1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BasicBlock class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/BasicBlock.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/IR/CFG.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Type.h" 23 #include <algorithm> 24 25 using namespace llvm; 26 27 ValueSymbolTable *BasicBlock::getValueSymbolTable() { 28 if (Function *F = getParent()) 29 return F->getValueSymbolTable(); 30 return nullptr; 31 } 32 33 LLVMContext &BasicBlock::getContext() const { 34 return getType()->getContext(); 35 } 36 37 // Explicit instantiation of SymbolTableListTraits since some of the methods 38 // are not in the public header file... 39 template class llvm::SymbolTableListTraits<Instruction>; 40 41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, 42 BasicBlock *InsertBefore) 43 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { 44 45 if (NewParent) 46 insertInto(NewParent, InsertBefore); 47 else 48 assert(!InsertBefore && 49 "Cannot insert block before another block with no function!"); 50 51 setName(Name); 52 } 53 54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { 55 assert(NewParent && "Expected a parent"); 56 assert(!Parent && "Already has a parent"); 57 58 if (InsertBefore) 59 NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); 60 else 61 NewParent->getBasicBlockList().push_back(this); 62 } 63 64 BasicBlock::~BasicBlock() { 65 // If the address of the block is taken and it is being deleted (e.g. because 66 // it is dead), this means that there is either a dangling constant expr 67 // hanging off the block, or an undefined use of the block (source code 68 // expecting the address of a label to keep the block alive even though there 69 // is no indirect branch). Handle these cases by zapping the BlockAddress 70 // nodes. There are no other possible uses at this point. 71 if (hasAddressTaken()) { 72 assert(!use_empty() && "There should be at least one blockaddress!"); 73 Constant *Replacement = 74 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); 75 while (!use_empty()) { 76 BlockAddress *BA = cast<BlockAddress>(user_back()); 77 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 78 BA->getType())); 79 BA->destroyConstant(); 80 } 81 } 82 83 assert(getParent() == nullptr && "BasicBlock still linked into the program!"); 84 dropAllReferences(); 85 InstList.clear(); 86 } 87 88 void BasicBlock::setParent(Function *parent) { 89 // Set Parent=parent, updating instruction symtab entries as appropriate. 90 InstList.setSymTabObject(&Parent, parent); 91 } 92 93 iterator_range<filter_iterator<BasicBlock::const_iterator, 94 std::function<bool(const Instruction &)>>> 95 BasicBlock::instructionsWithoutDebug() const { 96 std::function<bool(const Instruction &)> Fn = [](const Instruction &I) { 97 return !isa<DbgInfoIntrinsic>(I); 98 }; 99 return make_filter_range(*this, Fn); 100 } 101 102 iterator_range<filter_iterator<BasicBlock::iterator, 103 std::function<bool(Instruction &)>>> 104 BasicBlock::instructionsWithoutDebug() { 105 std::function<bool(Instruction &)> Fn = [](Instruction &I) { 106 return !isa<DbgInfoIntrinsic>(I); 107 }; 108 return make_filter_range(*this, Fn); 109 } 110 111 void BasicBlock::removeFromParent() { 112 getParent()->getBasicBlockList().remove(getIterator()); 113 } 114 115 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { 116 return getParent()->getBasicBlockList().erase(getIterator()); 117 } 118 119 /// Unlink this basic block from its current function and 120 /// insert it into the function that MovePos lives in, right before MovePos. 121 void BasicBlock::moveBefore(BasicBlock *MovePos) { 122 MovePos->getParent()->getBasicBlockList().splice( 123 MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); 124 } 125 126 /// Unlink this basic block from its current function and 127 /// insert it into the function that MovePos lives in, right after MovePos. 