1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BasicBlock class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/BasicBlock.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/IR/CFG.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Type.h"
22 #include <algorithm>
23 
24 using namespace llvm;
25 
26 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
27   if (Function *F = getParent())
28     return F->getValueSymbolTable();
29   return nullptr;
30 }
31 
32 LLVMContext &BasicBlock::getContext() const {
33   return getType()->getContext();
34 }
35 
36 // Explicit instantiation of SymbolTableListTraits since some of the methods
37 // are not in the public header file...
38 template class llvm::SymbolTableListTraits<Instruction>;
39 
40 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
41                        BasicBlock *InsertBefore)
42   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
43 
44   if (NewParent)
45     insertInto(NewParent, InsertBefore);
46   else
47     assert(!InsertBefore &&
48            "Cannot insert block before another block with no function!");
49 
50   setName(Name);
51 }
52 
53 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
54   assert(NewParent && "Expected a parent");
55   assert(!Parent && "Already has a parent");
56 
57   if (InsertBefore)
58     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
59   else
60     NewParent->getBasicBlockList().push_back(this);
61 }
62 
63 BasicBlock::~BasicBlock() {
64   // If the address of the block is taken and it is being deleted (e.g. because
65   // it is dead), this means that there is either a dangling constant expr
66   // hanging off the block, or an undefined use of the block (source code
67   // expecting the address of a label to keep the block alive even though there
68   // is no indirect branch).  Handle these cases by zapping the BlockAddress
69   // nodes.  There are no other possible uses at this point.
70   if (hasAddressTaken()) {
71     assert(!use_empty() && "There should be at least one blockaddress!");
72     Constant *Replacement =
73       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
74     while (!use_empty()) {
75       BlockAddress *BA = cast<BlockAddress>(user_back());
76       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
77                                                        BA->getType()));
78       BA->destroyConstant();
79     }
80   }
81 
82   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
83   dropAllReferences();
84   InstList.clear();
85 }
86 
87 void BasicBlock::setParent(Function *parent) {
88   // Set Parent=parent, updating instruction symtab entries as appropriate.
89   InstList.setSymTabObject(&Parent, parent);
90 }
91 
92 iterator_range<filter_iterator<BasicBlock::const_iterator,
93                                std::function<bool(const Instruction &)>>>
94 BasicBlock::instructionsWithoutDebug() const {
95   std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
96     return !isa<DbgInfoIntrinsic>(I);
97   };
98   return make_filter_range(*this, Fn);
99 }
100 
101 iterator_range<filter_iterator<BasicBlock::iterator,
102                                std::function<bool(Instruction &)>>>
103 BasicBlock::instructionsWithoutDebug() {
104   std::function<bool(Instruction &)> Fn = [](Instruction &I) {
105     return !isa<DbgInfoIntrinsic>(I);
106   };
107   return make_filter_range(*this, Fn);
108 }
109 
110 filter_iterator<BasicBlock::const_iterator,
111                 std::function<bool(const Instruction &)>>::difference_type
112 BasicBlock::sizeWithoutDebug() const {
113   return std::distance(instructionsWithoutDebug().begin(),
114                        instructionsWithoutDebug().end());
115 }
116 
117 void BasicBlock::removeFromParent() {
118   getParent()->getBasicBlockList().remove(getIterator());
119 }
120 
121 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
122   return getParent()->getBasicBlockList().erase(getIterator());
123 }
124 
125 /// Unlink this basic block from its current function and
126 /// insert it into the function that MovePos lives in, right before MovePos.
127 void BasicBlock::moveBefore(BasicBlock *MovePos) {
128   MovePos->getParent()->getBasicBlockList().splice(
129       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
130 }
131 
132 /// Unlink this basic block from its current function and
133 /// insert it into the function that MovePos lives in, right after MovePos.
