1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
23 #include <algorithm>
24 
25 using namespace llvm;
26 
27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28   if (Function *F = getParent())
29     return F->getValueSymbolTable();
30   return nullptr;
31 }
32 
33 LLVMContext &BasicBlock::getContext() const {
34   return getType()->getContext();
35 }
36 
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction>;
40 
41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
42                        BasicBlock *InsertBefore)
43   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
44 
45   if (NewParent)
46     insertInto(NewParent, InsertBefore);
47   else
48     assert(!InsertBefore &&
49            "Cannot insert block before another block with no function!");
50 
51   setName(Name);
52 }
53 
54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
55   assert(NewParent && "Expected a parent");
56   assert(!Parent && "Already has a parent");
57 
58   if (InsertBefore)
59     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
60   else
61     NewParent->getBasicBlockList().push_back(this);
62 }
63 
64 BasicBlock::~BasicBlock() {
65   // If the address of the block is taken and it is being deleted (e.g. because
66   // it is dead), this means that there is either a dangling constant expr
67   // hanging off the block, or an undefined use of the block (source code
68   // expecting the address of a label to keep the block alive even though there
69   // is no indirect branch).  Handle these cases by zapping the BlockAddress
70   // nodes.  There are no other possible uses at this point.
71   if (hasAddressTaken()) {
72     assert(!use_empty() && "There should be at least one blockaddress!");
73     Constant *Replacement =
74       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75     while (!use_empty()) {
76       BlockAddress *BA = cast<BlockAddress>(user_back());
77       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
78                                                        BA->getType()));
79       BA->destroyConstant();
80     }
81   }
82 
83   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
84   dropAllReferences();
85   InstList.clear();
86 }
87 
88 void BasicBlock::setParent(Function *parent) {
89   // Set Parent=parent, updating instruction symtab entries as appropriate.
90   InstList.setSymTabObject(&Parent, parent);
91 }
92 
93 void BasicBlock::removeFromParent() {
94   getParent()->getBasicBlockList().remove(getIterator());
95 }
96 
97 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
98   return getParent()->getBasicBlockList().erase(getIterator());
99 }
100 
101 /// Unlink this basic block from its current function and
102 /// insert it into the function that MovePos lives in, right before MovePos.
103 void BasicBlock::moveBefore(BasicBlock *MovePos) {
104   MovePos->getParent()->getBasicBlockList().splice(
105       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
106 }
107 
108 /// Unlink this basic block from its current function and
109 /// insert it into the function that MovePos lives in, right after MovePos.
110 void BasicBlock::moveAfter(BasicBlock *MovePos) {
111   MovePos->getParent()->getBasicBlockList().splice(
112       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
113       getIterator());
114 }
115 
116 const Module *BasicBlock::getModule() const {
117   return getParent()->getParent();
118 }
119 
120 const TerminatorInst *BasicBlock::getTerminator() const {
121   if (InstList.empty()) return nullptr;
122   return dyn_cast<TerminatorInst>(&InstList.back());
123 }
124 
125 const CallInst *BasicBlock::getTerminatingMustTailCall() const {
126   if (InstList.empty())
127     return nullptr;
128   const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
129   if (!RI || RI == &InstList.front())
130     return nullptr;
131 
132   const Instruction *Prev = RI->getPrevNode();
133   if (!Prev)
134     return nullptr;
135 
136   if (Value *RV = RI->getReturnValue()) {
137     if (RV != Prev)
138       return nullptr;
139 
140     // Look through the optional bitcast.
141     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
142       RV = BI->getOperand(0);
143       Prev = BI->getPrevNode();
144       if (!Prev || RV != Prev)
145         return nullptr;
146     }
147   }
148 
149   if (auto *CI = dyn_cast<CallInst>(Prev)) {
150     if (CI->isMustTailCall())
151       return CI;
152   }
153   return nullptr;
154 }
155 
156 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
157   if (InstList.empty())
158     return nullptr;
159   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
160   if (!RI || RI == &InstList.front())
161     return nullptr;
162 
163   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
164     if (Function *F = CI->getCalledFunction())
165       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
166         return CI;
167 
168   return nullptr;
169 }
170 
171 const Instruction* BasicBlock::getFirstNonPHI() const {
172   for (const Instruction &I : *this)
173     if (!isa<PHINode>(I))
174       return &I;
175   return nullptr;
176 }
177 
178 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
179   for (const Instruction &I : *this)
180     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
181       return &I;
182   return nullptr;
183 }
184 
185 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
186   for (const Instruction &I : *this) {
187     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
188       continue;
189 
190     if (auto *II = dyn_cast<IntrinsicInst>(&I))
191       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
192           II->getIntrinsicID() == Intrinsic::lifetime_end)
193         continue;
194 
195     return &I;
196   }
197   return nullptr;
198 }
199 
200 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
201   const Instruction *FirstNonPHI = getFirstNonPHI();
202   if (!FirstNonPHI)
203     return end();
204 
205   const_iterator InsertPt = FirstNonPHI->getIterator();
206   if (InsertPt->isEHPad()) ++InsertPt;
207   return InsertPt;
208 }
209 
210 void BasicBlock::dropAllReferences() {
211   for (Instruction &I : *this)
212     I.dropAllReferences();
213 }
214 
215 /// If this basic block has a single predecessor block,
216 /// return the block, otherwise return a null pointer.
