1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BasicBlock class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/BasicBlock.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/IR/CFG.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Type.h" 23 #include <algorithm> 24 25 using namespace llvm; 26 27 ValueSymbolTable *BasicBlock::getValueSymbolTable() { 28 if (Function *F = getParent()) 29 return F->getValueSymbolTable(); 30 return nullptr; 31 } 32 33 LLVMContext &BasicBlock::getContext() const { 34 return getType()->getContext(); 35 } 36 37 // Explicit instantiation of SymbolTableListTraits since some of the methods 38 // are not in the public header file... 39 template class llvm::SymbolTableListTraits<Instruction>; 40 41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, 42 BasicBlock *InsertBefore) 43 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { 44 45 if (NewParent) 46 insertInto(NewParent, InsertBefore); 47 else 48 assert(!InsertBefore && 49 "Cannot insert block before another block with no function!"); 50 51 setName(Name); 52 } 53 54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { 55 assert(NewParent && "Expected a parent"); 56 assert(!Parent && "Already has a parent"); 57 58 if (InsertBefore) 59 NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); 60 else 61 NewParent->getBasicBlockList().push_back(this); 62 } 63 64 BasicBlock::~BasicBlock() { 65 // If the address of the block is taken and it is being deleted (e.g. because 66 // it is dead), this means that there is either a dangling constant expr 67 // hanging off the block, or an undefined use of the block (source code 68 // expecting the address of a label to keep the block alive even though there 69 // is no indirect branch). Handle these cases by zapping the BlockAddress 70 // nodes. There are no other possible uses at this point. 71 if (hasAddressTaken()) { 72 assert(!use_empty() && "There should be at least one blockaddress!"); 73 Constant *Replacement = 74 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); 75 while (!use_empty()) { 76 BlockAddress *BA = cast<BlockAddress>(user_back()); 77 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 78 BA->getType())); 79 BA->destroyConstant(); 80 } 81 } 82 83 assert(getParent() == nullptr && "BasicBlock still linked into the program!"); 84 dropAllReferences(); 85 InstList.clear(); 86 } 87 88 void BasicBlock::setParent(Function *parent) { 89 // Set Parent=parent, updating instruction symtab entries as appropriate. 90 InstList.setSymTabObject(&Parent, parent); 91 } 92 93 iterator_range<filter_iterator<BasicBlock::const_iterator, 94 std::function<bool(const Instruction &)>>> 95 BasicBlock::instructionsWithoutDebug() const { 96 std::function<bool(const Instruction &)> Fn = [](const Instruction &I) { 97 return !isa<DbgInfoIntrinsic>(I); 98 }; 99 return make_filter_range(*this, Fn); 100 } 101 102 iterator_range<filter_iterator<BasicBlock::iterator, 103 std::function<bool(Instruction &)>>> 104 BasicBlock::instructionsWithoutDebug() { 105 std::function<bool(Instruction &)> Fn = [](Instruction &I) { 106 return !isa<DbgInfoIntrinsic>(I); 107 }; 108 return make_filter_range(*this, Fn); 109 } 110 111 void BasicBlock::removeFromParent() { 112 getParent()->getBasicBlockList().remove(getIterator()); 113 } 114 115 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { 116 return getParent()->getBasicBlockList().erase(getIterator()); 117 } 118 119 /// Unlink this basic block from its current function and 120 /// insert it into the function that MovePos lives in, right before MovePos. 121 void BasicBlock::moveBefore(BasicBlock *MovePos) { 122 MovePos->getParent()->getBasicBlockList().splice( 123 MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); 124 } 125 126 /// Unlink this basic block from its current function and 127 /// insert it into the function that MovePos lives in, right after MovePos. 