1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This library implements `print` family of functions in classes like 10 // Module, Function, Value, etc. In-memory representation of those classes is 11 // converted to IR strings. 12 // 13 // Note that these routines must be extremely tolerant of various errors in the 14 // LLVM code, because it can be used for debugging transformations. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/iterator_range.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Argument.h" 34 #include "llvm/IR/AssemblyAnnotationWriter.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Comdat.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalIFunc.h" 47 #include "llvm/IR/GlobalIndirectSymbol.h" 48 #include "llvm/IR/GlobalObject.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/IRPrintingPasses.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSlotTracker.h" 60 #include "llvm/IR/ModuleSummaryIndex.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/Statepoint.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/TypeFinder.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/UseListOrder.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/Support/AtomicOrdering.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/Format.h" 75 #include "llvm/Support/FormattedStream.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cctype> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <memory> 84 #include <string> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 // Make virtual table appear in this compilation unit. 92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; 93 94 //===----------------------------------------------------------------------===// 95 // Helper Functions 96 //===----------------------------------------------------------------------===// 97 98 namespace { 99 100 struct OrderMap { 101 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 102 103 unsigned size() const { return IDs.size(); } 104 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 105 106 std::pair<unsigned, bool> lookup(const Value *V) const { 107 return IDs.lookup(V); 108 } 109 110 void index(const Value *V) { 111 // Explicitly sequence get-size and insert-value operations to avoid UB. 112 unsigned ID = IDs.size() + 1; 113 IDs[V].first = ID; 114 } 115 }; 116 117 } // end anonymous namespace 118 119 static void orderValue(const Value *V, OrderMap &OM) { 120 if (OM.lookup(V).first) 121 return; 122 123 if (const Constant *C = dyn_cast<Constant>(V)) 124 if (C->getNumOperands() && !isa<GlobalValue>(C)) 125 for (const Value *Op : C->operands()) 126 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 127 orderValue(Op, OM); 128 129 // Note: we cannot cache this lookup above, since inserting into the map 130 // changes the map's size, and thus affects the other IDs. 131 OM.index(V); 132 } 133 134 static OrderMap orderModule(const Module *M) { 135 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 136 // and ValueEnumerator::incorporateFunction(). 137 OrderMap OM; 138 139 for (const GlobalVariable &G : M->globals()) { 140 if (G.hasInitializer()) 141 if (!isa<GlobalValue>(G.getInitializer())) 142 orderValue(G.getInitializer(), OM); 143 orderValue(&G, OM); 144 } 145 for (const GlobalAlias &A : M->aliases()) { 146 if (!isa<GlobalValue>(A.getAliasee())) 147 orderValue(A.getAliasee(), OM); 148 orderValue(&A, OM); 149 } 150 for (const GlobalIFunc &I : M->ifuncs()) { 151 if (!isa<GlobalValue>(I.getResolver())) 152 orderValue(I.getResolver(), OM); 153 orderValue(&I, OM); 154 } 155 for (const Function &F : *M) { 156 for (const Use &U : F.operands()) 157 if (!isa<GlobalValue>(U.get())) 158 orderValue(U.get(), OM); 159 160 orderValue(&F, OM); 161 162 if (F.isDeclaration()) 163 continue; 164 165 for (const Argument &A : F.args()) 166 orderValue(&A, OM); 167 for (const BasicBlock &BB : F) { 168 orderValue(&BB, OM); 169 for (const Instruction &I : BB) { 170 for (const Value *Op : I.operands()) 171 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 172 isa<InlineAsm>(*Op)) 173 orderValue(Op, OM); 174 orderValue(&I, OM); 175 } 176 } 177 } 178 return OM; 179 } 180 181 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 182 unsigned ID, const OrderMap &OM, 183 UseListOrderStack &Stack) { 184 // Predict use-list order for this one. 185 using Entry = std::pair<const Use *, unsigned>; 186 SmallVector<Entry, 64> List; 187 for (const Use &U : V->uses()) 188 // Check if this user will be serialized. 189 if (OM.lookup(U.getUser()).first) 190 List.push_back(std::make_pair(&U, List.size())); 191 192 if (List.size() < 2) 193 // We may have lost some users. 194 return; 195 196 bool GetsReversed = 197 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V); 198 if (auto *BA = dyn_cast<BlockAddress>(V)) 199 ID = OM.lookup(BA->getBasicBlock()).first; 200 llvm::sort(List, [&](const Entry &L, const Entry &R) { 201 const Use *LU = L.first; 202 const Use *RU = R.first; 203 if (LU == RU) 204 return false; 205 206 auto LID = OM.lookup(LU->getUser()).first; 207 auto RID = OM.lookup(RU->getUser()).first; 208 209 // If ID is 4, then expect: 7 6 5 1 2 3. 210 if (LID < RID) { 211 if (GetsReversed) 212 if (RID <= ID) 213 return true; 214 return false; 215 } 216 if (RID < LID) { 217 if (GetsReversed) 218 if (LID <= ID) 219 return false; 220 return true; 221 } 222 223 // LID and RID are equal, so we have different operands of the same user. 224 // Assume operands are added in order for all instructions. 225 if (GetsReversed) 226 if (LID <= ID) 227 return LU->getOperandNo() < RU->getOperandNo(); 228 return LU->getOperandNo() > RU->getOperandNo(); 229 }); 230 231 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 232 return L.second < R.second; 233 })) 234 // Order is already correct. 235 return; 236 237 // Store the shuffle. 238 Stack.emplace_back(V, F, List.size()); 239 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 240 for (size_t I = 0, E = List.size(); I != E; ++I) 241 Stack.back().Shuffle[I] = List[I].second; 242 } 243 244 static void predictValueUseListOrder(const Value *V, const Function *F, 245 OrderMap &OM, UseListOrderStack &Stack) { 246 auto &IDPair = OM[V]; 247 assert(IDPair.first && "Unmapped value"); 248 if (IDPair.second) 249 // Already predicted. 250 return; 251 252 // Do the actual prediction. 253 IDPair.second = true; 254 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 255 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 256 257 // Recursive descent into constants. 258 if (const Constant *C = dyn_cast<Constant>(V)) 259 if (C->getNumOperands()) // Visit GlobalValues. 260 for (const Value *Op : C->operands()) 261 if (isa<Constant>(Op)) // Visit GlobalValues. 262 predictValueUseListOrder(Op, F, OM, Stack); 263 } 264 265 static UseListOrderStack predictUseListOrder(const Module *M) { 266 OrderMap OM = orderModule(M); 267 268 // Use-list orders need to be serialized after all the users have been added 269 // to a value, or else the shuffles will be incomplete. Store them per 270 // function in a stack. 271 // 272 // Aside from function order, the order of values doesn't matter much here. 273 UseListOrderStack Stack; 274 275 // We want to visit the functions backward now so we can list function-local 276 // constants in the last Function they're used in. Module-level constants 277 // have already been visited above. 278 for (const Function &F : make_range(M->rbegin(), M->rend())) { 279 if (F.isDeclaration()) 280 continue; 281 for (const BasicBlock &BB : F) 282 predictValueUseListOrder(&BB, &F, OM, Stack); 283 for (const Argument &A : F.args()) 284 predictValueUseListOrder(&A, &F, OM, Stack); 285 for (const BasicBlock &BB : F) 286 for (const Instruction &I : BB) 287 for (const Value *Op : I.operands()) 288 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 289 predictValueUseListOrder(Op, &F, OM, Stack); 290 for (const BasicBlock &BB : F) 291 for (const Instruction &I : BB) 292 predictValueUseListOrder(&I, &F, OM, Stack); 293 } 294 295 // Visit globals last. 296 for (const GlobalVariable &G : M->globals()) 297 predictValueUseListOrder(&G, nullptr, OM, Stack); 298 for (const Function &F : *M) 299 predictValueUseListOrder(&F, nullptr, OM, Stack); 300 for (const GlobalAlias &A : M->aliases()) 301 predictValueUseListOrder(&A, nullptr, OM, Stack); 302 for (const GlobalIFunc &I : M->ifuncs()) 303 predictValueUseListOrder(&I, nullptr, OM, Stack); 304 for (const GlobalVariable &G : M->globals()) 305 if (G.hasInitializer()) 306 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 307 for (const GlobalAlias &A : M->aliases()) 308 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 309 for (const GlobalIFunc &I : M->ifuncs()) 310 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 311 for (const Function &F : *M) 312 for (const Use &U : F.operands()) 313 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 314 315 return Stack; 316 } 317 318 static const Module *getModuleFromVal(const Value *V) { 319 if (const Argument *MA = dyn_cast<Argument>(V)) 320 return MA->getParent() ? MA->getParent()->getParent() : nullptr; 321 322 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 323 return BB->getParent() ? BB->getParent()->getParent() : nullptr; 324 325 if (const Instruction *I = dyn_cast<Instruction>(V)) { 326 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; 327 return M ? M->getParent() : nullptr; 328 } 329 330 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 331 return GV->getParent(); 332 333 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 334 for (const User *U : MAV->users()) 335 if (isa<Instruction>(U)) 336 if (const Module *M = getModuleFromVal(U)) 337 return M; 338 return nullptr; 339 } 340 341 return nullptr; 342 } 343 344 static void PrintCallingConv(unsigned cc, raw_ostream &Out) { 345 switch (cc) { 346 default: Out << "cc" << cc; break; 347 case CallingConv::Fast: Out << "fastcc"; break; 348 case CallingConv::Cold: Out << "coldcc"; break; 349 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; 350 case CallingConv::AnyReg: Out << "anyregcc"; break; 351 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; 352 case CallingConv::PreserveAll: Out << "preserve_allcc"; break; 353 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; 354 case CallingConv::GHC: Out << "ghccc"; break; 355 case CallingConv::Tail: Out << "tailcc"; break; 356 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break; 357 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; 358 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; 359 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; 360 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; 361 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; 362 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; 363 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; 364 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; 365 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; 366 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break; 367 case CallingConv::AArch64_SVE_VectorCall: 368 Out << "aarch64_sve_vector_pcs"; 369 break; 370 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; 371 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; 372 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; 373 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; 374 case CallingConv::PTX_Device: Out << "ptx_device"; break; 375 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; 376 case CallingConv::Win64: Out << "win64cc"; break; 377 case CallingConv::SPIR_FUNC: Out << "spir_func"; break; 378 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; 379 case CallingConv::Swift: Out << "swiftcc"; break; 380 case CallingConv::X86_INTR: Out << "x86_intrcc"; break; 381 case CallingConv::HHVM: Out << "hhvmcc"; break; 382 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break; 383 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; 384 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; 385 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; 386 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; 387 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; 388 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; 389 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; 390 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; 391 } 392 } 393 394 enum PrefixType { 395 GlobalPrefix, 396 ComdatPrefix, 397 LabelPrefix, 398 LocalPrefix, 399 NoPrefix 400 }; 401 402 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { 403 assert(!Name.empty() && "Cannot get empty name!"); 404 405 // Scan the name to see if it needs quotes first. 406 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); 407 if (!NeedsQuotes) { 408 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 409 // By making this unsigned, the value passed in to isalnum will always be 410 // in the range 0-255. This is important when building with MSVC because 411 // its implementation will assert. This situation can arise when dealing 412 // with UTF-8 multibyte characters. 413 unsigned char C = Name[i]; 414 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && 415 C != '_') { 416 NeedsQuotes = true; 417 break; 418 } 419 } 420 } 421 422 // If we didn't need any quotes, just write out the name in one blast. 423 if (!NeedsQuotes) { 424 OS << Name; 425 return; 426 } 427 428 // Okay, we need quotes. Output the quotes and escape any scary characters as 429 // needed. 430 OS << '"'; 431 printEscapedString(Name, OS); 432 OS << '"'; 433 } 434 435 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 436 /// (if the string only contains simple characters) or is surrounded with ""'s 437 /// (if it has special chars in it). Print it out. 438 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 439 switch (Prefix) { 440 case NoPrefix: 441 break; 442 case GlobalPrefix: 443 OS << '@'; 444 break; 445 case ComdatPrefix: 446 OS << '$'; 447 break; 448 case LabelPrefix: 449 break; 450 case LocalPrefix: 451 OS << '%'; 452 break; 453 } 454 printLLVMNameWithoutPrefix(OS, Name); 455 } 456 457 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 458 /// (if the string only contains simple characters) or is surrounded with ""'s 459 /// (if it has special chars in it). Print it out. 460 static void PrintLLVMName(raw_ostream &OS, const Value *V) { 461 PrintLLVMName(OS, V->getName(), 462 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 463 } 464 465 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) { 466 Out << ", <"; 467 if (isa<ScalableVectorType>(Ty)) 468 Out << "vscale x "; 469 Out << Mask.size() << " x i32> "; 470 bool FirstElt = true; 471 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 472 Out << "zeroinitializer"; 473 } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) { 474 Out << "undef"; 475 } else { 476 Out << "<"; 477 for (int Elt : Mask) { 478 if (FirstElt) 479 FirstElt = false; 480 else 481 Out << ", "; 482 Out << "i32 "; 483 if (Elt == UndefMaskElem) 484 Out << "undef"; 485 else 486 Out << Elt; 487 } 488 Out << ">"; 489 } 490 } 491 492 namespace { 493 494 class TypePrinting { 495 public: 496 TypePrinting(const Module *M = nullptr) : DeferredM(M) {} 497 498 TypePrinting(const TypePrinting &) = delete; 499 TypePrinting &operator=(const TypePrinting &) = delete; 500 501 /// The named types that are used by the current module. 502 TypeFinder &getNamedTypes(); 503 504 /// The numbered types, number to type mapping. 505 std::vector<StructType *> &getNumberedTypes(); 506 507 bool empty(); 508 509 void print(Type *Ty, raw_ostream &OS); 510 511 void printStructBody(StructType *Ty, raw_ostream &OS); 512 513 private: 514 void incorporateTypes(); 515 516 /// A module to process lazily when needed. Set to nullptr as soon as used. 517 const Module *DeferredM; 518 519 TypeFinder NamedTypes; 520 521 // The numbered types, along with their value. 522 DenseMap<StructType *, unsigned> Type2Number; 523 524 std::vector<StructType *> NumberedTypes; 525 }; 526 527 } // end anonymous namespace 528 529 TypeFinder &TypePrinting::getNamedTypes() { 530 incorporateTypes(); 531 return NamedTypes; 532 } 533 534 std::vector<StructType *> &TypePrinting::getNumberedTypes() { 535 incorporateTypes(); 536 537 // We know all the numbers that each type is used and we know that it is a 538 // dense assignment. Convert the map to an index table, if it's not done 539 // already (judging from the sizes): 540 if (NumberedTypes.size() == Type2Number.size()) 541 return NumberedTypes; 542 543 NumberedTypes.resize(Type2Number.size()); 544 for (const auto &P : Type2Number) { 545 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); 546 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); 547 NumberedTypes[P.second] = P.first; 548 } 549 return NumberedTypes; 550 } 551 552 bool TypePrinting::empty() { 553 incorporateTypes(); 554 return NamedTypes.empty() && Type2Number.empty(); 555 } 556 557 void TypePrinting::incorporateTypes() { 558 if (!DeferredM) 559 return; 560 561 NamedTypes.run(*DeferredM, false); 562 DeferredM = nullptr; 563 564 // The list of struct types we got back includes all the struct types, split 565 // the unnamed ones out to a numbering and remove the anonymous structs. 566 unsigned NextNumber = 0; 567 568 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; 569 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { 570 StructType *STy = *I; 571 572 // Ignore anonymous types. 573 if (STy->isLiteral()) 574 continue; 575 576 if (STy->getName().empty()) 577 Type2Number[STy] = NextNumber++; 578 else 579 *NextToUse++ = STy; 580 } 581 582 NamedTypes.erase(NextToUse, NamedTypes.end()); 583 } 584 585 /// Write the specified type to the specified raw_ostream, making use of type 586 /// names or up references to shorten the type name where possible. 587 void TypePrinting::print(Type *Ty, raw_ostream &OS) { 588 switch (Ty->getTypeID()) { 589 case Type::VoidTyID: OS << "void"; return; 590 case Type::HalfTyID: OS << "half"; return; 591 case Type::BFloatTyID: OS << "bfloat"; return; 592 case Type::FloatTyID: OS << "float"; return; 593 case Type::DoubleTyID: OS << "double"; return; 594 case Type::X86_FP80TyID: OS << "x86_fp80"; return; 595 case Type::FP128TyID: OS << "fp128"; return; 596 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; 597 case Type::LabelTyID: OS << "label"; return; 598 case Type::MetadataTyID: OS << "metadata"; return; 599 case Type::X86_MMXTyID: OS << "x86_mmx"; return; 600 case Type::TokenTyID: OS << "token"; return; 601 case Type::IntegerTyID: 602 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 603 return; 604 605 case Type::FunctionTyID: { 606 FunctionType *FTy = cast<FunctionType>(Ty); 607 print(FTy->getReturnType(), OS); 608 OS << " ("; 609 for (FunctionType::param_iterator I = FTy->param_begin(), 610 E = FTy->param_end(); I != E; ++I) { 611 if (I != FTy->param_begin()) 612 OS << ", "; 613 print(*I, OS); 614 } 615 if (FTy->isVarArg()) { 616 if (FTy->getNumParams()) OS << ", "; 617 OS << "..."; 618 } 619 OS << ')'; 620 return; 621 } 622 case Type::StructTyID: { 623 StructType *STy = cast<StructType>(Ty); 624 625 if (STy->isLiteral()) 626 return printStructBody(STy, OS); 627 628 if (!STy->getName().empty()) 629 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 630 631 incorporateTypes(); 632 const auto I = Type2Number.find(STy); 633 if (I != Type2Number.end()) 634 OS << '%' << I->second; 635 else // Not enumerated, print the hex address. 