1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
23 #include <algorithm>
24 
25 using namespace llvm;
26 
27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28   if (Function *F = getParent())
29     return F->getValueSymbolTable();
30   return nullptr;
31 }
32 
33 LLVMContext &BasicBlock::getContext() const {
34   return getType()->getContext();
35 }
36 
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction>;
40 
41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
42                        BasicBlock *InsertBefore)
43   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
44 
45   if (NewParent)
46     insertInto(NewParent, InsertBefore);
47   else
48     assert(!InsertBefore &&
49            "Cannot insert block before another block with no function!");
50 
51   setName(Name);
52 }
53 
54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
55   assert(NewParent && "Expected a parent");
56   assert(!Parent && "Already has a parent");
57 
58   if (InsertBefore)
59     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
60   else
61     NewParent->getBasicBlockList().push_back(this);
62 }
63 
64 BasicBlock::~BasicBlock() {
65   // If the address of the block is taken and it is being deleted (e.g. because
66   // it is dead), this means that there is either a dangling constant expr
67   // hanging off the block, or an undefined use of the block (source code
68   // expecting the address of a label to keep the block alive even though there
69   // is no indirect branch).  Handle these cases by zapping the BlockAddress
70   // nodes.  There are no other possible uses at this point.
71   if (hasAddressTaken()) {
72     assert(!use_empty() && "There should be at least one blockaddress!");
73     Constant *Replacement =
74       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75     while (!use_empty()) {
76       BlockAddress *BA = cast<BlockAddress>(user_back());
77       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
78                                                        BA->getType()));
79       BA->destroyConstant();
80     }
81   }
82 
83   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
84   dropAllReferences();
85   InstList.clear();
86 }
87 
88 void BasicBlock::setParent(Function *parent) {
89   // Set Parent=parent, updating instruction symtab entries as appropriate.
90   InstList.setSymTabObject(&Parent, parent);
91 }
92 
93 iterator_range<filter_iterator<BasicBlock::const_iterator,
94                                std::function<bool(const Instruction &)>>>
95 BasicBlock::instructionsWithoutDebug() const {
96   std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
97     return !isa<DbgInfoIntrinsic>(I);
98   };
99   return make_filter_range(*this, Fn);
100 }
101 
102 iterator_range<filter_iterator<BasicBlock::iterator,
103                                std::function<bool(Instruction &)>>>
104 BasicBlock::instructionsWithoutDebug() {
105   std::function<bool(Instruction &)> Fn = [](Instruction &I) {
106     return !isa<DbgInfoIntrinsic>(I);
107   };
108   return make_filter_range(*this, Fn);
109 }
110 
111 void BasicBlock::removeFromParent() {
112   getParent()->getBasicBlockList().remove(getIterator());
113 }
114 
115 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
116   return getParent()->getBasicBlockList().erase(getIterator());
117 }
118 
119 /// Unlink this basic block from its current function and
120 /// insert it into the function that MovePos lives in, right before MovePos.
121 void BasicBlock::moveBefore(BasicBlock *MovePos) {
122   MovePos->getParent()->getBasicBlockList().splice(
123       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
124 }
125 
126 /// Unlink this basic block from its current function and
127 /// insert it into the function that MovePos lives in, right after MovePos.
128 void BasicBlock::moveAfter(BasicBlock *MovePos) {
129   MovePos->getParent()->getBasicBlockList().splice(
130       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
131       getIterator());
132 }
133 
134 const Module *BasicBlock::getModule() const {
135   return getParent()->getParent();
136 }
137 
138 const Instruction *BasicBlock::getTerminator() const {
139   if (InstList.empty() || !InstList.back().isTerminator())
140     return nullptr;
141   return &InstList.back();
142 }
143 
144 const CallInst *BasicBlock::getTerminatingMustTailCall() const {
145   if (InstList.empty())
146     return nullptr;
147   const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
148   if (!RI || RI == &InstList.front())
149     return nullptr;
150 
151   const Instruction *Prev = RI->getPrevNode();
152   if (!Prev)
153     return nullptr;
154 
155   if (Value *RV = RI->getReturnValue()) {
156     if (RV != Prev)
157       return nullptr;
158 
159     // Look through the optional bitcast.
