternalWeakLinkage())
1666             // Weak linkage GVals could be zero or not. We're comparing that
1667             // to null pointer so its greater-or-equal
1668             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1669           else
1670             // If its not weak linkage, the GVal must have a non-zero address
1671             // so the result is greater-than
1672             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1673         } else if (isa<ConstantPointerNull>(CE1Op0)) {
1674           // If we are indexing from a null pointer, check to see if we have any
1675           // non-zero indices.
1676           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1677             if (!CE1->getOperand(i)->isNullValue())
1678               // Offsetting from null, must not be equal.
1679               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1680           // Only zero indexes from null, must still be zero.
1681           return ICmpInst::ICMP_EQ;
1682         }
1683         // Otherwise, we can't really say if the first operand is null or not.
1684       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1685         if (isa<ConstantPointerNull>(CE1Op0)) {
1686           if (GV2->hasExternalWeakLinkage())
1687             // Weak linkage GVals could be zero or not. We're comparing it to
1688             // a null pointer, so its less-or-equal
1689             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1690           else
1691             // If its not weak linkage, the GVal must have a non-zero address
1692             // so the result is less-than
1693             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1694         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1695           if (GV == GV2) {
1696             // If this is a getelementptr of the same global, then it must be
1697             // different.  Because the types must match, the getelementptr could
1698             // only have at most one index, and because we fold getelementptr's
1699             // with a single zero index, it must be nonzero.
1700             assert(CE1->getNumOperands() == 2 &&
1701                    !CE1->getOperand(1)->isNullValue() &&
1702                    "Surprising getelementptr!");
1703             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1704           } else {
1705             if (CE1GEP->hasAllZeroIndices())
1706               return areGlobalsPotentiallyEqual(GV, GV2);
1707             return ICmpInst::BAD_ICMP_PREDICATE;
1708           }
1709         }
1710       } else {
1711         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1712         Constant *CE2Op0 = CE2->getOperand(0);
1713 
1714         // There are MANY other foldings that we could perform here.  They will
1715         // probably be added on demand, as they seem needed.
1716         switch (CE2->getOpcode()) {
1717         default: break;
1718         case Instruction::GetElementPtr:
1719           // By far the most common case to handle is when the base pointers are
1720           // obviously to the same global.
1721           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1722             // Don't know relative ordering, but check for inequality.
1723             if (CE1Op0 != CE2Op0) {
1724               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1725               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1726                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1727                                                   cast<GlobalValue>(CE2Op0));
1728               return ICmpInst::BAD_ICMP_PREDICATE;
1729             }
1730             // Ok, we know that both getelementptr instructions are based on the
1731             // same global.  From this, we can precisely determine the relative
1732             // ordering of the resultant pointers.
1733             unsigned i = 1;
1734 
1735             // The logic below assumes that the result of the comparison
1736             // can be determined by finding the first index that differs.
1737             // This doesn't work if there is over-indexing in any
1738             // subsequent indices, so check for that case first.
1739             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1740                 !CE2->isGEPWithNoNotionalOverIndexing())
1741                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1742 
1743             // Compare all of the operands the GEP's have in common.
1744             gep_type_iterator GTI = gep_type_begin(CE1);
1745             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1746                  ++i, ++GTI)
1747               switch (IdxCompare(CE1->getOperand(i),
1748                                  CE2->getOperand(i), GTI.getIndexedType())) {
1749               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1750               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1751               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1752               }
1753 
1754             // Ok, we ran out of things they have in common.  If any leftovers
1755             // are non-zero then we have a difference, otherwise we are equal.
1756             for (; i < CE1->getNumOperands(); ++i)
1757               if (!CE1->getOperand(i)->isNullValue()) {
1758                 if (isa<ConstantInt>(CE1->getOperand(i)))
1759                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1760                 else
1761                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1762               }
1763 
1764             for (; i < CE2->getNumOperands(); ++i)
1765               if (!CE2->getOperand(i)->isNullValue()) {
1766                 if (isa<ConstantInt>(CE2->getOperand(i)))
1767                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1768                 else
1769                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1770               }
1771             return ICmpInst::ICMP_EQ;
1772           }
1773         }
1774       }
1775       break;
1776     }
1777     default:
1778       break;
1779     }
1780   }
1781 
1782   return ICmpInst::BAD_ICMP_PREDICATE;
1783 }
1784 
1785 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1786                                                Constant *C1, Constant *C2) {
1787   Type *ResultTy;
1788   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1789     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1790                                VT->getNumElements());
1791   else
1792     ResultTy = Type::getInt1Ty(C1->getContext());
1793 
1794   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1795   if (pred == FCmpInst::FCMP_FALSE)
1796     return Constant::getNullValue(ResultTy);
1797 
1798   if (pred == FCmpInst::FCMP_TRUE)
1799     return Constant::getAllOnesValue(ResultTy);
1800 
1801   // Handle some degenerate cases first
1802   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1803     CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1804     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1805     // For EQ and NE, we can always pick a value for the undef to make the
1806     // predicate pass or fail, so we can return undef.
