1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BasicBlock class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/BasicBlock.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/IR/CFG.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Type.h" 22 #include <algorithm> 23 24 using namespace llvm; 25 26 ValueSymbolTable *BasicBlock::getValueSymbolTable() { 27 if (Function *F = getParent()) 28 return F->getValueSymbolTable(); 29 return nullptr; 30 } 31 32 LLVMContext &BasicBlock::getContext() const { 33 return getType()->getContext(); 34 } 35 36 template <> void llvm::invalidateParentIListOrdering(BasicBlock *BB) { 37 BB->invalidateOrders(); 38 } 39 40 // Explicit instantiation of SymbolTableListTraits since some of the methods 41 // are not in the public header file... 42 template class llvm::SymbolTableListTraits<Instruction>; 43 44 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, 45 BasicBlock *InsertBefore) 46 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { 47 48 if (NewParent) 49 insertInto(NewParent, InsertBefore); 50 else 51 assert(!InsertBefore && 52 "Cannot insert block before another block with no function!"); 53 54 setName(Name); 55 } 56 57 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { 58 assert(NewParent && "Expected a parent"); 59 assert(!Parent && "Already has a parent"); 60 61 if (InsertBefore) 62 NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); 63 else 64 NewParent->getBasicBlockList().push_back(this); 65 } 66 67 BasicBlock::~BasicBlock() { 68 validateInstrOrdering(); 69 70 // If the address of the block is taken and it is being deleted (e.g. because 71 // it is dead), this means that there is either a dangling constant expr 72 // hanging off the block, or an undefined use of the block (source code 73 // expecting the address of a label to keep the block alive even though there 74 // is no indirect branch). Handle these cases by zapping the BlockAddress 75 // nodes. There are no other possible uses at this point. 76 if (hasAddressTaken()) { 77 assert(!use_empty() && "There should be at least one blockaddress!"); 78 Constant *Replacement = 79 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); 80 while (!use_empty()) { 81 BlockAddress *BA = cast<BlockAddress>(user_back()); 82 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 83 BA->getType())); 84 BA->destroyConstant(); 85 } 86 } 87 88 assert(getParent() == nullptr && "BasicBlock still linked into the program!"); 89 dropAllReferences(); 90 InstList.clear(); 91 } 92 93 void BasicBlock::setParent(Function *parent) { 94 // Set Parent=parent, updating instruction symtab entries as appropriate. 95 InstList.setSymTabObject(&Parent, parent); 96 } 97 98 iterator_range<filter_iterator<BasicBlock::const_iterator, 99 std::function<bool(const Instruction &)>>> 100 BasicBlock::instructionsWithoutDebug(bool SkipPseudoOp) const { 101 std::function<bool(const Instruction &)> Fn = [=](const Instruction &I) { 102 return !isa<DbgInfoIntrinsic>(I) && 103 !(SkipPseudoOp && isa<PseudoProbeInst>(I)); 104 }; 105 return make_filter_range(*this, Fn); 106 } 107 108 iterator_range< 109 filter_iterator<BasicBlock::iterator, std::function<bool(Instruction &)>>> 110 BasicBlock::instructionsWithoutDebug(bool SkipPseudoOp) { 111 std::function<bool(Instruction &)> Fn = [=](Instruction &I) { 112 return !isa<DbgInfoIntrinsic>(I) && 113 !(SkipPseudoOp && isa<PseudoProbeInst>(I)); 114 }; 115 return make_filter_range(*this, Fn); 116 } 117 118 filter_iterator<BasicBlock::const_iterator, 119 std::function<bool(const Instruction &)>>::difference_type 120 BasicBlock::sizeWithoutDebug() const { 121 return std::distance(instructionsWithoutDebug().begin(), 122 instructionsWithoutDebug().end()); 123 } 124 125 void BasicBlock::removeFromParent() { 126 getParent()->getBasicBlockList().remove(getIterator()); 127 } 128 129 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { 130 return getParent()->getBasicBlockList().erase(getIterator()); 131 } 132 133 /// Unlink this basic block from its current function and 134 /// insert it into the function that MovePos lives in, right before MovePos. 