636 OS << "%\"type " << STy << '\"'; 637 return; 638 } 639 case Type::PointerTyID: { 640 PointerType *PTy = cast<PointerType>(Ty); 641 print(PTy->getElementType(), OS); 642 if (unsigned AddressSpace = PTy->getAddressSpace()) 643 OS << " addrspace(" << AddressSpace << ')'; 644 OS << '*'; 645 return; 646 } 647 case Type::ArrayTyID: { 648 ArrayType *ATy = cast<ArrayType>(Ty); 649 OS << '[' << ATy->getNumElements() << " x "; 650 print(ATy->getElementType(), OS); 651 OS << ']'; 652 return; 653 } 654 case Type::FixedVectorTyID: 655 case Type::ScalableVectorTyID: { 656 VectorType *PTy = cast<VectorType>(Ty); 657 ElementCount EC = PTy->getElementCount(); 658 OS << "<"; 659 if (EC.Scalable) 660 OS << "vscale x "; 661 OS << EC.Min << " x "; 662 print(PTy->getElementType(), OS); 663 OS << '>'; 664 return; 665 } 666 } 667 llvm_unreachable("Invalid TypeID"); 668 } 669 670 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 671 if (STy->isOpaque()) { 672 OS << "opaque"; 673 return; 674 } 675 676 if (STy->isPacked()) 677 OS << '<'; 678 679 if (STy->getNumElements() == 0) { 680 OS << "{}"; 681 } else { 682 StructType::element_iterator I = STy->element_begin(); 683 OS << "{ "; 684 print(*I++, OS); 685 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { 686 OS << ", "; 687 print(*I, OS); 688 } 689 690 OS << " }"; 691 } 692 if (STy->isPacked()) 693 OS << '>'; 694 } 695 696 namespace llvm { 697 698 //===----------------------------------------------------------------------===// 699 // SlotTracker Class: Enumerate slot numbers for unnamed values 700 //===----------------------------------------------------------------------===// 701 /// This class provides computation of slot numbers for LLVM Assembly writing. 702 /// 703 class SlotTracker { 704 public: 705 /// ValueMap - A mapping of Values to slot numbers. 706 using ValueMap = DenseMap<const Value *, unsigned>; 707 708 private: 709 /// TheModule - The module for which we are holding slot numbers. 710 const Module* TheModule; 711 712 /// TheFunction - The function for which we are holding slot numbers. 713 const Function* TheFunction = nullptr; 714 bool FunctionProcessed = false; 715 bool ShouldInitializeAllMetadata; 716 717 /// The summary index for which we are holding slot numbers. 718 const ModuleSummaryIndex *TheIndex = nullptr; 719 720 /// mMap - The slot map for the module level data. 721 ValueMap mMap; 722 unsigned mNext = 0; 723 724 /// fMap - The slot map for the function level data. 725 ValueMap fMap; 726 unsigned fNext = 0; 727 728 /// mdnMap - Map for MDNodes. 729 DenseMap<const MDNode*, unsigned> mdnMap; 730 unsigned mdnNext = 0; 731 732 /// asMap - The slot map for attribute sets. 733 DenseMap<AttributeSet, unsigned> asMap; 734 unsigned asNext = 0; 735 736 /// ModulePathMap - The slot map for Module paths used in the summary index. 737 StringMap<unsigned> ModulePathMap; 738 unsigned ModulePathNext = 0; 739 740 /// GUIDMap - The slot map for GUIDs used in the summary index. 741 DenseMap<GlobalValue::GUID, unsigned> GUIDMap; 742 unsigned GUIDNext = 0; 743 744 /// TypeIdMap - The slot map for type ids used in the summary index. 745 StringMap<unsigned> TypeIdMap; 746 unsigned TypeIdNext = 0; 747 748 public: 749 /// Construct from a module. 750 /// 751 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 752 /// functions, giving correct numbering for metadata referenced only from 753 /// within a function (even if no functions have been initialized). 754 explicit SlotTracker(const Module *M, 755 bool ShouldInitializeAllMetadata = false); 756 757 /// Construct from a function, starting out in incorp state. 758 /// 759 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 760 /// functions, giving correct numbering for metadata referenced only from 761 /// within a function (even if no functions have been initialized). 762 explicit SlotTracker(const Function *F, 763 bool ShouldInitializeAllMetadata = false); 764 765 /// Construct from a module summary index. 766 explicit SlotTracker(const ModuleSummaryIndex *Index); 767 768 SlotTracker(const SlotTracker &) = delete; 769 SlotTracker &operator=(const SlotTracker &) = delete; 770 771 /// Return the slot number of the specified value in it's type 772 /// plane. If something is not in the SlotTracker, return -1. 773 int getLocalSlot(const Value *V); 774 int getGlobalSlot(const GlobalValue *V); 775 int getMetadataSlot(const MDNode *N); 776 int getAttributeGroupSlot(AttributeSet AS); 777 int getModulePathSlot(StringRef Path); 778 int getGUIDSlot(GlobalValue::GUID GUID); 779 int getTypeIdSlot(StringRef Id); 780 781 /// If you'd like to deal with a function instead of just a module, use 782 /// this method to get its data into the SlotTracker. 783 void incorporateFunction(const Function *F) { 784 TheFunction = F; 785 FunctionProcessed = false; 786 } 787 788 const Function *getFunction() const { return TheFunction; } 789 790 /// After calling incorporateFunction, use this method to remove the 791 /// most recently incorporated function from the SlotTracker. This 792 /// will reset the state of the machine back to just the module contents. 793 void purgeFunction(); 794 795 /// MDNode map iterators. 796 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator; 797 798 mdn_iterator mdn_begin() { return mdnMap.begin(); } 799 mdn_iterator mdn_end() { return mdnMap.end(); } 800 unsigned mdn_size() const { return mdnMap.size(); } 801 bool mdn_empty() const { return mdnMap.empty(); } 802 803 /// AttributeSet map iterators. 804 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator; 805 806 as_iterator as_begin() { return asMap.begin(); } 807 as_iterator as_end() { return asMap.end(); } 808 unsigned as_size() const { return asMap.size(); } 809 bool as_empty() const { return asMap.empty(); } 810 811 /// GUID map iterators. 812 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator; 813 814 /// These functions do the actual initialization. 815 inline void initializeIfNeeded(); 816 int initializeIndexIfNeeded(); 817 818 // Implementation Details 819 private: 820 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 821 void CreateModuleSlot(const GlobalValue *V); 822 823 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 824 void CreateMetadataSlot(const MDNode *N); 825 826 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 827 void CreateFunctionSlot(const Value *V); 828 829 /// Insert the specified AttributeSet into the slot table. 830 void CreateAttributeSetSlot(AttributeSet AS); 831 832 inline void CreateModulePathSlot(StringRef Path); 833 void CreateGUIDSlot(GlobalValue::GUID GUID); 834 void CreateTypeIdSlot(StringRef Id); 835 836 /// Add all of the module level global variables (and their initializers) 837 /// and function declarations, but not the contents of those functions. 838 void processModule(); 839 // Returns number of allocated slots 840 int processIndex(); 841 842 /// Add all of the functions arguments, basic blocks, and instructions. 843 void processFunction(); 844 845 /// Add the metadata directly attached to a GlobalObject. 846 void processGlobalObjectMetadata(const GlobalObject &GO); 847 848 /// Add all of the metadata from a function. 849 void processFunctionMetadata(const Function &F); 850 851 /// Add all of the metadata from an instruction. 852 void processInstructionMetadata(const Instruction &I); 853 }; 854 855 } // end namespace llvm 856 857 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, 858 const Function *F) 859 : M(M), F(F), Machine(&Machine) {} 860 861 ModuleSlotTracker::ModuleSlotTracker(const Module *M, 862 bool ShouldInitializeAllMetadata) 863 : ShouldCreateStorage(M), 864 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} 865 866 ModuleSlotTracker::~ModuleSlotTracker() = default; 867 868 SlotTracker *ModuleSlotTracker::getMachine() { 869 if (!ShouldCreateStorage) 870 return Machine; 871 872 ShouldCreateStorage = false; 873 MachineStorage = 874 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata); 875 Machine = MachineStorage.get(); 876 return Machine; 877 } 878 879 void ModuleSlotTracker::incorporateFunction(const Function &F) { 880 // Using getMachine() may lazily create the slot tracker. 881 if (!getMachine()) 882 return; 883 884 // Nothing to do if this is the right function already. 885 if (this->F == &F) 886 return; 887 if (this->F) 888 Machine->purgeFunction(); 889 Machine->incorporateFunction(&F); 890 this->F = &F; 891 } 892 893 int ModuleSlotTracker::getLocalSlot(const Value *V) { 894 assert(F && "No function incorporated"); 895 return Machine->getLocalSlot(V); 896 } 897 898 static SlotTracker *createSlotTracker(const Value *V) { 899 if (const Argument *FA = dyn_cast<Argument>(V)) 900 return new SlotTracker(FA->getParent()); 901 902 if (const Instruction *I = dyn_cast<Instruction>(V)) 903 if (I->getParent()) 904 return new SlotTracker(I->getParent()->getParent()); 905 906 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 907 return new SlotTracker(BB->getParent()); 908 909 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 910 return new SlotTracker(GV->getParent()); 911 912 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 913 return new SlotTracker(GA->getParent()); 914 915 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V)) 916 return new SlotTracker(GIF->getParent()); 917 918 if (const Function *Func = dyn_cast<Function>(V)) 919 return new SlotTracker(Func); 920 921 return nullptr; 922 } 923 924 #if 0 925 #define ST_DEBUG(X) dbgs() << X 926 #else 927 #define ST_DEBUG(X) 928 #endif 929 930 // Module level constructor. Causes the contents of the Module (sans functions) 931 // to be added to the slot table. 932 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) 933 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 934 935 // Function level constructor. Causes the contents of the Module and the one 936 // function provided to be added to the slot table. 937 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) 938 : TheModule(F ? F->getParent() : nullptr), TheFunction(F), 939 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 940 941 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) 942 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} 943 944 inline void SlotTracker::initializeIfNeeded() { 945 if (TheModule) { 946 processModule(); 947 TheModule = nullptr; ///< Prevent re-processing next time we're called. 948 } 949 950 if (TheFunction && !FunctionProcessed) 951 processFunction(); 952 } 953 954 int SlotTracker::initializeIndexIfNeeded() { 955 if (!TheIndex) 956 return 0; 957 int NumSlots = processIndex(); 958 TheIndex = nullptr; ///< Prevent re-processing next time we're called. 959 return NumSlots; 960 } 961 962 // Iterate through all the global variables, functions, and global 963 // variable initializers and create slots for them. 964 void SlotTracker::processModule() { 965 ST_DEBUG("begin processModule!\n"); 966 967 // Add all of the unnamed global variables to the value table. 968 for (const GlobalVariable &Var : TheModule->globals()) { 969 if (!Var.hasName()) 970 CreateModuleSlot(&Var); 971 processGlobalObjectMetadata(Var); 972 auto Attrs = Var.getAttributes(); 973 if (Attrs.hasAttributes()) 974 CreateAttributeSetSlot(Attrs); 975 } 976 977 for (const GlobalAlias &A : TheModule->aliases()) { 978 if (!A.hasName()) 979 CreateModuleSlot(&A); 980 } 981 982 for (const GlobalIFunc &I : TheModule->ifuncs()) { 983 if (!I.hasName()) 984 CreateModuleSlot(&I); 985 } 986 987 // Add metadata used by named metadata. 988 for (const NamedMDNode &NMD : TheModule->named_metadata()) { 989 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) 990 CreateMetadataSlot(NMD.getOperand(i)); 991 } 992 993 for (const Function &F : *TheModule) { 994 if (!F.hasName()) 995 // Add all the unnamed functions to the table. 996 CreateModuleSlot(&F); 997 998 if (ShouldInitializeAllMetadata) 999 processFunctionMetadata(F); 1000 1001 // Add all the function attributes to the table. 1002 // FIXME: Add attributes of other objects? 1003 AttributeSet FnAttrs = F.getAttributes().getFnAttributes(); 1004 if (FnAttrs.hasAttributes()) 1005 CreateAttributeSetSlot(FnAttrs); 1006 } 1007 1008 ST_DEBUG("end processModule!\n"); 1009 } 1010 1011 // Process the arguments, basic blocks, and instructions of a function. 1012 void SlotTracker::processFunction() { 1013 ST_DEBUG("begin processFunction!\n"); 1014 fNext = 0; 1015 1016 // Process function metadata if it wasn't hit at the module-level. 1017 if (!ShouldInitializeAllMetadata) 1018 processFunctionMetadata(*TheFunction); 1019 1020 // Add all the function arguments with no names. 1021 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 1022 AE = TheFunction->arg_end(); AI != AE; ++AI) 1023 if (!AI->hasName()) 1024 CreateFunctionSlot(&*AI); 1025 1026 ST_DEBUG("Inserting Instructions:\n"); 1027 1028 // Add all of the basic blocks and instructions with no names. 1029 for (auto &BB : *TheFunction) { 1030 if (!BB.hasName()) 1031 CreateFunctionSlot(&BB); 1032 1033 for (auto &I : BB) { 1034 if (!I.getType()->isVoidTy() && !I.hasName()) 1035 CreateFunctionSlot(&I); 1036 1037 // We allow direct calls to any llvm.foo function here, because the 1038 // target may not be linked into the optimizer. 1039 if (const auto *Call = dyn_cast<CallBase>(&I)) { 1040 // Add all the call attributes to the table. 1041 AttributeSet Attrs = Call->getAttributes().getFnAttributes(); 1042 if (Attrs.hasAttributes()) 1043 CreateAttributeSetSlot(Attrs); 1044 } 1045 } 1046 } 1047 1048 FunctionProcessed = true; 1049 1050 ST_DEBUG("end processFunction!\n"); 1051 } 1052 1053 // Iterate through all the GUID in the index and create slots for them. 1054 int SlotTracker::processIndex() { 1055 ST_DEBUG("begin processIndex!\n"); 1056 assert(TheIndex); 1057 1058 // The first block of slots are just the module ids, which start at 0 and are 1059 // assigned consecutively. Since the StringMap iteration order isn't 1060 // guaranteed, use a std::map to order by module ID before assigning slots. 1061 std::map<uint64_t, StringRef> ModuleIdToPathMap; 1062 for (auto &ModPath : TheIndex->modulePaths()) 1063 ModuleIdToPathMap[ModPath.second.first] = ModPath.first(); 1064 for (auto &ModPair : ModuleIdToPathMap) 1065 CreateModulePathSlot(ModPair.second); 1066 1067 // Start numbering the GUIDs after the module ids. 1068 GUIDNext = ModulePathNext; 1069 1070 for (auto &GlobalList : *TheIndex) 1071 CreateGUIDSlot(GlobalList.first); 1072 1073 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) 1074 CreateGUIDSlot(GlobalValue::getGUID(TId.first)); 1075 1076 // Start numbering the TypeIds after the GUIDs. 1077 TypeIdNext = GUIDNext; 1078 for (auto TidIter = TheIndex->typeIds().begin(); 1079 TidIter != TheIndex->typeIds().end(); TidIter++) 1080 CreateTypeIdSlot(TidIter->second.first); 1081 1082 ST_DEBUG("end processIndex!\n"); 1083 return TypeIdNext; 1084 } 1085 1086 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { 1087 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1088 GO.getAllMetadata(MDs); 1089 for (auto &MD : MDs) 1090 CreateMetadataSlot(MD.second); 1091 } 1092 1093 void SlotTracker::processFunctionMetadata(const Function &F) { 1094 processGlobalObjectMetadata(F); 1095 for (auto &BB : F) { 1096 for (auto &I : BB) 1097 processInstructionMetadata(I); 1098 } 1099 } 1100 1101 void SlotTracker::processInstructionMetadata(const Instruction &I) { 1102 // Process metadata used directly by intrinsics. 1103 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1104 if (Function *F = CI->getCalledFunction()) 1105 if (F->isIntrinsic()) 1106 for (auto &Op : I.operands()) 1107 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 1108 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) 1109 CreateMetadataSlot(N); 1110 1111 // Process metadata attached to this instruction. 1112 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1113 I.getAllMetadata(MDs); 1114 for (auto &MD : MDs) 1115 CreateMetadataSlot(MD.second); 1116 } 1117 1118 /// Clean up after incorporating a function. This is the only way to get out of 1119 /// the function incorporation state that affects get*Slot/Create*Slot. Function 1120 /// incorporation state is indicated by TheFunction != 0. 1121 void SlotTracker::purgeFunction() { 1122 ST_DEBUG("begin purgeFunction!\n"); 1123 fMap.clear(); // Simply discard the function level map 1124 TheFunction = nullptr; 1125 FunctionProcessed = false; 1126 ST_DEBUG("end purgeFunction!\n"); 1127 } 1128 1129 /// getGlobalSlot - Get the slot number of a global value. 1130 int SlotTracker::getGlobalSlot(const GlobalValue *V) { 1131 // Check for uninitialized state and do lazy initialization. 1132 initializeIfNeeded(); 1133 1134 // Find the value in the module map 1135 ValueMap::iterator MI = mMap.find(V); 1136 return MI == mMap.end() ? -1 : (int)MI->second; 1137 } 1138 1139 /// getMetadataSlot - Get the slot number of a MDNode. 1140 int SlotTracker::getMetadataSlot(const MDNode *N) { 1141 // Check for uninitialized state and do lazy initialization. 1142 initializeIfNeeded(); 1143 1144 // Find the MDNode in the module map 1145 mdn_iterator MI = mdnMap.find(N); 1146 return MI == mdnMap.end() ? -1 : (int)MI->second; 1147 } 1148 1149 /// getLocalSlot - Get the slot number for a value that is local to a function. 1150 int SlotTracker::getLocalSlot(const Value *V) { 1151 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 1152 1153 // Check for uninitialized state and do lazy initialization. 1154 initializeIfNeeded(); 1155 1156 ValueMap::iterator FI = fMap.find(V); 1157 return FI == fMap.end() ? -1 : (int)FI->second; 1158 } 1159 1160 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { 1161 // Check for uninitialized state and do lazy initialization. 1162 initializeIfNeeded(); 1163 1164 // Find the AttributeSet in the module map. 1165 as_iterator AI = asMap.find(AS); 1166 return AI == asMap.end() ? -1 : (int)AI->second; 1167 } 1168 1169 int SlotTracker::getModulePathSlot(StringRef Path) { 1170 // Check for uninitialized state and do lazy initialization. 1171 initializeIndexIfNeeded(); 1172 1173 // Find the Module path in the map 1174 auto I = ModulePathMap.find(Path); 1175 return I == ModulePathMap.end() ? -1 : (int)I->second; 1176 } 1177 1178 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { 1179 // Check for uninitialized state and do lazy initialization. 