1807     // Also, if both operands are undef, we can return undef for int comparison.
1808     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1809       return UndefValue::get(ResultTy);
1810 
1811     // Otherwise, for integer compare, pick the same value as the non-undef
1812     // operand, and fold it to true or false.
1813     if (isIntegerPredicate)
1814       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1815 
1816     // Choosing NaN for the undef will always make unordered comparison succeed
1817     // and ordered comparison fails.
1818     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1819   }
1820 
1821   // icmp eq/ne(null,GV) -> false/true
1822   if (C1->isNullValue()) {
1823     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1824       // Don't try to evaluate aliases.  External weak GV can be null.
1825       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1826           !NullPointerIsDefined(nullptr /* F */,
1827                                 GV->getType()->getAddressSpace())) {
1828         if (pred == ICmpInst::ICMP_EQ)
1829           return ConstantInt::getFalse(C1->getContext());
1830         else if (pred == ICmpInst::ICMP_NE)
1831           return ConstantInt::getTrue(C1->getContext());
1832       }
1833   // icmp eq/ne(GV,null) -> false/true
1834   } else if (C2->isNullValue()) {
1835     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1836       // Don't try to evaluate aliases.  External weak GV can be null.
1837       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1838           !NullPointerIsDefined(nullptr /* F */,
1839                                 GV->getType()->getAddressSpace())) {
1840         if (pred == ICmpInst::ICMP_EQ)
1841           return ConstantInt::getFalse(C1->getContext());
1842         else if (pred == ICmpInst::ICMP_NE)
1843           return ConstantInt::getTrue(C1->getContext());
1844       }
1845   }
1846 
1847   // If the comparison is a comparison between two i1's, simplify it.
1848   if (C1->getType()->isIntegerTy(1)) {
1849     switch(pred) {
1850     case ICmpInst::ICMP_EQ:
1851       if (isa<ConstantInt>(C2))
1852         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1853       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1854     case ICmpInst::ICMP_NE:
1855       return ConstantExpr::getXor(C1, C2);
1856     default:
1857       break;
1858     }
1859   }
1860 
1861   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1862     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1863     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1864     switch (pred) {
1865     default: llvm_unreachable("Invalid ICmp Predicate");
1866     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1867     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1868     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1869     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1870     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1871     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1872     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1873     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1874     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1875     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1876     }
1877   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1878     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1879     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1880     APFloat::cmpResult R = C1V.compare(C2V);
1881     switch (pred) {
1882     default: llvm_unreachable("Invalid FCmp Predicate");
1883     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1884     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1885     case FCmpInst::FCMP_UNO:
1886       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1887     case FCmpInst::FCMP_ORD:
1888       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1889     case FCmpInst::FCMP_UEQ:
1890       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1891                                         R==APFloat::cmpEqual);
1892     case FCmpInst::FCMP_OEQ:
1893       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1894     case FCmpInst::FCMP_UNE:
1895       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1896     case FCmpInst::FCMP_ONE:
1897       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1898                                         R==APFloat::cmpGreaterThan);
1899     case FCmpInst::FCMP_ULT:
1900       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1901                                         R==APFloat::cmpLessThan);
1902     case FCmpInst::FCMP_OLT:
1903       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1904     case FCmpInst::FCMP_UGT:
1905       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1906                                         R==APFloat::cmpGreaterThan);
1907     case FCmpInst::FCMP_OGT:
1908       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1909     case FCmpInst::FCMP_ULE:
1910       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1911     case FCmpInst::FCMP_OLE:
1912       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1913                                         R==APFloat::cmpEqual);
1914     case FCmpInst::FCMP_UGE:
1915       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1916     case FCmpInst::FCMP_OGE:
1917       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1918                                         R==APFloat::cmpEqual);
1919     }
1920   } else if (C1->getType()->isVectorTy()) {
1921     // If we can constant fold the comparison of each element, constant fold
1922     // the whole vector comparison.
