1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
23 #include <algorithm>
24 
25 using namespace llvm;
26 
27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28   if (Function *F = getParent())
29     return F->getValueSymbolTable();
30   return nullptr;
31 }
32 
33 LLVMContext &BasicBlock::getContext() const {
34   return getType()->getContext();
35 }
36 
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction>;
40 
41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
42                        BasicBlock *InsertBefore)
43   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
44 
45   if (NewParent)
46     insertInto(NewParent, InsertBefore);
47   else
48     assert(!InsertBefore &&
49            "Cannot insert block before another block with no function!");
50 
51   setName(Name);
52 }
53 
54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
55   assert(NewParent && "Expected a parent");
56   assert(!Parent && "Already has a parent");
57 
58   if (InsertBefore)
59     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
60   else
61     NewParent->getBasicBlockList().push_back(this);
62 }
63 
64 BasicBlock::~BasicBlock() {
65   // If the address of the block is taken and it is being deleted (e.g. because
66   // it is dead), this means that there is either a dangling constant expr
67   // hanging off the block, or an undefined use of the block (source code
68   // expecting the address of a label to keep the block alive even though there
69   // is no indirect branch).  Handle these cases by zapping the BlockAddress
70   // nodes.  There are no other possible uses at this point.
71   if (hasAddressTaken()) {
72     assert(!use_empty() && "There should be at least one blockaddress!");
73     Constant *Replacement =
74       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75     while (!use_empty()) {
76       BlockAddress *BA = cast<BlockAddress>(user_back());
77       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
78                                                        BA->getType()));
79       BA->destroyConstant();
80     }
81   }
82 
83   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
84   dropAllReferences();
85   InstList.clear();
86 }
87 
88 void BasicBlock::setParent(Function *parent) {
89   // Set Parent=parent, updating instruction symtab entries as appropriate.
90   InstList.setSymTabObject(&Parent, parent);
91 }
92 
93 iterator_range<filter_iterator<BasicBlock::const_iterator,
94                                std::function<bool(const Instruction &)>>>
95 BasicBlock::instructionsWithoutDebug() const {
96   std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
97     return !isa<DbgInfoIntrinsic>(I);
98   };
99   return make_filter_range(*this, Fn);
100 }
101 
102 iterator_range<filter_iterator<BasicBlock::iterator,
103                                std::function<bool(Instruction &)>>>
104 BasicBlock::instructionsWithoutDebug() {
105   std::function<bool(Instruction &)> Fn = [](Instruction &I) {
106     return !isa<DbgInfoIntrinsic>(I);
107   };
108   return make_filter_range(*this, Fn);
109 }
110 
111 void BasicBlock::removeFromParent() {
112   getParent()->getBasicBlockList().remove(getIterator());
113 }
114 
115 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
116   return getParent()->getBasicBlockList().erase(getIterator());
117 }
118 
119 /// Unlink this basic block from its current function and
120 /// insert it into the function that MovePos lives in, right before MovePos.
121 void BasicBlock::moveBefore(BasicBlock *MovePos) {
122   MovePos->getParent()->getBasicBlockList().splice(
123       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
124 }
125 
126 /// Unlink this basic block from its current function and
127 /// insert it into the function that MovePos lives in, right after MovePos.
128 void BasicBlock::moveAfter(BasicBlock *MovePos) {
129   MovePos->getParent()->getBasicBlockList().splice(
130       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
131       getIterator());
132 }
133 
134 const Module *BasicBlock::getModule() const {
135   return getParent()->getParent();
136 }
137 
138 const Instruction *BasicBlock::getTerminator() const {
139   if (InstList.empty() || !InstList.back().isTerminator())
140     return nullptr;
141   return &InstList.back();
142 }
143 
144 const CallInst *BasicBlock::getTerminatingMustTailCall() const {
145   if (InstList.empty())
146     return nullptr;
147   const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
148   if (!RI || RI == &InstList.front())
149     return nullptr;
150 
151   const Instruction *Prev = RI->getPrevNode();
152   if (!Prev)
153     return nullptr;
154 
155   if (Value *RV = RI->getReturnValue()) {
156     if (RV != Prev)
157       return nullptr;
158 
159     // Look through the optional bitcast.
