1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BasicBlock class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/BasicBlock.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/IR/CFG.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Type.h"
22 #include <algorithm>
23 
24 using namespace llvm;
25 
26 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
27   if (Function *F = getParent())
28     return F->getValueSymbolTable();
29   return nullptr;
30 }
31 
32 LLVMContext &BasicBlock::getContext() const {
33   return getType()->getContext();
34 }
35 
36 // Explicit instantiation of SymbolTableListTraits since some of the methods
37 // are not in the public header file...
38 template class llvm::SymbolTableListTraits<Instruction>;
39 
40 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
41                        BasicBlock *InsertBefore)
42   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
43 
44   if (NewParent)
45     insertInto(NewParent, InsertBefore);
46   else
47     assert(!InsertBefore &&
48            "Cannot insert block before another block with no function!");
49 
50   setName(Name);
51 }
52 
53 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
54   assert(NewParent && "Expected a parent");
55   assert(!Parent && "Already has a parent");
56 
57   if (InsertBefore)
58     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
59   else
60     NewParent->getBasicBlockList().push_back(this);
61 }
62 
63 BasicBlock::~BasicBlock() {
64   // If the address of the block is taken and it is being deleted (e.g. because
65   // it is dead), this means that there is either a dangling constant expr
66   // hanging off the block, or an undefined use of the block (source code
67   // expecting the address of a label to keep the block alive even though there
68   // is no indirect branch).  Handle these cases by zapping the BlockAddress
69   // nodes.  There are no other possible uses at this point.
70   if (hasAddressTaken()) {
71     assert(!use_empty() && "There should be at least one blockaddress!");
72     Constant *Replacement =
73       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
74     while (!use_empty()) {
75       BlockAddress *BA = cast<BlockAddress>(user_back());
76       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
77                                                        BA->getType()));
78       BA->destroyConstant();
79     }
80   }
81 
82   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
83   dropAllReferences();
84   InstList.clear();
85 }
86 
87 void BasicBlock::setParent(Function *parent) {
88   // Set Parent=parent, updating instruction symtab entries as appropriate.
89   InstList.setSymTabObject(&Parent, parent);
90 }
91 
92 iterator_range<filter_iterator<BasicBlock::const_iterator,
93                                std::function<bool(const Instruction &)>>>
94 BasicBlock::instructionsWithoutDebug() const {
95   std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
96     return !isa<DbgInfoIntrinsic>(I);
97   };
98   return make_filter_range(*this, Fn);
99 }
100 
101 iterator_range<filter_iterator<BasicBlock::iterator,
102                                std::function<bool(Instruction &)>>>
103 BasicBlock::instructionsWithoutDebug() {
104   std::function<bool(Instruction &)> Fn = [](Instruction &I) {
105     return !isa<DbgInfoIntrinsic>(I);
106   };
107   return make_filter_range(*this, Fn);
108 }
109 
110 filter_iterator<BasicBlock::const_iterator,
111                 std::function<bool(const Instruction &)>>::difference_type
112 BasicBlock::sizeWithoutDebug() const {
113   return std::distance(instructionsWithoutDebug().begin(),
114                        instructionsWithoutDebug().end());
115 }
116 
117 void BasicBlock::removeFromParent() {
118   getParent()->getBasicBlockList().remove(getIterator());
119 }
120 
121 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
122   return getParent()->getBasicBlockList().erase(getIterator());
123 }
124 
125 /// Unlink this basic block from its current function and
126 /// insert it into the function that MovePos lives in, right before MovePos.
127 void BasicBlock::moveBefore(BasicBlock *MovePos) {
128   MovePos->getParent()->getBasicBlockList().splice(
129       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
130 }
131 
132 /// Unlink this basic block from its current function and
133 /// insert it into the function that MovePos lives in, right after MovePos.
