1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/UseListOrder.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 namespace {
99 
100 struct OrderMap {
101   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
102 
103   unsigned size() const { return IDs.size(); }
104   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
105 
106   std::pair<unsigned, bool> lookup(const Value *V) const {
107     return IDs.lookup(V);
108   }
109 
110   void index(const Value *V) {
111     // Explicitly sequence get-size and insert-value operations to avoid UB.
112     unsigned ID = IDs.size() + 1;
113     IDs[V].first = ID;
114   }
115 };
116 
117 } // end anonymous namespace
118 
119 static void orderValue(const Value *V, OrderMap &OM) {
120   if (OM.lookup(V).first)
121     return;
122 
123   if (const Constant *C = dyn_cast<Constant>(V))
124     if (C->getNumOperands() && !isa<GlobalValue>(C))
125       for (const Value *Op : C->operands())
126         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
127           orderValue(Op, OM);
128 
129   // Note: we cannot cache this lookup above, since inserting into the map
130   // changes the map's size, and thus affects the other IDs.
131   OM.index(V);
132 }
133 
134 static OrderMap orderModule(const Module *M) {
135   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
136   // and ValueEnumerator::incorporateFunction().
137   OrderMap OM;
138 
139   for (const GlobalVariable &G : M->globals()) {
140     if (G.hasInitializer())
141       if (!isa<GlobalValue>(G.getInitializer()))
142         orderValue(G.getInitializer(), OM);
143     orderValue(&G, OM);
144   }
145   for (const GlobalAlias &A : M->aliases()) {
146     if (!isa<GlobalValue>(A.getAliasee()))
147       orderValue(A.getAliasee(), OM);
148     orderValue(&A, OM);
149   }
150   for (const GlobalIFunc &I : M->ifuncs()) {
151     if (!isa<GlobalValue>(I.getResolver()))
152       orderValue(I.getResolver(), OM);
153     orderValue(&I, OM);
154   }
155   for (const Function &F : *M) {
156     for (const Use &U : F.operands())
157       if (!isa<GlobalValue>(U.get()))
158         orderValue(U.get(), OM);
159 
160     orderValue(&F, OM);
161 
162     if (F.isDeclaration())
163       continue;
164 
165     for (const Argument &A : F.args())
166       orderValue(&A, OM);
167     for (const BasicBlock &BB : F) {
168       orderValue(&BB, OM);
169       for (const Instruction &I : BB) {
170         for (const Value *Op : I.operands())
171           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
172               isa<InlineAsm>(*Op))
173             orderValue(Op, OM);
174         orderValue(&I, OM);
175       }
176     }
177   }
178   return OM;
179 }
180 
181 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
182                                          unsigned ID, const OrderMap &OM,
183                                          UseListOrderStack &Stack) {
184   // Predict use-list order for this one.
185   using Entry = std::pair<const Use *, unsigned>;
186   SmallVector<Entry, 64> List;
187   for (const Use &U : V->uses())
188     // Check if this user will be serialized.
189     if (OM.lookup(U.getUser()).first)
190       List.push_back(std::make_pair(&U, List.size()));
191 
192   if (List.size() < 2)
193     // We may have lost some users.
194     return;
195 
196   bool GetsReversed =
197       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
198   if (auto *BA = dyn_cast<BlockAddress>(V))
199     ID = OM.lookup(BA->getBasicBlock()).first;
200   llvm::sort(List, [&](const Entry &L, const Entry &R) {
201     const Use *LU = L.first;
202     const Use *RU = R.first;
203     if (LU == RU)
204       return false;
205 
206     auto LID = OM.lookup(LU->getUser()).first;
207     auto RID = OM.lookup(RU->getUser()).first;
208 
209     // If ID is 4, then expect: 7 6 5 1 2 3.
210     if (LID < RID) {
211       if (GetsReversed)
212         if (RID <= ID)
213           return true;
214       return false;
215     }
216     if (RID < LID) {
217       if (GetsReversed)
218         if (LID <= ID)
219           return false;
220       return true;
221     }
222 
223     // LID and RID are equal, so we have different operands of the same user.
224     // Assume operands are added in order for all instructions.
225     if (GetsReversed)
226       if (LID <= ID)
227         return LU->getOperandNo() < RU->getOperandNo();
228     return LU->getOperandNo() > RU->getOperandNo();
229   });
230 
231   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
232         return L.second < R.second;
233       }))
234     // Order is already correct.
235     return;
236 
237   // Store the shuffle.
238   Stack.emplace_back(V, F, List.size());
239   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
240   for (size_t I = 0, E = List.size(); I != E; ++I)
241     Stack.back().Shuffle[I] = List[I].second;
242 }
243 
244 static void predictValueUseListOrder(const Value *V, const Function *F,
245                                      OrderMap &OM, UseListOrderStack &Stack) {
246   auto &IDPair = OM[V];
247   assert(IDPair.first && "Unmapped value");
248   if (IDPair.second)
249     // Already predicted.
250     return;
251 
252   // Do the actual prediction.
253   IDPair.second = true;
254   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
255     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
256 
257   // Recursive descent into constants.
258   if (const Constant *C = dyn_cast<Constant>(V))
259     if (C->getNumOperands()) // Visit GlobalValues.
260       for (const Value *Op : C->operands())
261         if (isa<Constant>(Op)) // Visit GlobalValues.
262           predictValueUseListOrder(Op, F, OM, Stack);
263 }
264 
265 static UseListOrderStack predictUseListOrder(const Module *M) {
266   OrderMap OM = orderModule(M);
267 
268   // Use-list orders need to be serialized after all the users have been added
269   // to a value, or else the shuffles will be incomplete.  Store them per
270   // function in a stack.
271   //
272   // Aside from function order, the order of values doesn't matter much here.
273   UseListOrderStack Stack;
274 
275   // We want to visit the functions backward now so we can list function-local
276   // constants in the last Function they're used in.  Module-level constants
277   // have already been visited above.
278   for (const Function &F : make_range(M->rbegin(), M->rend())) {
279     if (F.isDeclaration())
280       continue;
281     for (const BasicBlock &BB : F)
282       predictValueUseListOrder(&BB, &F, OM, Stack);
283     for (const Argument &A : F.args())
284       predictValueUseListOrder(&A, &F, OM, Stack);
285     for (const BasicBlock &BB : F)
286       for (const Instruction &I : BB)
287         for (const Value *Op : I.operands())
288           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
289             predictValueUseListOrder(Op, &F, OM, Stack);
290     for (const BasicBlock &BB : F)
291       for (const Instruction &I : BB)
292         predictValueUseListOrder(&I, &F, OM, Stack);
293   }
294 
295   // Visit globals last.
296   for (const GlobalVariable &G : M->globals())
297     predictValueUseListOrder(&G, nullptr, OM, Stack);
298   for (const Function &F : *M)
299     predictValueUseListOrder(&F, nullptr, OM, Stack);
300   for (const GlobalAlias &A : M->aliases())
301     predictValueUseListOrder(&A, nullptr, OM, Stack);
302   for (const GlobalIFunc &I : M->ifuncs())
303     predictValueUseListOrder(&I, nullptr, OM, Stack);
304   for (const GlobalVariable &G : M->globals())
305     if (G.hasInitializer())
306       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
307   for (const GlobalAlias &A : M->aliases())
308     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
309   for (const GlobalIFunc &I : M->ifuncs())
310     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
311   for (const Function &F : *M)
312     for (const Use &U : F.operands())
313       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
314 
315   return Stack;
316 }
317 
318 static const Module *getModuleFromVal(const Value *V) {
319   if (const Argument *MA = dyn_cast<Argument>(V))
320     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
321 
322   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
323     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
324 
325   if (const Instruction *I = dyn_cast<Instruction>(V)) {
326     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
327     return M ? M->getParent() : nullptr;
328   }
329 
330   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
331     return GV->getParent();
332 
333   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
334     for (const User *U : MAV->users())
335       if (isa<Instruction>(U))
336         if (const Module *M = getModuleFromVal(U))
337           return M;
338     return nullptr;
339   }
340 
341   return nullptr;
342 }
343 
344 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
345   switch (cc) {
346   default:                         Out << "cc" << cc; break;
347   case CallingConv::Fast:          Out << "fastcc"; break;
348   case CallingConv::Cold:          Out << "coldcc"; break;
349   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
350   case CallingConv::AnyReg:        Out << "anyregcc"; break;
351   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
352   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
353   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
354   case CallingConv::GHC:           Out << "ghccc"; break;
355   case CallingConv::Tail:          Out << "tailcc"; break;
356   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
357   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
358   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
359   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
360   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
361   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
362   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
363   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
364   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
365   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
366   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
367   case CallingConv::AArch64_SVE_VectorCall:
368     Out << "aarch64_sve_vector_pcs";
369     break;
370   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
371   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
372   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
373   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
374   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
375   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
376   case CallingConv::Win64:         Out << "win64cc"; break;
377   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
378   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
379   case CallingConv::Swift:         Out << "swiftcc"; break;
380   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
381   case CallingConv::HHVM:          Out << "hhvmcc"; break;
382   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
383   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
384   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
385   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
386   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
387   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
388   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
389   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
390   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
391   }
392 }
393 
394 enum PrefixType {
395   GlobalPrefix,
396   ComdatPrefix,
397   LabelPrefix,
398   LocalPrefix,
399   NoPrefix
400 };
401 
402 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
403   assert(!Name.empty() && "Cannot get empty name!");
404 
405   // Scan the name to see if it needs quotes first.
406   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
407   if (!NeedsQuotes) {
408     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
409       // By making this unsigned, the value passed in to isalnum will always be
410       // in the range 0-255.  This is important when building with MSVC because
411       // its implementation will assert.  This situation can arise when dealing
412       // with UTF-8 multibyte characters.
413       unsigned char C = Name[i];
414       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
415           C != '_') {
416         NeedsQuotes = true;
417         break;
418       }
419     }
420   }
421 
422   // If we didn't need any quotes, just write out the name in one blast.
423   if (!NeedsQuotes) {
424     OS << Name;
425     return;
426   }
427 
428   // Okay, we need quotes.  Output the quotes and escape any scary characters as
429   // needed.
430   OS << '"';
431   printEscapedString(Name, OS);
432   OS << '"';
433 }
434 
435 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
436 /// (if the string only contains simple characters) or is surrounded with ""'s
437 /// (if it has special chars in it). Print it out.
438 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
439   switch (Prefix) {
440   case NoPrefix:
441     break;
442   case GlobalPrefix:
443     OS << '@';
444     break;
445   case ComdatPrefix:
446     OS << '$';
447     break;
448   case LabelPrefix:
449     break;
450   case LocalPrefix:
451     OS << '%';
452     break;
453   }
454   printLLVMNameWithoutPrefix(OS, Name);
455 }
456 
457 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
458 /// (if the string only contains simple characters) or is surrounded with ""'s
459 /// (if it has special chars in it). Print it out.
460 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
461   PrintLLVMName(OS, V->getName(),
462                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
463 }
464 
465 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
466   Out << ", <";
467   if (isa<ScalableVectorType>(Ty))
468     Out << "vscale x ";
469   Out << Mask.size() << " x i32> ";
470   bool FirstElt = true;
471   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
472     Out << "zeroinitializer";
473   } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
474     Out << "undef";
475   } else {
476     Out << "<";
477     for (int Elt : Mask) {
478       if (FirstElt)
479         FirstElt = false;
480       else
481         Out << ", ";
482       Out << "i32 ";
483       if (Elt == UndefMaskElem)
484         Out << "undef";
485       else
486         Out << Elt;
487     }
488     Out << ">";
489   }
490 }
491 
492 namespace {
493 
494 class TypePrinting {
495 public:
496   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
497 
498   TypePrinting(const TypePrinting &) = delete;
499   TypePrinting &operator=(const TypePrinting &) = delete;
500 
501   /// The named types that are used by the current module.
502   TypeFinder &getNamedTypes();
503 
504   /// The numbered types, number to type mapping.
505   std::vector<StructType *> &getNumberedTypes();
506 
507   bool empty();
508 
509   void print(Type *Ty, raw_ostream &OS);
510 
511   void printStructBody(StructType *Ty, raw_ostream &OS);
512 
513 private:
514   void incorporateTypes();
515 
516   /// A module to process lazily when needed. Set to nullptr as soon as used.
517   const Module *DeferredM;
518 
519   TypeFinder NamedTypes;
520 
521   // The numbered types, along with their value.
522   DenseMap<StructType *, unsigned> Type2Number;
523 
524   std::vector<StructType *> NumberedTypes;
525 };
526 
527 } // end anonymous namespace
528 
529 TypeFinder &TypePrinting::getNamedTypes() {
530   incorporateTypes();
531   return NamedTypes;
532 }
533 
534 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
535   incorporateTypes();
536 
537   // We know all the numbers that each type is used and we know that it is a
538   // dense assignment. Convert the map to an index table, if it's not done
539   // already (judging from the sizes):
540   if (NumberedTypes.size() == Type2Number.size())
541     return NumberedTypes;
542 
543   NumberedTypes.resize(Type2Number.size());
544   for (const auto &P : Type2Number) {
545     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
546     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
547     NumberedTypes[P.second] = P.first;
548   }
549   return NumberedTypes;
550 }
551 
552 bool TypePrinting::empty() {
553   incorporateTypes();
554   return NamedTypes.empty() && Type2Number.empty();
555 }
556 
557 void TypePrinting::incorporateTypes() {
558   if (!DeferredM)
559     return;
560 
561   NamedTypes.run(*DeferredM, false);
562   DeferredM = nullptr;
563 
564   // The list of struct types we got back includes all the struct types, split
565   // the unnamed ones out to a numbering and remove the anonymous structs.
566   unsigned NextNumber = 0;
567 
568   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
569   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
570     StructType *STy = *I;
571 
572     // Ignore anonymous types.
573     if (STy->isLiteral())
574       continue;
575 
576     if (STy->getName().empty())
577       Type2Number[STy] = NextNumber++;
578     else
579       *NextToUse++ = STy;
580   }
581 
582   NamedTypes.erase(NextToUse, NamedTypes.end());
583 }
584 
585 /// Write the specified type to the specified raw_ostream, making use of type
586 /// names or up references to shorten the type name where possible.
587 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
588   switch (Ty->getTypeID()) {
589   case Type::VoidTyID:      OS << "void"; return;
590   case Type::HalfTyID:      OS << "half"; return;
591   case Type::BFloatTyID:    OS << "bfloat"; return;
592   case Type::FloatTyID:     OS << "float"; return;
593   case Type::DoubleTyID:    OS << "double"; return;
594   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
595   case Type::FP128TyID:     OS << "fp128"; return;
596   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
597   case Type::LabelTyID:     OS << "label"; return;
598   case Type::MetadataTyID:  OS << "metadata"; return;
599   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
600   case Type::TokenTyID:     OS << "token"; return;
601   case Type::IntegerTyID:
602     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
603     return;
604 
605   case Type::FunctionTyID: {
606     FunctionType *FTy = cast<FunctionType>(Ty);
607     print(FTy->getReturnType(), OS);
608     OS << " (";
609     for (FunctionType::param_iterator I = FTy->param_begin(),
610          E = FTy->param_end(); I != E; ++I) {
611       if (I != FTy->param_begin())
612         OS << ", ";
613       print(*I, OS);
614     }
615     if (FTy->isVarArg()) {
616       if (FTy->getNumParams()) OS << ", ";
617       OS << "...";
618     }
619     OS << ')';
620     return;
621   }
622   case Type::StructTyID: {
623     StructType *STy = cast<StructType>(Ty);
624 
625     if (STy->isLiteral())
626       return printStructBody(STy, OS);
627 
628     if (!STy->getName().empty())
629       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
630 
631     incorporateTypes();
632     const auto I = Type2Number.find(STy);
633     if (I != Type2Number.end())
634       OS << '%' << I->second;
635     else  // Not enumerated, print the hex address.
636       OS << "%\"type " << STy << '\"';
637     return;
638   }
639   case Type::PointerTyID: {
640     PointerType *PTy = cast<PointerType>(Ty);
641     print(PTy->getElementType(), OS);
642     if (unsigned AddressSpace = PTy->getAddressSpace())
643       OS << " addrspace(" << AddressSpace << ')';
644     OS << '*';
645     return;
646   }
647   case Type::ArrayTyID: {
648     ArrayType *ATy = cast<ArrayType>(Ty);
649     OS << '[' << ATy->getNumElements() << " x ";
650     print(ATy->getElementType(), OS);
651     OS << ']';
652     return;
653   }
654   case Type::FixedVectorTyID:
655   case Type::ScalableVectorTyID: {
656     VectorType *PTy = cast<VectorType>(Ty);
657     ElementCount EC = PTy->getElementCount();
658     OS << "<";
659     if (EC.Scalable)
660       OS << "vscale x ";
661     OS << EC.Min << " x ";
662     print(PTy->getElementType(), OS);
663     OS << '>';
664     return;
665   }
666   }
667   llvm_unreachable("Invalid TypeID");
668 }
669 
670 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
671   if (STy->isOpaque()) {
672     OS << "opaque";
673     return;
674   }
675 
676   if (STy->isPacked())
677     OS << '<';
678 
679   if (STy->getNumElements() == 0) {
680     OS << "{}";
681   } else {
682     StructType::element_iterator I = STy->element_begin();
683     OS << "{ ";
684     print(*I++, OS);
685     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
686       OS << ", ";
687       print(*I, OS);
688     }
689 
690     OS << " }";
691   }
692   if (STy->isPacked())
693     OS << '>';
694 }
695 
696 namespace llvm {
697 
698 //===----------------------------------------------------------------------===//
699 // SlotTracker Class: Enumerate slot numbers for unnamed values
700 //===----------------------------------------------------------------------===//
701 /// This class provides computation of slot numbers for LLVM Assembly writing.