134 void BasicBlock::moveAfter(BasicBlock *MovePos) {
135   MovePos->getParent()->getBasicBlockList().splice(
136       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
137       getIterator());
138 }
139 
140 const Module *BasicBlock::getModule() const {
141   return getParent()->getParent();
142 }
143 
144 const Instruction *BasicBlock::getTerminator() const {
145   if (InstList.empty() || !InstList.back().isTerminator())
146     return nullptr;
147   return &InstList.back();
148 }
149 
150 const CallInst *BasicBlock::getTerminatingMustTailCall() const {
151   if (InstList.empty())
152     return nullptr;
153   const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
154   if (!RI || RI == &InstList.front())
155     return nullptr;
156 
157   const Instruction *Prev = RI->getPrevNode();
158   if (!Prev)
159     return nullptr;
160 
161   if (Value *RV = RI->getReturnValue()) {
162     if (RV != Prev)
163       return nullptr;
164 
165     // Look through the optional bitcast.
166     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
167       RV = BI->getOperand(0);
168       Prev = BI->getPrevNode();
169       if (!Prev || RV != Prev)
170         return nullptr;
171     }
172   }
173 
174   if (auto *CI = dyn_cast<CallInst>(Prev)) {
175     if (CI->isMustTailCall())
176       return CI;
177   }
178   return nullptr;
179 }
180 
181 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
182   if (InstList.empty())
183     return nullptr;
184   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
185   if (!RI || RI == &InstList.front())
186     return nullptr;
187 
188   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
189     if (Function *F = CI->getCalledFunction())
190       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
191         return CI;
192 
193   return nullptr;
194 }
195 
196 const CallInst *BasicBlock::getPostdominatingDeoptimizeCall() const {
197   const BasicBlock* BB = this;
198   while (BB->getUniqueSuccessor())
199     BB = BB->getUniqueSuccessor();
200   return BB->getTerminatingDeoptimizeCall();
201 }
202 
203 const Instruction* BasicBlock::getFirstNonPHI() const {
204   for (const Instruction &I : *this)
205     if (!isa<PHINode>(I))
206       return &I;
207   return nullptr;
208 }
209 
210 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
211   for (const Instruction &I : *this)
212     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
213       return &I;
214   return nullptr;
215 }
216 
217 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
218   for (const Instruction &I : *this) {
219     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
220       continue;
221 
222     if (I.isLifetimeStartOrEnd())
223       continue;
224 
225     return &I;
226   }
227   return nullptr;
228 }
229 
230 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
231   const Instruction *FirstNonPHI = getFirstNonPHI();
232   if (!FirstNonPHI)
233     return end();
234 
235   const_iterator InsertPt = FirstNonPHI->getIterator();
236   if (InsertPt->isEHPad()) ++InsertPt;
237   return InsertPt;
238 }
239 
240 void BasicBlock::dropAllReferences() {
241   for (Instruction &I : *this)
242     I.dropAllReferences();
243 }
244 
245 /// If this basic block has a single predecessor block,
246 /// return the block, otherwise return a null pointer.
247 const BasicBlock *BasicBlock::getSinglePredecessor() const {
248   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
249   if (PI == E) return nullptr;         // No preds.
250   const BasicBlock *ThePred = *PI;
251   ++PI;
252   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
253 }
254 
255 /// If this basic block has a unique predecessor block,
256 /// return the block, otherwise return a null pointer.
257 /// Note that unique predecessor doesn't mean single edge, there can be
258 /// multiple edges from the unique predecessor to this block (for example
259 /// a switch statement with multiple cases having the same destination).
260 const BasicBlock *BasicBlock::getUniquePredecessor() const {
261   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
262   if (PI == E) return nullptr; // No preds.
263   const BasicBlock *PredBB = *PI;
264   ++PI;
265   for (;PI != E; ++PI) {
266     if (*PI != PredBB)
267       return nullptr;
268     // The same predecessor appears multiple times in the predecessor list.
269     // This is OK.