160     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
161       RV = BI->getOperand(0);
162       Prev = BI->getPrevNode();
163       if (!Prev || RV != Prev)
164         return nullptr;
165     }
166   }
167 
168   if (auto *CI = dyn_cast<CallInst>(Prev)) {
169     if (CI->isMustTailCall())
170       return CI;
171   }
172   return nullptr;
173 }
174 
175 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
176   if (InstList.empty())
177     return nullptr;
178   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
179   if (!RI || RI == &InstList.front())
180     return nullptr;
181 
182   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
183     if (Function *F = CI->getCalledFunction())
184       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
185         return CI;
186 
187   return nullptr;
188 }
189 
190 const Instruction* BasicBlock::getFirstNonPHI() const {
191   for (const Instruction &I : *this)
192     if (!isa<PHINode>(I))
193       return &I;
194   return nullptr;
195 }
196 
197 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
198   for (const Instruction &I : *this)
199     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
200       return &I;
201   return nullptr;
202 }
203 
204 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
205   for (const Instruction &I : *this) {
206     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
207       continue;
208 
209     if (auto *II = dyn_cast<IntrinsicInst>(&I))
210       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
211           II->getIntrinsicID() == Intrinsic::lifetime_end)
212         continue;
213 
214     return &I;
215   }
216   return nullptr;
217 }
218 
219 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
220   const Instruction *FirstNonPHI = getFirstNonPHI();
221   if (!FirstNonPHI)
222     return end();
223 
224   const_iterator InsertPt = FirstNonPHI->getIterator();
225   if (InsertPt->isEHPad()) ++InsertPt;
226   return InsertPt;
227 }
228 
229 void BasicBlock::dropAllReferences() {
230   for (Instruction &I : *this)
231     I.dropAllReferences();
232 }
233 
234 /// If this basic block has a single predecessor block,
235 /// return the block, otherwise return a null pointer.
236 const BasicBlock *BasicBlock::getSinglePredecessor() const {
237   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
238   if (PI == E) return nullptr;         // No preds.
239   const BasicBlock *ThePred = *PI;
240   ++PI;
241   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
242 }
243 
244 /// If this basic block has a unique predecessor block,
245 /// return the block, otherwise return a null pointer.
246 /// Note that unique predecessor doesn't mean single edge, there can be
247 /// multiple edges from the unique predecessor to this block (for example
248 /// a switch statement with multiple cases having the same destination).
249 const BasicBlock *BasicBlock::getUniquePredecessor() const {
250   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
251   if (PI == E) return nullptr; // No preds.
252   const BasicBlock *PredBB = *PI;
253   ++PI;
254   for (;PI != E; ++PI) {
255     if (*PI != PredBB)
256       return nullptr;
257     // The same predecessor appears multiple times in the predecessor list.
258     // This is OK.
259   }
260   return PredBB;
261 }
262 
263 bool BasicBlock::hasNPredecessors(unsigned N) const {
264   return hasNItems(pred_begin(this), pred_end(this), N);
265 }
266 
267 bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const {
268   return hasNItemsOrMore(pred_begin(this), pred_end(this), N);
269 }
270 
271 const BasicBlock *BasicBlock::getSingleSuccessor() const {
272   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
273   if (SI == E) return nullptr; // no successors
274   const BasicBlock *TheSucc = *SI;
275   ++SI;
276   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
277 }
278 
279 const BasicBlock *BasicBlock::getUniqueSuccessor() const {
280   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
281   if (SI == E) return nullptr; // No successors
282   const BasicBlock *SuccBB = *SI;
283   ++SI;
284   for (;SI != E; ++SI) {
285     if (*SI != SuccBB)
286       return nullptr;
287     // The same successor appears multiple times in the successor list.
288     // This is OK.
289   }
290   return SuccBB;
291 }
292 
293 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
294   PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
295   return make_range<phi_iterator>(P, nullptr);
296 }
297 
298 /// This method is used to notify a BasicBlock that the
299 /// specified Predecessor of the block is no longer able to reach it.  This is
300 /// actually not used to update the Predecessor list, but is actually used to
301 /// update the PHI nodes that reside in the block.  Note that this should be
302 /// called while the predecessor still refers to this block.
303 ///
304 void BasicBlock::removePredecessor(BasicBlock *Pred,
305                                    bool DontDeleteUselessPHIs) {
306   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
307           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
308          "removePredecessor: BB is not a predecessor!");
309 
310   if (InstList.empty()) return;
311   PHINode *APN = dyn_cast<PHINode>(&front());
312   if (!APN) return;   // Quick exit.
313 
314   // If there are exactly two predecessors, then we want to nuke the PHI nodes
315   // altogether.  However, we cannot do this, if this in this case:
316   //
317   //  Loop:
318   //    %x = phi [X, Loop]
319   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
320   //    br Loop                 ;; %x2 does not dominate all uses
321   //
322   // This is because the PHI node input is actually taken from the predecessor
323   // basic block.  The only case this can happen is with a self loop, so we
324   // check for this case explicitly now.
325   //
326   unsigned max_idx = APN->getNumIncomingValues();
327   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
328   if (max_idx == 2) {
329     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
330 
331     // Disable PHI elimination!
332     if (this == Other) max_idx = 3;
333   }
334 
335   // <= Two predecessors BEFORE I remove one?
336   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
337     // Yup, loop through and nuke the PHI nodes
338     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
339       // Remove the predecessor first.
340       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
341 
342       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
343       if (max_idx == 2) {
344         if (PN->getIncomingValue(0) != PN)
345           PN->replaceAllUsesWith(PN->getIncomingValue(0));
346         else
347           // We are left with an infinite loop with no entries: kill the PHI.
348           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
349         getInstList().pop_front();    // Remove the PHI node
350       }
351 
352       // If the PHI node already only had one entry, it got deleted by
353       // removeIncomingValue.