702 ///
703 class SlotTracker {
704 public:
705   /// ValueMap - A mapping of Values to slot numbers.
706   using ValueMap = DenseMap<const Value *, unsigned>;
707 
708 private:
709   /// TheModule - The module for which we are holding slot numbers.
710   const Module* TheModule;
711 
712   /// TheFunction - The function for which we are holding slot numbers.
713   const Function* TheFunction = nullptr;
714   bool FunctionProcessed = false;
715   bool ShouldInitializeAllMetadata;
716 
717   /// The summary index for which we are holding slot numbers.
718   const ModuleSummaryIndex *TheIndex = nullptr;
719 
720   /// mMap - The slot map for the module level data.
721   ValueMap mMap;
722   unsigned mNext = 0;
723 
724   /// fMap - The slot map for the function level data.
725   ValueMap fMap;
726   unsigned fNext = 0;
727 
728   /// mdnMap - Map for MDNodes.
729   DenseMap<const MDNode*, unsigned> mdnMap;
730   unsigned mdnNext = 0;
731 
732   /// asMap - The slot map for attribute sets.
733   DenseMap<AttributeSet, unsigned> asMap;
734   unsigned asNext = 0;
735 
736   /// ModulePathMap - The slot map for Module paths used in the summary index.
737   StringMap<unsigned> ModulePathMap;
738   unsigned ModulePathNext = 0;
739 
740   /// GUIDMap - The slot map for GUIDs used in the summary index.
741   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
742   unsigned GUIDNext = 0;
743 
744   /// TypeIdMap - The slot map for type ids used in the summary index.
745   StringMap<unsigned> TypeIdMap;
746   unsigned TypeIdNext = 0;
747 
748 public:
749   /// Construct from a module.
750   ///
751   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
752   /// functions, giving correct numbering for metadata referenced only from
753   /// within a function (even if no functions have been initialized).
754   explicit SlotTracker(const Module *M,
755                        bool ShouldInitializeAllMetadata = false);
756 
757   /// Construct from a function, starting out in incorp state.
758   ///
759   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
760   /// functions, giving correct numbering for metadata referenced only from
761   /// within a function (even if no functions have been initialized).
762   explicit SlotTracker(const Function *F,
763                        bool ShouldInitializeAllMetadata = false);
764 
765   /// Construct from a module summary index.
766   explicit SlotTracker(const ModuleSummaryIndex *Index);
767 
768   SlotTracker(const SlotTracker &) = delete;
769   SlotTracker &operator=(const SlotTracker &) = delete;
770 
771   /// Return the slot number of the specified value in it's type
772   /// plane.  If something is not in the SlotTracker, return -1.
773   int getLocalSlot(const Value *V);
774   int getGlobalSlot(const GlobalValue *V);
775   int getMetadataSlot(const MDNode *N);
776   int getAttributeGroupSlot(AttributeSet AS);
777   int getModulePathSlot(StringRef Path);
778   int getGUIDSlot(GlobalValue::GUID GUID);
779   int getTypeIdSlot(StringRef Id);
780 
781   /// If you'd like to deal with a function instead of just a module, use
782   /// this method to get its data into the SlotTracker.
783   void incorporateFunction(const Function *F) {
784     TheFunction = F;
785     FunctionProcessed = false;
786   }
787 
788   const Function *getFunction() const { return TheFunction; }
789 
790   /// After calling incorporateFunction, use this method to remove the
791   /// most recently incorporated function from the SlotTracker. This
792   /// will reset the state of the machine back to just the module contents.
793   void purgeFunction();
794 
795   /// MDNode map iterators.
796   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
797 
798   mdn_iterator mdn_begin() { return mdnMap.begin(); }
799   mdn_iterator mdn_end() { return mdnMap.end(); }
800   unsigned mdn_size() const { return mdnMap.size(); }
801   bool mdn_empty() const { return mdnMap.empty(); }
802 
803   /// AttributeSet map iterators.
804   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
805 
806   as_iterator as_begin()   { return asMap.begin(); }
807   as_iterator as_end()     { return asMap.end(); }
808   unsigned as_size() const { return asMap.size(); }
809   bool as_empty() const    { return asMap.empty(); }
810 
811   /// GUID map iterators.
812   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
813 
814   /// These functions do the actual initialization.
815   inline void initializeIfNeeded();
816   int initializeIndexIfNeeded();
817 
818   // Implementation Details
819 private:
820   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
821   void CreateModuleSlot(const GlobalValue *V);
822 
823   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
824   void CreateMetadataSlot(const MDNode *N);
825 
826   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
827   void CreateFunctionSlot(const Value *V);
828 
829   /// Insert the specified AttributeSet into the slot table.
830   void CreateAttributeSetSlot(AttributeSet AS);
831 
832   inline void CreateModulePathSlot(StringRef Path);
833   void CreateGUIDSlot(GlobalValue::GUID GUID);
834   void CreateTypeIdSlot(StringRef Id);
835 
836   /// Add all of the module level global variables (and their initializers)
837   /// and function declarations, but not the contents of those functions.
838   void processModule();
839   // Returns number of allocated slots
840   int processIndex();
841 
842   /// Add all of the functions arguments, basic blocks, and instructions.
843   void processFunction();
844 
845   /// Add the metadata directly attached to a GlobalObject.
846   void processGlobalObjectMetadata(const GlobalObject &GO);
847 
848   /// Add all of the metadata from a function.
849   void processFunctionMetadata(const Function &F);
850 
851   /// Add all of the metadata from an instruction.
852   void processInstructionMetadata(const Instruction &I);
853 };
854 
855 } // end namespace llvm
856 
857 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
858                                      const Function *F)
859     : M(M), F(F), Machine(&Machine) {}
860 
861 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
862                                      bool ShouldInitializeAllMetadata)
863     : ShouldCreateStorage(M),
864       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
865 
866 ModuleSlotTracker::~ModuleSlotTracker() = default;
867 
868 SlotTracker *ModuleSlotTracker::getMachine() {
869   if (!ShouldCreateStorage)
870     return Machine;
871 
872   ShouldCreateStorage = false;
873   MachineStorage =
874       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
875   Machine = MachineStorage.get();
876   return Machine;
877 }
878 
879 void ModuleSlotTracker::incorporateFunction(const Function &F) {
880   // Using getMachine() may lazily create the slot tracker.
881   if (!getMachine())
882     return;
883 
884   // Nothing to do if this is the right function already.
885   if (this->F == &F)
886     return;
887   if (this->F)
888     Machine->purgeFunction();
889   Machine->incorporateFunction(&F);
890   this->F = &F;
891 }
892 
893 int ModuleSlotTracker::getLocalSlot(const Value *V) {
894   assert(F && "No function incorporated");
895   return Machine->getLocalSlot(V);
896 }
897 
898 static SlotTracker *createSlotTracker(const Value *V) {
899   if (const Argument *FA = dyn_cast<Argument>(V))
900     return new SlotTracker(FA->getParent());
901 
902   if (const Instruction *I = dyn_cast<Instruction>(V))
903     if (I->getParent())
904       return new SlotTracker(I->getParent()->getParent());
905 
906   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
907     return new SlotTracker(BB->getParent());
908 
909   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
910     return new SlotTracker(GV->getParent());
911 
912   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
913     return new SlotTracker(GA->getParent());
914 
915   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
916     return new SlotTracker(GIF->getParent());
917 
918   if (const Function *Func = dyn_cast<Function>(V))
919     return new SlotTracker(Func);
920 
921   return nullptr;
922 }
923 
924 #if 0
925 #define ST_DEBUG(X) dbgs() << X
926 #else
927 #define ST_DEBUG(X)
928 #endif
929 
930 // Module level constructor. Causes the contents of the Module (sans functions)
931 // to be added to the slot table.
932 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
933     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
934 
935 // Function level constructor. Causes the contents of the Module and the one
936 // function provided to be added to the slot table.
937 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
938     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
939       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
940 
941 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
942     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
943 
944 inline void SlotTracker::initializeIfNeeded() {
945   if (TheModule) {
946     processModule();
947     TheModule = nullptr; ///< Prevent re-processing next time we're called.
948   }
949 
950   if (TheFunction && !FunctionProcessed)
951     processFunction();
952 }
953 
954 int SlotTracker::initializeIndexIfNeeded() {
955   if (!TheIndex)
956     return 0;
957   int NumSlots = processIndex();
958   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
959   return NumSlots;
960 }
961 
962 // Iterate through all the global variables, functions, and global
963 // variable initializers and create slots for them.
964 void SlotTracker::processModule() {
965   ST_DEBUG("begin processModule!\n");
966 
967   // Add all of the unnamed global variables to the value table.
968   for (const GlobalVariable &Var : TheModule->globals()) {
969     if (!Var.hasName())
970       CreateModuleSlot(&Var);
971     processGlobalObjectMetadata(Var);
972     auto Attrs = Var.getAttributes();
973     if (Attrs.hasAttributes())
974       CreateAttributeSetSlot(Attrs);
975   }
976 
977   for (const GlobalAlias &A : TheModule->aliases()) {
978     if (!A.hasName())
979       CreateModuleSlot(&A);
980   }
981 
982   for (const GlobalIFunc &I : TheModule->ifuncs()) {
983     if (!I.hasName())
984       CreateModuleSlot(&I);
985   }
986 
987   // Add metadata used by named metadata.
988   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
989     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
990       CreateMetadataSlot(NMD.getOperand(i));
991   }
992 
993   for (const Function &F : *TheModule) {
994     if (!F.hasName())
995       // Add all the unnamed functions to the table.
996       CreateModuleSlot(&F);
997 
998     if (ShouldInitializeAllMetadata)
999       processFunctionMetadata(F);
1000 
1001     // Add all the function attributes to the table.
1002     // FIXME: Add attributes of other objects?
1003     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
1004     if (FnAttrs.hasAttributes())
1005       CreateAttributeSetSlot(FnAttrs);
1006   }
1007 
1008   ST_DEBUG("end processModule!\n");
1009 }
1010 
1011 // Process the arguments, basic blocks, and instructions  of a function.
1012 void SlotTracker::processFunction() {
1013   ST_DEBUG("begin processFunction!\n");
1014   fNext = 0;
1015 
1016   // Process function metadata if it wasn't hit at the module-level.
1017   if (!ShouldInitializeAllMetadata)
1018     processFunctionMetadata(*TheFunction);
1019 
1020   // Add all the function arguments with no names.
1021   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1022       AE = TheFunction->arg_end(); AI != AE; ++AI)
1023     if (!AI->hasName())
1024       CreateFunctionSlot(&*AI);
1025 
1026   ST_DEBUG("Inserting Instructions:\n");
1027 
1028   // Add all of the basic blocks and instructions with no names.
1029   for (auto &BB : *TheFunction) {
1030     if (!BB.hasName())
1031       CreateFunctionSlot(&BB);
1032 
1033     for (auto &I : BB) {
1034       if (!I.getType()->isVoidTy() && !I.hasName())
1035         CreateFunctionSlot(&I);
1036 
1037       // We allow direct calls to any llvm.foo function here, because the
1038       // target may not be linked into the optimizer.
1039       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1040         // Add all the call attributes to the table.
1041         AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1042         if (Attrs.hasAttributes())
1043           CreateAttributeSetSlot(Attrs);
1044       }
1045     }
1046   }
1047 
1048   FunctionProcessed = true;
1049 
1050   ST_DEBUG("end processFunction!\n");
1051 }
1052 
1053 // Iterate through all the GUID in the index and create slots for them.
1054 int SlotTracker::processIndex() {
1055   ST_DEBUG("begin processIndex!\n");
1056   assert(TheIndex);
1057 
1058   // The first block of slots are just the module ids, which start at 0 and are
1059   // assigned consecutively. Since the StringMap iteration order isn't
1060   // guaranteed, use a std::map to order by module ID before assigning slots.
1061   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1062   for (auto &ModPath : TheIndex->modulePaths())
1063     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1064   for (auto &ModPair : ModuleIdToPathMap)
1065     CreateModulePathSlot(ModPair.second);
1066 
1067   // Start numbering the GUIDs after the module ids.
1068   GUIDNext = ModulePathNext;
1069 
1070   for (auto &GlobalList : *TheIndex)
1071     CreateGUIDSlot(GlobalList.first);
1072 
1073   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1074     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1075 
1076   // Start numbering the TypeIds after the GUIDs.
1077   TypeIdNext = GUIDNext;
1078   for (auto TidIter = TheIndex->typeIds().begin();
1079        TidIter != TheIndex->typeIds().end(); TidIter++)
1080     CreateTypeIdSlot(TidIter->second.first);
1081 
1082   ST_DEBUG("end processIndex!\n");
1083   return TypeIdNext;
1084 }
1085 
1086 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1087   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1088   GO.getAllMetadata(MDs);
1089   for (auto &MD : MDs)
1090     CreateMetadataSlot(MD.second);
1091 }
1092 
1093 void SlotTracker::processFunctionMetadata(const Function &F) {
1094   processGlobalObjectMetadata(F);
1095   for (auto &BB : F) {
1096     for (auto &I : BB)
1097       processInstructionMetadata(I);
1098   }
1099 }
1100 
1101 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1102   // Process metadata used directly by intrinsics.
1103   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1104     if (Function *F = CI->getCalledFunction())
1105       if (F->isIntrinsic())
1106         for (auto &Op : I.operands())
1107           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1108             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1109               CreateMetadataSlot(N);
1110 
1111   // Process metadata attached to this instruction.
1112   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1113   I.getAllMetadata(MDs);
1114   for (auto &MD : MDs)
1115     CreateMetadataSlot(MD.second);
1116 }
1117 
1118 /// Clean up after incorporating a function. This is the only way to get out of
1119 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1120 /// incorporation state is indicated by TheFunction != 0.
1121 void SlotTracker::purgeFunction() {
1122   ST_DEBUG("begin purgeFunction!\n");
1123   fMap.clear(); // Simply discard the function level map
1124   TheFunction = nullptr;
1125   FunctionProcessed = false;
1126   ST_DEBUG("end purgeFunction!\n");
1127 }
1128 
1129 /// getGlobalSlot - Get the slot number of a global value.
1130 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1131   // Check for uninitialized state and do lazy initialization.
1132   initializeIfNeeded();
1133 
1134   // Find the value in the module map
1135   ValueMap::iterator MI = mMap.find(V);
1136   return MI == mMap.end() ? -1 : (int)MI->second;
1137 }
1138 
1139 /// getMetadataSlot - Get the slot number of a MDNode.
1140 int SlotTracker::getMetadataSlot(const MDNode *N) {
1141   // Check for uninitialized state and do lazy initialization.
1142   initializeIfNeeded();
1143 
1144   // Find the MDNode in the module map
1145   mdn_iterator MI = mdnMap.find(N);
1146   return MI == mdnMap.end() ? -1 : (int)MI->second;
1147 }
1148 
1149 /// getLocalSlot - Get the slot number for a value that is local to a function.
1150 int SlotTracker::getLocalSlot(const Value *V) {
1151   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1152 
1153   // Check for uninitialized state and do lazy initialization.
1154   initializeIfNeeded();
1155 
1156   ValueMap::iterator FI = fMap.find(V);
1157   return FI == fMap.end() ? -1 : (int)FI->second;
1158 }
1159 
1160 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1161   // Check for uninitialized state and do lazy initialization.
1162   initializeIfNeeded();
1163 
1164   // Find the AttributeSet in the module map.
1165   as_iterator AI = asMap.find(AS);
1166   return AI == asMap.end() ? -1 : (int)AI->second;
1167 }
1168 
1169 int SlotTracker::getModulePathSlot(StringRef Path) {
1170   // Check for uninitialized state and do lazy initialization.
1171   initializeIndexIfNeeded();
1172 
1173   // Find the Module path in the map
1174   auto I = ModulePathMap.find(Path);
1175   return I == ModulePathMap.end() ? -1 : (int)I->second;
1176 }
1177 
1178 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1179   // Check for uninitialized state and do lazy initialization.
1180   initializeIndexIfNeeded();
1181 
1182   // Find the GUID in the map
1183   guid_iterator I = GUIDMap.find(GUID);
1184   return I == GUIDMap.end() ? -1 : (int)I->second;
1185 }
1186 
1187 int SlotTracker::getTypeIdSlot(StringRef Id) {
1188   // Check for uninitialized state and do lazy initialization.