270   }
271   return PredBB;
272 }
273 
274 bool BasicBlock::hasNPredecessors(unsigned N) const {
275   return hasNItems(pred_begin(this), pred_end(this), N);
276 }
277 
278 bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const {
279   return hasNItemsOrMore(pred_begin(this), pred_end(this), N);
280 }
281 
282 const BasicBlock *BasicBlock::getSingleSuccessor() const {
283   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
284   if (SI == E) return nullptr; // no successors
285   const BasicBlock *TheSucc = *SI;
286   ++SI;
287   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
288 }
289 
290 const BasicBlock *BasicBlock::getUniqueSuccessor() const {
291   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
292   if (SI == E) return nullptr; // No successors
293   const BasicBlock *SuccBB = *SI;
294   ++SI;
295   for (;SI != E; ++SI) {
296     if (*SI != SuccBB)
297       return nullptr;
298     // The same successor appears multiple times in the successor list.
299     // This is OK.
300   }
301   return SuccBB;
302 }
303 
304 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
305   PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
306   return make_range<phi_iterator>(P, nullptr);
307 }
308 
309 /// This method is used to notify a BasicBlock that the
310 /// specified Predecessor of the block is no longer able to reach it.  This is
311 /// actually not used to update the Predecessor list, but is actually used to
312 /// update the PHI nodes that reside in the block.  Note that this should be
313 /// called while the predecessor still refers to this block.
314 ///
315 void BasicBlock::removePredecessor(BasicBlock *Pred,
316                                    bool KeepOneInputPHIs) {
317   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
318           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
319          "removePredecessor: BB is not a predecessor!");
320 
321   if (InstList.empty()) return;
322   PHINode *APN = dyn_cast<PHINode>(&front());
323   if (!APN) return;   // Quick exit.
324 
325   // If there are exactly two predecessors, then we want to nuke the PHI nodes
326   // altogether.  However, we cannot do this, if this in this case:
327   //
328   //  Loop:
329   //    %x = phi [X, Loop]
330   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
331   //    br Loop                 ;; %x2 does not dominate all uses
332   //
333   // This is because the PHI node input is actually taken from the predecessor
334   // basic block.  The only case this can happen is with a self loop, so we
335   // check for this case explicitly now.
336   //
337   unsigned max_idx = APN->getNumIncomingValues();
338   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
339   if (max_idx == 2) {
340     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
341 
342     // Disable PHI elimination!
343     if (this == Other) max_idx = 3;
344   }
345 
346   // <= Two predecessors BEFORE I remove one?
347   if (max_idx <= 2 && !KeepOneInputPHIs) {
348     // Yup, loop through and nuke the PHI nodes
349     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
350       // Remove the predecessor first.
351       PN->removeIncomingValue(Pred, !KeepOneInputPHIs);
352 
353       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
354       if (max_idx == 2) {
355         if (PN->getIncomingValue(0) != PN)
356           PN->replaceAllUsesWith(PN->getIncomingValue(0));
357         else
358           // We are left with an infinite loop with no entries: kill the PHI.
359           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
360         getInstList().pop_front();    // Remove the PHI node
361       }
362 
363       // If the PHI node already only had one entry, it got deleted by
364       // removeIncomingValue.
365     }
366   } else {
367     // Okay, now we know that we need to remove predecessor #pred_idx from all
368     // PHI nodes.  Iterate over each PHI node fixing them up
369     PHINode *PN;
370     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
371       ++II;
372       PN->removeIncomingValue(Pred, false);
373       // If all incoming values to the Phi are the same, we can replace the Phi
374       // with that value.
375       Value* PNV = nullptr;
376       if (!KeepOneInputPHIs && (PNV = PN->hasConstantValue()))
377         if (PNV != PN) {
378           PN->replaceAllUsesWith(PNV);
379           PN->eraseFromParent();
380         }
381     }
382   }
383 }
384 
385 bool BasicBlock::canSplitPredecessors() const {
386   const Instruction *FirstNonPHI = getFirstNonPHI();
387   if (isa<LandingPadInst>(FirstNonPHI))
388     return true;
389   // This is perhaps a little conservative because constructs like
390   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
391   // cannot handle such things just yet.