160     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
161       RV = BI->getOperand(0);
162       Prev = BI->getPrevNode();
163       if (!Prev || RV != Prev)
164         return nullptr;
165     }
166   }
167 
168   if (auto *CI = dyn_cast<CallInst>(Prev)) {
169     if (CI->isMustTailCall())
170       return CI;
171   }
172   return nullptr;
173 }
174 
175 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
176   if (InstList.empty())
177     return nullptr;
178   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
179   if (!RI || RI == &InstList.front())
180     return nullptr;
181 
182   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
183     if (Function *F = CI->getCalledFunction())
184       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
185         return CI;
186 
187   return nullptr;
188 }
189 
190 const Instruction* BasicBlock::getFirstNonPHI() const {
191   for (const Instruction &I : *this)
192     if (!isa<PHINode>(I))
193       return &I;
194   return nullptr;
195 }
196 
197 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
198   for (const Instruction &I : *this)
199     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
200       return &I;
201   return nullptr;
202 }
203 
204 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
205   for (const Instruction &I : *this) {
206     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
207       continue;
208 
209     if (auto *II = dyn_cast<IntrinsicInst>(&I))
210       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
211           II->getIntrinsicID() == Intrinsic::lifetime_end)
212         continue;
213 
214     return &I;
215   }
216   return nullptr;
217 }
218 
219 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
220   const Instruction *FirstNonPHI = getFirstNonPHI();
221   if (!FirstNonPHI)
222     return end();
223 
224   const_iterator InsertPt = FirstNonPHI->getIterator();
225   if (InsertPt->isEHPad()) ++InsertPt;
226   return InsertPt;
227 }
228 
229 void BasicBlock::dropAllReferences() {
230   for (Instruction &I : *this)
231     I.dropAllReferences();
232 }
233 
234 /// If this basic block has a single predecessor block,
235 /// return the block, otherwise return a null pointer.
236 const BasicBlock *BasicBlock::getSinglePredecessor() const {
237   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
238   if (PI == E) return nullptr;         // No preds.
239   const BasicBlock *ThePred = *PI;
240   ++PI;
241   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
242 }
243 
244 /// If this basic block has a unique predecessor block,
245 /// return the block, otherwise return a null pointer.
246 /// Note that unique predecessor doesn't mean single edge, there can be
247 /// multiple edges from the unique predecessor to this block (for example
248 /// a switch statement with multiple cases having the same destination).
249 const BasicBlock *BasicBlock::getUniquePredecessor() const {
250   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
251   if (PI == E) return nullptr; // No preds.
252   const BasicBlock *PredBB = *PI;
253   ++PI;
254   for (;PI != E; ++PI) {
255     if (*PI != PredBB)
256       return nullptr;
257     // The same predecessor appears multiple times in the predecessor list.
258     // This is OK.
259   }
260   return PredBB;
261 }
262 
263 const BasicBlock *BasicBlock::getSingleSuccessor() const {
264   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
265   if (SI == E) return nullptr; // no successors
266   const BasicBlock *TheSucc = *SI;
267   ++SI;
268   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
269 }
270 
271 const BasicBlock *BasicBlock::getUniqueSuccessor() const {
272   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
273   if (SI == E) return nullptr; // No successors
274   const BasicBlock *SuccBB = *SI;
275   ++SI;
276   for (;SI != E; ++SI) {
277     if (*SI != SuccBB)
278       return nullptr;
279     // The same successor appears multiple times in the successor list.
280     // This is OK.
281   }
282   return SuccBB;
283 }
284 
285 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
286   PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
287   return make_range<phi_iterator>(P, nullptr);
288 }
289 
290 /// This method is used to notify a BasicBlock that the
291 /// specified Predecessor of the block is no longer able to reach it.  This is
292 /// actually not used to update the Predecessor list, but is actually used to
293 /// update the PHI nodes that reside in the block.  Note that this should be
294 /// called while the predecessor still refers to this block.
295 ///
296 void BasicBlock::removePredecessor(BasicBlock *Pred,
297                                    bool DontDeleteUselessPHIs) {
298   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
299           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
300          "removePredecessor: BB is not a predecessor!");
301 
302   if (InstList.empty()) return;
303   PHINode *APN = dyn_cast<PHINode>(&front());
304   if (!APN) return;   // Quick exit.
305 
306   // If there are exactly two predecessors, then we want to nuke the PHI nodes
307   // altogether.  However, we cannot do this, if this in this case:
308   //
309   //  Loop:
310   //    %x = phi [X, Loop]
311   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
312   //    br Loop                 ;; %x2 does not dominate all uses
313   //
314   // This is because the PHI node input is actually taken from the predecessor
315   // basic block.  The only case this can happen is with a self loop, so we
316   // check for this case explicitly now.
317   //
318   unsigned max_idx = APN->getNumIncomingValues();
319   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
320   if (max_idx == 2) {
321     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
322 
323     // Disable PHI elimination!
324     if (this == Other) max_idx = 3;
325   }
326 
327   // <= Two predecessors BEFORE I remove one?
328   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
329     // Yup, loop through and nuke the PHI nodes
330     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
331       // Remove the predecessor first.
332       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
333 
334       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
335       if (max_idx == 2) {
336         if (PN->getIncomingValue(0) != PN)
337           PN->replaceAllUsesWith(PN->getIncomingValue(0));
338         else
339           // We are left with an infinite loop with no entries: kill the PHI.
340           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
341         getInstList().pop_front();    // Remove the PHI node
342       }
343 
344       // If the PHI node already only had one entry, it got deleted by
345       // removeIncomingValue.