135 void BasicBlock::moveBefore(BasicBlock *MovePos) { 136 MovePos->getParent()->getBasicBlockList().splice( 137 MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); 138 } 139 140 /// Unlink this basic block from its current function and 141 /// insert it into the function that MovePos lives in, right after MovePos. 142 void BasicBlock::moveAfter(BasicBlock *MovePos) { 143 MovePos->getParent()->getBasicBlockList().splice( 144 ++MovePos->getIterator(), getParent()->getBasicBlockList(), 145 getIterator()); 146 } 147 148 const Module *BasicBlock::getModule() const { 149 return getParent()->getParent(); 150 } 151 152 const Instruction *BasicBlock::getTerminator() const { 153 if (InstList.empty() || !InstList.back().isTerminator()) 154 return nullptr; 155 return &InstList.back(); 156 } 157 158 const CallInst *BasicBlock::getTerminatingMustTailCall() const { 159 if (InstList.empty()) 160 return nullptr; 161 const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); 162 if (!RI || RI == &InstList.front()) 163 return nullptr; 164 165 const Instruction *Prev = RI->getPrevNode(); 166 if (!Prev) 167 return nullptr; 168 169 if (Value *RV = RI->getReturnValue()) { 170 if (RV != Prev) 171 return nullptr; 172 173 // Look through the optional bitcast. 174 if (auto *BI = dyn_cast<BitCastInst>(Prev)) { 175 RV = BI->getOperand(0); 176 Prev = BI->getPrevNode(); 177 if (!Prev || RV != Prev) 178 return nullptr; 179 } 180 } 181 182 if (auto *CI = dyn_cast<CallInst>(Prev)) { 183 if (CI->isMustTailCall()) 184 return CI; 185 } 186 return nullptr; 187 } 188 189 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const { 190 if (InstList.empty()) 191 return nullptr; 192 auto *RI = dyn_cast<ReturnInst>(&InstList.back()); 193 if (!RI || RI == &InstList.front()) 194 return nullptr; 195 196 if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode())) 197 if (Function *F = CI->getCalledFunction()) 198 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) 199 return CI; 200 201 return nullptr; 202 } 203 204 const CallInst *BasicBlock::getPostdominatingDeoptimizeCall() const { 205 const BasicBlock* BB = this; 206 SmallPtrSet<const BasicBlock *, 8> Visited; 207 Visited.insert(BB); 208 while (auto *Succ = BB->getUniqueSuccessor()) { 209 if (!Visited.insert(Succ).second) 210 return nullptr; 211 BB = Succ; 212 } 213 return BB->getTerminatingDeoptimizeCall(); 214 } 215 216 const Instruction* BasicBlock::getFirstNonPHI() const { 217 for (const Instruction &I : *this) 218 if (!isa<PHINode>(I)) 219 return &I; 220 return nullptr; 221 } 222 223 const Instruction *BasicBlock::getFirstNonPHIOrDbg(bool SkipPseudoOp) const { 224 for (const Instruction &I : *this) { 225 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) 226 continue; 227 228 if (SkipPseudoOp && isa<PseudoProbeInst>(I)) 229 continue; 230 231 return &I; 232 } 233 return nullptr; 234 } 235 236 const Instruction * 237 BasicBlock::getFirstNonPHIOrDbgOrLifetime(bool SkipPseudoOp) const { 238 for (const Instruction &I : *this) { 239 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) 240 continue; 241 242 if (I.isLifetimeStartOrEnd()) 243 continue; 244 245 if (SkipPseudoOp && isa<PseudoProbeInst>(I)) 246 continue; 247 248 return &I; 249 } 250 return nullptr; 251 } 252 253 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const { 254 const Instruction *FirstNonPHI = getFirstNonPHI(); 255 if (!FirstNonPHI) 256 return end(); 257 258 const_iterator InsertPt = FirstNonPHI->getIterator(); 259 if (InsertPt->isEHPad()) ++InsertPt; 260 return InsertPt; 261 } 262 263 void BasicBlock::dropAllReferences() { 264 for (Instruction &I : *this) 265 I.dropAllReferences(); 266 } 267 268 /// If this basic block has a single predecessor block, 269 /// return the block, otherwise return a null pointer. 270 const BasicBlock *BasicBlock::getSinglePredecessor() const { 271 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 272 if (PI == E) return nullptr; // No preds. 273 const BasicBlock *ThePred = *PI; 274 ++PI; 275 return (PI == E) ? ThePred : nullptr /*multiple preds*/; 276 } 277 278 /// If this basic block has a unique predecessor block, 279 /// return the block, otherwise return a null pointer. 280 /// Note that unique predecessor doesn't mean single edge, there can be 281 /// multiple edges from the unique predecessor to this block (for example 282 /// a switch statement with multiple cases having the same destination). 