1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BasicBlock class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/BasicBlock.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/IR/CFG.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Type.h" 22 #include <algorithm> 23 24 using namespace llvm; 25 26 ValueSymbolTable *BasicBlock::getValueSymbolTable() { 27 if (Function *F = getParent()) 28 return F->getValueSymbolTable(); 29 return nullptr; 30 } 31 32 LLVMContext &BasicBlock::getContext() const { 33 return getType()->getContext(); 34 } 35 36 template <> void llvm::invalidateParentIListOrdering(BasicBlock *BB) { 37 BB->invalidateOrders(); 38 } 39 40 // Explicit instantiation of SymbolTableListTraits since some of the methods 41 // are not in the public header file... 42 template class llvm::SymbolTableListTraits<Instruction>; 43 44 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, 45 BasicBlock *InsertBefore) 46 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { 47 48 if (NewParent) 49 insertInto(NewParent, InsertBefore); 50 else 51 assert(!InsertBefore && 52 "Cannot insert block before another block with no function!"); 53 54 setName(Name); 55 } 56 57 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { 58 assert(NewParent && "Expected a parent"); 59 assert(!Parent && "Already has a parent"); 60 61 if (InsertBefore) 62 NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); 63 else 64 NewParent->getBasicBlockList().push_back(this); 65 } 66 67 BasicBlock::~BasicBlock() { 68 validateInstrOrdering(); 69 70 // If the address of the block is taken and it is being deleted (e.g. because 71 // it is dead), this means that there is either a dangling constant expr 72 // hanging off the block, or an undefined use of the block (source code 73 // expecting the address of a label to keep the block alive even though there 74 // is no indirect branch). Handle these cases by zapping the BlockAddress 75 // nodes. There are no other possible uses at this point. 76 if (hasAddressTaken()) { 77 assert(!use_empty() && "There should be at least one blockaddress!"); 78 Constant *Replacement = 79 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); 80 while (!use_empty()) { 81 BlockAddress *BA = cast<BlockAddress>(user_back()); 82 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 83 BA->getType())); 84 BA->destroyConstant(); 85 } 86 } 87 88 assert(getParent() == nullptr && "BasicBlock still linked into the program!"); 89 dropAllReferences(); 90 InstList.clear(); 91 } 92 93 void BasicBlock::setParent(Function *parent) { 94 // Set Parent=parent, updating instruction symtab entries as appropriate. 95 InstList.setSymTabObject(&Parent, parent); 96 } 97 98 iterator_range<filter_iterator<BasicBlock::const_iterator, 99 std::function<bool(const Instruction &)>>> 100 BasicBlock::instructionsWithoutDebug() const { 101 std::function<bool(const Instruction &)> Fn = [](const Instruction &I) { 102 return !isa<DbgInfoIntrinsic>(I); 103 }; 104 return make_filter_range(*this, Fn); 105 } 106 107 iterator_range<filter_iterator<BasicBlock::iterator, 108 std::function<bool(Instruction &)>>> 109 BasicBlock::instructionsWithoutDebug() { 110 std::function<bool(Instruction &)> Fn = [](Instruction &I) { 111 return !isa<DbgInfoIntrinsic>(I); 112 }; 113 return make_filter_range(*this, Fn); 114 } 115 116 filter_iterator<BasicBlock::const_iterator, 117 std::function<bool(const Instruction &)>>::difference_type 118 BasicBlock::sizeWithoutDebug() const { 119 return std::distance(instructionsWithoutDebug().begin(), 120 instructionsWithoutDebug().end()); 121 } 122 123 void BasicBlock::removeFromParent() { 124 getParent()->getBasicBlockList().remove(getIterator()); 125 } 126 127 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { 128 return getParent()->getBasicBlockList().erase(getIterator()); 129 } 130 131 /// Unlink this basic block from its current function and 132 /// insert it into the function that MovePos lives in, right before MovePos. 133 void BasicBlock::moveBefore(BasicBlock *MovePos) { 134 MovePos->getParent()->getBasicBlockList().splice( 135 MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); 136 } 137 138 /// Unlink this basic block from its current function and 139 /// insert it into the function that MovePos lives in, right after MovePos. 