1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
23 #include <algorithm>
24 
25 using namespace llvm;
26 
27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28   if (Function *F = getParent())
29     return F->getValueSymbolTable();
30   return nullptr;
31 }
32 
33 LLVMContext &BasicBlock::getContext() const {
34   return getType()->getContext();
35 }
36 
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction>;
40 
41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
42                        BasicBlock *InsertBefore)
43   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
44 
45   if (NewParent)
46     insertInto(NewParent, InsertBefore);
47   else
48     assert(!InsertBefore &&
49            "Cannot insert block before another block with no function!");
50 
51   setName(Name);
52 }
53 
54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
55   assert(NewParent && "Expected a parent");
56   assert(!Parent && "Already has a parent");
57 
58   if (InsertBefore)
59     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
60   else
61     NewParent->getBasicBlockList().push_back(this);
62 }
63 
64 BasicBlock::~BasicBlock() {
65   // If the address of the block is taken and it is being deleted (e.g. because
66   // it is dead), this means that there is either a dangling constant expr
67   // hanging off the block, or an undefined use of the block (source code
68   // expecting the address of a label to keep the block alive even though there
69   // is no indirect branch).  Handle these cases by zapping the BlockAddress
70   // nodes.  There are no other possible uses at this point.
71   if (hasAddressTaken()) {
72     assert(!use_empty() && "There should be at least one blockaddress!");
73     Constant *Replacement =
74       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75     while (!use_empty()) {
76       BlockAddress *BA = cast<BlockAddress>(user_back());
77       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
78                                                        BA->getType()));
79       BA->destroyConstant();
80     }
81   }
82 
83   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
84   dropAllReferences();
85   InstList.clear();
86 }
87 
88 void BasicBlock::setParent(Function *parent) {
89   // Set Parent=parent, updating instruction symtab entries as appropriate.
90   InstList.setSymTabObject(&Parent, parent);
91 }
92 
93 void BasicBlock::removeFromParent() {
94   getParent()->getBasicBlockList().remove(getIterator());
95 }
96 
97 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
98   return getParent()->getBasicBlockList().erase(getIterator());
99 }
100 
101 /// Unlink this basic block from its current function and
102 /// insert it into the function that MovePos lives in, right before MovePos.
103 void BasicBlock::moveBefore(BasicBlock *MovePos) {
104   MovePos->getParent()->getBasicBlockList().splice(
105       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
106 }
107 
108 /// Unlink this basic block from its current function and
109 /// insert it into the function that MovePos lives in, right after MovePos.
110 void BasicBlock::moveAfter(BasicBlock *MovePos) {
111   MovePos->getParent()->getBasicBlockList().splice(
112       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
113       getIterator());
114 }
115 
116 Module *BasicBlock::getModule() {
117   return getParent()->getParent();
118 }
119 
120 TerminatorInst *BasicBlock::getTerminator() {
121   if (InstList.empty()) return nullptr;
122   return dyn_cast<TerminatorInst>(&InstList.back());
123 }
124 
125 CallInst *BasicBlock::getTerminatingMustTailCall() {
126   if (InstList.empty())
127     return nullptr;
128   ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
129   if (!RI || RI == &InstList.front())
130     return nullptr;
131 
132   Instruction *Prev = RI->getPrevNode();
133   if (!Prev)
134     return nullptr;
135 
136   if (Value *RV = RI->getReturnValue()) {
137     if (RV != Prev)
138       return nullptr;
139 
140     // Look through the optional bitcast.
141     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
142       RV = BI->getOperand(0);
143       Prev = BI->getPrevNode();
144       if (!Prev || RV != Prev)
145         return nullptr;
146     }
147   }
148 
149   if (auto *CI = dyn_cast<CallInst>(Prev)) {
150     if (CI->isMustTailCall())
151       return CI;
152   }
153   return nullptr;
154 }
155 
156 CallInst *BasicBlock::getTerminatingDeoptimizeCall() {
157   if (InstList.empty())
158     return nullptr;
159   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
160   if (!RI || RI == &InstList.front())
161     return nullptr;
162 
163   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
164     if (Function *F = CI->getCalledFunction())
165       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
166         return CI;
167 
168   return nullptr;
169 }
170 
171 Instruction* BasicBlock::getFirstNonPHI() {
172   for (Instruction &I : *this)
173     if (!isa<PHINode>(I))
174       return &I;
175   return nullptr;
176 }
177 
178 Instruction* BasicBlock::getFirstNonPHIOrDbg() {
179   for (Instruction &I : *this)
180     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
181       return &I;
182   return nullptr;
183 }
184 
185 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
186   for (Instruction &I : *this) {
187     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
188       continue;
189 
190     if (auto *II = dyn_cast<IntrinsicInst>(&I))
191       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
192           II->getIntrinsicID() == Intrinsic::lifetime_end)
193         continue;
194 
195     return &I;
196   }
197   return nullptr;
198 }
199 
200 BasicBlock::iterator BasicBlock::getFirstInsertionPt() {
201   Instruction *FirstNonPHI = getFirstNonPHI();
202   if (!FirstNonPHI)
203     return end();
204 
205   iterator InsertPt = FirstNonPHI->getIterator();
206   if (InsertPt->isEHPad()) ++InsertPt;
207   return InsertPt;
208 }
209 
210 void BasicBlock::dropAllReferences() {
211   for (Instruction &I : *this)
212     I.dropAllReferences();
213 }
214 
215 /// If this basic block has a single predecessor block,
216 /// return the block, otherwise return a null pointer.