1189   initializeIndexIfNeeded();
1190 
1191   // Find the TypeId string in the map
1192   auto I = TypeIdMap.find(Id);
1193   return I == TypeIdMap.end() ? -1 : (int)I->second;
1194 }
1195 
1196 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1197 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1198   assert(V && "Can't insert a null Value into SlotTracker!");
1199   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1200   assert(!V->hasName() && "Doesn't need a slot!");
1201 
1202   unsigned DestSlot = mNext++;
1203   mMap[V] = DestSlot;
1204 
1205   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1206            DestSlot << " [");
1207   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1208   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1209             (isa<Function>(V) ? 'F' :
1210              (isa<GlobalAlias>(V) ? 'A' :
1211               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1212 }
1213 
1214 /// CreateSlot - Create a new slot for the specified value if it has no name.
1215 void SlotTracker::CreateFunctionSlot(const Value *V) {
1216   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1217 
1218   unsigned DestSlot = fNext++;
1219   fMap[V] = DestSlot;
1220 
1221   // G = Global, F = Function, o = other
1222   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1223            DestSlot << " [o]\n");
1224 }
1225 
1226 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1227 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1228   assert(N && "Can't insert a null Value into SlotTracker!");
1229 
1230   // Don't make slots for DIExpressions. We just print them inline everywhere.
1231   if (isa<DIExpression>(N))
1232     return;
1233 
1234   unsigned DestSlot = mdnNext;
1235   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1236     return;
1237   ++mdnNext;
1238 
1239   // Recursively add any MDNodes referenced by operands.
1240   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1241     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1242       CreateMetadataSlot(Op);
1243 }
1244 
1245 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1246   assert(AS.hasAttributes() && "Doesn't need a slot!");
1247 
1248   as_iterator I = asMap.find(AS);
1249   if (I != asMap.end())
1250     return;
1251 
1252   unsigned DestSlot = asNext++;
1253   asMap[AS] = DestSlot;
1254 }
1255 
1256 /// Create a new slot for the specified Module
1257 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1258   ModulePathMap[Path] = ModulePathNext++;
1259 }
1260 
1261 /// Create a new slot for the specified GUID
1262 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1263   GUIDMap[GUID] = GUIDNext++;
1264 }
1265 
1266 /// Create a new slot for the specified Id
1267 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1268   TypeIdMap[Id] = TypeIdNext++;
1269 }
1270 
1271 //===----------------------------------------------------------------------===//
1272 // AsmWriter Implementation
1273 //===----------------------------------------------------------------------===//
1274 
1275 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1276                                    TypePrinting *TypePrinter,
1277                                    SlotTracker *Machine,
1278                                    const Module *Context);
1279 
1280 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1281                                    TypePrinting *TypePrinter,
1282                                    SlotTracker *Machine, const Module *Context,
1283                                    bool FromValue = false);
1284 
1285 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1286   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1287     // 'Fast' is an abbreviation for all fast-math-flags.
1288     if (FPO->isFast())
1289       Out << " fast";
1290     else {
1291       if (FPO->hasAllowReassoc())
1292         Out << " reassoc";
1293       if (FPO->hasNoNaNs())
1294         Out << " nnan";
1295       if (FPO->hasNoInfs())
1296         Out << " ninf";
1297       if (FPO->hasNoSignedZeros())
1298         Out << " nsz";
1299       if (FPO->hasAllowReciprocal())
1300         Out << " arcp";
1301       if (FPO->hasAllowContract())
1302         Out << " contract";
1303       if (FPO->hasApproxFunc())
1304         Out << " afn";
1305     }
1306   }
1307 
1308   if (const OverflowingBinaryOperator *OBO =
1309         dyn_cast<OverflowingBinaryOperator>(U)) {
1310     if (OBO->hasNoUnsignedWrap())
1311       Out << " nuw";
1312     if (OBO->hasNoSignedWrap())
1313       Out << " nsw";
1314   } else if (const PossiblyExactOperator *Div =
1315                dyn_cast<PossiblyExactOperator>(U)) {
1316     if (Div->isExact())
1317       Out << " exact";
1318   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1319     if (GEP->isInBounds())
1320       Out << " inbounds";
1321   }
1322 }
1323 
1324 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1325                                   TypePrinting &TypePrinter,
1326                                   SlotTracker *Machine,
1327                                   const Module *Context) {
1328   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1329     if (CI->getType()->isIntegerTy(1)) {
1330       Out << (CI->getZExtValue() ? "true" : "false");
1331       return;
1332     }
1333     Out << CI->getValue();
1334     return;
1335   }
1336 
1337   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1338     const APFloat &APF = CFP->getValueAPF();
1339     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1340         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1341       // We would like to output the FP constant value in exponential notation,
1342       // but we cannot do this if doing so will lose precision.  Check here to
1343       // make sure that we only output it in exponential format if we can parse
1344       // the value back and get the same value.
1345       //
1346       bool ignored;
1347       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1348       bool isInf = APF.isInfinity();
1349       bool isNaN = APF.isNaN();
1350       if (!isInf && !isNaN) {
1351         double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1352         SmallString<128> StrVal;
1353         APF.toString(StrVal, 6, 0, false);
1354         // Check to make sure that the stringized number is not some string like
1355         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1356         // that the string matches the "[-+]?[0-9]" regex.
1357         //
1358         assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1359                 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1360                  (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1361                "[-+]?[0-9] regex does not match!");
1362         // Reparse stringized version!
1363         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1364           Out << StrVal;
1365           return;
1366         }
1367       }
1368       // Otherwise we could not reparse it to exactly the same value, so we must
1369       // output the string in hexadecimal format!  Note that loading and storing
1370       // floating point types changes the bits of NaNs on some hosts, notably
1371       // x86, so we must not use these types.
1372       static_assert(sizeof(double) == sizeof(uint64_t),
1373                     "assuming that double is 64 bits!");
1374       APFloat apf = APF;
1375       // Floats are represented in ASCII IR as double, convert.
1376       if (!isDouble)
1377         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1378                           &ignored);
1379       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1380       return;
1381     }
1382 
1383     // Either half, bfloat or some form of long double.
1384     // These appear as a magic letter identifying the type, then a
1385     // fixed number of hex digits.
1386     Out << "0x";
1387     APInt API = APF.bitcastToAPInt();
1388     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1389       Out << 'K';
1390       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1391                                   /*Upper=*/true);
1392       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1393                                   /*Upper=*/true);
1394       return;
1395     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1396       Out << 'L';
1397       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1398                                   /*Upper=*/true);
1399       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1400                                   /*Upper=*/true);
1401     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1402       Out << 'M';
1403       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1404                                   /*Upper=*/true);
1405       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1406                                   /*Upper=*/true);
1407     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1408       Out << 'H';
1409       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1410                                   /*Upper=*/true);
1411     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1412       Out << 'R';
1413       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1414                                   /*Upper=*/true);
1415     } else
1416       llvm_unreachable("Unsupported floating point type");
1417     return;
1418   }
1419 
1420   if (isa<ConstantAggregateZero>(CV)) {
1421     Out << "zeroinitializer";
1422     return;
1423   }
1424 
1425   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1426     Out << "blockaddress(";
1427     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1428                            Context);
1429     Out << ", ";
1430     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1431                            Context);
1432     Out << ")";
1433     return;
1434   }
1435 
1436   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1437     Type *ETy = CA->getType()->getElementType();
1438     Out << '[';
1439     TypePrinter.print(ETy, Out);
1440     Out << ' ';
1441     WriteAsOperandInternal(Out, CA->getOperand(0),
1442                            &TypePrinter, Machine,
1443                            Context);
1444     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1445       Out << ", ";
1446       TypePrinter.print(ETy, Out);
1447       Out << ' ';
1448       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1449                              Context);
1450     }
1451     Out << ']';
1452     return;
1453   }
1454 
1455   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1456     // As a special case, print the array as a string if it is an array of
1457     // i8 with ConstantInt values.
1458     if (CA->isString()) {
1459       Out << "c\"";
1460       printEscapedString(CA->getAsString(), Out);
1461       Out << '"';
1462       return;
1463     }
1464 
1465     Type *ETy = CA->getType()->getElementType();
1466     Out << '[';
1467     TypePrinter.print(ETy, Out);
1468     Out << ' ';
1469     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1470                            &TypePrinter, Machine,
1471                            Context);
1472     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1473       Out << ", ";
1474       TypePrinter.print(ETy, Out);
1475       Out << ' ';
1476       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1477                              Machine, Context);
1478     }
1479     Out << ']';
1480     return;
1481   }
1482 
1483   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1484     if (CS->getType()->isPacked())
1485       Out << '<';
1486     Out << '{';
1487     unsigned N = CS->getNumOperands();
1488     if (N) {
1489       Out << ' ';
1490       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1491       Out << ' ';
1492 
1493       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1494                              Context);
1495 
1496       for (unsigned i = 1; i < N; i++) {
1497         Out << ", ";
1498         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1499         Out << ' ';
1500 
1501         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1502                                Context);
1503       }
1504       Out << ' ';
1505     }
1506 
1507     Out << '}';
1508     if (CS->getType()->isPacked())
1509       Out << '>';
1510     return;
1511   }
1512 
1513   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1514     auto *CVVTy = cast<VectorType>(CV->getType());
1515     Type *ETy = CVVTy->getElementType();
1516     Out << '<';
1517     TypePrinter.print(ETy, Out);
1518     Out << ' ';
1519     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1520                            Machine, Context);
1521     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1522       Out << ", ";
1523       TypePrinter.print(ETy, Out);
1524       Out << ' ';
1525       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1526                              Machine, Context);
1527     }
1528     Out << '>';
1529     return;
1530   }
1531 
1532   if (isa<ConstantPointerNull>(CV)) {
1533     Out << "null";
1534     return;
1535   }
1536 
1537   if (isa<ConstantTokenNone>(CV)) {
1538     Out << "none";
1539     return;
1540   }
1541 
1542   if (isa<UndefValue>(CV)) {
1543     Out << "undef";
1544     return;
1545   }
1546 
1547   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1548     Out << CE->getOpcodeName();
1549     WriteOptimizationInfo(Out, CE);
1550     if (CE->isCompare())
1551       Out << ' ' << CmpInst::getPredicateName(
1552                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1553     Out << " (";
1554 
1555     Optional<unsigned> InRangeOp;
1556     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1557       TypePrinter.print(GEP->getSourceElementType(), Out);
1558       Out << ", ";
1559       InRangeOp = GEP->getInRangeIndex();
1560       if (InRangeOp)
1561         ++*InRangeOp;
1562     }
1563 
1564     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1565       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1566         Out << "inrange ";
1567       TypePrinter.print((*OI)->getType(), Out);
1568       Out << ' ';
1569       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1570       if (OI+1 != CE->op_end())
1571         Out << ", ";
1572     }
1573 
1574     if (CE->hasIndices()) {
1575       ArrayRef<unsigned> Indices = CE->getIndices();
1576       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1577         Out << ", " << Indices[i];
1578     }
1579 
1580     if (CE->isCast()) {
1581       Out << " to ";
1582       TypePrinter.print(CE->getType(), Out);
1583     }
1584 
1585     if (CE->getOpcode() == Instruction::ShuffleVector)
1586       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1587 
1588     Out << ')';
1589     return;
1590   }
1591 
1592   Out << "<placeholder or erroneous Constant>";
1593 }
1594 
1595 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1596                          TypePrinting *TypePrinter, SlotTracker *Machine,
1597                          const Module *Context) {
1598   Out << "!{";
1599   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1600     const Metadata *MD = Node->getOperand(mi);
1601     if (!MD)
1602       Out << "null";
1603     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1604       Value *V = MDV->getValue();
1605       TypePrinter->print(V->getType(), Out);
1606       Out << ' ';
1607       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1608     } else {
1609       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1610     }
1611     if (mi + 1 != me)
1612       Out << ", ";
1613   }
1614 
1615   Out << "}";
1616 }
1617 
1618 namespace {
1619 
1620 struct FieldSeparator {
1621   bool Skip = true;
1622   const char *Sep;
1623 
1624   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1625 };
1626 
1627 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1628   if (FS.Skip) {
1629     FS.Skip = false;
1630     return OS;
1631   }
1632   return OS << FS.Sep;
1633 }
1634 
1635 struct MDFieldPrinter {
1636   raw_ostream &Out;
1637   FieldSeparator FS;
1638   TypePrinting *TypePrinter = nullptr;
1639   SlotTracker *Machine = nullptr;
1640   const Module *Context = nullptr;
1641 
1642   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1643   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1644                  SlotTracker *Machine, const Module *Context)
1645       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1646   }
1647 
1648   void printTag(const DINode *N);
1649   void printMacinfoType(const DIMacroNode *N);
1650   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1651   void printString(StringRef Name, StringRef Value,
1652                    bool ShouldSkipEmpty = true);
1653   void printMetadata(StringRef Name, const Metadata *MD,
1654                      bool ShouldSkipNull = true);
1655   template <class IntTy>
1656   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1657   void printAPInt(StringRef Name, APInt Int, bool IsUnsigned,
1658                   bool ShouldSkipZero);
1659   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1660   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1661   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1662   template <class IntTy, class Stringifier>
1663   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1664                       bool ShouldSkipZero = true);
1665   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1666   void printNameTableKind(StringRef Name,
1667                           DICompileUnit::DebugNameTableKind NTK);
1668 };
1669 
1670 } // end anonymous namespace
1671 
1672 void MDFieldPrinter::printTag(const DINode *N) {
1673   Out << FS << "tag: ";
1674   auto Tag = dwarf::TagString(N->getTag());
1675   if (!Tag.empty())
1676     Out << Tag;
1677   else
1678     Out << N->getTag();
1679 }
1680 
1681 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1682   Out << FS << "type: ";
1683   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1684   if (!Type.empty())
1685     Out << Type;
1686   else
1687     Out << N->getMacinfoType();
1688 }
1689 
1690 void MDFieldPrinter::printChecksum(
1691     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1692   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1693   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1694 }
1695 
1696 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1697                                  bool ShouldSkipEmpty) {
1698   if (ShouldSkipEmpty && Value.empty())
1699     return;
1700 
1701   Out << FS << Name << ": \"";
1702   printEscapedString(Value, Out);
1703   Out << "\"";
1704 }
1705 
1706 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1707                                    TypePrinting *TypePrinter,
1708                                    SlotTracker *Machine,
1709                                    const Module *Context) {
1710   if (!MD) {
1711     Out << "null";
1712     return;
1713   }
1714   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1715 }
1716 
1717 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1718                                    bool ShouldSkipNull) {
1719   if (ShouldSkipNull && !MD)
1720     return;
1721 
1722   Out << FS << Name << ": ";
1723   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1724 }
1725 
1726 template <class IntTy>
1727 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1728   if (ShouldSkipZero && !Int)
1729     return;
1730 
1731   Out << FS << Name << ": " << Int;
1732 }
1733 
1734 void MDFieldPrinter::printAPInt(StringRef Name, APInt Int, bool IsUnsigned,
1735                                 bool ShouldSkipZero) {
1736   if (ShouldSkipZero && Int.isNullValue())
1737     return;
1738 
1739   Out << FS << Name << ": ";
1740   Int.print(Out, !IsUnsigned);
1741 }
1742 
1743 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1744                                Optional<bool> Default) {
1745   if (Default && Value == *Default)
1746     return;
1747   Out << FS << Name << ": " << (Value ? "true" : "false");
1748 }
1749 
1750 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1751   if (!Flags)
1752     return;
1753 
1754   Out << FS << Name << ": ";
1755 
1756   SmallVector<DINode::DIFlags, 8> SplitFlags;
1757   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1758 
1759   FieldSeparator FlagsFS(" | ");
1760   for (auto F : SplitFlags) {
1761     auto StringF = DINode::getFlagString(F);
1762     assert(!StringF.empty() && "Expected valid flag");
1763     Out << FlagsFS << StringF;
1764   }
1765   if (Extra || SplitFlags.empty())
1766     Out << FlagsFS << Extra;
1767 }
1768 
1769 void MDFieldPrinter::printDISPFlags(StringRef Name,
1770                                     DISubprogram::DISPFlags Flags) {
1771   // Always print this field, because no flags in the IR at all will be
1772   // interpreted as old-style isDefinition: true.
1773   Out << FS << Name << ": ";
1774 
1775   if (!Flags) {
1776     Out << 0;
1777     return;
1778   }
1779 
1780   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1781   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1782 
1783   FieldSeparator FlagsFS(" | ");
1784   for (auto F : SplitFlags) {
1785     auto StringF = DISubprogram::getFlagString(F);
1786     assert(!StringF.empty() && "Expected valid flag");
1787     Out << FlagsFS << StringF;
1788   }
1789   if (Extra || SplitFlags.empty())
1790     Out << FlagsFS << Extra;
1791 }
1792 
1793 void MDFieldPrinter::printEmissionKind(StringRef Name,
1794                                        DICompileUnit::DebugEmissionKind EK) {
1795   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1796 }
1797 
1798 void MDFieldPrinter::printNameTableKind(StringRef Name,
1799                                         DICompileUnit::DebugNameTableKind NTK) {
1800   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1801     return;
1802   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1803 }
1804 
1805 template <class IntTy, class Stringifier>
1806 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1807                                     Stringifier toString, bool ShouldSkipZero) {
1808   if (!Value)
1809     return;
1810 
1811   Out << FS << Name << ": ";
1812   auto S = toString(Value);
1813   if (!S.empty())
1814     Out << S;
1815   else
1816     Out << Value;
1817 }
1818 
1819 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1820                                TypePrinting *TypePrinter, SlotTracker *Machine,
1821                                const Module *Context) {
1822   Out << "!GenericDINode(";
1823   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1824   Printer.printTag(N);
1825   Printer.printString("header", N->getHeader());
1826   if (N->getNumDwarfOperands()) {
1827     Out << Printer.FS << "operands: {";
1828     FieldSeparator IFS;
1829     for (auto &I : N->dwarf_operands()) {
1830       Out << IFS;
1831       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1832     }
1833     Out << "}";
1834   }
1835   Out << ")";
1836 }
1837 
1838 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1839                             TypePrinting *TypePrinter, SlotTracker *Machine,
1840                             const Module *Context) {
1841   Out << "!DILocation(";
1842   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1843   // Always output the line, since 0 is a relevant and important value for it.