1180 initializeIndexIfNeeded(); 1181 1182 // Find the GUID in the map 1183 guid_iterator I = GUIDMap.find(GUID); 1184 return I == GUIDMap.end() ? -1 : (int)I->second; 1185 } 1186 1187 int SlotTracker::getTypeIdSlot(StringRef Id) { 1188 // Check for uninitialized state and do lazy initialization. 1189 initializeIndexIfNeeded(); 1190 1191 // Find the TypeId string in the map 1192 auto I = TypeIdMap.find(Id); 1193 return I == TypeIdMap.end() ? -1 : (int)I->second; 1194 } 1195 1196 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 1197 void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 1198 assert(V && "Can't insert a null Value into SlotTracker!"); 1199 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 1200 assert(!V->hasName() && "Doesn't need a slot!"); 1201 1202 unsigned DestSlot = mNext++; 1203 mMap[V] = DestSlot; 1204 1205 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1206 DestSlot << " ["); 1207 // G = Global, F = Function, A = Alias, I = IFunc, o = other 1208 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 1209 (isa<Function>(V) ? 'F' : 1210 (isa<GlobalAlias>(V) ? 'A' : 1211 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n"); 1212 } 1213 1214 /// CreateSlot - Create a new slot for the specified value if it has no name. 1215 void SlotTracker::CreateFunctionSlot(const Value *V) { 1216 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 1217 1218 unsigned DestSlot = fNext++; 1219 fMap[V] = DestSlot; 1220 1221 // G = Global, F = Function, o = other 1222 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1223 DestSlot << " [o]\n"); 1224 } 1225 1226 /// CreateModuleSlot - Insert the specified MDNode* into the slot table. 1227 void SlotTracker::CreateMetadataSlot(const MDNode *N) { 1228 assert(N && "Can't insert a null Value into SlotTracker!"); 1229 1230 // Don't make slots for DIExpressions. We just print them inline everywhere. 1231 if (isa<DIExpression>(N)) 1232 return; 1233 1234 unsigned DestSlot = mdnNext; 1235 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) 1236 return; 1237 ++mdnNext; 1238 1239 // Recursively add any MDNodes referenced by operands. 1240 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1241 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 1242 CreateMetadataSlot(Op); 1243 } 1244 1245 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { 1246 assert(AS.hasAttributes() && "Doesn't need a slot!"); 1247 1248 as_iterator I = asMap.find(AS); 1249 if (I != asMap.end()) 1250 return; 1251 1252 unsigned DestSlot = asNext++; 1253 asMap[AS] = DestSlot; 1254 } 1255 1256 /// Create a new slot for the specified Module 1257 void SlotTracker::CreateModulePathSlot(StringRef Path) { 1258 ModulePathMap[Path] = ModulePathNext++; 1259 } 1260 1261 /// Create a new slot for the specified GUID 1262 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { 1263 GUIDMap[GUID] = GUIDNext++; 1264 } 1265 1266 /// Create a new slot for the specified Id 1267 void SlotTracker::CreateTypeIdSlot(StringRef Id) { 1268 TypeIdMap[Id] = TypeIdNext++; 1269 } 1270 1271 //===----------------------------------------------------------------------===// 1272 // AsmWriter Implementation 1273 //===----------------------------------------------------------------------===// 1274 1275 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 1276 TypePrinting *TypePrinter, 1277 SlotTracker *Machine, 1278 const Module *Context); 1279 1280 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 1281 TypePrinting *TypePrinter, 1282 SlotTracker *Machine, const Module *Context, 1283 bool FromValue = false); 1284 1285 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 1286 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { 1287 // 'Fast' is an abbreviation for all fast-math-flags. 1288 if (FPO->isFast()) 1289 Out << " fast"; 1290 else { 1291 if (FPO->hasAllowReassoc()) 1292 Out << " reassoc"; 1293 if (FPO->hasNoNaNs()) 1294 Out << " nnan"; 1295 if (FPO->hasNoInfs()) 1296 Out << " ninf"; 1297 if (FPO->hasNoSignedZeros()) 1298 Out << " nsz"; 1299 if (FPO->hasAllowReciprocal()) 1300 Out << " arcp"; 1301 if (FPO->hasAllowContract()) 1302 Out << " contract"; 1303 if (FPO->hasApproxFunc()) 1304 Out << " afn"; 1305 } 1306 } 1307 1308 if (const OverflowingBinaryOperator *OBO = 1309 dyn_cast<OverflowingBinaryOperator>(U)) { 1310 if (OBO->hasNoUnsignedWrap()) 1311 Out << " nuw"; 1312 if (OBO->hasNoSignedWrap()) 1313 Out << " nsw"; 1314 } else if (const PossiblyExactOperator *Div = 1315 dyn_cast<PossiblyExactOperator>(U)) { 1316 if (Div->isExact()) 1317 Out << " exact"; 1318 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 1319 if (GEP->isInBounds()) 1320 Out << " inbounds"; 1321 } 1322 } 1323 1324 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 1325 TypePrinting &TypePrinter, 1326 SlotTracker *Machine, 1327 const Module *Context) { 1328 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1329 if (CI->getType()->isIntegerTy(1)) { 1330 Out << (CI->getZExtValue() ? "true" : "false"); 1331 return; 1332 } 1333 Out << CI->getValue(); 1334 return; 1335 } 1336 1337 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1338 const APFloat &APF = CFP->getValueAPF(); 1339 if (&APF.getSemantics() == &APFloat::IEEEsingle() || 1340 &APF.getSemantics() == &APFloat::IEEEdouble()) { 1341 // We would like to output the FP constant value in exponential notation, 1342 // but we cannot do this if doing so will lose precision. Check here to 1343 // make sure that we only output it in exponential format if we can parse 1344 // the value back and get the same value. 1345 // 1346 bool ignored; 1347 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); 1348 bool isInf = APF.isInfinity(); 1349 bool isNaN = APF.isNaN(); 1350 if (!isInf && !isNaN) { 1351 double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat(); 1352 SmallString<128> StrVal; 1353 APF.toString(StrVal, 6, 0, false); 1354 // Check to make sure that the stringized number is not some string like 1355 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 1356 // that the string matches the "[-+]?[0-9]" regex. 1357 // 1358 assert(((StrVal[0] >= '0' && StrVal[0] <= '9') || 1359 ((StrVal[0] == '-' || StrVal[0] == '+') && 1360 (StrVal[1] >= '0' && StrVal[1] <= '9'))) && 1361 "[-+]?[0-9] regex does not match!"); 1362 // Reparse stringized version! 1363 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { 1364 Out << StrVal; 1365 return; 1366 } 1367 } 1368 // Otherwise we could not reparse it to exactly the same value, so we must 1369 // output the string in hexadecimal format! Note that loading and storing 1370 // floating point types changes the bits of NaNs on some hosts, notably 1371 // x86, so we must not use these types. 1372 static_assert(sizeof(double) == sizeof(uint64_t), 1373 "assuming that double is 64 bits!"); 1374 APFloat apf = APF; 1375 // Floats are represented in ASCII IR as double, convert. 1376 if (!isDouble) 1377 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1378 &ignored); 1379 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); 1380 return; 1381 } 1382 1383 // Either half, bfloat or some form of long double. 1384 // These appear as a magic letter identifying the type, then a 1385 // fixed number of hex digits. 1386 Out << "0x"; 1387 APInt API = APF.bitcastToAPInt(); 1388 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { 1389 Out << 'K'; 1390 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 1391 /*Upper=*/true); 1392 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1393 /*Upper=*/true); 1394 return; 1395 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { 1396 Out << 'L'; 1397 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1398 /*Upper=*/true); 1399 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1400 /*Upper=*/true); 1401 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { 1402 Out << 'M'; 1403 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1404 /*Upper=*/true); 1405 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1406 /*Upper=*/true); 1407 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { 1408 Out << 'H'; 1409 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1410 /*Upper=*/true); 1411 } else if (&APF.getSemantics() == &APFloat::BFloat()) { 1412 Out << 'R'; 1413 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1414 /*Upper=*/true); 1415 } else 1416 llvm_unreachable("Unsupported floating point type"); 1417 return; 1418 } 1419 1420 if (isa<ConstantAggregateZero>(CV)) { 1421 Out << "zeroinitializer"; 1422 return; 1423 } 1424 1425 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 1426 Out << "blockaddress("; 1427 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, 1428 Context); 1429 Out << ", "; 1430 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, 1431 Context); 1432 Out << ")"; 1433 return; 1434 } 1435 1436 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 1437 Type *ETy = CA->getType()->getElementType(); 1438 Out << '['; 1439 TypePrinter.print(ETy, Out); 1440 Out << ' '; 1441 WriteAsOperandInternal(Out, CA->getOperand(0), 1442 &TypePrinter, Machine, 1443 Context); 1444 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1445 Out << ", "; 1446 TypePrinter.print(ETy, Out); 1447 Out << ' '; 1448 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, 1449 Context); 1450 } 1451 Out << ']'; 1452 return; 1453 } 1454 1455 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { 1456 // As a special case, print the array as a string if it is an array of 1457 // i8 with ConstantInt values. 1458 if (CA->isString()) { 1459 Out << "c\""; 1460 printEscapedString(CA->getAsString(), Out); 1461 Out << '"'; 1462 return; 1463 } 1464 1465 Type *ETy = CA->getType()->getElementType(); 1466 Out << '['; 1467 TypePrinter.print(ETy, Out); 1468 Out << ' '; 1469 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), 1470 &TypePrinter, Machine, 1471 Context); 1472 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { 1473 Out << ", "; 1474 TypePrinter.print(ETy, Out); 1475 Out << ' '; 1476 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, 1477 Machine, Context); 1478 } 1479 Out << ']'; 1480 return; 1481 } 1482 1483 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 1484 if (CS->getType()->isPacked()) 1485 Out << '<'; 1486 Out << '{'; 1487 unsigned N = CS->getNumOperands(); 1488 if (N) { 1489 Out << ' '; 1490 TypePrinter.print(CS->getOperand(0)->getType(), Out); 1491 Out << ' '; 1492 1493 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, 1494 Context); 1495 1496 for (unsigned i = 1; i < N; i++) { 1497 Out << ", "; 1498 TypePrinter.print(CS->getOperand(i)->getType(), Out); 1499 Out << ' '; 1500 1501 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, 1502 Context); 1503 } 1504 Out << ' '; 1505 } 1506 1507 Out << '}'; 1508 if (CS->getType()->isPacked()) 1509 Out << '>'; 1510 return; 1511 } 1512 1513 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { 1514 auto *CVVTy = cast<VectorType>(CV->getType()); 1515 Type *ETy = CVVTy->getElementType(); 1516 Out << '<'; 1517 TypePrinter.print(ETy, Out); 1518 Out << ' '; 1519 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, 1520 Machine, Context); 1521 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) { 1522 Out << ", "; 1523 TypePrinter.print(ETy, Out); 1524 Out << ' '; 1525 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, 1526 Machine, Context); 1527 } 1528 Out << '>'; 1529 return; 1530 } 1531 1532 if (isa<ConstantPointerNull>(CV)) { 1533 Out << "null"; 1534 return; 1535 } 1536 1537 if (isa<ConstantTokenNone>(CV)) { 1538 Out << "none"; 1539 return; 1540 } 1541 1542 if (isa<UndefValue>(CV)) { 1543 Out << "undef"; 1544 return; 1545 } 1546 1547 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1548 Out << CE->getOpcodeName(); 1549 WriteOptimizationInfo(Out, CE); 1550 if (CE->isCompare()) 1551 Out << ' ' << CmpInst::getPredicateName( 1552 static_cast<CmpInst::Predicate>(CE->getPredicate())); 1553 Out << " ("; 1554 1555 Optional<unsigned> InRangeOp; 1556 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { 1557 TypePrinter.print(GEP->getSourceElementType(), Out); 1558 Out << ", "; 1559 InRangeOp = GEP->getInRangeIndex(); 1560 if (InRangeOp) 1561 ++*InRangeOp; 1562 } 1563 1564 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 1565 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) 1566 Out << "inrange "; 1567 TypePrinter.print((*OI)->getType(), Out); 1568 Out << ' '; 1569 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); 1570 if (OI+1 != CE->op_end()) 1571 Out << ", "; 1572 } 1573 1574 if (CE->hasIndices()) { 1575 ArrayRef<unsigned> Indices = CE->getIndices(); 1576 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1577 Out << ", " << Indices[i]; 1578 } 1579 1580 if (CE->isCast()) { 1581 Out << " to "; 1582 TypePrinter.print(CE->getType(), Out); 1583 } 1584 1585 if (CE->getOpcode() == Instruction::ShuffleVector) 1586 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask()); 1587 1588 Out << ')'; 1589 return; 1590 } 1591 1592 Out << "<placeholder or erroneous Constant>"; 1593 } 1594 1595 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, 1596 TypePrinting *TypePrinter, SlotTracker *Machine, 1597 const Module *Context) { 1598 Out << "!{"; 1599 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 1600 const Metadata *MD = Node->getOperand(mi); 1601 if (!MD) 1602 Out << "null"; 1603 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) { 1604 Value *V = MDV->getValue(); 1605 TypePrinter->print(V->getType(), Out); 1606 Out << ' '; 1607 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context); 1608 } else { 1609 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); 1610 } 1611 if (mi + 1 != me) 1612 Out << ", "; 1613 } 1614 1615 Out << "}"; 1616 } 1617 1618 namespace { 1619 1620 struct FieldSeparator { 1621 bool Skip = true; 1622 const char *Sep; 1623 1624 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} 1625 }; 1626 1627 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { 1628 if (FS.Skip) { 1629 FS.Skip = false; 1630 return OS; 1631 } 1632 return OS << FS.Sep; 1633 } 1634 1635 struct MDFieldPrinter { 1636 raw_ostream &Out; 1637 FieldSeparator FS; 1638 TypePrinting *TypePrinter = nullptr; 1639 SlotTracker *Machine = nullptr; 1640 const Module *Context = nullptr; 1641 1642 explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {} 1643 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter, 1644 SlotTracker *Machine, const Module *Context) 1645 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) { 1646 } 1647 1648 void printTag(const DINode *N); 1649 void printMacinfoType(const DIMacroNode *N); 1650 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N); 1651 void printString(StringRef Name, StringRef Value, 1652 bool ShouldSkipEmpty = true); 1653 void printMetadata(StringRef Name, const Metadata *MD, 1654 bool ShouldSkipNull = true); 1655 template <class IntTy> 1656 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); 1657 void printAPInt(StringRef Name, APInt Int, bool IsUnsigned, 1658 bool ShouldSkipZero); 1659 void printBool(StringRef Name, bool Value, Optional<bool> Default = None); 1660 void printDIFlags(StringRef Name, DINode::DIFlags Flags); 1661 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags); 1662 template <class IntTy, class Stringifier> 1663 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, 1664 bool ShouldSkipZero = true); 1665 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); 1666 void printNameTableKind(StringRef Name, 1667 DICompileUnit::DebugNameTableKind NTK); 1668 }; 1669 1670 } // end anonymous namespace 1671 1672 void MDFieldPrinter::printTag(const DINode *N) { 1673 Out << FS << "tag: "; 1674 auto Tag = dwarf::TagString(N->getTag()); 1675 if (!Tag.empty()) 1676 Out << Tag; 1677 else 1678 Out << N->getTag(); 1679 } 1680 1681 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { 1682 Out << FS << "type: "; 1683 auto Type = dwarf::MacinfoString(N->getMacinfoType()); 1684 if (!Type.empty()) 1685 Out << Type; 1686 else 1687 Out << N->getMacinfoType(); 1688 } 1689 1690 void MDFieldPrinter::printChecksum( 1691 const DIFile::ChecksumInfo<StringRef> &Checksum) { 1692 Out << FS << "checksumkind: " << Checksum.getKindAsString(); 1693 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); 1694 } 1695 1696 void MDFieldPrinter::printString(StringRef Name, StringRef Value, 1697 bool ShouldSkipEmpty) { 1698 if (ShouldSkipEmpty && Value.empty()) 1699 return; 1700 1701 Out << FS << Name << ": \""; 1702 printEscapedString(Value, Out); 1703 Out << "\""; 1704 } 1705 1706 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, 1707 TypePrinting *TypePrinter, 1708 SlotTracker *Machine, 1709 const Module *Context) { 1710 if (!MD) { 1711 Out << "null"; 1712 return; 1713 } 1714 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); 1715 } 1716 1717 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, 1718 bool ShouldSkipNull) { 1719 if (ShouldSkipNull && !MD) 1720 return; 1721 1722 Out << FS << Name << ": "; 1723 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context); 1724 } 1725 1726 template <class IntTy> 1727 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { 1728 if (ShouldSkipZero && !Int) 1729 return; 1730 1731 Out << FS << Name << ": " << Int; 1732 } 1733 1734 void MDFieldPrinter::printAPInt(StringRef Name, APInt Int, bool IsUnsigned, 1735 bool ShouldSkipZero) { 1736 if (ShouldSkipZero && Int.isNullValue()) 1737 return; 1738 1739 Out << FS << Name << ": "; 1740 Int.print(Out, !IsUnsigned); 1741 } 1742 1743 void MDFieldPrinter::printBool(StringRef Name, bool Value, 1744 Optional<bool> Default) { 1745 if (Default && Value == *Default) 1746 return; 1747 Out << FS << Name << ": " << (Value ? "true" : "false"); 1748 } 1749 1750 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { 1751 if (!Flags) 1752 return; 1753 1754 Out << FS << Name << ": "; 1755 1756 SmallVector<DINode::DIFlags, 8> SplitFlags; 1757 auto Extra = DINode::splitFlags(Flags, SplitFlags); 1758 1759 FieldSeparator FlagsFS(" | "); 1760 for (auto F : SplitFlags) { 1761 auto StringF = DINode::getFlagString(F); 1762 assert(!StringF.empty() && "Expected valid flag"); 1763 Out << FlagsFS << StringF; 1764 } 1765 if (Extra || SplitFlags.empty()) 1766 Out << FlagsFS << Extra; 1767 } 1768 1769 void MDFieldPrinter::printDISPFlags(StringRef Name, 1770 DISubprogram::DISPFlags Flags) { 1771 // Always print this field, because no flags in the IR at all will be 1772 // interpreted as old-style isDefinition: true. 1773 Out << FS << Name << ": "; 1774 1775 if (!Flags) { 1776 Out << 0; 1777 return; 1778 } 1779 1780 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags; 1781 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags); 1782 1783 FieldSeparator FlagsFS(" | "); 1784 for (auto F : SplitFlags) { 1785 auto StringF = DISubprogram::getFlagString(F); 1786 assert(!StringF.empty() && "Expected valid flag"); 1787 Out << FlagsFS << StringF; 1788 } 1789 if (Extra || SplitFlags.empty()) 1790 Out << FlagsFS << Extra; 1791 } 1792 1793 void MDFieldPrinter::printEmissionKind(StringRef Name, 1794 DICompileUnit::DebugEmissionKind EK) { 1795 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); 1796 } 1797 1798 void MDFieldPrinter::printNameTableKind(StringRef Name, 1799 DICompileUnit::DebugNameTableKind NTK) { 1800 if (NTK == DICompileUnit::DebugNameTableKind::Default) 1801 return; 1802 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK); 1803 } 1804 1805 template <class IntTy, class Stringifier> 1806 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, 1807 Stringifier toString, bool ShouldSkipZero) { 1808 if (!Value) 1809 return; 1810 1811 Out << FS << Name << ": "; 1812 auto S = toString(Value); 1813 if (!S.empty()) 1814 Out << S; 1815 else 1816 Out << Value; 1817 } 1818 1819 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, 1820 TypePrinting *TypePrinter, SlotTracker *Machine, 1821 const Module *Context) { 1822 Out << "!GenericDINode("; 1823 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1824 Printer.printTag(N); 1825 Printer.printString("header", N->getHeader()); 1826 if (N->getNumDwarfOperands()) { 1827 Out << Printer.FS << "operands: {"; 1828 FieldSeparator IFS; 1829 for (auto &I : N->dwarf_operands()) { 1830 Out << IFS; 1831 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context); 1832 } 1833 Out << "}"; 1834 } 1835 Out << ")"; 1836 } 1837 1838 static void writeDILocation(raw_ostream &Out, const DILocation *DL, 1839 TypePrinting *TypePrinter, SlotTracker *Machine, 1840 const Module *Context) { 1841 Out << "!DILocation("; 1842 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1843 // Always output the line, since 0 is a relevant and important value for it. 1844 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); 1845 Printer.printInt("column", DL->getColumn()); 1846 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); 1847 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); 1848 Printer.printBool("isImplicitCode", DL->isImplicitCode(), 1849 /* Default */ false); 1850 Out << ")"; 1851 } 1852 1853 static void writeDISubrange(raw_ostream &Out, const DISubrange *N, 1854 TypePrinting *TypePrinter, SlotTracker *Machine, 1855 const Module *Context) { 1856 Out << "!DISubrange("; 1857 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1858 if (auto *CE = N->getCount().dyn_cast<ConstantInt*>()) 1859 Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false); 1860 else 1861 Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable *>(), 1862 /*ShouldSkipNull */ true); 1863 1864 // A lowerBound of constant 0 should not be skipped, since it is different 1865 // from an unspecified lower bound (= nullptr). 