283 const BasicBlock *BasicBlock::getUniquePredecessor() const { 284 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 285 if (PI == E) return nullptr; // No preds. 286 const BasicBlock *PredBB = *PI; 287 ++PI; 288 for (;PI != E; ++PI) { 289 if (*PI != PredBB) 290 return nullptr; 291 // The same predecessor appears multiple times in the predecessor list. 292 // This is OK. 293 } 294 return PredBB; 295 } 296 297 bool BasicBlock::hasNPredecessors(unsigned N) const { 298 return hasNItems(pred_begin(this), pred_end(this), N); 299 } 300 301 bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const { 302 return hasNItemsOrMore(pred_begin(this), pred_end(this), N); 303 } 304 305 const BasicBlock *BasicBlock::getSingleSuccessor() const { 306 const_succ_iterator SI = succ_begin(this), E = succ_end(this); 307 if (SI == E) return nullptr; // no successors 308 const BasicBlock *TheSucc = *SI; 309 ++SI; 310 return (SI == E) ? TheSucc : nullptr /* multiple successors */; 311 } 312 313 const BasicBlock *BasicBlock::getUniqueSuccessor() const { 314 const_succ_iterator SI = succ_begin(this), E = succ_end(this); 315 if (SI == E) return nullptr; // No successors 316 const BasicBlock *SuccBB = *SI; 317 ++SI; 318 for (;SI != E; ++SI) { 319 if (*SI != SuccBB) 320 return nullptr; 321 // The same successor appears multiple times in the successor list. 322 // This is OK. 323 } 324 return SuccBB; 325 } 326 327 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() { 328 PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin()); 329 return make_range<phi_iterator>(P, nullptr); 330 } 331 332 /// Update PHI nodes in this BasicBlock before removal of predecessor \p Pred. 333 /// Note that this function does not actually remove the predecessor. 334 /// 335 /// If \p KeepOneInputPHIs is true then don't remove PHIs that are left with 336 /// zero or one incoming values, and don't simplify PHIs with all incoming 337 /// values the same. 338 void BasicBlock::removePredecessor(BasicBlock *Pred, 339 bool KeepOneInputPHIs) { 340 // Use hasNUsesOrMore to bound the cost of this assertion for complex CFGs. 341 assert((hasNUsesOrMore(16) || llvm::is_contained(predecessors(this), Pred)) && 342 "Pred is not a predecessor!"); 343 344 // Return early if there are no PHI nodes to update. 345 if (!isa<PHINode>(begin())) 346 return; 347 unsigned NumPreds = cast<PHINode>(front()).getNumIncomingValues(); 348 349 // Update all PHI nodes. 350 for (iterator II = begin(); isa<PHINode>(II);) { 351 PHINode *PN = cast<PHINode>(II++); 352 PN->removeIncomingValue(Pred, !KeepOneInputPHIs); 353 if (!KeepOneInputPHIs) { 354 // If we have a single predecessor, removeIncomingValue erased the PHI 355 // node itself. 356 if (NumPreds > 1) { 357 if (Value *PNV = PN->hasConstantValue()) { 358 // Replace the PHI node with its constant value. 359 PN->replaceAllUsesWith(PNV); 360 PN->eraseFromParent(); 361 } 362 } 363 } 364 } 365 } 366 367 bool BasicBlock::canSplitPredecessors() const { 368 const Instruction *FirstNonPHI = getFirstNonPHI(); 369 if (isa<LandingPadInst>(FirstNonPHI)) 370 return true; 371 // This is perhaps a little conservative because constructs like 372 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors 373 // cannot handle such things just yet. 374 if (FirstNonPHI->isEHPad()) 375 return false; 376 return true; 377 } 378 379 bool BasicBlock::isLegalToHoistInto() const { 380 auto *Term = getTerminator(); 381 // No terminator means the block is under construction. 382 if (!Term) 383 return true; 384 385 // If the block has no successors, there can be no instructions to hoist. 386 assert(Term->getNumSuccessors() > 0); 387 388 // Instructions should not be hoisted across exception handling boundaries. 389 return !Term->isExceptionalTerminator(); 390 } 391 392 /// This splits a basic block into two at the specified 393 /// instruction. Note that all instructions BEFORE the specified iterator stay 394 /// as part of the original basic block, an unconditional branch is added to 395 /// the new BB, and the rest of the instructions in the BB are moved to the new 396 /// BB, including the old terminator. This invalidates the iterator. 