128 void BasicBlock::moveAfter(BasicBlock *MovePos) { 129 MovePos->getParent()->getBasicBlockList().splice( 130 ++MovePos->getIterator(), getParent()->getBasicBlockList(), 131 getIterator()); 132 } 133 134 const Module *BasicBlock::getModule() const { 135 return getParent()->getParent(); 136 } 137 138 const Instruction *BasicBlock::getTerminator() const { 139 if (InstList.empty() || !InstList.back().isTerminator()) 140 return nullptr; 141 return &InstList.back(); 142 } 143 144 const CallInst *BasicBlock::getTerminatingMustTailCall() const { 145 if (InstList.empty()) 146 return nullptr; 147 const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); 148 if (!RI || RI == &InstList.front()) 149 return nullptr; 150 151 const Instruction *Prev = RI->getPrevNode(); 152 if (!Prev) 153 return nullptr; 154 155 if (Value *RV = RI->getReturnValue()) { 156 if (RV != Prev) 157 return nullptr; 158 159 // Look through the optional bitcast. 160 if (auto *BI = dyn_cast<BitCastInst>(Prev)) { 161 RV = BI->getOperand(0); 162 Prev = BI->getPrevNode(); 163 if (!Prev || RV != Prev) 164 return nullptr; 165 } 166 } 167 168 if (auto *CI = dyn_cast<CallInst>(Prev)) { 169 if (CI->isMustTailCall()) 170 return CI; 171 } 172 return nullptr; 173 } 174 175 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const { 176 if (InstList.empty()) 177 return nullptr; 178 auto *RI = dyn_cast<ReturnInst>(&InstList.back()); 179 if (!RI || RI == &InstList.front()) 180 return nullptr; 181 182 if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode())) 183 if (Function *F = CI->getCalledFunction()) 184 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) 185 return CI; 186 187 return nullptr; 188 } 189 190 const Instruction* BasicBlock::getFirstNonPHI() const { 191 for (const Instruction &I : *this) 192 if (!isa<PHINode>(I)) 193 return &I; 194 return nullptr; 195 } 196 197 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const { 198 for (const Instruction &I : *this) 199 if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I)) 200 return &I; 201 return nullptr; 202 } 203 204 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const { 205 for (const Instruction &I : *this) { 206 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) 207 continue; 208 209 if (I.isLifetimeStartOrEnd()) 210 continue; 211 212 return &I; 213 } 214 return nullptr; 215 } 216 217 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const { 218 const Instruction *FirstNonPHI = getFirstNonPHI(); 219 if (!FirstNonPHI) 220 return end(); 221 222 const_iterator InsertPt = FirstNonPHI->getIterator(); 223 if (InsertPt->isEHPad()) ++InsertPt; 224 return InsertPt; 225 } 226 227 void BasicBlock::dropAllReferences() { 228 for (Instruction &I : *this) 229 I.dropAllReferences(); 230 } 231 232 /// If this basic block has a single predecessor block, 233 /// return the block, otherwise return a null pointer. 234 const BasicBlock *BasicBlock::getSinglePredecessor() const { 235 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 236 if (PI == E) return nullptr; // No preds. 237 const BasicBlock *ThePred = *PI; 238 ++PI; 239 return (PI == E) ? ThePred : nullptr /*multiple preds*/; 240 } 241 242 /// If this basic block has a unique predecessor block, 243 /// return the block, otherwise return a null pointer. 244 /// Note that unique predecessor doesn't mean single edge, there can be 245 /// multiple edges from the unique predecessor to this block (for example 246 /// a switch statement with multiple cases having the same destination). 247 const BasicBlock *BasicBlock::getUniquePredecessor() const { 248 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 249 if (PI == E) return nullptr; // No preds. 250 const BasicBlock *PredBB = *PI; 251 ++PI; 252 for (;PI != E; ++PI) { 253 if (*PI != PredBB) 254 return nullptr; 255 // The same predecessor appears multiple times in the predecessor list. 256 // This is OK. 257 } 258 return PredBB; 259 } 260 261 bool BasicBlock::hasNPredecessors(unsigned N) const { 262 return hasNItems(pred_begin(this), pred_end(this), N); 263 } 264 265 bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const { 266 return hasNItemsOrMore(pred_begin(this), pred_end(this), N); 267 } 268 269 const BasicBlock *BasicBlock::getSingleSuccessor() const { 270 succ_const_iterator SI = succ_begin(this), E = succ_end(this); 271 if (SI == E) return nullptr; // no successors 272 const BasicBlock *TheSucc = *SI; 273 ++SI; 274 return (SI == E) ? TheSucc : nullptr /* multiple successors */; 275 } 276 277 const BasicBlock *BasicBlock::getUniqueSuccessor() const { 278 succ_const_iterator SI = succ_begin(this), E = succ_end(this); 279 if (SI == E) return nullptr; // No successors 280 const BasicBlock *SuccBB = *SI; 281 ++SI; 282 for (;SI != E; ++SI) { 283 if (*SI != SuccBB) 284 return nullptr; 285 // The same successor appears multiple times in the successor list. 286 // This is OK. 287 } 288 return SuccBB; 289 } 290 291 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() { 292 PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin()); 293 return make_range<phi_iterator>(P, nullptr); 294 } 295 296 /// This method is used to notify a BasicBlock that the 297 /// specified Predecessor of the block is no longer able to reach it. This is 298 /// actually not used to update the Predecessor list, but is actually used to 299 /// update the PHI nodes that reside in the block. Note that this should be 300 /// called while the predecessor still refers to this block. 301 /// 302 void BasicBlock::removePredecessor(BasicBlock *Pred, 303 bool DontDeleteUselessPHIs) { 304 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. 305 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && 306 "removePredecessor: BB is not a predecessor!"); 307 308 if (InstList.empty()) return; 309 PHINode *APN = dyn_cast<PHINode>(&front()); 310 if (!APN) return; // Quick exit. 311 312 // If there are exactly two predecessors, then we want to nuke the PHI nodes 313 // altogether. However, we cannot do this, if this in this case: 314 // 315 // Loop: 316 // %x = phi [X, Loop] 317 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 318 // br Loop ;; %x2 does not dominate all uses 319 // 320 // This is because the PHI node input is actually taken from the predecessor 321 // basic block. The only case this can happen is with a self loop, so we 322 // check for this case explicitly now. 323 // 324 unsigned max_idx = APN->getNumIncomingValues(); 325 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); 326 if (max_idx == 2) { 327 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); 328 329 // Disable PHI elimination! 330 if (this == Other) max_idx = 3; 331 } 332 333 // <= Two predecessors BEFORE I remove one? 334 if (max_idx <= 2 && !DontDeleteUselessPHIs) { 335 // Yup, loop through and nuke the PHI nodes 336 while (PHINode *PN = dyn_cast<PHINode>(&front())) { 337 // Remove the predecessor first. 338 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); 339 340 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value 341 if (max_idx == 2) { 342 if (PN->getIncomingValue(0) != PN) 343 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 344 else 345 // We are left with an infinite loop with no entries: kill the PHI. 346 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 347 getInstList().pop_front(); // Remove the PHI node 348 } 349 350 // If the PHI node already only had one entry, it got deleted by 351 // removeIncomingValue. 352 } 353 } else { 354 // Okay, now we know that we need to remove predecessor #pred_idx from all 355 // PHI nodes. Iterate over each PHI node fixing them up 356 PHINode *PN; 357 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { 358 ++II; 359 PN->removeIncomingValue(Pred, false); 360 // If all incoming values to the Phi are the same, we can replace the Phi 361 // with that value. 362 Value* PNV = nullptr; 363 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) 364 if (PNV != PN) { 365 PN->replaceAllUsesWith(PNV); 366 PN->eraseFromParent(); 367 } 368 } 369 } 370 } 371 372 bool BasicBlock::canSplitPredecessors() const { 373 const Instruction *FirstNonPHI = getFirstNonPHI(); 374 if (isa<LandingPadInst>(FirstNonPHI)) 375 return true; 376 // This is perhaps a little conservative because constructs like 377 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors 378 // cannot handle such things just yet. 379 if (FirstNonPHI->isEHPad()) 380 return false; 381 return true; 382 } 383 384 bool BasicBlock::isLegalToHoistInto() const { 385 auto *Term = getTerminator(); 386 // No terminator means the block is under construction. 