1866 auto *LBound = N->getRawLowerBound(); 1867 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) { 1868 auto *LV = cast<ConstantInt>(LE->getValue()); 1869 Printer.printInt("lowerBound", LV->getSExtValue(), 1870 /* ShouldSkipZero */ false); 1871 } else 1872 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true); 1873 1874 auto *UBound = N->getRawUpperBound(); 1875 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) { 1876 auto *UV = cast<ConstantInt>(UE->getValue()); 1877 Printer.printInt("upperBound", UV->getSExtValue(), 1878 /* ShouldSkipZero */ false); 1879 } else 1880 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true); 1881 1882 auto *Stride = N->getRawStride(); 1883 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) { 1884 auto *SV = cast<ConstantInt>(SE->getValue()); 1885 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false); 1886 } else 1887 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true); 1888 1889 Out << ")"; 1890 } 1891 1892 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, 1893 TypePrinting *, SlotTracker *, const Module *) { 1894 Out << "!DIEnumerator("; 1895 MDFieldPrinter Printer(Out); 1896 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); 1897 Printer.printAPInt("value", N->getValue(), N->isUnsigned(), 1898 /*ShouldSkipZero=*/false); 1899 if (N->isUnsigned()) 1900 Printer.printBool("isUnsigned", true); 1901 Out << ")"; 1902 } 1903 1904 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, 1905 TypePrinting *, SlotTracker *, const Module *) { 1906 Out << "!DIBasicType("; 1907 MDFieldPrinter Printer(Out); 1908 if (N->getTag() != dwarf::DW_TAG_base_type) 1909 Printer.printTag(N); 1910 Printer.printString("name", N->getName()); 1911 Printer.printInt("size", N->getSizeInBits()); 1912 Printer.printInt("align", N->getAlignInBits()); 1913 Printer.printDwarfEnum("encoding", N->getEncoding(), 1914 dwarf::AttributeEncodingString); 1915 Printer.printDIFlags("flags", N->getFlags()); 1916 Out << ")"; 1917 } 1918 1919 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, 1920 TypePrinting *TypePrinter, SlotTracker *Machine, 1921 const Module *Context) { 1922 Out << "!DIDerivedType("; 1923 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1924 Printer.printTag(N); 1925 Printer.printString("name", N->getName()); 1926 Printer.printMetadata("scope", N->getRawScope()); 1927 Printer.printMetadata("file", N->getRawFile()); 1928 Printer.printInt("line", N->getLine()); 1929 Printer.printMetadata("baseType", N->getRawBaseType(), 1930 /* ShouldSkipNull */ false); 1931 Printer.printInt("size", N->getSizeInBits()); 1932 Printer.printInt("align", N->getAlignInBits()); 1933 Printer.printInt("offset", N->getOffsetInBits()); 1934 Printer.printDIFlags("flags", N->getFlags()); 1935 Printer.printMetadata("extraData", N->getRawExtraData()); 1936 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1937 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, 1938 /* ShouldSkipZero */ false); 1939 Out << ")"; 1940 } 1941 1942 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, 1943 TypePrinting *TypePrinter, 1944 SlotTracker *Machine, const Module *Context) { 1945 Out << "!DICompositeType("; 1946 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1947 Printer.printTag(N); 1948 Printer.printString("name", N->getName()); 1949 Printer.printMetadata("scope", N->getRawScope()); 1950 Printer.printMetadata("file", N->getRawFile()); 1951 Printer.printInt("line", N->getLine()); 1952 Printer.printMetadata("baseType", N->getRawBaseType()); 1953 Printer.printInt("size", N->getSizeInBits()); 1954 Printer.printInt("align", N->getAlignInBits()); 1955 Printer.printInt("offset", N->getOffsetInBits()); 1956 Printer.printDIFlags("flags", N->getFlags()); 1957 Printer.printMetadata("elements", N->getRawElements()); 1958 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), 1959 dwarf::LanguageString); 1960 Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); 1961 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 1962 Printer.printString("identifier", N->getIdentifier()); 1963 Printer.printMetadata("discriminator", N->getRawDiscriminator()); 1964 Printer.printMetadata("dataLocation", N->getRawDataLocation()); 1965 Out << ")"; 1966 } 1967 1968 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, 1969 TypePrinting *TypePrinter, 1970 SlotTracker *Machine, const Module *Context) { 1971 Out << "!DISubroutineType("; 1972 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1973 Printer.printDIFlags("flags", N->getFlags()); 1974 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); 1975 Printer.printMetadata("types", N->getRawTypeArray(), 1976 /* ShouldSkipNull */ false); 1977 Out << ")"; 1978 } 1979 1980 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *, 1981 SlotTracker *, const Module *) { 1982 Out << "!DIFile("; 1983 MDFieldPrinter Printer(Out); 1984 Printer.printString("filename", N->getFilename(), 1985 /* ShouldSkipEmpty */ false); 1986 Printer.printString("directory", N->getDirectory(), 1987 /* ShouldSkipEmpty */ false); 1988 // Print all values for checksum together, or not at all. 1989 if (N->getChecksum()) 1990 Printer.printChecksum(*N->getChecksum()); 1991 Printer.printString("source", N->getSource().getValueOr(StringRef()), 1992 /* ShouldSkipEmpty */ true); 1993 Out << ")"; 1994 } 1995 1996 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, 1997 TypePrinting *TypePrinter, SlotTracker *Machine, 1998 const Module *Context) { 1999 Out << "!DICompileUnit("; 2000 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2001 Printer.printDwarfEnum("language", N->getSourceLanguage(), 2002 dwarf::LanguageString, /* ShouldSkipZero */ false); 2003 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2004 Printer.printString("producer", N->getProducer()); 2005 Printer.printBool("isOptimized", N->isOptimized()); 2006 Printer.printString("flags", N->getFlags()); 2007 Printer.printInt("runtimeVersion", N->getRuntimeVersion(), 2008 /* ShouldSkipZero */ false); 2009 Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); 2010 Printer.printEmissionKind("emissionKind", N->getEmissionKind()); 2011 Printer.printMetadata("enums", N->getRawEnumTypes()); 2012 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); 2013 Printer.printMetadata("globals", N->getRawGlobalVariables()); 2014 Printer.printMetadata("imports", N->getRawImportedEntities()); 2015 Printer.printMetadata("macros", N->getRawMacros()); 2016 Printer.printInt("dwoId", N->getDWOId()); 2017 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); 2018 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), 2019 false); 2020 Printer.printNameTableKind("nameTableKind", N->getNameTableKind()); 2021 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false); 2022 Printer.printString("sysroot", N->getSysRoot()); 2023 Printer.printString("sdk", N->getSDK()); 2024 Out << ")"; 2025 } 2026 2027 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, 2028 TypePrinting *TypePrinter, SlotTracker *Machine, 2029 const Module *Context) { 2030 Out << "!DISubprogram("; 2031 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2032 Printer.printString("name", N->getName()); 2033 Printer.printString("linkageName", N->getLinkageName()); 2034 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2035 Printer.printMetadata("file", N->getRawFile()); 2036 Printer.printInt("line", N->getLine()); 2037 Printer.printMetadata("type", N->getRawType()); 2038 Printer.printInt("scopeLine", N->getScopeLine()); 2039 Printer.printMetadata("containingType", N->getRawContainingType()); 2040 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || 2041 N->getVirtualIndex() != 0) 2042 Printer.printInt("virtualIndex", N->getVirtualIndex(), false); 2043 Printer.printInt("thisAdjustment", N->getThisAdjustment()); 2044 Printer.printDIFlags("flags", N->getFlags()); 2045 Printer.printDISPFlags("spFlags", N->getSPFlags()); 2046 Printer.printMetadata("unit", N->getRawUnit()); 2047 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2048 Printer.printMetadata("declaration", N->getRawDeclaration()); 2049 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); 2050 Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); 2051 Out << ")"; 2052 } 2053 2054 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, 2055 TypePrinting *TypePrinter, SlotTracker *Machine, 2056 const Module *Context) { 2057 Out << "!DILexicalBlock("; 2058 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2059 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2060 Printer.printMetadata("file", N->getRawFile()); 2061 Printer.printInt("line", N->getLine()); 2062 Printer.printInt("column", N->getColumn()); 2063 Out << ")"; 2064 } 2065 2066 static void writeDILexicalBlockFile(raw_ostream &Out, 2067 const DILexicalBlockFile *N, 2068 TypePrinting *TypePrinter, 2069 SlotTracker *Machine, 2070 const Module *Context) { 2071 Out << "!DILexicalBlockFile("; 2072 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2073 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2074 Printer.printMetadata("file", N->getRawFile()); 2075 Printer.printInt("discriminator", N->getDiscriminator(), 2076 /* ShouldSkipZero */ false); 2077 Out << ")"; 2078 } 2079 2080 static void writeDINamespace(raw_ostream &Out, const DINamespace *N, 2081 TypePrinting *TypePrinter, SlotTracker *Machine, 2082 const Module *Context) { 2083 Out << "!DINamespace("; 2084 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2085 Printer.printString("name", N->getName()); 2086 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2087 Printer.printBool("exportSymbols", N->getExportSymbols(), false); 2088 Out << ")"; 2089 } 2090 2091 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, 2092 TypePrinting *TypePrinter, SlotTracker *Machine, 2093 const Module *Context) { 2094 Out << "!DICommonBlock("; 2095 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2096 Printer.printMetadata("scope", N->getRawScope(), false); 2097 Printer.printMetadata("declaration", N->getRawDecl(), false); 2098 Printer.printString("name", N->getName()); 2099 Printer.printMetadata("file", N->getRawFile()); 2100 Printer.printInt("line", N->getLineNo()); 2101 Out << ")"; 2102 } 2103 2104 static void writeDIMacro(raw_ostream &Out, const DIMacro *N, 2105 TypePrinting *TypePrinter, SlotTracker *Machine, 2106 const Module *Context) { 2107 Out << "!DIMacro("; 2108 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2109 Printer.printMacinfoType(N); 2110 Printer.printInt("line", N->getLine()); 2111 Printer.printString("name", N->getName()); 2112 Printer.printString("value", N->getValue()); 2113 Out << ")"; 2114 } 2115 2116 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, 2117 TypePrinting *TypePrinter, SlotTracker *Machine, 2118 const Module *Context) { 2119 Out << "!DIMacroFile("; 2120 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2121 Printer.printInt("line", N->getLine()); 2122 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2123 Printer.printMetadata("nodes", N->getRawElements()); 2124 Out << ")"; 2125 } 2126 2127 static void writeDIModule(raw_ostream &Out, const DIModule *N, 2128 TypePrinting *TypePrinter, SlotTracker *Machine, 2129 const Module *Context) { 2130 Out << "!DIModule("; 2131 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2132 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2133 Printer.printString("name", N->getName()); 2134 Printer.printString("configMacros", N->getConfigurationMacros()); 2135 Printer.printString("includePath", N->getIncludePath()); 2136 Printer.printString("apinotes", N->getAPINotesFile()); 2137 Printer.printMetadata("file", N->getRawFile()); 2138 Printer.printInt("line", N->getLineNo()); 2139 Out << ")"; 2140 } 2141 2142 2143 static void writeDITemplateTypeParameter(raw_ostream &Out, 2144 const DITemplateTypeParameter *N, 2145 TypePrinting *TypePrinter, 2146 SlotTracker *Machine, 2147 const Module *Context) { 2148 Out << "!DITemplateTypeParameter("; 2149 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2150 Printer.printString("name", N->getName()); 2151 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); 2152 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false); 2153 Out << ")"; 2154 } 2155 2156 static void writeDITemplateValueParameter(raw_ostream &Out, 2157 const DITemplateValueParameter *N, 2158 TypePrinting *TypePrinter, 2159 SlotTracker *Machine, 2160 const Module *Context) { 2161 Out << "!DITemplateValueParameter("; 2162 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2163 if (N->getTag() != dwarf::DW_TAG_template_value_parameter) 2164 Printer.printTag(N); 2165 Printer.printString("name", N->getName()); 2166 Printer.printMetadata("type", N->getRawType()); 2167 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false); 2168 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); 2169 Out << ")"; 2170 } 2171 2172 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, 2173 TypePrinting *TypePrinter, 2174 SlotTracker *Machine, const Module *Context) { 2175 Out << "!DIGlobalVariable("; 2176 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2177 Printer.printString("name", N->getName()); 2178 Printer.printString("linkageName", N->getLinkageName()); 2179 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2180 Printer.printMetadata("file", N->getRawFile()); 2181 Printer.printInt("line", N->getLine()); 2182 Printer.printMetadata("type", N->getRawType()); 2183 Printer.printBool("isLocal", N->isLocalToUnit()); 2184 Printer.printBool("isDefinition", N->isDefinition()); 2185 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); 2186 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2187 Printer.printInt("align", N->getAlignInBits()); 2188 Out << ")"; 2189 } 2190 2191 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, 2192 TypePrinting *TypePrinter, 2193 SlotTracker *Machine, const Module *Context) { 2194 Out << "!DILocalVariable("; 2195 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2196 Printer.printString("name", N->getName()); 2197 Printer.printInt("arg", N->getArg()); 2198 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2199 Printer.printMetadata("file", N->getRawFile()); 2200 Printer.printInt("line", N->getLine()); 2201 Printer.printMetadata("type", N->getRawType()); 2202 Printer.printDIFlags("flags", N->getFlags()); 2203 Printer.printInt("align", N->getAlignInBits()); 2204 Out << ")"; 2205 } 2206 2207 static void writeDILabel(raw_ostream &Out, const DILabel *N, 2208 TypePrinting *TypePrinter, 2209 SlotTracker *Machine, const Module *Context) { 2210 Out << "!DILabel("; 2211 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2212 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2213 Printer.printString("name", N->getName()); 2214 Printer.printMetadata("file", N->getRawFile()); 2215 Printer.printInt("line", N->getLine()); 2216 Out << ")"; 2217 } 2218 2219 static void writeDIExpression(raw_ostream &Out, const DIExpression *N, 2220 TypePrinting *TypePrinter, SlotTracker *Machine, 2221 const Module *Context) { 2222 Out << "!DIExpression("; 2223 FieldSeparator FS; 2224 if (N->isValid()) { 2225 for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) { 2226 auto OpStr = dwarf::OperationEncodingString(I->getOp()); 2227 assert(!OpStr.empty() && "Expected valid opcode"); 2228 2229 Out << FS << OpStr; 2230 if (I->getOp() == dwarf::DW_OP_LLVM_convert) { 2231 Out << FS << I->getArg(0); 2232 Out << FS << dwarf::AttributeEncodingString(I->getArg(1)); 2233 } else { 2234 for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A) 2235 Out << FS << I->getArg(A); 2236 } 2237 } 2238 } else { 2239 for (const auto &I : N->getElements()) 2240 Out << FS << I; 2241 } 2242 Out << ")"; 2243 } 2244 2245 static void writeDIGlobalVariableExpression(raw_ostream &Out, 2246 const DIGlobalVariableExpression *N, 2247 TypePrinting *TypePrinter, 2248 SlotTracker *Machine, 2249 const Module *Context) { 2250 Out << "!DIGlobalVariableExpression("; 2251 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2252 Printer.printMetadata("var", N->getVariable()); 2253 Printer.printMetadata("expr", N->getExpression()); 2254 Out << ")"; 2255 } 2256 2257 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, 2258 TypePrinting *TypePrinter, SlotTracker *Machine, 2259 const Module *Context) { 2260 Out << "!DIObjCProperty("; 2261 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2262 Printer.printString("name", N->getName()); 2263 Printer.printMetadata("file", N->getRawFile()); 2264 Printer.printInt("line", N->getLine()); 2265 Printer.printString("setter", N->getSetterName()); 2266 Printer.printString("getter", N->getGetterName()); 2267 Printer.printInt("attributes", N->getAttributes()); 2268 Printer.printMetadata("type", N->getRawType()); 2269 Out << ")"; 2270 } 2271 2272 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, 2273 TypePrinting *TypePrinter, 2274 SlotTracker *Machine, const Module *Context) { 2275 Out << "!DIImportedEntity("; 2276 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2277 Printer.printTag(N); 2278 Printer.printString("name", N->getName()); 2279 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2280 Printer.printMetadata("entity", N->getRawEntity()); 2281 Printer.printMetadata("file", N->getRawFile()); 2282 Printer.printInt("line", N->getLine()); 2283 Out << ")"; 2284 } 2285 2286 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 2287 TypePrinting *TypePrinter, 2288 SlotTracker *Machine, 2289 const Module *Context) { 2290 if (Node->isDistinct()) 2291 Out << "distinct "; 2292 else if (Node->isTemporary()) 2293 Out << "<temporary!