217 BasicBlock *BasicBlock::getSinglePredecessor() {
218   pred_iterator PI = pred_begin(this), E = pred_end(this);
219   if (PI == E) return nullptr;         // No preds.
220   BasicBlock *ThePred = *PI;
221   ++PI;
222   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
223 }
224 
225 /// If this basic block has a unique predecessor block,
226 /// return the block, otherwise return a null pointer.
227 /// Note that unique predecessor doesn't mean single edge, there can be
228 /// multiple edges from the unique predecessor to this block (for example
229 /// a switch statement with multiple cases having the same destination).
230 BasicBlock *BasicBlock::getUniquePredecessor() {
231   pred_iterator PI = pred_begin(this), E = pred_end(this);
232   if (PI == E) return nullptr; // No preds.
233   BasicBlock *PredBB = *PI;
234   ++PI;
235   for (;PI != E; ++PI) {
236     if (*PI != PredBB)
237       return nullptr;
238     // The same predecessor appears multiple times in the predecessor list.
239     // This is OK.
240   }
241   return PredBB;
242 }
243 
244 BasicBlock *BasicBlock::getSingleSuccessor() {
245   succ_iterator SI = succ_begin(this), E = succ_end(this);
246   if (SI == E) return nullptr; // no successors
247   BasicBlock *TheSucc = *SI;
248   ++SI;
249   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
250 }
251 
252 BasicBlock *BasicBlock::getUniqueSuccessor() {
253   succ_iterator SI = succ_begin(this), E = succ_end(this);
254   if (SI == E) return nullptr; // No successors
255   BasicBlock *SuccBB = *SI;
256   ++SI;
257   for (;SI != E; ++SI) {
258     if (*SI != SuccBB)
259       return nullptr;
260     // The same successor appears multiple times in the successor list.
261     // This is OK.
262   }
263   return SuccBB;
264 }
265 
266 /// This method is used to notify a BasicBlock that the
267 /// specified Predecessor of the block is no longer able to reach it.  This is
268 /// actually not used to update the Predecessor list, but is actually used to
269 /// update the PHI nodes that reside in the block.  Note that this should be
270 /// called while the predecessor still refers to this block.
271 ///
272 void BasicBlock::removePredecessor(BasicBlock *Pred,
273                                    bool DontDeleteUselessPHIs) {
274   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
275           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
276          "removePredecessor: BB is not a predecessor!");
277 
278   if (InstList.empty()) return;
279   PHINode *APN = dyn_cast<PHINode>(&front());
280   if (!APN) return;   // Quick exit.
281 
282   // If there are exactly two predecessors, then we want to nuke the PHI nodes
283   // altogether.  However, we cannot do this, if this in this case:
284   //
285   //  Loop:
286   //    %x = phi [X, Loop]
287   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
288   //    br Loop                 ;; %x2 does not dominate all uses
289   //
290   // This is because the PHI node input is actually taken from the predecessor
291   // basic block.  The only case this can happen is with a self loop, so we
292   // check for this case explicitly now.
293   //
294   unsigned max_idx = APN->getNumIncomingValues();
295   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
296   if (max_idx == 2) {
297     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
298 
299     // Disable PHI elimination!
300     if (this == Other) max_idx = 3;
301   }
302 
303   // <= Two predecessors BEFORE I remove one?
304   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
305     // Yup, loop through and nuke the PHI nodes
306     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
307       // Remove the predecessor first.
308       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
309 
310       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
311       if (max_idx == 2) {
312         if (PN->getIncomingValue(0) != PN)
313           PN->replaceAllUsesWith(PN->getIncomingValue(0));
314         else
315           // We are left with an infinite loop with no entries: kill the PHI.