140 void BasicBlock::moveAfter(BasicBlock *MovePos) { 141 MovePos->getParent()->getBasicBlockList().splice( 142 ++MovePos->getIterator(), getParent()->getBasicBlockList(), 143 getIterator()); 144 } 145 146 const Module *BasicBlock::getModule() const { 147 return getParent()->getParent(); 148 } 149 150 const Instruction *BasicBlock::getTerminator() const { 151 if (InstList.empty() || !InstList.back().isTerminator()) 152 return nullptr; 153 return &InstList.back(); 154 } 155 156 const CallInst *BasicBlock::getTerminatingMustTailCall() const { 157 if (InstList.empty()) 158 return nullptr; 159 const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); 160 if (!RI || RI == &InstList.front()) 161 return nullptr; 162 163 const Instruction *Prev = RI->getPrevNode(); 164 if (!Prev) 165 return nullptr; 166 167 if (Value *RV = RI->getReturnValue()) { 168 if (RV != Prev) 169 return nullptr; 170 171 // Look through the optional bitcast. 172 if (auto *BI = dyn_cast<BitCastInst>(Prev)) { 173 RV = BI->getOperand(0); 174 Prev = BI->getPrevNode(); 175 if (!Prev || RV != Prev) 176 return nullptr; 177 } 178 } 179 180 if (auto *CI = dyn_cast<CallInst>(Prev)) { 181 if (CI->isMustTailCall()) 182 return CI; 183 } 184 return nullptr; 185 } 186 187 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const { 188 if (InstList.empty()) 189 return nullptr; 190 auto *RI = dyn_cast<ReturnInst>(&InstList.back()); 191 if (!RI || RI == &InstList.front()) 192 return nullptr; 193 194 if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode())) 195 if (Function *F = CI->getCalledFunction()) 196 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) 197 return CI; 198 199 return nullptr; 200 } 201 202 const CallInst *BasicBlock::getPostdominatingDeoptimizeCall() const { 203 const BasicBlock* BB = this; 204 SmallPtrSet<const BasicBlock *, 8> Visited; 205 Visited.insert(BB); 206 while (auto *Succ = BB->getUniqueSuccessor()) { 207 if (!Visited.insert(Succ).second) 208 return nullptr; 209 BB = Succ; 210 } 211 return BB->getTerminatingDeoptimizeCall(); 212 } 213 214 const Instruction* BasicBlock::getFirstNonPHI() const { 215 for (const Instruction &I : *this) 216 if (!isa<PHINode>(I)) 217 return &I; 218 return nullptr; 219 } 220 221 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const { 222 for (const Instruction &I : *this) 223 if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I)) 224 return &I; 225 return nullptr; 226 } 227 228 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const { 229 for (const Instruction &I : *this) { 230 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) 231 continue; 232 233 if (I.isLifetimeStartOrEnd()) 234 continue; 235 236 return &I; 237 } 238 return nullptr; 239 } 240 241 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const { 242 const Instruction *FirstNonPHI = getFirstNonPHI(); 243 if (!FirstNonPHI) 244 return end(); 245 246 const_iterator InsertPt = FirstNonPHI->getIterator(); 247 if (InsertPt->isEHPad()) ++InsertPt; 248 return InsertPt; 249 } 250 251 void BasicBlock::dropAllReferences() { 252 for (Instruction &I : *this) 253 I.dropAllReferences(); 254 } 255 256 /// If this basic block has a single predecessor block, 257 /// return the block, otherwise return a null pointer. 258 const BasicBlock *BasicBlock::getSinglePredecessor() const { 259 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 260 if (PI == E) return nullptr; // No preds. 261 const BasicBlock *ThePred = *PI; 262 ++PI; 263 return (PI == E) ? ThePred : nullptr /*multiple preds*/; 264 } 265 266 /// If this basic block has a unique predecessor block, 267 /// return the block, otherwise return a null pointer. 268 /// Note that unique predecessor doesn't mean single edge, there can be 269 /// multiple edges from the unique predecessor to this block (for example 270 /// a switch statement with multiple cases having the same destination). 271 const BasicBlock *BasicBlock::getUniquePredecessor() const { 272 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 273 if (PI == E) return nullptr; // No preds. 