> "; // Handle broken code. 2294 2295 switch (Node->getMetadataID()) { 2296 default: 2297 llvm_unreachable("Expected uniquable MDNode"); 2298 #define HANDLE_MDNODE_LEAF(CLASS) \ 2299 case Metadata::CLASS##Kind: \ 2300 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \ 2301 break; 2302 #include "llvm/IR/Metadata.def" 2303 } 2304 } 2305 2306 // Full implementation of printing a Value as an operand with support for 2307 // TypePrinting, etc. 2308 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 2309 TypePrinting *TypePrinter, 2310 SlotTracker *Machine, 2311 const Module *Context) { 2312 if (V->hasName()) { 2313 PrintLLVMName(Out, V); 2314 return; 2315 } 2316 2317 const Constant *CV = dyn_cast<Constant>(V); 2318 if (CV && !isa<GlobalValue>(CV)) { 2319 assert(TypePrinter && "Constants require TypePrinting!"); 2320 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); 2321 return; 2322 } 2323 2324 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2325 Out << "asm "; 2326 if (IA->hasSideEffects()) 2327 Out << "sideeffect "; 2328 if (IA->isAlignStack()) 2329 Out << "alignstack "; 2330 // We don't emit the AD_ATT dialect as it's the assumed default. 2331 if (IA->getDialect() == InlineAsm::AD_Intel) 2332 Out << "inteldialect "; 2333 Out << '"'; 2334 printEscapedString(IA->getAsmString(), Out); 2335 Out << "\", \""; 2336 printEscapedString(IA->getConstraintString(), Out); 2337 Out << '"'; 2338 return; 2339 } 2340 2341 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 2342 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine, 2343 Context, /* FromValue */ true); 2344 return; 2345 } 2346 2347 char Prefix = '%'; 2348 int Slot; 2349 // If we have a SlotTracker, use it. 2350 if (Machine) { 2351 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2352 Slot = Machine->getGlobalSlot(GV); 2353 Prefix = '@'; 2354 } else { 2355 Slot = Machine->getLocalSlot(V); 2356 2357 // If the local value didn't succeed, then we may be referring to a value 2358 // from a different function. Translate it, as this can happen when using 2359 // address of blocks. 2360 if (Slot == -1) 2361 if ((Machine = createSlotTracker(V))) { 2362 Slot = Machine->getLocalSlot(V); 2363 delete Machine; 2364 } 2365 } 2366 } else if ((Machine = createSlotTracker(V))) { 2367 // Otherwise, create one to get the # and then destroy it. 2368 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2369 Slot = Machine->getGlobalSlot(GV); 2370 Prefix = '@'; 2371 } else { 2372 Slot = Machine->getLocalSlot(V); 2373 } 2374 delete Machine; 2375 Machine = nullptr; 2376 } else { 2377 Slot = -1; 2378 } 2379 2380 if (Slot != -1) 2381 Out << Prefix << Slot; 2382 else 2383 Out << "<badref>"; 2384 } 2385 2386 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 2387 TypePrinting *TypePrinter, 2388 SlotTracker *Machine, const Module *Context, 2389 bool FromValue) { 2390 // Write DIExpressions inline when used as a value. Improves readability of 2391 // debug info intrinsics. 2392 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) { 2393 writeDIExpression(Out, Expr, TypePrinter, Machine, Context); 2394 return; 2395 } 2396 2397 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2398 std::unique_ptr<SlotTracker> MachineStorage; 2399 if (!Machine) { 2400 MachineStorage = std::make_unique<SlotTracker>(Context); 2401 Machine = MachineStorage.get(); 2402 } 2403 int Slot = Machine->getMetadataSlot(N); 2404 if (Slot == -1) { 2405 if (const DILocation *Loc = dyn_cast<DILocation>(N)) { 2406 writeDILocation(Out, Loc, TypePrinter, Machine, Context); 2407 return; 2408 } 2409 // Give the pointer value instead of "badref", since this comes up all 2410 // the time when debugging. 2411 Out << "<" << N << ">"; 2412 } else 2413 Out << '!' << Slot; 2414 return; 2415 } 2416 2417 if (const MDString *MDS = dyn_cast<MDString>(MD)) { 2418 Out << "!\""; 2419 printEscapedString(MDS->getString(), Out); 2420 Out << '"'; 2421 return; 2422 } 2423 2424 auto *V = cast<ValueAsMetadata>(MD); 2425 assert(TypePrinter && "TypePrinter required for metadata values"); 2426 assert((FromValue || !isa<LocalAsMetadata>(V)) && 2427 "Unexpected function-local metadata outside of value argument"); 2428 2429 TypePrinter->print(V->getValue()->getType(), Out); 2430 Out << ' '; 2431 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context); 2432 } 2433 2434 namespace { 2435 2436 class AssemblyWriter { 2437 formatted_raw_ostream &Out; 2438 const Module *TheModule = nullptr; 2439 const ModuleSummaryIndex *TheIndex = nullptr; 2440 std::unique_ptr<SlotTracker> SlotTrackerStorage; 2441 SlotTracker &Machine; 2442 TypePrinting TypePrinter; 2443 AssemblyAnnotationWriter *AnnotationWriter = nullptr; 2444 SetVector<const Comdat *> Comdats; 2445 bool IsForDebug; 2446 bool ShouldPreserveUseListOrder; 2447 UseListOrderStack UseListOrders; 2448 SmallVector<StringRef, 8> MDNames; 2449 /// Synchronization scope names registered with LLVMContext. 2450 SmallVector<StringRef, 8> SSNs; 2451 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap; 2452 2453 public: 2454 /// Construct an AssemblyWriter with an external SlotTracker 2455 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, 2456 AssemblyAnnotationWriter *AAW, bool IsForDebug, 2457 bool ShouldPreserveUseListOrder = false); 2458 2459 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2460 const ModuleSummaryIndex *Index, bool IsForDebug); 2461 2462 void printMDNodeBody(const MDNode *MD); 2463 void printNamedMDNode(const NamedMDNode *NMD); 2464 2465 void printModule(const Module *M); 2466 2467 void writeOperand(const Value *Op, bool PrintType); 2468 void writeParamOperand(const Value *Operand, AttributeSet Attrs); 2469 void writeOperandBundles(const CallBase *Call); 2470 void writeSyncScope(const LLVMContext &Context, 2471 SyncScope::ID SSID); 2472 void writeAtomic(const LLVMContext &Context, 2473 AtomicOrdering Ordering, 2474 SyncScope::ID SSID); 2475 void writeAtomicCmpXchg(const LLVMContext &Context, 2476 AtomicOrdering SuccessOrdering, 2477 AtomicOrdering FailureOrdering, 2478 SyncScope::ID SSID); 2479 2480 void writeAllMDNodes(); 2481 void writeMDNode(unsigned Slot, const MDNode *Node); 2482 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false); 2483 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false); 2484 void writeAllAttributeGroups(); 2485 2486 void printTypeIdentities(); 2487 void printGlobal(const GlobalVariable *GV); 2488 void printIndirectSymbol(const GlobalIndirectSymbol *GIS); 2489 void printComdat(const Comdat *C); 2490 void printFunction(const Function *F); 2491 void printArgument(const Argument *FA, AttributeSet Attrs); 2492 void printBasicBlock(const BasicBlock *BB); 2493 void printInstructionLine(const Instruction &I); 2494 void printInstruction(const Instruction &I); 2495 2496 void printUseListOrder(const UseListOrder &Order); 2497 void printUseLists(const Function *F); 2498 2499 void printModuleSummaryIndex(); 2500 void printSummaryInfo(unsigned Slot, const ValueInfo &VI); 2501 void printSummary(const GlobalValueSummary &Summary); 2502 void printAliasSummary(const AliasSummary *AS); 2503 void printGlobalVarSummary(const GlobalVarSummary *GS); 2504 void printFunctionSummary(const FunctionSummary *FS); 2505 void printTypeIdSummary(const TypeIdSummary &TIS); 2506 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI); 2507 void printTypeTestResolution(const TypeTestResolution &TTRes); 2508 void printArgs(const std::vector<uint64_t> &Args); 2509 void printWPDRes(const WholeProgramDevirtResolution &WPDRes); 2510 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); 2511 void printVFuncId(const FunctionSummary::VFuncId VFId); 2512 void 2513 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList, 2514 const char *Tag); 2515 void 2516 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList, 2517 const char *Tag); 2518 2519 private: 2520 /// Print out metadata attachments. 2521 void printMetadataAttachments( 2522 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 2523 StringRef Separator); 2524 2525 // printInfoComment - Print a little comment after the instruction indicating 2526 // which slot it occupies. 2527 void printInfoComment(const Value &V); 2528 2529 // printGCRelocateComment - print comment after call to the gc.relocate 2530 // intrinsic indicating base and derived pointer names. 2531 void printGCRelocateComment(const GCRelocateInst &Relocate); 2532 }; 2533 2534 } // end anonymous namespace 2535 2536 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2537 const Module *M, AssemblyAnnotationWriter *AAW, 2538 bool IsForDebug, bool ShouldPreserveUseListOrder) 2539 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), 2540 IsForDebug(IsForDebug), 2541 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 2542 if (!TheModule) 2543 return; 2544 for (const GlobalObject &GO : TheModule->global_objects()) 2545 if (const Comdat *C = GO.getComdat()) 2546 Comdats.insert(C); 2547 } 2548 2549 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2550 const ModuleSummaryIndex *Index, bool IsForDebug) 2551 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), 2552 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} 2553 2554 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 2555 if (!Operand) { 2556 Out << "<null operand!>"; 2557 return; 2558 } 2559 if (PrintType) { 2560 TypePrinter.print(Operand->getType(), Out); 2561 Out << ' '; 2562 } 2563 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 2564 } 2565 2566 void AssemblyWriter::writeSyncScope(const LLVMContext &Context, 2567 SyncScope::ID SSID) { 2568 switch (SSID) { 2569 case SyncScope::System: { 2570 break; 2571 } 2572 default: { 2573 if (SSNs.empty()) 2574 Context.getSyncScopeNames(SSNs); 2575 2576 Out << " syncscope(\""; 2577 printEscapedString(SSNs[SSID], Out); 2578 Out << "\")"; 2579 break; 2580 } 2581 } 2582 } 2583 2584 void AssemblyWriter::writeAtomic(const LLVMContext &Context, 2585 AtomicOrdering Ordering, 2586 SyncScope::ID SSID) { 2587 if (Ordering == AtomicOrdering::NotAtomic) 2588 return; 2589 2590 writeSyncScope(Context, SSID); 2591 Out << " " << toIRString(Ordering); 2592 } 2593 2594 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, 2595 AtomicOrdering SuccessOrdering, 2596 AtomicOrdering FailureOrdering, 2597 SyncScope::ID SSID) { 2598 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 2599 FailureOrdering != AtomicOrdering::NotAtomic); 2600 2601 writeSyncScope(Context, SSID); 2602 Out << " " << toIRString(SuccessOrdering); 2603 Out << " " << toIRString(FailureOrdering); 2604 } 2605 2606 void AssemblyWriter::writeParamOperand(const Value *Operand, 2607 AttributeSet Attrs) { 2608 if (!Operand) { 2609 Out << "<null operand!>"; 2610 return; 2611 } 2612 2613 // Print the type 2614 TypePrinter.print(Operand->getType(), Out); 2615 // Print parameter attributes list 2616 if (Attrs.hasAttributes()) { 2617 Out << ' '; 2618 writeAttributeSet(Attrs); 2619 } 2620 Out << ' '; 2621 // Print the operand 2622 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 2623 } 2624 2625 void AssemblyWriter::writeOperandBundles(const CallBase *Call) { 2626 if (!Call->hasOperandBundles()) 2627 return; 2628 2629 Out << " [ "; 2630 2631 bool FirstBundle = true; 2632 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) { 2633 OperandBundleUse BU = Call->getOperandBundleAt(i); 2634 2635 if (!FirstBundle) 2636 Out << ", "; 2637 FirstBundle = false; 2638 2639 Out << '"'; 2640 printEscapedString(BU.getTagName(), Out); 2641 Out << '"'; 2642 2643 Out << '('; 2644 2645 bool FirstInput = true; 2646 for (const auto &Input : BU.Inputs) { 2647 if (!FirstInput) 2648 Out << ", "; 2649 FirstInput = false; 2650 2651 TypePrinter.print(Input->getType(), Out); 2652 Out << " "; 2653 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule); 2654 } 2655 2656 Out << ')'; 2657 } 2658 2659 Out << " ]"; 2660 } 2661 2662 void AssemblyWriter::printModule(const Module *M) { 2663 Machine.initializeIfNeeded(); 2664 2665 if (ShouldPreserveUseListOrder) 2666 UseListOrders = predictUseListOrder(M); 2667 2668 if (!M->getModuleIdentifier().empty() && 2669 // Don't print the ID if it will start a new line (which would 2670 // require a comment char before it). 2671 M->getModuleIdentifier().find('\n') == std::string::npos) 2672 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 2673 2674 if (!M->getSourceFileName().empty()) { 2675 Out << "source_filename = \""; 2676 printEscapedString(M->getSourceFileName(), Out); 2677 Out << "\"\n"; 2678 } 2679 2680 const std::string &DL = M->getDataLayoutStr(); 2681 if (!DL.empty()) 2682 Out << "target datalayout = \"" << DL << "\"\n"; 2683 if (!M->getTargetTriple().empty()) 2684 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 2685 2686 if (!M->getModuleInlineAsm().empty()) { 2687 Out << '\n'; 2688 2689 // Split the string into lines, to make it easier to read the .ll file. 2690 StringRef Asm = M->getModuleInlineAsm(); 2691 do { 2692 StringRef Front; 2693 std::tie(Front, Asm) = Asm.split('\n'); 2694 2695 // We found a newline, print the portion of the asm string from the 2696 // last newline up to this newline. 2697 Out << "module asm \""; 2698 printEscapedString(Front, Out); 2699 Out << "\"\n"; 2700 } while (!Asm.empty()); 2701 } 2702 2703 printTypeIdentities(); 2704 2705 // Output all comdats. 2706 if (!Comdats.empty()) 2707 Out << '\n'; 2708 for (const Comdat *C : Comdats) { 2709 printComdat(C); 2710 if (C != Comdats.back()) 2711 Out << '\n'; 2712 } 2713 2714 // Output all globals. 2715 if (!M->global_empty()) Out << '\n'; 2716 for (const GlobalVariable &GV : M->globals()) { 2717 printGlobal(&GV); Out << '\n'; 2718 } 2719 2720 // Output all aliases. 2721 if (!M->alias_empty()) Out << "\n"; 2722 for (const GlobalAlias &GA : M->aliases()) 2723 printIndirectSymbol(&GA); 2724 2725 // Output all ifuncs. 2726 if (!M->ifunc_empty()) Out << "\n"; 2727 for (const GlobalIFunc &GI : M->ifuncs()) 2728 printIndirectSymbol(&GI); 2729 2730 // Output global use-lists. 2731 printUseLists(nullptr); 2732 2733 // Output all of the functions. 2734 for (const Function &F : *M) { 2735 Out << '\n'; 2736 printFunction(&F); 2737 } 2738 assert(UseListOrders.empty() && "All use-lists should have been consumed"); 2739 2740 // Output all attribute groups. 2741 if (!Machine.as_empty()) { 2742 Out << '\n'; 2743 writeAllAttributeGroups(); 2744 } 2745 2746 // Output named metadata. 2747 if (!M->named_metadata_empty()) Out << '\n'; 2748 2749 for (const NamedMDNode &Node : M->named_metadata()) 2750 printNamedMDNode(&Node); 2751 2752 // Output metadata. 2753 if (!Machine.mdn_empty()) { 2754 Out << '\n'; 2755 writeAllMDNodes(); 2756 } 2757 } 2758 2759 void AssemblyWriter::printModuleSummaryIndex() { 2760 assert(TheIndex); 2761 int NumSlots = Machine.initializeIndexIfNeeded(); 2762 2763 Out << "\n"; 2764 2765 // Print module path entries. To print in order, add paths to a vector 2766 // indexed by module slot. 2767 std::vector<std::pair<std::string, ModuleHash>> moduleVec; 2768 std::string RegularLTOModuleName = 2769 ModuleSummaryIndex::getRegularLTOModuleName(); 2770 moduleVec.resize(TheIndex->modulePaths().size()); 2771 for (auto &ModPath : TheIndex->modulePaths()) 2772 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair( 2773 // A module id of -1 is a special entry for a regular LTO module created 2774 // during the thin link. 2775 ModPath.second.first == -1u ? RegularLTOModuleName 2776 : (std::string)std::string(ModPath.first()), 2777 ModPath.second.second); 2778 2779 unsigned i = 0; 2780 for (auto &ModPair : moduleVec) { 2781 Out << "^" << i++ << " = module: ("; 2782 Out << "path: \""; 2783 printEscapedString(ModPair.first, Out); 2784 Out << "\", hash: ("; 2785 FieldSeparator FS; 2786 for (auto Hash : ModPair.second) 2787 Out << FS << Hash; 2788 Out << "))\n"; 2789 } 2790 2791 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer 2792 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID). 2793 for (auto &GlobalList : *TheIndex) { 2794 auto GUID = GlobalList.first; 2795 for (auto &Summary : GlobalList.second.SummaryList) 2796 SummaryToGUIDMap[Summary.get()] = GUID; 2797 } 2798 2799 // Print the global value summary entries. 2800 for (auto &GlobalList : *TheIndex) { 2801 auto GUID = GlobalList.first; 2802 auto VI = TheIndex->getValueInfo(GlobalList); 2803 printSummaryInfo(Machine.getGUIDSlot(GUID), VI); 2804 } 2805 2806 // Print the TypeIdMap entries. 2807 for (auto TidIter = TheIndex->typeIds().begin(); 2808 TidIter != TheIndex->typeIds().end(); TidIter++) { 2809 Out << "^" << Machine.getTypeIdSlot(TidIter->second.first) 2810 << " = typeid: (name: \"" << TidIter->second.first << "\""; 2811 printTypeIdSummary(TidIter->second.second); 2812 Out << ") ; guid = " << TidIter->first << "\n"; 2813 } 2814 2815 // Print the TypeIdCompatibleVtableMap entries. 2816 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) { 2817 auto GUID = GlobalValue::getGUID(TId.first); 2818 Out << "^" << Machine.getGUIDSlot(GUID) 2819 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\""; 2820 printTypeIdCompatibleVtableSummary(TId.second); 2821 Out << ") ; guid = " << GUID << "\n"; 2822 } 2823 2824 // Don't emit flags when it's not really needed (value is zero by default). 