1844   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1845   Printer.printInt("column", DL->getColumn());
1846   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1847   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1848   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1849                     /* Default */ false);
1850   Out << ")";
1851 }
1852 
1853 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1854                             TypePrinting *TypePrinter, SlotTracker *Machine,
1855                             const Module *Context) {
1856   Out << "!DISubrange(";
1857   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1858   if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1859     Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1860   else
1861     Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable *>(),
1862                           /*ShouldSkipNull */ true);
1863 
1864   // A lowerBound of constant 0 should not be skipped, since it is different
1865   // from an unspecified lower bound (= nullptr).
1866   auto *LBound = N->getRawLowerBound();
1867   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1868     auto *LV = cast<ConstantInt>(LE->getValue());
1869     Printer.printInt("lowerBound", LV->getSExtValue(),
1870                      /* ShouldSkipZero */ false);
1871   } else
1872     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1873 
1874   auto *UBound = N->getRawUpperBound();
1875   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1876     auto *UV = cast<ConstantInt>(UE->getValue());
1877     Printer.printInt("upperBound", UV->getSExtValue(),
1878                      /* ShouldSkipZero */ false);
1879   } else
1880     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1881 
1882   auto *Stride = N->getRawStride();
1883   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1884     auto *SV = cast<ConstantInt>(SE->getValue());
1885     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1886   } else
1887     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1888 
1889   Out << ")";
1890 }
1891 
1892 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1893                               TypePrinting *, SlotTracker *, const Module *) {
1894   Out << "!DIEnumerator(";
1895   MDFieldPrinter Printer(Out);
1896   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1897   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1898                      /*ShouldSkipZero=*/false);
1899   if (N->isUnsigned())
1900     Printer.printBool("isUnsigned", true);
1901   Out << ")";
1902 }
1903 
1904 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1905                              TypePrinting *, SlotTracker *, const Module *) {
1906   Out << "!DIBasicType(";
1907   MDFieldPrinter Printer(Out);
1908   if (N->getTag() != dwarf::DW_TAG_base_type)
1909     Printer.printTag(N);
1910   Printer.printString("name", N->getName());
1911   Printer.printInt("size", N->getSizeInBits());
1912   Printer.printInt("align", N->getAlignInBits());
1913   Printer.printDwarfEnum("encoding", N->getEncoding(),
1914                          dwarf::AttributeEncodingString);
1915   Printer.printDIFlags("flags", N->getFlags());
1916   Out << ")";
1917 }
1918 
1919 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1920                                TypePrinting *TypePrinter, SlotTracker *Machine,
1921                                const Module *Context) {
1922   Out << "!DIDerivedType(";
1923   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1924   Printer.printTag(N);
1925   Printer.printString("name", N->getName());
1926   Printer.printMetadata("scope", N->getRawScope());
1927   Printer.printMetadata("file", N->getRawFile());
1928   Printer.printInt("line", N->getLine());
1929   Printer.printMetadata("baseType", N->getRawBaseType(),
1930                         /* ShouldSkipNull */ false);
1931   Printer.printInt("size", N->getSizeInBits());
1932   Printer.printInt("align", N->getAlignInBits());
1933   Printer.printInt("offset", N->getOffsetInBits());
1934   Printer.printDIFlags("flags", N->getFlags());
1935   Printer.printMetadata("extraData", N->getRawExtraData());
1936   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1937     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1938                      /* ShouldSkipZero */ false);
1939   Out << ")";
1940 }
1941 
1942 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1943                                  TypePrinting *TypePrinter,
1944                                  SlotTracker *Machine, const Module *Context) {
1945   Out << "!DICompositeType(";
1946   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1947   Printer.printTag(N);
1948   Printer.printString("name", N->getName());
1949   Printer.printMetadata("scope", N->getRawScope());
1950   Printer.printMetadata("file", N->getRawFile());
1951   Printer.printInt("line", N->getLine());
1952   Printer.printMetadata("baseType", N->getRawBaseType());
1953   Printer.printInt("size", N->getSizeInBits());
1954   Printer.printInt("align", N->getAlignInBits());
1955   Printer.printInt("offset", N->getOffsetInBits());
1956   Printer.printDIFlags("flags", N->getFlags());
1957   Printer.printMetadata("elements", N->getRawElements());
1958   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1959                          dwarf::LanguageString);
1960   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1961   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1962   Printer.printString("identifier", N->getIdentifier());
1963   Printer.printMetadata("discriminator", N->getRawDiscriminator());
1964   Printer.printMetadata("dataLocation", N->getRawDataLocation());
1965   Out << ")";
1966 }
1967 
1968 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1969                                   TypePrinting *TypePrinter,
1970                                   SlotTracker *Machine, const Module *Context) {
1971   Out << "!DISubroutineType(";
1972   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1973   Printer.printDIFlags("flags", N->getFlags());
1974   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1975   Printer.printMetadata("types", N->getRawTypeArray(),
1976                         /* ShouldSkipNull */ false);
1977   Out << ")";
1978 }
1979 
1980 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1981                         SlotTracker *, const Module *) {
1982   Out << "!DIFile(";
1983   MDFieldPrinter Printer(Out);
1984   Printer.printString("filename", N->getFilename(),
1985                       /* ShouldSkipEmpty */ false);
1986   Printer.printString("directory", N->getDirectory(),
1987                       /* ShouldSkipEmpty */ false);
1988   // Print all values for checksum together, or not at all.
1989   if (N->getChecksum())
1990     Printer.printChecksum(*N->getChecksum());
1991   Printer.printString("source", N->getSource().getValueOr(StringRef()),
1992                       /* ShouldSkipEmpty */ true);
1993   Out << ")";
1994 }
1995 
1996 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1997                                TypePrinting *TypePrinter, SlotTracker *Machine,
1998                                const Module *Context) {
1999   Out << "!DICompileUnit(";
2000   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2001   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2002                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2003   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2004   Printer.printString("producer", N->getProducer());
2005   Printer.printBool("isOptimized", N->isOptimized());
2006   Printer.printString("flags", N->getFlags());
2007   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2008                    /* ShouldSkipZero */ false);
2009   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2010   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2011   Printer.printMetadata("enums", N->getRawEnumTypes());
2012   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2013   Printer.printMetadata("globals", N->getRawGlobalVariables());
2014   Printer.printMetadata("imports", N->getRawImportedEntities());
2015   Printer.printMetadata("macros", N->getRawMacros());
2016   Printer.printInt("dwoId", N->getDWOId());
2017   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2018   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2019                     false);
2020   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2021   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2022   Printer.printString("sysroot", N->getSysRoot());
2023   Printer.printString("sdk", N->getSDK());
2024   Out << ")";
2025 }
2026 
2027 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2028                               TypePrinting *TypePrinter, SlotTracker *Machine,
2029                               const Module *Context) {
2030   Out << "!DISubprogram(";
2031   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2032   Printer.printString("name", N->getName());
2033   Printer.printString("linkageName", N->getLinkageName());
2034   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2035   Printer.printMetadata("file", N->getRawFile());
2036   Printer.printInt("line", N->getLine());
2037   Printer.printMetadata("type", N->getRawType());
2038   Printer.printInt("scopeLine", N->getScopeLine());
2039   Printer.printMetadata("containingType", N->getRawContainingType());
2040   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2041       N->getVirtualIndex() != 0)
2042     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2043   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2044   Printer.printDIFlags("flags", N->getFlags());
2045   Printer.printDISPFlags("spFlags", N->getSPFlags());
2046   Printer.printMetadata("unit", N->getRawUnit());
2047   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2048   Printer.printMetadata("declaration", N->getRawDeclaration());
2049   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2050   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2051   Out << ")";
2052 }
2053 
2054 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2055                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2056                                 const Module *Context) {
2057   Out << "!DILexicalBlock(";
2058   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2059   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2060   Printer.printMetadata("file", N->getRawFile());
2061   Printer.printInt("line", N->getLine());
2062   Printer.printInt("column", N->getColumn());
2063   Out << ")";
2064 }
2065 
2066 static void writeDILexicalBlockFile(raw_ostream &Out,
2067                                     const DILexicalBlockFile *N,
2068                                     TypePrinting *TypePrinter,
2069                                     SlotTracker *Machine,
2070                                     const Module *Context) {
2071   Out << "!DILexicalBlockFile(";
2072   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2073   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2074   Printer.printMetadata("file", N->getRawFile());
2075   Printer.printInt("discriminator", N->getDiscriminator(),
2076                    /* ShouldSkipZero */ false);
2077   Out << ")";
2078 }
2079 
2080 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2081                              TypePrinting *TypePrinter, SlotTracker *Machine,
2082                              const Module *Context) {
2083   Out << "!DINamespace(";
2084   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2085   Printer.printString("name", N->getName());
2086   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2087   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2088   Out << ")";
2089 }
2090 
2091 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2092                                TypePrinting *TypePrinter, SlotTracker *Machine,
2093                                const Module *Context) {
2094   Out << "!DICommonBlock(";
2095   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2096   Printer.printMetadata("scope", N->getRawScope(), false);
2097   Printer.printMetadata("declaration", N->getRawDecl(), false);
2098   Printer.printString("name", N->getName());
2099   Printer.printMetadata("file", N->getRawFile());
2100   Printer.printInt("line", N->getLineNo());
2101   Out << ")";
2102 }
2103 
2104 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2105                          TypePrinting *TypePrinter, SlotTracker *Machine,
2106                          const Module *Context) {
2107   Out << "!DIMacro(";
2108   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2109   Printer.printMacinfoType(N);
2110   Printer.printInt("line", N->getLine());
2111   Printer.printString("name", N->getName());
2112   Printer.printString("value", N->getValue());
2113   Out << ")";
2114 }
2115 
2116 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2117                              TypePrinting *TypePrinter, SlotTracker *Machine,
2118                              const Module *Context) {
2119   Out << "!DIMacroFile(";
2120   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2121   Printer.printInt("line", N->getLine());
2122   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2123   Printer.printMetadata("nodes", N->getRawElements());
2124   Out << ")";
2125 }
2126 
2127 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2128                           TypePrinting *TypePrinter, SlotTracker *Machine,
2129                           const Module *Context) {
2130   Out << "!DIModule(";
2131   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2132   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2133   Printer.printString("name", N->getName());
2134   Printer.printString("configMacros", N->getConfigurationMacros());
2135   Printer.printString("includePath", N->getIncludePath());
2136   Printer.printString("apinotes", N->getAPINotesFile());
2137   Printer.printMetadata("file", N->getRawFile());
2138   Printer.printInt("line", N->getLineNo());
2139   Out << ")";
2140 }
2141 
2142 
2143 static void writeDITemplateTypeParameter(raw_ostream &Out,
2144                                          const DITemplateTypeParameter *N,
2145                                          TypePrinting *TypePrinter,
2146                                          SlotTracker *Machine,
2147                                          const Module *Context) {
2148   Out << "!DITemplateTypeParameter(";
2149   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2150   Printer.printString("name", N->getName());
2151   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2152   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2153   Out << ")";
2154 }
2155 
2156 static void writeDITemplateValueParameter(raw_ostream &Out,
2157                                           const DITemplateValueParameter *N,
2158                                           TypePrinting *TypePrinter,
2159                                           SlotTracker *Machine,
2160                                           const Module *Context) {
2161   Out << "!DITemplateValueParameter(";
2162   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2163   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2164     Printer.printTag(N);
2165   Printer.printString("name", N->getName());
2166   Printer.printMetadata("type", N->getRawType());
2167   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2168   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2169   Out << ")";
2170 }
2171 
2172 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2173                                   TypePrinting *TypePrinter,
2174                                   SlotTracker *Machine, const Module *Context) {
2175   Out << "!DIGlobalVariable(";
2176   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2177   Printer.printString("name", N->getName());
2178   Printer.printString("linkageName", N->getLinkageName());
2179   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2180   Printer.printMetadata("file", N->getRawFile());
2181   Printer.printInt("line", N->getLine());
2182   Printer.printMetadata("type", N->getRawType());
2183   Printer.printBool("isLocal", N->isLocalToUnit());
2184   Printer.printBool("isDefinition", N->isDefinition());
2185   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2186   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2187   Printer.printInt("align", N->getAlignInBits());
2188   Out << ")";
2189 }
2190 
2191 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2192                                  TypePrinting *TypePrinter,
2193                                  SlotTracker *Machine, const Module *Context) {
2194   Out << "!DILocalVariable(";
2195   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2196   Printer.printString("name", N->getName());
2197   Printer.printInt("arg", N->getArg());
2198   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2199   Printer.printMetadata("file", N->getRawFile());
2200   Printer.printInt("line", N->getLine());
2201   Printer.printMetadata("type", N->getRawType());
2202   Printer.printDIFlags("flags", N->getFlags());
2203   Printer.printInt("align", N->getAlignInBits());
2204   Out << ")";
2205 }
2206 
2207 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2208                          TypePrinting *TypePrinter,
2209                          SlotTracker *Machine, const Module *Context) {
2210   Out << "!DILabel(";
2211   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2212   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2213   Printer.printString("name", N->getName());
2214   Printer.printMetadata("file", N->getRawFile());
2215   Printer.printInt("line", N->getLine());
2216   Out << ")";
2217 }
2218 
2219 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2220                               TypePrinting *TypePrinter, SlotTracker *Machine,
2221                               const Module *Context) {
2222   Out << "!DIExpression(";
2223   FieldSeparator FS;
2224   if (N->isValid()) {
2225     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2226       auto OpStr = dwarf::OperationEncodingString(I->getOp());
2227       assert(!OpStr.empty() && "Expected valid opcode");
2228 
2229       Out << FS << OpStr;
2230       if (I->getOp() == dwarf::DW_OP_LLVM_convert) {
2231         Out << FS << I->getArg(0);
2232         Out << FS << dwarf::AttributeEncodingString(I->getArg(1));
2233       } else {
2234         for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2235           Out << FS << I->getArg(A);
2236       }
2237     }
2238   } else {
2239     for (const auto &I : N->getElements())
2240       Out << FS << I;
2241   }
2242   Out << ")";
2243 }
2244 
2245 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2246                                             const DIGlobalVariableExpression *N,
2247                                             TypePrinting *TypePrinter,
2248                                             SlotTracker *Machine,
2249                                             const Module *Context) {
2250   Out << "!DIGlobalVariableExpression(";
2251   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2252   Printer.printMetadata("var", N->getVariable());
2253   Printer.printMetadata("expr", N->getExpression());
2254   Out << ")";
2255 }
2256 
2257 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2258                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2259                                 const Module *Context) {
2260   Out << "!DIObjCProperty(";
2261   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2262   Printer.printString("name", N->getName());
2263   Printer.printMetadata("file", N->getRawFile());
2264   Printer.printInt("line", N->getLine());
2265   Printer.printString("setter", N->getSetterName());
2266   Printer.printString("getter", N->getGetterName());
2267   Printer.printInt("attributes", N->getAttributes());
2268   Printer.printMetadata("type", N->getRawType());
2269   Out << ")";
2270 }
2271 
2272 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2273                                   TypePrinting *TypePrinter,
2274                                   SlotTracker *Machine, const Module *Context) {
2275   Out << "!DIImportedEntity(";
2276   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2277   Printer.printTag(N);
2278   Printer.printString("name", N->getName());
2279   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2280   Printer.printMetadata("entity", N->getRawEntity());
2281   Printer.printMetadata("file", N->getRawFile());
2282   Printer.printInt("line", N->getLine());
2283   Out << ")";
2284 }
2285 
2286 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2287                                     TypePrinting *TypePrinter,
2288                                     SlotTracker *Machine,
2289                                     const Module *Context) {
2290   if (Node->isDistinct())
2291     Out << "distinct ";
2292   else if (Node->isTemporary())
2293     Out << "<temporary!> "; // Handle broken code.
2294 
2295   switch (Node->getMetadataID()) {
2296   default:
2297     llvm_unreachable("Expected uniquable MDNode");
2298 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2299   case Metadata::CLASS##Kind:                                                  \
2300     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2301     break;
2302 #include "llvm/IR/Metadata.def"
2303   }
2304 }
2305 
2306 // Full implementation of printing a Value as an operand with support for
2307 // TypePrinting, etc.