134 void BasicBlock::moveAfter(BasicBlock *MovePos) {
135   MovePos->getParent()->getBasicBlockList().splice(
136       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
137       getIterator());
138 }
139 
140 const Module *BasicBlock::getModule() const {
141   return getParent()->getParent();
142 }
143 
144 const Instruction *BasicBlock::getTerminator() const {
145   if (InstList.empty() || !InstList.back().isTerminator())
146     return nullptr;
147   return &InstList.back();
148 }
149 
150 const CallInst *BasicBlock::getTerminatingMustTailCall() const {
151   if (InstList.empty())
152     return nullptr;
153   const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
154   if (!RI || RI == &InstList.front())
155     return nullptr;
156 
157   const Instruction *Prev = RI->getPrevNode();
158   if (!Prev)
159     return nullptr;
160 
161   if (Value *RV = RI->getReturnValue()) {
162     if (RV != Prev)
163       return nullptr;
164 
165     // Look through the optional bitcast.
166     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
167       RV = BI->getOperand(0);
168       Prev = BI->getPrevNode();
169       if (!Prev || RV != Prev)
170         return nullptr;
171     }
172   }
173 
174   if (auto *CI = dyn_cast<CallInst>(Prev)) {
175     if (CI->isMustTailCall())
176       return CI;
177   }
178   return nullptr;
179 }
180 
181 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
182   if (InstList.empty())
183     return nullptr;
184   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
185   if (!RI || RI == &InstList.front())
186     return nullptr;
187 
188   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
189     if (Function *F = CI->getCalledFunction())
190       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
191         return CI;
192 
193   return nullptr;
194 }
195 
196 const CallInst *BasicBlock::getPostdominatingDeoptimizeCall() const {
197   const BasicBlock* BB = this;
198   SmallPtrSet<const BasicBlock *, 8> Visited;
199   Visited.insert(BB);
200   while (auto *Succ = BB->getUniqueSuccessor()) {
201     if (!Visited.insert(Succ).second)
202       return nullptr;
203     BB = Succ;
204   }
205   return BB->getTerminatingDeoptimizeCall();
206 }
207 
208 const Instruction* BasicBlock::getFirstNonPHI() const {
209   for (const Instruction &I : *this)
210     if (!isa<PHINode>(I))
211       return &I;
212   return nullptr;
213 }
214 
215 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
216   for (const Instruction &I : *this)
217     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
218       return &I;
219   return nullptr;
220 }
221 
222 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
223   for (const Instruction &I : *this) {
224     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
225       continue;
226 
227     if (I.isLifetimeStartOrEnd())
228       continue;
229 
230     return &I;
231   }
232   return nullptr;
233 }
234 
235 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
236   const Instruction *FirstNonPHI = getFirstNonPHI();
237   if (!FirstNonPHI)
238     return end();
239 
240   const_iterator InsertPt = FirstNonPHI->getIterator();
241   if (InsertPt->isEHPad()) ++InsertPt;
242   return InsertPt;
243 }
244 
245 void BasicBlock::dropAllReferences() {
246   for (Instruction &I : *this)
247     I.dropAllReferences();
248 }
249 
250 /// If this basic block has a single predecessor block,
251 /// return the block, otherwise return a null pointer.
252 const BasicBlock *BasicBlock::getSinglePredecessor() const {
253   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
254   if (PI == E) return nullptr;         // No preds.
255   const BasicBlock *ThePred = *PI;
256   ++PI;
257   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
258 }
259 
260 /// If this basic block has a unique predecessor block,
261 /// return the block, otherwise return a null pointer.
262 /// Note that unique predecessor doesn't mean single edge, there can be
263 /// multiple edges from the unique predecessor to this block (for example
264 /// a switch statement with multiple cases having the same destination).
265 const BasicBlock *BasicBlock::getUniquePredecessor() const {
266   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
267   if (PI == E) return nullptr; // No preds.
268   const BasicBlock *PredBB = *PI;
269   ++PI;
270   for (;PI != E; ++PI) {
271     if (*PI != PredBB)
272       return nullptr;
273     // The same predecessor appears multiple times in the predecessor list.
274     // This is OK.