274 const BasicBlock *PredBB = *PI; 275 ++PI; 276 for (;PI != E; ++PI) { 277 if (*PI != PredBB) 278 return nullptr; 279 // The same predecessor appears multiple times in the predecessor list. 280 // This is OK. 281 } 282 return PredBB; 283 } 284 285 bool BasicBlock::hasNPredecessors(unsigned N) const { 286 return hasNItems(pred_begin(this), pred_end(this), N); 287 } 288 289 bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const { 290 return hasNItemsOrMore(pred_begin(this), pred_end(this), N); 291 } 292 293 const BasicBlock *BasicBlock::getSingleSuccessor() const { 294 const_succ_iterator SI = succ_begin(this), E = succ_end(this); 295 if (SI == E) return nullptr; // no successors 296 const BasicBlock *TheSucc = *SI; 297 ++SI; 298 return (SI == E) ? TheSucc : nullptr /* multiple successors */; 299 } 300 301 const BasicBlock *BasicBlock::getUniqueSuccessor() const { 302 const_succ_iterator SI = succ_begin(this), E = succ_end(this); 303 if (SI == E) return nullptr; // No successors 304 const BasicBlock *SuccBB = *SI; 305 ++SI; 306 for (;SI != E; ++SI) { 307 if (*SI != SuccBB) 308 return nullptr; 309 // The same successor appears multiple times in the successor list. 310 // This is OK. 311 } 312 return SuccBB; 313 } 314 315 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() { 316 PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin()); 317 return make_range<phi_iterator>(P, nullptr); 318 } 319 320 /// This method is used to notify a BasicBlock that the 321 /// specified Predecessor of the block is no longer able to reach it. This is 322 /// actually not used to update the Predecessor list, but is actually used to 323 /// update the PHI nodes that reside in the block. Note that this should be 324 /// called while the predecessor still refers to this block. 325 /// 326 void BasicBlock::removePredecessor(BasicBlock *Pred, 327 bool KeepOneInputPHIs) { 328 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. 329 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && 330 "removePredecessor: BB is not a predecessor!"); 331 332 if (InstList.empty()) return; 333 PHINode *APN = dyn_cast<PHINode>(&front()); 334 if (!APN) return; // Quick exit. 335 336 // If there are exactly two predecessors, then we want to nuke the PHI nodes 337 // altogether. 338 unsigned max_idx = APN->getNumIncomingValues(); 339 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); 340 341 // <= Two predecessors BEFORE I remove one? 342 if (max_idx <= 2 && !KeepOneInputPHIs) { 343 // Yup, loop through and nuke the PHI nodes 344 while (PHINode *PN = dyn_cast<PHINode>(&front())) { 345 // Remove the predecessor first. 346 PN->removeIncomingValue(Pred, !KeepOneInputPHIs); 347 348 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value 349 if (max_idx == 2) { 350 if (PN->getIncomingValue(0) != PN) 351 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 352 else 353 // We are left with an infinite loop with no entries: kill the PHI. 354 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 355 getInstList().pop_front(); // Remove the PHI node 356 } 357 358 // If the PHI node already only had one entry, it got deleted by 359 // removeIncomingValue. 360 } 361 } else { 362 // Okay, now we know that we need to remove predecessor #pred_idx from all 363 // PHI nodes. Iterate over each PHI node fixing them up 364 PHINode *PN; 365 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { 366 ++II; 367 PN->removeIncomingValue(Pred, false); 368 // If all incoming values to the Phi are the same, we can replace the Phi 369 // with that value. 370 Value* PNV = nullptr; 371 if (!KeepOneInputPHIs && (PNV = PN->hasConstantValue())) { 372 PN->replaceAllUsesWith(PNV); 373 PN->eraseFromParent(); 374 } 375 } 376 } 377 } 378 379 bool BasicBlock::canSplitPredecessors() const { 380 const Instruction *FirstNonPHI = getFirstNonPHI(); 381 if (isa<LandingPadInst>(FirstNonPHI)) 382 return true; 383 // This is perhaps a little conservative because constructs like 384 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors 385 // cannot handle such things just yet. 386 if (FirstNonPHI->isEHPad()) 387 return false; 388 return true; 389 } 390 391 bool BasicBlock::isLegalToHoistInto() const { 392 auto *Term = getTerminator(); 393 // No terminator means the block is under construction. 394 if (!Term) 395 return true; 396 397 // If the block has no successors, there can be no instructions to hoist. 398 assert(Term->getNumSuccessors() > 0); 399 400 // Instructions should not be hoisted across exception handling boundaries. 401 return !Term->isExceptionalTerminator(); 402 } 403 404 /// This splits a basic block into two at the specified 405 /// instruction. Note that all instructions BEFORE the specified iterator stay 406 /// as part of the original basic block, an unconditional branch is added to 407 /// the new BB, and the rest of the instructions in the BB are moved to the new 408 /// BB, including the old terminator. This invalidates the iterator. 