128 void BasicBlock::moveAfter(BasicBlock *MovePos) { 129 MovePos->getParent()->getBasicBlockList().splice( 130 ++MovePos->getIterator(), getParent()->getBasicBlockList(), 131 getIterator()); 132 } 133 134 const Module *BasicBlock::getModule() const { 135 return getParent()->getParent(); 136 } 137 138 const TerminatorInst *BasicBlock::getTerminator() const { 139 if (InstList.empty()) return nullptr; 140 return dyn_cast<TerminatorInst>(&InstList.back()); 141 } 142 143 const CallInst *BasicBlock::getTerminatingMustTailCall() const { 144 if (InstList.empty()) 145 return nullptr; 146 const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); 147 if (!RI || RI == &InstList.front()) 148 return nullptr; 149 150 const Instruction *Prev = RI->getPrevNode(); 151 if (!Prev) 152 return nullptr; 153 154 if (Value *RV = RI->getReturnValue()) { 155 if (RV != Prev) 156 return nullptr; 157 158 // Look through the optional bitcast. 159 if (auto *BI = dyn_cast<BitCastInst>(Prev)) { 160 RV = BI->getOperand(0); 161 Prev = BI->getPrevNode(); 162 if (!Prev || RV != Prev) 163 return nullptr; 164 } 165 } 166 167 if (auto *CI = dyn_cast<CallInst>(Prev)) { 168 if (CI->isMustTailCall()) 169 return CI; 170 } 171 return nullptr; 172 } 173 174 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const { 175 if (InstList.empty()) 176 return nullptr; 177 auto *RI = dyn_cast<ReturnInst>(&InstList.back()); 178 if (!RI || RI == &InstList.front()) 179 return nullptr; 180 181 if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode())) 182 if (Function *F = CI->getCalledFunction()) 183 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) 184 return CI; 185 186 return nullptr; 187 } 188 189 const Instruction* BasicBlock::getFirstNonPHI() const { 190 for (const Instruction &I : *this) 191 if (!isa<PHINode>(I)) 192 return &I; 193 return nullptr; 194 } 195 196 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const { 197 for (const Instruction &I : *this) 198 if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I)) 199 return &I; 200 return nullptr; 201 } 202 203 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const { 204 for (const Instruction &I : *this) { 205 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) 206 continue; 207 208 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 209 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 210 II->getIntrinsicID() == Intrinsic::lifetime_end) 211 continue; 212 213 return &I; 214 } 215 return nullptr; 216 } 217 218 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const { 219 const Instruction *FirstNonPHI = getFirstNonPHI(); 220 if (!FirstNonPHI) 221 return end(); 222 223 const_iterator InsertPt = FirstNonPHI->getIterator(); 224 if (InsertPt->isEHPad()) ++InsertPt; 225 return InsertPt; 226 } 227 228 void BasicBlock::dropAllReferences() { 229 for (Instruction &I : *this) 230 I.dropAllReferences(); 231 } 232 233 /// If this basic block has a single predecessor block, 234 /// return the block, otherwise return a null pointer. 235 const BasicBlock *BasicBlock::getSinglePredecessor() const { 236 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 237 if (PI == E) return nullptr; // No preds. 238 const BasicBlock *ThePred = *PI; 239 ++PI; 240 return (PI == E) ? ThePred : nullptr /*multiple preds*/; 241 } 242 243 /// If this basic block has a unique predecessor block, 244 /// return the block, otherwise return a null pointer. 245 /// Note that unique predecessor doesn't mean single edge, there can be 246 /// multiple edges from the unique predecessor to this block (for example 247 /// a switch statement with multiple cases having the same destination). 248 const BasicBlock *BasicBlock::getUniquePredecessor() const { 249 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 250 if (PI == E) return nullptr; // No preds. 