275   }
276   return PredBB;
277 }
278 
279 bool BasicBlock::hasNPredecessors(unsigned N) const {
280   return hasNItems(pred_begin(this), pred_end(this), N);
281 }
282 
283 bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const {
284   return hasNItemsOrMore(pred_begin(this), pred_end(this), N);
285 }
286 
287 const BasicBlock *BasicBlock::getSingleSuccessor() const {
288   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
289   if (SI == E) return nullptr; // no successors
290   const BasicBlock *TheSucc = *SI;
291   ++SI;
292   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
293 }
294 
295 const BasicBlock *BasicBlock::getUniqueSuccessor() const {
296   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
297   if (SI == E) return nullptr; // No successors
298   const BasicBlock *SuccBB = *SI;
299   ++SI;
300   for (;SI != E; ++SI) {
301     if (*SI != SuccBB)
302       return nullptr;
303     // The same successor appears multiple times in the successor list.
304     // This is OK.
305   }
306   return SuccBB;
307 }
308 
309 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
310   PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
311   return make_range<phi_iterator>(P, nullptr);
312 }
313 
314 /// This method is used to notify a BasicBlock that the
315 /// specified Predecessor of the block is no longer able to reach it.  This is
316 /// actually not used to update the Predecessor list, but is actually used to
317 /// update the PHI nodes that reside in the block.  Note that this should be
318 /// called while the predecessor still refers to this block.
319 ///
320 void BasicBlock::removePredecessor(BasicBlock *Pred,
321                                    bool KeepOneInputPHIs) {
322   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
323           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
324          "removePredecessor: BB is not a predecessor!");
325 
326   if (InstList.empty()) return;
327   PHINode *APN = dyn_cast<PHINode>(&front());
328   if (!APN) return;   // Quick exit.
329 
330   // If there are exactly two predecessors, then we want to nuke the PHI nodes
331   // altogether.  However, we cannot do this, if this in this case:
332   //
333   //  Loop:
334   //    %x = phi [X, Loop]
335   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
336   //    br Loop                 ;; %x2 does not dominate all uses
337   //
338   // This is because the PHI node input is actually taken from the predecessor
339   // basic block.  The only case this can happen is with a self loop, so we
340   // check for this case explicitly now.
341   //
342   unsigned max_idx = APN->getNumIncomingValues();
343   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
344   if (max_idx == 2) {
345     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
346 
347     // Disable PHI elimination!
348     if (this == Other) max_idx = 3;
349   }
350 
351   // <= Two predecessors BEFORE I remove one?
352   if (max_idx <= 2 && !KeepOneInputPHIs) {
353     // Yup, loop through and nuke the PHI nodes
354     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
355       // Remove the predecessor first.
356       PN->removeIncomingValue(Pred, !KeepOneInputPHIs);
357 
358       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
359       if (max_idx == 2) {
360         if (PN->getIncomingValue(0) != PN)
361           PN->replaceAllUsesWith(PN->getIncomingValue(0));
362         else
363           // We are left with an infinite loop with no entries: kill the PHI.
364           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
365         getInstList().pop_front();    // Remove the PHI node
366       }
367 
368       // If the PHI node already only had one entry, it got deleted by
369       // removeIncomingValue.
370     }
371   } else {
372     // Okay, now we know that we need to remove predecessor #pred_idx from all
373     // PHI nodes.  Iterate over each PHI node fixing them up
374     PHINode *PN;
375     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
376       ++II;
377       PN->removeIncomingValue(Pred, false);
378       // If all incoming values to the Phi are the same, we can replace the Phi
379       // with that value.
380       Value* PNV = nullptr;
381       if (!KeepOneInputPHIs && (PNV = PN->hasConstantValue()))
382         if (PNV != PN) {
383           PN->replaceAllUsesWith(PNV);
384           PN->eraseFromParent();
385         }
386     }
387   }
388 }
389 
390 bool BasicBlock::canSplitPredecessors() const {
391   const Instruction *FirstNonPHI = getFirstNonPHI();
392   if (isa<LandingPadInst>(FirstNonPHI))
393     return true;
394   // This is perhaps a little conservative because constructs like
395   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
396   // cannot handle such things just yet.