1923     SmallVector<Constant*, 4> ResElts;
1924     Type *Ty = IntegerType::get(C1->getContext(), 32);
1925     // Compare the elements, producing an i1 result or constant expr.
1926     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1927       Constant *C1E =
1928         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1929       Constant *C2E =
1930         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1931 
1932       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1933     }
1934 
1935     return ConstantVector::get(ResElts);
1936   }
1937 
1938   if (C1->getType()->isFloatingPointTy() &&
1939       // Only call evaluateFCmpRelation if we have a constant expr to avoid
1940       // infinite recursive loop
1941       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1942     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1943     switch (evaluateFCmpRelation(C1, C2)) {
1944     default: llvm_unreachable("Unknown relation!");
1945     case FCmpInst::FCMP_UNO:
1946     case FCmpInst::FCMP_ORD:
1947     case FCmpInst::FCMP_UNE:
1948     case FCmpInst::FCMP_ULT:
1949     case FCmpInst::FCMP_UGT:
1950     case FCmpInst::FCMP_ULE:
1951     case FCmpInst::FCMP_UGE:
1952     case FCmpInst::FCMP_TRUE:
1953     case FCmpInst::FCMP_FALSE:
1954     case FCmpInst::BAD_FCMP_PREDICATE:
1955       break; // Couldn't determine anything about these constants.
1956     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1957       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1958                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1959                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1960       break;
1961     case FCmpInst::FCMP_OLT: // We know that C1 < C2
1962       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1963                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1964                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1965       break;
1966     case FCmpInst::FCMP_OGT: // We know that C1 > C2
1967       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1968                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1969                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1970       break;
1971     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1972       // We can only partially decide this relation.
1973       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1974         Result = 0;
1975       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1976         Result = 1;
1977       break;
1978     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1979       // We can only partially decide this relation.
1980       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1981         Result = 0;
1982       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1983         Result = 1;
1984       break;
1985     case FCmpInst::FCMP_ONE: // We know that C1 != C2
1986       // We can only partially decide this relation.
1987       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1988         Result = 0;
1989       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1990         Result = 1;
1991       break;
1992     case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
1993       // We can only partially decide this relation.
1994       if (pred == FCmpInst::FCMP_ONE)
1995         Result = 0;
1996       else if (pred == FCmpInst::FCMP_UEQ)
1997         Result = 1;
1998       break;
1999     }
2000 
2001     // If we evaluated the result, return it now.
2002     if (Result != -1)
2003       return ConstantInt::get(ResultTy, Result);
2004 
2005   } else {
2006     // Evaluate the relation between the two constants, per the predicate.
2007     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2008     switch (evaluateICmpRelation(C1, C2,
2009                                  CmpInst::isSigned((CmpInst::Predicate)pred))) {
2010     default: llvm_unreachable("Unknown relational!");
2011     case ICmpInst::BAD_ICMP_PREDICATE:
2012       break;  // Couldn't determine anything about these constants.
2013     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
2014       // If we know the constants are equal, we can decide the result of this
2015       // computation precisely.
2016       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2017       break;
2018     case ICmpInst::ICMP_ULT:
2019       switch (pred) {
2020       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2021         Result = 1; break;
2022       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2023         Result = 0; break;
2024       }
2025       break;
2026     case ICmpInst::ICMP_SLT:
2027       switch (pred) {
2028       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2029         Result = 1; break;
2030       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2031         Result = 0; break;
2032       }
2033       break;
2034     case ICmpInst::ICMP_UGT:
2035       switch (pred) {
2036       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2037         Result = 1; break;
2038       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2039         Result = 0; break;
2040       }
2041       break;
2042     case ICmpInst::ICMP_SGT:
2043       switch (pred) {
2044       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2045         Result = 1; break;
2046       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2047         Result = 0; break;
2048       }
2049       break;
2050     case ICmpInst::ICMP_ULE:
2051       if (pred == ICmpInst::ICMP_UGT) Result = 0;
2052       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2053       break;
2054     case ICmpInst::ICMP_SLE:
2055       if (pred == ICmpInst::ICMP_SGT) Result = 0;
2056       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2057       break;
2058     case ICmpInst::ICMP_UGE:
2059       if (pred == ICmpInst::ICMP_ULT) Result = 0;
2060       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2061       break;
2062     case ICmpInst::ICMP_SGE:
2063       if (pred == ICmpInst::ICMP_SLT) Result = 0;
2064       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2065       break;
2066     case ICmpInst::ICMP_NE:
2067       if (pred == ICmpInst::ICMP_EQ) Result = 0;
2068       if (pred == ICmpInst::ICMP_NE) Result = 1;
2069       break;
2070     }
2071 
2072     // If we evaluated the result, return it now.