316           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
317         getInstList().pop_front();    // Remove the PHI node
318       }
319 
320       // If the PHI node already only had one entry, it got deleted by
321       // removeIncomingValue.
322     }
323   } else {
324     // Okay, now we know that we need to remove predecessor #pred_idx from all
325     // PHI nodes.  Iterate over each PHI node fixing them up
326     PHINode *PN;
327     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
328       ++II;
329       PN->removeIncomingValue(Pred, false);
330       // If all incoming values to the Phi are the same, we can replace the Phi
331       // with that value.
332       Value* PNV = nullptr;
333       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
334         if (PNV != PN) {
335           PN->replaceAllUsesWith(PNV);
336           PN->eraseFromParent();
337         }
338     }
339   }
340 }
341 
342 bool BasicBlock::canSplitPredecessors() const {
343   const Instruction *FirstNonPHI = getFirstNonPHI();
344   if (isa<LandingPadInst>(FirstNonPHI))
345     return true;
346   // This is perhaps a little conservative because constructs like
347   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
348   // cannot handle such things just yet.
349   if (FirstNonPHI->isEHPad())
350     return false;
351   return true;
352 }
353 
354 /// This splits a basic block into two at the specified
355 /// instruction.  Note that all instructions BEFORE the specified iterator stay
356 /// as part of the original basic block, an unconditional branch is added to
357 /// the new BB, and the rest of the instructions in the BB are moved to the new
358 /// BB, including the old terminator.  This invalidates the iterator.
359 ///
360 /// Note that this only works on well formed basic blocks (must have a
361 /// terminator), and 'I' must not be the end of instruction list (which would
362 /// cause a degenerate basic block to be formed, having a terminator inside of
363 /// the basic block).
364 ///
365 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
366   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
367   assert(I != InstList.end() &&
368          "Trying to get me to create degenerate basic block!");
369 
370   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
371                                        this->getNextNode());
372 
373   // Save DebugLoc of split point before invalidating iterator.
374   DebugLoc Loc = I->getDebugLoc();
375   // Move all of the specified instructions from the original basic block into
376   // the new basic block.
377   New->getInstList().splice(New->end(), this->getInstList(), I, end());
378 
379   // Add a branch instruction to the newly formed basic block.
380   BranchInst *BI = BranchInst::Create(New, this);
381   BI->setDebugLoc(Loc);
382 
383   // Now we must loop through all of the successors of the New block (which
384   // _were_ the successors of the 'this' block), and update any PHI nodes in
385   // successors.  If there were PHI nodes in the successors, then they need to
386   // know that incoming branches will be from New, not from Old.
387   //
388   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
389     // Loop over any phi nodes in the basic block, updating the BB field of
390     // incoming values...
391     BasicBlock *Successor = *I;
392     PHINode *PN;
393     for (BasicBlock::iterator II = Successor->begin();
394          (PN = dyn_cast<PHINode>(II)); ++II) {
395       int IDX = PN->getBasicBlockIndex(this);
396       while (IDX != -1) {
397         PN->setIncomingBlock((unsigned)IDX, New);
398         IDX = PN->getBasicBlockIndex(this);
399       }
400     }
401   }
402   return New;
403 }
404 
405 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
406   TerminatorInst *TI = getTerminator();
407   if (!TI)
408     // Cope with being called on a BasicBlock that doesn't have a terminator
409     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
410     return;
411   for (BasicBlock *Succ : TI->successors()) {
412     // N.B. Succ might not be a complete BasicBlock, so don't assume
413     // that it ends with a non-phi instruction.
414     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
415       PHINode *PN = dyn_cast<PHINode>(II);
416       if (!PN)
417         break;
418       int i;
419       while ((i = PN->getBasicBlockIndex(this)) >= 0)
420         PN->setIncomingBlock(i, New);
421     }
422   }
423 }
424 
425 /// Return true if this basic block is a landing pad. I.e., it's
426 /// the destination of the 'unwind' edge of an invoke instruction.
427 bool BasicBlock::isLandingPad() const {
428   return isa<LandingPadInst>(getFirstNonPHI());
429 }
430 
431 /// Return the landingpad instruction associated with the landing pad.
432 LandingPadInst *BasicBlock::getLandingPadInst() {
433   return dyn_cast<LandingPadInst>(getFirstNonPHI());
434 }
435 const LandingPadInst *BasicBlock::getLandingPadInst() const {
436   return dyn_cast<LandingPadInst>(getFirstNonPHI());
437 }
438