392   if (FirstNonPHI->isEHPad())
393     return false;
394   return true;
395 }
396 
397 bool BasicBlock::isLegalToHoistInto() const {
398   auto *Term = getTerminator();
399   // No terminator means the block is under construction.
400   if (!Term)
401     return true;
402 
403   // If the block has no successors, there can be no instructions to hoist.
404   assert(Term->getNumSuccessors() > 0);
405 
406   // Instructions should not be hoisted across exception handling boundaries.
407   return !Term->isExceptionalTerminator();
408 }
409 
410 /// This splits a basic block into two at the specified
411 /// instruction.  Note that all instructions BEFORE the specified iterator stay
412 /// as part of the original basic block, an unconditional branch is added to
413 /// the new BB, and the rest of the instructions in the BB are moved to the new
414 /// BB, including the old terminator.  This invalidates the iterator.
415 ///
416 /// Note that this only works on well formed basic blocks (must have a
417 /// terminator), and 'I' must not be the end of instruction list (which would
418 /// cause a degenerate basic block to be formed, having a terminator inside of
419 /// the basic block).
420 ///
421 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
422   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
423   assert(I != InstList.end() &&
424          "Trying to get me to create degenerate basic block!");
425 
426   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
427                                        this->getNextNode());
428 
429   // Save DebugLoc of split point before invalidating iterator.
430   DebugLoc Loc = I->getDebugLoc();
431   // Move all of the specified instructions from the original basic block into
432   // the new basic block.
433   New->getInstList().splice(New->end(), this->getInstList(), I, end());
434 
435   // Add a branch instruction to the newly formed basic block.
436   BranchInst *BI = BranchInst::Create(New, this);
437   BI->setDebugLoc(Loc);
438 
439   // Now we must loop through all of the successors of the New block (which
440   // _were_ the successors of the 'this' block), and update any PHI nodes in
441   // successors.  If there were PHI nodes in the successors, then they need to
442   // know that incoming branches will be from New, not from Old (this).
443   //
444   New->replaceSuccessorsPhiUsesWith(this, New);
445   return New;
446 }
447 
448 void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) {
449   // N.B. This might not be a complete BasicBlock, so don't assume
450   // that it ends with a non-phi instruction.
451   for (iterator II = begin(), IE = end(); II != IE; ++II) {
452     PHINode *PN = dyn_cast<PHINode>(II);
453     if (!PN)
454       break;
455     PN->replaceIncomingBlockWith(Old, New);
456   }
457 }
458 
459 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old,
460                                               BasicBlock *New) {
461   Instruction *TI = getTerminator();
462   if (!TI)
463     // Cope with being called on a BasicBlock that doesn't have a terminator
464     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
465     return;
466   llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) {
467     Succ->replacePhiUsesWith(Old, New);
468   });
469 }
470 
471 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
472   this->replaceSuccessorsPhiUsesWith(this, New);
473 }
474 
475 /// Return true if this basic block is a landing pad. I.e., it's
476 /// the destination of the 'unwind' edge of an invoke instruction.
477 bool BasicBlock::isLandingPad() const {
478   return isa<LandingPadInst>(getFirstNonPHI());
479 }
480 
481 /// Return the landingpad instruction associated with the landing pad.
482 const LandingPadInst *BasicBlock::getLandingPadInst() const {
483   return dyn_cast<LandingPadInst>(getFirstNonPHI());
484 }
485 
486 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
487   const Instruction *TI = getTerminator();
488   if (MDNode *MDIrrLoopHeader =
489       TI->getMetadata(LLVMContext::MD_irr_loop)) {
490     MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
491     if (MDName->getString().equals("loop_header_weight")) {
492       auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
493       return Optional<uint64_t>(CI->getValue().getZExtValue());
494     }
495   }
496   return Optional<uint64_t>();
497 }
498 
499 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
500   while (isa<DbgInfoIntrinsic>(It))
501     ++It;
502   return It;
503 }
504