346     }
347   } else {
348     // Okay, now we know that we need to remove predecessor #pred_idx from all
349     // PHI nodes.  Iterate over each PHI node fixing them up
350     PHINode *PN;
351     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
352       ++II;
353       PN->removeIncomingValue(Pred, false);
354       // If all incoming values to the Phi are the same, we can replace the Phi
355       // with that value.
356       Value* PNV = nullptr;
357       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
358         if (PNV != PN) {
359           PN->replaceAllUsesWith(PNV);
360           PN->eraseFromParent();
361         }
362     }
363   }
364 }
365 
366 bool BasicBlock::canSplitPredecessors() const {
367   const Instruction *FirstNonPHI = getFirstNonPHI();
368   if (isa<LandingPadInst>(FirstNonPHI))
369     return true;
370   // This is perhaps a little conservative because constructs like
371   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
372   // cannot handle such things just yet.
373   if (FirstNonPHI->isEHPad())
374     return false;
375   return true;
376 }
377 
378 bool BasicBlock::isLegalToHoistInto() const {
379   auto *Term = getTerminator();
380   // No terminator means the block is under construction.
381   if (!Term)
382     return true;
383 
384   // If the block has no successors, there can be no instructions to hoist.
385   assert(Term->getNumSuccessors() > 0);
386 
387   // Instructions should not be hoisted across exception handling boundaries.
388   return !Term->isExceptionalTerminator();
389 }
390 
391 /// This splits a basic block into two at the specified
392 /// instruction.  Note that all instructions BEFORE the specified iterator stay
393 /// as part of the original basic block, an unconditional branch is added to
394 /// the new BB, and the rest of the instructions in the BB are moved to the new
395 /// BB, including the old terminator.  This invalidates the iterator.
396 ///
397 /// Note that this only works on well formed basic blocks (must have a
398 /// terminator), and 'I' must not be the end of instruction list (which would
399 /// cause a degenerate basic block to be formed, having a terminator inside of
400 /// the basic block).
401 ///
402 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
403   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
404   assert(I != InstList.end() &&
405          "Trying to get me to create degenerate basic block!");
406 
407   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
408                                        this->getNextNode());
409 
410   // Save DebugLoc of split point before invalidating iterator.
411   DebugLoc Loc = I->getDebugLoc();
412   // Move all of the specified instructions from the original basic block into
413   // the new basic block.
414   New->getInstList().splice(New->end(), this->getInstList(), I, end());
415 
416   // Add a branch instruction to the newly formed basic block.
417   BranchInst *BI = BranchInst::Create(New, this);
418   BI->setDebugLoc(Loc);
419 
420   // Now we must loop through all of the successors of the New block (which
421   // _were_ the successors of the 'this' block), and update any PHI nodes in
422   // successors.  If there were PHI nodes in the successors, then they need to
423   // know that incoming branches will be from New, not from Old.
424   //
425   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
426     // Loop over any phi nodes in the basic block, updating the BB field of
427     // incoming values...
428     BasicBlock *Successor = *I;
429     for (auto &PN : Successor->phis()) {
430       int Idx = PN.getBasicBlockIndex(this);
431       while (Idx != -1) {
432         PN.setIncomingBlock((unsigned)Idx, New);
433         Idx = PN.getBasicBlockIndex(this);
434       }
435     }
436   }
437   return New;
438 }
439 
440 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
441   Instruction *TI = getTerminator();
442   if (!TI)
443     // Cope with being called on a BasicBlock that doesn't have a terminator
444     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
445     return;
446   for (BasicBlock *Succ : successors(TI)) {
447     // N.B. Succ might not be a complete BasicBlock, so don't assume
448     // that it ends with a non-phi instruction.
449     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
450       PHINode *PN = dyn_cast<PHINode>(II);
451       if (!PN)
452         break;
453       int i;
454       while ((i = PN->getBasicBlockIndex(this)) >= 0)
455         PN->setIncomingBlock(i, New);
456     }
457   }
458 }
459 
460 /// Return true if this basic block is a landing pad. I.e., it's
461 /// the destination of the 'unwind' edge of an invoke instruction.
462 bool BasicBlock::isLandingPad() const {
463   return isa<LandingPadInst>(getFirstNonPHI());
464 }
465 
466 /// Return the landingpad instruction associated with the landing pad.
467 const LandingPadInst *BasicBlock::getLandingPadInst() const {
468   return dyn_cast<LandingPadInst>(getFirstNonPHI());
469 }
470 
471 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
472   const Instruction *TI = getTerminator();
473   if (MDNode *MDIrrLoopHeader =
474       TI->getMetadata(LLVMContext::MD_irr_loop)) {
475     MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
476     if (MDName->getString().equals("loop_header_weight")) {
477       auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
478       return Optional<uint64_t>(CI->getValue().getZExtValue());
479     }
480   }
481   return Optional<uint64_t>();
482 }
483 
484 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
485   while (isa<DbgInfoIntrinsic>(It))
486     ++It;
487   return It;
488 }
489