2825 if (TheIndex->getFlags()) { 2826 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n"; 2827 ++NumSlots; 2828 } 2829 2830 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount() 2831 << "\n"; 2832 } 2833 2834 static const char * 2835 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) { 2836 switch (K) { 2837 case WholeProgramDevirtResolution::Indir: 2838 return "indir"; 2839 case WholeProgramDevirtResolution::SingleImpl: 2840 return "singleImpl"; 2841 case WholeProgramDevirtResolution::BranchFunnel: 2842 return "branchFunnel"; 2843 } 2844 llvm_unreachable("invalid WholeProgramDevirtResolution kind"); 2845 } 2846 2847 static const char *getWholeProgDevirtResByArgKindName( 2848 WholeProgramDevirtResolution::ByArg::Kind K) { 2849 switch (K) { 2850 case WholeProgramDevirtResolution::ByArg::Indir: 2851 return "indir"; 2852 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 2853 return "uniformRetVal"; 2854 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: 2855 return "uniqueRetVal"; 2856 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: 2857 return "virtualConstProp"; 2858 } 2859 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind"); 2860 } 2861 2862 static const char *getTTResKindName(TypeTestResolution::Kind K) { 2863 switch (K) { 2864 case TypeTestResolution::Unsat: 2865 return "unsat"; 2866 case TypeTestResolution::ByteArray: 2867 return "byteArray"; 2868 case TypeTestResolution::Inline: 2869 return "inline"; 2870 case TypeTestResolution::Single: 2871 return "single"; 2872 case TypeTestResolution::AllOnes: 2873 return "allOnes"; 2874 } 2875 llvm_unreachable("invalid TypeTestResolution kind"); 2876 } 2877 2878 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) { 2879 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind) 2880 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth; 2881 2882 // The following fields are only used if the target does not support the use 2883 // of absolute symbols to store constants. Print only if non-zero. 2884 if (TTRes.AlignLog2) 2885 Out << ", alignLog2: " << TTRes.AlignLog2; 2886 if (TTRes.SizeM1) 2887 Out << ", sizeM1: " << TTRes.SizeM1; 2888 if (TTRes.BitMask) 2889 // BitMask is uint8_t which causes it to print the corresponding char. 2890 Out << ", bitMask: " << (unsigned)TTRes.BitMask; 2891 if (TTRes.InlineBits) 2892 Out << ", inlineBits: " << TTRes.InlineBits; 2893 2894 Out << ")"; 2895 } 2896 2897 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) { 2898 Out << ", summary: ("; 2899 printTypeTestResolution(TIS.TTRes); 2900 if (!TIS.WPDRes.empty()) { 2901 Out << ", wpdResolutions: ("; 2902 FieldSeparator FS; 2903 for (auto &WPDRes : TIS.WPDRes) { 2904 Out << FS; 2905 Out << "(offset: " << WPDRes.first << ", "; 2906 printWPDRes(WPDRes.second); 2907 Out << ")"; 2908 } 2909 Out << ")"; 2910 } 2911 Out << ")"; 2912 } 2913 2914 void AssemblyWriter::printTypeIdCompatibleVtableSummary( 2915 const TypeIdCompatibleVtableInfo &TI) { 2916 Out << ", summary: ("; 2917 FieldSeparator FS; 2918 for (auto &P : TI) { 2919 Out << FS; 2920 Out << "(offset: " << P.AddressPointOffset << ", "; 2921 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID()); 2922 Out << ")"; 2923 } 2924 Out << ")"; 2925 } 2926 2927 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) { 2928 Out << "args: ("; 2929 FieldSeparator FS; 2930 for (auto arg : Args) { 2931 Out << FS; 2932 Out << arg; 2933 } 2934 Out << ")"; 2935 } 2936 2937 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) { 2938 Out << "wpdRes: (kind: "; 2939 Out << getWholeProgDevirtResKindName(WPDRes.TheKind); 2940 2941 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl) 2942 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\""; 2943 2944 if (!WPDRes.ResByArg.empty()) { 2945 Out << ", resByArg: ("; 2946 FieldSeparator FS; 2947 for (auto &ResByArg : WPDRes.ResByArg) { 2948 Out << FS; 2949 printArgs(ResByArg.first); 2950 Out << ", byArg: (kind: "; 2951 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind); 2952 if (ResByArg.second.TheKind == 2953 WholeProgramDevirtResolution::ByArg::UniformRetVal || 2954 ResByArg.second.TheKind == 2955 WholeProgramDevirtResolution::ByArg::UniqueRetVal) 2956 Out << ", info: " << ResByArg.second.Info; 2957 2958 // The following fields are only used if the target does not support the 2959 // use of absolute symbols to store constants. Print only if non-zero. 2960 if (ResByArg.second.Byte || ResByArg.second.Bit) 2961 Out << ", byte: " << ResByArg.second.Byte 2962 << ", bit: " << ResByArg.second.Bit; 2963 2964 Out << ")"; 2965 } 2966 Out << ")"; 2967 } 2968 Out << ")"; 2969 } 2970 2971 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) { 2972 switch (SK) { 2973 case GlobalValueSummary::AliasKind: 2974 return "alias"; 2975 case GlobalValueSummary::FunctionKind: 2976 return "function"; 2977 case GlobalValueSummary::GlobalVarKind: 2978 return "variable"; 2979 } 2980 llvm_unreachable("invalid summary kind"); 2981 } 2982 2983 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) { 2984 Out << ", aliasee: "; 2985 // The indexes emitted for distributed backends may not include the 2986 // aliasee summary (only if it is being imported directly). Handle 2987 // that case by just emitting "null" as the aliasee. 2988 if (AS->hasAliasee()) 2989 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]); 2990 else 2991 Out << "null"; 2992 } 2993 2994 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) { 2995 auto VTableFuncs = GS->vTableFuncs(); 2996 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", " 2997 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", " 2998 << "constant: " << GS->VarFlags.Constant; 2999 if (!VTableFuncs.empty()) 3000 Out << ", " 3001 << "vcall_visibility: " << GS->VarFlags.VCallVisibility; 3002 Out << ")"; 3003 3004 if (!VTableFuncs.empty()) { 3005 Out << ", vTableFuncs: ("; 3006 FieldSeparator FS; 3007 for (auto &P : VTableFuncs) { 3008 Out << FS; 3009 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID()) 3010 << ", offset: " << P.VTableOffset; 3011 Out << ")"; 3012 } 3013 Out << ")"; 3014 } 3015 } 3016 3017 static std::string getLinkageName(GlobalValue::LinkageTypes LT) { 3018 switch (LT) { 3019 case GlobalValue::ExternalLinkage: 3020 return "external"; 3021 case GlobalValue::PrivateLinkage: 3022 return "private"; 3023 case GlobalValue::InternalLinkage: 3024 return "internal"; 3025 case GlobalValue::LinkOnceAnyLinkage: 3026 return "linkonce"; 3027 case GlobalValue::LinkOnceODRLinkage: 3028 return "linkonce_odr"; 3029 case GlobalValue::WeakAnyLinkage: 3030 return "weak"; 3031 case GlobalValue::WeakODRLinkage: 3032 return "weak_odr"; 3033 case GlobalValue::CommonLinkage: 3034 return "common"; 3035 case GlobalValue::AppendingLinkage: 3036 return "appending"; 3037 case GlobalValue::ExternalWeakLinkage: 3038 return "extern_weak"; 3039 case GlobalValue::AvailableExternallyLinkage: 3040 return "available_externally"; 3041 } 3042 llvm_unreachable("invalid linkage"); 3043 } 3044 3045 // When printing the linkage types in IR where the ExternalLinkage is 3046 // not printed, and other linkage types are expected to be printed with 3047 // a space after the name. 3048 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) { 3049 if (LT == GlobalValue::ExternalLinkage) 3050 return ""; 3051 return getLinkageName(LT) + " "; 3052 } 3053 3054 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) { 3055 Out << ", insts: " << FS->instCount(); 3056 3057 FunctionSummary::FFlags FFlags = FS->fflags(); 3058 if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse | 3059 FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) { 3060 Out << ", funcFlags: ("; 3061 Out << "readNone: " << FFlags.ReadNone; 3062 Out << ", readOnly: " << FFlags.ReadOnly; 3063 Out << ", noRecurse: " << FFlags.NoRecurse; 3064 Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias; 3065 Out << ", noInline: " << FFlags.NoInline; 3066 Out << ", alwaysInline: " << FFlags.AlwaysInline; 3067 Out << ")"; 3068 } 3069 if (!FS->calls().empty()) { 3070 Out << ", calls: ("; 3071 FieldSeparator IFS; 3072 for (auto &Call : FS->calls()) { 3073 Out << IFS; 3074 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID()); 3075 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown) 3076 Out << ", hotness: " << getHotnessName(Call.second.getHotness()); 3077 else if (Call.second.RelBlockFreq) 3078 Out << ", relbf: " << Call.second.RelBlockFreq; 3079 Out << ")"; 3080 } 3081 Out << ")"; 3082 } 3083 3084 if (const auto *TIdInfo = FS->getTypeIdInfo()) 3085 printTypeIdInfo(*TIdInfo); 3086 } 3087 3088 void AssemblyWriter::printTypeIdInfo( 3089 const FunctionSummary::TypeIdInfo &TIDInfo) { 3090 Out << ", typeIdInfo: ("; 3091 FieldSeparator TIDFS; 3092 if (!TIDInfo.TypeTests.empty()) { 3093 Out << TIDFS; 3094 Out << "typeTests: ("; 3095 FieldSeparator FS; 3096 for (auto &GUID : TIDInfo.TypeTests) { 3097 auto TidIter = TheIndex->typeIds().equal_range(GUID); 3098 if (TidIter.first == TidIter.second) { 3099 Out << FS; 3100 Out << GUID; 3101 continue; 3102 } 3103 // Print all type id that correspond to this GUID. 3104 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3105 Out << FS; 3106 auto Slot = Machine.getTypeIdSlot(It->second.first); 3107 assert(Slot != -1); 3108 Out << "^" << Slot; 3109 } 3110 } 3111 Out << ")"; 3112 } 3113 if (!TIDInfo.TypeTestAssumeVCalls.empty()) { 3114 Out << TIDFS; 3115 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls"); 3116 } 3117 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) { 3118 Out << TIDFS; 3119 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls"); 3120 } 3121 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) { 3122 Out << TIDFS; 3123 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls, 3124 "typeTestAssumeConstVCalls"); 3125 } 3126 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) { 3127 Out << TIDFS; 3128 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls, 3129 "typeCheckedLoadConstVCalls"); 3130 } 3131 Out << ")"; 3132 } 3133 3134 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) { 3135 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID); 3136 if (TidIter.first == TidIter.second) { 3137 Out << "vFuncId: ("; 3138 Out << "guid: " << VFId.GUID; 3139 Out << ", offset: " << VFId.Offset; 3140 Out << ")"; 3141 return; 3142 } 3143 // Print all type id that correspond to this GUID. 3144 FieldSeparator FS; 3145 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3146 Out << FS; 3147 Out << "vFuncId: ("; 3148 auto Slot = Machine.getTypeIdSlot(It->second.first); 3149 assert(Slot != -1); 3150 Out << "^" << Slot; 3151 Out << ", offset: " << VFId.Offset; 3152 Out << ")"; 3153 } 3154 } 3155 3156 void AssemblyWriter::printNonConstVCalls( 3157 const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) { 3158 Out << Tag << ": ("; 3159 FieldSeparator FS; 3160 for (auto &VFuncId : VCallList) { 3161 Out << FS; 3162 printVFuncId(VFuncId); 3163 } 3164 Out << ")"; 3165 } 3166 3167 void AssemblyWriter::printConstVCalls( 3168 const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) { 3169 Out << Tag << ": ("; 3170 FieldSeparator FS; 3171 for (auto &ConstVCall : VCallList) { 3172 Out << FS; 3173 Out << "("; 3174 printVFuncId(ConstVCall.VFunc); 3175 if (!ConstVCall.Args.empty()) { 3176 Out << ", "; 3177 printArgs(ConstVCall.Args); 3178 } 3179 Out << ")"; 3180 } 3181 Out << ")"; 3182 } 3183 3184 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) { 3185 GlobalValueSummary::GVFlags GVFlags = Summary.flags(); 3186 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage; 3187 Out << getSummaryKindName(Summary.getSummaryKind()) << ": "; 3188 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath()) 3189 << ", flags: ("; 3190 Out << "linkage: " << getLinkageName(LT); 3191 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport; 3192 Out << ", live: " << GVFlags.Live; 3193 Out << ", dsoLocal: " << GVFlags.DSOLocal; 3194 Out << ", canAutoHide: " << GVFlags.CanAutoHide; 3195 Out << ")"; 3196 3197 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind) 3198 printAliasSummary(cast<AliasSummary>(&Summary)); 3199 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind) 3200 printFunctionSummary(cast<FunctionSummary>(&Summary)); 3201 else 3202 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary)); 3203 3204 auto RefList = Summary.refs(); 3205 if (!RefList.empty()) { 3206 Out << ", refs: ("; 3207 FieldSeparator FS; 3208 for (auto &Ref : RefList) { 3209 Out << FS; 3210 if (Ref.isReadOnly()) 3211 Out << "readonly "; 3212 else if (Ref.isWriteOnly()) 3213 Out << "writeonly "; 3214 Out << "^" << Machine.getGUIDSlot(Ref.getGUID()); 3215 } 3216 Out << ")"; 3217 } 3218 3219 Out << ")"; 3220 } 3221 3222 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) { 3223 Out << "^" << Slot << " = gv: ("; 3224 if (!VI.name().empty()) 3225 Out << "name: \"" << VI.name() << "\""; 3226 else 3227 Out << "guid: " << VI.getGUID(); 3228 if (!VI.getSummaryList().empty()) { 3229 Out << ", summaries: ("; 3230 FieldSeparator FS; 3231 for (auto &Summary : VI.getSummaryList()) { 3232 Out << FS; 3233 printSummary(*Summary); 3234 } 3235 Out << ")"; 3236 } 3237 Out << ")"; 3238 if (!VI.name().empty()) 3239 Out << " ; guid = " << VI.getGUID(); 3240 Out << "\n"; 3241 } 3242 3243 static void printMetadataIdentifier(StringRef Name, 3244 formatted_raw_ostream &Out) { 3245 if (Name.empty()) { 3246 Out << "<empty name> "; 3247 } else { 3248 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' || 3249 Name[0] == '$' || Name[0] == '.' || Name[0] == '_') 3250 Out << Name[0]; 3251 else 3252 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 3253 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 3254 unsigned char C = Name[i]; 3255 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || 3256 C == '.' || C == '_') 3257 Out << C; 3258 else 3259 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 3260 } 3261 } 3262 } 3263 3264 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 3265 Out << '!'; 3266 printMetadataIdentifier(NMD->getName(), Out); 3267 Out << " = !{"; 3268 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 3269 if (i) 3270 Out << ", "; 3271 3272 // Write DIExpressions inline. 3273 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose. 3274 MDNode *Op = NMD->getOperand(i); 3275 if (auto *Expr = dyn_cast<DIExpression>(Op)) { 3276 writeDIExpression(Out, Expr, nullptr, nullptr, nullptr); 3277 continue; 3278 } 3279 3280 int Slot = Machine.getMetadataSlot(Op); 3281 if (Slot == -1) 3282 Out << "<badref>"; 3283 else 3284 Out << '!' << Slot; 3285 } 3286 Out << "}\n"; 3287 } 3288 3289 static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 3290 formatted_raw_ostream &Out) { 3291 switch (Vis) { 3292 case GlobalValue::DefaultVisibility: break; 3293 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 3294 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 3295 } 3296 } 3297 3298 static void PrintDSOLocation(const GlobalValue &GV, 3299 formatted_raw_ostream &Out) { 3300 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal()) 3301 Out << "dso_local "; 3302 } 3303 3304 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, 3305 formatted_raw_ostream &Out) { 3306 switch (SCT) { 3307 case GlobalValue::DefaultStorageClass: break; 3308 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break; 3309 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break; 3310 } 3311 } 3312 3313 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, 3314 formatted_raw_ostream &Out) { 3315 switch (TLM) { 3316 case GlobalVariable::NotThreadLocal: 3317 break; 3318 case GlobalVariable::GeneralDynamicTLSModel: 3319 Out << "thread_local "; 3320 break; 3321 case GlobalVariable::LocalDynamicTLSModel: 3322 Out << "thread_local(localdynamic) "; 3323 break; 3324 case GlobalVariable::InitialExecTLSModel: 3325 Out << "thread_local(initialexec) "; 3326 break; 3327 case GlobalVariable::LocalExecTLSModel: 3328 Out << "thread_local(localexec) "; 3329 break; 3330 } 3331 } 3332 3333 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) { 3334 switch (UA) { 3335 case GlobalVariable::UnnamedAddr::None: 3336 return ""; 3337 case GlobalVariable::UnnamedAddr::Local: 3338 return "local_unnamed_addr"; 3339 case GlobalVariable::UnnamedAddr::Global: 3340 return "unnamed_addr"; 3341 } 3342 llvm_unreachable("Unknown UnnamedAddr"); 3343 } 3344 3345 static void maybePrintComdat(formatted_raw_ostream &Out, 3346 const GlobalObject &GO) { 3347 const Comdat *C = GO.getComdat(); 3348 if (!C) 3349 return; 3350 3351 if (isa<GlobalVariable>(GO)) 3352 Out << ','; 3353 Out << " comdat"; 3354 3355 if (GO.getName() == C->getName()) 3356 return; 3357 3358 Out << '('; 3359 PrintLLVMName(Out, C->getName(), ComdatPrefix); 3360 Out << ')'; 3361 } 3362 3363 void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 3364 if (GV->isMaterializable()) 3365 Out << "; Materializable\n"; 3366 3367 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); 3368 Out << " = "; 3369 3370 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 3371 Out << "external "; 3372 3373 Out << getLinkageNameWithSpace(GV->getLinkage()); 3374 PrintDSOLocation(*GV, Out); 3375 PrintVisibility(GV->getVisibility(), Out); 3376 PrintDLLStorageClass(GV->getDLLStorageClass(), Out); 3377 PrintThreadLocalModel(GV->getThreadLocalMode(), Out); 3378 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr()); 3379 if (!UA.empty()) 3380 Out << UA << ' '; 3381 3382 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 3383 Out << "addrspace(" << AddressSpace << ") "; 3384 if (GV->isExternallyInitialized()) Out << "externally_initialized "; 3385 Out << (GV->isConstant() ? "constant " : "global "); 3386 TypePrinter.print(GV->getValueType(), Out); 3387 3388 if (GV->hasInitializer()) { 3389 Out << ' '; 3390 writeOperand(GV->getInitializer(), false); 3391 } 3392 3393 if (GV->hasSection()) { 3394 Out << ", section \""; 3395 printEscapedString(GV->getSection(), Out); 3396 Out << '"'; 3397 } 3398 if (GV->hasPartition()) { 3399 Out << ", partition \""; 3400 printEscapedString(GV->getPartition(), Out); 3401 Out << '"'; 3402 } 3403 3404 maybePrintComdat(Out, *GV); 3405 if (GV->getAlignment()) 3406 Out << ", align " << GV->getAlignment(); 3407 3408 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3409 GV->getAllMetadata(MDs); 3410 printMetadataAttachments(MDs, ", "); 3411 3412 auto Attrs = GV->getAttributes(); 3413 if (Attrs.hasAttributes()) 3414 Out << " #" << Machine.getAttributeGroupSlot(Attrs); 3415 3416 printInfoComment(*GV); 3417 } 3418 3419 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) { 3420 if (GIS->isMaterializable()) 3421 Out << "; Materializable\n"; 3422 3423 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent()); 3424 Out << " = "; 3425 3426 Out << getLinkageNameWithSpace(GIS->getLinkage()); 3427 PrintDSOLocation(*GIS, Out); 3428 PrintVisibility(GIS->getVisibility(), Out); 3429 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out); 3430 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out); 3431 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr()); 3432 if (!UA.empty()) 3433 Out << UA << ' '; 3434 3435 if (isa<GlobalAlias>(GIS)) 3436 Out << "alias "; 3437 else if (isa<GlobalIFunc>(GIS)) 3438 Out << "ifunc "; 3439 else 3440 llvm_unreachable("Not an alias or ifunc!"); 3441 3442 TypePrinter.print(GIS->getValueType(), Out); 3443 3444 Out << ", "; 3445 3446 const Constant *IS = GIS->getIndirectSymbol(); 3447 3448 if (!IS) { 3449 TypePrinter.print(GIS->getType(), Out); 3450 Out << " <<NULL ALIASEE>>"; 3451 } else { 3452 writeOperand(IS, !isa<ConstantExpr>(IS)); 3453 } 3454 3455 if (GIS->hasPartition()) { 3456 Out << ", partition \""; 3457 printEscapedString(GIS->getPartition(), Out); 3458 Out << '"'; 3459 } 3460 3461 printInfoComment(*GIS); 3462 Out << '\n'; 3463 } 3464 3465 void AssemblyWriter::printComdat(const Comdat *C) { 3466 C->print(Out); 3467 } 3468 3469 void AssemblyWriter::printTypeIdentities() { 3470 if (TypePrinter.empty()) 3471 return; 3472 3473 Out << '\n'; 3474 3475 // Emit all numbered types. 