217 const BasicBlock *BasicBlock::getSinglePredecessor() const {
218   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
219   if (PI == E) return nullptr;         // No preds.
220   const BasicBlock *ThePred = *PI;
221   ++PI;
222   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
223 }
224 
225 /// If this basic block has a unique predecessor block,
226 /// return the block, otherwise return a null pointer.
227 /// Note that unique predecessor doesn't mean single edge, there can be
228 /// multiple edges from the unique predecessor to this block (for example
229 /// a switch statement with multiple cases having the same destination).
230 const BasicBlock *BasicBlock::getUniquePredecessor() const {
231   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
232   if (PI == E) return nullptr; // No preds.
233   const BasicBlock *PredBB = *PI;
234   ++PI;
235   for (;PI != E; ++PI) {
236     if (*PI != PredBB)
237       return nullptr;
238     // The same predecessor appears multiple times in the predecessor list.
239     // This is OK.
240   }
241   return PredBB;
242 }
243 
244 const BasicBlock *BasicBlock::getSingleSuccessor() const {
245   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
246   if (SI == E) return nullptr; // no successors
247   const BasicBlock *TheSucc = *SI;
248   ++SI;
249   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
250 }
251 
252 const BasicBlock *BasicBlock::getUniqueSuccessor() const {
253   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
254   if (SI == E) return nullptr; // No successors
255   const BasicBlock *SuccBB = *SI;
256   ++SI;
257   for (;SI != E; ++SI) {
258     if (*SI != SuccBB)
259       return nullptr;
260     // The same successor appears multiple times in the successor list.
261     // This is OK.
262   }
263   return SuccBB;
264 }
265 
266 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
267   return make_range<phi_iterator>(dyn_cast<PHINode>(&front()), nullptr);
268 }
269 
270 /// This method is used to notify a BasicBlock that the
271 /// specified Predecessor of the block is no longer able to reach it.  This is
272 /// actually not used to update the Predecessor list, but is actually used to
273 /// update the PHI nodes that reside in the block.  Note that this should be
274 /// called while the predecessor still refers to this block.
275 ///
276 void BasicBlock::removePredecessor(BasicBlock *Pred,
277                                    bool DontDeleteUselessPHIs) {
278   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
279           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
280          "removePredecessor: BB is not a predecessor!");
281 
282   if (InstList.empty()) return;
283   PHINode *APN = dyn_cast<PHINode>(&front());
284   if (!APN) return;   // Quick exit.
285 
286   // If there are exactly two predecessors, then we want to nuke the PHI nodes
287   // altogether.  However, we cannot do this, if this in this case:
288   //
289   //  Loop:
290   //    %x = phi [X, Loop]
291   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
292   //    br Loop                 ;; %x2 does not dominate all uses
293   //
294   // This is because the PHI node input is actually taken from the predecessor
295   // basic block.  The only case this can happen is with a self loop, so we
296   // check for this case explicitly now.
297   //
298   unsigned max_idx = APN->getNumIncomingValues();
299   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
300   if (max_idx == 2) {
301     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
302 
303     // Disable PHI elimination!
304     if (this == Other) max_idx = 3;
305   }
306 
307   // <= Two predecessors BEFORE I remove one?
308   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
309     // Yup, loop through and nuke the PHI nodes
310     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
311       // Remove the predecessor first.
312       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
313 
314       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
315       if (max_idx == 2) {
316         if (PN->getIncomingValue(0) != PN)
317           PN->replaceAllUsesWith(PN->getIncomingValue(0));
318         else
319           // We are left with an infinite loop with no entries: kill the PHI.
320           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
321         getInstList().pop_front();    // Remove the PHI node
322       }
323 
324       // If the PHI node already only had one entry, it got deleted by
325       // removeIncomingValue.