397   if (FirstNonPHI->isEHPad())
398     return false;
399   return true;
400 }
401 
402 bool BasicBlock::isLegalToHoistInto() const {
403   auto *Term = getTerminator();
404   // No terminator means the block is under construction.
405   if (!Term)
406     return true;
407 
408   // If the block has no successors, there can be no instructions to hoist.
409   assert(Term->getNumSuccessors() > 0);
410 
411   // Instructions should not be hoisted across exception handling boundaries.
412   return !Term->isExceptionalTerminator();
413 }
414 
415 /// This splits a basic block into two at the specified
416 /// instruction.  Note that all instructions BEFORE the specified iterator stay
417 /// as part of the original basic block, an unconditional branch is added to
418 /// the new BB, and the rest of the instructions in the BB are moved to the new
419 /// BB, including the old terminator.  This invalidates the iterator.
420 ///
421 /// Note that this only works on well formed basic blocks (must have a
422 /// terminator), and 'I' must not be the end of instruction list (which would
423 /// cause a degenerate basic block to be formed, having a terminator inside of
424 /// the basic block).
425 ///
426 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
427   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
428   assert(I != InstList.end() &&
429          "Trying to get me to create degenerate basic block!");
430 
431   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
432                                        this->getNextNode());
433 
434   // Save DebugLoc of split point before invalidating iterator.
435   DebugLoc Loc = I->getDebugLoc();
436   // Move all of the specified instructions from the original basic block into
437   // the new basic block.
438   New->getInstList().splice(New->end(), this->getInstList(), I, end());
439 
440   // Add a branch instruction to the newly formed basic block.
441   BranchInst *BI = BranchInst::Create(New, this);
442   BI->setDebugLoc(Loc);
443 
444   // Now we must loop through all of the successors of the New block (which
445   // _were_ the successors of the 'this' block), and update any PHI nodes in
446   // successors.  If there were PHI nodes in the successors, then they need to
447   // know that incoming branches will be from New, not from Old (this).
448   //
449   New->replaceSuccessorsPhiUsesWith(this, New);
450   return New;
451 }
452 
453 void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) {
454   // N.B. This might not be a complete BasicBlock, so don't assume
455   // that it ends with a non-phi instruction.
456   for (iterator II = begin(), IE = end(); II != IE; ++II) {
457     PHINode *PN = dyn_cast<PHINode>(II);
458     if (!PN)
459       break;
460     PN->replaceIncomingBlockWith(Old, New);
461   }
462 }
463 
464 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old,
465                                               BasicBlock *New) {
466   Instruction *TI = getTerminator();
467   if (!TI)
468     // Cope with being called on a BasicBlock that doesn't have a terminator
469     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
470     return;
471   llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) {
472     Succ->replacePhiUsesWith(Old, New);
473   });
474 }
475 
476 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
477   this->replaceSuccessorsPhiUsesWith(this, New);
478 }
479 
480 /// Return true if this basic block is a landing pad. I.e., it's
481 /// the destination of the 'unwind' edge of an invoke instruction.
482 bool BasicBlock::isLandingPad() const {
483   return isa<LandingPadInst>(getFirstNonPHI());
484 }
485 
486 /// Return the landingpad instruction associated with the landing pad.
487 const LandingPadInst *BasicBlock::getLandingPadInst() const {
488   return dyn_cast<LandingPadInst>(getFirstNonPHI());
489 }
490 
491 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
492   const Instruction *TI = getTerminator();
493   if (MDNode *MDIrrLoopHeader =
494       TI->getMetadata(LLVMContext::MD_irr_loop)) {
495     MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
496     if (MDName->getString().equals("loop_header_weight")) {
497       auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
498       return Optional<uint64_t>(CI->getValue().getZExtValue());
499     }
500   }
501   return Optional<uint64_t>();
502 }
503 
504 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
505   while (isa<DbgInfoIntrinsic>(It))
506     ++It;
507   return It;
508 }
509