397 /// 398 /// Note that this only works on well formed basic blocks (must have a 399 /// terminator), and 'I' must not be the end of instruction list (which would 400 /// cause a degenerate basic block to be formed, having a terminator inside of 401 /// the basic block). 402 /// 403 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { 404 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); 405 assert(I != InstList.end() && 406 "Trying to get me to create degenerate basic block!"); 407 408 BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), 409 this->getNextNode()); 410 411 // Save DebugLoc of split point before invalidating iterator. 412 DebugLoc Loc = I->getDebugLoc(); 413 // Move all of the specified instructions from the original basic block into 414 // the new basic block. 415 New->getInstList().splice(New->end(), this->getInstList(), I, end()); 416 417 // Add a branch instruction to the newly formed basic block. 418 BranchInst *BI = BranchInst::Create(New, this); 419 BI->setDebugLoc(Loc); 420 421 // Now we must loop through all of the successors of the New block (which 422 // _were_ the successors of the 'this' block), and update any PHI nodes in 423 // successors. If there were PHI nodes in the successors, then they need to 424 // know that incoming branches will be from New, not from Old (this). 425 // 426 New->replaceSuccessorsPhiUsesWith(this, New); 427 return New; 428 } 429 430 void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) { 431 // N.B. This might not be a complete BasicBlock, so don't assume 432 // that it ends with a non-phi instruction. 433 for (iterator II = begin(), IE = end(); II != IE; ++II) { 434 PHINode *PN = dyn_cast<PHINode>(II); 435 if (!PN) 436 break; 437 PN->replaceIncomingBlockWith(Old, New); 438 } 439 } 440 441 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old, 442 BasicBlock *New) { 443 Instruction *TI = getTerminator(); 444 if (!TI) 445 // Cope with being called on a BasicBlock that doesn't have a terminator 446 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. 447 return; 448 llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) { 449 Succ->replacePhiUsesWith(Old, New); 450 }); 451 } 452 453 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { 454 this->replaceSuccessorsPhiUsesWith(this, New); 455 } 456 457 /// Return true if this basic block is a landing pad. I.e., it's 458 /// the destination of the 'unwind' edge of an invoke instruction. 459 bool BasicBlock::isLandingPad() const { 460 return isa<LandingPadInst>(getFirstNonPHI()); 461 } 462 463 /// Return the landingpad instruction associated with the landing pad. 464 const LandingPadInst *BasicBlock::getLandingPadInst() const { 465 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 466 } 467 468 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const { 469 const Instruction *TI = getTerminator(); 470 if (MDNode *MDIrrLoopHeader = 471 TI->getMetadata(LLVMContext::MD_irr_loop)) { 472 MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0)); 473 if (MDName->getString().equals("loop_header_weight")) { 474 auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1)); 475 return Optional<uint64_t>(CI->getValue().getZExtValue()); 476 } 477 } 478 return Optional<uint64_t>(); 479 } 480 481 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) { 482 while (isa<DbgInfoIntrinsic>(It)) 483 ++It; 484 return It; 485 } 486 487 void BasicBlock::renumberInstructions() { 488 unsigned Order = 0; 489 for (Instruction &I : *this) 490 I.Order = Order++; 491 492 // Set the bit to indicate that the instruction order valid and cached. 493 BasicBlockBits Bits = getBasicBlockBits(); 494 Bits.InstrOrderValid = true; 495 setBasicBlockBits(Bits); 496 } 497 498 #ifndef NDEBUG 499 /// In asserts builds, this checks the numbering. In non-asserts builds, it 500 /// is defined as a no-op inline function in BasicBlock.h. 501 void BasicBlock::validateInstrOrdering() const { 502 if (!isInstrOrderValid()) 503 return; 504 const Instruction *Prev = nullptr; 505 for (const Instruction &I : *this) { 506 assert((!Prev || Prev->comesBefore(&I)) && 507 "cached instruction ordering is incorrect"); 508 Prev = &I; 509 } 510 } 511 #endif 512