326     }
327   } else {
328     // Okay, now we know that we need to remove predecessor #pred_idx from all
329     // PHI nodes.  Iterate over each PHI node fixing them up
330     PHINode *PN;
331     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
332       ++II;
333       PN->removeIncomingValue(Pred, false);
334       // If all incoming values to the Phi are the same, we can replace the Phi
335       // with that value.
336       Value* PNV = nullptr;
337       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
338         if (PNV != PN) {
339           PN->replaceAllUsesWith(PNV);
340           PN->eraseFromParent();
341         }
342     }
343   }
344 }
345 
346 bool BasicBlock::canSplitPredecessors() const {
347   const Instruction *FirstNonPHI = getFirstNonPHI();
348   if (isa<LandingPadInst>(FirstNonPHI))
349     return true;
350   // This is perhaps a little conservative because constructs like
351   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
352   // cannot handle such things just yet.
353   if (FirstNonPHI->isEHPad())
354     return false;
355   return true;
356 }
357 
358 bool BasicBlock::isLegalToHoistInto() const {
359   auto *Term = getTerminator();
360   // No terminator means the block is under construction.
361   if (!Term)
362     return true;
363 
364   // If the block has no successors, there can be no instructions to hoist.
365   assert(Term->getNumSuccessors() > 0);
366 
367   // Instructions should not be hoisted across exception handling boundaries.
368   return !Term->isExceptional();
369 }
370 
371 /// This splits a basic block into two at the specified
372 /// instruction.  Note that all instructions BEFORE the specified iterator stay
373 /// as part of the original basic block, an unconditional branch is added to
374 /// the new BB, and the rest of the instructions in the BB are moved to the new
375 /// BB, including the old terminator.  This invalidates the iterator.
376 ///
377 /// Note that this only works on well formed basic blocks (must have a
378 /// terminator), and 'I' must not be the end of instruction list (which would
379 /// cause a degenerate basic block to be formed, having a terminator inside of
380 /// the basic block).
381 ///
382 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
383   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
384   assert(I != InstList.end() &&
385          "Trying to get me to create degenerate basic block!");
386 
387   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
388                                        this->getNextNode());
389 
390   // Save DebugLoc of split point before invalidating iterator.
391   DebugLoc Loc = I->getDebugLoc();
392   // Move all of the specified instructions from the original basic block into
393   // the new basic block.
394   New->getInstList().splice(New->end(), this->getInstList(), I, end());
395 
396   // Add a branch instruction to the newly formed basic block.
397   BranchInst *BI = BranchInst::Create(New, this);
398   BI->setDebugLoc(Loc);
399 
400   // Now we must loop through all of the successors of the New block (which
401   // _were_ the successors of the 'this' block), and update any PHI nodes in
402   // successors.  If there were PHI nodes in the successors, then they need to
403   // know that incoming branches will be from New, not from Old.
404   //
405   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
406     // Loop over any phi nodes in the basic block, updating the BB field of
407     // incoming values...
408     BasicBlock *Successor = *I;
409     for (auto &PN : Successor->phis()) {
410       int Idx = PN.getBasicBlockIndex(this);
411       while (Idx != -1) {
412         PN.setIncomingBlock((unsigned)Idx, New);
413         Idx = PN.getBasicBlockIndex(this);
414       }
415     }
416   }
417   return New;
418 }
419 
420 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
421   TerminatorInst *TI = getTerminator();
422   if (!TI)
423     // Cope with being called on a BasicBlock that doesn't have a terminator
424     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
425     return;
426   for (BasicBlock *Succ : TI->successors()) {
427     // N.B. Succ might not be a complete BasicBlock, so don't assume
428     // that it ends with a non-phi instruction.
429     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
430       PHINode *PN = dyn_cast<PHINode>(II);
431       if (!PN)
432         break;
433       int i;
434       while ((i = PN->getBasicBlockIndex(this)) >= 0)
435         PN->setIncomingBlock(i, New);
436     }
437   }
438 }
439 
440 /// Return true if this basic block is a landing pad. I.e., it's
441 /// the destination of the 'unwind' edge of an invoke instruction.
442 bool BasicBlock::isLandingPad() const {
443   return isa<LandingPadInst>(getFirstNonPHI());
444 }
445 
446 /// Return the landingpad instruction associated with the landing pad.
447 const LandingPadInst *BasicBlock::getLandingPadInst() const {
448   return dyn_cast<LandingPadInst>(getFirstNonPHI());
449 }
450