3476 auto &NumberedTypes = TypePrinter.getNumberedTypes(); 3477 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) { 3478 Out << '%' << I << " = type "; 3479 3480 // Make sure we print out at least one level of the type structure, so 3481 // that we do not get %2 = type %2 3482 TypePrinter.printStructBody(NumberedTypes[I], Out); 3483 Out << '\n'; 3484 } 3485 3486 auto &NamedTypes = TypePrinter.getNamedTypes(); 3487 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) { 3488 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix); 3489 Out << " = type "; 3490 3491 // Make sure we print out at least one level of the type structure, so 3492 // that we do not get %FILE = type %FILE 3493 TypePrinter.printStructBody(NamedTypes[I], Out); 3494 Out << '\n'; 3495 } 3496 } 3497 3498 /// printFunction - Print all aspects of a function. 3499 void AssemblyWriter::printFunction(const Function *F) { 3500 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 3501 3502 if (F->isMaterializable()) 3503 Out << "; Materializable\n"; 3504 3505 const AttributeList &Attrs = F->getAttributes(); 3506 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) { 3507 AttributeSet AS = Attrs.getFnAttributes(); 3508 std::string AttrStr; 3509 3510 for (const Attribute &Attr : AS) { 3511 if (!Attr.isStringAttribute()) { 3512 if (!AttrStr.empty()) AttrStr += ' '; 3513 AttrStr += Attr.getAsString(); 3514 } 3515 } 3516 3517 if (!AttrStr.empty()) 3518 Out << "; Function Attrs: " << AttrStr << '\n'; 3519 } 3520 3521 Machine.incorporateFunction(F); 3522 3523 if (F->isDeclaration()) { 3524 Out << "declare"; 3525 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3526 F->getAllMetadata(MDs); 3527 printMetadataAttachments(MDs, " "); 3528 Out << ' '; 3529 } else 3530 Out << "define "; 3531 3532 Out << getLinkageNameWithSpace(F->getLinkage()); 3533 PrintDSOLocation(*F, Out); 3534 PrintVisibility(F->getVisibility(), Out); 3535 PrintDLLStorageClass(F->getDLLStorageClass(), Out); 3536 3537 // Print the calling convention. 3538 if (F->getCallingConv() != CallingConv::C) { 3539 PrintCallingConv(F->getCallingConv(), Out); 3540 Out << " "; 3541 } 3542 3543 FunctionType *FT = F->getFunctionType(); 3544 if (Attrs.hasAttributes(AttributeList::ReturnIndex)) 3545 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' '; 3546 TypePrinter.print(F->getReturnType(), Out); 3547 Out << ' '; 3548 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); 3549 Out << '('; 3550 3551 // Loop over the arguments, printing them... 3552 if (F->isDeclaration() && !IsForDebug) { 3553 // We're only interested in the type here - don't print argument names. 3554 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { 3555 // Insert commas as we go... the first arg doesn't get a comma 3556 if (I) 3557 Out << ", "; 3558 // Output type... 3559 TypePrinter.print(FT->getParamType(I), Out); 3560 3561 AttributeSet ArgAttrs = Attrs.getParamAttributes(I); 3562 if (ArgAttrs.hasAttributes()) { 3563 Out << ' '; 3564 writeAttributeSet(ArgAttrs); 3565 } 3566 } 3567 } else { 3568 // The arguments are meaningful here, print them in detail. 3569 for (const Argument &Arg : F->args()) { 3570 // Insert commas as we go... the first arg doesn't get a comma 3571 if (Arg.getArgNo() != 0) 3572 Out << ", "; 3573 printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo())); 3574 } 3575 } 3576 3577 // Finish printing arguments... 3578 if (FT->isVarArg()) { 3579 if (FT->getNumParams()) Out << ", "; 3580 Out << "..."; // Output varargs portion of signature! 3581 } 3582 Out << ')'; 3583 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr()); 3584 if (!UA.empty()) 3585 Out << ' ' << UA; 3586 // We print the function address space if it is non-zero or if we are writing 3587 // a module with a non-zero program address space or if there is no valid 3588 // Module* so that the file can be parsed without the datalayout string. 3589 const Module *Mod = F->getParent(); 3590 if (F->getAddressSpace() != 0 || !Mod || 3591 Mod->getDataLayout().getProgramAddressSpace() != 0) 3592 Out << " addrspace(" << F->getAddressSpace() << ")"; 3593 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) 3594 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes()); 3595 if (F->hasSection()) { 3596 Out << " section \""; 3597 printEscapedString(F->getSection(), Out); 3598 Out << '"'; 3599 } 3600 if (F->hasPartition()) { 3601 Out << " partition \""; 3602 printEscapedString(F->getPartition(), Out); 3603 Out << '"'; 3604 } 3605 maybePrintComdat(Out, *F); 3606 if (F->getAlignment()) 3607 Out << " align " << F->getAlignment(); 3608 if (F->hasGC()) 3609 Out << " gc \"" << F->getGC() << '"'; 3610 if (F->hasPrefixData()) { 3611 Out << " prefix "; 3612 writeOperand(F->getPrefixData(), true); 3613 } 3614 if (F->hasPrologueData()) { 3615 Out << " prologue "; 3616 writeOperand(F->getPrologueData(), true); 3617 } 3618 if (F->hasPersonalityFn()) { 3619 Out << " personality "; 3620 writeOperand(F->getPersonalityFn(), /*PrintType=*/true); 3621 } 3622 3623 if (F->isDeclaration()) { 3624 Out << '\n'; 3625 } else { 3626 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3627 F->getAllMetadata(MDs); 3628 printMetadataAttachments(MDs, " "); 3629 3630 Out << " {"; 3631 // Output all of the function's basic blocks. 3632 for (const BasicBlock &BB : *F) 3633 printBasicBlock(&BB); 3634 3635 // Output the function's use-lists. 3636 printUseLists(F); 3637 3638 Out << "}\n"; 3639 } 3640 3641 Machine.purgeFunction(); 3642 } 3643 3644 /// printArgument - This member is called for every argument that is passed into 3645 /// the function. Simply print it out 3646 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) { 3647 // Output type... 3648 TypePrinter.print(Arg->getType(), Out); 3649 3650 // Output parameter attributes list 3651 if (Attrs.hasAttributes()) { 3652 Out << ' '; 3653 writeAttributeSet(Attrs); 3654 } 3655 3656 // Output name, if available... 3657 if (Arg->hasName()) { 3658 Out << ' '; 3659 PrintLLVMName(Out, Arg); 3660 } else { 3661 int Slot = Machine.getLocalSlot(Arg); 3662 assert(Slot != -1 && "expect argument in function here"); 3663 Out << " %" << Slot; 3664 } 3665 } 3666 3667 /// printBasicBlock - This member is called for each basic block in a method. 3668 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 3669 assert(BB && BB->getParent() && "block without parent!"); 3670 bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock(); 3671 if (BB->hasName()) { // Print out the label if it exists... 3672 Out << "\n"; 3673 PrintLLVMName(Out, BB->getName(), LabelPrefix); 3674 Out << ':'; 3675 } else if (!IsEntryBlock) { 3676 Out << "\n"; 3677 int Slot = Machine.getLocalSlot(BB); 3678 if (Slot != -1) 3679 Out << Slot << ":"; 3680 else 3681 Out << "<badref>:"; 3682 } 3683 3684 if (!IsEntryBlock) { 3685 // Output predecessors for the block. 3686 Out.PadToColumn(50); 3687 Out << ";"; 3688 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 3689 3690 if (PI == PE) { 3691 Out << " No predecessors!"; 3692 } else { 3693 Out << " preds = "; 3694 writeOperand(*PI, false); 3695 for (++PI; PI != PE; ++PI) { 3696 Out << ", "; 3697 writeOperand(*PI, false); 3698 } 3699 } 3700 } 3701 3702 Out << "\n"; 3703 3704 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 3705 3706 // Output all of the instructions in the basic block... 3707 for (const Instruction &I : *BB) { 3708 printInstructionLine(I); 3709 } 3710 3711 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 3712 } 3713 3714 /// printInstructionLine - Print an instruction and a newline character. 3715 void AssemblyWriter::printInstructionLine(const Instruction &I) { 3716 printInstruction(I); 3717 Out << '\n'; 3718 } 3719 3720 /// printGCRelocateComment - print comment after call to the gc.relocate 3721 /// intrinsic indicating base and derived pointer names. 3722 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) { 3723 Out << " ; ("; 3724 writeOperand(Relocate.getBasePtr(), false); 3725 Out << ", "; 3726 writeOperand(Relocate.getDerivedPtr(), false); 3727 Out << ")"; 3728 } 3729 3730 /// printInfoComment - Print a little comment after the instruction indicating 3731 /// which slot it occupies. 3732 void AssemblyWriter::printInfoComment(const Value &V) { 3733 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V)) 3734 printGCRelocateComment(*Relocate); 3735 3736 if (AnnotationWriter) 3737 AnnotationWriter->printInfoComment(V, Out); 3738 } 3739 3740 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, 3741 raw_ostream &Out) { 3742 // We print the address space of the call if it is non-zero. 3743 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace(); 3744 bool PrintAddrSpace = CallAddrSpace != 0; 3745 if (!PrintAddrSpace) { 3746 const Module *Mod = getModuleFromVal(I); 3747 // We also print it if it is zero but not equal to the program address space 3748 // or if we can't find a valid Module* to make it possible to parse 3749 // the resulting file even without a datalayout string. 3750 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0) 3751 PrintAddrSpace = true; 3752 } 3753 if (PrintAddrSpace) 3754 Out << " addrspace(" << CallAddrSpace << ")"; 3755 } 3756 3757 // This member is called for each Instruction in a function.. 3758 void AssemblyWriter::printInstruction(const Instruction &I) { 3759 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 3760 3761 // Print out indentation for an instruction. 3762 Out << " "; 3763 3764 // Print out name if it exists... 3765 if (I.hasName()) { 3766 PrintLLVMName(Out, &I); 3767 Out << " = "; 3768 } else if (!I.getType()->isVoidTy()) { 3769 // Print out the def slot taken. 3770 int SlotNum = Machine.getLocalSlot(&I); 3771 if (SlotNum == -1) 3772 Out << "<badref> = "; 3773 else 3774 Out << '%' << SlotNum << " = "; 3775 } 3776 3777 if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 3778 if (CI->isMustTailCall()) 3779 Out << "musttail "; 3780 else if (CI->isTailCall()) 3781 Out << "tail "; 3782 else if (CI->isNoTailCall()) 3783 Out << "notail "; 3784 } 3785 3786 // Print out the opcode... 3787 Out << I.getOpcodeName(); 3788 3789 // If this is an atomic load or store, print out the atomic marker. 3790 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || 3791 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) 3792 Out << " atomic"; 3793 3794 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak()) 3795 Out << " weak"; 3796 3797 // If this is a volatile operation, print out the volatile marker. 3798 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 3799 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || 3800 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || 3801 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) 3802 Out << " volatile"; 3803 3804 // Print out optimization information. 3805 WriteOptimizationInfo(Out, &I); 3806 3807 // Print out the compare instruction predicates 3808 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 3809 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate()); 3810 3811 // Print out the atomicrmw operation 3812 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) 3813 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation()); 3814 3815 // Print out the type of the operands... 3816 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr; 3817 3818 // Special case conditional branches to swizzle the condition out to the front 3819 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 3820 const BranchInst &BI(cast<BranchInst>(I)); 3821 Out << ' '; 3822 writeOperand(BI.getCondition(), true); 3823 Out << ", "; 3824 writeOperand(BI.getSuccessor(0), true); 3825 Out << ", "; 3826 writeOperand(BI.getSuccessor(1), true); 3827 3828 } else if (isa<SwitchInst>(I)) { 3829 const SwitchInst& SI(cast<SwitchInst>(I)); 3830 // Special case switch instruction to get formatting nice and correct. 3831 Out << ' '; 3832 writeOperand(SI.getCondition(), true); 3833 Out << ", "; 3834 writeOperand(SI.getDefaultDest(), true); 3835 Out << " ["; 3836 for (auto Case : SI.cases()) { 3837 Out << "\n "; 3838 writeOperand(Case.getCaseValue(), true); 3839 Out << ", "; 3840 writeOperand(Case.getCaseSuccessor(), true); 3841 } 3842 Out << "\n ]"; 3843 } else if (isa<IndirectBrInst>(I)) { 3844 // Special case indirectbr instruction to get formatting nice and correct. 3845 Out << ' '; 3846 writeOperand(Operand, true); 3847 Out << ", ["; 3848 3849 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 3850 if (i != 1) 3851 Out << ", "; 3852 writeOperand(I.getOperand(i), true); 3853 } 3854 Out << ']'; 3855 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 3856 Out << ' '; 3857 TypePrinter.print(I.getType(), Out); 3858 Out << ' '; 3859 3860 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 3861 if (op) Out << ", "; 3862 Out << "[ "; 3863 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 3864 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 3865 } 3866 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 3867 Out << ' '; 3868 writeOperand(I.getOperand(0), true); 3869 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 3870 Out << ", " << *i; 3871 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 3872 Out << ' '; 3873 writeOperand(I.getOperand(0), true); Out << ", "; 3874 writeOperand(I.getOperand(1), true); 3875 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 3876 Out << ", " << *i; 3877 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { 3878 Out << ' '; 3879 TypePrinter.print(I.getType(), Out); 3880 if (LPI->isCleanup() || LPI->getNumClauses() != 0) 3881 Out << '\n'; 3882 3883 if (LPI->isCleanup()) 3884 Out << " cleanup"; 3885 3886 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { 3887 if (i != 0 || LPI->isCleanup()) Out << "\n"; 3888 if (LPI->isCatch(i)) 3889 Out << " catch "; 3890 else 3891 Out << " filter "; 3892 3893 writeOperand(LPI->getClause(i), true); 3894 } 3895 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) { 3896 Out << " within "; 3897 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false); 3898 Out << " ["; 3899 unsigned Op = 0; 3900 for (const BasicBlock *PadBB : CatchSwitch->handlers()) { 3901 if (Op > 0) 3902 Out << ", "; 3903 writeOperand(PadBB, /*PrintType=*/true); 3904 ++Op; 3905 } 3906 Out << "] unwind "; 3907 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest()) 3908 writeOperand(UnwindDest, /*PrintType=*/true); 3909 else 3910 Out << "to caller"; 3911 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) { 3912 Out << " within "; 3913 writeOperand(FPI->getParentPad(), /*PrintType=*/false); 3914 Out << " ["; 3915 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps; 3916 ++Op) { 3917 if (Op > 0) 3918 Out << ", "; 3919 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true); 3920 } 3921 Out << ']'; 3922 } else if (isa<ReturnInst>(I) && !Operand) { 3923 Out << " void"; 3924 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) { 3925 Out << " from "; 3926 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 3927 3928 Out << " to "; 3929 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 3930 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) { 3931 Out << " from "; 3932 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 3933 3934 Out << " unwind "; 3935 if (CRI->hasUnwindDest()) 3936 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 3937 else 3938 Out << "to caller"; 3939 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 3940 // Print the calling convention being used. 3941 if (CI->getCallingConv() != CallingConv::C) { 3942 Out << " "; 3943 PrintCallingConv(CI->getCallingConv(), Out); 3944 } 3945 3946 Operand = CI->getCalledOperand(); 3947 FunctionType *FTy = CI->getFunctionType(); 3948 Type *RetTy = FTy->getReturnType(); 3949 const AttributeList &PAL = CI->getAttributes(); 3950 3951 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 3952 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 3953 3954 // Only print addrspace(N) if necessary: 3955 maybePrintCallAddrSpace(Operand, &I, Out); 3956 3957 // If possible, print out the short form of the call instruction. We can 3958 // only do this if the first argument is a pointer to a nonvararg function, 3959 // and if the return type is not a pointer to a function. 3960 // 3961 Out << ' '; 3962 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 3963 Out << ' '; 3964 writeOperand(Operand, false); 3965 Out << '('; 3966 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { 3967 if (op > 0) 3968 Out << ", "; 3969 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op)); 3970 } 3971 3972 // Emit an ellipsis if this is a musttail call in a vararg function. This 3973 // is only to aid readability, musttail calls forward varargs by default. 3974 if (CI->isMustTailCall() && CI->getParent() && 3975 CI->getParent()->getParent() && 3976 CI->getParent()->getParent()->isVarArg()) 3977 Out << ", ..."; 3978 3979 Out << ')'; 3980 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 3981 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 3982 3983 writeOperandBundles(CI); 3984 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 3985 Operand = II->getCalledOperand(); 3986 FunctionType *FTy = II->getFunctionType(); 3987 Type *RetTy = FTy->getReturnType(); 3988 const AttributeList &PAL = II->getAttributes(); 3989 3990 // Print the calling convention being used. 3991 if (II->getCallingConv() != CallingConv::C) { 3992 Out << " "; 3993 PrintCallingConv(II->getCallingConv(), Out); 3994 } 3995 3996 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 3997 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 3998 3999 // Only print addrspace(N) if necessary: 4000 maybePrintCallAddrSpace(Operand, &I, Out); 4001 4002 // If possible, print out the short form of the invoke instruction. We can 4003 // only do this if the first argument is a pointer to a nonvararg function, 4004 // and if the return type is not a pointer to a function. 