2073     if (Result != -1)
2074       return ConstantInt::get(ResultTy, Result);
2075 
2076     // If the right hand side is a bitcast, try using its inverse to simplify
2077     // it by moving it to the left hand side.  We can't do this if it would turn
2078     // a vector compare into a scalar compare or visa versa, or if it would turn
2079     // the operands into FP values.
2080     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2081       Constant *CE2Op0 = CE2->getOperand(0);
2082       if (CE2->getOpcode() == Instruction::BitCast &&
2083           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2084           !CE2Op0->getType()->isFPOrFPVectorTy()) {
2085         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2086         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2087       }
2088     }
2089 
2090     // If the left hand side is an extension, try eliminating it.
2091     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2092       if ((CE1->getOpcode() == Instruction::SExt &&
2093            ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2094           (CE1->getOpcode() == Instruction::ZExt &&
2095            !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2096         Constant *CE1Op0 = CE1->getOperand(0);
2097         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2098         if (CE1Inverse == CE1Op0) {
2099           // Check whether we can safely truncate the right hand side.
2100           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2101           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2102                                     C2->getType()) == C2)
2103             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2104         }
2105       }
2106     }
2107 
2108     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2109         (C1->isNullValue() && !C2->isNullValue())) {
2110       // If C2 is a constant expr and C1 isn't, flip them around and fold the
2111       // other way if possible.
2112       // Also, if C1 is null and C2 isn't, flip them around.
2113       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2114       return ConstantExpr::getICmp(pred, C2, C1);
2115     }
2116   }
2117   return nullptr;
2118 }
2119 
2120 /// Test whether the given sequence of *normalized* indices is "inbounds".
2121 template<typename IndexTy>
2122 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2123   // No indices means nothing that could be out of bounds.
2124   if (Idxs.empty()) return true;
2125 
2126   // If the first index is zero, it's in bounds.
2127   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2128 
2129   // If the first index is one and all the rest are zero, it's in bounds,
2130   // by the one-past-the-end rule.
2131   if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2132     if (!CI->isOne())
2133       return false;
2134   } else {
2135     auto *CV = cast<ConstantDataVector>(Idxs[0]);
2136     CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2137     if (!CI || !CI->isOne())
2138       return false;
2139   }
2140 
2141   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2142     if (!cast<Constant>(Idxs[i])->isNullValue())
2143       return false;
2144   return true;
2145 }
2146 
2147 /// Test whether a given ConstantInt is in-range for a SequentialType.
2148 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2149                                       const ConstantInt *CI) {
2150   // We cannot bounds check the index if it doesn't fit in an int64_t.
2151   if (CI->getValue().getMinSignedBits() > 64)
2152     return false;
2153 
2154   // A negative index or an index past the end of our sequential type is
2155   // considered out-of-range.
2156   int64_t IndexVal = CI->getSExtValue();
2157   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2158     return false;
2159 
2160   // Otherwise, it is in-range.
2161   return true;
2162 }
2163 
2164 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2165                                           bool InBounds,
2166                                           Optional<unsigned> InRangeIndex,
2167                                           ArrayRef<Value *> Idxs) {
2168   if (Idxs.empty()) return C;
2169 
2170   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2171       PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2172 
2173   if (isa<UndefValue>(C))
2174     return UndefValue::get(GEPTy);
2175 
2176   Constant *Idx0 = cast<Constant>(Idxs[0]);
2177   if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2178     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2179                ? ConstantVector::getSplat(
2180                      cast<VectorType>(GEPTy)->getNumElements(), C)
2181                : C;
2182 
2183   if (C->isNullValue()) {
2184     bool isNull = true;
2185     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2186       if (!isa<UndefValue>(Idxs[i]) &&
2187           !cast<Constant>(Idxs[i])->isNullValue()) {
2188         isNull = false;
2189         break;
2190       }
2191     if (isNull) {
2192       PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2193       Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2194 
2195       assert(Ty && "Invalid indices for GEP!");
2196       Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2197       Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2198       if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2199         GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2200 
2201       // The GEP returns a vector of pointers when one of more of
2202       // its arguments is a vector.