251 const BasicBlock *PredBB = *PI; 252 ++PI; 253 for (;PI != E; ++PI) { 254 if (*PI != PredBB) 255 return nullptr; 256 // The same predecessor appears multiple times in the predecessor list. 257 // This is OK. 258 } 259 return PredBB; 260 } 261 262 const BasicBlock *BasicBlock::getSingleSuccessor() const { 263 succ_const_iterator SI = succ_begin(this), E = succ_end(this); 264 if (SI == E) return nullptr; // no successors 265 const BasicBlock *TheSucc = *SI; 266 ++SI; 267 return (SI == E) ? TheSucc : nullptr /* multiple successors */; 268 } 269 270 const BasicBlock *BasicBlock::getUniqueSuccessor() const { 271 succ_const_iterator SI = succ_begin(this), E = succ_end(this); 272 if (SI == E) return nullptr; // No successors 273 const BasicBlock *SuccBB = *SI; 274 ++SI; 275 for (;SI != E; ++SI) { 276 if (*SI != SuccBB) 277 return nullptr; 278 // The same successor appears multiple times in the successor list. 279 // This is OK. 280 } 281 return SuccBB; 282 } 283 284 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() { 285 PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin()); 286 return make_range<phi_iterator>(P, nullptr); 287 } 288 289 /// This method is used to notify a BasicBlock that the 290 /// specified Predecessor of the block is no longer able to reach it. This is 291 /// actually not used to update the Predecessor list, but is actually used to 292 /// update the PHI nodes that reside in the block. Note that this should be 293 /// called while the predecessor still refers to this block. 294 /// 295 void BasicBlock::removePredecessor(BasicBlock *Pred, 296 bool DontDeleteUselessPHIs) { 297 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. 298 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && 299 "removePredecessor: BB is not a predecessor!"); 300 301 if (InstList.empty()) return; 302 PHINode *APN = dyn_cast<PHINode>(&front()); 303 if (!APN) return; // Quick exit. 304 305 // If there are exactly two predecessors, then we want to nuke the PHI nodes 306 // altogether. However, we cannot do this, if this in this case: 307 // 308 // Loop: 309 // %x = phi [X, Loop] 310 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 311 // br Loop ;; %x2 does not dominate all uses 312 // 313 // This is because the PHI node input is actually taken from the predecessor 314 // basic block. The only case this can happen is with a self loop, so we 315 // check for this case explicitly now. 316 // 317 unsigned max_idx = APN->getNumIncomingValues(); 318 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); 319 if (max_idx == 2) { 320 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); 321 322 // Disable PHI elimination! 323 if (this == Other) max_idx = 3; 324 } 325 326 // <= Two predecessors BEFORE I remove one? 327 if (max_idx <= 2 && !DontDeleteUselessPHIs) { 328 // Yup, loop through and nuke the PHI nodes 329 while (PHINode *PN = dyn_cast<PHINode>(&front())) { 330 // Remove the predecessor first. 331 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); 332 333 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value 334 if (max_idx == 2) { 335 if (PN->getIncomingValue(0) != PN) 336 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 337 else 338 // We are left with an infinite loop with no entries: kill the PHI. 339 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 340 getInstList().pop_front(); // Remove the PHI node 341 } 342 343 // If the PHI node already only had one entry, it got deleted by 344 // removeIncomingValue. 345 } 346 } else { 347 // Okay, now we know that we need to remove predecessor #pred_idx from all 348 // PHI nodes. Iterate over each PHI node fixing them up 349 PHINode *PN; 350 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { 351 ++II; 352 PN->removeIncomingValue(Pred, false); 353 // If all incoming values to the Phi are the same, we can replace the Phi 354 // with that value. 355 Value* PNV = nullptr; 356 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) 357 if (PNV != PN) { 358 PN->replaceAllUsesWith(PNV); 359 PN->eraseFromParent(); 360 } 361 } 362 } 363 } 364 365 bool BasicBlock::canSplitPredecessors() const { 366 const Instruction *FirstNonPHI = getFirstNonPHI(); 367 if (isa<LandingPadInst>(FirstNonPHI)) 368 return true; 369 // This is perhaps a little conservative because constructs like 370 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors 371 // cannot handle such things just yet. 372 if (FirstNonPHI->isEHPad()) 373 return false; 374 return true; 375 } 376 377 bool BasicBlock::isLegalToHoistInto() const { 378 auto *Term = getTerminator(); 379 // No terminator means the block is under construction. 