4005 // 4006 Out << ' '; 4007 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4008 Out << ' '; 4009 writeOperand(Operand, false); 4010 Out << '('; 4011 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { 4012 if (op) 4013 Out << ", "; 4014 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op)); 4015 } 4016 4017 Out << ')'; 4018 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 4019 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 4020 4021 writeOperandBundles(II); 4022 4023 Out << "\n to "; 4024 writeOperand(II->getNormalDest(), true); 4025 Out << " unwind "; 4026 writeOperand(II->getUnwindDest(), true); 4027 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 4028 Operand = CBI->getCalledOperand(); 4029 FunctionType *FTy = CBI->getFunctionType(); 4030 Type *RetTy = FTy->getReturnType(); 4031 const AttributeList &PAL = CBI->getAttributes(); 4032 4033 // Print the calling convention being used. 4034 if (CBI->getCallingConv() != CallingConv::C) { 4035 Out << " "; 4036 PrintCallingConv(CBI->getCallingConv(), Out); 4037 } 4038 4039 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 4040 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4041 4042 // If possible, print out the short form of the callbr instruction. We can 4043 // only do this if the first argument is a pointer to a nonvararg function, 4044 // and if the return type is not a pointer to a function. 4045 // 4046 Out << ' '; 4047 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4048 Out << ' '; 4049 writeOperand(Operand, false); 4050 Out << '('; 4051 for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) { 4052 if (op) 4053 Out << ", "; 4054 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op)); 4055 } 4056 4057 Out << ')'; 4058 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 4059 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 4060 4061 writeOperandBundles(CBI); 4062 4063 Out << "\n to "; 4064 writeOperand(CBI->getDefaultDest(), true); 4065 Out << " ["; 4066 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) { 4067 if (i != 0) 4068 Out << ", "; 4069 writeOperand(CBI->getIndirectDest(i), true); 4070 } 4071 Out << ']'; 4072 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 4073 Out << ' '; 4074 if (AI->isUsedWithInAlloca()) 4075 Out << "inalloca "; 4076 if (AI->isSwiftError()) 4077 Out << "swifterror "; 4078 TypePrinter.print(AI->getAllocatedType(), Out); 4079 4080 // Explicitly write the array size if the code is broken, if it's an array 4081 // allocation, or if the type is not canonical for scalar allocations. The 4082 // latter case prevents the type from mutating when round-tripping through 4083 // assembly. 4084 if (!AI->getArraySize() || AI->isArrayAllocation() || 4085 !AI->getArraySize()->getType()->isIntegerTy(32)) { 4086 Out << ", "; 4087 writeOperand(AI->getArraySize(), true); 4088 } 4089 if (AI->getAlignment()) { 4090 Out << ", align " << AI->getAlignment(); 4091 } 4092 4093 unsigned AddrSpace = AI->getType()->getAddressSpace(); 4094 if (AddrSpace != 0) { 4095 Out << ", addrspace(" << AddrSpace << ')'; 4096 } 4097 } else if (isa<CastInst>(I)) { 4098 if (Operand) { 4099 Out << ' '; 4100 writeOperand(Operand, true); // Work with broken code 4101 } 4102 Out << " to "; 4103 TypePrinter.print(I.getType(), Out); 4104 } else if (isa<VAArgInst>(I)) { 4105 if (Operand) { 4106 Out << ' '; 4107 writeOperand(Operand, true); // Work with broken code 4108 } 4109 Out << ", "; 4110 TypePrinter.print(I.getType(), Out); 4111 } else if (Operand) { // Print the normal way. 4112 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4113 Out << ' '; 4114 TypePrinter.print(GEP->getSourceElementType(), Out); 4115 Out << ','; 4116 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) { 4117 Out << ' '; 4118 TypePrinter.print(LI->getType(), Out); 4119 Out << ','; 4120 } 4121 4122 // PrintAllTypes - Instructions who have operands of all the same type 4123 // omit the type from all but the first operand. If the instruction has 4124 // different type operands (for example br), then they are all printed. 4125 bool PrintAllTypes = false; 4126 Type *TheType = Operand->getType(); 4127 4128 // Select, Store and ShuffleVector always print all types. 4129 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) 4130 || isa<ReturnInst>(I)) { 4131 PrintAllTypes = true; 4132 } else { 4133 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 4134 Operand = I.getOperand(i); 4135 // note that Operand shouldn't be null, but the test helps make dump() 4136 // more tolerant of malformed IR 4137 if (Operand && Operand->getType() != TheType) { 4138 PrintAllTypes = true; // We have differing types! Print them all! 4139 break; 4140 } 4141 } 4142 } 4143 4144 if (!PrintAllTypes) { 4145 Out << ' '; 4146 TypePrinter.print(TheType, Out); 4147 } 4148 4149 Out << ' '; 4150 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 4151 if (i) Out << ", "; 4152 writeOperand(I.getOperand(i), PrintAllTypes); 4153 } 4154 } 4155 4156 // Print atomic ordering/alignment for memory operations 4157 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 4158 if (LI->isAtomic()) 4159 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); 4160 if (LI->getAlignment()) 4161 Out << ", align " << LI->getAlignment(); 4162 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 4163 if (SI->isAtomic()) 4164 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); 4165 if (SI->getAlignment()) 4166 Out << ", align " << SI->getAlignment(); 4167 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { 4168 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), 4169 CXI->getFailureOrdering(), CXI->getSyncScopeID()); 4170 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { 4171 writeAtomic(RMWI->getContext(), RMWI->getOrdering(), 4172 RMWI->getSyncScopeID()); 4173 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { 4174 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); 4175 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) { 4176 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask()); 4177 } 4178 4179 // Print Metadata info. 4180 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD; 4181 I.getAllMetadata(InstMD); 4182 printMetadataAttachments(InstMD, ", "); 4183 4184 // Print a nice comment. 4185 printInfoComment(I); 4186 } 4187 4188 void AssemblyWriter::printMetadataAttachments( 4189 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 4190 StringRef Separator) { 4191 if (MDs.empty()) 4192 return; 4193 4194 if (MDNames.empty()) 4195 MDs[0].second->getContext().getMDKindNames(MDNames); 4196 4197 for (const auto &I : MDs) { 4198 unsigned Kind = I.first; 4199 Out << Separator; 4200 if (Kind < MDNames.size()) { 4201 Out << "!"; 4202 printMetadataIdentifier(MDNames[Kind], Out); 4203 } else 4204 Out << "!<unknown kind #" << Kind << ">"; 4205 Out << ' '; 4206 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule); 4207 } 4208 } 4209 4210 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { 4211 Out << '!' << Slot << " = "; 4212 printMDNodeBody(Node); 4213 Out << "\n"; 4214 } 4215 4216 void AssemblyWriter::writeAllMDNodes() { 4217 SmallVector<const MDNode *, 16> Nodes; 4218 Nodes.resize(Machine.mdn_size()); 4219 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); 4220 I != E; ++I) 4221 Nodes[I->second] = cast<MDNode>(I->first); 4222 4223 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 4224 writeMDNode(i, Nodes[i]); 4225 } 4226 } 4227 4228 void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 4229 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); 4230 } 4231 4232 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) { 4233 if (!Attr.isTypeAttribute()) { 4234 Out << Attr.getAsString(InAttrGroup); 4235 return; 4236 } 4237 4238 assert((Attr.hasAttribute(Attribute::ByVal) || 4239 Attr.hasAttribute(Attribute::Preallocated)) && 4240 "unexpected type attr"); 4241 4242 if (Attr.hasAttribute(Attribute::ByVal)) { 4243 Out << "byval"; 4244 } else { 4245 Out << "preallocated"; 4246 } 4247 4248 if (Type *Ty = Attr.getValueAsType()) { 4249 Out << '('; 4250 TypePrinter.print(Ty, Out); 4251 Out << ')'; 4252 } 4253 } 4254 4255 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet, 4256 bool InAttrGroup) { 4257 bool FirstAttr = true; 4258 for (const auto &Attr : AttrSet) { 4259 if (!FirstAttr) 4260 Out << ' '; 4261 writeAttribute(Attr, InAttrGroup); 4262 FirstAttr = false; 4263 } 4264 } 4265 4266 void AssemblyWriter::writeAllAttributeGroups() { 4267 std::vector<std::pair<AttributeSet, unsigned>> asVec; 4268 asVec.resize(Machine.as_size()); 4269 4270 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end(); 4271 I != E; ++I) 4272 asVec[I->second] = *I; 4273 4274 for (const auto &I : asVec) 4275 Out << "attributes #" << I.second << " = { " 4276 << I.first.getAsString(true) << " }\n"; 4277 } 4278 4279 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) { 4280 bool IsInFunction = Machine.getFunction(); 4281 if (IsInFunction) 4282 Out << " "; 4283 4284 Out << "uselistorder"; 4285 if (const BasicBlock *BB = 4286 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) { 4287 Out << "_bb "; 4288 writeOperand(BB->getParent(), false); 4289 Out << ", "; 4290 writeOperand(BB, false); 4291 } else { 4292 Out << " "; 4293 writeOperand(Order.V, true); 4294 } 4295 Out << ", { "; 4296 4297 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 4298 Out << Order.Shuffle[0]; 4299 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I) 4300 Out << ", " << Order.Shuffle[I]; 4301 Out << " }\n"; 4302 } 4303 4304 void AssemblyWriter::printUseLists(const Function *F) { 4305 auto hasMore = 4306 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; }; 4307 if (!hasMore()) 4308 // Nothing to do. 4309 return; 4310 4311 Out << "\n; uselistorder directives\n"; 4312 while (hasMore()) { 4313 printUseListOrder(UseListOrders.back()); 4314 UseListOrders.pop_back(); 4315 } 4316 } 4317 4318 //===----------------------------------------------------------------------===// 4319 // External Interface declarations 4320 //===----------------------------------------------------------------------===// 4321 4322 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4323 bool ShouldPreserveUseListOrder, 4324 bool IsForDebug) const { 4325 SlotTracker SlotTable(this->getParent()); 4326 formatted_raw_ostream OS(ROS); 4327 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, 4328 IsForDebug, 4329 ShouldPreserveUseListOrder); 4330 W.printFunction(this); 4331 } 4332 4333 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4334 bool ShouldPreserveUseListOrder, bool IsForDebug) const { 4335 SlotTracker SlotTable(this); 4336 formatted_raw_ostream OS(ROS); 4337 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug, 4338 ShouldPreserveUseListOrder); 4339 W.printModule(this); 4340 } 4341 4342 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const { 4343 SlotTracker SlotTable(getParent()); 4344 formatted_raw_ostream OS(ROS); 4345 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug); 4346 W.printNamedMDNode(this); 4347 } 4348 4349 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4350 bool IsForDebug) const { 4351 Optional<SlotTracker> LocalST; 4352 SlotTracker *SlotTable; 4353 if (auto *ST = MST.getMachine()) 4354 SlotTable = ST; 4355 else { 4356 LocalST.emplace(getParent()); 4357 SlotTable = &*LocalST; 4358 } 4359 4360 formatted_raw_ostream OS(ROS); 4361 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug); 4362 W.printNamedMDNode(this); 4363 } 4364 4365 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const { 4366 PrintLLVMName(ROS, getName(), ComdatPrefix); 4367 ROS << " = comdat "; 4368 4369 switch (getSelectionKind()) { 4370 case Comdat::Any: 4371 ROS << "any"; 4372 break; 4373 case Comdat::ExactMatch: 4374 ROS << "exactmatch"; 4375 break; 4376 case Comdat::Largest: 4377 ROS << "largest"; 4378 break; 4379 case Comdat::NoDuplicates: 4380 ROS << "noduplicates"; 4381 break; 4382 case Comdat::SameSize: 4383 ROS << "samesize"; 4384 break; 4385 } 4386 4387 ROS << '\n'; 4388 } 4389 4390 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const { 4391 TypePrinting TP; 4392 TP.print(const_cast<Type*>(this), OS); 4393 4394 if (NoDetails) 4395 return; 4396 4397 // If the type is a named struct type, print the body as well. 4398 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 4399 if (!STy->isLiteral()) { 4400 OS << " = type "; 4401 TP.printStructBody(STy, OS); 4402 } 4403 } 4404 4405 static bool isReferencingMDNode(const Instruction &I) { 4406 if (const auto *CI = dyn_cast<CallInst>(&I)) 4407 if (Function *F = CI->getCalledFunction()) 4408 if (F->isIntrinsic()) 4409 for (auto &Op : I.operands()) 4410 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 4411 if (isa<MDNode>(V->getMetadata())) 4412 return true; 4413 return false; 4414 } 4415 4416 void Value::print(raw_ostream &ROS, bool IsForDebug) const { 4417 bool ShouldInitializeAllMetadata = false; 4418 if (auto *I = dyn_cast<Instruction>(this)) 4419 ShouldInitializeAllMetadata = isReferencingMDNode(*I); 4420 else if (isa<Function>(this) || isa<MetadataAsValue>(this)) 4421 ShouldInitializeAllMetadata = true; 4422 4423 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata); 4424 print(ROS, MST, IsForDebug); 4425 } 4426 4427 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4428 bool IsForDebug) const { 4429 formatted_raw_ostream OS(ROS); 4430 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr)); 4431 SlotTracker &SlotTable = 4432 MST.getMachine() ? *MST.getMachine() : EmptySlotTable; 4433 auto incorporateFunction = [&](const Function *F) { 4434 if (F) 4435 MST.incorporateFunction(*F); 4436 }; 4437 4438 if (const Instruction *I = dyn_cast<Instruction>(this)) { 4439 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr); 4440 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug); 4441 W.printInstruction(*I); 4442 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 4443 incorporateFunction(BB->getParent()); 4444 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug); 4445 W.printBasicBlock(BB); 4446 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 4447 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug); 4448 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 4449 W.printGlobal(V); 4450 else if (const Function *F = dyn_cast<Function>(GV)) 4451 W.printFunction(F); 4452 else 4453 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV)); 4454 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) { 4455 V->getMetadata()->print(ROS, MST, getModuleFromVal(V)); 4456 } else if (const Constant *C = dyn_cast<Constant>(this)) { 4457 TypePrinting TypePrinter; 4458 TypePrinter.print(C->getType(), OS); 4459 OS << ' '; 4460 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr); 4461 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) { 4462 this->printAsOperand(OS, /* PrintType */ true, MST); 4463 } else { 4464 llvm_unreachable("Unknown value to print out!"); 4465 } 4466 } 4467 4468 /// Print without a type, skipping the TypePrinting object. 4469 /// 4470 /// \return \c true iff printing was successful. 4471 static bool printWithoutType(const Value &V, raw_ostream &O, 4472 SlotTracker *Machine, const Module *M) { 4473 if (V.hasName() || isa<GlobalValue>(V) || 4474 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) { 4475 WriteAsOperandInternal(O, &V, nullptr, Machine, M); 4476 return true; 4477 } 4478 return false; 4479 } 4480 4481 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, 4482 ModuleSlotTracker &MST) { 4483 TypePrinting TypePrinter(MST.getModule()); 4484 if (PrintType) { 4485 TypePrinter.print(V.getType(), O); 4486 O << ' '; 4487 } 4488 4489 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(), 4490 MST.getModule()); 4491 } 4492 4493 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4494 const Module *M) const { 4495 if (!M) 4496 M = getModuleFromVal(this); 4497 4498 if (!PrintType) 4499 if (printWithoutType(*this, O, nullptr, M)) 4500 return; 4501 4502 SlotTracker Machine( 4503 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this)); 4504 ModuleSlotTracker MST(Machine, M); 4505 printAsOperandImpl(*this, O, PrintType, MST); 4506 } 4507 4508 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4509 ModuleSlotTracker &MST) const { 4510 if (!PrintType) 4511 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule())) 4512 return; 4513 4514 printAsOperandImpl(*this, O, PrintType, MST); 4515 } 4516 4517 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, 4518 ModuleSlotTracker &MST, const Module *M, 4519 bool OnlyAsOperand) { 4520 formatted_raw_ostream OS(ROS); 4521 4522 TypePrinting TypePrinter(M); 4523 4524 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M, 4525 /* FromValue */ true); 4526 4527 auto *N = dyn_cast<MDNode>(&MD); 4528 if (OnlyAsOperand || !N || isa<DIExpression>(MD)) 4529 return; 4530 4531 OS << " = "; 4532 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M); 4533 } 4534 4535 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { 4536 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4537 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4538 } 4539 4540 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, 4541 const Module *M) const { 4542 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4543 } 4544 4545 void Metadata::print(raw_ostream &OS, const Module *M, 4546 bool /*IsForDebug*/) const { 4547 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4548 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4549 } 4550 4551 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST, 4552 const Module *M, bool /*IsForDebug*/) const { 4553 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4554 } 4555 4556 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const { 4557 SlotTracker SlotTable(this); 4558 formatted_raw_ostream OS(ROS); 4559 AssemblyWriter W(OS, SlotTable, this, IsForDebug); 4560 W.printModuleSummaryIndex(); 4561 } 4562 4563 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4564 // Value::dump - allow easy printing of Values from the debugger. 4565 LLVM_DUMP_METHOD 4566 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4567 4568 // Type::dump - allow easy printing of Types from the debugger. 4569 LLVM_DUMP_METHOD 4570 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4571 4572 // Module::dump() - Allow printing of Modules from the debugger. 4573 LLVM_DUMP_METHOD 4574 void Module::dump() const { 4575 print(dbgs(), nullptr, 4576 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true); 4577 } 4578 4579 // Allow printing of Comdats from the debugger. 4580 LLVM_DUMP_METHOD 4581 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4582 4583 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. 4584 LLVM_DUMP_METHOD 4585 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4586 4587 LLVM_DUMP_METHOD 4588 void Metadata::dump() const { dump(nullptr); } 4589 4590 LLVM_DUMP_METHOD 4591 void Metadata::dump(const Module *M) const { 4592 print(dbgs(), M, /*IsForDebug=*/true); 4593 dbgs() << '\n'; 4594 } 4595 4596 // Allow printing of ModuleSummaryIndex from the debugger. 4597 LLVM_DUMP_METHOD 4598 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4599 #endif 4600