2203       for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2204         if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2205           GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2206           break;
2207         }
2208       }
2209 
2210       return Constant::getNullValue(GEPTy);
2211     }
2212   }
2213 
2214   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2215     // Combine Indices - If the source pointer to this getelementptr instruction
2216     // is a getelementptr instruction, combine the indices of the two
2217     // getelementptr instructions into a single instruction.
2218     //
2219     if (CE->getOpcode() == Instruction::GetElementPtr) {
2220       gep_type_iterator LastI = gep_type_end(CE);
2221       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2222            I != E; ++I)
2223         LastI = I;
2224 
2225       // We cannot combine indices if doing so would take us outside of an
2226       // array or vector.  Doing otherwise could trick us if we evaluated such a
2227       // GEP as part of a load.
2228       //
2229       // e.g. Consider if the original GEP was:
2230       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2231       //                    i32 0, i32 0, i64 0)
2232       //
2233       // If we then tried to offset it by '8' to get to the third element,
2234       // an i8, we should *not* get:
2235       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2236       //                    i32 0, i32 0, i64 8)
2237       //
2238       // This GEP tries to index array element '8  which runs out-of-bounds.
2239       // Subsequent evaluation would get confused and produce erroneous results.
2240       //
2241       // The following prohibits such a GEP from being formed by checking to see
2242       // if the index is in-range with respect to an array.
2243       // TODO: This code may be extended to handle vectors as well.
2244       bool PerformFold = false;
2245       if (Idx0->isNullValue())
2246         PerformFold = true;
2247       else if (LastI.isSequential())
2248         if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2249           PerformFold = (!LastI.isBoundedSequential() ||
2250                          isIndexInRangeOfArrayType(
2251                              LastI.getSequentialNumElements(), CI)) &&
2252                         !CE->getOperand(CE->getNumOperands() - 1)
2253                              ->getType()
2254                              ->isVectorTy();
2255 
2256       if (PerformFold) {
2257         SmallVector<Value*, 16> NewIndices;
2258         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2259         NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2260 
2261         // Add the last index of the source with the first index of the new GEP.
2262         // Make sure to handle the case when they are actually different types.
2263         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2264         // Otherwise it must be an array.
2265         if (!Idx0->isNullValue()) {
2266           Type *IdxTy = Combined->getType();
2267           if (IdxTy != Idx0->getType()) {
2268             unsigned CommonExtendedWidth =
2269                 std::max(IdxTy->getIntegerBitWidth(),
2270                          Idx0->getType()->getIntegerBitWidth());
2271             CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2272 
2273             Type *CommonTy =
2274                 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2275             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2276             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2277             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2278           } else {
2279             Combined =
2280               ConstantExpr::get(Instruction::Add, Idx0, Combined);
2281           }
2282         }
2283 
2284         NewIndices.push_back(Combined);
2285         NewIndices.append(Idxs.begin() + 1, Idxs.end());
2286 
2287         // The combined GEP normally inherits its index inrange attribute from
2288         // the inner GEP, but if the inner GEP's last index was adjusted by the
2289         // outer GEP, any inbounds attribute on that index is invalidated.
2290         Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex();
2291         if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue())
2292           IRIndex = None;
2293 
2294         return ConstantExpr::getGetElementPtr(
2295             cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2296             NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(),
2297             IRIndex);
2298       }
2299     }
2300 
2301     // Attempt to fold casts to the same type away.  For example, folding:
2302     //
2303     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2304     //                       i64 0, i64 0)
2305     // into:
2306     //
2307     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2308     //
2309     // Don't fold if the cast is changing address spaces.
2310     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2311       PointerType *SrcPtrTy =
2312         dyn_cast<PointerType>(CE->getOperand(0)->getType());
2313       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2314       if (SrcPtrTy && DstPtrTy) {
2315         ArrayType *SrcArrayTy =
2316           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2317         ArrayType *DstArrayTy =
2318           dyn_cast<ArrayType>(DstPtrTy->getElementType());
2319         if (SrcArrayTy && DstArrayTy
2320             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2321             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2322           return ConstantExpr::getGetElementPtr(SrcArrayTy,
2323                                                 (Constant *)CE->getOperand(0),
2324                                                 Idxs, InBounds, InRangeIndex);
2325       }
2326     }
2327   }
2328 
2329   // Check to see if any array indices are not within the corresponding
2330   // notional array or vector bounds. If so, try to determine if they can be
2331   // factored out into preceding dimensions.