409 /// 410 /// Note that this only works on well formed basic blocks (must have a 411 /// terminator), and 'I' must not be the end of instruction list (which would 412 /// cause a degenerate basic block to be formed, having a terminator inside of 413 /// the basic block). 414 /// 415 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { 416 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); 417 assert(I != InstList.end() && 418 "Trying to get me to create degenerate basic block!"); 419 420 BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), 421 this->getNextNode()); 422 423 // Save DebugLoc of split point before invalidating iterator. 424 DebugLoc Loc = I->getDebugLoc(); 425 // Move all of the specified instructions from the original basic block into 426 // the new basic block. 427 New->getInstList().splice(New->end(), this->getInstList(), I, end()); 428 429 // Add a branch instruction to the newly formed basic block. 430 BranchInst *BI = BranchInst::Create(New, this); 431 BI->setDebugLoc(Loc); 432 433 // Now we must loop through all of the successors of the New block (which 434 // _were_ the successors of the 'this' block), and update any PHI nodes in 435 // successors. If there were PHI nodes in the successors, then they need to 436 // know that incoming branches will be from New, not from Old (this). 437 // 438 New->replaceSuccessorsPhiUsesWith(this, New); 439 return New; 440 } 441 442 void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) { 443 // N.B. This might not be a complete BasicBlock, so don't assume 444 // that it ends with a non-phi instruction. 445 for (iterator II = begin(), IE = end(); II != IE; ++II) { 446 PHINode *PN = dyn_cast<PHINode>(II); 447 if (!PN) 448 break; 449 PN->replaceIncomingBlockWith(Old, New); 450 } 451 } 452 453 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old, 454 BasicBlock *New) { 455 Instruction *TI = getTerminator(); 456 if (!TI) 457 // Cope with being called on a BasicBlock that doesn't have a terminator 458 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. 459 return; 460 llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) { 461 Succ->replacePhiUsesWith(Old, New); 462 }); 463 } 464 465 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { 466 this->replaceSuccessorsPhiUsesWith(this, New); 467 } 468 469 /// Return true if this basic block is a landing pad. I.e., it's 470 /// the destination of the 'unwind' edge of an invoke instruction. 471 bool BasicBlock::isLandingPad() const { 472 return isa<LandingPadInst>(getFirstNonPHI()); 473 } 474 475 /// Return the landingpad instruction associated with the landing pad. 476 const LandingPadInst *BasicBlock::getLandingPadInst() const { 477 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 478 } 479 480 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const { 481 const Instruction *TI = getTerminator(); 482 if (MDNode *MDIrrLoopHeader = 483 TI->getMetadata(LLVMContext::MD_irr_loop)) { 484 MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0)); 485 if (MDName->getString().equals("loop_header_weight")) { 486 auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1)); 487 return Optional<uint64_t>(CI->getValue().getZExtValue()); 488 } 489 } 490 return Optional<uint64_t>(); 491 } 492 493 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) { 494 while (isa<DbgInfoIntrinsic>(It)) 495 ++It; 496 return It; 497 } 498 499 void BasicBlock::renumberInstructions() { 500 unsigned Order = 0; 501 for (Instruction &I : *this) 502 I.Order = Order++; 503 504 // Set the bit to indicate that the instruction order valid and cached. 505 BasicBlockBits Bits = getBasicBlockBits(); 506 Bits.InstrOrderValid = true; 507 setBasicBlockBits(Bits); 508 } 509 510 #ifndef NDEBUG 511 /// In asserts builds, this checks the numbering. In non-asserts builds, it 512 /// is defined as a no-op inline function in BasicBlock.h. 513 void BasicBlock::validateInstrOrdering() const { 514 if (!isInstrOrderValid()) 515 return; 516 const Instruction *Prev = nullptr; 517 for (const Instruction &I : *this) { 518 assert((!Prev || Prev->comesBefore(&I)) && 519 "cached instruction ordering is incorrect"); 520 Prev = &I; 521 } 522 } 523 #endif 524