354     }
355   } else {
356     // Okay, now we know that we need to remove predecessor #pred_idx from all
357     // PHI nodes.  Iterate over each PHI node fixing them up
358     PHINode *PN;
359     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
360       ++II;
361       PN->removeIncomingValue(Pred, false);
362       // If all incoming values to the Phi are the same, we can replace the Phi
363       // with that value.
364       Value* PNV = nullptr;
365       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
366         if (PNV != PN) {
367           PN->replaceAllUsesWith(PNV);
368           PN->eraseFromParent();
369         }
370     }
371   }
372 }
373 
374 bool BasicBlock::canSplitPredecessors() const {
375   const Instruction *FirstNonPHI = getFirstNonPHI();
376   if (isa<LandingPadInst>(FirstNonPHI))
377     return true;
378   // This is perhaps a little conservative because constructs like
379   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
380   // cannot handle such things just yet.
381   if (FirstNonPHI->isEHPad())
382     return false;
383   return true;
384 }
385 
386 bool BasicBlock::isLegalToHoistInto() const {
387   auto *Term = getTerminator();
388   // No terminator means the block is under construction.
389   if (!Term)
390     return true;
391 
392   // If the block has no successors, there can be no instructions to hoist.
393   assert(Term->getNumSuccessors() > 0);
394 
395   // Instructions should not be hoisted across exception handling boundaries.
396   return !Term->isExceptionalTerminator();
397 }
398 
399 /// This splits a basic block into two at the specified
400 /// instruction.  Note that all instructions BEFORE the specified iterator stay
401 /// as part of the original basic block, an unconditional branch is added to
402 /// the new BB, and the rest of the instructions in the BB are moved to the new
403 /// BB, including the old terminator.  This invalidates the iterator.
404 ///
405 /// Note that this only works on well formed basic blocks (must have a
406 /// terminator), and 'I' must not be the end of instruction list (which would
407 /// cause a degenerate basic block to be formed, having a terminator inside of
408 /// the basic block).
409 ///
410 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
411   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
412   assert(I != InstList.end() &&
413          "Trying to get me to create degenerate basic block!");
414 
415   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
416                                        this->getNextNode());
417 
418   // Save DebugLoc of split point before invalidating iterator.
419   DebugLoc Loc = I->getDebugLoc();
420   // Move all of the specified instructions from the original basic block into
421   // the new basic block.
422   New->getInstList().splice(New->end(), this->getInstList(), I, end());
423 
424   // Add a branch instruction to the newly formed basic block.
425   BranchInst *BI = BranchInst::Create(New, this);
426   BI->setDebugLoc(Loc);
427 
428   // Now we must loop through all of the successors of the New block (which
429   // _were_ the successors of the 'this' block), and update any PHI nodes in
430   // successors.  If there were PHI nodes in the successors, then they need to
431   // know that incoming branches will be from New, not from Old.
432   //
433   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
434     // Loop over any phi nodes in the basic block, updating the BB field of
435     // incoming values...
436     BasicBlock *Successor = *I;
437     for (auto &PN : Successor->phis()) {
438       int Idx = PN.getBasicBlockIndex(this);
439       while (Idx != -1) {
440         PN.setIncomingBlock((unsigned)Idx, New);
441         Idx = PN.getBasicBlockIndex(this);
442       }
443     }
444   }
445   return New;
446 }
447 
448 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
449   Instruction *TI = getTerminator();
450   if (!TI)
451     // Cope with being called on a BasicBlock that doesn't have a terminator
452     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
453     return;
454   for (BasicBlock *Succ : successors(TI)) {
455     // N.B. Succ might not be a complete BasicBlock, so don't assume
456     // that it ends with a non-phi instruction.
457     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
458       PHINode *PN = dyn_cast<PHINode>(II);
459       if (!PN)
460         break;
461       int i;
462       while ((i = PN->getBasicBlockIndex(this)) >= 0)
463         PN->setIncomingBlock(i, New);
464     }
465   }
466 }
467 
468 /// Return true if this basic block is a landing pad. I.e., it's
469 /// the destination of the 'unwind' edge of an invoke instruction.
470 bool BasicBlock::isLandingPad() const {
471   return isa<LandingPadInst>(getFirstNonPHI());
472 }
473 
474 /// Return the landingpad instruction associated with the landing pad.
475 const LandingPadInst *BasicBlock::getLandingPadInst() const {
476   return dyn_cast<LandingPadInst>(getFirstNonPHI());
477 }
478 
479 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
480   const Instruction *TI = getTerminator();
481   if (MDNode *MDIrrLoopHeader =
482       TI->getMetadata(LLVMContext::MD_irr_loop)) {
483     MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
484     if (MDName->getString().equals("loop_header_weight")) {
485       auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
486       return Optional<uint64_t>(CI->getValue().getZExtValue());
487     }
488   }
489   return Optional<uint64_t>();
490 }
491 
492 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
493   while (isa<DbgInfoIntrinsic>(It))
494     ++It;
495   return It;
496 }
497