380 if (!Term) 381 return true; 382 383 // If the block has no successors, there can be no instructions to hoist. 384 assert(Term->getNumSuccessors() > 0); 385 386 // Instructions should not be hoisted across exception handling boundaries. 387 return !Term->isExceptionalTerminator(); 388 } 389 390 /// This splits a basic block into two at the specified 391 /// instruction. Note that all instructions BEFORE the specified iterator stay 392 /// as part of the original basic block, an unconditional branch is added to 393 /// the new BB, and the rest of the instructions in the BB are moved to the new 394 /// BB, including the old terminator. This invalidates the iterator. 395 /// 396 /// Note that this only works on well formed basic blocks (must have a 397 /// terminator), and 'I' must not be the end of instruction list (which would 398 /// cause a degenerate basic block to be formed, having a terminator inside of 399 /// the basic block). 400 /// 401 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { 402 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); 403 assert(I != InstList.end() && 404 "Trying to get me to create degenerate basic block!"); 405 406 BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), 407 this->getNextNode()); 408 409 // Save DebugLoc of split point before invalidating iterator. 410 DebugLoc Loc = I->getDebugLoc(); 411 // Move all of the specified instructions from the original basic block into 412 // the new basic block. 413 New->getInstList().splice(New->end(), this->getInstList(), I, end()); 414 415 // Add a branch instruction to the newly formed basic block. 416 BranchInst *BI = BranchInst::Create(New, this); 417 BI->setDebugLoc(Loc); 418 419 // Now we must loop through all of the successors of the New block (which 420 // _were_ the successors of the 'this' block), and update any PHI nodes in 421 // successors. If there were PHI nodes in the successors, then they need to 422 // know that incoming branches will be from New, not from Old. 423 // 424 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { 425 // Loop over any phi nodes in the basic block, updating the BB field of 426 // incoming values... 427 BasicBlock *Successor = *I; 428 for (auto &PN : Successor->phis()) { 429 int Idx = PN.getBasicBlockIndex(this); 430 while (Idx != -1) { 431 PN.setIncomingBlock((unsigned)Idx, New); 432 Idx = PN.getBasicBlockIndex(this); 433 } 434 } 435 } 436 return New; 437 } 438 439 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { 440 TerminatorInst *TI = getTerminator(); 441 if (!TI) 442 // Cope with being called on a BasicBlock that doesn't have a terminator 443 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. 444 return; 445 for (BasicBlock *Succ : successors(TI)) { 446 // N.B. Succ might not be a complete BasicBlock, so don't assume 447 // that it ends with a non-phi instruction. 448 for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { 449 PHINode *PN = dyn_cast<PHINode>(II); 450 if (!PN) 451 break; 452 int i; 453 while ((i = PN->getBasicBlockIndex(this)) >= 0) 454 PN->setIncomingBlock(i, New); 455 } 456 } 457 } 458 459 /// Return true if this basic block is a landing pad. I.e., it's 460 /// the destination of the 'unwind' edge of an invoke instruction. 461 bool BasicBlock::isLandingPad() const { 462 return isa<LandingPadInst>(getFirstNonPHI()); 463 } 464 465 /// Return the landingpad instruction associated with the landing pad. 466 const LandingPadInst *BasicBlock::getLandingPadInst() const { 467 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 468 } 469 470 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const { 471 const TerminatorInst *TI = getTerminator(); 472 if (MDNode *MDIrrLoopHeader = 473 TI->getMetadata(LLVMContext::MD_irr_loop)) { 474 MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0)); 475 if (MDName->getString().equals("loop_header_weight")) { 476 auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1)); 477 return Optional<uint64_t>(CI->getValue().getZExtValue()); 478 } 479 } 480 return Optional<uint64_t>(); 481 } 482 483 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) { 484 while (isa<DbgInfoIntrinsic>(It)) 485 ++It; 486 return It; 487 } 488