2332   SmallVector<Constant *, 8> NewIdxs;
2333   Type *Ty = PointeeTy;
2334   Type *Prev = C->getType();
2335   bool Unknown =
2336       !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2337   for (unsigned i = 1, e = Idxs.size(); i != e;
2338        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2339     if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2340       // We don't know if it's in range or not.
2341       Unknown = true;
2342       continue;
2343     }
2344     if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2345       // Skip if the type of the previous index is not supported.
2346       continue;
2347     if (InRangeIndex && i == *InRangeIndex + 1) {
2348       // If an index is marked inrange, we cannot apply this canonicalization to
2349       // the following index, as that will cause the inrange index to point to
2350       // the wrong element.
2351       continue;
2352     }
2353     if (isa<StructType>(Ty)) {
2354       // The verify makes sure that GEPs into a struct are in range.
2355       continue;
2356     }
2357     auto *STy = cast<SequentialType>(Ty);
2358     if (isa<VectorType>(STy)) {
2359       // There can be awkward padding in after a non-power of two vector.
2360       Unknown = true;
2361       continue;
2362     }
2363     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2364       if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2365         // It's in range, skip to the next index.
2366         continue;
2367       if (CI->getSExtValue() < 0) {
2368         // It's out of range and negative, don't try to factor it.
2369         Unknown = true;
2370         continue;
2371       }
2372     } else {
2373       auto *CV = cast<ConstantDataVector>(Idxs[i]);
2374       bool InRange = true;
2375       for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2376         auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2377         InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2378         if (CI->getSExtValue() < 0) {
2379           Unknown = true;
2380           break;
2381         }
2382       }
2383       if (InRange || Unknown)
2384         // It's in range, skip to the next index.
2385         // It's out of range and negative, don't try to factor it.
2386         continue;
2387     }
2388     if (isa<StructType>(Prev)) {
2389       // It's out of range, but the prior dimension is a struct
2390       // so we can't do anything about it.
2391       Unknown = true;
2392       continue;
2393     }
2394     // It's out of range, but we can factor it into the prior
2395     // dimension.
2396     NewIdxs.resize(Idxs.size());
2397     // Determine the number of elements in our sequential type.
2398     uint64_t NumElements = STy->getArrayNumElements();
2399 
2400     // Expand the current index or the previous index to a vector from a scalar
2401     // if necessary.
2402     Constant *CurrIdx = cast<Constant>(Idxs[i]);
2403     auto *PrevIdx =
2404         NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2405     bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2406     bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2407     bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2408 
2409     if (!IsCurrIdxVector && IsPrevIdxVector)
2410       CurrIdx = ConstantDataVector::getSplat(
2411           PrevIdx->getType()->getVectorNumElements(), CurrIdx);
2412 
2413     if (!IsPrevIdxVector && IsCurrIdxVector)
2414       PrevIdx = ConstantDataVector::getSplat(
2415           CurrIdx->getType()->getVectorNumElements(), PrevIdx);
2416 
2417     Constant *Factor =
2418         ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2419     if (UseVector)
2420       Factor = ConstantDataVector::getSplat(
2421           IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements()
2422                           : CurrIdx->getType()->getVectorNumElements(),
2423           Factor);
2424 
2425     NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2426 
2427     Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2428 
2429     unsigned CommonExtendedWidth =
2430         std::max(PrevIdx->getType()->getScalarSizeInBits(),
2431                  Div->getType()->getScalarSizeInBits());
2432     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2433 
2434     // Before adding, extend both operands to i64 to avoid
2435     // overflow trouble.
2436     Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2437     if (UseVector)
2438       ExtendedTy = VectorType::get(
2439           ExtendedTy, IsPrevIdxVector
2440                           ? PrevIdx->getType()->getVectorNumElements()
2441                           : CurrIdx->getType()->getVectorNumElements());
2442 
2443     if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2444       PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2445 
2446     if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2447       Div = ConstantExpr::getSExt(Div, ExtendedTy);
2448 
2449     NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2450   }
2451 
2452   // If we did any factoring, start over with the adjusted indices.
2453   if (!NewIdxs.empty()) {
2454     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2455       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2456     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2457                                           InRangeIndex);
2458   }
2459 
2460   // If all indices are known integers and normalized, we can do a simple
2461   // check for the "inbounds" property.
2462   if (!Unknown && !InBounds)
2463     if (auto *GV = dyn_cast<GlobalVariable>(C))
2464       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2465         return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2466                                               /*InBounds=*/true, InRangeIndex);
2467 
2468   return nullptr;
2469 }
2470