2308 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2309                                    TypePrinting *TypePrinter,
2310                                    SlotTracker *Machine,
2311                                    const Module *Context) {
2312   if (V->hasName()) {
2313     PrintLLVMName(Out, V);
2314     return;
2315   }
2316 
2317   const Constant *CV = dyn_cast<Constant>(V);
2318   if (CV && !isa<GlobalValue>(CV)) {
2319     assert(TypePrinter && "Constants require TypePrinting!");
2320     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2321     return;
2322   }
2323 
2324   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2325     Out << "asm ";
2326     if (IA->hasSideEffects())
2327       Out << "sideeffect ";
2328     if (IA->isAlignStack())
2329       Out << "alignstack ";
2330     // We don't emit the AD_ATT dialect as it's the assumed default.
2331     if (IA->getDialect() == InlineAsm::AD_Intel)
2332       Out << "inteldialect ";
2333     Out << '"';
2334     printEscapedString(IA->getAsmString(), Out);
2335     Out << "\", \"";
2336     printEscapedString(IA->getConstraintString(), Out);
2337     Out << '"';
2338     return;
2339   }
2340 
2341   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2342     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2343                            Context, /* FromValue */ true);
2344     return;
2345   }
2346 
2347   char Prefix = '%';
2348   int Slot;
2349   // If we have a SlotTracker, use it.
2350   if (Machine) {
2351     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2352       Slot = Machine->getGlobalSlot(GV);
2353       Prefix = '@';
2354     } else {
2355       Slot = Machine->getLocalSlot(V);
2356 
2357       // If the local value didn't succeed, then we may be referring to a value
2358       // from a different function.  Translate it, as this can happen when using
2359       // address of blocks.
2360       if (Slot == -1)
2361         if ((Machine = createSlotTracker(V))) {
2362           Slot = Machine->getLocalSlot(V);
2363           delete Machine;
2364         }
2365     }
2366   } else if ((Machine = createSlotTracker(V))) {
2367     // Otherwise, create one to get the # and then destroy it.
2368     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2369       Slot = Machine->getGlobalSlot(GV);
2370       Prefix = '@';
2371     } else {
2372       Slot = Machine->getLocalSlot(V);
2373     }
2374     delete Machine;
2375     Machine = nullptr;
2376   } else {
2377     Slot = -1;
2378   }
2379 
2380   if (Slot != -1)
2381     Out << Prefix << Slot;
2382   else
2383     Out << "<badref>";
2384 }
2385 
2386 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2387                                    TypePrinting *TypePrinter,
2388                                    SlotTracker *Machine, const Module *Context,
2389                                    bool FromValue) {
2390   // Write DIExpressions inline when used as a value. Improves readability of
2391   // debug info intrinsics.
2392   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2393     writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2394     return;
2395   }
2396 
2397   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2398     std::unique_ptr<SlotTracker> MachineStorage;
2399     if (!Machine) {
2400       MachineStorage = std::make_unique<SlotTracker>(Context);
2401       Machine = MachineStorage.get();
2402     }
2403     int Slot = Machine->getMetadataSlot(N);
2404     if (Slot == -1) {
2405       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2406         writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2407         return;
2408       }
2409       // Give the pointer value instead of "badref", since this comes up all
2410       // the time when debugging.
2411       Out << "<" << N << ">";
2412     } else
2413       Out << '!' << Slot;
2414     return;
2415   }
2416 
2417   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2418     Out << "!\"";
2419     printEscapedString(MDS->getString(), Out);
2420     Out << '"';
2421     return;
2422   }
2423 
2424   auto *V = cast<ValueAsMetadata>(MD);
2425   assert(TypePrinter && "TypePrinter required for metadata values");
2426   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2427          "Unexpected function-local metadata outside of value argument");
2428 
2429   TypePrinter->print(V->getValue()->getType(), Out);
2430   Out << ' ';
2431   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2432 }
2433 
2434 namespace {
2435 
2436 class AssemblyWriter {
2437   formatted_raw_ostream &Out;
2438   const Module *TheModule = nullptr;
2439   const ModuleSummaryIndex *TheIndex = nullptr;
2440   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2441   SlotTracker &Machine;
2442   TypePrinting TypePrinter;
2443   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2444   SetVector<const Comdat *> Comdats;
2445   bool IsForDebug;
2446   bool ShouldPreserveUseListOrder;
2447   UseListOrderStack UseListOrders;
2448   SmallVector<StringRef, 8> MDNames;
2449   /// Synchronization scope names registered with LLVMContext.
2450   SmallVector<StringRef, 8> SSNs;
2451   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2452 
2453 public:
2454   /// Construct an AssemblyWriter with an external SlotTracker
2455   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2456                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2457                  bool ShouldPreserveUseListOrder = false);
2458 
2459   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2460                  const ModuleSummaryIndex *Index, bool IsForDebug);
2461 
2462   void printMDNodeBody(const MDNode *MD);
2463   void printNamedMDNode(const NamedMDNode *NMD);
2464 
2465   void printModule(const Module *M);
2466 
2467   void writeOperand(const Value *Op, bool PrintType);
2468   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2469   void writeOperandBundles(const CallBase *Call);
2470   void writeSyncScope(const LLVMContext &Context,
2471                       SyncScope::ID SSID);
2472   void writeAtomic(const LLVMContext &Context,
2473                    AtomicOrdering Ordering,
2474                    SyncScope::ID SSID);
2475   void writeAtomicCmpXchg(const LLVMContext &Context,
2476                           AtomicOrdering SuccessOrdering,
2477                           AtomicOrdering FailureOrdering,
2478                           SyncScope::ID SSID);
2479 
2480   void writeAllMDNodes();
2481   void writeMDNode(unsigned Slot, const MDNode *Node);
2482   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2483   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2484   void writeAllAttributeGroups();
2485 
2486   void printTypeIdentities();
2487   void printGlobal(const GlobalVariable *GV);
2488   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2489   void printComdat(const Comdat *C);
2490   void printFunction(const Function *F);
2491   void printArgument(const Argument *FA, AttributeSet Attrs);
2492   void printBasicBlock(const BasicBlock *BB);
2493   void printInstructionLine(const Instruction &I);
2494   void printInstruction(const Instruction &I);
2495 
2496   void printUseListOrder(const UseListOrder &Order);
2497   void printUseLists(const Function *F);
2498 
2499   void printModuleSummaryIndex();
2500   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2501   void printSummary(const GlobalValueSummary &Summary);
2502   void printAliasSummary(const AliasSummary *AS);
2503   void printGlobalVarSummary(const GlobalVarSummary *GS);
2504   void printFunctionSummary(const FunctionSummary *FS);
2505   void printTypeIdSummary(const TypeIdSummary &TIS);
2506   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2507   void printTypeTestResolution(const TypeTestResolution &TTRes);
2508   void printArgs(const std::vector<uint64_t> &Args);
2509   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2510   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2511   void printVFuncId(const FunctionSummary::VFuncId VFId);
2512   void
2513   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
2514                       const char *Tag);
2515   void
2516   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
2517                    const char *Tag);
2518 
2519 private:
2520   /// Print out metadata attachments.
2521   void printMetadataAttachments(
2522       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2523       StringRef Separator);
2524 
2525   // printInfoComment - Print a little comment after the instruction indicating
2526   // which slot it occupies.
2527   void printInfoComment(const Value &V);
2528 
2529   // printGCRelocateComment - print comment after call to the gc.relocate
2530   // intrinsic indicating base and derived pointer names.
2531   void printGCRelocateComment(const GCRelocateInst &Relocate);
2532 };
2533 
2534 } // end anonymous namespace
2535 
2536 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2537                                const Module *M, AssemblyAnnotationWriter *AAW,
2538                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2539     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2540       IsForDebug(IsForDebug),
2541       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2542   if (!TheModule)
2543     return;
2544   for (const GlobalObject &GO : TheModule->global_objects())
2545     if (const Comdat *C = GO.getComdat())
2546       Comdats.insert(C);
2547 }
2548 
2549 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2550                                const ModuleSummaryIndex *Index, bool IsForDebug)
2551     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2552       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2553 
2554 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2555   if (!Operand) {
2556     Out << "<null operand!>";
2557     return;
2558   }
2559   if (PrintType) {
2560     TypePrinter.print(Operand->getType(), Out);
2561     Out << ' ';
2562   }
2563   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2564 }
2565 
2566 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2567                                     SyncScope::ID SSID) {
2568   switch (SSID) {
2569   case SyncScope::System: {
2570     break;
2571   }
2572   default: {
2573     if (SSNs.empty())
2574       Context.getSyncScopeNames(SSNs);
2575 
2576     Out << " syncscope(\"";
2577     printEscapedString(SSNs[SSID], Out);
2578     Out << "\")";
2579     break;
2580   }
2581   }
2582 }
2583 
2584 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2585                                  AtomicOrdering Ordering,
2586                                  SyncScope::ID SSID) {
2587   if (Ordering == AtomicOrdering::NotAtomic)
2588     return;
2589 
2590   writeSyncScope(Context, SSID);
2591   Out << " " << toIRString(Ordering);
2592 }
2593 
2594 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2595                                         AtomicOrdering SuccessOrdering,
2596                                         AtomicOrdering FailureOrdering,
2597                                         SyncScope::ID SSID) {
2598   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2599          FailureOrdering != AtomicOrdering::NotAtomic);
2600 
2601   writeSyncScope(Context, SSID);
2602   Out << " " << toIRString(SuccessOrdering);
2603   Out << " " << toIRString(FailureOrdering);
2604 }
2605 
2606 void AssemblyWriter::writeParamOperand(const Value *Operand,
2607                                        AttributeSet Attrs) {
2608   if (!Operand) {
2609     Out << "<null operand!>";
2610     return;
2611   }
2612 
2613   // Print the type
2614   TypePrinter.print(Operand->getType(), Out);
2615   // Print parameter attributes list
2616   if (Attrs.hasAttributes()) {
2617     Out << ' ';
2618     writeAttributeSet(Attrs);
2619   }
2620   Out << ' ';
2621   // Print the operand
2622   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2623 }
2624 
2625 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2626   if (!Call->hasOperandBundles())
2627     return;
2628 
2629   Out << " [ ";
2630 
2631   bool FirstBundle = true;
2632   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2633     OperandBundleUse BU = Call->getOperandBundleAt(i);
2634 
2635     if (!FirstBundle)
2636       Out << ", ";
2637     FirstBundle = false;
2638 
2639     Out << '"';
2640     printEscapedString(BU.getTagName(), Out);
2641     Out << '"';
2642 
2643     Out << '(';
2644 
2645     bool FirstInput = true;
2646     for (const auto &Input : BU.Inputs) {
2647       if (!FirstInput)
2648         Out << ", ";
2649       FirstInput = false;
2650 
2651       TypePrinter.print(Input->getType(), Out);
2652       Out << " ";
2653       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2654     }
2655 
2656     Out << ')';
2657   }
2658 
2659   Out << " ]";
2660 }
2661 
2662 void AssemblyWriter::printModule(const Module *M) {
2663   Machine.initializeIfNeeded();
2664 
2665   if (ShouldPreserveUseListOrder)
2666     UseListOrders = predictUseListOrder(M);
2667 
2668   if (!M->getModuleIdentifier().empty() &&
2669       // Don't print the ID if it will start a new line (which would
2670       // require a comment char before it).
2671       M->getModuleIdentifier().find('\n') == std::string::npos)
2672     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2673 
2674   if (!M->getSourceFileName().empty()) {
2675     Out << "source_filename = \"";
2676     printEscapedString(M->getSourceFileName(), Out);
2677     Out << "\"\n";
2678   }
2679 
2680   const std::string &DL = M->getDataLayoutStr();
2681   if (!DL.empty())
2682     Out << "target datalayout = \"" << DL << "\"\n";
2683   if (!M->getTargetTriple().empty())
2684     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2685 
2686   if (!M->getModuleInlineAsm().empty()) {
2687     Out << '\n';
2688 
2689     // Split the string into lines, to make it easier to read the .ll file.
2690     StringRef Asm = M->getModuleInlineAsm();
2691     do {
2692       StringRef Front;
2693       std::tie(Front, Asm) = Asm.split('\n');
2694 
2695       // We found a newline, print the portion of the asm string from the
2696       // last newline up to this newline.
2697       Out << "module asm \"";
2698       printEscapedString(Front, Out);
2699       Out << "\"\n";
2700     } while (!Asm.empty());
2701   }
2702 
2703   printTypeIdentities();
2704 
2705   // Output all comdats.
2706   if (!Comdats.empty())
2707     Out << '\n';
2708   for (const Comdat *C : Comdats) {
2709     printComdat(C);
2710     if (C != Comdats.back())
2711       Out << '\n';
2712   }
2713 
2714   // Output all globals.
2715   if (!M->global_empty()) Out << '\n';
2716   for (const GlobalVariable &GV : M->globals()) {
2717     printGlobal(&GV); Out << '\n';
2718   }
2719 
2720   // Output all aliases.
2721   if (!M->alias_empty()) Out << "\n";
2722   for (const GlobalAlias &GA : M->aliases())
2723     printIndirectSymbol(&GA);
2724 
2725   // Output all ifuncs.
2726   if (!M->ifunc_empty()) Out << "\n";
2727   for (const GlobalIFunc &GI : M->ifuncs())
2728     printIndirectSymbol(&GI);
2729 
2730   // Output global use-lists.
2731   printUseLists(nullptr);
2732 
2733   // Output all of the functions.
2734   for (const Function &F : *M) {
2735     Out << '\n';
2736     printFunction(&F);
2737   }
2738   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2739 
2740   // Output all attribute groups.
2741   if (!Machine.as_empty()) {
2742     Out << '\n';
2743     writeAllAttributeGroups();
2744   }
2745 
2746   // Output named metadata.
2747   if (!M->named_metadata_empty()) Out << '\n';
2748 
2749   for (const NamedMDNode &Node : M->named_metadata())
2750     printNamedMDNode(&Node);
2751 
2752   // Output metadata.
2753   if (!Machine.mdn_empty()) {
2754     Out << '\n';
2755     writeAllMDNodes();
2756   }
2757 }
2758 
2759 void AssemblyWriter::printModuleSummaryIndex() {
2760   assert(TheIndex);
2761   int NumSlots = Machine.initializeIndexIfNeeded();
2762 
2763   Out << "\n";
2764 
2765   // Print module path entries. To print in order, add paths to a vector
2766   // indexed by module slot.
2767   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2768   std::string RegularLTOModuleName =
2769       ModuleSummaryIndex::getRegularLTOModuleName();
2770   moduleVec.resize(TheIndex->modulePaths().size());
2771   for (auto &ModPath : TheIndex->modulePaths())
2772     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2773         // A module id of -1 is a special entry for a regular LTO module created
2774         // during the thin link.
2775         ModPath.second.first == -1u ? RegularLTOModuleName
2776                                     : (std::string)std::string(ModPath.first()),
2777         ModPath.second.second);
2778 
2779   unsigned i = 0;
2780   for (auto &ModPair : moduleVec) {
2781     Out << "^" << i++ << " = module: (";
2782     Out << "path: \"";
2783     printEscapedString(ModPair.first, Out);
2784     Out << "\", hash: (";
2785     FieldSeparator FS;
2786     for (auto Hash : ModPair.second)
2787       Out << FS << Hash;
2788     Out << "))\n";
2789   }
2790 
2791   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2792   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2793   for (auto &GlobalList : *TheIndex) {
2794     auto GUID = GlobalList.first;
2795     for (auto &Summary : GlobalList.second.SummaryList)
2796       SummaryToGUIDMap[Summary.get()] = GUID;
2797   }
2798 
2799   // Print the global value summary entries.
2800   for (auto &GlobalList : *TheIndex) {
2801     auto GUID = GlobalList.first;
2802     auto VI = TheIndex->getValueInfo(GlobalList);
2803     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2804   }
2805 
2806   // Print the TypeIdMap entries.
2807   for (auto TidIter = TheIndex->typeIds().begin();
2808        TidIter != TheIndex->typeIds().end(); TidIter++) {
2809     Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
2810         << " = typeid: (name: \"" << TidIter->second.first << "\"";
2811     printTypeIdSummary(TidIter->second.second);
2812     Out << ") ; guid = " << TidIter->first << "\n";
2813   }
2814 
2815   // Print the TypeIdCompatibleVtableMap entries.
2816   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2817     auto GUID = GlobalValue::getGUID(TId.first);
2818     Out << "^" << Machine.getGUIDSlot(GUID)
2819         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2820     printTypeIdCompatibleVtableSummary(TId.second);
2821     Out << ") ; guid = " << GUID << "\n";
2822   }
2823 
2824   // Don't emit flags when it's not really needed (value is zero by default).