387 if (!Term) 388 return true; 389 390 // If the block has no successors, there can be no instructions to hoist. 391 assert(Term->getNumSuccessors() > 0); 392 393 // Instructions should not be hoisted across exception handling boundaries. 394 return !Term->isExceptionalTerminator(); 395 } 396 397 /// This splits a basic block into two at the specified 398 /// instruction. Note that all instructions BEFORE the specified iterator stay 399 /// as part of the original basic block, an unconditional branch is added to 400 /// the new BB, and the rest of the instructions in the BB are moved to the new 401 /// BB, including the old terminator. This invalidates the iterator. 402 /// 403 /// Note that this only works on well formed basic blocks (must have a 404 /// terminator), and 'I' must not be the end of instruction list (which would 405 /// cause a degenerate basic block to be formed, having a terminator inside of 406 /// the basic block). 407 /// 408 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { 409 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); 410 assert(I != InstList.end() && 411 "Trying to get me to create degenerate basic block!"); 412 413 BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), 414 this->getNextNode()); 415 416 // Save DebugLoc of split point before invalidating iterator. 417 DebugLoc Loc = I->getDebugLoc(); 418 // Move all of the specified instructions from the original basic block into 419 // the new basic block. 420 New->getInstList().splice(New->end(), this->getInstList(), I, end()); 421 422 // Add a branch instruction to the newly formed basic block. 423 BranchInst *BI = BranchInst::Create(New, this); 424 BI->setDebugLoc(Loc); 425 426 // Now we must loop through all of the successors of the New block (which 427 // _were_ the successors of the 'this' block), and update any PHI nodes in 428 // successors. If there were PHI nodes in the successors, then they need to 429 // know that incoming branches will be from New, not from Old. 430 // 431 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { 432 // Loop over any phi nodes in the basic block, updating the BB field of 433 // incoming values... 434 BasicBlock *Successor = *I; 435 for (auto &PN : Successor->phis()) { 436 int Idx = PN.getBasicBlockIndex(this); 437 while (Idx != -1) { 438 PN.setIncomingBlock((unsigned)Idx, New); 439 Idx = PN.getBasicBlockIndex(this); 440 } 441 } 442 } 443 return New; 444 } 445 446 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { 447 Instruction *TI = getTerminator(); 448 if (!TI) 449 // Cope with being called on a BasicBlock that doesn't have a terminator 450 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. 451 return; 452 for (BasicBlock *Succ : successors(TI)) { 453 // N.B. Succ might not be a complete BasicBlock, so don't assume 454 // that it ends with a non-phi instruction. 455 for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { 456 PHINode *PN = dyn_cast<PHINode>(II); 457 if (!PN) 458 break; 459 int i; 460 while ((i = PN->getBasicBlockIndex(this)) >= 0) 461 PN->setIncomingBlock(i, New); 462 } 463 } 464 } 465 466 /// Return true if this basic block is a landing pad. I.e., it's 467 /// the destination of the 'unwind' edge of an invoke instruction. 468 bool BasicBlock::isLandingPad() const { 469 return isa<LandingPadInst>(getFirstNonPHI()); 470 } 471 472 /// Return the landingpad instruction associated with the landing pad. 473 const LandingPadInst *BasicBlock::getLandingPadInst() const { 474 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 475 } 476 477 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const { 478 const Instruction *TI = getTerminator(); 479 if (MDNode *MDIrrLoopHeader = 480 TI->getMetadata(LLVMContext::MD_irr_loop)) { 481 MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0)); 482 if (MDName->getString().equals("loop_header_weight")) { 483 auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1)); 484 return Optional<uint64_t>(CI->getValue().getZExtValue()); 485 } 486 } 487 return Optional<uint64_t>(); 488 } 489 490 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) { 491 while (isa<DbgInfoIntrinsic>(It)) 492 ++It; 493 return It; 494 } 495