2825   if (TheIndex->getFlags()) {
2826     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2827     ++NumSlots;
2828   }
2829 
2830   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2831       << "\n";
2832 }
2833 
2834 static const char *
2835 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2836   switch (K) {
2837   case WholeProgramDevirtResolution::Indir:
2838     return "indir";
2839   case WholeProgramDevirtResolution::SingleImpl:
2840     return "singleImpl";
2841   case WholeProgramDevirtResolution::BranchFunnel:
2842     return "branchFunnel";
2843   }
2844   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2845 }
2846 
2847 static const char *getWholeProgDevirtResByArgKindName(
2848     WholeProgramDevirtResolution::ByArg::Kind K) {
2849   switch (K) {
2850   case WholeProgramDevirtResolution::ByArg::Indir:
2851     return "indir";
2852   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2853     return "uniformRetVal";
2854   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2855     return "uniqueRetVal";
2856   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2857     return "virtualConstProp";
2858   }
2859   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2860 }
2861 
2862 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2863   switch (K) {
2864   case TypeTestResolution::Unsat:
2865     return "unsat";
2866   case TypeTestResolution::ByteArray:
2867     return "byteArray";
2868   case TypeTestResolution::Inline:
2869     return "inline";
2870   case TypeTestResolution::Single:
2871     return "single";
2872   case TypeTestResolution::AllOnes:
2873     return "allOnes";
2874   }
2875   llvm_unreachable("invalid TypeTestResolution kind");
2876 }
2877 
2878 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2879   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2880       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2881 
2882   // The following fields are only used if the target does not support the use
2883   // of absolute symbols to store constants. Print only if non-zero.
2884   if (TTRes.AlignLog2)
2885     Out << ", alignLog2: " << TTRes.AlignLog2;
2886   if (TTRes.SizeM1)
2887     Out << ", sizeM1: " << TTRes.SizeM1;
2888   if (TTRes.BitMask)
2889     // BitMask is uint8_t which causes it to print the corresponding char.
2890     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2891   if (TTRes.InlineBits)
2892     Out << ", inlineBits: " << TTRes.InlineBits;
2893 
2894   Out << ")";
2895 }
2896 
2897 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2898   Out << ", summary: (";
2899   printTypeTestResolution(TIS.TTRes);
2900   if (!TIS.WPDRes.empty()) {
2901     Out << ", wpdResolutions: (";
2902     FieldSeparator FS;
2903     for (auto &WPDRes : TIS.WPDRes) {
2904       Out << FS;
2905       Out << "(offset: " << WPDRes.first << ", ";
2906       printWPDRes(WPDRes.second);
2907       Out << ")";
2908     }
2909     Out << ")";
2910   }
2911   Out << ")";
2912 }
2913 
2914 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
2915     const TypeIdCompatibleVtableInfo &TI) {
2916   Out << ", summary: (";
2917   FieldSeparator FS;
2918   for (auto &P : TI) {
2919     Out << FS;
2920     Out << "(offset: " << P.AddressPointOffset << ", ";
2921     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
2922     Out << ")";
2923   }
2924   Out << ")";
2925 }
2926 
2927 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2928   Out << "args: (";
2929   FieldSeparator FS;
2930   for (auto arg : Args) {
2931     Out << FS;
2932     Out << arg;
2933   }
2934   Out << ")";
2935 }
2936 
2937 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2938   Out << "wpdRes: (kind: ";
2939   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2940 
2941   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2942     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2943 
2944   if (!WPDRes.ResByArg.empty()) {
2945     Out << ", resByArg: (";
2946     FieldSeparator FS;
2947     for (auto &ResByArg : WPDRes.ResByArg) {
2948       Out << FS;
2949       printArgs(ResByArg.first);
2950       Out << ", byArg: (kind: ";
2951       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2952       if (ResByArg.second.TheKind ==
2953               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2954           ResByArg.second.TheKind ==
2955               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2956         Out << ", info: " << ResByArg.second.Info;
2957 
2958       // The following fields are only used if the target does not support the
2959       // use of absolute symbols to store constants. Print only if non-zero.
2960       if (ResByArg.second.Byte || ResByArg.second.Bit)
2961         Out << ", byte: " << ResByArg.second.Byte
2962             << ", bit: " << ResByArg.second.Bit;
2963 
2964       Out << ")";
2965     }
2966     Out << ")";
2967   }
2968   Out << ")";
2969 }
2970 
2971 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2972   switch (SK) {
2973   case GlobalValueSummary::AliasKind:
2974     return "alias";
2975   case GlobalValueSummary::FunctionKind:
2976     return "function";
2977   case GlobalValueSummary::GlobalVarKind:
2978     return "variable";
2979   }
2980   llvm_unreachable("invalid summary kind");
2981 }
2982 
2983 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2984   Out << ", aliasee: ";
2985   // The indexes emitted for distributed backends may not include the
2986   // aliasee summary (only if it is being imported directly). Handle
2987   // that case by just emitting "null" as the aliasee.
2988   if (AS->hasAliasee())
2989     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2990   else
2991     Out << "null";
2992 }
2993 
2994 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2995   auto VTableFuncs = GS->vTableFuncs();
2996   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
2997       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
2998       << "constant: " << GS->VarFlags.Constant;
2999   if (!VTableFuncs.empty())
3000     Out << ", "
3001         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3002   Out << ")";
3003 
3004   if (!VTableFuncs.empty()) {
3005     Out << ", vTableFuncs: (";
3006     FieldSeparator FS;
3007     for (auto &P : VTableFuncs) {
3008       Out << FS;
3009       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3010           << ", offset: " << P.VTableOffset;
3011       Out << ")";
3012     }
3013     Out << ")";
3014   }
3015 }
3016 
3017 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3018   switch (LT) {
3019   case GlobalValue::ExternalLinkage:
3020     return "external";
3021   case GlobalValue::PrivateLinkage:
3022     return "private";
3023   case GlobalValue::InternalLinkage:
3024     return "internal";
3025   case GlobalValue::LinkOnceAnyLinkage:
3026     return "linkonce";
3027   case GlobalValue::LinkOnceODRLinkage:
3028     return "linkonce_odr";
3029   case GlobalValue::WeakAnyLinkage:
3030     return "weak";
3031   case GlobalValue::WeakODRLinkage:
3032     return "weak_odr";
3033   case GlobalValue::CommonLinkage:
3034     return "common";
3035   case GlobalValue::AppendingLinkage:
3036     return "appending";
3037   case GlobalValue::ExternalWeakLinkage:
3038     return "extern_weak";
3039   case GlobalValue::AvailableExternallyLinkage:
3040     return "available_externally";
3041   }
3042   llvm_unreachable("invalid linkage");
3043 }
3044 
3045 // When printing the linkage types in IR where the ExternalLinkage is
3046 // not printed, and other linkage types are expected to be printed with
3047 // a space after the name.
3048 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3049   if (LT == GlobalValue::ExternalLinkage)
3050     return "";
3051   return getLinkageName(LT) + " ";
3052 }
3053 
3054 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3055   Out << ", insts: " << FS->instCount();
3056 
3057   FunctionSummary::FFlags FFlags = FS->fflags();
3058   if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
3059       FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) {
3060     Out << ", funcFlags: (";
3061     Out << "readNone: " << FFlags.ReadNone;
3062     Out << ", readOnly: " << FFlags.ReadOnly;
3063     Out << ", noRecurse: " << FFlags.NoRecurse;
3064     Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
3065     Out << ", noInline: " << FFlags.NoInline;
3066     Out << ", alwaysInline: " << FFlags.AlwaysInline;
3067     Out << ")";
3068   }
3069   if (!FS->calls().empty()) {
3070     Out << ", calls: (";
3071     FieldSeparator IFS;
3072     for (auto &Call : FS->calls()) {
3073       Out << IFS;
3074       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3075       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3076         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3077       else if (Call.second.RelBlockFreq)
3078         Out << ", relbf: " << Call.second.RelBlockFreq;
3079       Out << ")";
3080     }
3081     Out << ")";
3082   }
3083 
3084   if (const auto *TIdInfo = FS->getTypeIdInfo())
3085     printTypeIdInfo(*TIdInfo);
3086 }
3087 
3088 void AssemblyWriter::printTypeIdInfo(
3089     const FunctionSummary::TypeIdInfo &TIDInfo) {
3090   Out << ", typeIdInfo: (";
3091   FieldSeparator TIDFS;
3092   if (!TIDInfo.TypeTests.empty()) {
3093     Out << TIDFS;
3094     Out << "typeTests: (";
3095     FieldSeparator FS;
3096     for (auto &GUID : TIDInfo.TypeTests) {
3097       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3098       if (TidIter.first == TidIter.second) {
3099         Out << FS;
3100         Out << GUID;
3101         continue;
3102       }
3103       // Print all type id that correspond to this GUID.
3104       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3105         Out << FS;
3106         auto Slot = Machine.getTypeIdSlot(It->second.first);
3107         assert(Slot != -1);
3108         Out << "^" << Slot;
3109       }
3110     }
3111     Out << ")";
3112   }
3113   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3114     Out << TIDFS;
3115     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3116   }
3117   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3118     Out << TIDFS;
3119     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3120   }
3121   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3122     Out << TIDFS;
3123     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3124                      "typeTestAssumeConstVCalls");
3125   }
3126   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3127     Out << TIDFS;
3128     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3129                      "typeCheckedLoadConstVCalls");
3130   }
3131   Out << ")";
3132 }
3133 
3134 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3135   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3136   if (TidIter.first == TidIter.second) {
3137     Out << "vFuncId: (";
3138     Out << "guid: " << VFId.GUID;
3139     Out << ", offset: " << VFId.Offset;
3140     Out << ")";
3141     return;
3142   }
3143   // Print all type id that correspond to this GUID.
3144   FieldSeparator FS;
3145   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3146     Out << FS;
3147     Out << "vFuncId: (";
3148     auto Slot = Machine.getTypeIdSlot(It->second.first);
3149     assert(Slot != -1);
3150     Out << "^" << Slot;
3151     Out << ", offset: " << VFId.Offset;
3152     Out << ")";
3153   }
3154 }
3155 
3156 void AssemblyWriter::printNonConstVCalls(
3157     const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
3158   Out << Tag << ": (";
3159   FieldSeparator FS;
3160   for (auto &VFuncId : VCallList) {
3161     Out << FS;
3162     printVFuncId(VFuncId);
3163   }
3164   Out << ")";
3165 }
3166 
3167 void AssemblyWriter::printConstVCalls(
3168     const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
3169   Out << Tag << ": (";
3170   FieldSeparator FS;
3171   for (auto &ConstVCall : VCallList) {
3172     Out << FS;
3173     Out << "(";
3174     printVFuncId(ConstVCall.VFunc);
3175     if (!ConstVCall.Args.empty()) {
3176       Out << ", ";
3177       printArgs(ConstVCall.Args);
3178     }
3179     Out << ")";
3180   }
3181   Out << ")";
3182 }
3183 
3184 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3185   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3186   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3187   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3188   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3189       << ", flags: (";
3190   Out << "linkage: " << getLinkageName(LT);
3191   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3192   Out << ", live: " << GVFlags.Live;
3193   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3194   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3195   Out << ")";
3196 
3197   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3198     printAliasSummary(cast<AliasSummary>(&Summary));
3199   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3200     printFunctionSummary(cast<FunctionSummary>(&Summary));
3201   else
3202     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3203 
3204   auto RefList = Summary.refs();
3205   if (!RefList.empty()) {
3206     Out << ", refs: (";
3207     FieldSeparator FS;
3208     for (auto &Ref : RefList) {
3209       Out << FS;
3210       if (Ref.isReadOnly())
3211         Out << "readonly ";
3212       else if (Ref.isWriteOnly())
3213         Out << "writeonly ";
3214       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3215     }
3216     Out << ")";
3217   }
3218 
3219   Out << ")";
3220 }
3221 
3222 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3223   Out << "^" << Slot << " = gv: (";
3224   if (!VI.name().empty())
3225     Out << "name: \"" << VI.name() << "\"";
3226   else
3227     Out << "guid: " << VI.getGUID();
3228   if (!VI.getSummaryList().empty()) {
3229     Out << ", summaries: (";
3230     FieldSeparator FS;
3231     for (auto &Summary : VI.getSummaryList()) {
3232       Out << FS;
3233       printSummary(*Summary);
3234     }
3235     Out << ")";
3236   }
3237   Out << ")";
3238   if (!VI.name().empty())
3239     Out << " ; guid = " << VI.getGUID();
3240   Out << "\n";
3241 }
3242 
3243 static void printMetadataIdentifier(StringRef Name,
3244                                     formatted_raw_ostream &Out) {
3245   if (Name.empty()) {
3246     Out << "<empty name> ";
3247   } else {
3248     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3249         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3250       Out << Name[0];
3251     else
3252       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3253     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3254       unsigned char C = Name[i];
3255       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3256           C == '.' || C == '_')
3257         Out << C;
3258       else
3259         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3260     }
3261   }
3262 }
3263 
3264 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3265   Out << '!';
3266   printMetadataIdentifier(NMD->getName(), Out);
3267   Out << " = !{";
3268   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3269     if (i)
3270       Out << ", ";
3271 
3272     // Write DIExpressions inline.
3273     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3274     MDNode *Op = NMD->getOperand(i);
3275     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3276       writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3277       continue;
3278     }
3279 
3280     int Slot = Machine.getMetadataSlot(Op);
3281     if (Slot == -1)
3282       Out << "<badref>";
3283     else
3284       Out << '!' << Slot;
3285   }
3286   Out << "}\n";
3287 }
3288 
3289 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3290                             formatted_raw_ostream &Out) {
3291   switch (Vis) {
3292   case GlobalValue::DefaultVisibility: break;
3293   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3294   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3295   }
3296 }
3297 
3298 static void PrintDSOLocation(const GlobalValue &GV,
3299                              formatted_raw_ostream &Out) {
3300   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3301     Out << "dso_local ";
3302 }
3303 
3304 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3305                                  formatted_raw_ostream &Out) {
3306   switch (SCT) {
3307   case GlobalValue::DefaultStorageClass: break;
3308   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3309   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3310   }
3311 }
3312 
3313 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3314                                   formatted_raw_ostream &Out) {
3315   switch (TLM) {
3316     case GlobalVariable::NotThreadLocal:
3317       break;
3318     case GlobalVariable::GeneralDynamicTLSModel:
3319       Out << "thread_local ";
3320       break;
3321     case GlobalVariable::LocalDynamicTLSModel:
3322       Out << "thread_local(localdynamic) ";
3323       break;
3324     case GlobalVariable::InitialExecTLSModel:
3325       Out << "thread_local(initialexec) ";
3326       break;
3327     case GlobalVariable::LocalExecTLSModel:
3328       Out << "thread_local(localexec) ";
3329       break;
3330   }
3331 }
3332 
3333 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3334   switch (UA) {
3335   case GlobalVariable::UnnamedAddr::None:
3336     return "";
3337   case GlobalVariable::UnnamedAddr::Local:
3338     return "local_unnamed_addr";
3339   case GlobalVariable::UnnamedAddr::Global:
3340     return "unnamed_addr";
3341   }
3342   llvm_unreachable("Unknown UnnamedAddr");
3343 }
3344 
3345 static void maybePrintComdat(formatted_raw_ostream &Out,
3346                              const GlobalObject &GO) {
3347   const Comdat *C = GO.getComdat();
3348   if (!C)
3349     return;
3350 
3351   if (isa<GlobalVariable>(GO))
3352     Out << ',';
3353   Out << " comdat";
3354 
3355   if (GO.getName() == C->getName())
3356     return;
3357 
3358   Out << '(';
3359   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3360   Out << ')';
3361 }
3362 
3363 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3364   if (GV->isMaterializable())
3365     Out << "; Materializable\n";
3366 
3367   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3368   Out << " = ";
3369 
3370   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3371     Out << "external ";
3372 
3373   Out << getLinkageNameWithSpace(GV->getLinkage());
3374   PrintDSOLocation(*GV, Out);
3375   PrintVisibility(GV->getVisibility(), Out);
3376   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3377   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3378   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3379   if (!UA.empty())
3380       Out << UA << ' ';
3381 
3382   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3383     Out << "addrspace(" << AddressSpace << ") ";
3384   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3385   Out << (GV->isConstant() ? "constant " : "global ");
3386   TypePrinter.print(GV->getValueType(), Out);
3387 
3388   if (GV->hasInitializer()) {
3389     Out << ' ';
3390     writeOperand(GV->getInitializer(), false);
3391   }
3392 
3393   if (GV->hasSection()) {
3394     Out << ", section \"";
3395     printEscapedString(GV->getSection(), Out);
3396     Out << '"';
3397   }
3398   if (GV->hasPartition()) {
3399     Out << ", partition \"";
3400     printEscapedString(GV->getPartition(), Out);
3401     Out << '"';
3402   }
3403 
3404   maybePrintComdat(Out, *GV);
3405   if (GV->getAlignment())
3406     Out << ", align " << GV->getAlignment();
3407 
3408   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3409   GV->getAllMetadata(MDs);
3410   printMetadataAttachments(MDs, ", ");
3411 
3412   auto Attrs = GV->getAttributes();
3413   if (Attrs.hasAttributes())
3414     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3415 
3416   printInfoComment(*GV);
3417 }
3418 
3419 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3420   if (GIS->isMaterializable())
3421     Out << "; Materializable\n";
3422 
3423   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3424   Out << " = ";
3425 
3426   Out << getLinkageNameWithSpace(GIS->getLinkage());
3427   PrintDSOLocation(*GIS, Out);
3428   PrintVisibility(GIS->getVisibility(), Out);
3429   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3430   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3431   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3432   if (!UA.empty())
3433       Out << UA << ' ';
3434 
3435   if (isa<GlobalAlias>(GIS))
3436     Out << "alias ";
3437   else if (isa<GlobalIFunc>(GIS))
3438     Out << "ifunc ";
3439   else
3440     llvm_unreachable("Not an alias or ifunc!");
3441 
3442   TypePrinter.print(GIS->getValueType(), Out);
3443 
3444   Out << ", ";
3445 
3446   const Constant *IS = GIS->getIndirectSymbol();
3447 
3448   if (!IS) {
3449     TypePrinter.print(GIS->getType(), Out);
3450     Out << " <<NULL ALIASEE>>";
3451   } else {
3452     writeOperand(IS, !isa<ConstantExpr>(IS));
3453   }
3454 
3455   if (GIS->hasPartition()) {
3456     Out << ", partition \"";
3457     printEscapedString(GIS->getPartition(), Out);
3458     Out << '"';
3459   }
3460 
3461   printInfoComment(*GIS);
3462   Out << '\n';
3463 }
3464 
3465 void AssemblyWriter::printComdat(const Comdat *C) {
3466   C->print(Out);
3467 }
3468 
3469 void AssemblyWriter::printTypeIdentities() {
3470   if (TypePrinter.empty())
3471     return;
3472 
3473   Out << '\n';
3474 
3475   // Emit all numbered types.
3476   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3477   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3478     Out << '%' << I << " = type ";
3479 
3480     // Make sure we print out at least one level of the type structure, so
3481     // that we do not get %2 = type %2
3482     TypePrinter.printStructBody(NumberedTypes[I], Out);
3483     Out << '\n';
3484   }
3485 
3486   auto &NamedTypes = TypePrinter.getNamedTypes();
3487   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3488     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3489     Out << " = type ";
3490 
3491     // Make sure we print out at least one level of the type structure, so
3492     // that we do not get %FILE = type %FILE
3493     TypePrinter.printStructBody(NamedTypes[I], Out);
3494     Out << '\n';
3495   }
3496 }
3497 
3498 /// printFunction - Print all aspects of a function.
3499 void AssemblyWriter::printFunction(const Function *F) {
3500   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3501 
3502   if (F->isMaterializable())
3503     Out << "; Materializable\n";
3504 
3505   const AttributeList &Attrs = F->getAttributes();
3506   if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3507     AttributeSet AS = Attrs.getFnAttributes();
3508     std::string AttrStr;
3509 
3510     for (const Attribute &Attr : AS) {
3511       if (!Attr.isStringAttribute()) {
3512         if (!AttrStr.empty()) AttrStr += ' ';
3513         AttrStr += Attr.getAsString();
3514       }
3515     }
3516 
3517     if (!AttrStr.empty())
3518       Out << "; Function Attrs: " << AttrStr << '\n';
3519   }
3520 
3521   Machine.incorporateFunction(F);
3522 
3523   if (F->isDeclaration()) {
3524     Out << "declare";
3525     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3526     F->getAllMetadata(MDs);
3527     printMetadataAttachments(MDs, " ");
3528     Out << ' ';
3529   } else
3530     Out << "define ";
3531 
3532   Out << getLinkageNameWithSpace(F->getLinkage());
3533   PrintDSOLocation(*F, Out);
3534   PrintVisibility(F->getVisibility(), Out);
3535   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3536 
3537   // Print the calling convention.
3538   if (F->getCallingConv() != CallingConv::C) {
3539     PrintCallingConv(F->getCallingConv(), Out);
3540     Out << " ";
3541   }
3542 
3543   FunctionType *FT = F->getFunctionType();
3544   if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3545     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3546   TypePrinter.print(F->getReturnType(), Out);
3547   Out << ' ';
3548   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3549   Out << '(';
3550 
3551   // Loop over the arguments, printing them...
3552   if (F->isDeclaration() && !IsForDebug) {
3553     // We're only interested in the type here - don't print argument names.
3554     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3555       // Insert commas as we go... the first arg doesn't get a comma
3556       if (I)
3557         Out << ", ";
3558       // Output type...
3559       TypePrinter.print(FT->getParamType(I), Out);
3560 
3561       AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3562       if (ArgAttrs.hasAttributes()) {
3563         Out << ' ';
3564         writeAttributeSet(ArgAttrs);
3565       }
3566     }
3567   } else {
3568     // The arguments are meaningful here, print them in detail.
3569     for (const Argument &Arg : F->args()) {
3570       // Insert commas as we go... the first arg doesn't get a comma
3571       if (Arg.getArgNo() != 0)
3572         Out << ", ";
3573       printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3574     }
3575   }
3576 
3577   // Finish printing arguments...
3578   if (FT->isVarArg()) {
3579     if (FT->getNumParams()) Out << ", ";
3580     Out << "...";  // Output varargs portion of signature!
3581   }
3582   Out << ')';
3583   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3584   if (!UA.empty())
3585     Out << ' ' << UA;
3586   // We print the function address space if it is non-zero or if we are writing
3587   // a module with a non-zero program address space or if there is no valid
3588   // Module* so that the file can be parsed without the datalayout string.
3589   const Module *Mod = F->getParent();
3590   if (F->getAddressSpace() != 0 || !Mod ||
3591       Mod->getDataLayout().getProgramAddressSpace() != 0)
3592     Out << " addrspace(" << F->getAddressSpace() << ")";
3593   if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3594     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3595   if (F->hasSection()) {
3596     Out << " section \"";
3597     printEscapedString(F->getSection(), Out);
3598     Out << '"';
3599   }
3600   if (F->hasPartition()) {
3601     Out << " partition \"";
3602     printEscapedString(F->getPartition(), Out);
3603     Out << '"';
3604   }
3605   maybePrintComdat(Out, *F);
3606   if (F->getAlignment())
3607     Out << " align " << F->getAlignment();
3608   if (F->hasGC())
3609     Out << " gc \"" << F->getGC() << '"';
3610   if (F->hasPrefixData()) {
3611     Out << " prefix ";
3612     writeOperand(F->getPrefixData(), true);
3613   }
3614   if (F->hasPrologueData()) {
3615     Out << " prologue ";
3616     writeOperand(F->getPrologueData(), true);
3617   }
3618   if (F->hasPersonalityFn()) {
3619     Out << " personality ";
3620     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3621   }
3622 
3623   if (F->isDeclaration()) {
3624     Out << '\n';
3625   } else {
3626     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3627     F->getAllMetadata(MDs);
3628     printMetadataAttachments(MDs, " ");
3629 
3630     Out << " {";
3631     // Output all of the function's basic blocks.
3632     for (const BasicBlock &BB : *F)
3633       printBasicBlock(&BB);
3634 
3635     // Output the function's use-lists.
3636     printUseLists(F);
3637 
3638     Out << "}\n";
3639   }
3640 
3641   Machine.purgeFunction();
3642 }
3643 
3644 /// printArgument - This member is called for every argument that is passed into
3645 /// the function.  Simply print it out
3646 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3647   // Output type...
3648   TypePrinter.print(Arg->getType(), Out);
3649 
3650   // Output parameter attributes list
3651   if (Attrs.hasAttributes()) {
3652     Out << ' ';
3653     writeAttributeSet(Attrs);
3654   }
3655 
3656   // Output name, if available...
3657   if (Arg->hasName()) {
3658     Out << ' ';
3659     PrintLLVMName(Out, Arg);
3660   } else {
3661     int Slot = Machine.getLocalSlot(Arg);
3662     assert(Slot != -1 && "expect argument in function here");
3663     Out << " %" << Slot;
3664   }
3665 }
3666 
3667 /// printBasicBlock - This member is called for each basic block in a method.
3668 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3669   assert(BB && BB->getParent() && "block without parent!");
3670   bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock();
3671   if (BB->hasName()) {              // Print out the label if it exists...
3672     Out << "\n";
3673     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3674     Out << ':';
3675   } else if (!IsEntryBlock) {
3676     Out << "\n";
3677     int Slot = Machine.getLocalSlot(BB);
3678     if (Slot != -1)
3679       Out << Slot << ":";
3680     else
3681       Out << "<badref>:";
3682   }
3683 
3684   if (!IsEntryBlock) {
3685     // Output predecessors for the block.
3686     Out.PadToColumn(50);
3687     Out << ";";
3688     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3689 
3690     if (PI == PE) {
3691       Out << " No predecessors!";
3692     } else {
3693       Out << " preds = ";
3694       writeOperand(*PI, false);
3695       for (++PI; PI != PE; ++PI) {
3696         Out << ", ";
3697         writeOperand(*PI, false);
3698       }
3699     }
3700   }
3701 
3702   Out << "\n";
3703 
3704   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3705 
3706   // Output all of the instructions in the basic block...
3707   for (const Instruction &I : *BB) {
3708     printInstructionLine(I);
3709   }
3710 
3711   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3712 }
3713 
3714 /// printInstructionLine - Print an instruction and a newline character.
3715 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3716   printInstruction(I);
3717   Out << '\n';
3718 }
3719 
3720 /// printGCRelocateComment - print comment after call to the gc.relocate
3721 /// intrinsic indicating base and derived pointer names.
3722 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3723   Out << " ; (";
3724   writeOperand(Relocate.getBasePtr(), false);
3725   Out << ", ";
3726   writeOperand(Relocate.getDerivedPtr(), false);
3727   Out << ")";
3728 }
3729 
3730 /// printInfoComment - Print a little comment after the instruction indicating
3731 /// which slot it occupies.
3732 void AssemblyWriter::printInfoComment(const Value &V) {
3733   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3734     printGCRelocateComment(*Relocate);
3735 
3736   if (AnnotationWriter)
3737     AnnotationWriter->printInfoComment(V, Out);
3738 }
3739 
3740 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3741                                     raw_ostream &Out) {
3742   // We print the address space of the call if it is non-zero.
3743   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3744   bool PrintAddrSpace = CallAddrSpace != 0;
3745   if (!PrintAddrSpace) {
3746     const Module *Mod = getModuleFromVal(I);
3747     // We also print it if it is zero but not equal to the program address space
3748     // or if we can't find a valid Module* to make it possible to parse
3749     // the resulting file even without a datalayout string.
3750     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3751       PrintAddrSpace = true;
3752   }
3753   if (PrintAddrSpace)
3754     Out << " addrspace(" << CallAddrSpace << ")";
3755 }
3756 
3757 // This member is called for each Instruction in a function..
3758 void AssemblyWriter::printInstruction(const Instruction &I) {
3759   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3760 
3761   // Print out indentation for an instruction.
3762   Out << "  ";
3763 
3764   // Print out name if it exists...
3765   if (I.hasName()) {
3766     PrintLLVMName(Out, &I);
3767     Out << " = ";
3768   } else if (!I.getType()->isVoidTy()) {
3769     // Print out the def slot taken.
3770     int SlotNum = Machine.getLocalSlot(&I);
3771     if (SlotNum == -1)
3772       Out << "<badref> = ";
3773     else
3774       Out << '%' << SlotNum << " = ";
3775   }
3776 
3777   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3778     if (CI->isMustTailCall())
3779       Out << "musttail ";
3780     else if (CI->isTailCall())
3781       Out << "tail ";
3782     else if (CI->isNoTailCall())
3783       Out << "notail ";
3784   }
3785 
3786   // Print out the opcode...
3787   Out << I.getOpcodeName();
3788 
3789   // If this is an atomic load or store, print out the atomic marker.
3790   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3791       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3792     Out << " atomic";
3793 
3794   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3795     Out << " weak";
3796 
3797   // If this is a volatile operation, print out the volatile marker.
3798   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3799       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3800       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3801       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3802     Out << " volatile";
3803 
3804   // Print out optimization information.
3805   WriteOptimizationInfo(Out, &I);
3806 
3807   // Print out the compare instruction predicates
3808   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3809     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3810 
3811   // Print out the atomicrmw operation
3812   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3813     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3814 
3815   // Print out the type of the operands...
3816   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3817 
3818   // Special case conditional branches to swizzle the condition out to the front
3819   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3820     const BranchInst &BI(cast<BranchInst>(I));
3821     Out << ' ';
3822     writeOperand(BI.getCondition(), true);
3823     Out << ", ";
3824     writeOperand(BI.getSuccessor(0), true);
3825     Out << ", ";
3826     writeOperand(BI.getSuccessor(1), true);
3827 
3828   } else if (isa<SwitchInst>(I)) {
3829     const SwitchInst& SI(cast<SwitchInst>(I));
3830     // Special case switch instruction to get formatting nice and correct.
3831     Out << ' ';
3832     writeOperand(SI.getCondition(), true);
3833     Out << ", ";
3834     writeOperand(SI.getDefaultDest(), true);
3835     Out << " [";
3836     for (auto Case : SI.cases()) {
3837       Out << "\n    ";
3838       writeOperand(Case.getCaseValue(), true);
3839       Out << ", ";
3840       writeOperand(Case.getCaseSuccessor(), true);
3841     }
3842     Out << "\n  ]";
3843   } else if (isa<IndirectBrInst>(I)) {
3844     // Special case indirectbr instruction to get formatting nice and correct.
3845     Out << ' ';
3846     writeOperand(Operand, true);
3847     Out << ", [";
3848 
3849     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3850       if (i != 1)
3851         Out << ", ";
3852       writeOperand(I.getOperand(i), true);
3853     }
3854     Out << ']';
3855   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3856     Out << ' ';
3857     TypePrinter.print(I.getType(), Out);
3858     Out << ' ';
3859 
3860     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3861       if (op) Out << ", ";
3862       Out << "[ ";
3863       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3864       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3865     }
3866   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3867     Out << ' ';
3868     writeOperand(I.getOperand(0), true);
3869     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3870       Out << ", " << *i;
3871   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3872     Out << ' ';
3873     writeOperand(I.getOperand(0), true); Out << ", ";
3874     writeOperand(I.getOperand(1), true);
3875     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3876       Out << ", " << *i;
3877   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3878     Out << ' ';
3879     TypePrinter.print(I.getType(), Out);
3880     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3881       Out << '\n';
3882 
3883     if (LPI->isCleanup())
3884       Out << "          cleanup";
3885 
3886     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3887       if (i != 0 || LPI->isCleanup()) Out << "\n";
3888       if (LPI->isCatch(i))
3889         Out << "          catch ";
3890       else
3891         Out << "          filter ";
3892 
3893       writeOperand(LPI->getClause(i), true);
3894     }
3895   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3896     Out << " within ";
3897     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3898     Out << " [";
3899     unsigned Op = 0;
3900     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3901       if (Op > 0)
3902         Out << ", ";
3903       writeOperand(PadBB, /*PrintType=*/true);
3904       ++Op;
3905     }
3906     Out << "] unwind ";
3907     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3908       writeOperand(UnwindDest, /*PrintType=*/true);
3909     else
3910       Out << "to caller";
3911   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3912     Out << " within ";
3913     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3914     Out << " [";
3915     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3916          ++Op) {
3917       if (Op > 0)
3918         Out << ", ";
3919       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3920     }
3921     Out << ']';
3922   } else if (isa<ReturnInst>(I) && !Operand) {
3923     Out << " void";
3924   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3925     Out << " from ";
3926     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3927 
3928     Out << " to ";
3929     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3930   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3931     Out << " from ";
3932     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3933 
3934     Out << " unwind ";
3935     if (CRI->hasUnwindDest())
3936       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3937     else
3938       Out << "to caller";
3939   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3940     // Print the calling convention being used.
3941     if (CI->getCallingConv() != CallingConv::C) {
3942       Out << " ";
3943       PrintCallingConv(CI->getCallingConv(), Out);
3944     }
3945 
3946     Operand = CI->getCalledOperand();
3947     FunctionType *FTy = CI->getFunctionType();
3948     Type *RetTy = FTy->getReturnType();
3949     const AttributeList &PAL = CI->getAttributes();
3950 
3951     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3952       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3953 
3954     // Only print addrspace(N) if necessary:
3955     maybePrintCallAddrSpace(Operand, &I, Out);
3956 
3957     // If possible, print out the short form of the call instruction.  We can
3958     // only do this if the first argument is a pointer to a nonvararg function,
3959     // and if the return type is not a pointer to a function.
3960     //
3961     Out << ' ';
3962     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3963     Out << ' ';
3964     writeOperand(Operand, false);
3965     Out << '(';
3966     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3967       if (op > 0)
3968         Out << ", ";
3969       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3970     }
3971 
3972     // Emit an ellipsis if this is a musttail call in a vararg function.  This
3973     // is only to aid readability, musttail calls forward varargs by default.
3974     if (CI->isMustTailCall() && CI->getParent() &&
3975         CI->getParent()->getParent() &&
3976         CI->getParent()->getParent()->isVarArg())
3977       Out << ", ...";
3978 
3979     Out << ')';
3980     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3981       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3982 
3983     writeOperandBundles(CI);
3984   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3985     Operand = II->getCalledOperand();
3986     FunctionType *FTy = II->getFunctionType();
3987     Type *RetTy = FTy->getReturnType();
3988     const AttributeList &PAL = II->getAttributes();
3989 
3990     // Print the calling convention being used.
3991     if (II->getCallingConv() != CallingConv::C) {
3992       Out << " ";
3993       PrintCallingConv(II->getCallingConv(), Out);
3994     }
3995 
3996     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3997       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3998 
3999     // Only print addrspace(N) if necessary:
4000     maybePrintCallAddrSpace(Operand, &I, Out);
4001 
4002     // If possible, print out the short form of the invoke instruction. We can
4003     // only do this if the first argument is a pointer to a nonvararg function,
4004     // and if the return type is not a pointer to a function.
4005     //
4006     Out << ' ';
4007     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4008     Out << ' ';
4009     writeOperand(Operand, false);
4010     Out << '(';
4011     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
4012       if (op)
4013         Out << ", ";
4014       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
4015     }
4016 
4017     Out << ')';
4018     if (PAL.hasAttributes(AttributeList::FunctionIndex))
4019       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4020 
4021     writeOperandBundles(II);
4022 
4023     Out << "\n          to ";
4024     writeOperand(II->getNormalDest(), true);
4025     Out << " unwind ";
4026     writeOperand(II->getUnwindDest(), true);
4027   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4028     Operand = CBI->getCalledOperand();
4029     FunctionType *FTy = CBI->getFunctionType();
4030     Type *RetTy = FTy->getReturnType();
4031     const AttributeList &PAL = CBI->getAttributes();
4032 
4033     // Print the calling convention being used.
4034     if (CBI->getCallingConv() != CallingConv::C) {
4035       Out << " ";
4036       PrintCallingConv(CBI->getCallingConv(), Out);
4037     }
4038 
4039     if (PAL.hasAttributes(AttributeList::ReturnIndex))
4040       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4041 
4042     // If possible, print out the short form of the callbr instruction. We can
4043     // only do this if the first argument is a pointer to a nonvararg function,
4044     // and if the return type is not a pointer to a function.
4045     //
4046     Out << ' ';
4047     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4048     Out << ' ';
4049     writeOperand(Operand, false);
4050     Out << '(';
4051     for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
4052       if (op)
4053         Out << ", ";
4054       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
4055     }
4056 
4057     Out << ')';
4058     if (PAL.hasAttributes(AttributeList::FunctionIndex))
4059       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4060 
4061     writeOperandBundles(CBI);
4062 
4063     Out << "\n          to ";
4064     writeOperand(CBI->getDefaultDest(), true);
4065     Out << " [";
4066     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4067       if (i != 0)
4068         Out << ", ";
4069       writeOperand(CBI->getIndirectDest(i), true);
4070     }
4071     Out << ']';
4072   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4073     Out << ' ';
4074     if (AI->isUsedWithInAlloca())
4075       Out << "inalloca ";
4076     if (AI->isSwiftError())
4077       Out << "swifterror ";
4078     TypePrinter.print(AI->getAllocatedType(), Out);
4079 
4080     // Explicitly write the array size if the code is broken, if it's an array
4081     // allocation, or if the type is not canonical for scalar allocations.  The
4082     // latter case prevents the type from mutating when round-tripping through
4083     // assembly.
4084     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4085         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4086       Out << ", ";
4087       writeOperand(AI->getArraySize(), true);
4088     }
4089     if (AI->getAlignment()) {
4090       Out << ", align " << AI->getAlignment();
4091     }
4092 
4093     unsigned AddrSpace = AI->getType()->getAddressSpace();
4094     if (AddrSpace != 0) {
4095       Out << ", addrspace(" << AddrSpace << ')';
4096     }
4097   } else if (isa<CastInst>(I)) {
4098     if (Operand) {
4099       Out << ' ';
4100       writeOperand(Operand, true);   // Work with broken code
4101     }
4102     Out << " to ";
4103     TypePrinter.print(I.getType(), Out);
4104   } else if (isa<VAArgInst>(I)) {
4105     if (Operand) {
4106       Out << ' ';
4107       writeOperand(Operand, true);   // Work with broken code
4108     }
4109     Out << ", ";
4110     TypePrinter.print(I.getType(), Out);
4111   } else if (Operand) {   // Print the normal way.
4112     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4113       Out << ' ';
4114       TypePrinter.print(GEP->getSourceElementType(), Out);
4115       Out << ',';
4116     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4117       Out << ' ';
4118       TypePrinter.print(LI->getType(), Out);
4119       Out << ',';
4120     }
4121 
4122     // PrintAllTypes - Instructions who have operands of all the same type
4123     // omit the type from all but the first operand.  If the instruction has
4124     // different type operands (for example br), then they are all printed.
4125     bool PrintAllTypes = false;
4126     Type *TheType = Operand->getType();
4127 
4128     // Select, Store and ShuffleVector always print all types.
4129     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4130         || isa<ReturnInst>(I)) {
4131       PrintAllTypes = true;
4132     } else {
4133       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4134         Operand = I.getOperand(i);
4135         // note that Operand shouldn't be null, but the test helps make dump()
4136         // more tolerant of malformed IR
4137         if (Operand && Operand->getType() != TheType) {
4138           PrintAllTypes = true;    // We have differing types!  Print them all!
4139           break;
4140         }
4141       }
4142     }
4143 
4144     if (!PrintAllTypes) {
4145       Out << ' ';
4146       TypePrinter.print(TheType, Out);
4147     }
4148 
4149     Out << ' ';
4150     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4151       if (i) Out << ", ";
4152       writeOperand(I.getOperand(i), PrintAllTypes);
4153     }
4154   }
4155 
4156   // Print atomic ordering/alignment for memory operations
4157   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4158     if (LI->isAtomic())
4159       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4160     if (LI->getAlignment())
4161       Out << ", align " << LI->getAlignment();
4162   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4163     if (SI->isAtomic())
4164       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4165     if (SI->getAlignment())
4166       Out << ", align " << SI->getAlignment();
4167   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4168     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4169                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4170   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4171     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4172                 RMWI->getSyncScopeID());
4173   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4174     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4175   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4176     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4177   }
4178 
4179   // Print Metadata info.
4180   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4181   I.getAllMetadata(InstMD);
4182   printMetadataAttachments(InstMD, ", ");
4183 
4184   // Print a nice comment.
4185   printInfoComment(I);
4186 }
4187 
4188 void AssemblyWriter::printMetadataAttachments(
4189     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4190     StringRef Separator) {
4191   if (MDs.empty())
4192     return;
4193 
4194   if (MDNames.empty())
4195     MDs[0].second->getContext().getMDKindNames(MDNames);
4196 
4197   for (const auto &I : MDs) {
4198     unsigned Kind = I.first;
4199     Out << Separator;
4200     if (Kind < MDNames.size()) {
4201       Out << "!";
4202       printMetadataIdentifier(MDNames[Kind], Out);
4203     } else
4204       Out << "!<unknown kind #" << Kind << ">";
4205     Out << ' ';
4206     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4207   }
4208 }
4209 
4210 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4211   Out << '!' << Slot << " = ";
4212   printMDNodeBody(Node);
4213   Out << "\n";
4214 }
4215 
4216 void AssemblyWriter::writeAllMDNodes() {
4217   SmallVector<const MDNode *, 16> Nodes;
4218   Nodes.resize(Machine.mdn_size());
4219   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
4220        I != E; ++I)
4221     Nodes[I->second] = cast<MDNode>(I->first);
4222 
4223   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4224     writeMDNode(i, Nodes[i]);
4225   }
4226 }
4227 
4228 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4229   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4230 }
4231 
4232 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4233   if (!Attr.isTypeAttribute()) {
4234     Out << Attr.getAsString(InAttrGroup);
4235     return;
4236   }
4237 
4238   assert((Attr.hasAttribute(Attribute::ByVal) ||
4239           Attr.hasAttribute(Attribute::Preallocated)) &&
4240          "unexpected type attr");
4241 
4242   if (Attr.hasAttribute(Attribute::ByVal)) {
4243     Out << "byval";
4244   } else {
4245     Out << "preallocated";
4246   }
4247 
4248   if (Type *Ty = Attr.getValueAsType()) {
4249     Out << '(';
4250     TypePrinter.print(Ty, Out);
4251     Out << ')';
4252   }
4253 }
4254 
4255 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4256                                        bool InAttrGroup) {
4257   bool FirstAttr = true;
4258   for (const auto &Attr : AttrSet) {
4259     if (!FirstAttr)
4260       Out << ' ';
4261     writeAttribute(Attr, InAttrGroup);
4262     FirstAttr = false;
4263   }
4264 }
4265 
4266 void AssemblyWriter::writeAllAttributeGroups() {
4267   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4268   asVec.resize(Machine.as_size());
4269 
4270   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
4271        I != E; ++I)
4272     asVec[I->second] = *I;
4273 
4274   for (const auto &I : asVec)
4275     Out << "attributes #" << I.second << " = { "
4276         << I.first.getAsString(true) << " }\n";
4277 }
4278 
4279 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
4280   bool IsInFunction = Machine.getFunction();
4281   if (IsInFunction)
4282     Out << "  ";
4283 
4284   Out << "uselistorder";
4285   if (const BasicBlock *BB =
4286           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
4287     Out << "_bb ";
4288     writeOperand(BB->getParent(), false);
4289     Out << ", ";
4290     writeOperand(BB, false);
4291   } else {
4292     Out << " ";
4293     writeOperand(Order.V, true);
4294   }
4295   Out << ", { ";
4296 
4297   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4298   Out << Order.Shuffle[0];
4299   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4300     Out << ", " << Order.Shuffle[I];
4301   Out << " }\n";
4302 }
4303 
4304 void AssemblyWriter::printUseLists(const Function *F) {
4305   auto hasMore =
4306       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4307   if (!hasMore())
4308     // Nothing to do.
4309     return;
4310 
4311   Out << "\n; uselistorder directives\n";
4312   while (hasMore()) {
4313     printUseListOrder(UseListOrders.back());
4314     UseListOrders.pop_back();
4315   }
4316 }
4317 
4318 //===----------------------------------------------------------------------===//
4319 //                       External Interface declarations
4320 //===----------------------------------------------------------------------===//
4321 
4322 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4323                      bool ShouldPreserveUseListOrder,
4324                      bool IsForDebug) const {
4325   SlotTracker SlotTable(this->getParent());
4326   formatted_raw_ostream OS(ROS);
4327   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4328                    IsForDebug,
4329                    ShouldPreserveUseListOrder);
4330   W.printFunction(this);
4331 }
4332 
4333 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4334                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4335   SlotTracker SlotTable(this);
4336   formatted_raw_ostream OS(ROS);
4337   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4338                    ShouldPreserveUseListOrder);
4339   W.printModule(this);
4340 }
4341 
4342 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4343   SlotTracker SlotTable(getParent());
4344   formatted_raw_ostream OS(ROS);
4345   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4346   W.printNamedMDNode(this);
4347 }
4348 
4349 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4350                         bool IsForDebug) const {
4351   Optional<SlotTracker> LocalST;
4352   SlotTracker *SlotTable;
4353   if (auto *ST = MST.getMachine())
4354     SlotTable = ST;
4355   else {
4356     LocalST.emplace(getParent());
4357     SlotTable = &*LocalST;
4358   }
4359 
4360   formatted_raw_ostream OS(ROS);
4361   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4362   W.printNamedMDNode(this);
4363 }
4364 
4365 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4366   PrintLLVMName(ROS, getName(), ComdatPrefix);
4367   ROS << " = comdat ";
4368 
4369   switch (getSelectionKind()) {
4370   case Comdat::Any:
4371     ROS << "any";
4372     break;
4373   case Comdat::ExactMatch:
4374     ROS << "exactmatch";
4375     break;
4376   case Comdat::Largest:
4377     ROS << "largest";
4378     break;
4379   case Comdat::NoDuplicates:
4380     ROS << "noduplicates";
4381     break;
4382   case Comdat::SameSize:
4383     ROS << "samesize";
4384     break;
4385   }
4386 
4387   ROS << '\n';
4388 }
4389 
4390 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4391   TypePrinting TP;
4392   TP.print(const_cast<Type*>(this), OS);
4393 
4394   if (NoDetails)
4395     return;
4396 
4397   // If the type is a named struct type, print the body as well.
4398   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4399     if (!STy->isLiteral()) {
4400       OS << " = type ";
4401       TP.printStructBody(STy, OS);
4402     }
4403 }
4404 
4405 static bool isReferencingMDNode(const Instruction &I) {
4406   if (const auto *CI = dyn_cast<CallInst>(&I))
4407     if (Function *F = CI->getCalledFunction())
4408       if (F->isIntrinsic())
4409         for (auto &Op : I.operands())
4410           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4411             if (isa<MDNode>(V->getMetadata()))
4412               return true;
4413   return false;
4414 }
4415 
4416 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4417   bool ShouldInitializeAllMetadata = false;
4418   if (auto *I = dyn_cast<Instruction>(this))
4419     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4420   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4421     ShouldInitializeAllMetadata = true;
4422 
4423   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4424   print(ROS, MST, IsForDebug);
4425 }
4426 
4427 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4428                   bool IsForDebug) const {
4429   formatted_raw_ostream OS(ROS);
4430   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4431   SlotTracker &SlotTable =
4432       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4433   auto incorporateFunction = [&](const Function *F) {
4434     if (F)
4435       MST.incorporateFunction(*F);
4436   };
4437 
4438   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4439     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4440     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4441     W.printInstruction(*I);
4442   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4443     incorporateFunction(BB->getParent());
4444     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4445     W.printBasicBlock(BB);
4446   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4447     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4448     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4449       W.printGlobal(V);
4450     else if (const Function *F = dyn_cast<Function>(GV))
4451       W.printFunction(F);
4452     else
4453       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4454   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4455     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4456   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4457     TypePrinting TypePrinter;
4458     TypePrinter.print(C->getType(), OS);
4459     OS << ' ';
4460     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4461   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4462     this->printAsOperand(OS, /* PrintType */ true, MST);
4463   } else {
4464     llvm_unreachable("Unknown value to print out!");
4465   }
4466 }
4467 
4468 /// Print without a type, skipping the TypePrinting object.
4469 ///
4470 /// \return \c true iff printing was successful.
4471 static bool printWithoutType(const Value &V, raw_ostream &O,
4472                              SlotTracker *Machine, const Module *M) {
4473   if (V.hasName() || isa<GlobalValue>(V) ||
4474       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4475     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4476     return true;
4477   }
4478   return false;
4479 }
4480 
4481 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4482                                ModuleSlotTracker &MST) {
4483   TypePrinting TypePrinter(MST.getModule());
4484   if (PrintType) {
4485     TypePrinter.print(V.getType(), O);
4486     O << ' ';
4487   }
4488 
4489   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4490                          MST.getModule());
4491 }
4492 
4493 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4494                            const Module *M) const {
4495   if (!M)
4496     M = getModuleFromVal(this);
4497 
4498   if (!PrintType)
4499     if (printWithoutType(*this, O, nullptr, M))
4500       return;
4501 
4502   SlotTracker Machine(
4503       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4504   ModuleSlotTracker MST(Machine, M);
4505   printAsOperandImpl(*this, O, PrintType, MST);
4506 }
4507 
4508 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4509                            ModuleSlotTracker &MST) const {
4510   if (!PrintType)
4511     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4512       return;
4513 
4514   printAsOperandImpl(*this, O, PrintType, MST);
4515 }
4516 
4517 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4518                               ModuleSlotTracker &MST, const Module *M,
4519                               bool OnlyAsOperand) {
4520   formatted_raw_ostream OS(ROS);
4521 
4522   TypePrinting TypePrinter(M);
4523 
4524   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4525                          /* FromValue */ true);
4526 
4527   auto *N = dyn_cast<MDNode>(&MD);
4528   if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4529     return;
4530 
4531   OS << " = ";
4532   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4533 }
4534 
4535 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4536   ModuleSlotTracker MST(M, isa<MDNode>(this));
4537   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4538 }
4539 
4540 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4541                               const Module *M) const {
4542   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4543 }
4544 
4545 void Metadata::print(raw_ostream &OS, const Module *M,
4546                      bool /*IsForDebug*/) const {
4547   ModuleSlotTracker MST(M, isa<MDNode>(this));
4548   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4549 }
4550 
4551 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4552                      const Module *M, bool /*IsForDebug*/) const {
4553   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4554 }
4555 
4556 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4557   SlotTracker SlotTable(this);
4558   formatted_raw_ostream OS(ROS);
4559   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4560   W.printModuleSummaryIndex();
4561 }
4562 
4563 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4564 // Value::dump - allow easy printing of Values from the debugger.
4565 LLVM_DUMP_METHOD
4566 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4567 
4568 // Type::dump - allow easy printing of Types from the debugger.
4569 LLVM_DUMP_METHOD
4570 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4571 
4572 // Module::dump() - Allow printing of Modules from the debugger.
4573 LLVM_DUMP_METHOD
4574 void Module::dump() const {
4575   print(dbgs(), nullptr,
4576         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4577 }
4578 
4579 // Allow printing of Comdats from the debugger.
4580 LLVM_DUMP_METHOD
4581 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4582 
4583 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4584 LLVM_DUMP_METHOD
4585 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4586 
4587 LLVM_DUMP_METHOD
4588 void Metadata::dump() const { dump(nullptr); }
4589 
4590 LLVM_DUMP_METHOD
4591 void Metadata::dump(const Module *M) const {
4592   print(dbgs(), M, /*IsForDebug=*/true);
4593   dbgs() << '\n';
4594 }
4595 
4596 // Allow printing of ModuleSummaryIndex from the debugger.
4597 LLVM_DUMP_METHOD
4598 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4599 #endif
4600